

ALGORITHMS FOR STABLE

CLUSTERING IN VANETS

(VEHICULAR AD HOC NETWORKS)

Αλγόριθμοι για ταθερή Ομαδοποίηςη ςε Δίκτυα
Οχημάτων

Katsarou Foteini

 Supervisors:
Dimitrios Katsaros
Leandros Tassiulas
Christos Antonopoulos

Department of Computer & Communication
Engineering

University of Thessaly

Volos, September 2012

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 2

Πανεπιςτήμιο Θεςςαλίασ

Τμήμα Μηχανικών Η/Υ τηλεπικοινωνιών & Δικτφων

Μεταπτυχιακή Διπλωματική Εργαςία

ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΣΑΘΕΡΗ ΟΜΑΔΟΠΟΙΗΗ Ε ΔΙΚΣΤΑ ΟΧΗΜΑΣΩΝ

Επιμέλεια:

Κατςαροφ Φωτεινή

Επιβλέποντες:

Δημήτριοσ Κατςαρόσ

Λζανδροσ Ταςιοφλασ

Χρήςτοσ Αντωνόπουλοσ

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 3

Acknowledgments

 With the completion of my studies on the Department of Computer and Communication Engineering

I would like to thank everyone who helped me in an immediate or a circular way for the achievement of this

goal.

 First of all, I would like to thank Mr. Dimitrio Katsaro, Leandro Tassiula and Christo Antonopoulo for

all their useful and helpful advices and for the time they disposed. I would especially like to thank Mr. Di-

mitrio Katsaro and Christo Antonopoulo who enabled me to be a teaching assistant, parallel to my postgrad-

uate studies, on the labs of the lessons they instructed during the academic year 2011-2012 Programming

language I (C) and II (C++) correspondingly. From this opportunity, I gained more experience on both lan-

guages and through the teaching process I had the chance to test my capabilities and I received a deeper

understanding of some more advanced concepts. Additionally I would like to thank my fellow-student Pavlo

Bassara for his time and all the useful tips concerning the programs SUMO and NS3.

 Additionally, I want to thank my friends and the people who existed near me and supported me dur-

ing my studies, from the first time I attended the department for my undergraduate studies till now that I

receive my Master. Altogether, we shared both beautiful moments and concerns too. I feel very lucky that

they exist in my life and without them I might never have the chance to reach at this point. At this point I

would really like to thank a person especially important for me, George, who stands by my side with a lot of

patience and care.

 Finally, I would like to thank my family, who stands at my side in every choice I make, who supports

and guides me. The present thesis is dedicated to my family who taught me above all to lean on my feet and

to fight for my dreams.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 4

Abstract
 VANETs (Vehicular Ad Hoc Networks) are a set of vehicles (nodes) equipped with some antenna that

are moving constantly by following the direction of a road and by forming platoons, especially when moving

on highways. The peculiarity of their movement brought the necessity for efficient algorithms that would fa-

cilitate the communication of such nodes.

 Moreover, in order to support complex applications such as safety warnings in case of an accident,

broadcast of comfort applications such as music file exchange the users, broadcast of information concern-

ing traffic jams and traffic management, it is required to achieve stable clustering among the nodes. Cluster-

ing refers to the division of nodes in virtual groups and they are allocated in such a way that they are geo-

graphically adjacent into the same cluster. Nodes within the same cluster comply to the rules of the cluster,

which makes them present different behavior from the nodes outside the cluster.

 Nodes within a cluster are classified in 3 major categories: clusterheads, gateways and ordinal nodes

or member nodes. Nodes that do not belong in any cluster are orphan nodes or NULL state nodes.

 In the following pages, there are presented 3 different algorithms for clustering in VANETs. Firstly, it

is presented the algorithms and the code files that were produced in order to implement them. On the fol-

lowing, it is presented a comparison among the 3 algorithms related to the average number of messages

that are exchanged among the nodes, the average number of clusters that are produced and the average

size of clusters.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 5

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 6

Abstract 4

Chapter 1 - Introduction 8

Chapter 2 – Fundamentals of VANETs 9

2.1) Introduction to Ad Hoc Networks 9

2.2) MANETs and VANETs 10

2.3) Possible applications on VANETs 11

2.3) Clustering 12

2.4) Platooning on VANETs 14

2.5) Algorithms that were implemented 14

2.6) Techniques for retrieving position 15

Chapter 3 – Creating the simulation network 16

3.1) Introduction to SUMO 16

3.1.1) What is SUMO 16

3.1.2) The format of the network 16

3.1.3) Installation procedure 17

3.2) Introduction to NS 18

3.2.1) What is NS 18

3.2.2) Producing traffic mobility for the NS2 simulation 18

3.3) The Simulation Networks 19

3.4) Initial files and description 20

Chapter 4 – Algorithms for Stable Clustering in VANETs 22

4.1) Why is it important to consider only nodes that are moving towards the same direction? 22

4.2) “Mobility-Based Clustering in VANETs using Affinity Propagation” by Christine Shea, Behnam

Hassanabadi and Shahrokh Valaee 23

4.2.1) Introduction 23

4.2.2) Affinity Propagation algorithm 23

4.2.3) Proposed VANET clustering scheme, APROVE 24

4.2.4) Notes about the algorithm 27

4.2.5) Files produced and description 27

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 7

4.3) “A new Aggregate Local Mobility (ALM) Clustering Algorithm for VANETs” by Evandro Souza, Ioannis

Nikolaidis and Pawel Giburzynski 28

4.3.1) Introduction 28

4.3.2) Aggregate Local Mobility algorithm 29

4.3.3) Tools and Methodology 30

4.3.4) Notes about the algorithm and Implementation details 31

4.3.5) Files produced and description 33

4.4) “Stable Clustering and Communications in Pseudolinear Highly Mobile Ad Hoc Networks” by Ehssan

Sakhaee and Abbas Jamalipour 34

4.4.1) Introduction 34

4.4.2) DLDC Algorithm 34

4.4.3) Cluster Maintenance 36

4.4.4) In case a Clusterhead is destroyed or no Clusterhead in range 36

4.4.5) Notes about the algorithm 37

4.4.6) Files produced and description 38

Chapter 5 – Comparison of Algorithms for Stable Clustering in VANETs 40

References 42

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 8

Chapter 1 - Introduction

 The main topic of this thesis is to study the capability of existing algorithms for supporting Stable

Clustering on VANETs. VANETs stand for Vehicular Ad Hoc Networks and the need for Stable Clustering

emerged due to the requirements of efficient communication between the nodes without flooding the

whole network with unnecessary and redundant messages. Clustering of nodes provides an efficient means

of establishing a hierarchical structure in mobile ad hoc networks (MANETs).

 We have to mention that VANETs are a subcategory of MANETs because of the specific characteris-

tics of VANETs. So, the algorithms proposed for MANETs are not totally applied on VANETs, or they may even

be completely inappropriate.

In the chapters that follow, it is provided explanation of the basic terminology that will be used on

this thesis, it follows the algorithms that were implemented and finally the comparison between them.

More specifically, Chapter 2 provides a quick introduction to ad hoc networks and their basic charac-

teristics. It follows the difference between MANETs and VANETs and the possible application of VANETs in

realistic problems. Then, we introduce the basics of clustering and the categorization of nodes during this

process along with the benefits in the communication process. Additionally, we indicate a quick introduction

to the algorithms that were implemented on this thesis. Finally on this chapter, it exists a reference of the

basic techniques that can be used for the position retrieval information of a vehicle.

Chapter 3 refers to the creation of the simulation network. Firstly we provide the details for the pro-

grams that were used to create the network along with some installation guides and tips for the running

process. In more detail, we used SUMO to produce some traffic mobility and C++ code for the simulation. In

order to achieve the export of SUMO files in trace files, that are more easily conceivable by the C++ code

that was implemented, it was used TraceExporter, which is a SUMO extension. The files that are produced by

this method are also conceivable by NS2. It follows the presentation of the created topology experiments for

our simulation.

The following chapter (Chapter 4) is dedicated to the algorithms that were implemented for this the-

sis. The main pattern that is used for this chapter is a quick reference to the basic characteristics of each al-

gorithm, the presentation of some implementation remarks and finally the presentation of the code files

that were produced.

Chapter 5 is the conclusion of this thesis and it summarizes all the previous algorithms by comparing

their main characteristics. Each algorithm is evaluated against the others concerning the average number of

messages that are exchanged among the nodes, the average number of clusters that are produced and the

average size of clusters.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 9

Chapter 2 – Fundamentals of VANETs

 In this chapter we will discuss the basic terminology around VANETs, before we move on to the

presentation of the basic algorithms and techniques for clustering. The presented concepts are those of ad

hoc networks, the differences between VANETs and MANETs and their possible applications. It follows the

necessity for clustering and how they are related to VANETs. Finally, there are presented sententiously the

basic techniques for retrieving the vehicle’s position.

2.1) Introduction to Ad Hoc Networks

 The term ad hoc network refers to wireless networks that are decentralized (Figure 1). The basic

characteristic is that they do not rely on a preexisting infrastructure. Ad hoc network refers to a set of de-

vices that have equal status on the network and are free to associate with any other network device in link

range. During the communication process between nodes, the participants of the same network usually

need to create a backbone of the network before they try to exchange messages with each other. A famous

technique of creating a backbone of the network is clustering. Alternatively, the communication could be ef-

ficient through an excessive exchange of broadcast messages (flooding). But this technique would flood the

network with redundant messages and would lead to contention and collision problems. Clustering aims to

the creation of groups of nodes in such a way that they can communicate with each other with the minimum

possible exchange of redundant messages. But before we proceed, we will analyze what decentralization

means, and what are the advantages of this technique in ad hoc networks.

Figure 1: An example of ad hoc network

Networks can be divided into two major categories concerning their organizational structure. They

can be either centralized or decentralized. A centralized network is a network where the activities regarding

planning and decision-making concerning clustering or other issues, become concentrated within a particular

node and/or a group of nodes. Of course, this means that those nodes are highly aware of the exact topolo-

gy of the rest of the network. As opposed to centralized networks, decentralized networks are characterized

by the dispersion of the decision-making to practically all the nodes of the network. It can easily be compre-

hended that the centralized version is totally inappropriate for ad hoc networks, mostly because of the non-

preexisting infrastructure. So it’s impossible for a specific node to know the exact position of all other nodes,

even worse when we take into account mobility of nodes.

The decentralized nature of ad-hoc networks makes them suitable for a variety of applications

where central nodes can't be relied on. First of all, we have to take into account the scalability of wireless ad-

hoc networks compared to wireless managed networks. Minimal configuration and quick deployment make

ad hoc networks suitable for emergency situations like natural disasters or military conflicts and in places

where the network infrastructure is not taken for granted. The presence of dynamic and adaptive routing

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 10

protocols enables ad-hoc networks to be formed quickly. Although, there have been identified theoretical

and practical limits to the overall capacity of such networks, that will be discussed later.

Wireless ad hoc networks can be further classified by their application to the following categories:

o mobile ad-hoc networks (MANET), is a self-configuring infrastructure-less network of mobile devices

connected wirelessly. They will be discussed in more detail later.

o wireless mesh networks (WMN), which are communication networks made up of radio nodes organized

in a mesh topology. Wireless mesh networks often consist of mesh clients, mesh routers and gateways.

The mesh clients are often laptops, cell phones and other wireless devices while the mesh routers for-

ward traffic to and from the gateways which may not need to connect to the Internet. A wireless mesh

network often has a more planned configuration than the ad hoc network, and may be deployed to pro-

vide dynamic and cost effective connectivity over a certain geographic area. Whereas, an ad-hoc net-

work is formed ad hoc when wireless devices come within communication range of each other.

o wireless sensor networks (WSN), which consist of spatially distributed autonomous sensors to monitor

physical or environmental conditions, such as temperature, sound, pressure, ... and to cooperatively

pass their data through the network to a main location. The more modern networks are bi-directional,

by also enabling control of sensor activity.

An ad-hoc network is made up of multiple nodes connected by “links”. The links are not wired and

their achievement can’t be taken for granted. There are many practical and theoretical limits that affect the

achievement of links. Firstly, they are influenced by the node's resources (e.g. transmitter power, computing

power and memory) and by behavioral properties (e.g. reliability), as well as by link properties (e.g. length-

of-link and signal loss, interference and noise). Furthermore, links can be connected or disconnected at any

time, mostly because of the mobility of both the nodes or because of the emergence of obstacles on the cur-

rent environment of the network. So, a functioning network must be able to cope with this dynamic restruc-

turing, preferably in a way that is timely, efficient, reliable, robust and scalable. Another practical issue in

most wireless ad hoc networks, is that the nodes compete for access to the shared wireless medium, which

often results in collisions (interference). The use of cooperative wireless communications1 improves the im-

munity to interference by having the destination node combine self-interference and other-nodes interfer-

ence to improve decoding of the desired signal.

As far as it concerns the dynamic restructuring, the network must allow any two nodes of the net-

work to communicate, by relaying the information via other nodes. This includes the creation of a (certain)

“path”, which is a series of links that connects two nodes. Various routing methods use one or two paths be-

tween any two nodes; flooding methods use all or most of the available paths. When talking about broad-

casting, where a message has for recipients all the other nodes, flooding is not the best option as discussed

before. Instead of that, clustering is preferred.

2.2) MANETs and VANETs

 Previously on this chapter, it was mentioned the term MANET, which stands for mobile ad-hoc net-

work and is a set of mobile devices connected wirelessly forming a network with no certain infrastructure

but able of being self-configured. The devices are allowed to move freely in any direction, which is the main

1 “Cooperative Wireless Communications: also known as multi-user MIMO (MU-MIMO) is a set of advanced MIMO, multiple-input and multiple-
output, technologies that exploit the availability of multiple independent radio terminals in order to enhance the communication capabilities of each
individual terminal. To contrast, single-user MIMO only considers access to the multiple antennas that are physically connected to each individual
terminal. MU-MIMO can be seen as the extended concept of space-division multiple access (SDMA) which allows a terminal to transmit (or receive)
signal to (or from) multiple users in the same band simultaneously.” (Wikipedia)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 11

reason for the frequent change of the links between them. Furthermore, every device acts like a router, by

forwarding traffic unrelated to its own use. So each device must be equipped with a mechanism of maintain-

ing and updating such information in order to properly route traffic. Such networks may operate by them-

selves or may be connected to the larger Internet. Another thing we have to notice about MANETs is that

they may lead to frequent disconnection of the network, especially when vehicle density is low. The high

mobility of such nodes could also lead to hard delay constraints in the transmission of a message.

There are many different algorithms proposed for MANETs in order to augment the stability of the

routing infrastructure and to minimize the exchanged messages between the nodes and the packet drops

due to bad routing decisions, etc.

VANETs is a certain type of MANETs. The acronym VANET stands for Vehicular Ad Hoc Network and

resembles to MANET because they both change rapidly and dynamically. VANETs don’t have a pre-

established infrastructure and they lack of central control. Also, devices on both MANETs and VANETs move

freely in any direction, but in VANETs we have the extra limitation of movement within predefined roads.

Additionally, in VANETs, the speeds of the vehicles are bounded due to speed limits, level of congestion and

traffic control mechanisms (e.g. traffic lights and “stop” signs on the roads). Last but not least, future vehi-

cles could be equipped with much more capabilities such as antennas with longer transmission ranges, ex-

tensive on board storage capacities, more processing power and rechargeable sources of energy which can

be achieved easily in VANETs but not in MANETs. On Table 1 that follows, it is presented the comparative

main characteristics of VANETs and MANETs which was originally cited on the paper titled “A Comparative

study of MANET and VANET Environment” by Arzoo Dahiya , Dr.R.K.Chauhan.

Parameter MANET VANET

Cost of production Cheap Expensive

Change of the network topology Slow Frequent and very fast

Mobility Low High

Node density Sparse Dense and frequently variable

Bandwidth Hundred kps Thousand kps

Range Up to 100m Up to 500m

Node lifetime Depends on power resource Depends on lifetime of vehicle

Moving pattern on nodes Random Regular

Position acquisition Using ultrasonic Using GPS, RADAR

Table 1: Summary of the basic characteristic of MANETs and VANETs, as presented on “A comparative study of MANET and VANET

Environment”.

2.3) Possible applications on VANETs
 There do exist a number of attractive applications for VANETs. For begging, we have to mention that

due to the similarity between VANETs and MANETs, many applications of MANETs could be used for VANETs

too, but the details differ. Instead of the random movement of vehicles, on VANETs, they have to proceed in

an organized way and restricted by roadsides. The interactions with roadside equipment can likewise be

characterized fairly accurately.

 One of the most essential application is the provision of driving safety through the assistance of

drivers in the avoidance of collisions and the supply of an alternative route among highway entries and in-

tersections. This could be easily implemented in accordance to GPS and navigation systems. Additionally, the

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 12

driver could be supplied with traffic jam reports, high-speed tolling and the fastest routes to the work. Fu-

ture applications could involve cruise control making automatic adjustments to maintain safe distances be-

tween vehicles or alerting the driver of emergency vehicles in the area.

Another very useful application is the capability of transforming a traffic jam into a productive work

time, by having the e-mails downloaded and read. The system could also allow VoIP services such as Google-

Talk or Skype between employees.

Finally, Intervehicular Communications (IVC) could be used to provide comfort applications such as

file exchange, interactive communications, weather information, gas station or restaurant locations and

their vicinity to the requester. Other than IVC, we could also have RVC (Road Vehicle Communications) appli-

cations.

All in all, the possible applications vary between traffic management, road monitoring, entertain-

ment and contextual information.

2.3) Clustering
 As referred previously, VANETs are infrastructure-less networks and the exact topology of the net-

work isn’t known to every node of the network. So, in order to avoid flooding, we have to create a backbone

of the network before vehicles start exchanging messages. In our case, we want to create an abstract struc-

ture over the network, so that regional changes doesn’t need to be made perceivable from all the network.

This, can be achieved by the use of clusters.

 Clustering is the process of creating such substructures on the whole topology network. A more

formal definition given in the paper titled “A Survey of Clustering Schemes for Mobile Ad Hoc Networks” is

the following: “In a clustering scheme the mobile nodes are divided into different virtual groups and they are

allocated geographically adjacent into the same cluster according to some rules with different behavior for

nodes included in a cluster from those excluded from the cluster”. All the nodes are classified to one of the

following 3 categories which is also shown in the Figure 2:

1. clusterheads of the cluster: they have to rebroadcast the message to every member of the group

and they act as the local coordinators for their cluster,

2. gateways: they rebroadcast the message to their neighboring heads of the clusters and they are

used for communication between clusters,

3. ordinal nodes (or cluster members): they just receive the message within the cluster without re-

broadcasting it to anyone else.

Clusterheads and gateways form the backbone of the network. Gateways may belong to more than one clus-

ters. In order to apply some algorithm scheme, each node of the network receives a unique identifier (ID).

We have to mention that during the process of clustering in a highly dynamic network, we may have some

orphan nodes which are mainly ex-members of a cluster that currently don’t belong to any cluster.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 13

Figure 2: Clustering, the fundamentals

 The basic advantages of clustering can be summarized to 1) the spatial reuse of resources, where on

a non-overlapping multicast structure, two clusters may use the same frequency or code if they don’t belong

to neighboring clusters, 2) the use of a virtual backbone, formed by clusterheads and gateways, in order to

avoid flooding and 3) the improved network stability and scalability as far as it concerns a regular member

where local changes need not to be seen and updated by the entire network.

 Additionally to the advantages of clustering we have to take into account the cost of creating and

maintaining clusters in such networks. Firstly, we have to mention that in order to maintain clustering struc-

tures, nodes in some pairs have to exchange messages periodically. The period time for these messages to

be exchanged differs concerning the mobility patterns of the nodes. But in a rapidly changeable network,

there have to be exchanged enough messages which leads to energy and bandwidth consumption. Secondly,

some cluster schemes may cause the cluster structure to be completely rebuilt over the whole network

when some local events take place such as the “death” of a node (ripple effect or re-clustering). Thirdly,

many clustering schemes work on two phases: the phase of cluster formation and the phase of cluster

maintenance. Some of them assume that during the cluster formation the nodes maintain their positions

which is not at all accurate in realistic scenarios. In this case we have also to consider the time required for

the cluster formation which is called computation round. This time may varies from algorithm to algorithm

and the nodes can’ t stay steel for a long time.

 There are many algorithms, proposed for clustering in MANETs and VANETs. We have to mention

that MANETs protocols aren’t suitable for VANETs. The reason is that protocols designed for MANETs don’t

take into account the unique characteristics of VANETs concerning the movement patterns, so they are not

suitable for intervehicular communication. MANETs routing protocols can be classified in 3 major catego-

ries:

a) proactive: that maintain and update information on routing between all nodes of a given network at

all times,

b) reactive: where the route determination is invoked on a demand or on need basis,

c) hybrid: these protocols are a mixture of both proactive and reactive protocols. A characteristic ex-

ample is zone routing protocol.

In our case, the more suitable are the reactive algorithms, in order to diminish flooding messages. But reac-

tive algorithms don’t take into account mobility parameters such as break of links. They also cause flooding

during the route discovery process.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 14

 Another classification for MANETs algorithms, concerning the dominant role of the clusterhead on

the formation and maintenance of the cluster is the following:

a) Lowest-ID algorithm: where the nodes periodically broadcast the list of nodes that can hear includ-

ing its own and the node becomes clusterhead if in its neighbor he has the lower ID.

b) Highest-Degree algorithm: where the degree of a node is computed based on its distance from oth-

ers. The node with the maximum number of neighbor (e.g. maximum degree) becomes clusterhead.

c) Beacon-Based algorithm: which is based on the periodical/regular transmission of hello messages

which advertise the state of a node. Based on the state of the neighbors, a node can select its own

state. A clusterhead will consider a change of its state if it receives a message from another cluster-

head. A clusterhead receiving a hello message from another CH will remain in the same state if it has

more cluster members of its own than the sender.

A beacon-based algorithm is the only applicable kind of algorithm on VANETs.

2.4) Platooning on VANETs

 Platooning is the tendency of vehicles to move relatively close together, especially in urban envi-

ronments or on highways, by forming groups with similar velocities and direction of motion, thus creating

topologies that look like platoons. These platoons of vehicles frequently pass one another in opposite direc-

tions or mingle on traffic lights.

 Platooning is especially useful in VANETs’ algorithms, as they profit from the fact that during cluster

formation and in order to maintain stability and relative resilience, the nodes give preference for groups

which increase the node cohesion, e.g. nodes that travel towards the same direction and with similar veloci-

ties.

2.5) Algorithms that were implemented
A clustering algorithm must strive to maintain cluster stability and retain the cluster contents and

structure for as long as possible, as otherwise, the frequent re-clustering processes will degrade the perfor-

mance of the communication.

In the following pages they will be presented in detail 5 algorithms. The first algorithm is called

APROVE (Affinity PROpagation for Vehicular networks) and was presented on the paper titled “Mobility-

Based Clustering in VANETs using Affinity Propagation” by Christine Shea, Behnam Hassanabadi and

Shahrokh Valaee. The main idea is the utilization of the Affinity Propagation in a distributed manner. Each

node in the network transmits the responsibility and availability messages to its neighbors and then makes a

decision on clustering independently.

The second algorithm is an aggregate local mobility clustering algorithm and was presented on the

paper “A New Aggregate Local Mobility (ALM) Clustering Algorithm for VANETs” by Evandro Souza, Ioannis

Nikolaidis and Pawel Giburzynski. The algorithm’s philosophy is the use of RSS as an indication of the dis-

tance between the sender and the receiver but clusterheads exchange more than one packet within a cer-

tain amount of time to avoid break leakage and the node’s decision regarding its status change is based on

its perception of the aggregate local mobility (ALM).

The third algorithm named “Stable Clustering and Communications in Pseudolinear Highly Mobile Ad

Hoc Networks” by Ehssan Sakhaee and Abbas Jamalipour refers to a primary MANET algorithm, which is ap-

plicable in VANETs. There are presented two algorithms concerning the available position information of the

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 15

nodes both of which consider two phases. The first phase is cluster formation (initial clustering) and the se-

cond one is cluster maintenance (progressive). It will be implemented only the algorithm related to retrieval

of a node’s position through GPS.

2.6) Techniques for retrieving position
 Before we proceed, we have to mention that all algorithms require to know some position infor-

mation in order to function properly. Each vehicle needs either an efficient way for determining their abso-

lute position in the bounds of a city / road frame or its relative position towards the other vehicles. The most

famous techniques to do so, are:

o GPS (Global Positioning System)

o Doppler effect from where we export the Doppler Value

o RSS (Received Signal Strength)

On the following algorithms, the technique that was used to retrieve position information is GPS.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 16

Chapter 3 – Creating the simulation network

 Before the simulation of the algorithms, it emerged the problem of simulating an architecture of the

network. In more depth, we had to create a realistic environment where the vehicles could move with some

velocity towards a random direction but into predetermined roads. The development of such an architecture

is based on the paper “Ad Hoc Peer-to-Peer Network Architecture for Vehicle Safety Communications”, writ-

ten by Wai Chen and Shengwei Cai.

 The simulation of the networks was made with SUMO. In the following pages, there is a detailed ref-

erence of the tool (SUMO) and the steps that were followed for the installation, along with some quick ex-

ample to demonstrate its usage. It will then follow the presentation of the created environment for the sim-

ulation of the algorithms.

3.1) Introduction to SUMO

3.1.1) What is SUMO

 SUMO stands for Simulation of Urban MObility and is licensed under the GPL (GNU General Public

License). It is open source and its use is related to the creation and simulation of highly portable, microscop-

ic and continuous road traffic packages which are designed to handle large road networks. In more detail a

network file that is produced with SUMO is capable of describing the traffic related to a part of a map. It con-

tains the roads of the network with intersections or junctions along with the traffic lights of the map.

The format of the files is XML (eXtensible Markup Language), but the files that are produced are not

meant to be edited by hand. There are some programs (NETGEN, NETCONVERT) which are related to SUMO

and allow the creation of networks in a very comfortable way. Also, SUMO offers a wide variety of exten-

sions in order to communicate thriftily with other programs, such as ns3, which is necessary for our simula-

tion.

An alternative program for generating movement traces is VanetMobiSim which is an extension for

the CANU Mobility Simulation Environment (CanuMobiSim). CanuMobiSim is JAVA-based and can generate

movement traces in different formats, supporting different simulation/emulation tools for mobile networks

(NS2, GloMoSim, QualNet, NET).

3.1.2) The format of the network

 In an abstraction manner, we can say that a SUMO network is a directional graph where the edges

are the roads and the nodes are the intersections/junctions. In more depth, further traffic is related to the

following information:

o every street/road is a collection of lanes,

o we can define a certain position, shape and speed limit on every lane,

o the right-of-way regulation,

o the connections between lanes (that correspond to junctions/intersections),

o the position and the logic of the traffic lights.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 17

3.1.3) Installation procedure

 Here is presented the basic procedure for installing SUMO on Ubuntu 11.04 (Natty Narwhal). The full

installation guide for other systems too can be found on the following link:

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Installing/Linux_Build

The version that was installed is 0.15.0. The basic installation steps are:

 Open a terminal

 SUMO needs some other tools too, such as Proj, GDAL, Fox (for GUI) and Xerces-C (if it doesn’t come with the distri-

bution).

sudo add-apt-repository ppa:gwibber-daily/ppa

With the previous command, we declare on Ubuntu where to find the PPA (Personal Package Archive).

Now, we have to tell the system to pull down the latest list of software from each archive it knows about, including the

PPA we just added:

sudo apt-get update

And we are ready to start installing software from the PPA.

sudo add-apt-repository ppa:sumo/stable

sudo apt-get install sumo sumo-tools sumo-doc

We have to provide root access for some steps. So, we use the following command, which requires the root’s pass-

word:

su root

The following packages are needed to build SUMO:

sudo apt-get install libtool libgdal1-dev proj libxerces-c2-dev

sudo apt-get install libfox-1.6-dev libgl1-mesa-dev libglu1-mesa-dev

cd /usr/lib; sudo ln -s libgdal1.6.0.so libgdal.so

(Note: We can safely ignore gdal failure due to Python bindings.)

 Now, we need to get source code, which we can download on the link:

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Downloads

The name of the file we want is sumo-src-0.15.0.tar.gz.

Afterwards, we have to go to the folder that the tar is stored.

tar xzf sumo-src-0.15.0.tar.gz

cd sumo-0.15.0/

 It follows the building of the SUMO binaries:

./configure --with-fox-includes=/usr/include/fox-1.6

 --with-gdal-includes=/usr/include/gdal --with-proj-libraries=/usr

 --with-gdal-libraries=/usr --with-proj-gdal

make

 The final step of installing the SUMO binaries is optional. This will copy the SUMO binaries to another path, so that

we can delete all source and intermediate files afterwards. If you do not want to do that, we can simply skip this step

and run SUMO from the source subfolder (src/sumo-gui and src/sumo).

make install

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Installing/Linux_Build
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Downloads

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 18

3.2) Introduction to NS

3.2.1) What is NS

 NS3 is a discrete-event network simulator and is mainly used in the simulation of ad hoc networks.

Previous versions are ns-1 and ns-2 and the current version is ns-3. It is targeted for research and education-

al use.

 The development of ns-3 project started in 2006 and it is open-source. It is implemented in C++ and

Python and it is licensed under the GNU GPL (General Public License). The workflow on ns includes the fol-

lowing 4 steps:

1. Implementation of protocol models,

2. Setup the simulation scenario,

3. Running the simulation,

4. Analysis of the simulation results

Some basic components of the program are:

1. NS, the simulator itself has Nam, the network animator to visualize ns (or other) output,

2. Pre-processing component for Traffic and topology generators,

3. Post-processing for Simple trace analysis (in Awk, Perl or Tcl).

3.2.2) Producing traffic mobility for the NS2 simulation

 A solution is to use SUMO in order to produce the traffic and then use the TraceExporter (SUMO’s

extension) to export SUMO traces. TraceExporter is written in Java and by its usage there are produced three

files: config, activity and mobility. It follows the basic steps to achieve this.

 Let’s assume that under a certain folder we have “hello.nod.xml” and “hello.edg.xml” files, that can produce the

“hello.net.xml”. (We might need to add the “hello.typ.xml” file in the creation of the “hello.net.xml” if we have one

such file.) Then the files “hello.net.xml” and “hello.rou.xml” will produce the “netstate.xml” by calling the sumo execu-

tion. The following 2 commands, outline the procedure:

netconvert --node-files=hello.nod.xml --edge-files=hello.edg.xml --type-files=hello.typ.xml --output-file=hello.net.xml

sumo-gui -n hello.net.xml -r hello.rou.xml --netstate-dump netstate.xml

 After having downloaded SUMO, in the relative path “tools/traceExporter”, we can find the file “traceExporter.jar”.

We have to copy this file in the folder that exist the previously mentioned files. Then in the terminal we can use the fol-

lowing command:

#java -jar traceExporter.jar ns2 -n hello.net.xml -t netstate.xml -a activity.tcl -m mobility.tcl -c config.tcl -p 1 -b 0 -e 150

where:

-n <net_file>

-t <trace_file>

-a <activity.tcl>

-m <mobility.tcl>

-c <config_file>

-p <penetration_level> (Penetration level means the ratio of selecting vehicles that will be traced for output

and is a float in [0, 1]. Penetration level of 1 equals to no filtering and 0 means no vehicles will be selected.)

-b begin_time

-e end_time

 The previous command will generate three files under the folder with names “activity.tcl”, “mobility.tcl” and “con-

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 19

fig.tcl”.

o The file “activity.tcl” describes the time that each vehicle does its first and last movement.

o The file “config.tcl” is used to set some opt()-variables which describe the simulation scenario.

o The file “mobility.tcl” contain the actual movements of the nodes. This is the file that is necessary for ns-3 and

for our C++ code. We have to move this file under the folder where our C++ code is placed and rename it to

“default.ns_movements”.

Note that some basic characteristics of the TraceExporter are presented in the link:

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Tools/TraceExporter

3.3) The Simulation Networks
 Having explored the basic components of both SUMO and NS3, we can move on to the presentation

of the topologies of the 2 networks that were used for the simulation.

The first topology simulates the movement of 100 nodes in a highway. The topology consists of 2

roads (edges) that are moving in a parallel way and towards the same direction. The first road consists of 3

lanes and the second one consists of 2 lanes. The topology can be viewed at the Figure 3. During the simula-

tion, they were constructed 100 nodes – vehicles of 6 different types (carA to carF). The vehicles varied

slightly in the maximum velocity that they could move and the minimum gap that represents the minimum

distance that they have to keep from the car that moves in the front. The details about the movement of the

vehicles were declared in the “simple.rou.xml” file.

Figure 3: Representation of the highway (simple road) that was used for the comparison of the algorithms. Node1-6 represent the

nodes that were defined on the “simple.nod.xml” file. Right1, right1out, right2 and right2out represent the edges that were de-
fined on the “simple.edg.xml” file. They were used 2 different types of roads. The first type consists of 2 lanes and the second

type consists of 3 lanes. Finally the nodes are moving towards the right direction.

The second topology consists of 12x12 roads (edges) that forms squares. The 12 horizontal edges are

intersected with the 12 vertical edges forming 144 possible intersections (nodes) where a node could change

its moving direction. The topology can be viewed at the Figure 4. Once again, during the simulation, they

were constructed 100 nodes – vehicles of 6 different types (carA to carF). The vehicles varied slightly in the

maximum velocity that they could move and the minimum gap that represents the minimum distance that

they have to keep from the car that moves in the front. The details about the movement of the vehicles

were declared in the “simple.rou.xml” file. In the same file, they were declared 50 possible routes that a ve-

hicle could follow. Every 2 nodes followed the exact same route.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Tools/TraceExporter

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 20

Here, we have to notice that in order to produce platoons on some roads, some edges were con-

stantly preferred among others. This choice could simulate some very jammed roads on rush hours. It would

be interesting to add even more vehicles in the topology, in order to produce fully crammed roads. In this

scenario, it is quite easy to produce vehicles that cannot communicate with any other node at all, cause the

transmission radius is low enough. In fact, in a real city transmission radius is even smaller than in an urban

area or a highway, because of the obstacles that emerge from the buildings of a city.

Figure 4: Representation of the city topology that was used for the comparison of the algorithms. They were declared 144 nodes
on the “city.nod.xml” file. (In order not to make the scheme more complicated, the numbering of the nodes was omitted.) r#, l#,

u# and d# represent the edges that were defined on the “simple.edg.xml” file (r for right, l for left, u for up, d for down also speci-
fy the allowed direction of the vehicles at each edge - road). They were used 2 different types of roads. Both types consist of 1

lane. So, the presented scheme consists of 144 intersections.

3.4) Initial files and description
 In order to facilitate the code implementation for all the algorithms, they were produced some initial

files that read the network which is ready for simulation and that load on the memory the position details of

each node. The files that are almost identical for every algorithm are:

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 21

o zzz_main.cc: which contains the call of the main function. During the execution of the program, it is

designed to accept at least 3 arguments with a certain order: (1) number of nodes that participate in

the simulation, (2) the period of times that the simulation lasts and (3) the name of the file that con-

tains the simulation details and has been produced with the TraceExporter (the SUMO’s extension

that was described previously). If the user doesn’t provide the adequate number of arguments, the

program is terminated by providing to the user the message “Please enter the number of nodes and

the period of times that the program runs as the second and the third parameter. Also give the file-

name that declares the movement.”. In the end of the file, there is a call to the main function of each

of the three algorithms that were implemented. Finally, this file sets the transmission radio of the

nodes that participate in the simulation.

o movement.h & movement.cc: These 2 files implement the class “Movement”, which contains details

read from the input simulation file that is declared by the user. Each node keeps its nodeID, its posi-

tion (int x, int y) and its velocity (which is the total velocity on x and y axes and is not really necessary

for the implemented algorithms).

 Here, we have to note that if there are no details for some certain node for a certain period of time,

it is used the position that the node had on the last-mentioned period time (simply in order to avoid unde-

fined (not-set) positions).

Moreover, whenever necessary, velocity on each axel is calculated as presented on Eq. 1:

⇒

Eq. 1

⇒

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 22

Chapter 4 – Algorithms for Stable Clustering in VANETs

This Chapter is dedicated to the presentation of the 3 algorithms that were mentioned before. First-

ly, it is presented the algorithm with the basic procedures, equations and figures. Then, there are presented

some notes above the algorithm that refer to the its implementation. On the following it is presented the

structure of the code files and their linking (with #includes).

4.1) Why is it important to consider only nodes that are moving towards the same
direction?
 To demonstrate the advantage of grouping vehicles, it is presented the example on Figure 5.

Figure 5: Link rupture event is more likely to occur between vehicles A, B and D. Analytically, 5 vehicles are moving towards an

intersection and vehicle B is turning onto a new street, whereas the other 4 vehicles are continuing straight on the same road. A
connection is established between vehicles A and F. Communication is possible on 2 routes: one via vehicle B (route A-B-D-F) and

the other via vehicle C (route A-C-D-F). As vehicle B is turning left and vehicle A is continuing straight, the former route is more
likely to be ruptured after a certain time. Consequently, the selection of the second route is more suitable and adds more stability

and reliability to the communication path between the 2 vehicles (A and F).

 In the proposed routing scheme, vehicles are grouped into four different groups based on their ve-

locity vectors. In a Cartesian space, each vehicle is characterized by one of the unit vectors [S1 = (1,0), S2

=(0,1), S3 = (-1,0), S4 = (0,-1)], as shown in Figure 6. Vehicles are assumed to be equipped with GPS device s

to detect their geographical location. Location detection is performed every 1s time interval. Let

 () denote the Cartesian coordinates of the velocity vector of a given vehicle A. By using the velocity

and unit vectors, the group of vehicle A can be decided as follows. For example, vehicle A belongs to the

group if the dot product of its velocity vector and the unit vector ,()- takes the maximum value

for on Figure 5.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 23

Figure 6: Velocity-vector-based grouping for vehicles

 As a reminder it follows the definition of the dot product.

 ()

 ()
] Eq. 2

The dot product can also be used to calculate the angle between 2 vectors:

‖ ‖‖ ‖
 Eq. 3

4.2) “Mobility-Based Clustering in VANETs using Affinity Propagation” by Christine

Shea, Behnam Hassanabadi and Shahrokh Valaee

4.2.1) Introduction

The proposed algorithm, which is named APROVE (Affinity PROpagation for Vehicular networks), is a

distributed mobility-based clustering algorithm that primarily focuses on cluster stability and utilizes the Af-

finity Propagation in a distributed manner. When talking about stability, we mean that within clusters we

have:

o long clusterhead duration with low rate of cluster head change and

o long cluster member duration.

This will be achieved by forming clusters where clusterheads and their corresponding members will have

both the minimum distance and the minimum relative velocity between them.

 In this algorithm the position information on the vehicles is provided by the use of GPS.

4.2.2) Affinity Propagation algorithm

Affinity Propagation is a clustering method for data such as K-means or Euclidean Distance, but it

does produce revolutionary faster clusters than the previously mentioned methods and with less errors than

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 24

the traditional techniques. More specifically, we can view our clustering problem as an attempt to minimize

the distance between a certain data point and its assigned exemplar.

In Affinity Propagation, data points exchange messages with one another where they describe the

current affinity that one data point has for choosing another data point as its exemplar. The algorithm re-

ceives as an input a function of similarities ().

 () indicates how well suited the data point is to be the exemplar of data point .

As it is conceivable in Affinity Propagation, we need to maximize the similarity () for every data point

and the chosen exemplar . Each node is also characterized by a self-similarity (), a factor necessary for

determining the number of exemplars that are identified. An individual node that is initialized with a larger

self-similarity is more likely to become an exemplar and if all the nodes have the same initial self-similarity,

they are equally likely to become exemplars. If we increase the common self-similarity input, we will pro-

duce more clusters.

 We can have either responsibility () or availability () messages exchanged between the

nodes.

o (): is sent from node to the candidate exemplar and indicates how well suited is to be the ’s ex-

emplar by taking into account competing potential exemplars.

o (): is sent from candidate exemplar back to node . It indicates ’s desire to be an exemplar for by

the data gathered.

The self-responsibility () and self-availability () are accumulated evidence that is an exemplar. The

update formulas for responsibility and availability are:

 () ()

* () ()+ Eq. 4

 ()

 { () ∑ * ()+

 * +

} Eq. 5

 () ∑ * ()+

 Eq. 6

Their message updates have to be damped in order to avoid numerical oscillations that will prevent the algo-

rithm’s convergence. So we may use the following formula:

 () Eq. 7

where , -. Clustering is complete when the messages converge. When () () , the node

become is able to determine about its clusterhead. Upon convergence, each node ’s clusterhead is:

* () ()+ Eq. 8

4.2.3) Proposed VANET clustering scheme, APROVE

 In the proposed algorithm, named APROVE (Affinity PROpagation for Vehicular networks), it is used

the basic idea from affinity propagation algorithm but in a distributed way. Each node transmits the respon-

sibility and availability messages to its neighbors and then makes a decision on clustering independently. The

result is that the decisions are taken in a distributed manner and simultaneously every node is only cluster-

ing with those in its one-hop neighborhood.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 25

 The algorithm, in order to function properly with the new position information, requires a new simi-

larity function, which is defined as follows:

 () (‖ ‖ ‖ ‖) Eq. 9

 0

1 Eq. 10

 [

] Eq. 11

where:

o is a vector of node ’s current position,

o is a vector of node ’s predicted future position.

The corresponding function predicts each node ’s future position in (time future parameter) se-

conds from now, based on node ’s current velocity in the x direction and velocity in the y direction.

The parameter can be tuned for different types of mobility.

 The self-similarities values can be initialized to the same preference value. This value must be set in

such a way that it will minimize the number of clusters produced. It is possible, though, to assign a higher

preference to certain vehicles (e.g. large trucks), which will make them more likely to become clusterheads.

A) Message Passing and the Neighbor List

 Every node will maintain a neighbor list , which has a neighbor list entry

, for every neighbor .

{

()

()

 ()

 ()

 ()

 ()

 ()

 Eq. 12

 Each node will periodically broadcast a HELLO beacon, which will contain its ID, position, velocity

and current clusterhead. The hello broadcast period is defined as . When node receives a HELLO beacon

message from node , it calculates its current similarity with , () (Eq. 9) and then updates its neighbor

list with the new information. Messages are only considered by neighbors who are moving towards the same

direction and the rest of them are discarded. The basic procedure is outlined in Procedure 1:

Procedure 1: Broadcast and Reception of HELLO Beacons

1. Every , each node broadcasts HELLO beacon: 〈 () ()
〉

2. Each receiving neighbor, , checks if is travelling in the same direction
3. If true, calculates similarity with , ()

4. Node adds/updates ’s neighbor list entry,

’s: 〈 () ()

() 〉

 The broadcast period for availability and responsibility messages is defined as . Every node will

calculate its responsibility with each neighbor using Eq. 4. The value is damped with the previous transmit-

ted responsibility (with) and stored as () for each neighbor in the responsibility array, , and

broadcasts the array in the RESP packet. Each node will calculate the availability with each neighbor using

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 26

the update Eq. 5. Node will store ’s damped availability in () and accumulates all ()’s in the avail-

ability array, This array is broadcasted in the AVAIL packet.

 The AVAIL packet also includes the flag . A node will become clusterhead when ()

 () . For every iteration, each node checks for this condition, and then sets the flag accord-

ingly. According to this flag, may be considered or not by its neighbors as a potential clusterhead. The re-

sponsibility and availability broadcast procedure is outlined in Procedure 2:

Procedure 2: Broadcast of RESP and AVAIL messages

Every , each node will:
1. Calculate responsibility, () for each neighbor
2. Update the damping factor: () () () ()
3. Store responsibilities, (), in array:
4. Calculate availability, () for each neighbor
5. Update with damping factor: () () () ()
6. Store availabilities, (), in array:
7. Determine if converged to CH status: if () () , then set

8. Broadcast the RESP packet: 〈 〉
9. Broadcast the AVAIL packet: 〈 〉

 On receiving a RESP or AVAIL packet from , node will search for its id in the or array and if it

founds its id, it will read off its specific responsibility or availability message. These messages are stored in

the received message fields, () or () of ’s neighbor list entry,

. If the received packet is of AVAIL

type, node will also update the field for according to the flag received. The procedure is

outlined in the Procedure 3.

Procedure 3: Reception of RESP and AVAIL messages

Upon reception of a RESP or AVAIL packet from node , node will:
1. Search for its id, in the or array

2. If a message addressed to is found, update the () or () field in the neighbor list entry

3. Check if flag is set, and update field in ’s neighbor list entry

B) Cluster Formation and Maintenance

 Clustering decisions are made periodically every (Clustering Interval). The message period

must be small enough to allow the algorithm to converge within the CI period. (Simulations have shown that

a neighborhood of 40 nodes can converge in under 10 iterations. So, a of 1s requires a minimum CI of

10s.)

 Every , node decides about its clusterhead by the use of Eq. 8. Node only considers its neigh-

bors with the flag set, which confirms that node will become a clusterhead. If none of the neigh-

bors have set their flag, node will become its own clusterhead.

Between the clustering iterations of , it is performed cluster maintenance with period (cluster

maintenance period). Every , node clears its neighbor list from all the old entries by checking the

 fields and then checks whether its clusterhead is still in its neighbor list. If the CH has been lost, node

 searches through its neighbors for current CHs to join, by finding neighbors with . The flag

is not used in this case because it indicates the potential clusterheads for the next round. If there are found

more than one CHs in the neighbor list, node uses Eq. 8 to select the best one. If it can’t find another

neighbor that is currently a CH, it becomes its own clusterhead.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 27

 As far as it concerns the passing of the responsibility and availability messages, they are not reset

between clustering iterations. So the algorithm can gain some memory and the nodes have preference to

previous clusterheads. This results in fewer less frequent cluster changes. Secondly, the provided scheme

doesn’t require synchronization and each node can run independently from one another. In this asynchro-

nous case, the exchanged availability and responsibility messages will be at most one period old and the per-

formance of the algorithm won’ t be effected. But in case of a lossy channel, messages can be older than one

period, which may cause degradation on the algorithm’s performance.

4.2.4) Notes about the algorithm

 As mentioned in the initial paper, the algorithm requires enough time in the start in order to con-

verge. For example in a simulation that lasts at about 500s, it can be used only the last 200s in order to sur-

vey the stability of the produced clusters.

As it is obvious by the description of the algorithm, self-similarity must be predefined on the net-

work. This parameter could affect the final results of the simulation. For our experiments, all the nodes were

assigned the same self-similarity.

Moreover, it is mentioned in the Procedure 2 and on the step 7 that “A node will become cluster-

head when () () ”. Here we have to mention that when this requirement is implemented, all

the nodes become clusterheads and there are no cluster members. Additionally, if this requirement is not

implemented, then the nodes are simply “forwarders”. Every node will rebroadcast the message that he has

received, but a node will listen a new message only when it comes from its clusterhead. Specifically, a node

decides about its clusterhead, without the potential clusterhead to have declared itself as clusterhead. In

this case, the common scenario was that node was considered CH for node and node was considered CH

for node . Both scenarios were implemented, but for the comparisons it was chosen the second scenario.

This is the reason why there are so many CHs declared in Chapter 5 (comparison of the algorithms).

4.2.5) Files produced and description

o zzz_main.cc: As described in the section 3.4) Initial files and description. There is a call of the aproveCall

function at the end of the file.

o movement.h & movement.cc: As described in the section 3.4) Initial files and description.

o aproveCall.h & aproveCall.cc: These files implement the basic algorithm that is described in the above

paper on the Procedure 1, Procedure 2 and Procedure 3. aproveCall.h also contains the defined param-

eters mentioned on the above Procedures such as the damping factor .

o neighborListEntry.h & neighborListEntry.cc: These files contain the list of neighbors that a node retains

as it was analyzed in Eq. 12.

o m_helloBeacon.h & m_helloBeacon.cc: These files simulate the information that is transmitted from

one node to another when a Hello_Beacon message is transmitted form one node to its neighbors in or-

der to inform them for his existence.

o m_resp.h & m_resp.cc: These files simulate the information that is transmitted from one node to anoth-

er when a responsibility message is transmitted.

o m_avail.h & m_avail.cc: These files simulate the information that is transmitted from one node to an-

other when an availability message is transmitted.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 28

Figure 7 summarizes the files that were used in order to implement the aproveCall algorithm and the

way the files were included from each other.

Figure 7: Files that were implemented in order to simulate the aproveCall algorithm and how they were included.

4.3) “A new Aggregate Local Mobility (ALM) Clustering Algorithm for VANETs” by

Evandro Souza, Ioannis Nikolaidis and Pawel Giburzynski

4.3.1) Introduction

 The key component of the algorithm is a variant of Aggregate Local Mobility (ALM) as the criterion

triggering cluster re-organization and it is a beacon-based clustering algorithm whose objective is to extend

the lifetime of a cluster. It has also incorporated a contention-based scheme to prevent over-eager re-

organization of clusters when two clusterheads accidentally get in each other’s range for a short period of

time.

 The algorithm is based on the observation that the probability that a node will be CH for a short pe-

riod of time is higher than when the period is long. An increase in traffic density was observed to amplify the

effect. It is clear that with the increase in the traffic density, more CHs will be in range of other CHs, and

many of them will be forced to change their state. However, there is no compelling reason to force such a

CH to change its state immediately: neighboring clusterheads may operate together for a certain amount of

time.

 The proposed algorithm brings a significant increase in the cluster’s lifetime, thus improving network

stability and in particular, decreasing the number of situations when nodes have to change their status with-

in the cluster.

 In this algorithm, we have the following states of a node:

1. Clusterhead (CH)

2. Cluster Member Node (MN)

3. Undecided Node (UN), for a node that hasn’t decided yet if it should be a CH or a MN.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 29

4.3.2) Aggregate Local Mobility algorithm

In this algorithm it is proposed the use of a measure of mobility to stabilize the CH state. However,

the clusterheads may still change their status rapidly (and unnecessarily) if they get into one another’s

range.

The general concept of the aggregate mobility has been studied as a way to improve the stability of

clusters. One scheme proposed uses the received signal strength (RSS) by the receiving node as an indica-

tion of the distance between the sender and the receiver. The ratio between two successive takes of that

measure for the periodic hello messages provides an indicator of the relative mobility between the two

nodes. Additionally, it was proposed to damper the trigger e.g. to delay re-clustering for a certain predefined

amount of time when two clusterheads move into one another’s range. By this way, accidental contacts be-

tween (otherwise stable) clusterheads will not cause unnecessary and intermittent re-organizations.

This algorithm shares the same general idea, but it employs a complicated set of rules.

1. We require that the clusterheads exchange more than one packet within a certain amount of time

(known as the contention time) in order to begin considering a re-organization.

2. The node’s decision regarding its status change is based on its perception of the aggregate local mobility

(ALM). The CH with the lower ALM maintains its state, whereas the other changes it.

3. We also prevent a regular member (MN node) from immediately changing its status to CH when it stops

receiving beacons from its last clusterhead and there is no other clusterhead in the neighborhood. When

this scenario happens, the MN node will firstly move on to the UN state. This postpones the formation of

a new clusterhead, which could trigger unnecessary re-clustering and also gives time to the MN node to

detect another clusterhead that it could subscribe too.

By applying the previously mentioned, we conclude to the finite state machine of Figure 8. A node

starts in the UN state where it listens to the wireless channel and periodically sends hello packets to an-

nounce its presence in the neighborhood. It also sets up a timer to wait for clusterheads to materialize in its

range. Upon reception of a hello message from a clusterhead (HELLO_CH), the node immediately changes its

state to MN. If no such message is received, the node will claim itself as a CH. While in MN, the node only

changes its state to UN again in two circumstances:

1. no CH hello message has been received within the timeout interval (meaning that there is no cluster-

head in the neighborhood),

2. there are no neighbors, which condition is detected via another timeout – while expecting any hello

message.

The case of a node in CH state is more complex.

o If a clusterhead does not receive packets from any other clusterhead, it continues in the CH state.

o If the node detects that it has no neighbors (general hello timeout), then it will return to the UN state.

o The important part happens when two clusterheads get into one another’s range and exchange packets.

After receiving a packet from the other CH, the first clusterhead enters the connection mode (CCI). This

means that it will wait for a certain amount of time (the connection time) to see if it receives another

packet from the same CH.

a) If that does not happen before the contention timer expires, the first message is simply ignored

and the node continues as a clusterhead.

b) Otherwise (there is a second HELLO_CH), the node has to decide whether to continue as a clus-

terhead or to change its state. The decision is based on the ALM weight (announced in the hello

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 30

messages). The node with the lower ALM will remain in the CH state (ALM_INF) , while the other

will change to MN (ALM_SUP).

The ALM weight is calculated using GPS (or other similar technology) in order to assume that nodes

know their position (within some easily tolerable error), instead of RSS, which is highly unreliable. The ratio

between two successive takes of the distance between a node and its neighbor defines the relative mobility

between the two. Specifically, the relative mobility of node Y with respect to node X is:

 ()

√() ()

√() ()

Eq. 13

where: () () are the cartesian coordinates current and previous repsectively of node X and

() () are the cartesian coordinates current and previous repsectively of node Y.

The calculation of a node’s ALM is the variance of the relative mobility over all neighbors, , of a node Y:

 .
 ()/

 .
 ()

 ()
 ()/

 ,(
) -

 ∑(

)

Eq. 14

Figure 8: The proposed protocol for ALM algorithm. The transitions to the same state are not represented.

Two nodes moving closer together result in a negative
 (), whereas,

 () is positive when

they are moving away from each other. A lower variance in Eq. 14 suggests less mobility of the node in rela-

tion to its neighbors. The intuition behind the proposed scheme is that a node with less variance relative to

its surroundings is a better (more stable) choice for CH.

4.3.3) Tools and Methodology

The algorithm requires to take into consideration and set the following parameters for each state

(UN, CH, MN):

o Periodic hello-beacons interval, which probably will change its state.

o Periodic clean-ups interval, which represent the timeout where a node needs to take a decision in order

to change its state.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 31

The hello messages included the information necessary to calculate ALM: node ID, node status, node

ALM and position (current and previous).

4.3.4) Notes about the algorithm and Implementation details

For the implantation of the algorithm, there were defined the following parameters:

o TIMEOUT_NO_NEIGHBOR

o TIMEOUT_NO_HELLO_CH

o TIMEOUT_NO_SECOND_HELLO_CH

o TIMEOUT_NO_CH_IN_RANGE

o HELLO_MESSAGE, as the period for the broadcast of the hello-beacon messages from the nodes.

The algorithm doesn’t describe the kind of information that a node keeps and administrates. The

node has to set internally timers for the above Timeouts. So each node has the following variables:

o timer_neighbor, which is used in CH & MN states,

o timer_hello_ch, which is used in UN state,

o timer_second_hello_ch, which is used in CCI state,

o timer_ch_in_range, which is used in MN state.

It also keeps its current CH and its current state, along with the alm value that calculates by the use of Eq. 13

& Eq. 14. Finally, the node is required to keep a vector of the hello-beacon messages that the node received

recently (the current round / period of time).

We have to note that when a node searches for its CH, the states CH and CCI are a unified state and

are recognized as CH state. Only when the node loses its property of being CH, will its MN node become a

UN node to start searching for a new CH.

The ALM value is useful only if the node is a CH or a CCI node. In any other case, this field is not ac-

tually useful for the message and could be ignored.

Another thing that is not specified in the algorithm is what happens when a node receives more than

one HELLO_CH messages from 2 or more different CHs. In such cases, he could choose in random.

Finally, it was chosen to add both the current and previous position of a node in the hello_beacon

message. This could facilitate the implementation of the code and could also serve in avoiding scenarios

where a new node emerges in a CH and the node doesn’t have previous information to calculate the alm fac-

tor.

On the following table, it is presented a basic outline of the cases that were implemented in order to

achieve the functionality of Figure 8.
for(i=0; i<numberOfNodes; i++){

 /*** UN_status ***/
 if(nodes[i].getStatus() == UNstatus){
 //If the node has received a HELLO_CH message the node becomes MN to the CH.
 foundClusterhead = nodes[i].searchForClusterhead();
 if(foundClusterhead != -1){
 //go to MN
 }
 //(Else) If there is a TIMEOUT_NO_HELLO_CH the node becomes CH (of course, if it has neighbors)
 else if(nodes[i].getTimerHelloCH() <= 0){
 if(nodes[i].sizeNeighborsVector() != 0){
 //go to UN
 }

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 32

 else{
 //stay in UN and update timers
 }
 }
 }

 /*** MN_status ***/
 else if(nodes[i].getStatus() == MNstatus){

 //If no neighbors are detected and has passed the TIMEOUT_NO_NEIGHBOR
 //the node becomes a UN.
 if(nodes[i].getTimerNeighbor() <= 0 && nodes[i].sizeNeighborsVector() == 0){
 //go to UN
 }

 //there are neighbors detected
 else{
 //If the old clusterhead is not still in range
 foundClusterhead = nodes[i].searchForCertainClusterhead(nodes[i].getClusterhead());
 if(foundClusterhead == -1){
 foundClusterhead = nodes[i].searchForClusterhead();
 if(foundClusterhead == -1){
 //If no CH in range is detected the node becomes a UN.
 if(nodes[i].getTimerCHinRange() <= 0){
 //go to UN
 }
 }
 else{
 //stay in MN and update the timers
 }
 }

 //Else if the clusterhead is still in range, simply update the parameters
 else{
 //stay in MN and update the timers
 }
 }
 }

 /*** CH_status ***/
 else if(nodes[i].getStatus() == CHstatus){
 //If the node receives another Hello_Clusterhead message it enters the CCI mode.
 foundClusterhead = nodes[i].searchForClusterhead();
 if(foundClusterhead != -1){
 //go to CCI
 }

 else if(nodes[i].getTimerNeighbor() <= 0){
 //If the size of the Neighbors_vector is 0 and the node has reached the
 //TIMEOUT_NO_NEIGHBOR then the node returns to UN.
 if(nodes[i].sizeNeighborsVector() == 0){
 //go to UN
 }
 else{
 //stay in CH and update timers
 }
 }
 }

 /*** CCI_status ***/
 else if(nodes[i].getStatus() == CCIstatus){

 //If the node doesn't receive a 2nd Hello_Clusterhead message &
 //it has passed TIMEOUT_NO_SECOND_HELLO_CH it becomes CH again.
 foundClusterhead = nodes[i].searchForClusterhead();
 if(foundClusterhead == -1){
 if(nodes[i].getTimerSecondHelloCH() <= 0){
 //go to CH
 }
 }
 //else, the node has received a second Hello_Clusterhead message and has to take some decisions.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 33

 else{
 float othersNodeAlm = nodes[i].returnAlmOfOtherCH(foundClusterhead);
 //The node with the lower ALM will remain in the CH
 if(nodes[i].getAlm() < othersNodeAlm){
 //go to CH
 }
 //The node with the largest ALM will become MN
 else{
 //go to MN
 }
 }
 }

 /*** ERROR ***/
 else{
 cout << "SOME UNEXPECTED ERROR OCCURED" << endl;
 exit(1);
 }

}

4.3.5) Files produced and description

o zzz_main.cc: As described in the section 3.4) Initial files and description. There is a call of the alm func-

tion at the end of the file.

o movement.h & movement.cc: As described in the section 3.4) Initial files and description.

o alm.h & alm.cc: These files implement the basic algorithm that is described in the above paper mostly on

the Figure 8 and on 4.3.2) Aggregate Local Mobility algorithm and on Eq. 13, Eq. 14. alm.h also contains

the defined parameters mentioned on the Figure 8.

o node.h & node.cc: These files contain the internal state of each node.

o m_helloBeacon.h & m_helloBeacon.cc: These files simulate the information that is transmitted from

one node to another when a Hello_Beacon message is transmitted form one node to its neighbors in or-

der to inform them for his existence.

Figure 9 summarizes the files that were used in order to implement the ALM algorithm and the way

the files were included from each other.

Figure 9: Files that were implemented in order to simulate the ALM algorithm and how they were included.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 34

4.4) “Stable Clustering and Communications in Pseudolinear Highly Mobile Ad Hoc
Networks” by Ehssan Sakhaee and Abbas Jamalipour

4.4.1) Introduction

 To begin with, the following algorithm is designated for MANETs, instead of VANETs, although it

could be also fit the scenarios of VANETs, but it fits mostly on the highway topology. On the paper, there are

presented 2 algorithms who share common features. They are distinguished by the fact that the first algo-

rithm knows the exact position of a node by the use of GPS, whereas the second node simply speculates the

node’s position by the use of the Doppler effect. Here, it is presented only the first algorithm, where we as-

sume that we know the exact position of a node. The algorithm involves dynamic clusterhead election and

incorporates cluster maintenance ta cater changes in network topology as time progresses. It is called dy-

namic link duration clustering (DLDC) and is based on the estimated link expiration time (LET), which more

accurately estimates the link duration based on the position and velocity parameters of nodes during the ini-

tial clustering phase.

 Stability is defined in terms of cluster membership rather than changes to the clusterhead, such as

clusterhead reelection and “ripple effects” due to reclustering. The proposed algorithm considers 2 phases:

o Cluster formation (initial clustering), in order to identify the most suitable nodes to take the clusterhead

roles and in order to set up the initial memberships. Some nodes may not readily join any cluster after

the initial clustering formation and are classified as “orphan” nodes.

o Cluster maintenance (progressive), which follows the initial cluster formation. It refers mostly to the

nodes that may leave their cluster and clusterheads may come into range or may be destroyed.

The main types of nodes are:

o clusterhead, who is in charge of its corresponding cluster and formation (acceptance of nodes as mem-

bers). A clusterhead has the knowledge of all its member-nodes inside the cluster.

o cluster-member, who are simply nodes that join the clusterhead. A cluster-member that belongs to

more than one cluster is a gateway node, which is used for communication between clusters.

o orphan, who is an ex-member of a cluster that currently does not belong to any cluster.

o NULL nodes, which mostly characterizes the state of nodes before the cluster formation. The initial clus-

tering formation only initiates between NULL nodes. Cluster maintenance occurs when nodes are not in

the NULL state.

4.4.2) DLDC Algorithm

The cost metric used in DLDC is the inverse link duration (IDL), i.e. the inverse of Let (

) (Eq. 15),

which reflects a better (smaller) cost for more durable links and higher cost for less-durable links. The Hello

packets in DLDC contain the position coordinates of the broadcasting node along with the state of the algo-

rithm. Procedure 4 summarizes the steps that are followed for the initial phase of clustering.

Procedure 4: DLDC cluster formation

0. Each node is in the NULL state.
1. Each node broadcasts a Hello message, in the form Hello(nodeID, NULL, position, velocity) to its (1-hop) neighbors.

nodeID identifier (ID) of the broadcasting node.
2. Nodes in the NULL state that receive Hello messages from their neighbors will calculate the SUM of the ILD values

(ILDS) of the Hello beacons. Then, they broadcast this to their 1-hop (NULL) neighbors in an ILDS(nodeID, ILDS)
message.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 35

3. Nodes that receive the ILDS messages compare them with their own ILDS.
If their own is the smallest, they will broadcast ClusterheadClaim(clusterID) to their 1-hop neighbors.
They will also change their status to CH.
ClusterID nodeID of the clusterhead claiming node.

4. Upon reception of ClusterheadClaim packet, a node may choose to join the cluster.
 Specifically, a node can choose to become member of all clusters it receives a ClusterheadClaim packet from,

and this node will become a gateway to all these clusters.
 Otherwise, it may choose to compare the ILDs of all the ClusterheadClaim packets and only join the best one.

(In this case, there will be no gateways.) (Non-overlapping initial cluster formation)
 A third choice is to join the top m clusters with the smallest ILDs form which it received a CluserheadClaim

packet.
All nodes have to wait a predefined period t to collect the ClusterheadClaim messages before making a decision of
becoming members. (If m=1, then t can be set to 0.)

5. Once a node wishes to join a cluster, it will send a JoinRequest (nodeID, clusterID).
6. The clusterhead will send a JoinAccept(nodeID, clusterID).

nodeID the requesting node ID
clusterID ID of the clusterhead

7. The node joins the cluster and periodically broadcasts a ClusterMember(nodeID, clusterID), notifying its state to the
neighborhood, and its presence to its associated cluster.

 () √() ()

 Eq. 15

where:

Figure 10: Parameters used in calculating the LET.

Additional stability is also possible in DLDC by setting a criterion for minimum link duration between

pairs of nodes for clustering formation. In such a case, the LETs of pairs of nodes are first calculated upon re-

ception of Hello messages and are only used for calculating the ILDS if the pairs of nodes will be within range

for a minimum specified time. Hence, they are ignored and not used for a common cluster formation if their

potential link duration is below this required time. This modified version of DLDC is called DLDC - Super Sta-

ble (DLDC-SS) and can provide more stable clusters even though it may leave some nodes without a cluster.

The application of this algorithm is suitable in highly dense networks. However, it may not be suitable in

sparse networks nor in scenarios where clustering is essential for addressing purposes.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 36

4.4.3) Cluster Maintenance

 Once the initial cluster formation takes place, clustering maintenance must follow. A clusterhead pe-

riodically sends ClusterheadClaim(CusterID) messages to its neighboring (1-hop) nodes. The clustermembers

of the current cluster also send periodic Clustermember(nodeID, clusterID) back to the clusterhead, where

the nodeID is the identifier (ID) of the broadcasting node and clusterID is the list of clusters of which the

node is a member. A member node that does not receive periodic broadcast from a clusterhead will dissoci-

ate itself from that cluster. Likewise, the clusterhead will remove the member form its list of members if it

does not receive periodic clustermember broadcasts. If a node is not part of any cluster, it becomes an or-

phan node and begins broadcasting periodic JoinRequest(nodeID) to find a new cluster to join. A clusterhead

sends a JoinAccept(nodeID, clusterID) if it can allow the requesting node (with ID or nodeID) to join its clus-

ter. In DLDC-SS, the LET of the orphan node relative to the clusterhead is considered. If the LET satisfies the

minimum required possible (connection) duration, then a JointAccept message is sent to the targeted or-

phan node; otherwise, it is not sent. Once the node receives the JointAccept message and joins a cluster, it

will begin broadcasting Clustermember(nodeID, clusterID) messages to its 1-hop neighbors. Upon receiving

this message, the corresponding clusterhead will add this node to its list of clustermembers. A node that re-

ceives several JoinAccept messages from different clusterheads may become a gateway between these clus-

ters. As the node is broadcasting the Clustermember(nodeID, clusterID) messages, the clusterheads will also

learn about the gateway nodes and the clusters to which they have access.

 Although the proposed clustering algorithm ensures that no two clusterheads are within range of

each other in the initial clustering formation, this does not prevent two clusterheads from coming into each

other’s vicinity, which may cause cluster contentions. If such a scenario arises and clusterheads come within

range of each other, the one with the bigger ILDS will give up its clusterhead if the 2 clusterheads have a rel-

ative ILDS that is less than a predetermined constant K. A small ILDS indicates that the clusterheads will re-

main within each other’s range for a considerable period of time, and hence, it is worth one of them giving

up its clusterhead status. Otherwise, if ILDS is large, the clusterheads may simply be passing by and soon

leaving each other’s range, and hence, it is not worth either of them giving up their clusterhead status.

 In our algorithm, we assume that there is no limit to the number of nodes per cluster as the cluster-

head should have sufficient capability to handle 1-hop neighbors. However, the clusterhead should be able

to dissociate high-cost members in case of high level of congestion and heavy traffic load in the local cluster.

Additionally, it is believed that the maximum number of clusterheads is not an effective measure for forming

clusters as there are more predominant factors, such as frequency of communication (e.g., how often data

are being exchanged between nodes), amount of data being transferred, and other similar traffic-related is-

sues. The less-favorable member is sent a Deregister(clusterID, nodeID) by the clusterhead, where clusterID

is the ID of the cluster that is forcing the deregistration, and nodeID is the ID of the node that is being forced

to deregister. The member is, hence, forced to dissociate from its associated cluster. If the ex-member is not

a member of any other cluster, it becomes an orphan node, where it will proceed with broadcasting JoinRe-

quest packets and looking for new clusters to join. Deregistration may also occur to less-favorable gate-

way(s) to the same neighboring cluster(s).

4.4.4) In case a Clusterhead is destroyed or no Clusterhead in range

 When a clusterhead is destroyed, its corresponding neighbors will no longer receive the periodic

(Hello) messages and, hence, will dissociate from it. (In fact there are not broadcasted Hello messages but

ClusterheadClaim and ClusterheadMember periodic messages.) If the nodes are not members of any other

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 37

cluster, they will become orphan nodes. They will then begin sending JoinRequest messages as a result. A

mechanism is used to detect such a scenario where there are several orphan nodes within the same vicinity

looking for clusters to join. If local orphan nodes receive too many JointRequest messages form their (or-

phan) neighbors, they conclude that there are no clusterheads nearby and may elect a new clusterhead for

their vicinity. For example, when a node receives more than k JoinRequests, it will determine that a new

clusterhead must be elected in the vicinity for which the clustering algorithm will need to reinitiate. Once

this decision is made, the node that realizes the need for cluster reinitiation broadcasts a Clusterinit(nodeID)

to its 1-hop neighbors. Neighbors that have not joined a cluster will set their states to NULL and begin the

clustering-formation procedure using DLDC clustering algorithm (Procedure 4).

 It follows the description of the Cluster Maintenance phase on Procedure 5:

Procedure 5: Cluster Maintenance

1. A clusterhead periodically sends ClusterheadClaim(ClusterID) to 1-hop neighbors.
The clustermembers also periodically send Clustermember(nodeID, clusterID) back to clusterhead.
 clusterID the ID of the cluster that a node is member. When there are more than one clusterIDs, the node is

considered to be a gateway.
2. If a member node does not receive periodic ClusterheadClaim message from a clusterhead, it will dissociate itself

from that cluster.
Similarly, if the clusterhead does not receive periodic Clustermember message from a certain node, it will remove
the node from its list of members.

3. If a node is not part of any cluster, it becomes orphan. It then broadcasts periodic JoinRequest(nodeID) to find a
new cluster.
A clusterhead sends JoinAccept(nodeID, clusterID) to allow the requesting node to join the cluster.

4. When the orphan node receives the JoinAccept, it will start broadcasting Clustermember(nodeID, clusterID).
Upon reception, the clusterhead will also add the node to its list of clustermembers.
 A node that receives several JoinAccept messages from different clusterheads will become a gateway.
 (Clusterheads could get informed about the existence of gateways by the multiple clusterIDs on the Clus-

termember message.)
5. If 2 clusterheads come into each other vicinity,

If they have a relative ILDS that is less than a predetermined constant K,
Then, the clusterhead with the bigger ILDS will give up its clusterhead.

6. If no clusterhead is in range (no reception of ClusterheadClaim message) from multiple orphan nodes, they have to
decide who is going to be the new clusterhead.
If a local orphan node receives too many JoinRequest messages from its (orphan) neighbors, it will broadcast a clus-
terInit(nodeID) message to the 1-hop neighbors. Orphan nodes can change their state to NULL and can follow DLDC
cluster formation (Procedure 4).

4.4.5) Notes about the algorithm

We have to mention here that in order to calculate ILDS when necessary, a node requires also to

broadcast its position and its velocity in some messages. So, it is chosen to extend the ClusterMember mes-

sage in order to include position and velocity information of a certain node. Specifically, the messages that

were implemented (in different classes on C++) are:

o Hello(nodeID, Null, position, velocity)

o ILDS(nodeID, ILDS)

o ClusterheadClaim(clusterID)

o ClusterMember(nodeID, clusterID, position, velocity)

o JoinRequest(nodeID)

o JoinAccept(nodeID, clusterID)

o ClusterInit(nodeID)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 38

Here, we have also to note that it was not implemented a Deregister. Such a message could be used

in case that a Clusterhead has a lot of registered members.

Another issue that arouse during implementation, was related to the parameter ILDS and the calcu-

lation of the inverse LET. Specifically, there were many cases that we had 0/0 which is undefined and pro-

duces a “nan” result in the program. To better explain the problem, let’s recall Eq. 15.

 () √() ()

where:

o if(==0), then

 √() ()

o if(==0), then

 √() ()

o if(==0), then

 √() ()

o if(==0), then

 √() ()

o if(==0 && ==0), then

This is the only problematic situation, but it occurs constantly in VANETs. To tackle with this problem,

we use in this case. The reason for this is that moving towards the same direction with the

same velocities is considered to be beneficial for the stability of the cluster. By choosing as a CH the

node with the smallest ILDS, this parameter should be set to 0.

o if(==0 && ==0), then

 | |

o if(==0 && ==0), then

 | |

Moreover, there was an issue with the precision in the representation of some numbers during the

calculation of ILDS. Some values could become extremely small or large and could destroy the final output by

producing inf (infinite) values. For this reason, it was chosen to use the following values:
if(abs(- (a*b + c*d) + sqrt((pow(a, 2) + pow(c, 2)) * pow(r, 2) - pow(a*d - b*c, 2)))< 1.3e-10){
 inverse_let = 100000000;
}
else{
 inverse_let = (pow(a, 2) + pow(c, 2)) / (- (a*b + c*d) + sqrt((pow(a, 2) + pow(c, 2)) * pow(r, 2) - pow(a*d - b*c, 2)));
}

We have also to mention that the period of time is large enough to handle the transmission of a

message from a node and the reception of an answer or answers in order to form a cluster. In fact, every pe-

riod of time ends up with the formation of clusters in such a way that the number of orphan or NULL nodes

is the minimum possible.

Finally, this algorithm does not require some extra time in order to converge, whereas the 2 previ-

ously mentioned algorithms require some initial time in order to converge.

4.4.6) Files produced and description

o zzz_main.cc: As described in the section 3.4) Initial files and description. There is a call of the dldc func-

tion at the end of the file.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 39

o movement.h & movement.cc: As described in the section 3.4) Initial files and description.

o dldc.h & dldc.cc: These files implement the basic algorithm that is described in the above paper mostly

on Procedure 4 and Procedure 5. dldc.h also contains the defined parameters and the ORHPAN_LIMIT

mentioned on the Procedure 5.

o node.h & node.cc: These files contain the internal state of each node. They also contain defined the dif-

ferent states that a node can have.

o m_Hello.h & m_Hello.cc: These files simulate the information that is transmitted from one node to an-

other when a Hello message is transmitted form one node to its neighbors in order to inform them for

his existence. These messages are useful during the initialization of the process and when there are

many orphan nodes at a certain neighbor, they need to follow cluster formation process in order to elect

some clusterhead among them.

o m_clusterheadClaim.h & m_ clusterheadClaim.cc: These files simulate the information that is transmit-

ted from a clusterhead node to inform its neighbors of its existence.

o m_clusterMember.h & m_ clusterMember.cc: These files simulate the information that is transmitted

from a member node to its clusterhead. The clusterhead will listen to the message if he is still in range.

o m_ilds.h & m_ilds.cc: These files simulate the information that is transmitted from one node to another

when ilds value is calculated and it is transmitted to the neighbors.

o m_joinAccept.h & m_joinAccept.cc: These files simulate the information that is transmitted from a clus-

terhead node to its member nodes in order to accept / confirm the node as a member node of the clus-

ter.

o m_joinRequest.h & m_joinRequest.cc: These files simulate the information that is transmitted from a

member node to its corresponding clusterhead in order to register itself to the cluster.

o m_clusterInit.h & m_clusterInit.cc: These files simulate the information that is transmitted from an or-

phan node to its neighbors when he has received more than ORHPAN_LIMIT m_joinRequest messages.

Figure 11 summarizes the files that were used in order to implement the ALM algorithm and the way

the files were included from each other.

Figure 11: Files that were implemented in order to simulate the DLDC algorithm and how they were included.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 40

Chapter 5 – Comparison of Algorithms for Stable Clustering in VANETs

This Chapter is dedicated to the comparison of the algorithms.

The following table summarizes some of the basic elements for the implementation of the algo-

rithm.

Parameter for
comparison

Algorithms

APROVE ALM DLDC

Difficulty in im-
plementation

Very difficult
(too many cases that had to be
considered)

Normal, the simplest of the 3
We had to consider carefully the cas-
es and the order that had to be
checked.

Normal
Problem with the calculation of LET
Too many messages

Different types
of broadcasted
messages

3 Types:
Hello Beacon Message,
Availability message,
Responsibility Message

1 Type:
Hello Beacon message

7 Types:
Hello Beacon message,
ILDS message,
ClusterheadClaim message,
ClusterMember message,
JoinRequest message,
JoinAccept message,
ClusterInit message.

Different types
of nodes

Clusterhead and Clustermber
but all the nodes must act as
“forwarders”

3 types:
Clusterhead (CH & CCI),
CluserMember node,
Undefined Node

4 types:
Clusterhead,
Clustermember and some of them
are Gateways,
Orphan Nodes,
NULL nodes

Parameters that
had to be con-
sidered

TAF_F 5
T_H 3
T_M 1
CI 10
T_CM 1
DAMPING_L 0.5
EXPIRE_TIME_DEFAULT 4
SELF_SIMILARITY 1.0
(defined in “aproveCall.h”)

TIMEOUT_NO_NEIGHBOR 5
TIMEOUT_NO_HELLO_CH 5
TIMEOUT_NO_SECOND_HELLO_CH 5
TIMEOUT_NO_CH_IN_RANGE 5
HELLO_MESSAGE 1
(defined in “alm.h”)

ILDS_K 10
ORPHAN_LIMIT 3
(defined in “dldc.h”)

The following table summarizes the numeric results that were produced by the 2 experiments, as

presented in 3.3) The Simulation Networks, that were simulated with the algorithms.

Parameter for com-
parison

Algorithms

APROVE ALM DLDC

Highway (simple-
road) topology

Number of nodes: 100
Time Periods:501

Transmission radius: 46.0936

Average number of
messages per minute

7413.01 3175.12 224.052

Average number of
clusters per minute

76.3174 6.182 4.99401

Average number of
cluster size per minute

30.38 23.6823 19.6008

Average number of
messages per 3
minutes

22239 9506 672

Average number of
clusters per 3 minutes

228 18 14

Topology of a city
Number of nodes: 100

Time Periods:501
Transmission radius: 62.7284

Average number of 5829.78 2602.32 283.92

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 41

messages per minute

Average number of
clusters per minute

76.8503 11.8808 13.8762

Average number of
cluster size per minute

23.544 11.2261 3.83433

Average number of
messages per 3
minutes

17489 7791 851

Average number of
clusters per 3 minutes

230 35 41

Comments
A lot of messages that are
broadcasted.
Too many clusters.

It seems to provide good cover-
age of nodes in both scenarios
of the city topology and the
highway topology.
There are enough broadcasted
messages among the nodes but
not too many.

In case of the city topology:

(Average number of clusters
per minute)x(Average num-
ber of cluster size per mi-
nute) < (Number of Nodes)
which means that not all nodes
are covered by some cluster.
There are many nodes that are
not covered by any cluster.
However, in the highway topol-
ogy, the algorithms provides
pretty good clustering.
In case of the highway, the
number of broadcasted messag-
es is smaller than those of the
second algorithm.
Conclusively, this algorithm is
not preferable for a city topolo-
gy (where also the number of
messages that are broadcasted
is much bigger).

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

Algorithms for Stable Clustering in VANETs (Vehicular Ad Hoc Networks)

 Katsarou Foteini 42

References
1. Basics of ad hoc networks http://en.wikipedia.org/wiki/Wireless_ad-hoc_network

2. Basic on Clustering http://inf-server.inf.uth.gr/courses/CE522/findex_2010.htm, Dimitrios Katsaros

3. MANETs and VANETs http://en.wikipedia.org/wiki/Main_Page

4. Arzoo Dahiya, Dr.R.K.Chauhan “A Comparative study of MANET and VANET Environment”, Journal of

computing, Volume 2, Issue 7, July 2010, ISSN 2151 ‐ 9617

5. Rituparna Ghosh, Stefano Basagni “Mitigating the impact of node mobility on ad hoc clustering”, Wirel.

Commun. Mob. Comput. 2008; 8:295–308

6. P. Basu, N. Khan, T.D.C. Little, “A Mobility Based Metric for Clustering in Mobile Ad Hoc Networks”, MCL

Technical Report No. 01-15-2001

7. Brad Karp, H. T. Kung “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks”, MobiCom

2000

8. Basic on SUMO:

http://sumo.sourceforge.net/doc/current/docs/userdoc/Networks/SUMO_Road_Networks.html

9. SUMO tutorial http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Main_Page

10. Trace Exporter http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Tools/TraceExporter

11. “Mobility-Based Clustering in VANETs using Affinity Propagation” by Christine Shea, Behnam Has-

sanabadi and Shahrokh Valaee

12. “A New Aggregate Local Mobility (ALM) Clustering Algorithm for VANETs” by Evandro Souza, Ioannis Ni-

kolaidis and Pawel Giburzynski

13. “Stable Clustering and Communications in Pseudolinear Highly Mobile Ad Hoc Networks” by Ehssan

Sakhaee and Abbas Jamalipour

14. “A Stable Routing Protocol to Support ITS Services in VANET Networks”, by Tarik Taleb, Ehssan Sakhaee,

Abbas Jamalipour, Kazuo Hashimoto, Nei Kato and Yoshiaki Nemoto.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 02:00:36 EET - 137.108.70.7

http://en.wikipedia.org/wiki/Wireless_ad-hoc_network
http://inf-server.inf.uth.gr/courses/CE522/findex_2010.htm
http://en.wikipedia.org/wiki/Main_Page
http://sumo.sourceforge.net/doc/current/docs/userdoc/Networks/SUMO_Road_Networks.html
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Tools/TraceExporter

