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1 Introduction

Source Coding is the central objective in Information Theory and Coding Theory. Its concern is to
code a source of symbols with the minimum number of bits without loss of meaningful informa-
tion. Shannon proved that the minimum number of bits necessary and sufficient to code a source
is equal to the source’s Shannon Entropy (up to one bit) in [1]. But this bound can be improved
if one takes into account the prior information (a.k.a side information) that already exists in the
receivers about the packets. One variant of Source Coding with side information is the Index
Coding problem first proposed by Birk and Kol in [2]. In this context, a relay disseminates a set
of packets over a broadcast channel to a set of caching receivers. Each receiver has only a subset
of the packets cached. It also wants a certain subset of the packets that are not in its cache. The
relay knows what packets each receiver has. The objective is to minimize the number of pack-
ets needed so that every receiver gets the packets it wants. Another closely related problem is
Network Coding, first proposed by Ahlswede, Cai, Li, and Yeung in [3]. Network Coding can
be defined as any coding that takes place at a node in a packet network between the contents of
packets [4]. Index Coding therefore might seem to be a special case of Network coding, but in re-
ality they are equivalent ( [32]). This work therefore can be seen as an extension to both problems,
but it is centered around Network Coding models.

Consider the example of Fig. 1 where we show an instance of the Wireless Network Coding
problem for N = 3 receivers. Three non-symmetric flows are defined, f1 : s1 → r1, f2 : s2 → r2
and f3 : s3 → r3 where s1, s2, s3 are the sources and r1, r2, r3 are the destination receivers of the
flow. All flows use the intermediate node R as a forwarder, which employs interflow network
coding by XORing packets from the two flows. The receivers utilize the overhearing erasure
channels to obtain side information, i.e. packets destined to the other receivers. For example,
r1 receives packets destined to r2 and r3, with probability p21 and p31, whenever the s2 and s3
attempt to upload them to R. We focus on the downlink part which entails the complexity of the
problem; node R must make coding and scheduling decisions in order to achieve some objectives,
e.g. maximize throughput. This model can be generalized for an arbitrary number of flows. In
this context, we will call 2-user ACK the system where N = 2 and node R learns the content of
the decoding buffers of 1, 2 via explicit reports that follow each overhearing event. We will call 2-
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Figure 1: An instance of the Wireless Network Coding problem for N = 3. Arrows show wireless
links. Solid arrows show the broadcast channel under study; the relay/transmitter must choose
a sequence of coded transmissions that guarantees the decoding of all the requested packets. The
receivers can use side information obtained through overhearing (long dotted arrows).

user NACK the system where N = 2 and the decisions are made based on the probabilities of the
overhearing channels and feedback reports following each unsuccessful attempt. Finally, we call
multi-user ACK based on Index Coding the system where N is arbitrary, the node R learns the
content of the decoding buffers of the receivers via explicit reports that follow each overhearing
event and the relay can only transmit one packet per timeslot. This formulation is called 1-hop
model.

2 Contribution

We study the case of one node broadcasting coded transmissions and a number of receivers hav-
ing side information. We allow the receivers to store any received or overheard packet (either
native or coded) and use it in the future for decoding purposes.

(i) We give an outer bound for the throughput region of the 2-user ACK system assuming
general coding (including non-linear coding)-the equivalent information theoretic capacity
region is shown in [17]. We show that this region can be achieved by simple XOR policies
which operate without knowledge about arrivals.

(ii) For the 2-user NACK system, we give in closed-form the code-constrained throughput re-
gion assuming the use of XOR coding. We propose a simple evacuation coding policy which
achieves it. We also find a case were this region is identical to the throughput region of the
2-user ACK system.

(iii) For the case of the multi-user ACK based Index Coding system, we show that there is no
loss of optimality if we ignore codes that involve intra-flow coding. We also show that the
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problem of finding an optimal Linear Coding scheme can be decomposed to a number of
subproblems.

3 Related Work

3.1 Practical Work

In [6] the authors introduced the first experimental setup of Wireless Network Coding, called
COPE . As an architecture, it employed three modes of functionality. Opportunistic Listening
where each network node can overhear unrelated packet transmissions and use these packets
for future decoding. Opportunistic Coding where the relay when choosing a transmission control
would maximize n such that all n nexthops can immediately decode the packet with simple XOR
operations. Finally, Learning Neighbor State where the relay would try to predict the states of its
nexthops by both direct reception reports and by probability estimations. In [7] XOR_Sym is pro-
posed which employs a more adaptive scheme than the above greedy approach and by constrain-
ing the decoding of packets at their destination only, they achieve similar results with COPE but
with less complexity in the intermediate nodes. This protocol considers only symmetric flows
disregarding opportunistic listening. In [8] a set of algorithms that employ redundant trans-
missions over lossy environments called CLONE is proposed. MORE [9] introduces intraflow
Network Coding in its architecture i.e coding between packets of the same flow. noCoCo [10]
integrates per-hop packet scheduling, Network Coding and congestion control in a deterministic
packet scheduling scheme within two-way multihop traffic flows. All the above schemes suffer
from the problem of keeping the coding nodes informed with the packet indices that have been
overheard by its nexthops. NCRAWL [11] addresses that by using reception reports only when
a node can’t decode a packet. This reduces the amount of reports, but increases the likelihood
that the coding node will make a mistake in predicting which packets are overheard by the nex-
thops, something that inevitably lowers throughput. We use this model of reporting in the 2-user
NACK model. [12] introduces I2NC which combines interflow with intraflow coding to reduce
the complexity of acknowledgment messages at the expense of immediate decodability.

3.2 Theoretical Work

Stability in networks with interflow network coding without overhearing is studied in [7] and
[13]- [16]. Also, in [17], [18] the studies are extended to capture overhearing with reports, which
corresponds to the 2-user ACK system. Note that in these works, the code-constrained stability
region is provided, i.e. the stability region under the assumption that XOR coding is used. The
1-hop model is also studied in [19] where the information theoretic capacity is given in the case of
overhearing events provided as side information- a model equivalent to the 2-user ACK system.
With the exception of [18], all these works do not consider the 2-user NACK system. In [18], the 2-
user NACK system with feedback is studied under the assumption that receivers are not allowed
to store coded packets and the code-constrained throughput region is provided in parametric
form. The obtained throughput region is strictly smaller than that of the 2-user ACK system. In
this work, we extend [18] by allowing the storage of coded packets. We show, that if r1 = r2,
then the 2-user NACK system can achieve the same throughput as the 2-user ACK one by the
use of a simple XOR-based scheduling policy and feedback reports. Thus, the number of reports
can be reduced significantly in this case without throughput losses. Studies of the broadcast
channel with erasures, i.e. see [20], relate to our work. In these studies, the problem is different
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since the side information for decoding is obtained from past erased transmissions; however, the
techniques used are similar. In [21], the authors show that the capacity can be achieved by XOR
coding for the case of 2-4 receivers. A different but related research topic is that of index coding;
subsets of information bits are known to subsets of the receivers and we seek the transmission
policy that minimizes the time to complete reception by all receivers, [22], [23]. Our work differs
from index coding in the fact that the source has partial knowledge of what information each
receiver has. Also, for the 2-user ACK system, we extend the index coding problem to variable
transmission rates r1; r2. Previous work has shown that in practical wireless networks, where the
locations of the nodes are random, the vast majority of interflow coding opportunities involve a
small number of nodes, [16], [24], [25]. This motivates the study of simple schemes with a small
number of receivers, which can be solved efficiently. In this spirit, we provide optimal solutions
that utilize simple XOR operations, require minimal information about system state, are oblivious
to arrivals and can be embraced by resource limited wireless devices.

3.3 Index Coding

In [2] the Index Coding problem is first introduced. In this context, a relay disseminates a set of
packets over a broadcast channel to a set of caching receivers. Each receiver has only a subset
of the packets cached. It also wants a certain subset of the packets that are not in its cache. The
relay knows what packets each receiver has. The objective is to minimize the number of pack-
ets needed so that every receiver gets the packets it wants. The authors propose a number of
algorithms that offer suboptimal solutions to the problem, like finding the minimum clique cover
or the maximum matching of the side information graph. Also they find a bounds on the max-
imum number of matchings and how many transmissions are saved by a matching algorithm
relative to no coding. In [5], the authors find the optimal number of transmissions if Linear Index
Coding(LNC) is used given by minrk2(G) ≡ min{rk2(A) : matrix A fits G} where G is the side
information graph and rk2(A) is the rank of matrix A over GF(2). Also they prove this number
is optimal for arbitrary index codes if the graph is a DAG, a perfect graph, an odd-hole or an
odd anti-hole. In [22], the authors reduce the problem to SAT and use Tstein transformation to
minimize the number of variables in the subsequent CNF. They also propose a number of heuris-
tics for suboptimal but fast solutions for a large number of receivers. In [27], the authors try to
combine the bandwith performance of LNC with the fast decoding performance of XOR coding
by using a scheme where linear codes are sent but are decoded with simple backward substitu-
tion. This technique is called Triangular Network Coding and to be successful it uses a number
of header bits equal to M + Mlog2(M) where M is the number of packets to be disseminated.
Also, their model presupposes that the packets in the relay are required by all receivers. In [28],
it was shown that the Index Coding problem is essentially an Interference Alignment problem,
i.e. the coded transmissions must align with the side information on each receiver so that the
decoding of the particular packet is guaranteed. Moreover, they use it to prove that the Multiple
Unicast Index Coding problem (each packet in the relay is required by exactly one receiver) and
Multiple Groupcast Index Coding problem (each packet may be required by multiple receivers)
are equivalent. In [30], an achievable LNC bound is found based on the local chromatic number,
a graph property defined in [31]. In [32] it is found that the Index Coding, the Network Coding
(for Directed Acyclic Graphs) and the Matroid Representation problems are equivalent. Although
there exist several results in the literature dealing with special cases, the general solution of the
problem is not known and moreover it has been shown in [29] that linear coding is not in general
sufficient for achieving the capacity.
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4 Model description

4.1 Abstract Network Model

We will first describe the part of the model that is common to all three systems we study. Consider
a broadcast network with one transmitting node called the relay (coding node) and n receivers.
The time is slotted, where slot t occupies the time interval [t, t + 1). At the beginning of each slot,
packets arrive at the relay, each one belonging to a network flow. The packets of a single flow
are all destined to a single receiver i.e each receiver is the destination of a single flow. We assume
that all packets consist of L bits. The bits are i.i.d. with uniform distribution.

Packets arrive with the following property: whenever a packet of flow i destined to receiver
i arrives at the relay, a copy of it arrives at another receiver j ∈ [n] − {i} according to a prob-
ability distribution Pij. This probability corresponds to random overhearing events which are
independent from one another. The packets arrive according to a stochastic arrival process with
rate λ = {λ1, . . . , λn}, λi ∀i ∈ [n]. We assume i.i.d. packet arrivals within each slot.

The relay stores arriving packets in the input queues, while the receivers store packets useful
for decoding in the decoding buffers. It also has some information (definite or statistical) about
the packets that the other nodes have in their buffers.

At the beginning of each slot t the relay chooses a rate of transmission rt between a set of in-
teger rates rt ∈ R ≡ {r1 . . . rn} and a control decision ct, i.e a choice of a XOR combination of the
packets of Wt to be sent as a single packet during each transmission in the slot. This means that
during the slot, rt packets will be transmitted. If there are not enough packets to be transmitted,
dummy packets are used to fill in this number. Moreover, each receiver i successfully retrieves
the packets if rt ≤ ri, otherwise they are discarded.

In order to study the stability of the described model, we consider an operation of the sys-
tem, which is based on evacuating system snapshots. We assume an initial snapshot with k =
{k1, . . . , kn} packets in each queue, where the packets have arrived following the rules explained
above regarding overhearing. We define an admissible evacuation policy π as a sequence of el-
igible control actions at the end of which all packets in the queues have been decoded by their
respective receivers. Until this happens, no new arrivals enter the queues and their correspond-
ing overhearing events do not enter in the buffers of the receivers. The time interval until the
successful decoding of all packets in queues by their destination receiver is called an epoch. Af-
ter the first epoch, all new arrivals and overhearings that happened during the epoch enter the
system in the queues and buffers respectively whereas all native and coded packets of the first
epoch depart the system. Then the process begins again in a new snapsot defined by the new
arrivals. Note, that each evacuation policy can be mapped to an epoch-based policy σ(π), which
is admissible in the system with arrivals and evacuates all packets present in the system at the
beginning of each epoch using π, see [34]. Next, we follow the steps of [34].
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4.2 Stability Considerations

Consider the set of queues at the coding node, denoted Q. Denote the sum of backlogs of queues
in Q under policy σ at the end of time slot t as Xσ

i (t). As in [34], we say that the system is stable if

lim
q→∞

lim sup
t→∞

Pr (Xσ
i (t) > q) = 0.

Note that the definition of stability does not include the buffers. Due to the definition of depar-
tures, though, stability of queues implies stability for the buffers.

Consider the set of all vectors λ for which the system is stable under policy σ; the closure
of this set denoted by Λσ is called the stability region of the policy σ. The region Λ , ∪σΛσ

characterizes the system and is called the throughput region. In case we constrain the allowable
set of codes (e.g. to XOR only) we will refer to the corresponding region as the code-constraint
throughput region, see [23].

We expect the code-constraint region of the 2-user NACK system to be a subset of the through-
put region of the 2-user ACK due to the partial information available at the coding node and the
restriction to XORing.

Let Π be the set of all evacuation policies. We denote with Tπ(k) the evacuation time of policy
π ∈ Π, which is the minimum number of slots required to empty the system queues under policy
π. We denote with Tπ

(k) , E[Tπ(k)] the average evacuation time of this policy over the number
and ’kind’ of the random overhearing events and with T?

(k) , infπ∈Π{T
π
(k)} the minimum

average evacuation time over all the policies. By ’kind’ here we mean any element of e ∈ P([n])
where e denotes the set of the indices of receivers that overheard a packet.

LEMMA 1 [SUBADDITIVITY AND LINEAR GROWTH]: The function T?
(k) is subadditive, is upper

bounded by a linear function and the following limit exists

T̂(λ) = lim
t→∞

T?
(dtλe)

t
.

Proof. In [34], Lemma 1 is shown under a general class of policies, provided that these policies
have certain Features and under some Assumptions on System operation, all of which hold triv-
ially in our problem.

Most of them hold trivially in our system. Assumption 5) in [34] can be verified by consid-
ering a simple policy that evacuates all packets in the system in a random order using native
transmissions. This policy evacuates the system in exactly

⌈
k1
r1

⌉
+
⌈

k2
r2

⌉
< k1

r1
+ k2

r2
+ 2 slots, thus

5) is satisfied. The same policy can be used to show 6).Then Lemma 1 follows from Lem. 1 and
Th. 2 in [34].

PROPOSITION 2 [THROUGHPUT REGION VIA EVACUATION TIMES FROM [34]]: The throughput
region of the system is the set of rates λ ≥ 0 satisfying

T̂(λ) ≤ 1.

Continuing on, by choosing the number of receivers, the rates and the information that is
available to the relay about the buffers of each receiver, we differentiate between the three partic-
ular models below.
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4.3 2-user ACK model

Here we have n = 2 with rates R = {r1, r2} and the relay knows exactly the buffers of each
receiver. This knowledge is achieved through ACK reports sent by the receiver to the relay when
the overhearing event took place through a separate channel. This method of overhearing allows
the relay to make completely informed decisions. On the other hand, such reports are costly to
throughput and its not scalable to the number of receivers, where the number of such reports
becomes immense. In this model, we assume that a packet and all coded packets that contain it
depart the system when the packet is successfully decoded by its destination receiver. This is the
model of feedback used in [6].

All packets that are both in the relay’s queue and in the opposite receiver’s buffer (i.e those
not coded) are called good packets due to their ability to be efficiently combined. All other pack-
ets (i.e those not overheard) are called bad. Note, that since overhearing takes place only upon
arrival, the categorization of good/bad does not change during the lifetime of a packet. Classify-
ing the packets of the relay according to which receiver they are destined, and whether they are
good/bad, we use four queues to classify them upon arrival, named g1, b1, g2, b2. The control set
is then defined as:

Cdet , {g1, b1, g2, b2, g1 ⊕ g2},

where, for example, control g1 denotes the transmission of r1 packets from queue g1. The
control {g1 ⊕ g2} is directed to both receivers (sent at rate min{r1, r2}) and the controls {gi, bi}
are directed to receiver i (sent at rate ri), i = 1, 2. Note, that we omit controls that apply XORs on
bad packets. Although this is a constrained control set, we will show that optimal performance
can be achieved using this set.

The state of the system at time slot t is Sdet(t) = (k1, k2, n1, n2), where k1 (k2) is the number of
packets destined to receiver 1 (2), and n1 (n2) is the number of packets in Ht

1(Ht
2).

The above formulation allows us to give a more precise definition for the term policy for this
system. A policy is a mapping from system state at the beginning of slot t to a control ct ∈ Cdet,
which corresponds to rt ∈ {r1, r2} transmissions, where rt is determined by the chosen control.
It is convenient to denote with Cdet(t) ⊆ Cdet a subset of the control set with the property that
the member controls correspond to non-empty queues. If for some t we have Cdet(t) = ∅, then
clearly the system queues are empty.

4.4 2-user NACK model

Here we have n = 2 with rates R = {r1, r2} and for both queues in the relay, there is an associated
probability p1 and p2 respectively. p1 is the probability that a packet of the first flow is in the
buffers of the receiver of the second flow and likewise for p2. These probabilities are known to
the relay. This knowledge is achieved through statistical analysis. Like in the ACK case, we dis-
tinguish between good and bad packets. Moreover, if the receiver fails to decode a sent packet,
a NACK packet is sent back to the relay which in turn can determine with certainty whether a
constituent packet of the combination is in the receiver’s buffer or not. In this model, we assume
that a packet and all coded packets that contain it depart the system when the packet is success-
fully decoded by its destination receiver. This method of overhearing allows the relay to make
partially informed decisions. On the other hand, the number of reports needed are reduced. This
is the model of feedback used in [11].
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Figure 2: Two snapshots of the 2-User ACK system. (left) Packets from two unicast flows arrive at
the coding node R and are destined to two different receivers. Due to side overhearing channels,
a copy of the arriving packet, destined to one receiver, also arrives at the other with a probability.
The packets are classified by the coding node as good (overheard) or bad (not overheard) at the
time they arrive. (right) System after the controls g1 ⊕ g2 and b1 are used with r = 2. During the
first control, a dummy packet was used for the second transmission.

To give an example, for a transmitted packet x1 ⊕ x2, the mechanism used by the relay is as
follows; if no NACKs are received, then both packets were decoded. If x1 is NACKed but x2 not,
then the latter is decoded and the relay obtains the information that receiver 2 has x1 and receiver
1 has x1 ⊕ x2. In this case, x1 is put in the g1 queue, while the coded packet is not stored since
it is a function of the departed packet. The symmetric case where x2 is NACKed but x1 not, is
obtained by exchanging 1 and 2. Finally, if both packets are NACKed, then both receivers have
x1 ⊕ x2 and both packets are stored in the corresponding queues b1, b2. It should be noted that
all packets in bad queues are associated with the knowledge that a XOR function is stored in the
buffers.

Upon arrival, the packets are classified as unknown since the coding node only possesses
stochastic knowledge about the corresponding overhearing events. For this reason, queue ui
for unknown packets is introduced and all arrivals enter the coding node at these queues in the
begining of an epoch. The packets may leave this queue when they depart the system or if moved
to another queue according to the above-described mechanism.

The system state is Ssto(t) = (k1, k2, n1, n2, m1, m2), where ki is the total number of packets
of flow i in the queues that are not yet decoded in their respective receivers, ni the number of
packets in gi and mi the number of packets in bi. We define the control set as:

Csto , {g1, b1, u1, g2, b2, u2, g1 ⊕ g2, g1 ⊕ u2, u1 ⊕ g2, u1 ⊕ u2}.

The set is again constrained to exclude XOR controls involving packets from the bad queues.
This happens without loss of optimality. To see this, first notice that all good packets are evacu-
ated either singleton, or after being XORed with another good packet. A XOR control between
a known good and a known bad packet only evacuates the bad packet. Therefore this control
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Figure 3: Two snapshots of the 2-User NACK system. (left) Packets from two unicast flows ar-
rive at the coding node R and are destined to two different receivers. Due to side overhearing
channels, a copy of the arriving packet, destined to one receiver, also arrives at the other with
a probability. (right) The packets are classified by the coding node as unknown (no knowledge
of overhearing event), good (overheard) or bad (not overheard), after the control u1 ⊕ u2 is used
with r = 2.

could just be replaced with the bad packet control. Controls {gi, ui} are directed to receiver i (as
before), while the rest of the controls are directed to both receivers. The policies and set Csto(t)
are defined as in the 2-user ACK case. We will refer to controls {g1, b1, . . . } as single controls and
to {g1 ⊕ g2, . . . } as XOR controls, denoting the corresponding sets with Cs, Cx.

4.5 Multi-user ACK Model based on Index Coding

Here n ∈N with rates R = {1} that is, the relay can only send one packet per timeslot. Again the
relay has full knowledge of the buffers of each receiver and this is also achieved by ACK reports.
This model is similar to the index coding model proposed in [5]. The work in [5], among other
things, proposes how we can find the optimal policy, but computing it is NP-hard on the total
number of overhearing events. For this particular problem, we will provide a set of theorems that
expand on [5].

The set of packets in the queue of flow i at the beginning of an epoch is called the "Wants" set
of receiver i and is denoted by Wi, i ∈ [n]. The set of packets that are in the buffers of receiver i
at the beginning of an epoch is called the "Has" set of receiver i and is denoted by Hi ∈ [n]. For
those sets, it holds:

Hi ∩Wi = ∅, ∀i ∈ [n]
Wi ∩Wj = ∅ ∀i, j ∈ [n] and i 6= j

∪n
i=1Wi = W

i.e all packets are destined to exactly one receiver and no packet that is destined to a receiver
is in the buffers of that receiver. A packet being destined to multiple receivers is out of the scope
of this work and is studied in [23].
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Figure 4: The system under consideration for the case of three receivers. (left) Packets from three
unicast flows arrive at the coding node R and are destined to three different receivers. Due to
side overhearing channels, a copy of the arriving packet, destined to one receiver, may also arrive
at another with a probability. We illustrate this for an arrival destined to receiver 1 that is also
overheard by receiver 3. (right) The system after controls 1⊕ 3 and 3⊕ 4.

5 2-User ACK Throughput Region

For the purposes of this section, we will allow arbitrary coding functions (including non-linear
coding) on any subset of packets, relaxing the restriction of XORing only two packets from dif-
ferent flows. This way, we provide a lower bound on the minimal evacuation time T?

(k1, k2) and
correspondingly, its linear growth. Then, we show that simple XOR-based online policies, which
operate agnostically to arrival rates, can be used to evacuate the system with the same growth.
This in turn establishes the throughput region for the 2-user ACK system, which is given in a
closed-form expression.

5.1 Lower bound on evacuation time under general coding

The development of the lower bound is based on a preliminary result which we present next. Let
X ,Y ,M1,M2 be finite sets. Consider sequences Xl ∈ X , l = 1, . . . , k1 and Yl ∈ Y , l = 1, . . . , k2.
Denote AK ,(A1, . . . , Ak). We also consider two coding functions Φ1 : X k1 × Y k2 → M1, Φ2 :
X k1 ×Y k2 →M2 and two decoding functions g1 :M1×M2×Yn2 → X k1 and g2 :M1×X n1 →
Y k2 , where 0 ≤ ni ≤ ki, i = 1, 2. We impose error-free decoding:

CONDITION 1 [DECODING]: For any (Xk1 , Yk2)

(i) g1
(
Φ1(Xk1 , Yk2), Φ2(Xk1 , Yk2), Yn2

)
= Xk1 .

(ii) g2
(
Φ1(Xk1 , Yk2), Xn1

)
= Yk2 .

Fix Yn2 and define the mapping Ψ : X k1 ×Y k2−n2 →M1 ×M2, where

Ψ
(

Xk1 , Zk2−n2
)
=
(

Ψ1

(
Xk1 , Zk2−n2

)
, Ψ2

(
Xk1 , Zk2−n2

))
,

Ψl

(
Xk1 , Zk2−n2

)
= Φl

(
Xk1 , Yn2 ||Zk2−n2

)
, l = 1, 2,

Yn2 ||Zk2−n2 is the concatenation of sequences Yn2 ,Zk2−n2 .
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Similarly fix Xn1 and define the mapping Θ : X k1−n1 ×Y k2 →M1 ×M2, with

Θl

(
Zk1−n1 , Yk2

)
= Φl

(
Xn1 ||Zk1−n1 , Yk2

)
, l = 1, 2.

We also define the mapping Φ : X k1 ×Y k2 →M1 ×M2 as,

Φ
(

Xk1 , Yk2
)
=
(

Φ1

(
Xk1 , Yk2

)
, Φ2

(
Xk1 , Yk2

))
.

LEMMA 3: Under condition 1, for any fixed Yn2 (fixed Xn1) the mapping Ψ (Θ) is injective. Hence it
holds,

|R(Ψ)| = |X |k1 |Y|k2−n2 , |R(Θ)| = |X |k1−n1 |Y|k2

where R(Φ) denotes the range of a mapping Φ. Moreover, for any fixed Xk1 , the mapping Φ̃1 : |Y|k2 →
M1 defined by Φ̃1

(
Yk2
)
= Φ1

(
Xk1 , Yk2

)
is injective, hence∣∣R(Φ̃1)

∣∣ = |Y|k2 (1)

Proof. To show that Ψ is injective, it suffices to show that if
Ψl

(
Xk1 , Zk2−n2

)
= Ψl

(
X̂k1 , Ẑk2−n2

)
, l = 1, 2,

then Xk1 = X̂k1 , and Zk2−n2 = Ẑk2−n2 . We write

Xk1= g1

(
Φ1(Xk1 , Yn2 ||Zk2−n2), Φ2(Xk1 , Yn2 ||Zk2−n2), Yn2

)
= g1

(
Ψ1(Xk1 , Zk2−n2), Ψ2(Xk1 , Zk2−n2), Yn2

)
= g1

(
Ψ1

(
X̂k1 , Ẑk2−n2

)
, Ψ2

(
X̂k1 , Ẑk2−n2

)
, Yn2

)
= g1

(
Φ1(X̂k1 , Yn2 ||Ẑk2−n2), Φ2(X̂k1 , Yn2 ||Ẑk2−n2), Yn2

)
= X̂k1 .

Yn2 ||Zk2−n2 = g2

(
Φ1(Xk1 , Yn2 ||Zk2−n2), Xn1

)
= g2

(
Ψ1(Xk1 , Zk2−n2), Xn1

)
= g2

(
Ψ1

(
X̂k1 , Ẑk2−n2

)
, Xn1

)
= g2

(
Ψ1

(
Xk1 , Ẑk2−n2

)
, Xn1

)
= g2

(
Φ1

(
Xk1 , Yn2 ||Ẑk2−n2

)
, Xn1

)
= Yn2 ||Ẑk2−n2 .

Hence, Zk2−n2 = Ẑk2−n2 . To prove Θ is injective, we argue similarly starting from the decoding
function g2. Finally, (1) follows by the fact that for any Xk1 , if Φ1(Xk1 , Yk2) = Φ1(Xk1 , Ŷk2), then
Yk2 = Ŷk2 , which again follows from

g2

(
Φ1(Xk1 , Yk2), Xn1

)
= g2

(
Φ1(Xk1 , Ŷk2), Xn1

)
.
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COROLLARY 4: Assume that Xk1and Yk2 consist of independent identically distributed random variables
and are independent of each other. Then the mappings Φ1, Φ2 are random variables and it holds,

H (Φ1) ≥ k2H (Y) (2)
H (Φ) ≥ max {k1H(X) + (k2 − n2) H (Y) ,

(k1 − n1) H (X) + k2H (Y)} (3)

Proof. Since for fixed Xk1 the mapping Φ̃1 is injective

H
(

Φ1

∣∣∣Xk1 = xk1
)
= H

(
Φ̃1

∣∣∣Xk1 = xk1
)

= H
(

Yk2
)
= k2H(Y).

Hence, H (Φ1) ≥ H
(
Φ1
∣∣Xk1

)
= k2H (Y). Also

H (Φ) ≥ H (Φ |Yn2 ) = k1H(X) + (k2 − n2) H (Y)
H (Φ) ≥ H (Φ |Xn1 ) = (k1 − n1) H (X) + k2H (Y)

are derived in a similar fashion.

The interpretation of this formulation in our current context is the following: X and Y are all
possible L-bit sequences that can be contained in a packet, |X | = |Y| = 2L. The sequence Xk1

represents the k1 packets at the transmitter that are destined to receiver 1, while the subsequence
Xn1 represents the packets at the transmitter that are destined for receiver 1 and have been over-
heard by receiver 2. The interpretation of sequence Yk2 and its subsequence Yn2 is similar. Since
bit sequences are assumed i.i.d with uniform distribution, we have H (X) = H (Y) = L.

For the rest of the discussion we assume that r1 ≥ r2, hence receiver 1 observes all slots, while
receiver 2 observes only slots at which packets are transmitted at rate r2. The setR(Φ1) represents
the values of the mapping which must be known to receiver 2 so that together with Xn1 successful
decoding is effected at this receiver. Therefore, the values of R(Φ1) must be transmitted during
slots at which the rate is r2. We denote by ξ2 the (random) number of packets transmitted during
these slots, and by ξ2 its average value. Hence, the average number of bits transmitted in slots
with rate r2 is ξ2L. Similarly, for the setR(Φ) and receiver 1. We denote by ξ the (random) number
of slots used in the transmission of all the packets to both receivers, and by ξ its average value.

In order for the receivers to obtain the values of the sets R(Φ1), R(Φ) these values must
be source-coded and transferred through the channel using packets of L bits. We use uniquely
decodable codes and hence the average number of bits that need to be transmitted is bounded
from below as follows.

To transfer the values ofR(Φ1), using (2)

ξ̄2L ≥ H (Φ1) ≥ k2H(Y) = k2L. (4)

Similarly, to transfer the values ofR(Φ), using (3)

ξ̄L ≥ H (Φ) ≥ max {H(Ψ), H(Θ)}
≥ max {k1H(X) + (k2 − n2) H (Y) ,

(k1 − n1) H (X) + k2H (Y)}
= L max {k1 + (k2 − n2) , (k1 − n1) + k2}
= L (k1 + k2 −min {n1, n2}) . (5)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:03:53 EET - 137.108.70.7



13

THEOREM 5 [LOWER BOUND WITH ARBITRARY CODING]: The 2-user ACK system satisfies under
any π ∈ Π:

Tπ
(k1, k2) ≥ Tbdet(k1, k2),

where Tbdet(k1, k2) ,
k1
r1
+ k2

r2
− E[min{N1,N2}]

max{r1,r2} .

Proof. Assume without loss of generality r1 ≥ r2. Also, let ξ1 , ξ − ξ2 be the number of packets
transmitted during slots where rate r1 is used, so that only receiver 1 observes them. For any
policy π we have

Tπ(k1, k2, n1, n2) ≥
⌈

ξ1

r1

⌉
+

⌈
ξ2

r2

⌉
≥ ξ

r1
+

ξ2

r2
− ξ2

r1
.

Taking into account (4), (5) we then have

Tπ
(k1, k2, N1, N2) ≥

ξ

r1
+

ξ2
r2
− ξ2

r1

≥ k1

r1
+

k2

r2
− E[min{N1, N2}]

r1
,

where Ni, i = 1, 2 are binomial RVs with ki, pi. The result follows by using the same methodology
for the case of r2 > r1.

5.2 A class of simple XOR-based policies

DEFINITION 1 [CLASS ΠDET]: At slot t the control is chosen according to the following two steps:

(i) If {g1 ⊕ g2} ∈ Cdet(t), choose control {g1 ⊕ g2}.

(ii) Else, choose any single control (each policy in the class defines a different order).

When Cdet(t) = ∅, stop.

Let r , r1 if n1 ≥ n2 and r , r2, otherwise. Notice, that since the policies in Πdet do not depend
on the values of the bits in the packets, their evacuation times are deterministic. By enumerating
the two above steps, we have

Tπ(k1, k2, n1, n2) ≤
⌈

min{n1, n2}
min{r1, r2}

⌉
+

+

⌈
max{n1, n2} −min{n1, n2}

r

⌉
+

⌈
k1 − n1

r1

⌉
+

⌈
k2 − n2

r2

⌉
≤ k1

r1
+

k2

r2
− min{n1, n2}

max{r1, r2}
+ 4, for all π ∈ Πdet. (6)

THEOREM 6 [THROUGHPUT REGION]: The throughput region of the 2-user ACK system is the area
defined by (λ1, λ2) ≥ (0, 0), and the following inequality:

λ1

r1
+

λ2

r2
− min{p12λ1, p12λ2}

max{r1, r2}
≤ 1. (7)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:03:53 EET - 137.108.70.7



14

Proof. Consider ki = dλite , i = 1, 2 packets to be evacuated and note that the number of good
packets per flow are binomial random variables, denoted by N1(k1), N2(k2) correspondingly.
Since the status of arriving packets (good, bad) is an i.i.d. process, we have,

lim
t→∞

E

[
Ni(dλite)

t

]
= piλi, (8)

and also, by the strong law of large numbers,

lim
t→∞

Ni(dλite , ω)/t = piλi w.p.1. (9)

Recall that T?
(k1, k2) is the minimum average evacuation time over all policies, hence a lower

bound of Tπ. By Theorem 5

E
[

Tbdet(k1, k2, N1, N2)
]
≤ T∗(k1, k2) ≤ E[Tπ(k1, k2, N1, N2)] (10)

We calculate the limit of the upper bound of Tπ
(k1, k2) using the the RHS of (6)

lim
t→∞

E

 k1t
r1

+ k1t
r1
− min{N1(k1t,ω),N2(k2t,ω)}

max{r1,r2} + 4

t

 =

=
k1

r1
+

k2

r2
− lim

t→∞
E

[
min{N1(k1t, ω), N2(k2t, ω)}

t max{r1, r2}

]
=

k1

r1
+

k2

r2
− min{p1k1, p2k2}

max{r1, r2}
, w.p.1,

where in the last step, we exchange the order of limit expectation and min function due to uniform
integrability which follows from convergence in expectation (8) and almost everywhere conver-
gence (9) of the involved sequences, see [35] Th. 16.14. We can repeat the limit derivation for the
case of Tbdet and derive the same limit, hence from (10) we conclude

T̂(λ1, λ2) =
λ1

r1
+

λ2

r2
− min{p1λ1, p2λ2}

max{r1, r2}

and the result follows by invoking Proposition 2.

6 2-User NACK Code Constrained Throughput Region

In this section, we study a set of evacuation policies Π for the 2-user NACK system, constrained
to the use of XORs (i.e. general coding is not considered) and derive the corresponding code-
constrained throughput region in closed-form.

6.1 Treating packets in queues b1, b2

We focus on a special control sequence. Following a control u1 ⊕ u2, and two NACK messages
from the receivers, the corresponding transmitted packets x1, x2 are characterized as bad and
put in the corresponding bad queues. Assume, that in a succeeding time slot, one of the two
packets is transmitted using a single control, say b1, directed to both receivers (i.e. at rate r =
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min{r1, r2}). Evidently receiver 1 will obtain x1, which departs the system. Since receiver 2 has
previously obtained the coded packet x1⊕ x2 from the NACKed broadcast transmission, receiver
2 can combine it with x1 and obtain x2. In a total of two transmissions, both bad packets are
obtained.

Due to the control set Csto, the packets in the bad queues can only be evacuated by single
controls. Since, for each bad packet in the queue b1 there is a bad packet in queue b2 (the one with
which it was coded), for efficiency reasons we will assume that they are always directed to both
receivers. Finally, since the evolution of the system state is not affected, we will constrain the set
of evacuation policies to those that choose controls b1, b2 last.

6.2 Lower bound on the code-constrained growth rate

Let (f, s) = (1, 2) if r1 ≥ r2 and (f, s) = (2, 1) otherwise, where f=fast and s=slow. Also, let
(.)+ , max{., 0} and

Breq ,
λ1

r1
+

λ2

r2
− min(λ1 p1, λ2 p2)

pf

[
1
r f
− 1− pf

rs

]+
.

THEOREM 7 [LOWER BOUND ON THE GROWTH RATE]: For the 2-user NACK system, constrained to
the use of XOR coding, it holds

lim inf
t→∞

Tπ
(dtλ1e , dtλ2e)

t
≥ Breq, for all π ∈ Π. (11)

The proof is in the Appendix.

6.3 An optimal evacuation policy

DEFINITION 2 [POLICY π∗]: Policy π∗ ∈ Π operates as follows. If 1− pf >
min(r1,r2)
max(r1,r2)

is true, controls
from Cs are chosen in arbitrary order. Else, at slot t

• If {u1 ⊕ g2} ∈ Csto(t) or {u2 ⊕ g1} ∈ Csto(t), then select the corresponding control

• elseif {u1 ⊕ u2} ∈ Csto(t) select this control

• else select any control from the set Cs. During this step, controls b1 and b2 are used in the way
explained in subsection 6.1.

When Csto(t) = ∅ stop.

THEOREM 8 [ASYMPTOTIC OPTIMALITY OF POLICY π∗]: For the 2-user NACK system operating
under policy π∗ we have

lim sup
t→∞

Tπ∗
(dtλ1e , dtλ2e)

t
≤ Breq. (12)

The proof of Theorem 8 is in the Appendix. Combining (11) and (12), we conclude T̂?(λ1, λ2) =
Breq.

COROLLARY 9: The code-constrained region of the 2-user NACK system is the set of rates (λ1, λ2) ≥
(0, 0) satisfying

λ1

r1
+

λ2

r2
− min{λ1 p1, λ2 p2}

pf

[
1
rf
− 1− pf

rs

]+
≤ 1, (13)
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Figure 5: Throughput regions of no network coding and 2-user ACK system and code-constrained
regions of the 2-user NACK system with or without storing XORs (from [18]). Parameters: p1 =
0.7, p2 = 0.8, r2 = 3 and r1 = 3 (left), r1 = 2 (right).

where rs = min{r1, r2} and rf = max{r1, r2}. Whenever the term in the brackets is negative,
network coding is not beneficial, and the maximum throughput is achieved without coding. If
r1 = r2, the terms cancel out and (13) equals (7), therefore the code-constrained region of the 2-
user NACK system and the throughput region of the 2-user ACK are equal. In Fig. 5 we plot the
regions for two different settings.

7 Multi-User ACK based on Index Coding Results

7.1 Theoretical Results

In this section we will prove some useful properties on the model proposed in [5]. First, we will
introduce the notion of the side information graph.

DEFINITION 3: Consider a system with a relay that contains a set W of packets and n receivers with
H1, ..., Hn and W1, ..., Wn the "Has" and "Wants" sets of each receiver respectively that satisfy these con-
ditions:

Hi ∩Wi = ∅, ∀i ∈ [n]
Wi ∩Wj = ∅ ∀i, j ∈ [n] and i 6= j

∪n
i=1Wi = W

The side information graph (SIG) G ≡ (V, E) is defined as the multipartite digraph which is constructed
in this way:
If w ∈W we construct the vertex v ∈ V.
If h ∈ Hi and v is the corresponding vertex of h, we construct the set of edges Oi

v ≡ {(w, v) : w ∈ Wi}.
We call this set an overhearing hyperedge, i.e the set of edges that correspond to a single overhearing
event.

Notice that each partition is composed of the vertices that represent the packets that belong to
the "Wants" set of a certain receiver. It might also seem that the definition given here is different
than that in [5] but in reality they are equivalent. That is because, in [5], each receiver has only
one packet in its "Wants" set. However, if a receiver i has a "Wants" set |Wi| = z > 1 where
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Figure 6: An example with three receivers and six packets, where three packets are overheard and
they reside on the corresponding decoding buffers (left). The corresponding overhearing SIG is
shown (middle) and the set of matrices that fit the SIG (right). ‘∗’ indicate entries to be completed
with elements of the binary field. The sub-columns highlighted in blue indicate overhearing sub-
columns

packets w1 . . . wz ∈ Wi and a "Has" set Hi then this receiver can be decomposed to z receivers
were receiver j ∈ [z] has a "Wants" set Wj = {wj} and a "Has" set Hi. See Figures 6 and 7 for an
example.

Secondly, we define what it means for a matrix to fit a side information graph G:

DEFINITION 4: Let G ≡ (V, E) be any SIG. We say that the 0-1 matrix A ∈ F
|V|×|V|
2 fits G if for all i

and j:

Aij =

{
1 i = j
0 (i, j) /∈ E

The sub-columns of A that correspond to an overhearing hyperedge are called overhearing sub-columns.

Finally, we define the quantity of minrk2(G) that stands for the minimum rank attained by all
matrices that fit G:

DEFINITION 5: Let G be a SIG. We define:

minrk2(G) ≡ min{rk2(A) : A fits G}

A useful observation we will need later on is that, if G is a SIG of disconnected components
G1, ..., Gn then:

minrk2(G) =
m

∑
i=1

minrk2(Gi) (14)

Denote by IG the set of all index codes and by IL
G the set of all linear index codes that evacuate

the packets of a SIG G respectively. Let len(C), C ∈ IG be the length of code C and MAIS(G) the
size of the maximal acyclic induced subgraph of G. In [5] (theorems 1 and 3) it is proved that:

MAIS(G) ≤ min
C∈IG

len(C) ≤ min
C∈IL

G

len(C) = minrk2(G) = T?
(k) (15)
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Figure 7: An example with six receivers and six packets, where three packets are overheard and
they reside on the corresponding decoding buffers (left). The corresponding overhearing SIG is
shown (middle) and the set of matrices that fit the SIG (right). ‘∗’ indicate entries to be completed
with elements of the binary field. The sub-columns highlighted in blue indicate overhearing sub-
columns. Notice that the resulting SIGs in both Figures 6 and 7 are the same, as well as the
matrices that fit them.

were k is the vector of the number of packets belonging to each flow in the system represented
by the SIG. Moreover, minrk2(G) is the optimal length for all C ∈ IL

G and for some special classes
of SIG, it is the optimal length for all C ∈ IG. Finally, for C ∈ IL

G, minC∈IL
G

len(C) = minrk2(G) is
achievable by taking any A ∈ F2 that satisfies its definition, finding a maximal independent set
of rows and XORing the packets that correspond to the columns where the ’1’ are.

We will now prove a series of theorems based on those results. First, we show that the optimal
evacuation policy for a system that has a SIG which is a directed acyclic graph (DAG), is to send
all of the packets singleton (i.e one at a time):

THEOREM 10: Let G = (V, E) be a SIG with |V| = n and V = {v1, ...vn} which corresponds to the set
of packets W = {w1, ..., wn}. If G is a DAG, then:

min
C∈IG

(len(C)) = n

Proof. Since G is a DAG, we have

MAIS(G) = n

From (15) we have:

n ≤ min
C∈IG

len(C)

But there is at least one index code for G with length n and that is: {w1, w2, ..., wn}, i.e we send
all packets singleton. Therefore the optimal minimum in the above inequality is achieved with
this code.
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Next, we will show that the problem of finding the minrk2(G) for any SIG can be reduced to
a problem of finding the minrk2 of a number of subgraphs that are strongly connected.

THEOREM 11: Let G = (V, E) be a SIG with |V| = n and V = {v1, ..., vn} the set of all vertices. Also,
denote by G1, ..., Gm the strongly connected components of G. Then, the optimal length for linear index
codes that evacuate the system corresponding to G is:

min
C∈IL

G

len(C) = minrk2(G) =
m

∑
i=1

minrk2(Gi)

Proof. The equality is given by [5]. To prove the equality, we first impose a topological ordering
on the condensation of G (the graph that is made by having all the vertices of a strongly con-
nected component represented by a single vertex. This graph is a DAG therefore the topological
ordering is applicable. These are well known results of graph theory). Without loss of generality,
let (G1, ..., Gn) be this order, where Gi = (Vi, Ei) is the i-th strongly connected component of the
topological order.

Let A be any matrix that fits G. We can write A in such a way that the vertices of V1 correspond
to the first |V1| rows of A, the vertices of V2 correspond to the next |V2| rows of A and so on and
so forth. Due to the topological ordering, there are no edges (vi, vj) such that i > j. Therefore, A′

is block upper triangular.
We can write A as:

A =


A11 A12 . . . A1m
0 A22 . . . A2m
...

...
. . .

...
0 0 . . . Amm


where Aii is a matrix that fits G′i and Aij , i 6= j is a matrix that fits the induced subgraph of

the neighboring vertices of Gi and Gj.
We have:

minrk2(G) ≥ rk2 A
(26)
≥

n

∑
i=1

rk2(Aii)

≥
n

∑
i=1

minrk2(Gi) (16)

where the inequality 26 is proved in the Appendix (Basic Theorems). Also, if we let:

Ad =


A11 0 . . . 0
0 A22 . . . 0
...

...
. . .

...
0 0 . . . Amm


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be the diagonal blocks of A. This matrix fits the graph Gd, i.e the graph with no edges between
the strong connected components of G. This graph is comprised of the disconnected graphs
G1...Gn. We have:

minrk2(G) ≤ minrk(Gd)

(14)
=

n

∑
i=1

minrk2(Gi) (17)

where the first inequality is due to the fact that all matrices that fit Gd also fit G. Intuitively,
this means that the evacuation time is larger if we choose to omit some overhearings that occured.

By combining (16) and (17) the proof is complete.

We continue with a useful definition. The intuition behind this definition is that some over-
hearing events are needed in the system (essential) if we can evacuate the system faster with a
XORing scheme than if they hadn’t occurred:

DEFINITION 6: Let G = (V, E) be any SIG. We say that an overhearing hyperedge O ⊆ E is essential
to G iff, for G′ = (V, E−O) it holds that:

minrk2(G) < minrk2(G′)

Otherwise, we say it is non-essential to G.

From the above definition, we prove the following lemma. The intuition behind this lemma
is that if an overhearing event is essential, then it must be used in the XORing scheme:

LEMMA 12: Let G = (V, E) be any SIG. An overhearing hyperedge O ⊆ E is essential to G iff all
matrices that are a solution to minrk(G) have ’1’ in at least one entry of the overhearing sub-column C
that corresponds to O.

Proof. Let G′ = (V, E−O). The statement ’O is essential to G’ is equivalent to

minrk2(G) < minrk2(G′)

P1: All matrices that fit G′ are all the matrices that fit G and have ’0’ to all entries of C.
P2: None of the matrices that fit G′ are a solution to minrk2(G) due to the above inequality
C1: Due to P1 and P2, all solutions to minrk2(G) have ’1’ in at least one entry of C.

REMARK 1: An overhearing hyperedge O with a corresponding overhearing sub-column C is non-essential
iff there exists at least one solution where C = 0.

The above concepts of essentiality, overhearing hyperedge and overhearing sub-column are
necessary for the proof of the next theorem, where we establish that there is no loss of optimality
if we constrain the set of XOR policies to those that have no intra-flow coding.

First lets clarify what we mean by intra-flow coding. A coding scheme contains intra-flow
codewords when two or more packets of the same flow are coded together in the same codeword.
To translate it to the formalism we described above, we could say that in the matrix solution to
the problem, there are rows that contain 2 or more ’1’ that correspond to packets of the same flow.

Let’s proceed with our proof:
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THEOREM 13: Let G = (V, E) be any SIG. There exists at least one solution to minrk2(G) such that
there is no intra-flow XOR coding.

Proof. We will use induction on the number of overhearing events for this proof. If a solution to
minrk2(G) has no intra-flow XOR coding, we will say that it satisfies the NIC property. Suppose
that G has a constant number of vertices and n overhearing hyperedges

(Base case) Denote N the maximum number of overhearing events (i.e all possible overhearing
events took place or equivalently, G is a complete multipartite graph). In Appendix 10.2 we prove
that for the base case:

• P1: for all non-essential overhearing hyperedges there is a solution where their correspond-
ing overhearing sub-columns are 0 and satisfies the NIC property.

• P2: for all essential overhearing hyperedges there is a solution where their corresponding
overhearing sub-columns is a column of an identity matrix (i.e it has exactly one ’1’) and it
satisfies the NIC property.

therefore the Theorem is satisfied for the base case.

(Inductive hypothesis) Let the theorem hold for n = N − k overhearing events and for every
SIG G with this number of overhearing hyperedges, P1 and P2 hold.

(Inductive step) For n = N− (k + 1) overhearing events: Take any overhearing event that has
not happened and suppose that it happened and let O and C be its corresponding overhearing
hyperedge and sub-column respectively in graph G′ = (V, E∪O). Distinguish between two cases

• O is non-essential to G’:
Due to the inductive hypothesis, P1 holds. Hence, there exists a solution S′ for minrk2(G′)
such that C = 0 and that satisfies the NIC property. S′ is also a solution to G, therefore we
are done.

• O is essential to G’. Due to the inductive hypothesis, P2 holds. Hence there exists a solution
S′ for minrk2(G′) such that C has exactly one ’1’ and it satisfies the NIC property. Let C(i, j)
be the non-zero entry of C. We construct a matrix S such that:

S(k, l) =

{
0 , k = i and l = j
S′(k, l) , otherwise

i.e we remove the essential ’1’. Due to (27) (see Appendix 10.3):

rk2(S′)− 1 ≤ rk2(S) ≤ rk2(S′) + 1

or

minrk2(G′)− 1 ≤ rk2(S) ≤ minrk2(G′) + 1
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All solutions to minrk2(G′) have non-zero C. Since C = 0 for S, S is not a solution to
minrk2(G′) therefore:

rk2(S) > minrk2(G′)

from the two above inequalities we conclude:

rk2(S) = minrk2(G′) + 1

Moreover O is essential therefore:

minrk2(G′) < minrk2(G)

Since the next integer after minrk2(G′) is minrk2(G′) + 1, and because S fits G, S is a solution
to minrk2(G) and has the required properties. That concludes the proof.

7.2 A Proposed Heuristic

Theorem 13 drastically reduces the search space for finding an optimal solution to the Index
Coding problem, but computing minrk2 is still NP-hard. This motivates a textsfHeuristic were
we decompose the problem into smaller problems that can be solved offline and stored on a
lookup table. The codes we use do not include intra-flow coding. We construct a lookup table
containing all instances of the problem such that each receiver requests at most one packet. Due
to different possible overhearing event combinations, there exist ∑N

i=1 2i(i−1)(N
i ) such instances,

many of which are, however, homomorphic. Also, note that this is exponential to the number of
receivers but not the number of packets (as before). We compute the minrnk2 for each of these.
Then we order the elements in this table according to the efficiency metric #decoded packets

minrnk2
. In case

of tied metric, priority is given to the packets with the smaller out degree in the overhearing SIG.
Yet another tie is solved arbitrarily. The proposed policy simply chooses the top element of the
lookup table for which all involved packets appear in the input queues at least as many times as
the lowest rate of those queues.

8 Comparison with State-of-the-art Policies

In this section we consider two important state-of-the-art schemes that are used as solutions to
the WNC problem and compare their performance to our 2-user ACK, 2-user NACK and Heuristic

policy by use of simulation.
IDNC: we have in mind greedy immediately decodable policies like the one proposed in [6];

form the XOR sum of packets such that each packet can be immediately decoded at the corre-
sponding intended receiver and choose the largest such sum (ties solved randomly). We expect
this policy to be inefficient compared to the optimal because it fails to solve cycles in G, for exam-
ple consider the example in figure 10. Also, because it solves the ties randomly instead of sending
the packets that have been least overheard, it misses opportunities for coding.
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Figure 8: Average delay performance for a system with 2 receivers, in two chosen directions
λ = (λ, λ)(left) and λ = (λ, .8λ) (right). The overhearing probabilities are: p1 = .9, p2 = .7. For
both cases, the rates are r1 = 2, r2 = 1

Figure 9: Average delay performance for a system with 2 receivers, in two chosen directions
λ = (λ, λ, λ) , r1 = 2, r2 = 2, r3 = 2 (left) and λ = (λ, .8λ, .6λ) , r1 = 4, r2 = 3, r3 = 2(right). The
overhearing probabilities are: p12 = p23 = p31 = .8, p13 = p21 = p32 = .5.

RLNC− g: this policy considers the packets at the input in different generations of size g. In the
each generation, g packets from each receiver are coded together forming Ng equations with ran-
domly drawn coefficients. In some cases, some receivers do not participate if they do not have any
packets. We assume an idealized version of the policy where the coefficients are pseudo-random
and they result in linearly independent coded packets. These equations are transmitted until all
receivers have decoded all Ng packets. Side information packets are also linearly independent
equations that can be used to accelerate the decoding. However, the required transmissions are
calculated based on the receiver with the smallest number of side information packets. When
the first generation is decoded, the transmissions stop and we proceed to the second generation.
When all the packets of the generation are decoded we move to the next generation. We expect
this policy to be inefficient compared to the optimal because it requires all the receivers to decode
all packets. On the contrary, optimal index codes transmit only the amount of information that
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Figure 10: The system under consideration for the case of three receivers were both IDNC and
RLNC have lower performance than the proposed Heuristic. Rates are R = {1, 1, 1} The Heuristic
will manage to evacuate the queues in three timeslots with the controls 2⊕ 5 which corresponds
to a 2-cycle in G, 3⊕ 1 and 3⊕ 4 where the last two controls correspond to a 3-cycle in G. IDN will
fail to solve the 3-cycle and will instead sent packets 3, 1, 5 singleton, taking 4 timeslots. RLNC
will need to send 4 linearly independent equations, therefore also taking 4 slots.

is required so that each receiver obtains the packets it is interested in. Moreover, all transmis-
sions are done in the slowest possible rate, so that all receivers can listen. This puts RLNC in a
significant disadvantage if we diversify the rates, as shown in the figures.

We compare the dynamic policies IDNC,RLNC− 16 to our proposed 2-user ACK and 2-user NACK
policies in Figure 8. g was chosen to maximize the throughput of RLNC in the setup. The Figure
shows the average packet delay of the compared policies. In two chosen directions λ = (λ, λ),
λ = (.7λ, λ) and for a specific overhearing probability matrix given in the caption. As we already
proved, the 2-user ACK policy is optimal and therefore outperforms all others in delay. The 2-
user NACK algorithm has a better performance than RLNC and can reach or surpass IDNC. This
happens because when there are no opportunities for XORing, IDNC will blindly send singleton
packets whereas the 2-user NACK algorithm will conserve those packets that have been over-
heard so as not to miss on coding opportunities later on. Moreover, when singleton bad packets
are sent in the slowest rate, two packets per transmission evacuate the system as we explained.
The asymmetric example on the right of figure 8 shows a case where this algorithm and IDNC
have about the same delay performance, even though the 2-user NACK algorithm admits no
explicit acknowledgements.

We also compare the dynamic policies IDNC,RLNC− 36 to our proposed Heuristic in Figure 9.
g was chosen to maximize the throughput of RLNC in the setup. The Figure shows the average
packet delay of the compared policies. In two chosen directions λ = (λ, λ, λ), λ = (λ, .8λ, .6λ)
and for a specific overhearing probability matrix given in the caption, Heuristic outperforms prior
approaches, showing a throughput increase.
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9 Conclusions and Extensions

In the problem of reporting overhearing events in wireless network coding, we study the 2-user
ACK system, the 2-user NACK system and the Index Coding system. For the 2-user ACK system
we derive analytical expressions for its throughput region. For the 2-user NACK we derive the
code-constraint region and we show that its equal to the throughput region of the first system
when r1 = r2. When r1 6= r2, we analyze the throughput-overhead tradeoff and conclude that
this system is a very efficient approach when the overhearing probabilities are sufficiently high.
For the case of the Index Coding problem, we show that there is no loss of optimality if we ignore
codes that involve intra-flow coding. We also show that the problem of finding an optimal Linear
Coding scheme can be decomposed to a number of subproblems equal to the number of strongly
connected components of the SIG proposed in [5]. Alongside with the theoretical results, we
propose simple and efficient evacuation policies which can be used in practice to achieve optimal
throughput for the case of two receivers and a heuristic algorithm for more than two receivers.
Future avenues of research could be the expansion of the 2-user NACK and ACK cases for an
arbitrary number of users, possibly with the help of Index Coding techniques.

10 Appendix

10.1 Proofs of Theorems 7 and 8 for the 2-user NACK Code Constrained Throughput
Region

Proof of Theorem 7. We assume that the packets are served from the queues in a FCFS manner,
since all packets in a given queue are statistically equivalent and thus reordering them does not
change the expected outcome.

We partition the set of policies Π to three sets, the subset of policies using only single controls
Πsin, the subset of policies using always XOR controls if Cx ∩ Csto(t) 6= ∅, called Πxor and the rest
Πmix. We immediately get

Tπ
(k1, k2) ≥

k1

r1
+

k2

r2
, for all π ∈ Πsin. (18)

Next we will find a bound for policies in Πxor and ultimately we will show that the policies in
Πmix are outperformed (in asymptotic sense) by those in Πsin ∪Πxor.

Let Nmin , min{N1, N2} and recall (f, s) = (1, 2) if r1 ≥ r2 and (f, s) = (2, 1) otherwise.
Observe that the following hold under any policy in Πxor:

(i) While XOR controls are still available (i.e. Cx ∩ Csto(t) 6= ∅), a good packet departs only if
coded with another good packet independently of the XOR control used.

(ii) At the end of the slot that the packets from one flow are all evacuated for the first time, it
holds: exactly Nmin good packets of both flows have departed.

We make the following helpful conventions:

(i) In case of a {u1 ⊕ u2} control involving two bad packets followed by a single control of
one of the two bad packets (these two transmissions evacuate both packets), we assign one
evacuated packet to each control.
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(ii) Then, all XOR controls evacuate exactly one packet with the exception of the control {g1 ⊕
g2}, which evacuates two packets. We make the convention that the first Nmin good packets
of the fast flow take up zero transmissions (the corresponding transmissions are counted
for the first Nmin good packets of the slow flow).

Let J(i) − 1, i = 0, 1 be the number of packets in front of the Nmin + i-th good packet in the
unknown queue of the fast flow at time 0. Using the law of iterative expectations we get E[J(0)] =
E[Nmin] /pf and E[J(1)] = (E[Nmin] + 1)/pf.

All packets of the slow flow plus the bad packets of fast flow of at least up to J(0) are evacu-
ated in slots of rs packets requiring one transmission each. Then the remaining kf − J(0) packets
of the fast flow are evacuated in slots of rf packets. Thus, for any π ∈ ΠXOR

Tπ ≥ E

[⌈
ks + J(0)− Nmin

rs

⌉]
+ E

[⌈
kf − J(0)

rf

⌉]
(19)

≥ E

[
ks + J(0)− Nmin

rs

]
+ E

[
kf − J(0)

rf

]
=

ks

rs
+

(1− pf)E[Nmin]

pfrs
+

kf

rf
− E[Nmin]

pfrf

=
k1

r1
+

k2

r2
− E[Nmin]

pf

[
1

max{r1, r2}
− 1− pf

min{r1, r2}

]
,

which combined with (18) yields

Tπ
(k1, k2) ≥

k1

r1
+

k2

r2
− E[Nmin]

pf

[
1
r f
− 1− pf

rs

]+
,

for all π ∈ Πsin ∪Πxor. Using limt→∞
E[Nmin]

t = min{k1 p1, k2 p2} found above, we conclude that

lim inf
t→∞

Tπ
(dtλ1e , dtλ2e)

t
≥ Breq, π ∈ Πsin ∪Πxor,

where Breq is the requested limit. Next, we consider set Πmix.
Pick a policy π ∈ Πmix. Let Ls(ks, k f , ω), L f (ks, k f , ω) be random variables denoting the num-

ber of packets that were evacuated with controls {gs}, {us} and {g f }, {u f } respectively. We have
li , E

[
Li(ks, k f , ω)

]
and 0 ≤ li ≤ ki, for i ∈ {s, f }.

Let Ms(ks, k f , ω), M f (ks, k f , ω) be the number of good packets that were evacuated with the
above controls in the fast and slow flow respectively. Furthermore, let Hi(ks, k f , ω) be the number
of good packets evacuated by controls {gi}. By the law of large numbers we have w.p.1:

lim
t→∞

Mi(kst, k f t, ω)

t
= E[Hi] + pi(E[Li]−E[Hi]) ≥ pili. (20)

All ks packets and the k f − L f packets of the fast flow are evacuated with rate rs. Therefore,
the expected number of timeslots needed to evacuate these packets is:

T1 ≥ E

[
ks

rs
+

k f − L f

rs
−

min(Ns −Ms, N f −M f )

rs

]
=

ks

rs
+

k f − l f

rs
−

E
[
min(Ns −Ms, N f −M f )

]
rs

, (21)
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where we have subtracted the time corresponding to XORs between good packets. Also, the
inequality is due to the assumption that no dummy packets were used. The rest L f packets are
evacuated with rate r f thus:

T2 ≥ E

[⌈
L f

r f

⌉]
≥

l f

r f
. (22)

Therefore, using (21) and (22), we have:

Tπ
(k1, k2) = T1 + T2 ≥

ks

rs
+

k f

rs
− l f

(
1
rs
− 1

r f

)
−

E[min(Ns −Ms, N f −M f )]

rs
. (23)

Define Bmix , lim inft→∞
Tπ

(dtk1e,dtk2e)
t , π ∈ Πmix. Taking the limit in RHS of (23), using uni-

form integrability of the considered random sequences, we get w.p.1:

Bmix
(20)
≥ ks

rs
+

k f

rs
− l f

(
1
rs
− 1

r f

)
−

min
(

ps(ks − ls), p f (k f − l f )
)

rs
. (24)

Next we show that Bmix ≥ Breq. Define the conditions:

c1 ≡ psks ≥ p f k f c2 ≡ ps(ks − ls) ≥ p f (k f − l f )

Using 0 ≤ li ≤ ki, i ∈ {s, f }, for p f >
rs
r f

we have

Bmix − Breq =(k f − l f )(
p f
rs
− 1

r f
) , c2

p f (k f−l f )−ps(ks−ls)
rs

+ (k f − l f )(
p f
rs
− 1

r f
) , c2,

while for p f ≤ rs
r f

Bmix − Breq =

l f (
1
r f
− p f

rs
) , c1 and c2

p f (k f−l f )−ps(ks−ls)
rs

+ l f (
1
r f
− p f

rs
) , c1 and c2

psks+p f l f−p f k f
p f

( 1
r f
− p f

rs
) , c1 and c2

p f (k f−l f )−ps(ks−ls)
p f

( 1
rs
− 1

r f
)

+ ps ls
p f

( 1
r f
− p f

rs
) , c1 and c2

All cases can be verified to be nonnegative.
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Proof of Theorem 8. We follow the steps of the proof of Theorem 7 closely. First, note that if 1− pf >
min(r1,r2)
max(r1,r2)

is true, then π∗ chooses only single controls and we quickly get

T̂π∗(λ1, λ2) =
λ1

r1
+

λ2

r2
.

If on the other hand the condition is false, then we have π∗ ∈ ΠXOR. The difference from the
proof of Theorem 7 is how packets between J(0) and J(1) are treated.

Tπ∗
(k1, k2) ≤ E

[⌈
ks + J(1)− Nmin

rs

⌉]
+ E

[⌈
kf − J(0)

rf

⌉]
≤ E

[
ks + J(1)− Nmin

rs

]
+ E

[
kf − J(0)

rf

]
+ 2

=
ks

rs
+

(1− pf)E[Nmin]

pfrs
+

1
pfrs

+
kf

rf
− E[Nmin]

pfrf
+ 2

=
k1

r1
+

k2

r2
− E[Nmin]

pf

[
1

max{r1, r2}
− 1− pf

min{r1, r2}

]
+2 +

1
pf min{r1, r2}

.

Taking the lim sup completes the proof.

10.2 Proof of Base Case for Theorem 13

We begin by providing some basic lemmas for the case that all possible overhearing events took
place. That is, the corresponding SIG G is a complete multipartite graph where each partition
corresponds to the packets that belong to a single flow or, more formally, each partition i correlates
to the "Wants" set Wi. We will use this case as an inductive basis later for the proof of the Theorem.
We will say that a solution to minrk2(G) has the property NIC if it does not involve intra-flow
XOR coding.

LEMMA 14: Let G = (V, E) be a SIG which is a complete multipartite graph were each partition i corre-
lates to the "Wants" set Wi. Then there exists at least one solution to minrk2(G) with the NIC property.

Proof. This will be a proof by construction. Suppose that G has n partitions (which translates to
flows) named P1, . . . , Pn and the number of vertices (packets of the "Wants" set) belonging to each
partition respectively is given by the vector k = (kP1 , kP2 , ...kPn) where k = ∑n

i=1 kPi . We number
each vertex of G according to the partition it belongs as vPi

1 , vPi
2 , . . . , vPi

kPi
if it belongs to partition Pi.

Without loss of generality, suppose that kP1 ≥ kP2 ≥ ... ≥ kPn . We propose the solution:

S =


IkP1

SP1P2 · · · SP1Pn

SP2P1 IkP2
· · · SP2Pn

...
...

. . .
...

SPnP1 SPnP2 · · · IkPn

 (25)

where
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SPi Pj =





1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


kPi > kPj


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 kPi = kPj


1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0

 kPi < kPj

or more compactly:

SPi Pj =



(
IkPj

0

)
kPi > kPj

IkPi
kPi = kPj(

IkPi
0
)

kPi < kPj

and the first kP1 rows correspond to the vertices vP1
1 , vP1

2 , . . . , vP1
kP1

, the next kP2 rows correspond

to the vertices vP2
1 , vP2

2 , . . . , vP2
kP2

and so on.

In order for S to be a solution to minrk2(G) it has to fit G first. This it does, because since G is a
complete multipartite graph, the submatrices SPi Pj can be chosen arbitrarily. Also, it must achieve
the minrk2(G). This is shown by noticing that the row that corresponds to vP1

1 is the same as the
row that corresponds to vP2

1 etc. This also holds for vP1
2 , vP2

2 etc whose corresponding rows are all
equal as well. This means we have kP1 classes that contain rows which are equal to each other.
Therefore it follows that:

rk2(S) = kP1

Moreover, there is at least one non-singular submatrix of size kP1 , namely IkP1
, in all possible

solutions. Therefore:

minrk2(A) ≥ kP1
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From the two above relations, the proof that S is a solution is complete. It is also evident that
it has the NIC property, since every sub-row of the submatrices SPi Pj has at most one ’1’.

An example solution with 4 flows with k = (3, 2, 1, 1) is as follows:

S =



1 0 0 | 1 0 | 1 | 1
0 1 0 | 0 1 | 0 | 0
0 0 1 | 0 0 | 0 | 0
− − − + − − + − + −
1 0 0 | 1 0 | 1 | 1
0 1 0 | 0 1 | 0 | 0
− − − + − − + − + −
1 0 0 | 1 0 | 1 | 1
− − − + − − + − + −
1 0 0 | 1 0 | 1 | 1



LEMMA 15: Let G = (V, E) be a SIG which is a complete multipartite graph were each partition i corre-
lates to the "Wants" set Wi. Let kmax , maxi |Wi| be the number of packets in the largest flow and let R
be the set of indices of the receivers that are the destinations of all flows that have kmax packets. Then all
overhearing hyperedges that correspond to the overheard packets by the receivers in R are essential.

Proof. We will prove this by contradiction. Suppose that there exists a non-essential overhearing
hyperedge O ⊂ E that corresponds to an overhearing event in a receiver r ∈ R. Let p be the
packet that was overheard. Then there exists at least one solution of the form in Figure 11, where
C is the overhearing sub-column of O in the solution and C = 0.

The row that corresponds to p and all rows that correspond to the packets of r are linearly
independent. Therefore:

minrk2(G) ≥ kmax + 1.

But solution S in (25) has rank kmax which is a contradiction.

If we combine the above lemma with solution (25) then we see that for all essential overhear-
ing hyperedges there is a solution, i.e (25), where their corresponding overhearing sub-columns
are a column of the Identity matrix of the same size. That is, P2 is satisfied for the base case in the
proof of Theorem 13.

We continue by proving that all other overhearing hyperedges are non-essential:

LEMMA 16: Let G = (V, E) be a SIG which is a complete multipartite graph were each partition i corre-
lates to the "Wants" set Wi. Let kmax , maxi |Wi| be the number of packets in the largest flow and let R
be the set of indices of the receivers that are the destinations of all flows that have kmax packets. Then all
overhearing hyperedges that correspond to the overhearing events of the receivers in Rc (the complement of
R) are non-essential.
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Figure 11: The set of rows that are highlighted in blue is linearly independent, but solution (25)
has rank lesser than the number of rows of this set.

Proof. This will be a proof by construction. For every overhearing sub-column C that corresponds
to an overhearing hyperedge O, we will use the solution in S to construct a new solution S′ that
has the NIC property and C = 0. Since C = 0, O is non-essential according to Remark 1.

Let Sr be the r-th row of S and kmax , kP1 . Take any row j that corresponds to a packet
p ∈ Wi, i ∈ Rc. We will essentially make row Sj and all rows that are equal to Skmax equal. Create
the row:

u(a) =

{
1 a = j
Skmax(a) otherwise

Finally we construct S′ such that:

S′r =

{
u Sr = Skmax or r = j
Sr otherwise
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S′ is also a solution and has the exact same properties of S. That is, the rank is conserved since
there are still kP1 classes of equal rows and the NIC property still holds. As an example, we will
try to replace a ’1’ in the last row of S (underlined):

S =



1 0 0 | 1 0 | 1 | 1
0 1 0 | 0 1 | 0 | 0
0 0 1 | 0 0 | 0 | 0
− − − + − − + − + −
1 0 0 | 1 0 | 1 | 1
0 1 0 | 0 1 | 0 | 0
− − − + − − + − + −
1 0 0 | 1 0 | 1 | 1
− − − + − − + − + −
1 0 0 | 1 0 | 1 | 1


→



1 0 0 | 1 0 | 1 | 1
0 1 0 | 0 1 | 0 | 0
0 0 1 | 0 0 | 0 | 1
− − − + − − + − + −
1 0 0 | 1 0 | 1 | 1
0 1 0 | 0 1 | 0 | 1
− − − + − − + − + −
1 0 0 | 1 0 | 1 | 1
− − − + − − + − + −
0 0 1 | 0 0 | 0 | 1


= S′

Notice that, for each non-essential overhearing hyperedge there exists a solution with the
NIC property that has a zero corresponding overhearing sub-column. This is due to the way we
constructed the new solutions S′ in the above proof. Therefore, P1 for the base case of Theorem
13 is also satisfied.

10.3 Basic Theorems

THEOREM 17: Let A ∈ Fn×n
2 be any block triangular 0-1 matrix with diagonal blocks D1 ∈ F

n1×n1
2 , ..., Dm ∈

F
nm×nm
2 , n = ∑m

i=1 ni. Then:

rk2(A) ≥
m

∑
i=1

rk2(Di) (26)

Proof. Without loss of generality, suppose that A is block upper triangular. Let Mi be a maximal
linearly independent set of rows of Di. Let M′i be the rows of A that correspond to the rows of
Mi. The set M = ∪m

i=1M′i is also linearly independent. To prove that, we prove that a linear com-
bination of the rows of M produces the zero vector iff the linear coefficients are zero. Indeed, to
produce the first n1 elements of the zero vector then we have to choose linear coefficients equal
to 0 for the vectors of M′1 ∈ M, otherwise this would imply that the vectors of M1 are not linearly
independent. Continuing, to produce the next n2 elements of the zero vector, we first observe that:

1) The rows of M′1 were "zeroed out" as described above, and therefore they contribute a zero
for each entry.
2) All other rows of M are below the rows of M′2 and have zero between columns n1 + 1 and n2
due to the structure of the matrix.

Therefore only the columns of M′2 can contribute and again we have to choose linear coeffi-
cients equal to 0 for the rows of M′2 ∈ M since otherwise it would imply that the rows of M2 are
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linearly dependent. Continuing the above process, all linear coefficients are chosen to be zero.

The set M is linearly independent, but has not been proven to be necessarily maximal. More-
over, |M′i | = |Mi| = rk2(Di) from the definition of matrix rank, and therefore |M| = ∑n

i=1 rk2(Di).
Now, let J be a maximal linear independent set of A. We have

rk2(A) = |J| ≥ |M| =
n

∑
i=1

rk2(Di)

which proves the theorem.

A useful property is that by reversing any entry of a matrix in F2, we get another matrix that
has a rank difference from the first of at most one.

THEOREM 18: Let A ∈ Fn×m
2 be any 0-1 matrix and A′ ≡ A + Eij where Eij ∈ Fn×m

2 is a matrix with
’1’ in entry (i, j) and ’0’ otherwise. Then:

rk2(A)− 1 ≤ rk2(A′) ≤ rk2(A) + 1 (27)

Proof. This will be a direct proof, using the subadditivity property of matrix rank of any field
( [33]). For the right part of the inequality, we have

rk2(A′) = rk2(A + Eij)

subadditivity
≤ rk2(A) + rk2(Eij)

= rk2(A) + 1

The left part of the inequality is proved if one notices that A = A′ + Eij also and repeating the
above.
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