
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Υλοποίηση και βελτιστοποίηση αλγορίθμου για χωροθέτηση ολοκληρωμένων
κυκλωμάτων σε παράλληλλο περιβάλλον

Μεταπτυχιακή Διατριβή

Ιωαννίδης Κ. Σταύρος

Επιβλέποντες Καθηγητές: Σταμούλης Γεώργιος
Καθηγητής

Ευμορφόπουλος Νέστωρ
Επίκουρος Καθηγητής

Τσομπανοπούλου Παναγιώτα
Επίκουρη Καθηγήτρια

Βόλος, Μ άρτιος 2014

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

UNIVERSITY OF THESSALY
DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Implementation and optimization of an integrated circuit placement algorithm in
parallel environment

Master Thesis

Stavros K. Ioannidis

Supervising Professors: George Stamoulis
Professor

Nestor Evmorfopoulos
Assistant Professor

Panagiota Tsompanopoulou
Assistant Professor

Approved by the three-member inquiry committee at March 19, 2014

George Stamoulis
Professor

Nestor Evmorfopoulos
Assistant Professor

Panagiota Tsompanopoulou
Assistant Professor

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Copyright © Stavros K. Ioannidis, 2014
All rights reserved.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

To my fam ily and friends.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

1

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Acknowledgments
I would like to express my gratitude to my supervisor, Dr. George Stamoulis,
whose expertise, understanding, and patience, added considerably to my graduate
experience. I appreciate his vast knowledge and skill in many areas. Finally, I
would like to thank the other members of my committee, Dr. Nestor
Evmorfopoulos and Dr. Panagiota Tsompanopoulou for the assistance they
provided at all levels of this thesis.

Stavros K. Ioannidis
Volos, 2014

ii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

iii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Περίληψη
Η συνεχής αύξηση του πλήθους των στοιχείων σε ένα σύγχρονο κυκλωματικό
σχέδιο, θέτει ένα δύσκολο έργο στα εργαλεία χωροθέτησης, τα οποία απαιτείται
να βρουν νέους τρόπους να χειρίζονται εκατομμύρια στοιχεία μέσα σε λογικά
χρονικά πλαίσια. Λογισμικά χωροθέτησης που βασίζονται σε προσέγγιση «ωμής
βίας» δεν μπορούν να αντιμετωπίσουν την πολυπλοκότητα των σύγχρονων
σχεδίων. Από την άλλη, λογισμικά χωροθέτησης βασισμένα σε «διαίρει και
βασίλευε» μεθόδους δεν είναι δυνατό να επιτύχουν αξιόλογα αποτελέσματα,
καθώς έχουν έλλειψη της καθολικής εικόνας του κυκλώματος. Στην παρούσα
διατριβή αξιολογούμε την βασισμένη στον αλγόριθμο GORDIAN υλοποίησή
μας, η οποία είναι δυνατόν να παράγει πολύ γρήγορη λύση, διατηρώντας
παράλληλα την καθολική εικόνα του κυκλώματος.

ιν

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

v

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Abstract
The continuous increase of the cell count in modern designs, poses a challenging
task to the placers that need to find efficient ways to handle millions of cells in
reasonable time frames. Placers based on a brute force approach, cannot handle
the complexity of modern circuit designs. On the other hand, divide-and-conquer
methods cannot achieve remarkable results as they lack the global picture of the
circuit. In this thesis we evaluate out GORDIAN based implementation, which
can produce very fast placement solutions while maintaining the global scope of
the design.

vi

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Contents
Acknowledgments... ii

Abstract (in Greek).. iv

Abstract...vi

Contents...vii

Abbreviations.. x

1. Introduction..1

1.1. Thesis description...1

1.2. Related work... 1

2. Introduction to Placement ... 2

2.1. Placement problem formulation..2

2.2. Placement within the EDA design flow... 2

2.3. Stages of Placement... 3

Global placement ... 3

Legalization... 3

Detailed placement... 3

2.4. Complexity of the Placement problem... 4

2.5. Evaluation of a Placement solution...4

2.6. State-of-the-art Placement approaches and algorithms...5

Simulated annealing ... 5

Minimum cut.. 5

Analytical Placement ... 5

3. Introduction to GORDIAN..6

3.1. GORDIAN Specifications..6

Standard-cell Placement .. 6

Fixed I/O pins/pads .. 6

3.2. GORDIAN Description..6

Global optimization step.. 6

Top-down partitioning... 8

Final placement... 9

4. Implementation of GORDIAN...10

4.1. Algorithm implementation...10

vii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Matrix compression..10

Linear system solvers..11

Input and Output format... 11

Solution plotting.. 11

Wire length model... 13

4.2. Algorithmic optimizations...13

Star nets model.. 13

Cell sorting...14

Norm selection.. 15

Improved partitioning...16

Congestion plotting...16

Legalization..18

Preconditioning... 19

Alternative solution methods...19

Levelization... 20

4.3. Parallelization.. 21

5. Experimental results... 22

5.1. Benchmark suites... 22

5.2. Experimental measurements... 23

Solution quality...23

Memory footprint..25

Runtime allocation ... 25

6. Future work .. 26

7. References... 27

8. Bibliography... 29

viii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

IX

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Abbreviations
EDA Electronic Design Automation

HPWL Half Perimeter Wire Length

SPD Symmetric Positive Definite

CG Conjugate Gradients

Bi-CG Bi-Conjugate Gradients

QP Quadratic Programming

x

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

1. Introduction

1.1. Thesis description

In this thesis we evaluate our implementation of GORDIAN [1], a method for Global Placement of
standard-cell based circuit designs. Various algorithmic and parallel optimizations are applied in order to
reduce the total runtime and memory requirements and improve the solution quality. Experimental results
are presented, comparing GODRIAN to other state-of-the-art academic placers.

The vast execution speed and the limited memory footprint are GORDIAN’s main advantages.
GORDIAN runs faster than any other proven placer while still producing acceptable results. Million-sized
designs can be placed in few minutes time.

The rest of this thesis is organized as follows: Section 2 provides an overview of the placement problem.
Section 3 introduces the GORDIAN algorithm. Section 4 describes the GORDIAN implementation.
Experimental results and conclusions are presented in Section 5.

1.2. Related work

A great variety of placers is used by modern placement industry and academic. Academic placers similar
to GORDIAN that can produce solutions significantly fast, are FastPlace [3] and SimPL [2]. Like
GORDIAN, they use the circuit’s connectivity information to formulate and solve a mathematical
minimization problem and apply various runtime and solution quality optimizations.

1

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

2. Introduction to Placement

2.1. Placement problem formulation

Placement is a procedure that assigns exact locations for various circuit components within the chip’s
core area. An inferior placement assignment will not only affect the chip's performance but might also
make it non-manufacturable by producing excessive wire length, which is beyond available routing
resources. Consequently, a placer must perform the assignment while optimizing a number of objectives
to ensure that a circuit meets its performance demands [23]. Typical placement objectives include:

• Total wire length: Minimizing the total wire length, or the sum of the length of all the wires in the
design, is the primary objective of most existing placers. This not only helps minimize chip size,
and hence cost, but also minimizes power and delay, which are proportional to the wire length.

• Timing: The clock cycle of a chip is determined by the delay of its longest path, usually referred
to as the critical path. Given a performance specification, a placer must ensure that no path exists
with delay exceeding the maximum specified delay.

• Congestion: While it is necessary to minimize the total wire length to meet the total routing
resources, it is also necessary to meet the routing resources within various local regions of the
chip’s core area. A congested region might lead to excessive routing detours, or make it
impossible to complete all routes.

• Power: Power minimization typically involves distributing the locations of cell components so as
to reduce the overall power consumption, alleviate hot spots, and smooth temperature gradients.

• A secondary objective is placement runtime minimization.

2.2. Placement within the EDA design flow

A placer takes a given synthesized circuit netlist together with a technology library and produces a valid
placement layout. The layout is optimized according to the aforementioned objectives and ready for cell
resizing and buffering - a step essential for timing and signal integrity satisfaction. Clock-tree synthesis
and routing follow, completing the physical design process (Picture 1). In many cases, parts of, or the
entire, physical design flow are iterated a number of times until design closure is achieved.

2

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

2.3. Stages of Placement

The placement procedure is usually separated in Global placement and Detailed placement. An extra step
of Legalization may be applied after Global placement or as a part of Detailed placement.

Global placement

Global placement makes an initial placement of an un-placed netlist. The goal is to generate a near­
optimal placement of the whole chip.

Legalization

After Global placement all circuit components are distributed over the chip area but their placement may
not be legal. A Legalizer is responsible for eliminating any overlaps between the circuit components,
enforcing all components to fit inside the defined core area and thus ensuring that the generated solution
is feasible. Other technological constraints are also met during the Legalization stage.

Detailed placement

Fine adjustments to the positions of the circuit components are performed during Detailed placement,
towards the improvement if the overall solution

Picture 1: Placement within the EDA design flow

3

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

2.4. Complexity of the Placement problem

Although the legality of a given instance of the placement problem can be verified in polynomial time, the
decision of the existence of such fusible instance is an NP-complete problem. Since we are interested in
finding the optimal solution of the aforementioned NP-complete problem, the complexity of the
placement problem can be classified as NP-hard. Thus, the placement problem is addressed by using
heuristic methods and approximation algorithms.

2.5. Evaluation of a Placement solution

The primary component under evaluation is the solution’s total wire length. Because the placement stage
precedes the routing stage, any real routing information is not yet available during placement. Thus,
various net models are used in order to estimate the wire length of a net and whereby the total wire length
of the chip. Such net models are:

• Steiner tree (Picture 2a)

• Minimum spanning tree (Picture 2a, Picture 2b)

• Clique (Picture 2c)

• Star (Picture 2d)

• Bounding box (Picture 2e)

4

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

2.6. State-of-the-art Placement approaches and algorithms

Simulated annealing

Simulated annealing is a general scheme that can be applied to a wide variety of optimization problems.
Starting with any feasible solution, simulated annealing algorithms apply iteratively local changes to the
solution. The changing steps are chosen randomly and steps that make the solution worse are allowed, so
it is possible to leave local optima. In early steps, bigger worsening changes are allowed, while in later
steps only small worsening changes are. Although simulated annealing is too slow for a global
optimization of a placement, it is still in use to solve sub problems or for local optimization. A placement
tool that is based mainly on simulated annealing is TimberWolf [14].

Minimum cut

Top-down recursive partitioning is used in many placement algorithms. The main idea consists of
recursively dividing both the chip area and the set of circuits into subsets and to assign each circuit subset
to a subarea of sufficient capacity. The step is repeated until the regions are small enough to run
legalization. Algorithms that exploit the minimum cut technique are Capo [6] and FastPlace [3][4][5].

Analytical Placement

In Analytical Placement the wire length is minimized ignoring the overlaps among the circuit
components. Then, the placement is modified in order to reduce those overlaps.

Modern algorithms usually exploit more than one of the above approaches. Dragon placement tool [8] [10]
for example, treats whole designs using a minimum cut approach while handles the smaller-scale blocks
using an analytical approach.

5

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

3. Introduction to GORDIAN
GORDIAN is one of the most successful Global placement algorithms. With GORDIAN, the placement
problem is formulated as a sequence of quadratic programming problems derived from the entire
connectivity information of the circuit. An increasing number of constraints are imposed, reflecting the
results of successively refined partitioning.

GORDIAN uses a combination of the Analytical and Minimum cut approaches. A global optimization
step is initially applied, ignoring any library constraints (cell overlaps, cell outside core area, etc.) while
minimizing the total wire length. A top-down partitioning strategy follows, while ignoring the capacity
constraints of the partitions. By recursively dividing the core area and assigning circuit elements to every
partition, the overlaps are reduced to a point where a simple legalization algorithm can produce a legal
solution.

3.1. GORDIAN Specifications

Standard-cell Placement

Our GORDIAN based implementation focuses on standard-cell placement. Standard-cell placement is a
row oriented placement of standard-cells on a rectangular core area. A standard cell represents the
physical space occupied by a logical gate. The type of the gate itself is often irrelevant during the
placement and routing procedure. In standard-cell placement all cells must be of the same height. The
width of the cells may vary.

Fixed I/O pins/pads

The positions of the I/O pins/pads must be fixed in order to be fed as input to GORDIAN. On the other
hand, the definition of the dimensions of the rectangular core area is not essential. In that case the
rectangular core area will be defined by the rectangular box formed by the fixed pins/pads.

3.2. GORDIAN Description

Global optimization step

Before the global optimization step is applied, the input circuit is converted to an undirected weighted
2

graph. Each net is treated as a ^-clique and a weight of ■ is assigned to each edge involved in the clique,K.
as shown on Picture 3 and Picture 4. The movable cells and fixed pins constitute the nodes of the graph.

6

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

• Adjacency matrix Anxn, where A i j = Wci j

• Pin Connection matrix Pnxm, where Pij = Wp

Σ]= oa i j + Σ?= oPi,j, l = j• Degree matrix Dm n, where DUj = { J ^

• Laplacian matrix Cnxn, where Cjj = Dj j — A j j

• Fixed Pin vectors dXjnxi and dymxi where dx. = — Σ j Pi, j xj and dy . = — Σ j Pi.jVj

where:

• n is the number of cells,

• m is the number of pins,

• Wci j is the weight of the edge connecting cell i and cell j ,

• W pi j is the weight of the edge connecting cell i and pin j,

• Xj is the x-coordinate of pin j,

• y j is the y-coordinate of pin j.

The objective function of the global optimization step is now formulated in the following quadratic
programming problem:

1
φ(χ) = x T Cx + dx x

and:
1

φ (y) = y T Cy + dTy

where and are the Fixed Pin vectors and is the Laplacian matrix.

Using the weight information the following matrices are formed:

Picture 3: Input circuit Picture 4: Undirected weighted graph

For minimizing the above convex functions the following linear systems must be solved:

7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

and

Cx — dx

Cy = — dy

The resultant x and y vectors contain the x- and y-positions of all the cells. At this point all the cells will
fit inside the rectangle core area, but they be highly overlapping as shown on Picture 5.

Top-down partitioning

During the first step of the top-down partitioning procedure the rectangular core area is divided into two
regions, each containing a subset of the movable cells. On the following steps every region is recursively
divided in two sub regions, creating a total of q < 21 partitions, where i is the number of partitioning step.
The centers u of those regions impose the following constraints on the quadratic programming formula:

Alx = u

and

Aly = u

such that the weighted mean value of the cells assigned to a region corresponds to the center of that
region.

The contents of the constraints matrix A qxm are A =
cell j belongs to partition i

0, otherw ise

Combining the objective functions with the above constraints, the following linearly constrained
quadratic programming problems are obtained:

and

<p(x)

φ (y)

{ x TCx + dx x Alx u}

u}

Picture 5: Distribution of cells after Global optimization step.

8

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

C AT] m = \~dx
A 0] UJ [u x _

and

C AT] m = [~dy
A 0 J U J [uy _

where ux and Uy are the x and y coordinates of the partitions respectively and the resultant x and y
vectors contain the x- and y-positions of all the cells.

For minimizing the above convex functions the following linear systems must be solved:

Final placement

The goal of the GORDIAN legalization is to meet the following technological constraints:

• all cells aligned to rows

• no overlapping cells

• all cells fit inside the core area

while affecting the calculated positions of the modules as little as possible.

To achieve that, the sorting of the cells based on their position’s y-coordinate is required. The rectangular
core area is then divided into subsets using horizontal cuts such that

γμι < - < γ μι < - < ν μτ

where the module μ * belongs to the ith row. The sequence of the modules within the rows is determined
by their x-coordinate. The outboard modules of a row based on their y-coordinate can be moved to close
by rows, if the sum of the modules’ widths exceeds the maximum row length.

Due to the simplicity of the legalization algorithm, the final result is not absolutely refined. Our
experimental measurements show an average increase of 25% in the wire length after legalization. More
sophisticated legalizers can drop that percentage down to 10%. Furthermore, the addition of a detailed
placement stage can reduce to total wire length by a factor of 10-15%.

Picture 6: Data flow of the GORDIAN placement procedure
9

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

4. Implementation of GORDIAN

4.1. Algorithm implementation

Our motivation for implementing GODRIAN derives from the fact the GORDIAN is a fast placement
algorithm supported by a strong mathematical model and has the ability to place modern sized circuits
within reasonable timeframes. Moreover, GORDIAN is highly configurable offering room for interesting
optimizations.

Our goal was to develop and optimize the GORDIAN method so that:

1. Modern sized circuits can be placed in a few minutes time, without the need of a massive
computing infrastructure.

2. The quality of placement solution would be comparable to that of a state-of-the-art placer.

Matrix compression

Since all matrices used by GORDIAN (Adjacency, Laplacian, etc.) derive from sparse graphs, the
matrices themselves will be sparse. In order to accommodate the matrices created by a modern sized
circuit inside the RAM memory of a single computer, the use of sparse data structures and compression
techniques are substantial. On the other hand all vectors used by GORDIAN are dense, thus the use of
sparse vector structures is redundant.

In our implementation we exploit the csparse library [27], a C library for managing sparse matrices. We
use the Compressed Sparse Column format for our matrices. The amount of occupied memory is limited
to for a sized sparse matrix with non-zero elements, instead of required by a dense
matrix.

The calculation and conservation of the Adjacency, Pin Connections and Degree matrices is dispensable,
since the elements of the Laplacian matrix that derive from the above matrices can be calculated in a
single step.

2.0 3.5 6.7

8.2 9.2

1.1 2.8

3.0 1.5 4.5

2.5 8.9

0 3 5 7 10 12

0 1 2 3 4 5 6 7 8 9 10 11

0 2 4 1 3 1 2 0 2 3 1 3

0 1 2 3 4 5 6 7 8 9 10 11

2.0 3.5 6.7 8.2 9.2 1.1 2.8 3.0 1.5 4.5 2.5 8.9

Picture 7: Example of Compressed Sparse Column format

10

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Linear system solvers

Our implementation uses iterative methods for solving the generated linear systems, over direct methods,
for reasons of time complexity. Direct solvers usually have a time complexity of 0 (N 2), compared to
iterative solvers with nearly linear to the size of the system time complexity.

More specifically the methods used are:

• The Conjugate Gradient (CG) method [32] for solving the linear system generated during the
global optimization step.

• The Bi-Conjugate Gradient (Bi-CG) method [32] for solving the linear systems generated during
the top-down partitioning procedure.

Unlike Bi-CG, the CG method can only handle Symmetric Positive Definite (SPD) matrices. The matrix
generated during global optimization step is SPD as long as the whole circuit is connected to the I/O pins.
However, the matrices generated during the partitioning steps are not positive definite (and thus non-
SPD) due to the zero elements on the diagonal introduced by the constraints matrix .

Input and Output format

Out GORDIAN implementation supports the Bookshelf GSRC input format [24]. However, the
conversion to a more common or industrial input format - such as LEF/DEF - is possible using various
conversion software available online [26].

The Bookshelf GSRC format is designed to be simple and easily human readable, as well as conveniently
parsable. For this purpose, details such as inter-node geometries or hierarchies are not included. If such
level of detail is required, existing industry standard file formats (LEF/DEF, TW etc.) can be used.

All placement information is distributed over several component files. To assemble multiple component
files into problem instances, an .aux a file is used that typically includes one line that consists of the paths
of the individual component files. The component files may be of the following format:

• A .nodes file consisting of a list of points. These points typically represent the lower-left
corner or the center of a cell.

• A .nets file consisting of a list of nets.

• A .wts file consisting of weighting information about the nets.

• A .scl file containing information regarding the standard cell layout.

• A .pl file containing information about the position of cells and pins/pads.

The format also supports additional file types used by later stages of the placement process and the
routing process (routing info etc.).

Solution plotting

Using the gnuplot graphical utility for Linux [28][29], we incorporated plotting abilities in out
implementation. The output of the plotter is demonstrated in Picture 8.

11

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Global optimization step

Partitioning iteration 3

Partitioning iteration 6

Partitioning iteration 1

Partitioning iteration 4

Partitioning iteration 7

Partitioning iteration 2

Partitioning iteration 5

Partitioning iteration 8

Partitioning iteration 9 Partitioning iteration 10 Partitioning iteration 11

Partitioning iteration 12 Final placement

Picture 8: Distribution of cells after every step of GORDIAN
Benchmark: ibm01

12

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Wire length model

In order to evaluate the placement solution of out implementation, we use the half perimeter wire length

model (HPWL). The HPWL is defined as the sum of the 1 perimeter of the bounding box of every net,

where bounding box is the minimum rectangular area that contains all modules connected by the net
(Picture 9).

bounding box

Picture 9: Net’s bounding box

4.2. Algorithmic optimizations

Star nets model

As mentioned before, nets are treated as k-cliques so that a weight is assigned to every edge of the clique.
k(k—1)

However, the number of edges in a k-clique are . For large nets this leads to a significant

computational and memory cost even if the total count of those nets in the circuit is low. The percentage
of large- and medium-degree nets of the tested benchmarks and the corresponding memory they occupy is
shown in Picture 10.

Picture 10: Distribution of nets based on net degree

13

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

To resolve the above issue, we treat all large- and medium-degree nets as star nets, by adding a dummy-
node in the center of the net. The edge count of the k-cluque is redused to k. We achieve a minimum of
80% reduction to the size of required memory and a 2.0x speedup. Concurrently, there is no significant
change of the solution’s quality.

Picture 12: star model with k edges

The exact selection of the constant, where all -degree nets with will be treated according to the
star model, affects the total allocated memory. Picture 13 shows the total required memory for all
benchmarks for various values of d. Consequently, lower values for d are preferable.

Picture 13: Memory needs based on selected d

Cell sorting

During the top-down partitioning process the repetitive sorting of cells based on their x- or y-coordinate is
required. Our implementation exploits the quicksort recursive algorithm of Ο (η 1 o gn) time complexity,
opposed to the insertion or selection sorting algorithms of quadratic time complexity.

14

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

A norm function is required in CG and Bi-CG methods, in order to determine the sufficiency of the
convergence. The most adequate norm functions are the Euclidian and the Infinite norm which
correspond to the following formulas:

Norm selection

ll*ll2
n

2

and

||x||oo = max|X(|l

The sufficient convergence criterion is:

M
IN

< t

where b is the initial solution vector (typicaly the linear system’s right-hand side vector), r is the current
iteration’s solution vector and t is a predefined convergence threshold.

The Euclidean norm results a faster convergence and less HPWL in most cases as illustrated Picture 14.

adapted adaptec2 adaptec3 adaptec4 adaptec5 newbluel newblue2 newblue3 newblue4 newblue5 newblue6 newblue7

■ L2 norm ■ Linfty norm

Average solver iterations
900

800

700 -

: ll _ ll I .
adapted adaptec2 adaptec3 adaptec4 adaptec5 newbluel newblue2 newblue3 newblue4 newblue5 newblue6 newblue7

■ L2 norm ■ Linfty norm

Picture 14: Norm comparison

15

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Improved partitioning

During a partitioning step each region r is divided into two subregions r and r2. The corresponding
module set m is also divided into two subsets m1 and m 2. The sums of the module areas of both subsets
determine the bisection of the rectangular area of region r such that

Σ iem1 are a(i)
Σ iem2 area(i)

where a is the desired area ratio. The most obvious way of partitioning is to predefine a = 0.5 and to
alternate the direction of the cut on each level. This leads to regions with approximately the same area and
aspect ratio.

An improved partitioning decision should be based on the number of nets crossing the new cut line. This
number can be minimized by variation of the cut position and thus the desired area ratio . However,
extreme values of such as or should be avoided, as they can result in uneven partitions
and increased wasted area. Experimental results show an average of 1% improvement in the final
solution, when the optimal cut line is used. Yet, due to the dissimilar resulting partitions, this technique
shows slight solution deterioration on some benchmarks.

In order to decrease the total number of linear systems requiring solving, multiple partitionings can be
applied before the next constrained quadratic programming problem must be solved. Since all modules
are assigned to each partition based solely on their position, the simultaneous dissection of the placement
area in more than two partitions harms the solution’s quality by increasing the HPWL. On the other hand,
by reducing the number of costly linear system solutions, the total execution time is significantly reduced.
Experimental measurements indicate a 7% increase in HPWL and 33% faster execution when 2
partitionings are applied before solving and a 27% increase in HPWL and 64% faster execution when 4
partitionings are applied before solving.

Congestion plotting

Using the CongestionMaps plotter tool [26], we demonstrate the chip congestion after the global
optimization step as well as the congestion’s spreading throughout the partitioning process in Picture 15.
Notice the gradual elimination of the highly-congested spots (yellow) and the proliferation of the low-
congested regions (red).

16

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Global optimization step

Partitioning iteration 3

Partitioning iteration 6

·**- ■■

Ft

Partitioning iteration 9

Partitioning iteration 1

Partitioning iteration 4

Partitioning iteration 7

Partitioning iteration 10

Partitioning iteration 2

Partitioning iteration 5

Partitioning iteration 8

■ r - 1 -it,

Partitioning iteration 11

Partitioning iteration 12 Final placement

Picture 15: Core area congestion after every step of GORDIAN
Benchmark: ibm01

17

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

After aligning all modules to rows, our implementation uses a recursive sweeping technique in order to
relieve the rows of their overflowing modules (Picture 16). Modules are exchanged between offset
adjacent rows. If no exchanges are possible during a sweep of all rows, the offset parameter is gradually
increased so overflowing cells are able move towards farther rows. The procedure is terminated when all
overflows are eliminated.

Legalization

p roced u re L e g a l iz a t io n (C e l ls , Rows)
o f f s e t : = 1;
do

ch an ges:= f a l s e ;
f o r ev ery R t £ R o w s

i f R t o v er flo w s
i f f i r s t c e l l in R t f i t s in R i - 0f f set th en

move c e l l to R i - 0f f set

ch an ges:= tr u e ;
o f f s e t : = 1;

e n d if
i f l a s t c e l l in R t f i t s in Ri+0f f set th en
move c e l l to R i+0f f set

ch an ges:= tr u e ;
o f f s e t : = 1;

e n d if
e n d if

en d for

i f changes = f a l s e th en
o f f s e t : = o f f s e t+ 1 ;

e n d if

u n t i l 3 R i £ R o w s | R t o v er flo w s
endporcedure

Picture 16: Legalization procedure

Since the described legalization process is highly affected by the structure of the overflowing modules, an
inconsistent time complexity is noted when applying to different benchmark circuits. Our experimental
measurements indicate that several tenths or hundreds of row sweeps are generally required.

Picture 17 illustrates the gradual smoothing of the overflowing rows as the offset parameter increases and
overflowing modules are allowed to migrate to farther rows.

18

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Before legalization offset = 1 offset = 3

offset = 5 offset = 10 No overflowing rows

Picture 17: Gradual elimination of overflowing modules

Preconditioning

The iterative solver’s convergence rate can be improved by the addition of enhanced preconditioners. The
most obvious option is the Jacobean preconditioner, which leads the CG and Bi-CG methods to converge
in a few hundreds iterations. More efficient preconditioners such as Vayda’s graph based preconditioners
[17] can result a significantly faster convergence. Our implementations exploits the CMG [18]
preconditioner for solving SPD linear systems. Due to the posed constraint, the above preconditioner can
only be applied to the SPD linear system formed during the global optimization step.

Experimental results show an average speedup of 2%. However, due to the preconditioner’s vast memory
requirements, larger circuit benchmarks were impossible to place.

Alternative solution methods

An alternative method to solve the equality constrained quadratic programming problem created during
the top-down partitioning process is presented in [15]. This approach is based implicitly on a reduced
linear system and generates iterates in the null space of the constraints. More specifically, this method
eliminates the constraints and solves the following reduced problem:

+Z ,

where is the constraints matrix, is calculated using:

A A TxX = b ,

is a matrix spanning the null space of and is calculated using:

^zzxz ^z,

19

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

where

Czz = Z T CZ,

and

cz = ZT(C A Tx*A + c).

Unfortunately, the Czz matrix formulated during the above process is dense, resulting high execution time
and prohibitively great memory requirements.

Levelization

In order to achieve the desired cell distribution earlier in the partitioning process, we apply a levelization
algorithm and modify the weight assigning process accordingly. Smaller weights are assigned to nets that
connect cells of lower level, i.e. cells closer to the I/O pins/pads. This results in an increased degree of
freedom for those cells, allowing them to easier move away from the core area center and towards the I/O
pins/pads.

Notice that our levelization process determines a cell’s level based solely on the distance from either an
input or an output pin. It differs from the levelization applied during the EDA Synthesis process, where
the logical level of the cells is calculated. The difference is demonstrated in Picture 18.

The result of the levelization process on the placement solution is an average increase of HPWL of 4%.
However, the target placement can be achieved using 1-2 less iterations of the partitioning process.

Level 0 ■ Level 1 H Level 2 ■■Level 3 ■ Level 4

w l — — |— ^ — w2

Levelization during synthesis

Level 0 ■ Level 1 ■fl Level 2 1 1 Level 1 ■ Level 0

w l ------ >0— i— — i— ^ w2

Levelization during placement

Picture 18: Difference of Synthesis and Placement levelization process

20

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

4.3. Parallelization
Out experimental measurements show that the vast majority of the execution time is devoted to the top-
down partitioning process. Consequently, any parallelization efforts focus on that process. However, since
the iterations of the top-down partitioning process are data dependent, any form of parallelization between
consecutive iterations is unlikely.

Notice that the purpose of the partitioning process is to iteratively refine the placement solution and does
not reduce the problem size, or offer any type of independent data and/or calculation sets that can be
treated in parallel. The sole requirement of the above process is the solution of two solid linear systems,
for the x- and y-coordinate respectively. Therefore, GORDIAN’s capacity to exploit potential parallelism
is limited to parallelizing a single iteration of the top-down partitioning process.

Our implementation uses OpenMP [30] in order to concurrently solve the two independent linear systems
formulated during every iteration of the top-down partitioning process as well as the unconstrained linear
systems of the global optimization step (Picture 19). A 1.6x speedup is obtained. Other techniques
involving parallelization of the CG and Bi-CG methods using OpenMP [30] and CUDA [31] have also
been tested, but rejected due to parallelization time overhead.

Parse
input files

Solve Cx = d, Solve Cy = d.

Sort cells and partition

Create

k target
reached

Legalize

Write
output file

1
Create Cx = d and Cy = d

Parallel
execution

Picture 19: GORDIAN flow chart with parallel regions

21

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

5. Experimental results

5.1. Benchmark suites

Our GORDIAN implementation was tested on the ISPD-04 Placement Benchmarks [20], the ISPD-05
Placement Benchmarks [21] and the ISPD-06 Placement Benchmarks [22]. These benchmarks have been
derived from industrial ASIC designs with circuit sizes ranging from 12K to 2M. They consist of standard
cells and pre-placed I/O pins.

Benchmark # Cells # I/O Pins # Nets # Rows

ibm01 12506 246 14111 96

ibm02 19342 259 19584 109

ibm03 22853 283 27401 121

ibm04 27220 287 31970 136

ibm05 28146 1201 28446 139

ibm06 32332 166 34826 126

ibm07 45639 287 48117 166

ibm08 51023 286 50513 170

ibm09 53110 285 60902 183

ibm10 68685 744 75196 234

ibm11 70152 406 81454 208

ibm12 70439 637 77240 242

ibm13 83709 490 99666 224

ibm14 147088 517 152772 305

ibm15 161187 383 186608 303

ibm16 182980 504 190048 347

ibm17 184752 743 189581 379

ibm18 210341 272 201920 361

Table 1: ISPD-04 Placement Benchmarks

Benchmark # Cells # I/O Pins # Nets # Rows

adapted 210904 543 221142 928

adaptec2 254457 566 266009 1221

adaptec3 450927 723 466758 1948

adaptec4 494716 1329 515951 1948

bigblue1 277604 560 284479 928

bigblue2 534782 23084 577235 1572

bigblue3 1095519 1293 1123170 2322

bigblue4 2169183 8170 2229886 2698

Table 2: ISPD-05 Placement Benchmarks

22

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

5.2. Experimental measurements

Solution quality

In Table 5 we present the HPWL and Runtime measurements of our GORDIAN implementation, on the
ISPD-04 Placement Benchmarks. We compare our results with state-of-the-art academic placers
FastPlace 2.0 [3][4], Capo 9.1 [6] and FengShui 5.0 [11]. All the placers were run in their default mode
and all experiments were run on a 2.5 GHz Intel i5 core machine with 8 GB RAM.

The default mode for GORDIAN is

• k = 4: Partitioning proccess stops when all partitions contain 4 cells at most.

• d > 4: All nets of degree greater than 4, are treated as star nets.

• a = 0.5 : Improved partitioning via variation of the cut line is disabled.

We present the results of GORDIAN before and after legalization. That being because GORDIAN’s
legalization technique produces a rough final placement, increasing the HPWL by approximately 25%.
Moreover, GODRIAN results are not refined by a detailed placer. Our experience shows that state-of-the-
art legalizers cause an average increase of 10% to the HPWL. This loss is earned back when a detailed
placer is applied. Thus, it is logical to assume that a combination of GORDIAN global placer with a state-
of-the-art legalizer and detailed placer can produce results similar to that of GORDIAN before the
legalization step.

In Table 6Table 5 we present the HPWL and Runtime measurements of out GORDIAN implementation,
on the ISPD-05 Placement Benchmarks. We compare our results with placers reported during the ISPD-
05 contest Aplace 2.0 [13], Capo 10.5 [6], FastPlace 3.0 [3][5], mPL6 [12] and SimPL [2].

The HPWL and Runtime improvement ratios are shown in Table 3 and Table 4 respectively. GORDIAN
produces an unlegalized solution with an average of 65% more wire length, compared to the other placers
but runs 5 to 257 times faster.

HPWL Improvement FastPlace
2.0

FastPlace
3.0

Capo
9.1

Capo
10.5

Aplace
2.0

FengShui
5.0 mPL6 SimPL

GORDIAN Unlegal 0.73 0.47 0.82 0.54 0.49 0.76 0.47 0.46

GORDIAN Final 0.58 0.43 0.66 0.49 0.44 0.61 0.42 0.41

Table 3: GORDIAN HPWL improvement

Runtime Improvement FastPlace
2.0

FastPlace
3.0

Capo
9.1

Capo
10.5

Aplace
2.0

FengShui
5.0 mPL6 SimPL

GORDIAN Unlegal 15.13 7.00 257.04 70.47 91.62 119.05 42.22 5.86

GORDIAN Final 12.80 6.44 210.37 64.72 83.91 97.61 38.49 5.34

Table 4: GORDIAN Runtime improvement

23

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

HPWL (e6) Runtime (sec)

Benchmark G O R D IA N
U nlegal

G O R D IA N
Final

FastP lace
2.0

C apo
9.1

FengShui
5.0

G O R D IA N
U nlegal

G O R D IA N
Final

FastP lace
2.0

C apo
9.1

FengS hui 5.0

ibm01 2.68 3.63 2.45 2.57 2.47 0.6 0.8 10.0 219.0 142.0

ibm02 6.69 7.65 4.91 5.20 5.30 2.0 2.0 34.0 457.0 245.0

ibm03 8.74 10.35 7.32 8.78 8.49 1.7 3.2 27.0 735.0 284.0

ibm04 10.16 12.30 8.14 9.04 8.55 2.0 2.5 38.0 771.0 323.0

ibm05 18.29 19.36 10.24 10.24 9.83 2.2 2.2 34.0 684.0 372.0

ibm06 7.72 10.15 6.01 7.51 6.85 2.5 6.9 37.0 809.0 437.0

ibm07 15.96 19.57 10.99 12.20 11.54 4.1 4.0 105.0 1236.0 586.0

ibm08 14.62 18.29 12.38 13.99 12.88 6.6 6.8 121.0 1322.0 647.0

ibm09 15.76 22.26 13.79 15.31 13.79 5.4 7.5 94.0 1375.0 660.0

ibm10 32.68 40.39 31.65 37.35 35.13 10.5 10.5 162.0 2666.0 1085.0

ibm11 32.47 40.55 20.30 21.92 19.69 9.0 9.3 132.0 2172.0 891.0

ibm12 42.67 49.69 34.18 39.99 36.23 12.3 21.7 189.0 3413.0 1011.0

ibm13 29.59 41.42 25.21 29.24 24.71 11.1 11.2 170.0 4288.0 1189.0

ibm14 66.12 82.95 37.76 40.40 38.89 34.8 47.5 316.0 5091.0 2553.0

ibm15 82.70 102.87 52.56 59.39 50.98 44.7 49.2 415.0 6399.0 3171.0

ibm16 79.48 106.22 58.37 70.63 60.12 41.6 42.5 417.0 7211.0 3626.0

ibm17 166.30 190.19 69.89 75.48 69.19 51.8 55.6 624.0 6782.0 3935.0

ibm18 91.35 121.06 45.39 47.66 44.48 69.8 78.2 769.0 5163.0 3471.0

Table 5: Experimental measurements on ISPD-04 Placement Benchmarks

H P W L (e 6) R u n t im e (s e c)

B e n c h m a r k
G O R D IA N G O R D IA N A p la c e C a p o F a s tP la c e

m P L 6 S im P L
G O R D IA N G O R D IA N A p la c e C a p o F a s tP la c e

m P L 6 S im P L
U n le g a l F in a l 2 .0 10 .5 3 .0 U n le g a l F in a l 2 .0 1 0 .5 3 .0

a d a p t e d 148 .0 1 162 .1 7 8 .3 5 8 8 .1 4 7 8 .1 6 7 7 .9 3 7 7 .7 3 2 2 .5 2 6 .5 2 1 0 1 .2 1 5 5 7 1 50 1 1 0 1 .6 1 3 6 .2

a d a p t e c 2 2 2 7 .3 3 2 0 3 .5 9 5 .7 0 1 0 0 .2 5 9 3 .5 6 9 2 .0 4 9 0 .3 6 3 4 .6 39 .1 3 0 3 4 .2 2 1 6 3 .6 2 1 9 .6 1 1 9 4 .6 2 0 8 .8

a d a p t e c 3 4 6 7 .9 9 4 6 5 .9 2 1 8 .5 2 2 7 6 .8 0 2 1 3 .8 5 2 1 4 .1 6 2 0 8 .9 5 6 2 .2 6 5 .6 7 1 7 1 .8 4 6 9 1 .4 5 0 8 .8 3 5 3 5 .2 4 2 2 .4

a d a p t e c 4 3 8 8 .7 3 4 1 3 .4 2 0 9 .2 8 2 3 1 .3 0 1 9 8 .1 7 1 9 3 .8 9 1 8 7 .4 0 53 .1 5 7 .9 7 8 9 4 .2 4 7 5 9 .2 4 2 6 3 3 5 7 3 1 8

b ig b lu e i 2 0 7 .6 7 2 1 7 .6 1 0 0 .0 2 1 1 0 .9 2 9 6 .3 2 9 6 .8 0 9 7 .4 2 3 2 .8 4 0 .6 2 6 9 4 .6 2 5 0 6 .8 2 2 6 .2 1 3 6 9 .2 2 4 0 .6

b ig b lu e 2 3 0 0 .8 3 4 5 1 .2 1 5 3 .7 5 16 2 .8 1 1 5 4 .9 1 1 5 2 .3 4 1 4 5 .7 8 1 2 6 .6 1 3 9 .6 6 0 5 7 .6 4 8 3 3 5 7 7 .2 3 6 9 3 4 9 6 .8

b ig b lu e 3 8 8 1 .0 4 9 4 4 .8 4 1 1 .5 9 4 0 5 .4 0 3 6 5 .5 9 3 4 4 .1 0 3 3 9 .7 8 116 .1 1 1 6 .2 1 2 5 5 4 .4 1 0 9 7 6 .4 1 2 9 5 .4 5 1 1 3 .8 8 2 7 .4

b ig b lu e 4 1 7 2 7 .5 2 3 5 3 .7 8 7 1 .2 9 1 0 1 6 .1 9 8 3 4 .1 9 8 2 9 .4 4 8 0 8 .2 2 5 7 5 .9 5 8 6 .8 2 9 3 4 3 3 4 0 2 9 2 4 5 5 .8 1 1 3 8 9 .8 2 1 4 8

Table 6: Experimental measurements on ISPD-05 Placement Benchmarks

Benchmark Required Memory (MB) Benchmark Required Memory (MB)
ibm01 4 ibm14 60
ibm02 8 ibm15 78
ibm03 9 ibm16 85
ibm04 11 ibm17 94
ibm05 13 ibm18 93
ibm06 14 adapted 103
ibm07 19 adaptec2 113
ibm08 22 adaptec3 199
ibm09 24 adaptec4 201
ibm10 32 bigblue1 123
ibm11 30 bigblue2 214
ibm12 34 bigblue3 392
ibm13 39 bigblue4 921

Table 7: Required Memory in MB

24

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Memory footprint

By exploiting the star nets model, out GORDIAN implementation’s memory footprint is significantly
reduced. Table 7 show the memory required to place all benchmarks. Notice that the required memory is
retained less than 1GB for all tested benchmarks.

Runtime allocation

More than 90% of the execution time is devoted to the top-down partitioning process and more
specifically to the iterative solving method Bi-CG. The rest of the execution time is distributed among the
initial linear system formulation, global optimization step and legalization as shown in Picture 20.

Runtime Allocation

bigblue4
bigblue3
bigblue2
bigbluel

adaptec4
adaptec3
adaptec2
adaptecl

ibm18
ibm17
ibm16
ibm15
ibm14
ibml3
ibm12
ibm11
ibm10
ibm09
ibm08
ibm07
ibm06
ibm05
ibm04
ibm03
ibm02
ibm01

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

■ Linear System Formulation ■ Global Optimization Step ■ Top-down Partitioning ■ Legalization

Picture 20: GORDIAN Runtime Allocation

25

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

6. Future work
Future placers based on our implementation have a considerable potential for further decreasing the total
runtime. The iterative solver’s convergence rate could benefit from graph based preconditioners. Solution
quality could also be improved by optimizing the cutting process during the top-down partitioning steps,
or even by comprising detailed placement techniques. Finally, congestion driven placement is possible
using GORDIAN, by assigning lower net weights to the highly congested areas.

26

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

7. References
[1] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, “GORDIAN: VLSI Placement by Quadratic

Programming and Slicing Optimization.”, IEEE Transactions on Computer-Aided Design. 10 (3),
March 1991, pp. 356-365.

[2] Myung-Chul Kim, Dong-Jin Lee and Igor L. Marko, “SimPL: An Effective Placement
Algorithm”, University o f Michigan, Department ofEECS, 2260 Hayward St., Ann Arbor, M I
48109-2121.

[3] N. Viswanathan, C.ChongNuen Chu, “FastPlace: Efficient Analytical Placement using Cell
Shifting, Iterative Local Refinement and a Hybrid Net M odel”, Department o f Electrical and
Computer Engineering, Iowa State University, Ames, IA 500113060.

[4] N. Viswanathan, M. Pan, C. Chu, "FastPlace 2.0: an efficient analytical placer for mixed-mode
designs.", Paper presented at the meeting o f the ASP-DAC, 2006.

[5] N. Viswanathan, M. Pan, C. Chu, "FastPlace 3.0: A Fast Multilevel Quadratic Placement
Algorithm with Placement Congestion Control.", Paper presented at the meeting o f the ASP-
DAC, 2007.

[6] J. Roy, D. Papa, S. Adya, H. Chan, J. Lu, A. Ng, I. Markov, “Capo: Robust and Scalable Open-
Source Min-cut Floorplacer”, ISPD, pp. 224-227, San Francisco, April 2005.

[7] A. Caldwell, A. Kahng, I. Markov, “Can Recursive Bisection Alone Produce Routable
Placements?”, DAC 2000, pp. 4 7 7 - 482.

[8] X. Wang, M.Sarrafzadeh. “Dragon2000: Standard-cell placement tool for large industry
circuits.”, ICCAD, pages 160-163, 2000.

[9] X. Yang, Bo-Kyung Choi, M. Sarrafzadeh, "A Standard-Cell Placement Tool fo r Designs with
High Row Utilization.", Paper presented at the meeting o f the ICCD, 2002.

[10] M. Wang, X. Yang, M. Sarrafzadeh. “DRAGON2000: Standard-Cell Placement Tool for Large
Industry Circuits.”, ICCAD, page 260-263. IEEE, (2000).

[11] A. Agnihotri, S. Ono, P. Madden, “Recursive Bisection Placement: Feng Shui 5.0
Implementation Details”, International Symposium on Physical Design, April 2005.

[12] Chan, T. Cong, J. Shinnerl, R. Joseph, S. Kenton, M. Xie, "mPL6: enhanced multilevel mixed-
size placement.", Paper presented at the meeting o f the ISPD, 2006.

[13] A. Kahng, S. Reda, Q. Wang, "APlace: a general analytic placement framework.", Paper
presented at the meeting o f the ISPD, 2005.

[14] C. Sechen, A. Sangiovanni-Vincentelli, “The TimberWolf Placement and Routing Package.”,
IEEE Journal o f Solid-State Circuits.

[15] G. Sigl, K. Doll, F.M. Johannes, “Analytical Placement: A Linear or a Quadratic Objective
Function?”, DAC’91 pp 427-423.

27

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

[16] N. Gould, M. Hribar, J. Nocedal, “On the Solution o f Equality Constrained Quadratic
Programming Problems Arising in Optimization. ”, SIAM Journal o f Scientific Computing. 23 (4),
April 2001, pp. 1376-1395.

[17] D. Chen, S. Toledo. “Implementation and evaluation o f Vaidya ’s preconditioners. ”,
Preconditioning 2001.

[18] I. Koutis, G. Miller, A. Sinop, D. Tolliver, ’’Combinatorial Preconditioners and Multilevel
Solvers for Problems in Computer Vision and Image Processing”, Technical Report CMU, 2009.

[19] A. E. Caldwell, A. B. Kahng, I. L. Markov, “VLSI CAD Bookshelf’,
http://vlsicad. eecs.umich.edu/BK

[20] N. Viswanathan, C. Chu. “ISPD04 IBM Standard Cell Benchmarks with Pads.”,
http://vlsicad. eecs. umich. edu/BK/Slots/cache/www.public. iastate. edu/~nataraj/ISPD04_Bench.ht
ml

[21] G. Nam, C. Alpert, P. Villarrubia, B. Winter, M. Yildiz. “The ISPD2005placement contest and
benchmark suite.”, In Proc. ISPD, pages 216-220, 2005.
http://archive.sigda.org/ispd2005/contest.htm

[22] G Nam. “ISPD 2006placement contest: Benchmark suite and results.”, In Proc. ISPD, pages
167-167, 2006. http://archive.sigda.org/ispd2006/contest.html

[23] http://en.wikipedia.org/wiki/Placement (EDA)

[24] http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Placement/plFormats.html

[25] https://www.semiwiki.com/forum/content/1955-rtl-design-flow-broken.html

[26] http://vlsicad.eecs.umich.edu/BK/PlaceUtils/

[27] https://www.cise.ufl.edu/research/sparse/CSparse/

[28] http://www.gnuplot.info/

[29] http://ndevilla.free.fr/gnuplot/

[30] http://openmp.org/wp/

[31] http://www.nvidia.com/obiect/cuda home new.html

[32] http://en.wikipedia.org/wiki/Coniugate gradient method

28

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

http://vlsicad.eecs.umich.edu/BK
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.public.iastate.edu/~nataraj/ISPD04_Bench.html
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.public.iastate.edu/~nataraj/ISPD04_Bench.html
http://archive.sigda.org/ispd2005/contest.htm
http://archive.sigda.org/ispd2006/contest.html
http://en.wikipedia.org/wiki/Placement_(EDA)
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Placement/plFormats.html
https://www.semiwiki.com/forum/content/1955-rtl-design-flow-broken.html
http://vlsicad.eecs.umich.edu/BK/PlaceUtils/
https://www.cise.ufl.edu/research/sparse/CSparse/
http://www.gnuplot.info/
http://ndevilla.free.fr/gnuplot/
http://openmp.org/wp/
http://www.nvidia.com/object/cuda_home_new.html
http://en.wikipedia.org/wiki/Conjugate_gradient_method

8. Bibliography
[1] A. Caldwell, A. Kahng, I. Markov, “Improved Algorithms for Hypergraph Bipartitioning. ”,

ASPDAC 2000, pp. 661-666.

[2] A. Caldwell, A. Kahng, I. L. Markov, “Can Recursive Bisection Alone Produce Routable
Placements?”, D AC’00, p. 477.

[3] S. N. Adya et al., “Benchmarking for Large-Scale Placement and Beyond. ”, IEEE Trans. on
CAD 23(4), pp. 472-488, 2004.

[4] A. Agnihotri et al., “Fractional Cut: Improved recursive bisection placement.”, ICCAD, 2003,
pp. 307-310.

[5] U. Brenner and J. Vygen, “Faster Optimal Single-Row Placement with Fixed Ordering. ”, DATE
2000, pp. 117-121.

[6] N. Selvakkumaran and G. Karypis, “THETO: A Fast and High-Quality Partitioning Driven
Global Placer. ”, Technical Report 03-046, 2003, University o f Minnesota.

[7] A.E.Dunlop and B.W.Kernighan. “A procedure for placement o f standard-cell vlsi circuits.”,
IEEE Trans. on CAD o f Integrated Circuits and Systems, pages CAD-4(1):92-98, 1985.

29

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

