ITANEIIIXTHMIO OEXXAATIAX
[TOAYTEXNIKH XXOAH
TMHMA HAEKTPOAOI'QN MHXANIKQN
KAI MHXANIKQN YITOAOI'IXTCN

YAromoinon kot eAtiotonoinon akyopibov yio ympobETHOT OAOKANPOUEVOV
KUKAOUATOV 6E TOPAAANALO TEPPAALOV

Metamtoytoxk) Atatpipn

lwovvions K. Ltadpog

Empiérmovreg KaOnyymréc: Zrapoving ledpylog
Kabnymmg

Evpopeodmoviog Néotwp
Enrixovpog Kabnynrig

Toopmavomoviov Mavaybta
Enixovpn Kabnyirpia

Boiog, Mdaptiog 2014

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

UNIVERSITY OF THESSALY
DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Implementation and optimization of an integrated circuit placement algorithm in
parallel environment

Master Thesis

Stavros K. loannidis

Supervising Professors: George Stamoulis
Professor

Nestor Evmorfopoulos
Assistant Professor

Panagiota Tsompanopoulou
Assistant Professor

Approved by the three-member inquiry committee at March 19, 2014

George Stamoulis Nestor Evmorfopoulos Panagiota Tsompanopoulou
Professor Assistant Professor Assistant Professor

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Copyright © Stavros K. loannidis, 2014
All rights reserved.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

To my family and friends.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. George Stamoulis,
whose expertise, understanding, and patience, added considerably to my graduate
experience. I appreciate his vast knowledge and skill in many areas. Finally, 1
would like to thank the other members of my committee, Dr. Nestor
Evmorfopoulos and Dr. Panagiota Tsompanopoulou for the assistance they
provided at all levels of this thesis.

Stavros K. loannidis
Volos, 2014

il

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

il

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

[Tepiinyn

H ocvveyng avénomn tov mnlovg tmv oToLelnv 6e &va GUYYPOVO KUKAMUOTIKO
oyeolo, Détel éva dvoKolo Epyo oto epydiein ympobétnong, To omoia amotteiTol
va Ppouvv VEOUG TPOTOVG VO, YEWPILOVTOL EKATOUUVPLO OTOLELN HECO GE AOYIKA
yPovIKd mhaicto. Aoyiouikd ympobétnong mov Pacilovial 6 TPOGEYYION «WOUNG
Plagy bev pmopolV VO GVIWETMTICOVY TNV TOAVTAOKOTNTA TMV CUYYPOVEOV
oxedlmv. Amd v Gikn, royioukd ympobétnong Paciouéva oe «dlaipet Kot
Baociieve»y uebddovg dev eivor duvard va emtiRovV allOAOY UTOTEAECILOTA,
kaBhg &ovv Eldenym ¢ KaBOAKNG eKdVaG TOV KUKADUATOG. TNV TOpovoo
Swrpipn alwroyodpe v Paciopévn otov oryopidpo GORDIAN viomoinon
nag, M omoila elval Suvatdv vo, TOPGEYEL TOAD ypIyopn AVCN, OUTNPOVTAG
TOPEAATA TV KAOOAKY EKOVO TOV KUKADUATOG.

v

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Abstract

The continuous increase of the cell count in modern designs, poses a challenging
task to the placers that need to find efficient ways to handle millions of cells in
reasonable time frames. Placers based on a brute force approach, cannot handle
the complexity of modern circuit designs. On the other hand, divide-and-conquer
methods cannot achieve remarkable results as they lack the global picture of the
circuit. In this thesis we evaluate out GORDIAN based implementation, which
can produce very fast placement solutions while maintaining the global scope of
the design.

Vi

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Contents

ACKNOWICAGMENTS ... e, il
ADSEract (IN GTEEK) ... e v
ADSEIACE ...ttt ettt ettt ettt ettt eae e vi
COMEETILS ...ttt ettt et ettt et ettt e a et et ea et ee e et ettt eneeee et eee e vii
ADDTEVIALIONS ...ttt ettt et ettt ettt ettt X
Lo IIETOAUCTION ...ttt ettt ettt ettt ettt e 1
L1, TheSis deSCIIPLIONoot ittt 1
1.2 Related WOTK ..o 1

2. Introduction tO PIaCCMENToociiiiiiiiii i 2
2.1, Placement problem formulation........................o.oiiiiiii e 2
2.2, Placement within the EDA design flowoooooiiiiiie e 2
2.3, Stages of Placement ..o 3
Global PIACCINEGIIL ... e 3
LealiZALION ...t 3
Detailed placemEnt................ooiiiii e 3

2.4, Complexity of the Placement problem ...t 4
2.5. Evaluation of a Placement SOIUHON.ocooiiiiiiiii i 4
2.6. State-of-the-art Placement approaches and algorithms........................c.cooooiii 5
Simulated anNCalING ..ot e 5
IMIIUINIUITE CUE. ..ot ettt a ettt ettt et ettt ettt et eeeee 5
Analytical PIACCIMENTc.ooi i, 5

3. Introduction to GORDIAN ... e 6
3.1, GORDIAN SPeCIfiCatIONS.oviviioeieiee e 6
Standard-cell PIacementcoooiiiii i 6
FIxed /O PIns/Padsc.oooviiiioe oo 6

3.2, GORDIAN DESCIIPHION.coviiiiiiie e 6
Global OPIMIZALION SEEPoiovieieie e 6
TOP-AOWN PATLILIONIIEG ..ottt e e 8
Final placemEnt... ..o 9

4. Implementation of GORDIAN ... 10
4.1, Algorithm iIMpIeMENTAtIONccoooi oo 10

vii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

MALTIX COMPIESSION ..ottt e ettt 10

Linear SYSteM SOLVETSc.oooiiiiie oo 11
Input and Output FOrMAL................oocooi e 11
SOIULION PLOTEINGovviiie e et 11
Wire length model..............ooooi e 13

4.2, Algorithmic OPUMIZALIONScooviitiii ettt 13
SEAr NELS MOAECT ..o ettt 13
CRILSOTEING ... e, 14
INOTIIL SEIECTION ...t ettt et 15
IMPToved PATtItIONINGooviiiiii e 16
ConGESTION PLOTEINEGoooviiii ittt e, 16
LealiZALION ... e 18
PreCONdItiONINgoooiiiiiiiie e 19
Alternative sOlUtion MEthOS ..o e 19
LeVEIIZALION ...t ettt 20

4.3, ParalleliZationocoooiiiiiiii e 21

5. Experimental 1eSUILS... ..o, 22
5.1 Benchmark SUIEESooiiiiiiiii et 22
5.2, Experimental MEASUTCINEIILSoviiiiiieee ettt et e, 23
SOIULION QUALTEY ..o et 23
MEMOTY TOOUPTINLoviiiioee e e e 25
Runtime alloCationccoooiiiiiii i e 25

6. FULUIC WOTK ..ottt ettt 26
T REICTCICES ...ttt 27
8. BIbLOZIapRY ..., 29

viii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

1X

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Abbreviations

EDA Electronic Design Automation
HPWL Half Perimeter Wire Length
SPD Symmetric Positive Definite
CG Conjugate Gradients

Bi-CG Bi-Conjugate Gradients

QP Quadratic Programming

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

1. Introduction

1.1. Thesis description

In this thesis we evaluate our implementation of GORDIAN [1], a method for Global Placement of
standard-cell based circuit designs. Various algorithmic and parallel optimizations are applied in order to
reduce the total runtime and memory requirements and improve the solution quality. Experimental results
are presented, comparing GODRIAN to other state-of-the-art academic placers.

The vast execution speed and the limited memory footprint are GORDIAN’s main advantages.
GORDIAN runs faster than any other proven placer while still producing acceptable results. Million-sized
designs can be placed in few minutes time.

The rest of this thesis is organized as follows: Section 2 provides an overview of the placement problem.
Section 3 introduces the GORDIAN algorithm. Section 4 describes the GORDIAN implementation.
Experimental results and conclusions are presented in Section 5.

1.2. Related work

A great variety of placers is used by modern placement industry and academic. Academic placers similar
to GORDIAN that can produce solutions significantly fast, are FastPlace |3] and SimPL [2]. Like
GORDIAN, they use the circuit’s connectivity information to formulate and solve a mathematical
minimization problem and apply various runtime and solution quality optimizations.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

2. Introduction to Placement

2.1.

Placement problem formulation

Placement is a procedure that assigns exact locations for various circuit components within the chip’s
core area. An inferior placement assignment will not only affect the chip's performance but might also

make it non-manufacturable by producing excessive wire length, which is beyond available routing
resources. Consequently, a placer must perform the assignment while optimizing a number of objectives

to ensure that a circuit meets its performance demands [23]. Typical placement objectives include:

2.2.

Total wire length: Minimizing the total wire length, or the sum of the length of all the wires in the
design, is the primary objective of most existing placers. This not only helps minimize chip size,
and hence cost, but also minimizes power and delay, which are proportional to the wire length.

Timing: The clock cycle of a chip is determined by the delay of its longest path, usually referred
to as the critical path. Given a performance specification, a placer must ensure that no path exists
with delay exceeding the maximum specified delay.

Congestion: While it is necessary to minimize the total wire length to meet the total routing
resources, it is also necessary to meet the routing resources within various local regions of the
chip’s core area. A congested region might lead to excessive routing detours, or make it
impossible to complete all routes.

Power: Power minimization typically involves distributing the locations of cell components so as
to reduce the overall power consumption, alleviate hot spots, and smooth temperature gradients.

A secondary objective is placement runtime minimization.

Placement within the EDA design flow

A placer takes a given synthesized circuit netlist together with a technology library and produces a valid
placement layout. The layout is optimized according to the aforementioned objectives and ready for cell
resizing and buffering - a step essential for timing and signal integrity satisfaction. Clock-tree synthesis
and routing follow, completing the physical design process (Picture 1). In many cases, parts of, or the

entire, physical design flow are iterated a number of times until design closure is achieved.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

2.3. Stages of Placement

The placement procedure is usually separated in Global placement and Detailed placement. An extra step
of Legalization may be applied after Global placement or as a part of Detailed placement.

Global placement

Global placement makes an initial placement of an un-placed netlist. The goal is to generate a near-
optimal placement of the whole chip.

Legalization

After Global placement all circuit components are distributed over the chip area but their placement may
not be legal. A Legalizer is responsible for eliminating any overlaps between the circuit components,
enforcing all components to fit inside the defined core area and thus ensuring that the generated solution
is feasible. Other technological constraints are also met during the Legalization stage.

Detailed placement

Fine adjustments to the positions of the circuit components are performed during Detailed placement,
towards the improvement if the overall solution

Partitioning

IC Specification
Functional/Logic
Design ¢

Circuit Design ¢

Floorplanning

Placement

Physical Design Clock Tree Synthesis

Physical Verification
and Signoff
v

Signal Routing

E ‘i II - k Timing Closure

Picture 1: Placement within the EDA design flow

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

2.4. Complexity of the Placement problem

Although the legality of a given instance of the placement problem can be verified in polynomial time, the
decision of the existence of such fusible instance is an NP-complete problem. Since we are interested in
finding the optimal solution of the aforementioned NP-complete problem, the complexity of the
placement problem can be classified as NP-hard. Thus, the placement problem is addressed by using
heuristic methods and approximation algorithms.

2.5. Evaluation of a Placement solution

The primary component under evaluation is the solution’s total wire length. Because the placement stage
precedes the routing stage. any real routing information is not yet available during placement. Thus,
various net models are used in order to estimate the wire length of a net and whereby the total wire length
of the chip. Such net models are:

o Steiner tree (Picture 2a)

e Minimum spanning tree (Picture 2a, Picture 2b)
o (Cligue (Picture 2¢)

e Star (Picture 2d)

e Bounding box (Picture 2¢)

rxv. % I

(@ ®
e
e e
. a
Dl N J

(d) ()

Picture 2: Common net models

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

2.6. State-of-the-art Placement approaches and algorithms

Simulated annealing

Simulated annealing is a general scheme that can be applied to a wide variety of optimization problems.
Starting with any feasible solution. simulated annealing algorithms apply iteratively local changes to the
solution. The changing steps are chosen randomly and steps that make the solution worse are allowed, so
it is possible to leave local optima. In early steps. bigger worsening changes are allowed, while in later
steps only small worsening changes are. Although simulated annealing is too slow for a global
optimization of a placement, it is still in use to solve sub problems or for local optimization. A placement
tool that is based mainly on simulated annealing is TimberWolf [14].

Minimum cut

Top-down recursive partitioning is used in many placement algorithms. The main idea consists of
recursively dividing both the chip area and the set of circuits into subsets and to assign cach circuit subset
to a subarca of sufficient capacity. The step is repeated until the regions are small enough to run
legalization. Algorithms that exploit the minimum cut technique are Capo [6] and FastPlace [3][4][5].

Analytical Placement

In Analytical Placement the wire length is minimized ignoring the overlaps among the circuit
components. Then, the placement is modified in order to reduce those overlaps.

Moderm algorithms usually exploit more than one of the above approaches. Dragon placement tool [8][10]
for example, treats whole designs using a minimum cut approach while handles the smaller-scale blocks
using an analytical approach.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

3. Introduction to GORDIAN

GORDIAN is one of the most successful Global placement algorithms. With GORDIAN, the placement
problem is formulated as a sequence of quadratic programming problems derived from the entire
connectivity information of the circuit. An increasing number of constraints are imposed, reflecting the
results of successively refined partitioning.

GORDIAN uses a combination of the Analytical and Minimum cut approaches. A global optimization
step is initially applied, ignoring any library constraints (cell overlaps, cell outside core area, etc.) while
minimizing the total wire length. A top-down partitioning strategy follows. while ignoring the capacity
constraints of the partitions. By recursively dividing the core area and assigning circuit elements to every
partition, the overlaps are reduced to a point where a simple legalization algorithm can produce a legal
solution.

3.1. GORDIAN Specifications

Standard-cell Placement

Our GORDIAN based implementation focuses on standard-cell placement. Standard-cell placement is a
row oriented placement of standard-cells on a rectangular core arca. A standard cell represents the
physical space occupied by a logical gate. The type of the gate itself is often irrelevant during the
placement and routing procedure. In standard-cell placement all cells must be of the same height. The
width of the cells may vary.

Fixed I/0 pins/pads

The positions of the I/O pins/pads must be fixed in order to be fed as input to GORDIAN. On the other
hand. the definition of the dimensions of the rectangular core arca is not essential. In that case the
rectangular core area will be defined by the rectangular box formed by the fixed pins/pads.

3.2. GORDIAN Description

Global optimization step
Before the global optimization step is applied, the input circuit is converted to an undirected weighted
graph. Each net is treated as a k-clique and a weight OfE is assigned to each edge involved in the clique,

as shown on Picture 3 and Picture 4. The movable cells and fixed pins constitute the nodes of the graph.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Using the weight information the following matrices are formed:
® Adjacency matrix Ayy,, where A; ; = We;
e Pin Connection matrix Py, where Py ; = Wp; ;

e Degree matrix Dpyy. where D; j = [2}1:0 Aij ;’ Zi?::tojp tjr L=1J
e Laplacian matrix Cpyn, where C;j = Dy j — A;
e [lixed Pin vectors dy,
where:
e n isthe number of cells,
e m is the number of pins,
e Wc; is the weight of the edge connecting cell i and cell j.
e Wp; ; is the weight of the edge connecting cell ¢ and pin j,

e x; is the x-coordinate of pin j,

e yj is the y-coordinate of pin j.

and d)’mn where dxi = _Ej Pi_jx): and dy‘, = — Z). Pt',);y):

The objective function of the global optimization step is now formulated in the following quadratic

programming problem:
1
ox) = ExTCx +dlx
and:
1
o) =3y Cy+dyy

where d, and dy, are the Fixed Pin vectors and C is the Laplacian matrix.

Picture 3: Input circuit Picture 4: Undirected weighted graph

For minimizing the above convex functions the following linear systems must be solved:

7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

and
Cy =—dy

The resultant x and y vectors contain the x- and y-positions of all the cells. At this point all the cells will
fit inside the rectangle core area, but they be highly overlapping as shown on Picture 3.

Top-down partitioning

During the first step of the top-down partitioning procedure the rectangular core area is divided into two
regions, cach containing a subset of the movable cells. On the following steps every region is recursively
divided in two sub regions, creating a total of g < 2¢ partitions, where { is the number of partitioning step.
The centers u of those regions impose the following constraints on the quadratic programming formula:

Alx =u
and

Aly =u
such that the weighted mean value of the cells assigned to a region corresponds to the center of that
region.

1, cell j belongs to partition i

The contents of the constraints matrix A arc A; ; = [;
qxm bl 0, otherwise

Combining the objective functions with the above constraints, the following linearly constrained
quadratic programming problems are obtained:

1 ;)
p(x) = ExTCx +dlx[Alx =u

E,

and

1 .
oy) = Ey"fy +dly|Aly =u

Picture 5: Distribution of cells after Global optimization step.

8

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

For minimizing the above convex functions the following linear systems must be solved:

c AT|[*] - _dx]

A 0] b] Tl uy
and

5 2IE-[]

0]t Uy

where uy and u,, are the x and y coordinates of the partitions respectively and the resultant x and y
vectors contain the x- and y-positions of all the cells.

Final placement

The goal of the GORDIAN legalization is to meet the following technological constraints:
e all cells aligned to rows
e o overlapping cells
e all cells fit inside the core area

while affecting the calculated positions of the modules as little as possible.

To achieve that, the sorting of the cells based on their position’s y-coordinate is required. The rectangular
core area is then divided into 7 subsets using r — 1 horizontal cuts such that

Eis T
Yy S SV S SV,

where the module y; belongs to the ith row. The sequence of the modules within the rows is determined
by their x-coordinate. The outboard modules of a row based on their y-coordinate can be moved to close
by rows, if the sum of the modules™ widths exceeds the maximum row length.

Due to the simplicity of the legalization algorithm, the final result is not absolutely refined. Our
experimental measurements show an average increase of 25% in the wire length after legalization. More
sophisticated legalizers can drop that percentage down to 10%. Furthermore, the addition of a detailed
placement stage can reduce to total wire length by a factor of 10-15%.

module coordinates

Partitioning
of the module set and
dissection of the
placement region

Global
optimization
minimization of
wire length

partitioning constraint
regions with <k modules

Final
Input placement Output
cells, pins, Adaption to style- legal module
nets, core area dependant placemnt
dimentions constraints

Picture 6: Data flow of the GORDIAN placement procedure
9

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

4. Implementation of GORDIAN

4.1. Algorithm implementation

Our motivation for implementing GODRIAN derives from the fact the GORDIAN is a fast placement
algorithm supported by a strong mathematical model and has the ability to place modem sized circuits
within reasonable timeframes. Moreover, GORDIAN is highly configurable offering room for interesting
optimizations.

Our goal was to develop and optimize the GORDIAN method so that:

1. Modern sized circuits can be placed in a few minutes time. without the need of a massive
computing infrastructure.

2. The quality of placement solution would be comparable to that of a state-of-the-art placer.

Matrix compression

Since all matrices used by GORDIAN (Adjacency, Laplacian, etc.) derive from sparse graphs, the
matrices themselves will be sparse. In order to accommodate the matrices created by a modern sized
circuit inside the RAM memory of a single computer, the use of sparse data structures and compression
techniques are substantial. On the other hand all vectors used by GORDIAN are dense. thus the use of
sparse vector structures is redundant.

In our implementation we exploit the csparse library [27], a C library for managing sparse matrices. We
use the Compressed Sparse Column format for our matrices. The amount of occupied memory is limited
to 2N + M for a NxN sized sparse matrix with M non-zero elements, instead of N2 required by a dense
matrix.

The calculation and conservation of the Adjacency, Pin Connections and Degree matrices is dispensable,
since the elements of the Laplacian matrix that derive from the above matrices can be calculated in a
single step.

6. & % B 4 0 1 2 3 4 5

(2.0 35 6.7 rowpir|0 [35| 7 [10]12

1 8.2 9.2 0 1 2 3 4 5 6 7 8 9 10 11
2 1128 wind [0]2 [4]1]3 1 [2]0]2]3]1]3]
3130 15|45 0 I 2 3 4 5 6 7 8 9 10 1l
4 25 8.9 values 2.0]3.5‘6.?]&2]9.2]1.1‘2.8]3.0]1.5]4.5‘2.5]8.9]

Picture 7: Example of Compressed Sparse Column format

10

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Linear system solvers

Our implementation uses iterative methods for solving the generated linear systems, over direct methods,
for reasons of time complexity. Direct solvers usually have a time complexity of O(N?). compared to
iterative solvers with nearly linear to the size of the system time complexity.

More specifically the methods used are:

e The Conjugate Gradient (CG) method [32] for solving the linear system generated during the
global optimization step.

e The Bi-Conjugate Gradient (Bi-CG) method [32] for solving the linear systems generated during
the top-down partitioning procedure.

Unlike Bi-CG, the CG method can only handle Symmetric Positive Definite (SPD) matrices. The matrix
generated during global optimization step is SPD as long as the whole circuit is connected to the 1/0 pins.
However. the matrices generated during the partitioning steps are not positive definite (and thus non-
SPD) due to the zero elements on the diagonal introduced by the constraints matrix A.

Input and Output format

Out GORDIAN implementation supports the Bookshelf GSRC input format [24]. However. the
conversion to a more common or industrial input format - such as LEF/DEF - is possible using various
conversion software available online [26].

The Bookshelf GSRC format is designed to be simple and casily human readable, as well as conveniently
parsable. For this purpose. details such as inter-node geometries or hierarchies are not included. If such
level of detail is required, existing industry standard file formats (LEF/DEF, TW etc.) can be used.

All placement information is distributed over several component files. To assemble multiple component
files into problem instances. an .aux a file is used that typically includes one line that consists of the paths
of the individual component files. The component files may be of the following format:

® A .nodes file consisting of a list of points. These points typically represent the lower-left
corner or the center of a cell.

o A nets file consisting of a list of nets.

o A wis file consisting of weighting information about the nets.

e A .sc/ file containing information regarding the standard cell layout.

e A plfile containing information about the position of cells and pins/pads.

The format also supports additional file types used by later stages of the placement process and the
routing process (routing info etc.).

Solution plotting

Using the gnuplot graphical utility for Linux [28]|29], we incorporated plotting abilities in out
implementation. The output of the plotter is demonstrated in Picture 8.

11

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Partitioning iteration 11

Partitioning iteration 12 Final placement

Picture 8: Distribution of cells after every step of GORDIAN
Benchmark: ibm01

12

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Wire length model

In order to evaluate the placement solution of out implementation, we use the half perimeter wire length
model (HPWL). The HPWL is defined as the sum of the % perimeter of the bounding box of every net,
where bounding box is the minimum rectangular area that contains all modules connected by the net

(Picture 9).

4.2.

bounding box

net

Picture 9: Net's bounding box

Algorithmic optimizations

Star nets model

As mentioned before, nets are treated as k-cliques so that a weight is assigned to every edge of the clique.
However, the number of edges in a k-clique are @ For large nets this leads to a significant

computational and memory cost even if the total count of those nets in the circuit is low. The percentage
of large- and medium-degree nets of the tested benchmarks and the corresponding memory they occupy is

shown in Picture 10,

8%

20%

100%

o |

0%

508 +

A |

30%

Distribution of nets based on net degree

averaging 4 adaptec benchmarks

wko 11+
mk: 510

Wk 24

% of nets

% of memory

Distribution of nets based on net degree
averaging 7 newblue benchmarks

®he 11
Wk:510
Wk 24

of nets

% of memory

Institutional Repository - Library & Information Centre - University of Thessaly

Picture 10: Distribution of nets based on net degree

09/12/2017 03:10:03 EET - 137.108.70.7

13

To resolve the above issue, we treat all large- and medium-degree nets as star nets, by adding a dummy-
node in the center of the net. The edge count of the k-cluque is redused to k. We achieve a minimum of
80% reduction to the size of required memory and a 2.0x speedup. Concurrently, there is no significant
change of the solution’s quality.

(X4 ¥s) Dummy node (X.¥y)

(%3.33)

(X3

(X4 Vn
2)) (X230

fe(le—1)

Picture 12: star model with k edges

Picture 11: k-clique model with edges

The exact selection of the d constant. where all k-degree nets with k > d will be treated according to the
star model, affects the total allocated memory. Picture 13 shows the total required memory for all
benchmarks for various values of d. Consequently, lower values for d are preferable.

Total Allocated Memory

no star-nets
e (=5}
i3]
-d=20
— =15
«d=12
— =10
— =]
— =8
e =T
— i
— =5
d=4
d=3

—

Picture 13: Memory needs based on selected d

Cell sorting

During the top-down partitioning process the repetitive sorting of cells based on their x- or y-coordinate is
required. Our implementation exploits the quicksort recursive algorithm of O(nlogn) time complexity,
opposed to the insertion or selection sorting algorithms of quadratic time complexity.

14

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Norm selection

A norm function is required in CG and Bi-CG methods, in order to determine the sufficiency of the
convergence. The most adequate norm functions are the Fuclidian and the Infinite norm which
correspond to the following formulas:

lIxll2 =

and

Il = maxx

The sufficient convergence criterion is:

;
Irl _,
12

where b is the initial solution vector (typicaly the linear system’s right-hand side vector), r is the current
iteration’s solution vector and ¢ is a predefined convergence threshold.

The Euclidean norm results a faster convergence and less HPWL in most cases as illustrated Picture 14.

Wire Length

2.50E+09
2.00E+09

1.50E+09

1.00E+09
o II II II I
P -- .. II I. --. II

daptec3 adaptec4 adaptec5 newbluel newblue2 newblue3 newblued newblue5 newblueé newblue?

®EL2norm M Linfty norm

Average solver iterations

900
800
700
600
500
400
300
2
100

0

2]

nllinil lk“l[lhl

adaptecl adaptec? adaptec3 adaptecd adaptecS newbluel newblue2 newblued newblued n

EL2norm @ Linfty norm

Picture 14: Norm comparison

15

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Improved partitioning

During a partitioning step each region r is divided into two subregions 7y and 75. The corresponding
module set m is also divided into two subsets m; and m,. The sums of the module areas of both subsets
determine the biscction of the rectangular area of region r such that

Siem, area(i)
Sicm, area(i)

where a is the desired arca ratio. The most obvious way of partitioning is to predefine a = 0.5 and to
alternate the direction of the cut on each level. This leads to regions with approximately the same area and
aspect ratio.

An improved partitioning decision should be based on the number of nets crossing the new cut line. This
number can be minimized by variation of the cut position and thus the desired area ratio a. However,
extreme values of a such as a < 0.4 or a > 0.6 should be avoided. as they can result in uneven partitions
and increased wasted arca. Experimental results show an average of 1% improvement in the final
solution, when the optimal cut line is used. Yet, due to the dissimilar resulting partitions, this technique
shows slight solution deterioration on some benchmarks.

In order to decrease the total number of linear systems requiring solving, multiple partitionings can be
applied before the next constrained quadratic programming problem must be solved. Since all modules
are assigned to each partition based solely on their position, the simultancous dissection of the placement
area in more than two partitions harms the solution’s quality by increasing the HPWL. On the other hand,
by reducing the number of costly linear system solutions, the total execution time is significantly reduced.
Experimental measurements indicate a 7% increase in HPWL and 33% faster exccution when 2
partitionings arc applied before solving and a 27% increase in HPWL and 64% faster execution when 4
partitionings are applied before solving.

Congestion plotting

Using the CongestionMaps plotter tool [26], we demonstrate the chip congestion after the global
optimization step as well as the congestion’s spreading throughout the partitioning process in Picture 15.
Notice the gradual elimination of the highly-congested spots (vellow) and the proliferation of the low-
congested regions (red).

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Global optimization ste, Partitioning iteration | Partitioning iteration 2

Partitioning iteration 3 Partitioning iteration 4

Partitioning iteration 6 Partitioning iteration 7 Partitioning iteration 8

Partitioning iteration 9 Partitioning iteration 11

Partitioning iteration 10

Final placement

Partitioning iteration 12

Picture 15: Core area congestion after every step of GORDIAN
Benchmark: ibm01

17

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Legalization

After aligning all modules to rows. our implementation uses a recursive sweeping technique in order to
relieve the rows of their overflowing modules (Picture 16). Modules are exchanged between offser
adjacent rows. If no exchanges are possible during a sweep of all rows, the offser parameter is gradually
increased so overflowing cells are able move towards farther rows. The procedure is terminated when all
overflows are eliminated.

procedure Legalization (Cells, Rows)
offset:= 1;
do
changes:= false;
for every R; € Rows
if R; overflows
if first cell in R; fits in Ri ,pp5, then
move cell to Ri,ffser
changes:= true;
offset:= 1;
endif
if last cell in R; fits in Ry, then
move cell to Rigrrse
changes:= true;
offset:= 1;
endif
endif
endfor

if changes = false then
offset:= offset+l;
endif

until AR; € Rows | R; overflows
endporcedure

Picture 16: Legalization procedure

Since the described legalization process is highly affected by the structure of the overflowing modules, an
inconsistent time complexity is noted when applying to different benchmark circuits. Our experimental
measurements indicate that several tenths or hundreds of row sweeps are generally required.

Picture 17 illustrates the gradual smoothing of the overflowing rows as the offset parameter increases and
overflowing modules are allowed to migrate to farther rows.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

Before legalization offset = 1 offset =3

offset =35 offset = 10 No overflowing rows

Picture 17: Gradual elimination of overflowing modules

Preconditioning

The iterative solver’s convergence rate can be improved by the addition of enhanced preconditioners. The
most obvious option is the Jacobean preconditioner, which leads the CG and Bi-C'G methods to converge
in a few hundreds iterations. More efficient preconditioners such as Vayda's graph based preconditioners
[17] can result a significantly faster convergence. Our implementations exploits the CMG [18]
preconditioner for solving SPD linear systems. Due to the posed constraint, the above preconditioner can
only be applied to the SPD linear system formed during the global optimization step.

Experimental results show an average speedup of 2%. However, due to the preconditioner’s vast memory
requirements, larger circuit benchmarks were impossible to place.

Alternative solution methods

An alternative method to solve the equality constrained quadratic programming problem created during
the top-down partitioning process is presented in |[15]. This approach is based implicitly on a reduced
linear system and generates iterates in the null space of the constraints. More specifically, this method
climinates the constraints and solves the following reduced problem:

5 =N 7x,
where A is the constraints matrix. x is calculated using:
AATx} = b,
Z is a matrix spanning the null space of A and x; is calculated using:

CzzXz = —C5.

19

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

where
€y = ETCE,
and
¢, =ZT(CATx; +¢).

Unfortunately, the C,, matrix formulated during the above process is dense, resulting high execution time
and prohibitively great memory requirements.

Levelization

In order to achieve the desired cell distribution earlier in the partitioning process, we apply a levelization
algorithm and modify the weight assigning process accordingly. Smaller weights are assigned to nets that
connect cells of lower level, 1.e. cells closer to the I/O pins/pads. This results in an increased degree of
freedom for those cells. allowing them to easier move away from the core area center and towards the 1/0
pins/pads.

Notice that our levelization process determines a cell’s level based solely on the distance from either an
input or an output pin. It differs from the levelization applied during the EDA Synthesis process, where
the logical level of the cells is calculated. The difference is demonstrated in Picture 18.

The result of the levelization process on the placement solution is an average increase of HPWL of 4%.
However, the target placement can be achieved using 1-2 less iterations of the partitioning process.

Levelization during synthesis

Levelization during placement

Picture 18: Difference of Synthesis and Placement levelization process

20

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

4.3. Parallelization

Out experimental measurements show that the vast majority of the execution time is devoted to the top-
down partitioning process. Consequently, any parallelization efforts focus on that process. However, since
the iterations of the top-down partitioning process are data dependent, any form of parallelization between
consecutive iterations is unlikely.

Notice that the purpose of the partitioning process is to iteratively refine the placement solution and does
not reduce the problem size, or offer any type of independent data and/or calculation sets that can be
treated in parallel. The sole requirement of the above process is the solution of two solid linear systems,
for the x- and y-coordinate respectively. Therefore, GORDIAN's capacity to exploit potential parallelism
is limited to parallelizing a single iteration of the top-down partitioning process.

Our implementation uses OpenMP [30] in order to concurrently solve the two independent linear systems
formulated during every iteration of the top-down partitioning process as well as the unconstrained linear
systems of the global optimization step (Picture 19). A 1.6x speedup is obtained. Other techniques
involving parallelization of the CG and Bi-CG methods using OpenMP [30] and CUDA [31] have also
been tested, but rejected due to parallelization time overhead.

T,
Parse \'-I
input files J
~
—

| Create Cx =d, and Ly = d,,]

| sotvecxr=d, | | Sowecy=4d, |

"
-
N
I Sort cells and partition]

v
e |

Parallel and[‘i AT] ."],,[‘d_v
execution g |h el

! !
[sove[e ATE1-[E] | [oS €1ED-[32] |

£ Write B
A\ outputfile ,)'
— o

e

Picture 19: GORDIAN flow chart with parallel regions

21

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

5. Experimental results

5.1. Benchmark suites

Our GORDIAN implementation was tested on the ISPD-04 Placement Benchmarks |20], the ISPD-05
Placement Benchmarks (21| and the ISPD-06 Placement Benchmarks |22]. These benchmarks have been
derived from industrial ASIC designs with circuit sizes ranging from 12K to 2M. They consist of standard
cells and pre-placed 1/0 pins.

Benchmark # Cells # 1/0 Pins # Nets # Rows
ibm01 12506 246 14111 96
ibm02 19342 259 19584 109
ibm03 22853 283 27401 121
ibm(4 27220 287 31970 136
ibm05 28146 1201 28446 139
ibm06 32332 166 34826 126
ibm07 45639 287 48117 166
ibm08 51023 286 50513 170
ibm09 53110 285 60902 183
ibm10 68685 744 75196 234
ibm11 70152 406 81454 208
ibm12 70439 637 77240 242
ibm13 83709 490 99666 224
ibmi4 147088 517 152772 305
ibm15 161187 383 186608 303
ibm16 182980 504 190048 347
ibm17 184752 743 189581 379
ibm18 210341 272 201920 361

Table 1: ISPD-04 Placement Benchmarks

Benchmark #Cells #1/OPins #Nets # Rows
adaptecl 210904 543 221142 928
adaptec2 254457 566 266009 1221
adaptec3 450927 723 466758 1948
adaptecd 494716 1329 515951 1948
bigbluel 277604 560 284479 928
bigblue2 534782 23084 577235 1572
bigblue3 1095519 1293 1123170 2322
bigblue4 2169183 8170 2229886 2698

Table 2: ISPD-05 Placement Benchmarks

27

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

5.2. Experimental measurements

Solution quality

In Table 5 we present the HPWL and Runtime measurements of our GORDIAN implementation, on the
ISPD-04 Placement Benchmarks. We compare our results with state-of-the-art academic placers
FastPlace 2.0 |3][4]. Capo 9.1 |6] and FengShui 5.0 |11]. All the placers were run in their default mode
and all experiments were run on a 2.5 GHz Intel 15 core machine with 8 GB RAM.

The default mode for GORDIAN is
e [= 4: Partitioning proccess stops when all partitions contain 4 cells at most.
e d > 4: All nets of degree greater than 4, are treated as star nets.

e g = 0.5: Improved partitioning via variation of the cut line is disabled.

We present the results of GORDIAN before and after legalization. That being because GORDIAN's
legalization technique produces a rough final placement, increasing the HPWL by approximately 25%.
Moreover, GODRIAN results are not refined by a detailed placer. Our experience shows that state-of-the-
art legalizers cause an average increase of 10% to the HPWL. This loss is eamed back when a detailed
placer is applied. Thus. it is logical to assume that a combination of GORDIAN global placer with a state-
of-the-art legalizer and detailed placer can produce results similar to that of GORDIAN before the
legalization step.

In Table 6Table 5 we present the HPWL and Runtime measurements of out GORDIAN implementation,

on the ISPD-05 Placement Benchmarks. We compare our results with placers reported during the ISPD-
05 contest Aplace 2.0 [13], Capo 10.5 [6], FrastPlace 3.0 [3][5]. mPL6 |12] and SimPL [2].

The HPWL and Runtime improvement ratios are shown in Table 3 and Table 4 respectively. GORDIAN
produces an unlegalized solution with an average of 65% more wire length, compared to the other placers
but runs 5 to 257 times faster.

FastPlace FastPlace Capo Capo Aplace FengShui

HPWL Improvement 2.0 3.0 9.1 10.5 2.0 50 mPL6 SimPL
GORDIAN Unlegal 0.73 0.47 0.82 0.54 0.49 0.76 047 0.46
GORDIAN Final 0.58 0.43 0.66 0.49 0.44 0.61 0.42 0.41
Table 3: GORDIAN HPWL improvement
Runtime Improvement Faslt::]lace Fas;'l:]lace C‘:]]m (1:3!]50 A[;?'ce Fen;’ﬁh“i mPL6 SimPL
GORDIAN Unlegal 15.13 7.00 257.04 70.47 91.62 119.05 4222 5.86
GORDIAN Final 12.80 6.44 210.37 64.72 83.91 97.61 3849 5.34

Table 4: GORDIAN Runtime improvement

23

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

HPWL (e6) Runtime (sec)
Pexhmak Ggglle)glaAlN GOEE;]AN Fas;P.gaoe C;;i-o Fensg.ghm GSEE;SN GO&I}ZE{%N Fas;l.’(]]ace C;;lm FengShui 5.0
ibmi1 2,68 3.63 245 2.57 247 0.6 0.8 10.0 219.0 142.0
ibm02 6.69 7.65 491 5.20 530 2.0 20 34.0 457.0 245.0
ibm03 8.74 10.35 732 8.78 8.49 1.7 3.2 27.0 735.0 284.0
ibm04 10.16 12.30 8.14 9.04 8.55 2.0 24 38.0 771.0 3230
ibm035 18.29 19.36 10.24 10.24 9.83 22 2.2 34.0 684.0 3720
ibm06 T3 10.15 6.01 Sl 6.85 2.5 6.9 37.0 809.0 437.0
ibm07 15.96 19.57 10.99 12.20 11.54 41 4.0 105.0 1236.0 586.0
ibm08 14.62 18.29 12.38 13.99 12.88 6.6 6.8 121.0 1322.0 647.0
ibm09 15.76 2226 13.79 15.31 13.79 54 75 94.0 1375.0 660.0
ibm10 32.68 40.39 31.65 3735 35.13 10.5 10.5 162.0 26066.0 1085.0
ibmi1 3247 40.55 20.30 21.92 19.69 9.0 93 132.0 2172.0 891.0
ibm12 42.67 49.69 34.18 39.99 36.23 12.3 21.7 189.0 3413.0 1011.0
ibml3 29.59 41.42 2521 29.24 2471 11.1 11.2 170.0 4288.0 1189.0
ibmi4 66.12 8295 37.76 40.40 38.89 348 47.5 316.0 5091.0 2553.0
ibmil5 82.70 102.87 52.56 59.39 50.98 44.7 49.2 415.0 6399.0 3171.0
ibml6 79.48 106.22 58.37 70.63 60.12 41.6 425 417.0 7211.0 3626.0
ibm17 166.30 190.19 69.89 75.48 69.19 51.8 55.6 624.0 6782.0 3935.0
ibmi18 91.35 121.06 45.39 47.66 4448 69.8 78.2 769.0 5163.0 3471.0
Table 5: Experimental measurements on ISPD-04 Placement Benchmarks
HPWL (e6) Runtime (sec)
o | CQROAN ORI A o EWPRS g | OORMN GO ke Con BeER g son
adaptecl 148.01 162.1 78.35 88.14 78.16 7793 7173 225 26.5 2101.2 1557 150 11016 1362
| adaptec2 227.33 203.5 95.70 100.25 93.56 9204 9036 346 39.1 3034.2 2163.6 219.6 11946 2088
adaptec3 467.99 465.9 21852 276.80 213.85 214.16 208.95 62.2 65.6 71718 4691 .4 508.8 35352 4224
| adaptecd 388.73 413.4 20928 23130 198.17 193.89 187.40 53.1 57.9 7894.2 4759.2 426 3357 318
bigbluel 207.67 2176 100.02 110.92 96.32 96.80 9742 328 40.6 2694.6 2506.8 226.2 1369.2 2406
| bigblue2 300.83 451.2 153.75 162.81 154.91 15234 14578 126.6 139.6 6057.6 4833 5772 3693 496.8
bigblue3 881.04 944.8 41159 40540 365.59 34410 339.78 116.1 116.2 125544 10976.4 1295.4 51138 8274
] bigblue4 1727.5 2353.7 87129 1016.19 834.19 32944 808.22 575.9 586.8 29343 34029 2455.8 113898 2148

Institutional Repository - Library & Information Centre - University of Thessaly

Table 6: Experimental measurements on ISPD-05 Placement Benchmarks

Benchmark Required Memory (MB)

Benchmark Required Memory (MB)

ibm01 e ibm14 60
ibm02 8 ibm15 78
ibm03 9 ibm16 85
ibm04 11 ibm17 94
ibm05 13 ibm18 93
ibm06 14 adaptecl 103
ibm07 19 adaptec2 113
ibm08 22 adaptec3 199
ibm09 24 adaptecd 201
ibm10 32 bigbluel 123
ibm11 30 bigblue2 214
ibm12 34 bigblue3 392
ibm13 39 bigblue4 921

09/12/2017 03:10:03 EET - 137.108.70.7

Table 7: Required Memory in MB

24

Memory footprint

By exploiting the star nets model, out GORDIAN implementation’s memory footprint is significantly
reduced. Table 7 show the memory required to place all benchmarks. Notice that the required memory is
retained less than 1GB for all tested benchmarks.

Runtime allocation

More than 90% of the execution time is devoted to the top-down partitioning process and more
specifically to the iterative solving method Bi-CG. The rest of the execution time is distributed among the
iitial linear system formulation, global optimization step and legalization as shown in Picture 20.

Runtime Allocation

bigblued
bigblue3
bigblue2
bigbluel
adaptecd
adaptec3
adaptec2
adaptecl
ibm18
ibm17
ibm16
ibm15
ibm14
ibm13
ibm12
ibm11
ibm10
ibm09
ibm08
ibmQ7
ibmO06
ibm05
ibm04
ibm03
ibm02
ibm01

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

H Linear System Formulation ™ Global Optimization Step = Top-down Partitioning ™ Legalization

Picture 20: GORDIAN Runtime Allocation

25

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

6. Future work

Future placers based on our implementation have a considerable potential for further decreasing the total
runtime. The iterative solver’s convergence rate could benefit from graph based preconditioners. Solution
quality could also be improved by optimizing the cutting process during the top-down partitioning steps,
or even by comprising detailed placement techniques. Finally, congestion driven placement is possible
using GORDIAN, by assigning lower net weights to the highly congested areas.

26

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

7. References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

1]

[10]

[11]

[12]

[13]

[14]

[15]

J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, “GORDIAN: VLSI Placement by Quadratic
Programming and Slicing Optimization.”, ILEE Transactions on Computer-Aided Design. 10 (3),
March 1991, pp. 356-365.

Myung-Chul Kim, Dong-Jin Lee and Igor L. Marko, “SimPL: An Effective Placement
Algorithm”, University of Michigan, Department of EECS, 2260 Hayward St., Ann Arbor, MI
48109-2121.

N. Viswanathan, C.ChongNuen Chu, “FastPlace: Efficient Analytical Placement using Cell
Shifting, Iterative Local Refinement and a Hybrid Net Model”, Department of Electrical and
Computer Engineering, lowa State University, Ames, 1A 500113060.

N. Viswanathan, M. Pan, C. Chu, "FastPlace 2.0: an efficient analytical placer for mixed-mode
designs."”, Paper presented at the meeting of the ASP-DAC, 2006.

N. Viswanathan, M. Pan, C. Chu, "FastPlace 3.0: A Fast Multilevel Quadratic Placement
Algorithm with Placement Congestion Control.”, Paper presented at the meeting of the ASP-
DAC, 2007.

J. Roy, D. Papa, S. Adya, H. Chan, J. Lu, A. Ng, I. Markov, “Capo: Robust and Scalable Open-
Source Min-cut Floorplacer”, ISPD, pp. 224-227, San Francisco, April 2005.

A. Caldwell, A. Kahng, I. Markov, “Can Recursive Bisection Alone Produce Routable
Placements?”, DAC 2000, pp. 477 — 482.

X. Wang, M.Sarrafzadeh. “Dragon2000: Standard-cell placement tool for large industry
circuits.”, ICCAD, pages 160—163, 2000.

X. Yang, Bo-Kyung Choi, M. Sarrafzadeh, "4 Standard-Cell Placement Tool for Designs with
High Row Utilization.", Paper presented at the meeting of the ICCD, 2002.

M. Wang, X. Yang, M. Sarrafzadeh. “DRAGON2000: Standard-Cell Placement Tool for Large
Industry Circuits. ”, ICCAD, page 260-263. IELE, (2000).

A. Agnihotri, S. Ono, P. Madden, “Recursive Bisection Placement: Feng Shui 5.0
Implementation Details”, International Symposium on Physical Design, April 2005.

Chan, T. Cong, J. Shinnerl, R. Joseph, S. Kenton, M. Xie, "mPL6: enhanced multilevel mixed-
size placement.”, Paper presented at the meeting of the ISPD, 2006.

A. Kahng, S. Reda, Q. Wang, "APlace: a general analytic placement framework.", Paper
presented at the meeting of the ISPD, 20035.

C. Sechen, A. Sangiovanni-Vincentelli, “The TimberWolf Placement and Routing Package. ”,
IEEE Journal of Solid-State Circuits.

G. Sigl, K. Doll, F.M. Johannes, “Analytical Placement: A Linear or a Quadratic Objective
Function?”, DAC 91 pp 427-423.

27

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]
[24]
[25]
[26]
(27]
(28]
[29]
[30]
[31]
[32]

N. Gould. M. Hribar, J. Nocedal, “On the Solution of Equality Constrained Quadratic
Programming Problems Arising in Optimization. ”, SIAM Journal of Scientific Computing. 23 (4),
April 2001, pp. 1376-1395.

D. Chen, S. Toledo. “Implementation and evaluation of Vaidya's preconditioners. ",
Preconditioning 2001.

1. Koutis, G. Miller, A. Sinop, D. Tolliver, "Combinatorial Preconditioners and Multilevel
Solvers for Problems in Computer Vision and Image Processing ", Technical Report CMU, 2009.

A. E. Caldwell, A. B. Kahng, 1. L. Markov, “VLSI CAD Bookshelf™,
hitp:/visicad eecs.umich.edi/BK

N. Viswanathan, C. Chu. “ISPD04 IBM Standard Cell Benchmarks with Pads. ",
http:/visicad. eecs.umich.ediw/BK/Slots/cache/www.public.iastate.edu/~nataraj/ISPD04 Bench.ht
ml

G. Nam, C. Alpert, P. Villarrubia, B. Winter, M. Yildiz. “The ISPD2005 placement contest and
benchmark suite.”, In Proc. ISPD, pages 216220, 2005.
hittp:/archive.sigda.org/ispd2005/contest. him

G Nam. “ISPD 2006 placement contest: Benchmark suite and results.”, In Proc. ISPD, pages
167167, 2006. hitp://archive.sigda.org/ispd2006/contest.html

http://en.wikipedia.org/wiki/Placement (EDA)

http://vlsicad ucsd.edu/GSRC/bookshelf/Slots/Placement/plFormats.html

https://www.semiwiki.com/forum/content/1955-rtl-desien-flow-broken.html

http://vlsicad.eecs.umich.edu/BK/PlaceUtils/

https://www _cise.ufl.edu/research/sparse/CSparse/

http://www.egnuplot.info/

http://ndevilla.free fr/enuplot/

http://openmp.ore/wp/

http://swww.nvidia.com/object/cuda _home new.html

http://en.wikipedia.org/wiki/Conjugate gradient method

28

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

http://vlsicad.eecs.umich.edu/BK
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.public.iastate.edu/~nataraj/ISPD04_Bench.html
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.public.iastate.edu/~nataraj/ISPD04_Bench.html
http://archive.sigda.org/ispd2005/contest.htm
http://archive.sigda.org/ispd2006/contest.html
http://en.wikipedia.org/wiki/Placement_(EDA)
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Placement/plFormats.html
https://www.semiwiki.com/forum/content/1955-rtl-design-flow-broken.html
http://vlsicad.eecs.umich.edu/BK/PlaceUtils/
https://www.cise.ufl.edu/research/sparse/CSparse/
http://www.gnuplot.info/
http://ndevilla.free.fr/gnuplot/
http://openmp.org/wp/
http://www.nvidia.com/object/cuda_home_new.html
http://en.wikipedia.org/wiki/Conjugate_gradient_method

8. Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

A. Caldwell, A. Kahng, I. Markov, “Improved Algorithms for Hypergraph Bipartitioning.”,
ASPDAC 2000, pp. 661-666.

A. Caldwell, A. Kahng, I. L. Markov, “Can Recursive Bisection Alone Produce Routable
Placements?”, DAC 00, p. 477.

S.N. Adya et al., “Benchmarking for Large-Scale Placement and Beyond.”, IEEE Trans. on
CAD 23(4), pp. 472-488, 2004.

A. Agnihotri et al., “Fractional Cut: Improved recursive bisection placement.”, ICCAD, 2003,
pp. 307-310.

U. Brenner and J. Vygen, “Faster Optimal Single-Row Placement with Fixed Ordering. ”, DATE
2000, pp. 117-121.

N. Selvakkumaran and G. Karypis, “THETO: A Fast and High-Quality Partitioning Driven
Global Placer.”, Technical Report 03-046, 2003, University of Minnesota.

A E.Dunlop and B.W.Kemighan. “4 procedure for placement of standard-cell visi circuits. ”,
IEEE Trans. on CAD of Integrated Circuits and Systems, pages CAD—4(1):92-98, 1985.

29

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:10:03 EET - 137.108.70.7

