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Περίληψη 
 
Στόχος της εργασίας είναι η ανάπτυξη και πιστοποίηση μεθοδολογιών για την αναγνώριση 

δυναμικών μοντέλων σύνθετων κατασκευών καθώς και για την πρόβλεψη της συσσώρευσης 

βλαβών λόγω κόπωσης, με αξιοποίηση πληροφοριών από μετρήσεις της ταλαντωτικής 

απόκρισης των κατασκευών. Τα αναγνωρισμένα μοντέλα αναφέρονται σε μαθηματικά 

ιδιομορφικά μοντέλα καθώς και σε μηχανικά μοντέλα πεπερασμένων στοιχείων. Οι προτεινόμενες 

μεθοδολογίες καλύπτουν εφαρμογές κυρίως σε κατασκευές οχημάτων εδάφους/αέρος αλλά και 

κατασκευές πολιτικού μηχανικού. Η εργασία είναι χωρισμένη σε τρία συσχετιζόμενα μέρη. 

Μέρος Α: Παρουσιάζονται μεθοδολογίες βελτιστοποίησης ελαχίστων τετραγώνων για την 

αναγνώριση ιδιομορφικών μοντέλων μη κλασικής απόσβεσης κατασκευών χρησιμοποιώντας (1) 

μετρήσεις απόκρισης και μετρήσεις διέγερσης στις πολλαπλές βάσεις της κατασκευής, και (2) 

μετρήσεις μόνο της απόκρισης της κατασκευής σε διέγερση από άγνωστα λειτουργικά φορτία Για 

την πρώτη περίπτωση, αξιοποιήθηκε η ενιαία δομή των εξισώσεων στο πεδία χρόνου και 

συχνοτήτων για την ανάπτυξη αλγορίθμου και λογισμικού αναγνώρισης κοινό για τις δύο 

διατυπώσεις. Η μεθοδολογία αναγνώρισης βασίζεται στην ελαχιστοποίηση του μέτρου της 

διαφοράς μεταξύ των μετρούμενων και των προβλεπόμενων από το ιδιομορφικό μοντέλο 

χρονοϊστοριών απόκρισης για το πεδίο χρόνου καθώς και του μέτρου της διαφοράς μεταξύ  του 

μετασχηματισμού Fourier των μετρούμενων και των προβλεπόμενων από το ιδιομορφικό μοντέλο 

χρονοϊστοριών απόκρισης για το πεδίο συχνοτήτων. Για τη δεύτερη περίπτωση, η μεθοδολογία 

βασίζεται στην ελαχιστοποίηση του μέτρου της διαφορας μεταξύ των μετρούμενων και των 

προβλεπόμενων από το ιδιομορφικό μοντέλο συναρτήσεων διαφασματικής πυκνότητας. 

Αξιοποιήθηκε η δομή των εξισώσεων για την ανάπτυξη υπολογιστικά αποδοτικών αλγορίθμων 

δυο και τριών βημάτων για την επίλυση του έντονα μη-κυρτού, μη γραμμικού, προβλήματος 

βελτιστοποίησης που προκύπτει για τον προσδιορισμό των ιδιομορφικών χαρακτηριστικών, 

όπως ο αριθμός των ιδιομορφών, οι ιδιοσυχνότητες, οι συντελεστές απόσβεσης, οι ιδιομορφικές 

συνιστώσες και οι ιδιομορφικοί συντελεστές συνεισφοράς. Εφαρμόζοντας τον αλγόριθμο δύο 

βημάτων τα ιδιομορφικά χαρακτηριστικά υπολογίζονται γρήγορα και με ακρίβεια επιλύοντας δύο 

αλγεβρικά γραμμικά συστήματα και εφαρμόζοντας ανάλυση SVD. Το τρίτο βήμα του αλγόριθμου 

επιλύει το αρχικό μη γραμμικό πρόβλημα βελτιστοποίησης χρησιμοποιώντας ως αρχικές 

εκτιμήσεις των ιδιομορφικών χαρακτηριστικών τις τιμές που προκύπτουν από τα δύο πρώτα 

βήματα, επιταχύνοντας αισθητά τη σύγκλιση των διαθέσιμων τεχνικών ελαχιστοποίησης 

βαθμίδας. Η εφαρμογή του τρίτου βήματος του αλγορίθμου κρίνεται απαραίτητη για τον 

υπολογισμό κυρίως των κοντινών και επικαλυπτόμενων ιδιομορφών. Η προτεινόμενη 

μεθοδολογία αυτοματοποιεί την εκτίμηση των ιδιομορφικών χαρακτηριστικών χωρίς την, η με 

ελάχιστη, επέμβαση του χρήστη και επομένως είναι εφαρμόσιμη στη διαρκή, real-time 

παρακολούθηση της δομικής ακεραιότητας κατασκευών. 

Μέρος Β: Παρουσιάζονται καινοτόμες μέθοδοι αναθεώρησης μοντέλων πεπερασμένων στοιχείων 

και πρόβλεψης της απόκρισης κατασκευών βάσει των ιδιομορφικών χαρακτηριστικών. Εξετάζεται 

και αναδεικνύεται η αντιστοιχία μεταξύ των μεθόδων πολυκριτηριακής αναγνώρισης, συμβατικής 
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μονοκριτηριακής αναγνώρισης σταθμισμένων υπολοίπων, και Bayesian στατιστικής αναγνώρισης 

μοντέλων κατασκευών. Οι μέθοδοι καταλήγουν στη αναγνώριση πολλαπλών Pareto βέλτιστων 

μοντέλων πεπερασμένων στοιχείων με σημαντική μεταβλητότητα, ενώ επίσης προτείνεται 

μέθοδος επιλογής του προτιμητέου Pareto μοντέλου. Η μεταβλητότητα των υπολογιζόμενων 

Pareto μοντέλων οφείλεται σε σφάλματα μοντελοποίησης και σφάλματα μετρήσεων και 

επηρεάζουν τη μεταβλητότητα μεγεθών απόκρισης που προβλέπονται από τα Pareto μοντέλα. 

Συγκεκριμένα, η Bayesian στατιστική μέθοδος αναγνώρισης προσφέρει το πλεονέκτημα της 

ποσοτικοποίησης της αβεβαιότητας στα Pareto βέλτιστα μοντέλα και επί τη βάσει αυτής 

πρόβλεψη της αβεβαιότητας σε μεγέθη απόκρισης. Εξετάζονται θεωρητικά και υπολογιστικά 

θέματα που προκύπτουν κατά την εφαρμογή των μεθοδολογιών αναθεώρησης, 

συμπεριλαμβανομένων θεμάτων που αφορούν την ύπαρξη ολικών-τοπικών βέλτιστων λύσεων, 

τη σύγκλιση των προτεινόμενων αλγορίθμων, και προβλήματα μη αναγνωρισιμότητας. 

Προτείνονται υβριδικοί αλγόριθμοι βελτιστοποίησης για τον υπολογισμό των ολικών βέλτιστων και 

υιοθετείται πολυκριτηριακός αλγόριθμος βελτιστοποίησης ΝΒΙ για τον υπολογιστικά 

αποδοτικότερο υπολογισμό του μετώπου Pareto και των βέλτιστων Pareto μοντέλων. 

Αναπτύσσονται επίσης υπολογιστικά αποδοτικοί αλγόριθμοι για τον αναλυτικό υπολογισμό των 

πρώτων και δευτέρων παραγώγων των αντικειμενικών συναρτήσεων απαραίτητων για την 

επιτάχυνση της σύγκλισης κατά την πολυκριτηριακή και μονοκριτηριακή βελτιστοποίηση. Οι 

αλγόριθμοι βασίζονται στη μέθοδο του Nelson για τον υπολογισμό των παραγώγων των 

ιδιομορφικών παραμέτρων. Αποδεικνύεται ότι ο υπολογιστικός χρόνος που απαιτείται για τον 

υπολογισμό των Pareto βέλτιστων μοντέλων είναι ανεξάρτητος από τον αριθμό των παραμέτρων 

του μοντέλου. Ο αναλυτικός υπολογισμός των δευτέρων παραγώγων των αντικειμενικών 

συναρτήσεων είναι επίσης απαραίτητος και στην εφαρμογή των Bayesian ασυμπτωτικών 

σχέσεων που ποσοτικοποιούν την αβεβαιότητα των Pareto βέλτιστων μοντέλων. Ιδιαίτερη 

έμφαση δίδεται επίσης για τη γενίκευση του ορισμού των αντικειμενικών συναρτήσεων που 

εμπλέκονται στις μεθοδολογίες αναθεώρησης μοντέλων έτσι ώστε να αντιμετωπιστούν σοβαρά 

προβλήματα αντιστοιχίας μεταξύ μετρούμενων και υπολογιζόμενων από το μοντέλο ιδιομορφών 

που παρουσιάζονται στις περιπτώσεις εμφάνισης κοντινών ιδιομορφών. Αξιόλογα θεωρητικά και 

υπολογιστικά θέματα καταδεικνύονται με εφαρμογές σε μια μικρής κλίμακας μεταλλική κατασκευή 

και σε ένα μεταλλικό σκελετό εργαστηριακού μοντέλου οχήματος χρησιμοποιώντας μετρήσεις 

ταλάντωσης. Επιτυγχάνεται η πιστοποίηση των μεθοδολογιών και εξακριβώνονται τα 

πλεονεκτήματα των προτεινόμενων πολυκριτηριακών μεθόδων αναθεώρησης. Τέλος, μελετάται η 

επίδραση των σφαλμάτων μοντελοποίησης και μετρήσεων στην μεταβλητότητα των Pareto 

βέλτιστων μοντέλων και στις προβλέψεις μεγεθών απόκρισης από τα μοντέλα αυτά.  

Μέρος Γ: Παρουσιάζεται μία καινοτόμος μεθοδολογία για την πρόβλεψη της συσσώρευσης 

βλαβών λόγω κόπωσης σε ολόκληρο το φορέα μεταλλικών κατασκευών με αξιοποίηση 

πληροφοριών από μετρήσεις της ταλαντωτικής τους απόκρισης σε περιορισμένο αριθμό θέσεων 

στην κατασκευή. Εφαρμόζονται διαθέσιμες στατιστικές μεθοδολογίες εκτίμησης της κόπωσης που 

βασίζονται στον κανόνα Palmgren-Miner, στις S-N καμπύλες κόπωσης για απλά δομικά στοιχεία 

που υπόκεινται σε σταθερού εύρους κυκλικές φορτίσεις, και στην κατανομή πιθανότητας του 

εύρους των τάσεων κατά Dirlik χρησιμοποιώντας τις συναρτήσεις διαφασματικής πυκνότητας των 

μετρούμενων τάσεων στην κατασκευή. Οι συναρτήσεις διαφασματικής πυκνότητας των τάσεων 
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 x

σε όλο τον φορέα της κατασκευής προβλέπονται από τις μετρούμενες αποκρίσεις 

χρησιμοποιώντας το Kalman filter και ένα δυναμικό μοντέλο της κατασκευής. Η ακρίβεια των 

προβλέψεων του Kalman filter μπορούν να βελτιωθούν εισάγοντας τις μεθοδολογίες 

αναθεώρησης που αναπτύχθηκαν στο Β Μέρος. Η απόδοση και ακρίβεια της προτεινόμενης 

μεθοδολογίας παρουσιάζεται με ένα απλοϊκό μοντέλο μερικών βαθμών ελευθερίας για την 

περίπτωση μονοαξονικής κατάστασης των τάσεων.  
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Summary 
 
This thesis concentrates on the development and validation of methods for identifying dynamic 

models of complex structures as well as predicting fatigue damage accumulation by exploiting 

measured vibration information. The identified models refer to mathematical modal models as 

well as linear finite element models of structures, while the applications cover mainly ground/air 

vehicles and civil structures. The thesis is divided into three interrelated parts.   

Part A: Least-squares optimization methods are introduced for identifying non-classically damped 

modal models of complex structures using (1) output response measurements obtained from 

measured excitations at multiple support, and (2) output-only ambient vibration measurements. In 

the first case, a common structure of the time and frequency formulations is revealed and 

exploited to develop an identification software common for both formulations. The measure of fit 

represents the difference between the measured response time histories (or their Fourier 

transform) and the response time histories (or their Fourier transforms) predicted by a modal 

model when subjected to multiple support measured excitations. In the second case, the measure 

of fit represents the difference between measured and modal model predicted cross power 

spectral density functions. Computationally efficient two-step and three-step algorithms are 

developed to solve the resulting highly non-convex nonlinear optimization problems and identify 

the modal characteristics such as number of contributing models, modal frequencies, modal 

damping ratios, modeshapes and modal participation factors or operational reference vectors. 

The two-step approach is a very fast and accurate non-iterative algorithm, involving solution of 

two linear systems and singular value decomposition operations for estimating the modal 

characteristics. The third step solves the original nonlinear optimization problem using the 

estimates from the two-step approach to notably accelerate convergence of gradient based 

optimization algorithms.  It is demonstrated that the third step is required only for closely spaced 

and overlapping modes to improve the estimates of the modal characteristics. The proposed 

methodology automates the estimation of the modal characteristics without, or with minimal, user 

interference and thus is especially applicable to continuous, real-time, structural health monitoring 

purposes.  

Part B: The problem of finite element structural model updating and response prediction variability 

based on measured modal characteristics is revisited. The correspondence between the recently 

proposed multi-objective identification, the conventional single-objective weighted residuals 

identification and the Bayesian statistical identification is established. These methods result in 

multiple Pareto optimal finite element models. An optimally weighted modal residuals method is 

also proposed for selecting the most preferred Pareto optimal model. The variability of these 

optimal models depends on the model and measurement error and affects the variability in the 

response predictions. In particular, Bayesian statistical identification offers the advantage of 

quantifying the uncertainty in the Pareto optimal models and the response predictions. 

Theoretical and computational issues arising in multi-objective and single-objective identification 

are addressed, including issues related to estimation of global optima, convergence of the 
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 xii

proposed algorithms, and identifiability. Hybrid methods are proposed to identify global optima 

and the normal boundary intersection method is adopted to efficiently estimate the Pareto front 

and the Pareto optimal models. Finally, computational efficient algorithms are developed for 

estimating the gradients and the Hessians of the single and multiple objectives based on Nelson’s 

method for finding the sensitivity of eigenproperties to model parameters. It is shown that the 

computation time for estimating the Pareto optimal models is independent of the number of model 

parameters involved. The simplified computation of the Hessians of the objectives is useful in the 

Bayesian asymptotic formulas quantifying the uncertainty in the Pareto optimal models. Particular 

emphasis is also given in generalizing the definition of objectives in model updating methods to 

face the severe problems of corresponding measured and model predicted modes encountered 

for closely spaced modes. Theoretical and computational issues are illustrated by applying the 

model updating methodologies to small-scale three-story laboratory steel building structure and 

small-scale vehicle structure using experimentally obtained modal data. Validation studies are 

performed to show the applicability of the methodologies, the advantages of the multi-objective 

identification, and the performance of the most preferred Pareto optimal model. The effect of 

model error uncertainty on model updating and model response prediction variability is assessed.  

Part C: A novel methodology is presented for estimating damage accumulation due to fatigue in 

the entire body of a metallic structure using output-only vibration measurements from a sensor 

network installed at a limited number of structural locations. Available frequency domain 

stochastic fatigue methods based on Palmgren-Miner damage rule, S-N fatigue curves on simple 

specimens subjected to constant amplitude loads, and Dirlik’s probability distribution of the stress 

range are used to predict the expected fatigue damage accumulation of the structure in terms of 

the power spectral density (PSD) of the stress processes. The PSD of stresses at unmeasured 

locations covering the entire body of the structure are estimated from the response time history 

measurements available at the limited measured locations using Kalman filter and a dynamic 

model of the structure. The accuracy of the Kalman filter predictions can be improved by 

integrating the model updating techniques developed in Part B. The effectiveness and accuracy 

of the proposed formulation is demonstrated using a multi-degree-of-freedom spring-mass chain 

model arising from structures that consist of members with uniaxial stress states.  
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Chapter 1 
 

Introduction 
  
1.1 Research context  

Mathematical or physics-based models (e.g. modal models or finite element models) are widely 

used to represent the dynamic behaviour of a structure. However, it is always observed that the 

initial model developed is often a poor reflection of the observed structural behavior, particularly 

in the field of structural dynamics. This is due to uncertainties that arise from the simplified 

assumptions and idealizations used for developing models for simulating the behaviour of 

engineering structures, as well as models for simulating the loads (mechanical, thermal, etc) that 

are applied on the structures. These uncertainties include:  

Modelling uncertainties: arising in modelling the constitute behaviour of materials, the damage 

mechanisms (e.g. due to fatigue, corrosion), the support conditions of structures and their 

interaction with their environment, the connection between structural members (fixity conditions, 

friction mechanisms, impact phenomena), the geometric variability due to manufacturing 

processes.  

Loading uncertainties: arising from the lack of detailed knowledge of the spatial and temporal 

variation of the forces (mechanical, thermal, etc) applied to engineering structures. Examples 

include spatial variability of road roughness affecting the dynamics of vehicles, spatial and 

temporal variability of earthquake-induced excitations on civil engineering structures, turbulent 

wind loads affecting the design of aircrafts, variability of thermal loads affecting the design of a 

large class of mechanical and aerospace structures.  

Numerical uncertainties: stemming from PDE spatial discretization using finite element methods, 

temporal discretization used in numerical time integration schemes, rounding-off errors in 

numerical solutions due to computer inaccuracies.  

The uncertainties may affect considerably the prediction of performance and safety of the 

analyzed systems. Modeling tools and techniques are needed to identify accurate mechanical 

models taking into account all uncertain factors, properly quantify uncertainties for the purpose of 

integrating them with the mechanical models, as well as analyze through model simulation the 

effect of uncertainties on the performance of engineering structures.  

Structural identification, in particular, is an inverse problem according to which a model of a 

structure, usually a modal model for linear structures or a finite element model for linear and 

nonlinear structures, is adjusted so that either the time histories, frequency response functions, or 

modal characteristics, simulated from the model, best match the corresponding quantities 

measured or identified from vibration data recorded during various states of structural operation. 

This inverse process aims at providing updated models and their corresponding uncertainties in 

these models based on the available measured data. These updated models are expected to give 

more accurate response predictions to future loadings, as well as allow for an estimation of the 

uncertainties associated with such response predictions.  
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Recently, it has been recognized that the development of reliable algorithms and software that 

exploit measured data for the updating and validation of mathematical/mechanical models as well 

as the quantification and propagation of uncertainties in simulations, constitutes one of 

challenging issues for the advancement of engineering sciences (Oden et al., 2006). In most 

cases, the model updating/validation is based on simulated data that do not correspond to 

realistic situations encountered in practical applications. However, even simple models and 

simulated data present theoretical and computational challenges related to their 

identification/updating. Greater challenges are expected using real measurements for the 

updating and validation of complex models that involve a very large number of DOFs.  

The objective of this thesis is to confront these challenges and provide solutions to a number of 

important issues encountered in the identification of models of structures and their use for 

response/damage predictions, exploiting the information contained in vibration measurements. 

Novel contributions of this thesis constitute the use of vibration measurements for the 

improvement of the fidelity of mathematical/mechanical models and estimating the confidence in 

the response/reliability predictions from these models. Such predictions are important in 

evaluating the performance and safety of structures and making informed decisions for cost-

effective maintenance of these structures.  

 

1.2 Organization of this Thesis 

The research work presented in the thesis contributes to three interrelated research areas of 

model identification and prediction using vibration measurements:  

(1) Development of methods for identifying non-classically damped modal models of linear 

structures, presented in Chapters 2 and 3,  

(2) Development of identification methods for finite element model updating and response 

prediction variability, presented in Chapters 4 and 6, and  

(3) Development of methods for predicting the fatigue damage accumulation in the entire body of 

metallic structures exploiting vibration measurements from a limited number of sensors, 

presented in Chapter 5.  

The analyzed structures are assumed to behave linearly and the identification of finite element 

models in the second research area is based for convenience on modal properties (modal 

frequencies and modeshapes) identified from the measured excitation/response time history. 

Modal identification methods required to give accurate estimates of these modal characteristics 

are thus developed in the first research area. New contributions in this direction are provided for 

the case of input-output vibration measurements as well as the case of output-only vibration 

measurements. Emphasis is also given in the integration of the information contained in vibration 

measurements for making informed response predictions using the identified mechanical models. 

In the third research area, a problem that is formulated and solved for the first time is related to 
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the estimation of fatigue damage accumulation in the entire body of a metallic structure using 

ambient vibration measurements collected from a limited number of sensors placed on the 

structure. The application areas of this research are mainly related to ground/air vehicle and civil 

structures. Emphasis though is given to applications on ground vehicles.  

A more detailed overview of the contents of this thesis is given in the following.  

In Chapter 2, time and frequency domain least squares methods for the identification of non-

classically-damped modal models of linear structures using multiple-support excitations and 

multiple responses are proposed. The methods are extension of the Beck (1978) and McVerry 

(1980) algorithms developed for classically-damped modal models. The identification involves the 

estimation of the number of contributing modes, the modal frequencies, the modal damping 

ratios, the modeshapes, the modal participation factors, the pseudo-response matrix, and the 

initial conditions of the contributing modes. A common structure of the response in the time and 

frequency domains is revealed and exploited to develop an identification method common for 

both time and frequency domain formulations. Novel computationally efficient algorithms for 

solving the resulting highly non-convex nonlinear optimization problems proposed that result in 

automatically estimating the number of contributing modes, as well as the modal frequencies, 

modal damping ratios, modeshapes and modal participation factors of the physical modes without 

or minimal user intervention. Specifically, a three-step approach is proposed to carry out 

efficiently the optimization. The proposed algorithms for identifying non-classically damped 

models are applicable to the cases where the damping is not proportionally distributed through 

out a structure. The computational efficiency and the accuracy of the modal identification 

methods developed are illustrated using input-output acceleration measurements from a bridge 

structure subjected to multi-support earthquake excitations.  

The methodologies and computational algorithms presented in Chapter 2 are extended in 

Chapter 3 to develop frequency domain least squares methods for the identification of non-

classically damped modal models of linear structures using ambient vibration measurements. The 

identification is based on minimizing the square difference between the measured CPSD matrix 

estimated from the available output only measurements and the CPSD matrix predicted by a non-

classically damped modal model. The identification involves the estimation of the number of 

contributing modes, the modal frequencies, the modal damping ratios and the complex 

modeshapes of the contributing modes. Computational efficient algorithms for solving the 

resulting, highly non-convex, nonlinear optimization problem is proposed that result in 

automatically estimating the number of contributing modes, as well as the modal frequencies, the 

damping ratios and the modeshapes of the physical modes without or minimal user intervention. 

A three-step approach was proposed to carry out efficiently the optimization. The effectiveness, 

computational efficiency and accuracy of the develoepd algorithms are illustrated using simulated 

ambient vibration data from simple structural models subjected to unknown white noise 

excitations and real measured data from a full scale bridge structure subjected to ambient wind 

excitations.  

In Chapter 4, the problem of finite element model updating using vibration measurements is 

addressed. The updating is based on the modal characteristics obtained from vibration 
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measurements using the modal identification methodologies presented in Chapters 2 and 3. 

Thus, the model updating methodologies are concentrated on structures that behave linearly. 

Modal grouping schemes are introduced along with modal residuals norms measuring the fit 

between the measured and model predicted modal properties. The structural model updating 

problem is first formulated as a multi-objective optimization problem and then as a single-

objective optimization with the objective formed as a weighted average of the multiple objectives 

using weighting factors. The multi-objective identification method characterizes and computes all 

Pareto optimal models from a model class, consistent with the measured data and the residuals 

used to measure the fit between the measured and model predicted modal properties. The 

similarities with and differences from the conventional weighted modal residuals method is 

established. The problem of rationally estimating the optimal values of the weights or, 

equivalently, selecting the most probable structural model among the Pareto optimal models 

utilising the available measured data is addressed. A rational approach for chossing an optimal 

weight value for carrying out the model updating is proposed based on the measured modal data. 

Thus, the selection of the optimal structural model is based on weight values that are estimated 

based on the data, avoiding an arbitrary a priori selection of these weight values. This optimal 

weight value is shown to arise from the application of a Bayesian statistical framework for model 

selection. The Bayesian framework also quantifies the uncertainty in the Pareto optimal models 

by updating the probability distribution of the weights using the modal data. Emphasis is also 

given in addressing theoretical and computational issues associated with solving the resulting 

multi-objective and single-objective optimization problems, including important issues related to 

estimation of global optima, convergence of the proposed algorithms, and identifiability. Novel 

computationally efficient algorithms are also proposed for estimating the gradients and the 

Hessians of the objective functions using the Nelson’s method (Nelson, 1976) for finding the 

sensitivities of the eigenproperties to model parameters. Theoretical and computational issues 

are demonstrated by updating simple and higher fidelity model classes using experimental data 

from two configurations of a scaled three-story steel structure.  

In chapter 5 addresses the problem of estimating the expected damage accumulation or 

remaining lifetime due to fatigue in the entire body of a metallic structure using output-only 

vibration measurements obtained from a sensor network installed at a limited number of structural 

locations. Available frequency domain stochastic fatigue methods based on Palmgren-Miner 

damage rule, S-N fatigue curves on simple specimens subjected to constant amplitude loads, and 

Dirlik’s probability distribution of the stress range are used to predict the expected fatigue damage 

accumulation of the structure in terms of the power spectral density (PSD) of the stress 

processes. The PSD of stresses at unmeasured locations are estimated from the response time 

history measurements available at the limited measured locations using Kalman filter and a 

dynamic finite element model of the structure. The effectiveness and accuracy of the proposed 

formulation is demonstrated using a multi-degree-of-freedom spring-mass chain model arising 

from structures that consist of members with uniaxial stress states.  

In Chapter 6 vibration experiments from a scaled vehicle model carried out in the Machine 

Dynamics Laboratory of the Department of Mechanical Engineering in Aristotle University were 

used to explore and compare the applicability and effectiveness of the proposed methods for 
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system identification and structural model updating and to develop high fidelity finite element 

models of the experimental vehicle using acceleration measurements. The identification of modal 

characteristics of the vehicle is based on acceleration time histories obtained from impulse 

hammer tests. Modal identification methodologies are used to obtain the modal characteristics 

from the analysis of the various sets of vibration measurements. The modal characteristics are 

then used to update an increasingly complex set of finite element models of the vehicle. A 

detailed finite element model of the vehicle developed using shell elements. The multi-objective 

structural identification method developed in Chapter 4 is used for estimating the optimal finite 

element structural models based on minimizing the modal residuals. Varius parameterization 

schemes are introduced and their affect on the updating results, the fidelity of the optimal finite 

element models, as well as the variability and uncertainty in response predictions from these finite 

element models are explored. The sources of these variabilities in the finite element model and 

thei response prediction are identified.  

Finally, Chapter 7 summarizes the conclusions and the novel contributions of this work. Also it 

presents suggestions for future research on issues related to this thesis. 
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Chapter 2 
 
Least squares identification of non-classically damped modal 
models of structures subjected to multiple support excitations  
 
2.1 Introduction  

The evaluation of the actual dynamic characteristics of engineering structures through 

measurements of their dynamic response has been attracting an increasing research effort 

worldwide. Measured response data of civil engineering structures (e.g. bridges, buildings, dams, 

towers and offshore structures) from earthquake-induced vibrations, and vehicles from vibrations 

induced by road roughness, offer an opportunity to study quantitatively and qualitatively their 

dynamic behaviour within the resulting vibration levels. These vibration measurements can be 

processed for the estimation of the modal characteristics of these structures, as well for the 

calibration of corresponding (finite element) models used to simulate their behaviour. The 

information for the identified modal models and the updated finite element models is useful for 

validating the assumptions used in model development or for improving modelling, analysis and 

design procedures. Also, such information is useful for structural health monitoring purposes.  

This chapter is concerned with the development methods for identifying the modal characteristics 

of vehicle and civil engineering structures based on vibration measurements that are caused by 

multiple support excitations. The evaluation of the actual dynamic characteristics of engineering 

structures through measurements of their dynamic response has been attracting an increasing 

research effort worldwide (Wilson, 1986; Werner et al., 1987; Safak, 1995; Lus et al., 1999; 

Chaudhary et al., 2000; Chaudhary et al., 2002; Smyth et al., 2003; Arici and Mosalam, 2003; Lin 

et al., 2005; Liu et al., 2005; Siringoringo and Fujino, 2007). For earthquake-induced vibrations on 

civil structures and for road roughness induced vibrations on vehicles, the modal characteristics 

are estimated from the measured acceleration excitations occurred at the multiple supports of the 

structure and the measured vibration responses. It has been observed from response 

measurements of these structures that their dynamic properties are markedly different during 

response to strong motion than in small amplitude ambient and forced vibration tests. Hence, it is 

of considerable interest and importance to extract information about structural behaviour from 

strong motion data.  

Modal identification algorithms provide estimates of the modal frequencies, modal damping ratios, 

modeshapes at the measured DOFs and modal participation factors using classically-damped or 

non-classically damped modal models. For the case of earthquake-induced vibrations, modal 

identification methods have been developed in time domain (Beck, 1978; Beck and Jennings, 

1980) and in frequency domain (McVerry, 1980), based on a minimization of the measure of fit 

between the time history or its Fourier transform of the acceleration responses estimated from the 

measurements and the corresponding ones predicted from a classically-damped modal model of 

the structure. Beck (1978) and Beck and Jennings (1980), had presented an output-error 

approach for the identification of linear, time-invariant models from strong motion records, through 

the minimization of a measure of fit including displacement, velocity and acceleration records. 
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McVerry (1980), has applied an output-error approach in the frequency domain, using the Fast 

Fourier Transform of the acceleration response time histories to estimate the modal properties 

through least-squares matching. These methods have been applied to identify the modal 

characteristics of bridges (Werner et al., 1987; Chaudhary, 2002) and buildings (Papageorgiou 

and Lin, 1989) by processing input-output earthquake recordings. Werner et al. (1987) formulated 

a methodology in the time domain for the case of measured input excitation, such as earthquake 

excitation, for an elastic system with classical normal modes and with motion measurements from 

any number of input and system response degrees of freedom. Their procedure was an extension 

of the least-squares-output-error method which was used by Beck (1978).  

Extensions for identifying non classically-damped modal models in the frequency domain have 

also been developed by Chaudhary et al. (2000). Tan and Cheng (1993) proposed an iterative 

identification algorithm, which was based on the modal sweep concept and the band-pass filtering 

process, to identify the modal parameters of a non-classically damped linear structure from its 

recorded earthquake response. Mahmoudabadi et al. (2006) developed a method for parametric 

system identification in frequency domain for classically and non-classically damped linear 

systems subjected up to six components of earthquake ground motions, which is able to work in 

multi-input/multi-output (MIMO) case.  

Most of the aforementioned methods, although they have developed for earthquake engineering 

applications, they are also in principle applicable to aerospace and vehicle engineering to identify 

modal models from input-output vibration measurements of various structural components 

induced by multiple support excitations. A particular example is the modal identification of the 

vehicle body using multi-support input acceleration measurements at the connections of the 

vehicle body with the suspensions and output acceleration measurements at various locations of 

the vehicle body.   

The methods developed by McVerry (1980) in the frequency domain and Beck and Jennings 

(1980) in the time domain, are extended in this work to treat non-classically damped modal 

models, since damping may not be proportionally distributed in various structural components. 

For the special case of bridges, non - proportionally damping appears due to the energy 

dissipation mechanism provided locally by the elastomeric bearings and the foundation soil. For 

base isolated buildings, non proportional damping may appear due to the energy dissipation 

mechanism provided locally by the isolation system. For vehicles, non-proportional damping may 

result from the damping mechanisms provided locally by the front and rear suspension systems. 

Least-squares output-error methods are used in which the optimal values of the modal 

parameters are obtained by minimizing the discrepancy between measured responses and the 

predicted responses of the system. Time domain output error methods process the response time 

histories measured from a network of sensors (e.g. accelerometers), while frequency domain 

output error methods process the Fourier transforms of the measured response time histories. 

A novel aspect of this study is the use of a three step approach to solve the resulting highly non-

convex nonlinear optimization problem. The first step provides estimates of the modal 

frequencies and modal damping ratios by solving a system of linear algebraic equations. 

Stabilization diagrams are used to identify the number of contributing modes by distinguishing 
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between physical and mathematical modes. The second step provides estimates of the 

modeshapes and the participation factors by solving a system of linear algebraic equations for the 

modal residue matrices of the contributing modes and using singular value decomposition to 

estimate the complex modeshapes and modal participation factors. The first two steps usually 

give accurate estimates of the modal characteristics. A third step is added to improve the 

estimates of the modal characteristics by efficiently solving the full nonlinear optimization problem 

with initial estimates of the modal parameters those obtained from the first and second steps. The 

gradients of the objective function with respect to the parameters are obtained analytically in 

order to significantly accelerate the convergence of the optimization in the third step. The 

effectiveness of the proposed methodology is illustrated applied to earthquake recordings 

available from a full-scale reinforced concrete bridge.  

This Chapter is organised as follows. The state space formulation of the equation of motion of 

structures subjected to multi-support excitations is presented in Section 2.2. The formulation of 

the response in terms of the modal characteristics of the non-classically damped modal model is 

presented in Sections 2.3. A common structure of the response in time and frequency domain is 

revealed that is useful in the unification of the identification algorithms for the time and frequency 

domain formulations. Section 2.4 formulates the identification of the modal characteristics as a 

least squares optimization problem, while Section 2.5 presents efficient optimization algorithms 

for estimating the modal characteristics. The effectiveness of the proposed methodology in terms 

of the accuracy and computational efficiency is demonstrated in the application Section 2.6. The 

conclusions of this work are summarized in Section 2.7.  

 

2.2  State space formulation of equations of motion  

Consider a structure that is subjected to multiple support (base) excitations. The equations of 

motion for the structure, assumed to behave within the linear range, can be derived using a 

spatial discretization method, such as finite element analysis. Let n nM  ,  and 

 be the fixed-support mass, damping and stiffness matrices, respectively, of a finite 

element model of the structure, 

0
n nC 

n nK 
( ) n

s
y t   be the response at the DOFs of the mathematical 

model of the structure and ( ) inNz t    be the displacement of the supports DOFs, where n  is 

the number of model DOFs and  is the number of excitation DOFs at the supports (bases). 

The response 

inN

( )
s

y t  of the finite element model of the structure is given by (Clough and Penzien, 

1993; Werner et al., 1987)  

 ( ) ( ) ( )
s

y t s t q t   (2.1) 

where ( )s t  is the pseudostatic component and ( )q t  is the dynamic component of the response. 

The pseudostatic component of the response represents the ‘static’ contributions of the individual 

support motions to the system response and it is given by  

 ( ) ( )s t D z t  (2.2) 
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where 1
sbD K K    is the pseudostatic matrix, which expresses the responses in all degrees 

of freedom due to unit support motions, where sbK  is the stiffness matrix that couples the system 

and base degrees of freedom (DOFs).  

The dynamic component ( )q t  in (2.1) accounts for the contributions of the system’s fixed-base 

modal vibrations about its pseudostatic reference position. The equation of motion for the 

dynamic response component (part) of the response is given by  

 0( ) ( ) ( ) ( )M q t C q t Kq t Lz t      (2.3) 

where ( )sgL M D M   , and sgM  is the mass matrix that couple the system and base 

degrees of freedom (DOFs). Throughout the analysis, it is assumed that the system matrices M , 

 and  are symmetric.  0C K

In the general case of a non-classically damped structure, the set of equations (2.3) must be 

converted to a set of first order state space formulation. This is accomplished by introducing the 

state vector [ T T T]x q q  . Equations (2.3) along with the complementary equation 

( ) ( )M q t M q t   can be written in the state space form 

 ( )
0

L
Px Qx z t

 
   

 
   (2.4) 

where the matrices  and  are given by  P Q

  (2.5) 
0 0

,  Q      
0 0

C M K
P

M M

   
       

Let ( ) outNy t   be the observation vector containing the measured output acceleration 

responses, given in general by  

      s c cy t C y t C x D z t     (2.6) 

where  is a matrix indicating which DOFs are measured (considered in the output 

measurements). Using 

outN nC


(2.1), (2.2), (2.3) and the fact that ( )sgL M D M  
1

0[    ]C C M K C
  

, the matrices  

and  are given by  and 

 

cC

cD

( )M L 

2outN
c



b

n

1 1 out inN N
c sD C D C M M 

   
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2.3  Non-classically damped modal models 

Modal analysis is used to describe the response at the measured (observable) degrees of 

freedom of the structure in terms of the complex eigenproperties (eigenvalues and eigenvectors) 

and the excitation. The analysis is used in subsequent Sections for solving the inverse problem of 

identifying the eigenproperties given input-output measurements.  

 

2.3.1 Time domain formulation  

Let 2n

r
   be the complex eigenvector and r  the corresponding compex eigenvalue 

satisfying the eigenproblem associated with the system (2.4), i.e. 

 ( )P Q 0    (2.7) 

Introducing the eigenmatrix * * 2
1 1

n n
n n    2      , where the superscript 

<*> denotes complex conjugate, it can easily be shown (Natsiavas, 1999) that the eigenmatrix   

artitioned in the form is p

 
*

2 2

* *

n n  
      

  (2.8) 

where  is the eigenmatrix associated with the displacement DOFs n n ( )q t  of the state 

vector ( )x t . The complex eigenvectors satisfy the orthogonality condition  T
rP diag     

and  T
rP diag    . The matrix ( ) n n

rdiag    
/r r r

 is a diagonal matrix with diagonal 

elements the complex  eigenvalues      represented in the form  

 21 ,       1, ,r r r r r r rj a jb r m              (2.9) 

with the modal frequency r  and the modal damping ratio r  satisfying r r   and 

 Re /r r r    . The parameters r r r    and 21r r rb     are expressed in terms 

of the modal frequency r  and the modal damping ratio r . Given r  and  in rb (2.9), the 

modal frequency r  and the damping ratio r  are obtained from the following relationships 

2 2  r r ra b  and 2 2
r rb/r ra a   . 

For the realization of modal analysis method the following transformation is introduced 

  
 
 *

t
x t

t





     
  

 (2.10) 
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where 1[ ( ), , ( )]T
mt t    m  is the vector of the main modal coordinates. Using 

conventional modal analysis, the vector  ;y t   in (2.6) of the acceleration responses at the 

 measured degrees of freedom, based on the non-classically damped modal models, can be 

written in the form 

outN

    ** *

1

( ) ( ) ( ) [ ( ) ( )]
m

c r r r r c
r

*y t U t U t D z t u t u t D z t   


         (2.11) 

 

where the complex-valued modal coordinates ( )r t , 1, ,r m  , satisfy the complex modal 

state space equations 

  ( ) ( ) T
rr r rt t l z     t  (2.12) 

1 out inN N
c sbD C M M

    is a real matrix,  

   2
1, , outN m

m cU u u C C
 

      
   (2.13) 

is the matrix of the complex eigenvectors 2 outN 1, ,r mr r ru C   ,   N, at  DOFs, and out

1T NT  N

 

(1/ ) in
r r rl L    is the complex vector of the modal participation factors relating the  

inputs to the r mode of the system. The modal response ( )r t
in

  can be obtained by solving (2.12) 

using the complex-valued initial condition (0)r  the modal formulation, it is evident that 

the parameter set 

. From

 0 ,T
r rr ru l m D  

m

, , , , 1,...,r c  c  ompletely defines the acceleration 

response at the measured DOFs using  complex modes.  

Alternatively, the acceleration response can be conveniently written in the form  

  ** *

1

( ) [ ( ) ( )]
m

T T
r rr r r r c

r

y t u l t u l t D z 


    t  (2.14) 

where the modal vector ( )r t  satisfies the modal vector equation  

  ( ) ( )r r rt t z    t  (2.15) 

which is solved using the non-zero initial conditions (0)r  with (0) (0)T
rr rl  .  

Alternatively, the acceleration response can be conveniently written in the form  

   *** * * *

1 1

( ) [ ( ) ( )] [ (0) (0) ]r

m m
T T t
r rr r r r c r r r r

r r

r ty t u l t u l t D z t u e u e   
 

        (2.16) 
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where the modal vector ( )r t  satisfies the modal vector equation (2.15) which is solved using 

zero initial conditions (0) 0r  .  

 

2.3.2 Frequency domain formulation 

The finite Fourier transform (FT) ˆ ( )f   of a function ( )f t  over a time segment T  is defined by 

 
0

ˆ ( ) ( )
T

j tf f t e dt    (2.17) 

Using the fact that the finite FT 
ˆ ( )r   of the derivative  of a function ( )r t ( )r t  is related to the 

FT ˆ ( )r   of the function (r t)  as  

 
0

ˆ ˆ( ) ( ) ( ) (0) ( )
T

j t j T
r r r r rt e dt e j               (2.18) 

and applying FT to both sides of (2.11) and (2.12), one has that the FT ˆ( )y   of the response 

( )y t  is related to the FT ˆ( )z   of the excitation by  

 

   

   

* ** *

* *
1 1

* *

*
1

0 0ˆˆ( ) ( )

            

T Tm m
r rr rr r r r

c
r rr r r r

m
r rr rj T

r r r

u uu l u l
y D z

j j j j

u u
e

j j


 
 

       

 
   

 





   
        

          
  

 
   

 





 (2.19) 

 

 

2.3.3 Common structure of response in time and frequency domain  

Comparing the structure of equations (2.16) and (2.19), it should be noted that for either the time 
or the frequency domain formulation the acceleration response vector ( )y t  at time t k  or its 

Fourier tranform 

t 
ˆ( )y   at frequency component k   , where t  is the discretization step 

(sampling time interval),   is the sampling frequency interval and  is a time or frequency 

index set, can be written in the common form  

k

 

  ** *

1

* * *

1

[ ( ) ( )]

         [( ) ( ) ( ) ( )]

m
T T
r rr k r r k r c kk

r

m
jk T jk T

r r k r r r k r
r

y u l u l D z

b e A b e A 

    

   



   



  

   






 (2.20) 
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where for the time domain formulation,  
k

y   represents the acceleration response ( )y k t , 

( )k r   is given by the solution of the modal equation (2.15) with zero initial conditions, 

  10 outN
rr ru    , 10 outN

rb   , 

 ( )        and       ( )rk t
k r kA e z z k  t     (2.21) 

while for the frequency domain formulation,  
k

y   represents the Fourier transform ˆ( )y k   of 

the acceleration response ( )y t ,   10 outN
rr ru    ,   1outN

rr rb u T    , 

 
ˆ( ) 1 ˆ( ) ,       ( )        and       ( )k r k r k

r r

z k
A z

jk jk


z k  

   


  
   
      (2.22) 

It should be noted that for the time domain formulation, the following expressions hold true: 
* *( ) ( )k r k rA A   and * *( ) ( )k r k r    .  

Note that the parameter set   has been introduced in (2.20) to include all the necessary modal 

and other variables that completely define the response vector 
k

y . From the structure of the 

response function in (2.20), the parameter set   includes the modeshapes ru , the participation 

vectors 
T
rl , the eigenvalues r , the elements of the real matric , and the initial conditions cD r  

and rb .  

Note that consistent estimates of r  and rb  should give    / 0 /r r r r ru b     T  or 

equivalently [ (0) / ( )]r r r T br    , something that will be violated in practical applications due 

to model error and measurement noise.  

Also, introducing the functions  

 ( ) ( ) [ (0) ( ) ] ( )Ta
rk r k r r r k rg l T e Ajk T          (2.23) 

 
* * * *( ) ( ) [ (0) ( ) ] ( )Ta
rk r k r r r k rh l T e A *jk T          (2.24) 

equation (2.20) can also be written in an alternative convenient form   

 *

1

[ ( ) ( )]
m

a a
k r k r r k r

r
c ky u g u h D z 



     (2.25) 

where the parameter set a
r  is defined by  

 ( , , (0), ( ))a
rr r r rl    T  (2.26) 

The importance of the alternative form (2.25) will be made clear in the next section  
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2.4  Least-squares identification of structural modes 

A modal model output least-squares error identification approach seeks the optimal values of the 

parameter set   that minimize a measure of fit between the modal model predictions  ky  , 

 and the corresponding response 1, ,k   N ˆky  estimated from the measured data. That is, the 

modal model identification is formulated as a minimization problem of finding the values of   that 

minimizes the weighted measure of fit  

   2

0 0

1 1N NTNL NL NL
k k k

k k

J W
V V

   
 

          (2.27) 

where the error  NL
k   between the measured and modal model predicted responses  

     ˆNL
k k ky y     (2.28) 

is a nonlinear fucntion of the parameter set  ,  is the number of sample data over the 

analysed time period T , and 

N
2

0

ˆ
N

k
k

V y


   is the normalization factor, and 
2 Ty y Wy  with 

 being a user selected weighting matrix. Herein, it is selected to be the identity 

matrix, W .  

out outN NW 
I

 

2.5  Optimization algorithm 

A three step approach is used to estimate the modal properties by solving the least-squares 

optimization problem. The first step provides estimates of the modal frequencies and modal 

damping ratios by re-formulating the objective (error) function in a convenient way so that these 

modal properties can be obtained by solving a system of linear algebraic equations using the 

common denominator model (Heylen et al., 1997). Stabilization diagrams are also used as part of 

the approach to distinguish between physical and mathematical modes and automatically 

estimate the number of contributing modes. This first step is an extension of the PolyMAX or 

polyreference least-squares complex frequency domain method, developed by Peeters et al. 

(2004). It is employed herein to treat non-classically damped modal models describing the 

system’s response characteristics based on earthquake-induced vibration data. The second step 

provides estimates of the modeshapes and the participation factors given the estimates of the 

modal frequencies and modal damping ratios obtained in the first step, by solving a system of 

linear algebraic equations. It should be noted that two different approaches have been developed 

for the computation of the modeshapes and participation factors in this second step. The first 

approach is based on the form (2.20) for the response predictions  ky   with unknown 

parameters to be the residues out inT N N
r rrR u l   , the real matrix  and the vectors cD r  and 

rb . Noting that the objective function is quadratic in these parameters, one can apply the 

stationarity conditions to estimates these residue terms by solving a system of linear algebraic 
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equations. Then noting that residue terms admit the representation 
T

r rrR u l , the modeshapes 

and the participation factors are derived directly by the Singular Value Decomposition (SVD) for 

the resulting numerator matrix rR . The second approach is based on the form (2.25) for the 

response predictions  ky  . Advantage is taken of the fact that the error function is quadratic 

with respect to the modeshapes ku  and the real matrix . The modeshapes are computed by 

taking stationary conditions that lead to a linear system of equations from which the modeshapes 

cD

ku  and the elements of the matrix  are readily derived with respect to the system parameters 

in 

cD

1( , , )a a a
m    , where a

r  is defined in (2.26). An optimization with respect to the 

parameter set a  is required in this step. The first two steps usually give accurate estimates of 

the modal characteristics. However, a third step is often recommended to improve these 

estimates, especially for closely spaced and overlapping modes, by efficiently solving the full 

nonlinear optimization problem with initial estimates of the modal parameters those obtained from 

the first and second steps.  

These steps are described in more details in the sub-sections that follow. 

 

2.5.1 Step 1: Identification of contributing modes, modal Frequencies and 
damping ratios 

Consider the frequency domain formulation of the response. Assuming zero initial and final 

conditions of the response, the FT of the responses in (2.19) can also be written in the form  

 
* *

*
1

ˆ ˆˆ( ) ( ) ( ) ( )
T Tm

r r
c

r r r

u l
D z H j z

j j
r ru l

y   
 

  
     

    
  

 
  (2.29) 

where the frequency response function  

 
* *

*
1

( ( ))
( )

( ( ))

T Tm
r r r r

c
r r r

u l u l B s j
H j D


j


 j A s j   

  
     

    


)

 (2.30) 

is a rational fraction of two polynomials in (s s j  of order 2p m , of which the denominator 

polynomial  given by  ( )A s 

  (2.31) 
0

( )
p

r
r

r

A s s a




is common for all output quantities, and the numerator polynomial matrix  is 

given by 

( ) out inN NB j 

 
0

( )
p

r
r

r

B s s 


  (2.32) 
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with ( )s s j j  
( ) exp(j j

 is the polynomial basis in the continuous time formulation and 

)s s t     in a discrete time formulation of the system dynamics, while 
1p 0 1( , , , )T

pa a a   and , out inN N
r

 0, ,r p  , are the coefficients of the 

denominator and numerator polynomials, respectively.  

Using the relation (2.30), it is clear that the poles of the structure are given by the roots of the 
denominator ( )A s . Given the values of the coefficients   of the denominator polynomial,  these 

roots are readily obtained by the solution of the eigenvalue problem for the companion matrix 

(Kailath, 1980; Haylen et al., 1997). So the problem of finding the poles is reduced to the problem 
of finding the coefficients of the denominator polynomial ( )A s  . This can be readily done by 

using the formulation for the FRF in (2.29) and substituting in the error function (2.28) to obtain  

   ( , ) ˆ ˆ( )
( ; )

NL k
k

k

B j
z

A j k ky
   
 

   (2.33) 

where the parameter set   consists of the coefficients   and r , , of the 

polynomials. It should be noted that the error function 

0, ,r   p
(2.33) is a nonlinear function of   and a 

linear function of r , . Instead of using the nonlinear error function 0, ,r   p (2.33), one can 

redefine the error function 

     ˆ ˆ( ; ) ( , ) ( ) ( ;L NL
k k kA j B j z y A j )              (2.34) 

which is a linear function of the parameters   and r , 0, ,r p  . So the optimization problem 

can be readily solved analytical and obtain the coefficients   and r ,  from the 

solution of a linear system of equations. Specifically, replacing 

0, ,r   p

 NL
k   in (2.27) by  L

k  , 

carrying out the optimization of (2.27) analytically using the stationarity conditions, and finally 

eliminating the variables r ,  in the resulting linear system, one readily obtains the 

following reduced system of normal equations for estimating the coefficients 

0, ,r   p
   

  T 1
o o o

o 1

T S R S 0
outN





 
 

 
   (2.35) 

where R ,  and , , are real matrices defined by  oS oT 1, , outo N 

    1*Re( ) in inN p N pTR Z Z 1     (2.36) 

   1 1* N p pTRe( ) in

o oS Z Y      (2.37)  

   1 1* p pTRe( )o o oT Y Y      (2.38)  

and Z  and , , are complex matrices given by  oY 1, , outo   N
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     

     


1 1 1 1

( 1)

1

ˆ

ˆ

in

T
k p

N N p

T
k N N p N

z s j s j

Z

z s j s j

  

  

 

     
 
 

    

 


 

  (2.39) 

 

     

     

1 1 1 1

( 1)

1

ˆ

ˆ

p o

N p
o

N p N o N

s j s j y

Y

s j s j y

  

  

 

     
 
 

     









N

 (2.40) 

In the above equations, , 1, 2, ,k k   , are the discrete frequencies at which the FRF are 

evaluated and  denotes the Kronecker product. This equation can be solved for the 

denominator polynomial 


  in a least-squares sense. To avoid finding the trivial solution 0  , 

a constraint is imposed on the parameters. Such a constraint also removes the parameter 

redundancy that exists in the common denominator model (multiplying numerator and 

denominator with the same matrix yields different numerator and denominator polynomials, but 

the same transfer function matrix). Specifically, to remove the parameter redundancy the value of 

the coefficient 0  is selected to be 0 1  .    

Once these coefficients   are obtained, the poles r  of the polynomial ( )A s  are readily 

obtained by solving an eigenvalue problem of order 2p m  of the companion matrix of the 

polynomial  (Heylen et al., 1997). The eigenvalues ( )A s r  are then obtained from r  using the 

relation ln(r ) /r t   .  

Stabilization diagrams (Haylen et al., 1997) can be used to distinguish between the mathematical 

and the physical modes and eventually keep only the physical modes of the system. When trying 

to estimate the modal parameters from real data, it is generally a good idea to over-specify the 

model order considerably, i.e. to try to fit high order models that contain much more modes than 

present in the measured data. In particular, the poles corresponding to a certain model order are 

compared to the poles of a one order lower model. If their differences are within pre-set limits, the 

poles are considered as stable one. The spurious mathematical poles will not stabilize at all 

during this process and can be sorted out of the estimated modal parameter data set more easily. 

Thus the previous methodology not only provide estimates of the modal frequencies and modal 

damping ratios but also gives the number of contributing modes through the appropriate-

conventional use of stabilization diagrams. Examples of stabilization diagrams will be shown in 

the application Section 2.6.  

 

2.5.2 Step 2: Identification of modeshapes and participation factors 

In the second step, the number of contributing modes  and the estimated values of the poles m

r  are considered to be known and are used with (2.20) or (2.25) in order to obtain estimates of 

the remaining unknown modal parameters, the modeshapes ru , the participation factors rl , the 
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real matrix , and the vectors cD ra  and r  or the initial conditions  and (0)r ( )r T . Two 

different approaches have been developed for the computation of these quantities in the second 

step.  

 

2.5.2.1 First approach 

In the first approach, given the number of contributing modes  and the estimated values of the 

poles 

m

r , estimates of the residue matrices 
T
rr rR u l , the real matrix , and the vectors cD ra  

and r  are obtained by minimizing (2.27) with  NL
k   given by (2.28) and  

k
y   given by 

(2.20) with 
T
rru l  replaced by rR . It is evident from the structure of the problem that the objective 

function is quadratic in the elements rR , , cD ra  and r . So, using the stationarity conditions, 

one can develop a system of linear equations for the elements rR , , cD ra  and r . For 

completeness, this system of equations is given next as a function of the measurements ẑ , ˆky  

and the values of the system poles r  estimated in the first step. Defining the matrix of unknown 

quantities partitioned as follows: 

 
 

1 1 1

2 2

)m

N m

1

2
1 1

Re( ) Im( ) | | Re( Im( )

      | Re( ) Im( ) out in in

T
m m c m

N N m m
m m

R R R R D a a a

     

 
  

  

  

a

 

X
 (2.41) 

it can be readily shown that the stationarity conditions yield the following system of equations for 

X :  

      * *
k
*

1 1

ˆRe Re
N N

T
k k k

k k

X e     
 

         
   (2.42) 

where  

         2 (j 2 )k in inT N NT T T T T
k k kz e               m  (2.43) 

and ( )j    is a complex valued vector given by  

 2m








    
  

  (2.44) 

with  
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*
1 1

*

1 1

( ) ( )

1 1

( ) ( )

m

m m

j j

j j

   


   



      
 
 

   

    (2.45) 

 

 

*
1 1

*

1 1

( ) ( )

1 1

( ) ( )

m

m m

j j

j

j j

   


   



      
 
 

   

    (2.46) 

 

  

*
1 1

*

2

*
1 1

*

( ) ( )

( ) ( )

( ) ( )

( ) ( )

in

k k

k m k m mN
k

k k

k m k m

j j

j j

   

   
 

   

   

 
 
 
    

 
 
 

  







  (2.47) 

and  

 ˆ ˆke yk  (2.48) 

For the frequency domain formulation,  k   simplifies to  

    k z     k  (2.49) 

The solution of the system of equations in (2.42) provide estimates of the residue matrices rR , 

the real matrix  and the vectors cD ra  and r . Given the residue matrix rR  and noting that it 

admits the representation 
T
rr rR u l , i.e. is expected to be of rank one, the modeshapes ru  and 

the modal participation factors rl  are derived directly by the Singular Value Decomposition (SVD) 

for the resulting numerator matrices rR  using the left-hand and right-hand singular vectors 

corresponding to the highest singular value. For closely spaced and overlapping modes this 

approach may fail to give accurate enough estimates of the modal characteristics for the closely 

spaced modes.   
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2.5.2.2 Second approach 

The second approach is based on the form (2.25) for the response predictions  ky  . In this 

case the parameters to be identified are ru , rl , , (0)r ( )r T , 1, ,r m 

ut inN N

, and the real matrix 

. The total number of parameters is cD 2 (1m N )in oNout    for non-classically damped 

modal models. The total number of parameters can be reduced to 2 (1m )inN , containing the 

parameters rl ,  and (0)r ( )r T  for each mode by recognizing that the objective function in 

(2.27) is quadratic with respect to the complex modeshape ru  and the real matrix . Applying 

the optimality conditions in 

cD

(2.27) with respect to the components of ru  and , a linear system 

of equations results for obtaining 

cD

ru  and  with respect to the parameters cD r l ,  and (0)r

(r )T . This system of equations is given in Nikolaou (2008). The resulting nonlinear optimization 

problem with respect to the remaining 2 ( )1 inm N  parameters rl ,  and (0r ) ( )Tr , 

, is solved in Matlab using available gradient-based optimization algorithms 1,r ,m

 

2.5.3 Step 3: Modal identification by full nonlinear optimization 

The two-step approach gives results that are very close to the optimal estimates. However, for 

closely spaced and overlapping modes, the two step approach may not be adequate. In this case 

it is recommended to solve the full nonlinear optimization problem for the identification of all 
modal parameters simultaneously. Specifically, the modal parameters in the set   are identified 

by minimizing the objective function (2.27) with  NL
k   given by (2.28). The number of 

contributing modes  are obtained using the stabilization diagrams in the first step of the 

algorithm. The initial estimates for the parameters involved in the optimization problem can be 

obtained by the first and second steps of the algorithm, assisting the convergence of the 

optimization algorithm and reducing the computational cost. Two approaches are next introduced 

depending on the form of the response function 

m

 
k

y   and the type of the modal parameters 

involved.  

 

2.5.3.1 First approach 

In the first approach the response vector  
k

y   is given by (2.20) with 
T
rru l  replaced by rR . 

The modal parameter set   to be identified contains the parameters r , r , rR , ra , r , 

,  and  that completely define the response vector in 1, ,r m  cD

1m N

(2.20). The total number of 

parameters is  for non-classically damped modal models.  2 ( ) 4out in out in outN N N N  

The minimization of the objective function (2.27) can be carried out efficiently, significantly 

reducing the computational cost, by recognizing that the error function in (2.27) is quadratic with 

respect to the complex matrices rR , the real matrix , and the elements in the vectors cD ra  and 

r . This observation is used to develop explicit expressions that relate the parameters rR , ra , 
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r  and  to the modal frequencies cD r  and the damping ratios r , so that the number of 

parameters involved in the optimization is reduced to . This reduction is considerable for a 

relatively large number of measurement points. Applying the optimality conditions with respect to 

the components of 

2m

rR , ra , r  and , a linear system of equations result for obtaining cD rR , ra , 

r  and  with respect to cD r  and r , 1, ,r m  . This linear system is given in (2.42). The 

resulting nonlinear optimization problem with respect to the remaining variables  r  and r , 

, is solved in Matlab using available gradient-based optimisation algorithms. The 

starting values of the parameters required in the optimization are obtained from the estimates 

provided by the first and second steps of the algorithm. These starting values are usually very 

close to the optimal values for most of the modes and thus the optimization algorithm converges 

in a relatively few iterations.  

1,r  ,m

rOnce the modal frequencies  and the damping ratios r are estimated by the optimization 

problem, the solution of the system of equations in (2.42) provide estimates of the residue 

matrices rR , the real matrix  and the vectors cD ra rR and r . Given the residue matrix  and 

noting that it admits the representation 
T
rrrR u l , i.e. is expected to be of rank one, the 

modeshapes ru  and the modal participation factors rl  are derived directly by the Singular Value 

Decomposition (SVD) for the resulting numerator matrices rR  using the left-hand and right-hand 

singular vectors corresponding to the highest singular value. For closely spaced and overlapping 

modes this approach may fail to give accurate enough estimates of the modal characteristics for 

the closely spaced modes.   

 

2.5.3.2 Second approach 

In the second approach the response vector is given by (2.25). The modal parameter set   to be 

identified contains the parameters r , r , ru , rl , , (0)r (r T ) , 1, ,r m  , and the real 

matrix  that completely define the response vector in c

outm N

D (2.25). The total number of parameters is 

 for non-classically damped modal models.  2 (2 )Nin outN   inN

The minimization of the objective function (2.27) can be carried out efficiently, significantly 

reducing the computational cost, by recognizing that the error function in (2.27) is quadratic with 

respect to the complex modeshapes ru  and the elements in the matrix . This observation is 

used to develop explicit expressions that relate the parameters 

cD

ru  and  to the vectors cD rl , the 

modal frequencies (r T, the damping ratios r , and the initial conditions , (0)r )r   so that 

the number of parameters involved in the optimization is reduced to 2 ( . This reduction 

is considerable for a relatively large number of measurement points. Applying the optimality 

conditions with respect to the components of 

2)inm N

ru  and , a linear system of equations results for 

obtaining 

cD

ru 1, ,r m and D ith respect to the r , r , rl , (0  ( )r T  )rc  w  and  , . This linear 

system is given in Nikolaou (2008). The resulting nonlinear optimization problem with respect to 
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the remaining variables rl , r , r , r  and (0) ( )r T , 1,r ,m 

4.6

, is solved in Matlab using 

available gradient-based optimisation algorithms. The starting values of the parameters required 

in the optimization are obtained from the estimates provided by the first and second steps of the 

algorithm. These starting values are usually very close to the optimal values for most of the 

modes and thus the optimization algorithm converges in a relatively few iterations. The 

derivatives of the objective function with respect to the modal parameters are evaluated 

analytically, accelerating the convergence of the algorithm.  Modal sweep approaches (Werner et 

al. 1987) could also be implemented to improve the effectiveness of the proposed algorithm.  

 

2.6  Application 

This section applies the developed modal identification methodologies for estimating the dynamic 

modal characteristics of a representative bridge on the Egnatia Odos motorway, using 

earthquake induced vibration measurements. Egnatia Motorway is a new, 670 km long highway, 

that transverses Northern Greece in an E-W direction. The R/C bridge of Polymylos that were 

instrumented with special accelerometer arrays are the 9th Ravine Bridge on the Veroia - 

Polymylos section (Figure 2.1). The bridge has two, almost identical, statically independent 

branches, one for each traffic direction, one of which was instrumented. Modal identification 

results (modal frequencies modal damping ratios and modeshape components) for the Polymylos 

bridge are estimated for the low level, magnitude LM  , earthquake event that occurred on 

21/2/2007 (2:04:38 GMT) at a distance 35km Northeast of the bridge. 

The T-shaped 9th Polymylos bridge is curved in plan and has a total length of 170m. The deck 

cross section is a box girder of height varying parabolically from 9m at the central pier to 4m at 

the two abutments. It is supported monolithically by a central pier (M1), of 35m height, which is 

founded on a massive rectangular R/C rock socket at its basement and continues with two 

transverse flanges for the rest of its height. Each of the two 85m-long cantilever parts of the deck 

girder rests on each abutment through special elastomeric bearings that allow free sliding in the 

longitudinal direction (to accommodate thermal expansions/contractions), while functioning as 

normal elastomeric pads in the transverse (radial) direction. 

 

 22

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



 

Figure 2.1: View of Polymylos bridge 

Two 12-channel Kinemetrics K2 ® recording units were installed on the northern branch of the 9th 

Polymylos bridge (on deck level at the middle of the total bridge deck), each supporting 12 

uniaxial Kinemetrics Episensor ® accelerometers (± 2g full scale) installed on both sides of the 

bridge deck. The recording units have a 19-bit resolution, a sampling rate capacity of up to 

200sps and a dynamic range of 108 dB @ 200 sps. Fifteen sensors were installed on the deck, 

three on the basement of the central pier and three on each of the two abutments (at the support 

level of the elastomeric bearings), as shown in Figure 2.2. Thus, the nine sensors monitor the 

earthquake-induced excitations at the two abutments and the basement of the pier. The particular 

layout of the instrumentation permits the analysis of earthquake-induced response of the bridge. 

The 3 to 4-letter sensor labels follow the following convention: The last letter denotes the 

orientation of the uniaxial sensor (L: longitudinal, T: transverse, V: vertical). The previous one 

denotes the side of the bridge deck on which the sensor lies (R: right, L : left). Finally, the first one 

or two letters denote the bridge section that the sensor lies on (first letters U1 and U3 refer here 

to the abutment level where the elastomeric bearings are seated, U2 refers to the base of the 

central pier and all other letters refer to positions on the level of the bridge deck). The numbers 

next to each sensor label denotes the length of the cable used to connect the sensor to each 

recording unit. Among the 15 accelerometers located on the bridge deck, 8 record in the vertical, 

1 in the longitudinal and the rest 6 in the transverse direction. 
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Figure 2.2: Instrumentation layout of Polymylos bridge 

 

The modal identification carried out in the time domain and in the frequency domain using the 

measurements of the 24 accelerometers which were installed on the northern branch of the 9th 

Polymylos bridge. In particular, in the time domain the modal identification carried out using both 

non-classically damped and classically damped modal models. From the 15 accelerometers 

located on the bridge deck, accelerometers A2LV, A2RV and M2RV were excluded because they 

were damaged during the earthquake event. The accelerometer U1LV which monitors the 

earthquake-induced excitations at the right abutment of the bridge was also excluded for the 

same reason. 

Using all the eight available input sensors which monitor the earthquake-induced excitations at 

the two abutments and the basement of the pier and all twelve available output sensors, the 

values of the modal frequencies and modal damping ratios resulted from Stabilization Diagrams 

are presented in Figure 2.3 for: (a) the Fourier Transform of the accelerations of all vertical 

sensors, and (b) the Fourier Transform of the accelerations of all transverse sensors. After 

distinguishing the physical from the mathematical poles the values of the modal frequencies and 

modal damping ratios are presented in Table 2.1. Eight values of modal frequencies and modal 

damping ratios were identified. These values for the modal frequencies and the damping ratios 

were used for applying the next two steps described in Chapters 3 and 4 and estimating the 

modeshape components and participation factors on the measured locations of the bridge. 
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(a) 

(b) 

Figure 2.3: Stabilization Diagram for the Polymylos bridge: (a) vertical Sensors, (b) transverse sensors. 

 

Table 2.1: Identified modal frequencies   and damping ratios   of the Polymylos Bridge, obtained by the 

Stabilization Diagram for Earthquake Vibrations. 

Polymylos Bridge 

Stabilization Diagram Mode 

  Hz   (%) 

1st Transverse 1,28 2.07 

1st Bending (deck) 2.19 0.42 

2nd Transverse 2.56 4.39 

2nd Bending (deck) 3.19 0.66 

3rd Transverse 4.46 1.46 

3rd Bending (deck) 6.89 0.66 

4th Transverse 7.25 1.20 

1st Torsional 8.40 0.58 
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In Table 2.1 the values for the modal frequencies and damping ratios resulted from the 

identification algorithms for non-classically and classically damped modal models in time and 

frequency domain are presented and compared with the values identified using ambient vibration 

measured data presented in the work by Ntotsios et al. (2008) based on the system identification 

theory presented in Chapter 3 of this thesis. 

Comparing the modal frequencies and damping ratios resulted from the Stabilization Diagrams 

and the modal identification algorithm for time and frequency domain it is observed that there are 

no major discrepancies. This validates that the values of the modal frequencies and the modal 

damping ratios which result from the Stabilization Diagrams constitute a very good approach of 

the optimal values that result from the modal identification algorithm. 

Table 2.2: Identified and design FE model predicted modal frequencies   and damping ratios   of the 

Polymylos bridge for Earthquake Vibrations. 

Earthquake Vibrations 

Frequency Domain 
(non-classically 

damped) 

Time Domain 
(non-classically 

damped) 

Time Domain 
(classically 
damped) 

Ambient 
Vibrations
(Ntotsios 

et. al, 
2008) 

Mode 

  Hz   (%)   Hz   (%)   Hz   (%)   Hz 

1st Transverse 1.26 2.07 1.29 1.8 1.29 1.8 1.13 

1st Bending (deck) 2.19 0.47 2.19 0.4 2.20 0.6 2.13 

2nd Transverse 2.61 3.86 2.57 4.12 2.56 3.5 2.22 

2nd Bending (deck) 3.19 0.61 3.19 0.66 3.20 0.7 3.07 

3rd Transverse 4.45 1.55 4.30 2.49 4.23 3.2 4.10 

3rd Bending (deck) 6.88 0.58 6.89 0.44 6.89 0.6 6.66 

4th Transverse 7.17 1.38 7.24 1.2 7.24 1.2 6.78 

1st Torsional 8.41 0.73 8,39 2,1   - 

 

From the earthquake vibration data, it is noted that eight modes were successfully and reliably 

identified for the Polymylos bridge: four transverse modes, three bending modes and one 

torsional. In Table 2.2, comparing the modal damping ratios, resulted from time domain and 

frequency domain, it is observed that the bending modes have significantly lower values of 

damping, of the order of 0.4% to 0.7%, than the damping values of the lower transverse modes 

which are of the order of 1.2% to 4.12%. The higher damping values observed for the lower 

transverse modes can be attributed to the energy dissipation arising from the higher modal 

deformation levels of the elastomeric bearings at the ends of the bridges which dominate the 

motion of these modes. Also, soil damping could also have contributed to the higher damping 

values observed for these modes.  

Comparing the modal frequencies resulted from non-classically damped case and classically 

damped case for the time domain it is observed that there are no major discrepancies. For the 

modal damping ratios of bending modes, it is observed that the resulted values from non-

 26

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



classically damped case have lower values of the order of 0.4%-0.6% than the values resulted 

from classically damped case which are of the order of 0.6%-0.7%. For the transverse modes it is 

observed that the resulted damping ratios from non-classically and classically damped case of 1st 

and 4th mode have the same values, while the resulted damping ratios of the rest two modes 

have different values. 

Comparing the results from time domain and frequency domain using non-classically damped 

modal models it is observed that the modal frequency of the 3rd transverse mode resulted from 

the time domain has lower value of the order of 4.23 Hz than the value resulted from the 

frequency domain which are of the order of 4.30 Hz. For the rest modes there are no major 

discrepancies between the values of the modal frequencies. Differences are also observed for the 

modal damping ratios for the transverse modes of the order of 0.26% - 0,94% and of the order of 

0.05% - 0.14% for the bending modes. 

From the results in Table 2.2, it is observed that the modal frequencies due to earthquake 

vibrations are 4% to 15% higher than the modal frequencies identified in Ntotsios et. al (2008) 

from the ambient vibrations. No conclusive explanation can be given for these differences without 

making assumptions about the bridge behavior within the measured vibration levels. These 

differences could be attributed to the nonlinear softening hysteretic behavior of the structural 

components, especially the elastomeric bearings. The results in Ntotsios et. al (2008) reveal that 

the peak acceleration responses for the earthquake induced vibrations are 1.4 to 3.8 times lower 

than the peak acceleration responses of the ambient vibrations (Table 2.3). Accepting that the 

estimation of the equivalent modal frequencies is dominated by the peak vibration levels, this 

could justify a higher secant stiffness of the elastomeric bearings for the lower earthquake peak 

vibration levels which results in stiffer structures and thus justifies the increase in the equivalent 

values of the modal frequencies observed in Table 2.2 for earthquake induced vibrations. 

However, this explanation cannot be used to justify the higher modal frequency values observed 

for the modes associated with bending of the deck since these modes are not affected by the 

bearing stiffness. It is unlikely that similar softening nonlinear effects will arise by the deformation 

of the pier and deck elements in these low vibration levels.  

In Ntotsios et. al (2008) the values of the modal frequencies were also identified using much 

shorter duration segments of the ambient vibrations recordings shown in Figure 2.4, selected so 

that the peak acceleration levels are the same as or smaller that the peak acceleration of the 

earthquake recordings. The estimated values of the modal frequencies obtained by analyzing 

these short duration segments were found to be almost identical to the values of the modal 

frequencies that were estimated using the whole, approximate 30 minutes, segment of the 

records shown in Figure 2.4. This verifies that at the low vibration levels considered, the 

aforementioned differences in the peak acceleration levels between the ambient and the 

earthquake induced vibrations cannot justify the large differences in the modal frequencies 

observed in Table 2.2. 
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 (c) (d) 

Figure 2.4: Accelerations time history measurements from ambient (Ntotsios et. al, 2008) and earthquake 
vibrations at sensors B2RV and SRT, (a,c) ambient, (b,d) earthquake 

Table 2.3: Comparison of Peak and RMS response acceleration obtained from Ambient (AV) and 

Earthquake (EV) induced Vibrations (Ntotsios et. al, 2008). 

 Peak response  (cm/sec ) 2 RMS  (cm/sec ) 2

Channel AV EV AV/EV AV EV AV/EV 
B2LV 23.2470 7.1062 3.2714 0.9181 1.9397 0.4733 
M2LL 2.1767 1.0009 2.1747 0.0922 0.2407 0.3830 
M2LV 11.2310 2.9575 3.7975 0.6044 0.7350 0.8223 
SLV 15.9950 6.6148 2.4181 0.8847 2.0163 0.4388 

T3RT 5.9160 3.3652 1.7580 0.1825 0.7129 0.2561 
B2RV 26.9220 7.3206 3.6776 0.9704 1.7120 0.5668 
B2RT 7.7054 2.3919 3.2215 0.2928 0.6667 0.4392 
M2RT 4.3362 2.5179 1.7221 0.2582 0.6141 0.4204 
A2RT 5.5674 2.5210 2.2084 0.2559 0.5911 0.4329 
SRV 17.4100 12.3900 1.4052 0.9418 2.5206 0.3737 
SRT 4.9252 2.5542 1.9283 0.2783 0.5786 0.4810 
T1RT 1.2481 2.3865 0.5230 0.0401 0.6104 0.0657 

 

In contrast to the peak vibration levels, the levels of the RMS response in Table 2.3 of the 

approximately 30 minutes ambient acceleration measurements are 0.25 to 0.82 times the 

corresponding root mean square earthquake response levels. Accepting that the estimation of the 
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equivalent modal frequencies in Table 2.2 is dominated by the RMS vibration levels, the modal 

frequencies due to higher RMS earthquake vibration levels are expected to decrease if softening 

of the elastomeric bearings take place, which is not consistent with the opposite increasing trend 

observed in Table 2.2. 

A more reasonable explanation that can account for the differences in the identified values of the 

modal frequencies in Table 2.2 is soil structure interaction effects (Safak 1995). In this work 

(earthquake vibration case), the modal properties of the system were identified using as input 

acceleration the eight recordings at the two abutments and the base of the central pier and as 

output accelerations the twelve available recordings along the bridge deck. Thus, ignoring the 

rigid body rotation of the central pier foundation at the low vibration levels measured, the modal 

frequencies identified by the input-output earthquake vibration measurements are those of the 

fixed base bridge, excluding the effects of soil-structure interaction since the base motion of the 

abutment and the pier foundation were used as input accelerations in the modal identification 

process. In contrast, in Ntotsios et. al (2008)  for the ambient vibration case, the modal properties 

of the system, obtained from the ambient measurements due to excitations from the traffic and 

wind loads, were identified using only the twelve output accelerations recorded along the bridge 

deck. Thus, the modal frequencies due to ambient vibrations correspond to the dynamic 

characteristics of the combined system consisting of the bridge and accounting for soil structure 

interaction effects. This interaction effect is due to the additional soil flexibility provided at the 

base supports of the bridge. The presence of this effect is also supported from the non-zero 

vibration levels recorded at the base of the pier and the top of the side abutments during ambient 

measurements. Thus, soil-structure interaction effects cause the combined soil-foundation-

superstructure system to appear as less stiff than the superstructure (fixed-based bridge) itself, 

resulting in lower values of the modal frequencies which is consistent with the results observed in 

Table 2.2. 

The modeshape components at the measured locations for the eight identified modes are shown 

in Figure 2.5 for the Polymylos Bridge obtained by the time domain identification algorithm using 

non-classically damped modal models. The identified modeshapes are in general complex 

valued. Figure 2.6 represents in polar plots the modeshapes based on earthquake-induced 

vibrations. These plots have the advantage to show directly the extent of non-classically damping 

characteristics of a modeshape. If all components of a modeshape vector are collinear (in phase 

or 180 degrees out of phase) then this mode is said to be classically (or proportionally) damped. 

On the contrary, the more these modeshape components are scattered in the complex plane, the 

more the mode is non-classically (or non-proportionally). For example, in Figure 2.6 it is observed 

that the 1st transverse mode (1.29 Hz) is nearly classically damped. In Figure 2.7 the earthquake-

induced accelerations and the accelerations predicted by the optimal modal model for selected 

sensors are compared. In Figure 2.8 the Fourier transform (FT) of the earthquake-induced 

accelerations and the FT of the accelerations predicted by the optimal modal model for selected 

sensors are compared. A very good fit is observed, validating the effectiveness of the proposed 

modal identification software based on earthquake recordings. 
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Figure 2.5: The eight identified modeshapes of the Polymylos bridge. 
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Figure 2.6: Polar plots representation of the eight identified modeshapes of the Polymylos Bridge. 
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Figure 2.7: Comparison between measured and optimal modal model predicted accelerations recordings for 
selected sensors of the Polymylos Bridge 

 
 

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

Frequency(Hz)

F
o

u
rie

rT
ra

n
fo

rm

Modal Fit
M2RT

 
0 1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Frequency(Hz)

F
o

u
rie

rT
ra

n
fo

rm

Modal Fit
SLV

 
Figure 2.8: Comparison between measured and optimal modal model predicted Fourier Transforms of 

accelerations recordings for selected sensors of the Polymylos Bridge 

 

2.7  Conclusions 

Time and frequency domain least squares methods for the identification of non-classically-

damped modal models of linear structures from multiple-support excitations and multiple 

responses were developed. The methods are extension of the Beck (1978) and McVerry (1980) 

algorithms developed for classically-damped modal models. The identification involves the 

estimation of the number of contributing modes, the modal frequencies, the modal damping 

ratios, the complex modeshapes, the pseudo-response matrix, and the initial conditions of the 

contributing modes. The common structure of the time and frequency domain formulation is 

revealed and exploited to develop an identification formulation common for both time and 

frequency domains. Computational efficient algorithms for solving the resulting highly non-convex 

nonlinear optimization problems were proposed, including features of automatically estimating the 

number of contributing modes, as well as the modal frequencies and the damping ratios of the 

physical modes without or minimal user intervention. Specifically, a three-step approach was 

proposed to carry out efficiently the optimization. In the first step, non-iterative conventional least 

squares complex frequency domain algorithms along with stabilization diagrams are used to 

automatically estimate the modal frequencies and the damping ratios of the modal model and to 
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distinguish between the physical and mathematical modes. In the second step, two alternative 

approaches were introduced to estimate the modeshapes and the participation factors. The first 

approach is non-iterative and estimates the modal residue matrices by solving a linear system of 

equations given the values of the modal frequencies and damping ratios estimated in the first 

step. Singular value decomposition on the residue matrices provides the complex modeshape 

components and the participation factors. The second approach is a least squares optimization 

approach that takes advantage of the quadratic dependence of the objective function on the 

modeshapes and other matrices to reduce the number of parameters involved to the smallest 

possible number, consisting of the participation factors and the modal initial conditions. The 

estimates provided from the first two steps are in most cases close to the optimal estimates. In 

order to improve the estimates, the full non-convex nonlinear optimization problem has to be 

solved in the third step by using the initial estimates of the parameters obtained in the first two 

steps to accelerate convergence of the optimization algorithm. An efficient solution method was 

proposed. It is demonstrated that the third step improves significantly the accuracy of the modal 

characteristics for closely-spaced and overlapping modes.  

The proposed non-classically damped modal identification algorithms are applicable to the cases 

where the damping is not proportionally distributed through out a structure. Such cases arise in 

base isolated building and bridges using local dissipation mechanics such as elastomeric 

bearings and viscous dampers. Also it arises in the analysis of the combined vehicle-suspension 

structural systems. The computational efficiency and the accuracy of the modal identification 

methods developed were illustrated using input-output acceleration measurements from a bridge 

structure subjected to multi-support earthquake excitations.  
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Chapter 3 
 

Least squares identification of non-classically damped 
modal models based on ambient vibrations  
 
3.1 Introduction  

Experimental modal analysis (EMA) identifies a modal model from the measured forces applied to 

the test structure and the measured vibration responses. Classically, one applies an artificial, 

measurable input to the system and one measures the output. From these measurements, the 

experimental model can be obtained by a variety of parameter estimation methods. During an 

EMA, the structure is often removed from its operating environment and tested in laboratory 

conditions. The latter experimental situation can differ significantly from the real-life operating 

conditions. Also, cases exist where it is rather difficult to apply an artificial force on a structure, 

especially for massive civil structures for which large exciters have to be used to excite the 

structure.  

Vibration measurements during various operational conditions of the structure are easily obtained 

using a monitoring system. Such measurements in most cases contain only responses of the 

structure at various locations. The excitation forces caused by wind, turbulence, waves, traffic 

and other excitation sources on civil structures, ground and air vehicles, are difficult to measure 

and they are not available. System identification techniques have been developed to identify the 

modal model from the structure under its operational conditions from vibration responses only. 

These techniques, referred to as operational modal analysis (OMA) or output-only modal 

identification techniques, take advantage of the ambient excitation which is generated from wind 

and traffic on civil infrastructure (e.g. bridges, buildings), road roughness on ground vehicles, 

wind and waves on offshore structures and turbulence on aircrafts. The main assumption for 

these modal identification methods is that the excitations are broadband processes so that can be 

modeled by white noise. 

There are certain advantages for using output only measurements for identifying the structural 

modes. In operational modal analysis there is no need to use artificial devises for exciting the 

structure (Farrar et al. 1994). Instead, the modes are identified from the vibrations obtained 

during the operation of the structure. This has certain advantages for massive civil structures for 

which large exciters have to be used to excite the structure. The use of exciters is not only very 

costly but it is also time-consuming and impractical (Peeters and De Roeck, 1999) for structural 

health monitoring applications. Ambient vibration measurement can directly be used for 

continuously monitoring the civil engineering structures (Peeters, 2000; Peeters and De Roeck, 

2001). Such ambient vibration measurements have also been recently used in identifying the 

modal characteristics of ground and air vehicles (Peeters et al., 2004; Souty 2008; Boswald et al., 

2006; Boswald and Govers, 2008; Klepka and Tadeusz, 2008; Peeters et al., 2009). Finally, it is 

worth noting that the OMA methods provide the modal properties that correspond to the real 

operation conditions of the structure. This allows the identification of more realistic modal models 

for in-operation structures. These conditions may differ significantly from the ones obtained during 
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laboratory forced excitation tests. Examples of this situation include the modal properties 

obtained for bridges using large exciters. Such modal analyses are usually performed under 

closed traffic conditions. For bridges that are open in traffic, one should expect changes in mass 

loading due to the vehicles passing through the bridge (Kim et al., 2001; Roberts, 2001). These 

changes alter the modal properties of the structure.  

OMA proved very useful in civil engineering, where it is very difficult and expensive to excite 

constructions such as bridges and buildings with a hammer or shaker and to obtain artificially 

induced vibration levels that exceed the natural vibrations due to traffic or wind. Also in 

mechanical engineering, OMA is successfully applied to obtain data-based dynamic models of, 

for instance, a vehicle during road testing or an aircraft during flight tests.  

The drawbacks of the operational modal analysis methods are the broadband assumptions on the 

unknown input and the low signal to noise ratios for the low level vibrations on which usually the 

measurements are made. In particular, all operational modal analysis methods are based on the 

fact that the unknown input forces can be adequately modeled by white noise processes. This 

condition is often violated since excitation forces may contain harmonic components which will 

appear as peaks in the spectra and may be erroneously identified by the methods as structural 

modes. 

This chapter is concerned with developing methods for identification of non-classically modal 

modes using ambient vibrations. The evaluation of the actual dynamic characteristics of 

structures through measurements of their dynamic response induced by ambient excitations has 

been attracting an increasing research effort worldwide. There are a number of methods and 

respective software developed either in time or frequency domain for the identification of modal 

properties. The peak-picking method (Felber, 1993) is the simplest method to estimate the modal 

parameters of a structure subjected to ambient loading. It is based on the power spectra that are 

obtained from the measured time histories using discrete Fourier transform. The locations of the 

peaks of the power spectra give an estimate of the modal frequencies. The mode shapes are 

determined by computing the cross power spectral density functions between all outputs and a 

reference sensor. The method requires that the damping is low and the modes are well-

separated. Violation of these two assumptions may lead to erroneous results. A disadvantage of 

the method is the subjective selection of modal frequencies and the lack of accurate damping 

estimates. However, the major advantage of the method is its speed. In general, the method 

identifies the operational deflection shapes instead of mode shapes, since there is no modal 

model that is fitted to the measured data. In particular, for the case of closely spaced modes such 

operational deflection shapes will be the superposition of the modeshapes of the multiple closely-

spaced modes. 

Nowadays, the stochastic subspace identification (Van Overschee and De Moor, 1996; Hermans 

and Van der Auweraer, 1999; Peeters and De Roeck, 1999; Basseville at al., 2001) has been well 

developed and widely used for identifying the modal properties from ambient vibration 

measurements. In this method, a stochastic state space model is identified directly from 

measured output data or output correlations. It can be shown that this stochastic state space 

model is a good representation of a vibrating structure, provided that the unknown excitation 
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forces can be modeled by white noise processes. Successful real-life modal analysis applications 

of stochastic subspace identification can be found in the literature (e.g. Hermans and Van der 

Auweraer, 1999; Peeters, 2000; Basseville at al., 2001).  

Statistical methods for the estimation of the modal parameters based on output-only 

measurements have also been proposed. Frequency-domain maximum likelihood approaches for 

the estimation of modal parameters from output-only data were proposed by Hermans et al. 

(1998), Guillaume et al. (1999), Verboten (2002), Parloo (2003) and Cauberghe (2004). A 

Bayesian statistical approach for modal identification has also been proposed by Katafygiotis and 

Yuen (2001) using ambient data. The method is based on the statistics of an estimator of the 

spectral density. This approach allows for the direct calculation of the probability density functions 

(PDF) of the modal parameters which can then be approximated by an appropriately selected 

multi-variant Gaussian distribution.    

Besides the aforementioned modal identification approaches, several methods proposed are 

based on fitting directly the measured data with modal model predicted data using least-squares 

type of approaches. In Beck et al. (1994) a methodology for modal identification is proposed 

using time-domain least-squares methods based on correlation functions of the output time 

histories. In Brinker et al. (2001), Verboten (2002) and Cauberghe (2004) frequency-domain 

least-squares methods based on full cross-power spectral densities (CPSD) are proposed.  

Peeters and Van der Auweraer (2005) have proposed a frequency-domain least-squares modal 

identification method based on half spectra. Finally, Devriendt and Guillaume (2008) have 

recently proposed an approach to identify modal parameters from scalar transmissibility 

measurements where the unknown ambient loads can be arbitrary (colored noise, swept sine, 

impact, etc.).    

In this chapter a frequency domain least-squares approach is proposed to identify the modal 

parameters of a structure. A three step approach is proposed to solve the nonlinear optimization 

problem. The first step of the proposed algorithm provides estimates of the poles (modal 

frequencies and modal damping ratios) by solving a system of linear algebraic equations for the 

coefficients of the common denominator polynomial. Conventional stabilization diagrams are 

used to distinguish the physical from the spurious mathematical poles (Heylen et al., 1997). One 

of the novel parts of this chapter is the methodology that is developed based on the special 

structure of the common denominator polynomial that is revealed for the cross power spectral 

density matrices. Taking advantage of this special structure, one simplifies the system of normal 

equations used to compute the coefficients of the common denominator polynomial and also 

reduces considerably the number of spurious mathematical (non-physical) modes that are 

obtained using the conventional stabilization diagrams.  Given the poles selected in the first step, 

the second step of the algorithm identifies the modeshapes and all other modal parameters that 

fully describe the modal model of the structure using two different approaches. Finally the third 

step of the algorithm solves a fully nonlinear optimization problem for the identification of all 

modal parameters simultaneously, with initial estimates the values obtained in the previews two 

steps. The third step is recommended to improve the estimates of the modal parameters 

especially for cases of closely and overlapping modes. The efficiency of the algorithm is tested 

using simulated measured data but also using real measured data from structures. 
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This chapter is organized as follows. Section 3.2 present the equations that relate the cross 

power spectral density to the modal parameters of a non-classically damped modal model of a 

structure. Available methods for estimating the CPSD using output measured response time 

histories are briefly reviewed in the Appendix 3.A. The least squares method for 

identifying/estimating the modal properties is formulated in Section 3.3.  Section 3.4 presents the 

optimization algorithms and the three step approach. Section 3.5 illustrates the effectiveness of 

the methodology using simulated and real measurements from structures. Finally, conclusions of 

this work are presented in Section 3.6. 

 

3.2 Modal decomposition of cross power spectral density functions  

Consider a n  DOF representation of a linear mechanical system given in (2.3). Let ( ) inNf t   

denote the force input vector at continuous time t  and ( ) nx t   the output displacement vector. 

Let the ( )out inN N  Frequency Response Function (FRF) matrix between the outputs and inputs 

be given by equation (Heylen et al., 1997) 

 
* *

*
1

( )
T Tm

r r r r

r r r

u l u l
H j

j j


   

 
    
  (3.1)  

where r , ru  and rl  are respectively the pole, mode shape and modal participation factor of 

mode r , and m  is the number of contributing modes with m n . 

It is known (Ljung, 1999; Lutes and Sarkani, 2004) that for stationary stochastic processes the 

cross power spectral density matrix ( ) n n
xxS j   of the response vector ( )x t  can be written 

as a function of the transfer function ( )H j  and the cross power spectral density matrix 

( )ffS j  of the (unknown) force vector ( )f t  as follows:  

 *( ) ( ) ( ) ( )T
xx ffS j H j S j H j     (3.2) 

Assuming that the forces acting on the structure are independent white noise sequences, then 
the cross power spectral density matrix of the forces is constant, independent of j , given by 

0( )ffS j S   that is diagonal and real. In this case equation (3.2) is written in the form 

 *
0( ) ( ) ( )T

xxS j H j S H j    (3.3) 

It is shown in Heylen et al. (1997) and Ntotsios (2009) that by assuming white noise inputs and 

substituting (3.1) in (3.3) the cross power spectral density matrix ( )xxS j  of the responses 

evaluated at frequency  , can be modally decomposed as follows  

 

* * * *

* *
1

( )
T T T Tn

r r rrrr r r
xx

r r r r r

u g u g g ug u
S j

j j j j


       

 
    

       
  (3.4) 
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where n  is the number degrees of freedom, 21r r r r rj         is the complex 

eigenvalue of the r -th contributing mode, r  is the r -th modal frequency, r  is the r -th modal 

damping ratio, outN
ru  is the complex modeshape of the r -th mode, outN

rg   are vector 

quantities called operational reference vector, given in Ntotsios (2009), that depend on the 

characteristics of the modal model and the CPSD of the white noise input vector, while the 

symbol *z  denotes the complex conjugate of the complex number z . 

The operational reference vector rg  for mode r  is given by (Ntotsios, 2009) 

 
* *

* 1
0

( ) 0

0 ( )

T
T T T T nr

r c c Tr
r

h U
g l S L L

h U




   
          

  (3.5) 

 
where  
 

  1,....
n m

nU u u C    (3.6) 

 

1

m

T

m n
c

T
N

l

L R

l



 
 

  
 
  

  (3.7) 

 

and ( )h j , *( )h j  are diagonal matrices given by  

 

 

1

1
0

( )

1
0

m m

m

j

h j

j

 


 



 
  

  
 
 
  

   (3.8) 

and  

 

*
1

*

*

1
0

( )

1
0

m m

m

j

h j

j

 


 



 
  

  
 
 
  

    (3.9) 

 

The reference vector rg  is a complex function of the cross power spectrum matrix of the 

unknown random input forces and the modal parameters of the structure. Its physical 

interpretation is less obvious than the modal participation factors.  
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It should be noticed that the modal decomposition of the power densities of the outputs has a 

symmetry in the poles i.e. both the positive and negative poles are present in the model. This 

symmetry is referred to as a 4-quadrant symmetry. Given this similarity between the modal 

decomposition of the cross spectral densities of the output time histories and the modal 

decomposition of the FRFs, the modal parameter estimation techniques developed for FRFs can 

be extended to handle the case where the cross power spectral density matrix is available from 

output-only data.  

In most modal identification applications the modal parameters are set to be identified within a 

specific frequency range of interest  1 2,  . In those cases the CPSD function matrix can be 

written alternatively as 

 

* * * *

1
1* *

1 2

( )
( , ) ( )

( )

T T T Tm
r r rrrr r r

r r r r r

u g u g g ug u n j
S j A n j B

j j j j n j

  
        

 
      

       
  (3.10) 

where m  is the number of contributing modes in the frequency range of interest and  
out outN NA  , out outN NB   are real symmetric matrices, called the upper and lower residual 

term, accounting for the approximate contribution of the out-of-bound modes to the selected 

frequency range of interest (Heylen et al. 1997). For the case that the CPSD function matrix is 

given for the acceleration response, the frequency functions 1( )n j  and 2 ( )n j  are given by  

 1( ) 1n j   (3.11) 

and 

 4 4
2 ( ) ( )n j j      (3.12) 

Note that the parameter set   has been introduced in (3.10) to include all the necessary modal 

and other parameters that completely define the CPSD matrix ( , )S j  . From the structure of 

the CPSD matrix in (3.10), the parameter set   includes the poles r , the modeshape vectors 

ru , the reference vectors rg  and the elements of the real matrices A  and B . 

 

3.3 Identification of structural modes  

A modal model output-error identification approach seeks the optimal values of the parameter set 

  that minimize a measure of fit between the CPSD matrix    ,k k kS S j   , 1, ,k N   

predicted by the modal model and the corresponding CPSD matrix  ˆ ˆ
k k kS S j  estimated 

from the measured data at the outN  DOFs. That is, the modal model identification is formulated 

as a minimization problem of finding the values of   that minimizes the weighted measure of fit  

    * 2

0 0

1 1
tr

N N
TNL NL NL NL

k k k
k k

J W
V V

 

   
 

         ` (3.13)  
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where  

     ˆNL
k k kS S     (3.14) 

 

is a nonlinear function of the parameter set  ,    ,k kS S j   , k k   ,   is the 

frequency discretization step (sampling frequency interval), N  is the number of sample data 

over the analyzed frequency band, k  is the frequency index set, 
2

0

ˆ
N

k
k

V S




   is the 

normalization factor, and  2 TY tr Y WY  with out outN NW   being a user selected weighting 

matrix. Herein, the weighting matrix W  is selected to be the identity matrix, W I .  

From the computer implementation point of view, it is necessary to describe the modal model 

predicted CPSD function matrix    ,k kS S j    in terms of real-valued variables in the 

parameter set  . Introducing the modal frequencies r  and the modal damping ratios r , 

instead of the complex poles r , as well as the real and imaginary parts of the modeshape vector 

,Re ,Imr r ru u ju   and the reference vectors 
,Re ,Im

T T T

r r r
g g jg  , the CPSD matrix predicted by 

the modal model is completely described by the real parameter set  

  ,Re ,Im ,Re ,Im
,   ,   ,   ,   ,   ,   1,..., ,   ,   T T

r r r r r r
u u g g r m A B     (3.15) 

where m  is the number of contributing modes which is also an unknown in the identification 

process. The total number of model parameter involved in the prediction of the response at outN  

DOFs given m  modes is 22 (1 2 )out out outm N N N   . Computational efficient algorithms for 

solving this highly nonlinear, non-convex optimization problem involving the objective function 

 NLJ   in (3.13) with respect to the parameter set   in (3.15) are presented in the next Section 

3.4. 

In order to use equation (3.13) and (3.14) for the identification of modal parameters from output-

only data, accurate estimates of the cross power spectral densities ˆ
kS , between the responses, 

are to be obtained from finite sequences of measured time samples. Basically, two classical 

methods exist for the estimation of auto and cross power spectral density estimates (Marple 

1987), the periodogram and the correlogram approach. The periodogram (Marple 1987) method 

operates directly on the data set to yield power spectrum estimates. The correlogram approach 

(Blackman and Tukey 1958) first makes an estimate of the correlation functions in the time-

domain and then proceeds by Fourier transforming the correlation sequences into power spectral 

densities. For both approaches, the user is faced with a tradeoff to produce statistically reliable 

estimates of highest possible spectral resolution from finite sequences of measured time data. 

For completeness, these methods are briefly presented in Appendix 3.A.  
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3.4 Optimization algorithm 

A three step approach is used to estimate the modal properties by minimising the objective 

function (3.13). The first step provides estimates of the modal frequencies and modal damping 

ratios by re-formulating the objective function in a convenient way so that these modal properties 

can be obtained by solving a system of linear algebraic equations using the common denominator 

model (Heylen et al., 1997). Stabilization diagrams are also used as part of the approach to 

estimate the number of contributing modes and distinguish between physical and mathematical 

modes. This first step is an extension of the PolyMAX or polyreference least-squares complex 

frequency domain method, developed by Peeters et al. (2004) for the case of frequency response 

functions. It is developed herein to treat the CPSD functions of non-classically damped modal 

models describing the system response characteristics based on ambient vibration data. In 

particular, advance is taken of the structure of the poles describing the CPSD functions of the 

discrete time system in order to simplify the estimation of the poles. The second step provides 

estimates of the modeshapes and the operational referense vectors given the estimates of the 

modal frequencies and modal damping ratios, by solving a system of linear algebraic equations. It 

should be noted that two different approaches have been developed for the computation of the 

modeshapes and operational referense vectors in this second step. In the first approach the 

residue matrices 

 out outT N N
rr r

R u g    (3.16) 

are assumed to be the unknown parameters and the CPSD function matrix in (3.10) is given in 

the form 

 
* *

1
1* *

1 2

( )
( , ) ( )

( )

T Tm
r r r r

r r r r r

R R R R n j
S j A n j B

j j j j n j

  
        

 
            
 (3.17) 

Recognizing that the objective function in (3.13) is quadratic with respect to rR , A  and B , one 

can apply the stationarity conditions to estimate these residue terms, formulating and solving the 

resulting linear system of equations for rR , A  and B . Then the modeshapes ru  and the 

operational reference vectors rg  are derived directly by the Singular Value Decomposition (SVD) 

of the resulting numerator matrix rR . In the second approach, advantage is taken of the fact that 

the error function in (3.13) with ( , )S j   given by (3.10) is quadratic with respect to the 

modeshapes ru  and the matrices A  and B . This observation is used to develop explicit 

expressions that relate the parameters ru , A  and B  to the vectors rg , the modal frequencies 

r  and the damping ratios r , so that the number of parameters involved in the optimization is 

reduced from 22 (1 2 )out out outm N N N    to 2 ( 1)outm N  . This reduction is considerable for a 

relatively large number of measurement points. The modeshapes ru  and the matrices A  and B  

are computed by taking stationary conditions that lead to a linear system of equations from which 

these parameters are readily derived. The first two steps usually give accurate estimates of the 

modal characteristics. However, a third step is often recommended to improve these estimates, 
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especially for closely spaced and overlapping modes, by efficiently solving the full nonlinear 

optimization problem (3.13) with respect to all modal parameters r , r , ru , rg , A  and B  

involved in (3.10). The initial estimates of the modal parameters are those obtained from the first 

and second steps. Such initial estimates are very good estimates that guarantee accelarated 

convergence to the global optimum. These steps are described in more details in the sub-

sections that follow.  

 

3.4.1 Step 1: Identification of contributing modes, modal frequencies and 
damping ratios 

Consider the modal decomposition of the CPSD matrix assuming white noise inputs given in (3.4) 

by means of a common-denominator function 

 

* * * *

* *
1

( ( ))
( , )

( ( ))

T T T Tm
r r rrr mr r r

r r r r r m

u g u g g ug u N s j
S j

j j j j d s j

 
        

 
     

       
  (3.18) 

which is a rational fraction of two polynomials in ( )s s j  of order 2p m , of which the 

denominator polynomial ( )md s   given by  

  

0

( )
p

mr
m r

r

d s s a


  (3.19) 

is common for all output quantities, and the numerator polynomial matrix ( ) out outN N
mN j   

given by 

  

0

( )
p

mr
m r

r

N s s 


  (3.20) 

with ( )s s j j    is the polynomial basis in the continuous time formulation, 

( ) exp( )s s j j t     is the polynomial basis in the discrete time formulation, while 
1

0 1( , , , )T p
pa a a     and out outN N

r
 , 0, ,r p  , are the coefficients of the 

denominator and numerator polynomials, respectively.  

For the continuous time formulation given in (3.18), it is obvious that the poles of the structure are 

1,r r  , *
2,r r  , 3,r r    and *

4,r r    for 0, ,r m  . Using the discrete time 

formulation the poles r  of the structure are obtained from the transformation 

 r t
r e   (3.21) 

and thus correspond to r , *
r , 1/ r  and *1/ r . 

Using the relation (3.18), it is clear that the poles of the structure are given by the roots of the 

denominator polynomial ( )md s . Given the values of the coefficients  m
ra  of the denominator 

polynomial, these roots are readily obtained by the solution of an eigenvalue problem for the 
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companion matrix (Kailath, 1980; Haylen et al., 1997). So the problem of finding the poles is 

reduced to the problem of finding the coefficients of the denominator polynomial ( )md s  . This 

can be readily done by using the formulation for the CPSD functions matrix in (3.18) and 

substituting in the error function (3.14) to obtain  

  
 

 
( , ) ˆ
( ; )

m
NL m
k km

m

N j
S

d j

  
 

   (3.22) 

where the parameters   in (3.22) consist of the coefficients  m  and  m , 0, ,r p  . 

 It should be noted that the error function (3.22) is a nonlinear function of   and a linear function 

of r , 0, ,r p  . Instead of using the nonlinear error function (3.22), one can redefine the 

error function 

           ˆ( ; ) ( , ) ( ; )m m mL NL
k m r k m m kd j N j d j S             (3.23) 

which is a linear function of the parameters  m  and  m
r , 0, ,r p  . So the optimization 

problem can be readily solved analytical and obtain the coefficients   and r , 0, ,r p   from 

the solution of a linear system of equations. This linear system of equations is developed in the 

next subsection. 

 

3.4.1.1 Reduced normal equations 

Each row of the common denominator model in (3.18) can be expressed in the form: 

  
 
 

, 1, 2, ,
T
o

o out

N
S o N

d





     (3.24) 

where 

   [ ]
,

0

p
T r m T
m o or

r

N s 


  (3.25) 

   [ ]

0

p
r m

m r
r

d s 


  (3.26) 

The polynomial coefficients 1outN
or   and 1 1

ra   are assembled in the following matrices: 

 
  

0

1 11 , 1, 2, ,out

o

N po
o out

op

o N








 

 
 
     
  
 

 


 (3.27) 
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                                           

0

1 1 1p

p








 

 
 
   
  
 




 (3.28) 

                                         
   2

1

1 1 1out

out

N p

N

a






  

 
 
  
 
 
  


  (3.29) 

Error functions for each k  can be written as a vector   1NL
oE C   , of the form 

  

 
 

 
 

1

2

,

,

,

L
o
L
o oL

o o

L
o N

E X Y
a



  
   



  

 
 

      
  

 
 

  (3.30) 

and X  and oY , 1, , outo N  , are complex matrices given by  

  

 

   

   
 

1 1 1

( 1)

1

out

p

N N p

N p N

X C 

 

 

 

 

     
  
 
     







 (3.31) 

  

 

     

     

1 1 1 1

( 1)

1

ˆ

ˆ

o p

N p
o

o N N p N

S

Y C

S



  

  

  

 

      
  
 

      







 (3.32) 

Similar to (3.13) the following cost function can be written according to the error function (3.23): 

       
1 1

( ) , ,
Nl HL L L

o k o k
o k

J tr


      
 

  (3.33) 

The minimization of the cost function leads to a Weighted Least-Squares Problem. Substituting 

equations (3.30), (3.31) and (3.32) in (3.33) yields 
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            
*

* *

*
1 1 1

( )
out out outTN N N

T ToL L L T T T
o o o o o oT

o o oo

X
J tr E E tr X Y tr J J

Y


      

  

          
    

    (3.34) 

where   1 1outN N pJ C     is the Jacobian matrix 

  o oJ X Y  (3.35) 

In case of real-valued coefficients  , it can be shown that the expression *T
o oJ J  can be 

substituted by its real part. Hence, the cost function (3.34) becomes 

   *

1

( ) Re
outN

TL T
o o

o

J tr J J  


  (3.36) 

where 

 
     1 1 1 1*Re( )
Nout p N poutoT

o o T
o o

R Z
J J

Z T

     
  
 

  (3.37) 

with 

    1 1*Re( ) out outN p N pTR X X      (3.38) 

    1 1*Re( ) outN p pT
o oZ X Y      (3.39) 

    1 1*Re( ) p pT
o o oT Y Y      (3.40) 

The cost function is minimized by setting the derivatives of (3.36) with respect to the unknown 

polynomial coefficients   equal to zero: 

                             
( )

2( ) 0
L

o o
o

J
R Z

  



  


               1, , outo N    (3.41) 

                             
1

( )
2 ( ) 0

L l
T
o o o

o

J
Z T

  
 


  

          1, , outo N    (3.42) 

These equations are the so - called normal equations which can be written (using equations 

(3.37) and (3.40)) in the form: 

 *2Re( ) 0 T
o oJ J  (3.43) 

We focus on the polynomial denominator   from which result the poles and the modal 

coefficients in order to set up a stabilization diagram. Consequently, least-squares problem can 

be simplified by substituting the coefficients o , which result from (3.41)  
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 1
o oR Z    (3.44) 

into (3.42). Thus, equation (3.42) becomes: 

 M 0   (3.45) 

where    1 1   p pM  is given by 

  
l

T 1
o o o

o 1

M 2 T Z R Z



   (3.46) 

and can be computed from the measured data. The solution of this equation gives the 

denominator polynomial coefficients   in a least-squares sense. To avoid finding the trivial 

solution 0  , a constraint is imposed on the parameters. Such a constraint also removes the 

parameter redundancy that exists in the common denominator model (multiplying numerator and 

denominator with the same scalar yields different numerator and denominator polynomials, but 

the same CPSD function matrix). Specifically, to remove the parameter redundancy the value of 

the coefficient 0  is selected to be 0 1  . 

Once these coefficients   are obtained, the poles r  of the polynomial ( )d s are readily 

obtained by solving an eigenvalue problem of order 4p m  of the companion matrix of the 

polynomial ( )d s  (Heylen et al. 1997). The eigenvalues r  are obtained from r  using the 

relations (3.21).  

 

3.4.1.2 Stabilization diagrams 

In modal analysis applications the accuracy of the estimated modal parameters is important. 

When trying to estimate the modal parameters from real data, it is generally a good idea to over-

specify the model order considerably, i.e. to try to fit high order models that contain much more 

modes than present in the measured data. Stabilization diagrams (Heylen et al., 1997) can be 

used to distinguish between the mathematical and the physical modes and eventually keep only 

the physical modes of the system. In particular, the poles corresponding to a certain model order 

are compared to the poles of a one order lower model. If their differences are within pre-set limits, 

the poles are considered as stable one. The spurious mathematical poles will not stabilize at all 

during this process and can be sorted out of the estimated modal parameter data set more easily. 

Thus the previous methodology not only provide estimates of the modal frequencies and modal 

damping ratios but also gives the number of contributing modes through the appropriate-

conventional use of stabilization diagrams. Examples of stabilization diagrams will be shown in 

Section 3.5.  
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3.4.1.3 Simplification using special structure of common denominator model  

It should be noted that the denominator polynomial ( )md s  in (3.18) using the transformation 

(3.21) in the discrete time formulation can be given in the form 

 *
*

1

1 1
( ) ( )( )( )( )

m

m r r
r r r

d s s s s s 
 

      (3.47) 

 
which is of order 4p m . Carrying out the product of the factors, the denominator polynomial 

( )md s  can be written in the form 

  4 3 2
,4 ,3 ,2 ,1 ,0

1

( )
m

m r r r r r
r

d s a s a s a s a s a


      (3.48) 

with  
 

 ,4 ,0 1r ra a   (3.49) 

  *
,3 ,1 *

1 1 1
2 Re 2 Rer r r r r

r r r

a a   
  

 
        

 
 (3.50) 

  2 2*
,2 2 2* *

1 1 1 1
2 2 Rer r r r r

r rr r

a
   

   

   
           

   
 (3.51) 

Consequently equation (3.48) can be written in general form as  

  4 3 2
,0 ,1 ,2 ,1 ,0

1

( )
m

m r r r r r
r

d s a s a s a s a s a


      (3.52) 

Proposition: The polynomial ( )md s  admits the representation  

      
2 1 2 1

2 4
2

0 0

( )
m m

m m mk m m k
m k m k

k k

d s a s a s a s
 



 

     (3.53) 

which specifies that the coefficients of the term ks  are the same as the coefficients of the term 
p ks  , that is,     

4
m m

k m ka a  , 0,1, , 2k m  . 

Proof: The proposition will be shown to be true using mathematical induction.    

For 1m   the formulation (3.53) gives 

                
1 1

1 1 1 1 1 1 1 14 3 2 2 4
1 0 1 2 1 0 2

0 0

( ) k k
k k

k k

d s a s a s a s a s a a s a s a s 

 

          (3.54) 

which is true due to the representation (3.52) and selecting  1
0 1,0a a ,  1

1 1,1a a  and  1
2 1,2a a . 
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Assuming that formulation  (3.53) holds for m  it will be shown that it also stands for 1m  , that is 

      
2( 1) 1 2( 1) 1

1 1 12( 1) 4( 1)
1 2( 1)

0 0

( )
m m

m m mk m m k
m k m k

k k

d s a s a s a s
   

    
 

 

     (3.55) 

Using the representation (3.52) the denominator 1( )md s  can be written as 

  4 3 2
1 1,0 1,1 1,2 1,1 1,0( ) ( )m m m m m m md s d s a s a s a s a s a           (3.56) 

Setting 1 1,1mb a  , 2 1,2mb a  , 1,0 1ma    and substituting (3.53) into (3.56) yields 

        
2 1 2 1

2 4 4 3 2
1 2 1 2 1

0 0

( ) 1
m m

m m mk m m k
m k m k

k k

d s a s a s a s s b s b s b s
 




 

        
 
   (3.57) 

and by multiplying the expressions in the parentheses yields 

 

         

         

     

2 1 2 1 2 1 2 1 2 1
1 2 3 4

1 1 2 1
0 0 0 0 0

2 2 1 2 2 2 3 2 4
2 1 2 2 2 1 2 2

2 1 2 1
4( 1) 4 4( 1) 3

1 2
0 0

( )
m m m m m

m m m m mk k k k k
m k k k k k

k k k k k

m m m m mm m m m m
m m m m m

m m
m m mm k m k

k k k
k k

d s a s b a s b a s b a s a s

a s b a s b a s b a s a s

a s b a s b a s

    
   


    

   

 
     

 

     

    

 

    

 
   

2 1
4( 1) 2

0

2 1 2 1
4( 1) 1 4( 1)

1
0 0

m
m k

k

m m
m mm k m k

k k
k k

b a s a s


  



 
    

 







 

 (3.58) 

Observing the symmetry in (3.58) where all pairs of order ks , 4( 1)m ks    for 0, , 2( 1)k m    

have the same polynomial coefficients, with the only exception of the term   2 2
2 2

m m
mb a s  , the above 

equation can obviously be written in the general form (3.55), where the coefficients  1m
ka 

 can be 

directly derived from the coefficients  m
ka  and the values of 1b  and 2b . 

      
2( 1) 1 2( 1) 1

1 1 12( 1) 4( 1)
1 2( 1)

0 0

( )
m m

m m mk m m k
m k m k

k k

d s a s a s a s
   

    
 

 

     (3.59) 

This implementation reduces the number of the unknown polynomial coefficients 

0 1 4( ,  , ,  )T
m      in (3.45) from 1 4 1p m    to 1 2 1

2

p
m    coefficients 

0 1 2( ,  , ,  )T
m       taking advantage of the fact that 4k m k   . Substituting 4k m k    

into (3.45) and considering only the first 2 1m   equations, the unknown vector 

0 1 2( ,  , ,  )T
m       of the coefficients defining the denominator polynomial ( )md s  is given 

by the set of linear equations  

 M 0   (3.60) 
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where the matrix (2 1) (2 1)M m m     is derived from the elements of the matrix M  as follows: 

 
, , ,

,2 1 ,2 1

M M M  ,        1, 2, , 2

M M

l k l k l tm k

l m l m

k m

 

  



 
  (3.61) 

This special structure of the denominator polynomial ( )md s  reduces by a factor of two the 

computational time for obtaining the modes of the structure using stabilization diagrams. In 

addition, the mathematical poles estimated using the special structure (3.60) of the reduced 

normal equations is a subset of the mathematical poles estimated with the original set (3.45) of 

reduced normal equations. This has an effect of limiting the number of spurious mathematical 

modes that are manifested in the stabilization diagrams. This results in better ways of 

distinguishing between the mathematical and the physical modes. It should be noted using the 

above simplified formulation for the denominator polynomial ( )md s  given in (3.53) does not 

impose that the resulting poles to come in groups of four giving r , *
r , 1/ r  and *1/ r  for 

0, ,r m  . Such poles are also considered as spurious mathematical poles.  

 

3.4.2 Step 2: Identification of modeshapes and operational reference vectors 

In the second step, the number of contributing modes m  and the estimated values of the poles 

r  are considered to be known and are used with (3.10) in order to obtain estimates of the 

remaining unknown modal parameters, the modeshapes ru , the operational reference vectors 

rg  and the real matrices A  and B . Two different approaches have been developed for the 

computation of these quantities in this second step.  

 

3.4.2.1 First approach 

In the first approach, given the number of contributing modes m  and the estimated values of the 

poles r , estimates of the residue matrices rR  and the real matrices A  and B  are obtained by 

minimizing (3.13) with  NL
k   given by (3.14) with  kS   given by  

 
* *

1
1* *

1 2

( )
( ) ( )

( )

T Tm
r r r r

r r r r r

R R R R n j
S j A n j B

j j j j n j

 
        

 
            
  (3.62) 

Note that (3.62) is the same as (3.10) with 
T

r r
u g  replaced by rR . 

It is evident from the structure of the problem that the objective function is quadratic in the 

elements of rR , A  and B . So, using the stationarity conditions, one can develop systems of 

linear equations for the elements of rR , A  and B . For completeness, these systems of 

equations are given next as a function of the measurements and the values of the system poles 

r . An important result of this approach is that the optimal estimates of rR , A  and B  that 
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minimize the objective function (3.13) given the number of contributing modes and the values of 

r  are obtained by a non-iterative approach.   

First the complex-valued matrix rR  1, ,r m   in (3.62) involved in the description of the modal 

model are expressed in terms of the real and imaginary parts as follows: 

 r r rR L jG   (3.63) 

with , Nout Nout
r rL G  . The CPSD function matrix of equation (3.62) is then written as 

  1
1

1 2

( )
( ) ( )

( )

m
T T

r r r r r r r r
r

n j
S j L G L k G k A n j B

n j

   


   



         (3.64) 

where 
 

 1 *

1 1
( )r

r r

n j
j j

 
   

  
    

 (3.65) 

 1 *

1 1
( )r

r r

n j j
j j

 
   

  
    

 (3.66) 

 1 *

1 1
( )r

r r

k n j
j j


   

  
      

 (3.67) 

 1 *

1 1
( )r

r r

k n j j
j j


   

  
      

 (3.68) 

For the case that the CPSD function matrix is estimated using the acceleration response 

measurements, the frequency functions 1( )n j  and 2 ( )n j  are given by (3.11) and (3.12). It 

should be also noted that for the case that 1( )n j   and 2 ( )n j   are real the following 

relation holds true:   

 * *   and   r r r rk k       (3.69) 

Consider first the case i l  and define the vectors of unknown quantities partitioned as follows:  

 1, , 1, , 1, , 1, ,   T
li li m li il m il r li m li il m il li il li ilz L L L L G G G G A A B B        (3.70) 

for 1, , outl N   and 1, , outi N  , where ,r liL  is the ( , )l i  element of the matrix rL  involved in   

(3.63), while similar definitions hold for the quantities ,r liG , liA  and liB . It can be readily shown 

that the stationarity conditions yield the group of ( 1)out outN N   algebraic systems of equations  
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 , 1, , , 1, , ,
li

li li out outT

li

a
M X

z a l N l N l i
X H

b





 
        
   

 

             (3.71) 

where the left-hand side matrix, partitioned by the four submatrices M , X , TX  and H , is 

common for all the systems of equations. The submatrices are given by 

 

 

       

       

       

     

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

Re Re Re Re

Re Re Re Re

Re Re Re Re

Re Re Re Re

N N N N
T T T T

k k k k

N N N N
T T T T

k k k k

N N N N
T T T T

k k k k

N N N
T T T

k k k

k k

k k

M

k k

k k

   

   

   

  

     

     

     

    

       

   

       

   

       

   

     

  



   

   

   

    
1

N
T

k



 



 
 
 
 
 
 
 
 
 
 
 
  



 (3.72) 

 
 

 

 

 

 

 

1
1

1 12

1
1

1 12

1
1

1 12

1
1

1 12

Re 0 Re 0

0 Re 0 Re

Re 0 Re 0

0 Re 0 Re

N N

k k

N N

k k

N N

k k

N N

k k

n
n

n

n
n

n
X

n
n

n

n
n

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
   

  
         

     
  

  
  

   

 

 

 

 

 (3.73) 

and  
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 

 

2 2
1 1
2

1 12 2

2 2
1 1
2

1 12 2

2
21
1

1 12

2
21
1

1 12

Re 0 Re 0

0 Re 0 Re

Re 0 Re 0

0 Re 0 Re

N N

k k

N N

k k

N N

k k

N N

k k

n n

n n

n n

n n
H

n
n

n

n
n

n

 

 

 

 

 

 

 

 

    
    

    
              

     
  

  
  

   

 

 

 

 

 (3.74) 

 
 

Using the relations in (3.69), it can be readily shown that the matrix M  is symmetric, i.e. 
TM M  and can be written as  

  
1

Re
N

T

k

M


 


  (3.75) 

with  

 

*

*
















 
 
   
 
  

 (3.76) 

Also, it is obvious from (3.74) that H  is also symmetric. Thus, the system matrix in (3.71) is 

symmetric. 

The right-hand side vector for each ( , )l i system in (3.71) is partitioned by the three subvectors 

lia ,  lia  and lib  given by 

 

 

 
1

1

Re

Re

N

li
k

li N

il
k

S

a

S

















 
    
 
  








 (3.77) 

 

 

 
1

1

Re

Re

N

li
k

li N

il
k

S

a

S

















 
    
 
  








 (3.78) 

and 
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 

 

1

1 2

1

1 2

1
1

1
1

Re

Re

Re

Re

N

li
k

N

il
k

li
N

li
k

N

il
k

n
S

n

n
S

n
b

n S

n S

















  
   

  
     
    
 
 
 
 
 
 

















 (3.79) 

 
 

Finally, the vectors   and k   involved in all above equations are given as 

 

 

1

m












 
   
 
 

  and  

1

m

k

k

k







 
   
 
 

  (3.80) 

 

where m  is the number of contributing modes . 

Consider next the case of l i  and define the vectors of the rest of the unknown quantities  

 1, , 1, ,
T
ii ii m ii ii m ii ii iiz L L G G A B      (3.81) 

 for 1, , outi N  . It can be readily shown that the stationarity conditions yield a group of 

/ 2outN   algebraic systems of equations given by  

 

ii
d d

ii iiT
d d

ii

a
M X

z a
X H

b





 
      
   

 

 (3.82) 

 

where the left-hand side matrix, partitioned by the four submatrices dM , dX , T
dX  and dH , is 

common for all the systems of equations. The matrices are given by 

 

 

       

       
1 1 1 1

1 1 1 1

Re Re Re Re

Re Re Re Re

N N N N
T T T T

k k k k
d N N N N

T T T T

k k k k

k k

M

k k

   

   

     

     

       

   

       

   

 
  

 
 

  
 

   

   
 (3.83) 
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 

 

1
1

1 12

1
1

1 12

Re Re

Re Re

N N

k k

d N N

k k

n
n

n
X

n
n

n

 

 

 

 

 

 

 

 

  
   

           

 

 
 (3.84) 

and  
 
 

 

2 2
1 1
2

1 12 2

2 2
1 1

2
1 12 2

Re Re
1

2
Re Re

N N

k k

d N N

k k

n n

n n
H

n n

n n

 

 

 

 

    
    

                   

 

 
 (3.85) 

 

Using the relations in (3.69), it can be readily shown that the matrix dM  is symmetric, i.e. 
T

d dM M . Also, it is obvious from (3.85) that dH  is also symmetric. Thus, the system matrix in 

(3.82) is symmetric. 

The right-hand side vector for each ( , )i i  system in (3.82) is partitioned by the three subvectors 

iia ,  iia  and iib  given by 

  
1

Re
N

ii ii
k

a S


 



 
  
 



 (3.86) 

  
1

Re
N

ii ii
k

a S


 



 
  
 



 (3.87) 

and 

 

 

1

1 2

1
1

Re
1

2
Re

N

ii
k

ii N

ii
k

n
S

n
b

n S









  
   
    
 
  








 (3.88) 

 
 

The vectors   and k   are given in (3.80). 

The solutions of the systems of equations in (3.71) and (3.82) provide estimates of the residue 

matrices rR  and the real matrices A  and B . Given the residue matrices rR  and noting that it 

admits the representation T
r r rR u g , i.e. is expected to be of rank one, the modeshapes ru  and 

the operational reference vectors rg  are obtained by applying singular value decomposition SVD 

on each rR R  

 TR U V   (3.89) 
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where    1 1 1,  ,  ( ),  and 
out out outN N i NU u u V v v diag           . The 

modeshape vector  ru  corresponds to the larger singular value 1  and is given by 1 1ru u , 

while the operational reference vectors rg  is given by 1rg v . However, for the case of closely 

spaced and overlapping modes this approach sometimes fail to estimate all contributing closely 

spaced modes. An example of this case will be presented in subsection 3.5.2. 

 
 

3.4.2.2 Second approach 

In the second approach, given the number of contributing modes m  and the estimated values of 

the poles r , estimates of the modeshapes ru , the operational reference vectors rg  and the 

real matrices A  and B  are obtained by minimizing (3.13) with  NL
k   given by (3.14) and 

 kS   given by  

* * * *

1
1* *

1 2

( )
( , ) ( )

( )

T T T Tm
r r rrrr r r

r r r r r

u g u g g ug u n j
S j A n j B

j j j j n j

  
        

 
      

       
  (3.90) 

The number of parameters that are involved in the optimization using the formulation in (3.90) is 
22 (1 2 )out out outm N N N   . By recognizing that the the error function in (3.13)  is quadratic with 

respect to the modeshapes ru , A  and B , advantage is taken to develop explicit expressions 

that relate the parameters ru , A  and B  to the vectors rg and the poles r , so that the number 

of parameters involved in the optimization is reduced to 2 ( 1)outm N  . This reduction is 

considerable for a relatively large number of measurement points. So, using the stationarity 

conditions, one can develop a system of linear equations for the elements of ru , A  and B  with 

respect to the vectors rg  and the poles r . For completeness, this system of equations is given 

next as a function of the measurements, the vectors rg  and the values of the system poles r . 

First the complex-valued modeshape ru  1, ,r m    involved in the description of the modal 

model (3.90) are expressed in terms of the real and imaginary parts as follows: 

 r r ru j    (3.91) 

with the vectors , Nout
r r   . The CPSD function matrix of equation (3.90) is then written as 

  1
1

1 2

( )
( ) ( )

( )

m
T T T T

r r r r r r r r
r

n j
S j k k A n j B

n j

       


   



         (3.92) 

where 
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*

1 *
( ) r r

r
r r

g g
n j

j j
 

   


 
  

   
 (3.93) 

 

*

1 *
( ) r r

r
r r

g g
n j j

j j
 

   


 
  

   
 (3.94) 

 

*

1 *
( ) r r

r
r r

g g
k n j

j j


   


 
  

     
 (3.95) 

 

*

1 *
( ) r r

r
r r

g g
k n j j

j j


   


 
  

     
 (3.96) 

For the case that the CPSD function matrix is given for the acceleration response the frequency 

functions 1( )n j  and 2 ( )n j  are already given by (3.11) and (3.12). It should be also noted 

that 1( )n j   and 2 ( )n j   are real the following relation holds true:   

 * *   and   r r r rk k       (3.97) 

Define the vector of unknown quantities partitioned as follows:  

 

 

 
 
 
 

2 ( )out out

T

T

N N m

T

T

vec

vec
x

vec A

vec B



 
 
    
 
 
  

  (3.98) 

 

where 

 1
outN m

m          (3.99) 

 1
outN m

m          (3.100) 

 

The stationarity conditions with respect in the parameters in x  yield the  algebraic system of  

2 ( )out outN N m  equations for x : 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



 57

 

11 12 13 14 1

21 22 23 24 2

31 32 33 14 3

41 42 43 44 4

L L L L b

L L L L b
x

L L L L b

L L L L b

   
   

             

 (3.101) 

 

where the left-hand side matrix is partitioned by the submatrices ,p qL  , 1, , 4p q    given by 

  11
1

Re
f

out out

out

N
mN mNT T

I N
k

L M M M I K    



            
   (3.102) 

  12
1

Re
f

out out

out

N
mN mNT T

I N
k

L M M M I K    



            
   (3.103) 

 
2

1
13

1 2

Re
f

out out

out

N
mN NT

N
k

n
L M I

n




      
  
   (3.104) 

 
2

14 1
1

Re
f

out out

out

N
mN NT

N
k

L n M I 



     
  
   (3.105) 

  21
1

Re
f

out out

out

N
mN mNT T

I N
k

L M M M I K    



            
   (3.106) 

  22
1

Re
f

out out

out

N
mN mNT T

I N
k

L M M M I K    



            
   (3.107) 

 
2

1
23

1 2

Re
f

out out

out

N
mN NT

N
k

n
L M I

n




      
  
   (3.108) 

 
2

24 1
1

Re
f

out out

out

N
mN NT

N
k

L n M I 



     
  
   (3.109) 

 
2

1
31

1 2

Re
f

out out

N
mN NT

Nout I
k

n
L I M K

n
 



           
   (3.110) 

 
2

1
32

1 2

Re
f

out out

N
mN NT

Nout I
k

n
L I M K

n
 



           
   (3.111) 

 
2 2

2

2
1

33 2
1 2

Re
f

out out

out

N
N N

N
k

n
L I

n




    
  
   (3.112) 
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2 2

2

2
1

34
1 2

Re
f

out out

out

N
N N

N
k

n
L I

n




     
  
   (3.113) 

 
2

41 1
1

Re
f

out out

N
mN N

Nout I
k

L n I M K  



          
   (3.114) 

 
2

42 1
1

Re
f

out out

N
mN N

Nout I
k

L n I M K  



          
   (3.115) 

 

 
2 2

2

2
1

43
1 2

Re
f

out out

out

N
N N

N
k

n
L I

n




     
  
   (3.116) 

and 

 
2 2

2

2
44 1

1

Re
f

out out

out

N
N N

N
k

L n I 



    
  
   (3.117) 

 

The right-hand side vector of the system in (3.101) is partitioned by the four subvectors 1b , 2b , 

3b  and 4b  given by 

    1
1

ˆRe
f

out

out

N
mNT T

N
k

b M I vec S



     
  
   (3.118) 

    2
1

ˆRe
f

out

out

N
mNT T

N
k

b M I vec S



     
  
   (3.119) 

   2
1

3
1 2

ˆRe
f

out

N
NT

k

n
b vec S

n

     
  
   (3.120) 

   2

4 1
1

ˆRe
f

out

N
NT

k

b n vec S


    
  
   (3.121) 

 

and the matrices M  , K  , T
IM   and T

IK   are given by 

 1
outN m

mM            (3.122) 

 1
outN m

mK k k          (3.123) 
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2

1
out

out out

out

N

mN NT
I

mN

I

M

I











 
 

  
   

    (3.124) 

 
2

1out

out out

out out

N

N mNT
I

N N

I K

K

I K







 
 
  
 

  

    (3.125) 

where the   denotes the Kronecker product, 
outN

I  denotes the identity matrix dimensioned 

out outN N  and 
l

Z  denotes the l  row of matrix Z . 

For given the number of m contributing modes and values of the poles estimated in the first step 

of the algorithm, the solution of the system of equations in (3.101) gives the modeshape 

components of the structure at the measured DOF with respect to the vectors rg . The optimal 

values of the modeshapes that minimize the objective described in (3.13) with  NL
k   given by 

(3.14) are computed by nonlinear optimization algorithms with respect to the elements of the 

complex vectors rg . For this, the complex-valued vectors rg  1, ,r m   involved in the 

optimization are expressed in terms of the real and imaginary parts so the resulting number of 

parameters involved in the optimization algorithm is 2 outmN . Each iteration of the optimization 

procedure demand the solution of the system of equations in (3.101) of size 2 ( )out outN N m . 

   

3.4.3 Step 3: Modal identification by full nonlinear optimization 

For closely spaced and overlapping modes, the two step approach may not be adequate. In this 

case the full nonlinear optimization problem can be solved for the identification of all modal 
parameters. Specifically, the modal parameters in the set   are identified by minimizing the 

objective function (3.13) with  NL
k   given by (3.14). The number of contributing modes m  are 

obtained using the stabilization diagrams in the first step of the algorithm. The initial estimates for 

the parameters involved in the optimization problem can be obtained by the first and second 

steps of the algorithm, assisting the convergence of the optimization algorithm and reducing the 

computational cost. Two approaches are next introduced depending on the form of the CPSD 
function ( , )S j   and the type of the modal parameters involved.  

 

3.4.3.1 First approach 

In the first second approach the CPSD function is given by (3.17). The modal parameter set   to 

be identified contains the parameters r , r , rR , 1, ,r m  , A  and B  that completely 
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define the CPSD matrix in (3.17). The total number of parameters is 2 22 (1 )out out outm N N N    

for non-classically damped modal models.  

The minimization of the objective function (3.13) can be carried out efficiently, significantly 

reducing the computational cost, by recognizing that the error function in (3.13) is quadratic with 

respect to the complex matrices rR  and the elements in the matrices A  and B . This 

observation is used to develop explicit expressions that relate the parameters rR , A  and B  to 

the modal frequencies r  and the damping ratios r , so that the number of parameters involved 

in the optimization is reduced to 2m . This reduction is considerable for a relatively large number 

of measurement points. Applying the optimality conditions with respect to the components of rR , 

A  and B , linear systems of equations result for obtaining rR , A  and B  with respect to r  and 

r , 1, ,r m  . These linear systems are given in (3.71) and (3.82). The resulting nonlinear 

optimization problem with respect to the remaining variables  r  and r , 1, ,r m  , is solved 

in Matlab using available gradient-based optimisation algorithms. The starting values of the 

parameters required in the optimization are obtained from the estimates provided by the first and 

second steps. These starting values are usually very close to the optimal values for most of the 

modes and thus the optimization algorithm converges in a relatively few iterations. Noting that the 

matrices rR  admit the representation T
rr rR u g , 1, ,r m  , the modeshapes ru  and the 

operational reference vectors rg  are derived directly by the Singular Value Decomposition (SVD) 

for the resulting numerator matrices rR  using the left-hand and right-hand singular vectors 

corresponding to the highest singular value.  

 

3.4.3.2 Second approach 

In the second approach the CPSD function is given by (3.10). The modal parameter set   to be 

identified contains the parameters r , r , ru , rg , 1, ,r m  , A  and B  that completely 

define the CPSD matrix in (3.10). The total number of parameters is 22 (1 2 )out out outm N N N    

for non-classically damped modal models.  

The minimization of the objective function (3.13) can be carried out efficiently, significantly 

reducing the computational cost, by recognizing that the error function in (3.13) is quadratic with 

respect to the complex modeshapes ru  and the elements in the matrices A  and B . This 

observation is used to develop explicit expressions that relate the parameters ru , A  and B  to 

the vectors rg , the modal frequencies r  and the damping ratios r , so that the number of 

parameters involved in the optimization is reduced to 2 ( 1)outm N  . This reduction is 

considerable for a relatively large number of measurement points. Applying the optimality 

conditions with respect to the components of ru , A  and B , a linear system of equations results 

for obtaining ru , A  and B  with respect to the rg , r  and r , 1, ,r m  . These linear 

systems are given in (3.101). The resulting nonlinear optimization problem with respect to the 
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remaining variables rg , r  and r , 1, ,r m  , is solved in Matlab using available gradient-

based optimisation algorithms. The starting values of the parameters required in the optimization 

are obtained from the estimates provided by the first and second steps. These starting values are 

usually very close to the optimal values for most of the modes and thus the optimization algorithm 

converges in a relatively few iterations.  

  

3.5 Validation using simulated and measured ambient vibrations  

In the remaining sections of this chapter the proposed identification techniques are validated by 

means of three examples. First the methodology that has been developed for the first step of the 

algorithm and presented in Sections 3.4.1.1, 3.4.1.2 and 3.4.1.3 is tested using simulated 

ambient vibration measurements. Specifically, the methodology that is developed in Section 

3.4.1.3 based on the special structure of the common denominator polynomial is applied and 

compared with the conventional methodology for the identification of the structural poles. Next, 

the proposed three step algorithm is applied and its efficiency is tested for the identification of 

closely spaced and overlapping modes using simulated measurement data of the response of a 

model structure. Finally, a real-life example for the identification of the modal properties of a full-

scale bridge using ambient response measurements is presented. 

 

3.5.1 Identification of structural poles using simulated measurement data 

This example is concentrated on the efficiency of the first step of the proposed modal 

identification algorithm where the poles of the structure are identified creating stabilization 

diagrams. The methodology developed in Section 3.4.1.3 based on the special structure of the 

common denominator polynomial is applied and compared with the conventional methodology for 

the identification of the structural poles developed in Section 3.4.1.1. A three dimensional beam 

model of a two-span bridge-like structure, shown in Figure 3.1, is considered in the simulation 

studies. The simulated measurement data used for the modal identification are the vibration 

responses predicted at several locations by a finite element model of a structure. These 

vibrations are induced by excitation forces applied at the deck and modeled by white noise 

processes. The “measured” CPSD function matrices used for the simulation are derived directly 

using equation (3.3) where the Frequency Response Function is calculated from the finite 

element model of the structure using a modal damping ratio of 2% and the intensity of the white 

noise excitation is 1. 

 

3.1: Two-span model of a bridge-like structure. 
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The first step of the proposed identification algorithm described in Section 3.4.1 is applied in the 

frequency band that contain the first four modes of the structure for identifying the structural poles 

that yield the modal frequencies r  and the modal damping ratios r . The stabilization diagram 

that is constructed by solving sequentially the system of linear equations in (3.60) and using the 

simplification presented in Section 3.4.1.3 increasing the order of the common denominator 
polynomial order with maximum value of order 100p   is presented in Figure 3.2. In Figure 3.2 

the green cross ( )  marker represent the poles that do not derive in groups of four r , *
r , 

1/ r  and *1/ r  for the discrete time models described in Section 3.4.1.1 and are ignored in the 

stabilization procedure. All other markers represent the poles that appear in groups of four with 

the red square markers representing the poles stabilized considering the modal frequencies and 

the red triangular markers representing the poles stabilized considering both the modal 
frequencies and modal damping ratios. The magenta xi ( )  markers correspond to non stabilized 

spurious mathematical poles that comes in groups of four r , *
r , 1/ r  and *1/ r . 

For the conventional case, the stabilization diagram constructed in the same way by solving 

sequentially the system of linear equations in (3.45) but without using the simplification presented 

in Section 3.4.3, is presented in Figure 3.3. Similar to Figure 3.2 the green cross (+) marker in 

Figure 3.3 represent the poles that are not derived in groups of four r , *
r , 1/ r  and *1/ r  for 

the discrete time models described in Section 3.4.1 and are ignored in the stabilization procedure. 

All other markers represent the poles that appear in groups of four with the red square markers 

representing the poles stabilized considering the modal frequencies and the red triangular 

markers representing the poles stabilized considering both the modal frequencies and modal 

damping ratios. It should be noted that in the conventional method the poles are never derived 

exactly following the form of r , *
r , 1/ r  and *1/ r , but they have small computational errors, 

due to the fact that such a sequence of four poles has not being enforced in the conventional 

method. In order to be grouped and accepted as physical poles, a tolerance criterion must be 

implemented when comparing the poles computed with the ideal case of r , *
r , 1/ r  and 

*1/ r . For the case of Figure 3.3 the tolerance is selected to be 3%tol   and the four poles are 

assumed to approximately form a sequence of r , *
r , 1/ r  and *1/ r  if 

r r

r

tol
 







 with 

r  are the poles in the continuous time formulation given by 

 
ln r

r t

 


 (3.126) 
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Figure 3.2: Stabilization Diagram constructed using the simplification presented in Section 3.4.1.3. 

 

 

Figure 3.3: Stabilization Diagram constructed using the conventional method. 
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Comparing the stabilization diagrams presented in Figures 3.2 and 3.3 it is observed that several 

spurious mathematical modes appear for both the cases of the new and the conventional 

methods. The number of spurious mathematical modes for the case of the conventional method 

is significantly higher than the corresponding number for the new method. Also, both methods 
converge fast as the value of p  increases. Specifically, for both methods the physical modes 

have been identified and the procedure has converged for values of 20p  . It has been 

observed that, for the conventional method, by decreasing the tolerance criterion, the order of the 

polynomial in which all four physical modes are computed is increased. Finally, the predictions of 

the modal frequencies and damping ratios obtained from the new and the conventional method 
for 20p   and 40p   are presented in Table 3.1 for the new method and in Table 3.2 for the 

conventional method. The accuracy of the predictions is inferred by comparing these predicted 

values with  the actual values obtained from the eigenvalue analysis of the finite element model of 

the structure. It is observed that both methodologies in this case of simulated experimental data 

easily identify the modes of the structure giving accurate results for the values of the modal 

frequencies and the modal damping ratios. Generally, both methodologies appear to work 

adequately, easily identifying the modes of the structure. The new method is more efficient since 

it takes advantage of the special structure of the denominator polynomial in CPSD to converge 

faster and provide accurate results consistent with the structure of the denominator polynomial.  

 

Table 3.1: Comparison between the identified values of the modal frequencies and modal damping ratios 

and the nominal values estimated by the FEM, for the new method. 

1st mode 2nd mode 3rd mode 4th mode 
 

1  (Hz) 1  (%) 2  (Hz) 2  (%) 3  (Hz) 3  (%) 4  (Hz) 4  (%) 

FEM 2.842 2.00 3.569 2.00 4.595 2.00 5.769 2.00 

20p   2.844 2.04 3.570 2.00 4.596 2.00 5.770 1.99 

40p   2.845 2.00 3.570 2.00 4.596 2.00 5.770 2.00 

 

Table 3.2: Comparison between the identified values of the modal frequencies and modal damping ratios 

and the nominal values estimated by the FEM, for the conventional method. 

1st mode 2nd mode 3rd mode 4th mode 
 

1  (Hz) 1  (%) 2  (Hz) 2  (%) 3  (Hz) 3  (%) 4  (Hz) 4  (%) 

FEM 2.842 2.00 3.569 2.00 4.595 2.00 5.769 2.00 

20p   2.845 2.02 3.570 2.00 4.596 2.00 5.770 2.00 

40p   2.845 2.00 3.570 2.00 4.596 2.00 5.770 2.00 
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It should be noted that the aforementioned results are based on simulated CPSD functions that 

are computed directly from the finite element model of the structure and the PSD of the white 

noise excitation. Next, the identification of the first four modes of the same model is performed 

again but this time the simulated CPSD functions are computed using simulated vibration 

response time histories predicted at same locations as before. These vibrations are induced by 

excitation forces applied at the deck and modeled by discrete white noise processes. The 

equations of motion are then solved to compute the acceleration response time histories. The 

CPSD function matrices of the acceleration response of the model are estimated from these 

simulated time histories using the methodologies described in Appendix 3.A.  

The stabilization diagrams for new method (see Section 3.4.1.3) and the conventional (see 
Section 3.4.1.1) are constructed with maximum value of order 100p   and presented in Figures 

3.4 and 3.5, respectively. The interpretation of the symbols (markers) green cross (+), red square 

and red triangular in these figures is kept the same as the one used for Figures 3.2 and 3.3. It 

should be noted that applying the conventional method for the first step of the algorithm the poles 

estimated are not obtained in groups of four r , *
r , 1/ r  and *1/ r  for the discrete time 

models and the same tolerance criterion of 3%tol   is used. This makes the distinction 

between physical and mathematical more difficult resulting in many spurious mathematical poles 

that can not be removed easily from the stabilization procedure. Compared to Figures 3.4 and 
3.5, it can be seen that a slower converge is observed as the value of p  increases, especially for 

the conventional method. Specifically, for the conventional method the stabilization of the poles 

seem not to be as efficient as for the new method even for high order denominator models.  

Both methods seem to have been converged in modal frequencies for values of 20p   but it 

should be noted that for both methods higher order denominator models seem to provide poles 

that makes the stabilization procedure not very reliable. This problem could be solved and 
eliminate the spurious modes appearing for high values of p  by implementing another criterion 

in the stabilization procedure that takes into account the comparison of the modeshapes 
computed by the poles of order p  and 1p  . Specifically the modal assurance criterion (MAC) 

could be implemented for comparing two modeshapes in the stabilization procedure but this 

requires the estimation of all modeshapes given the poles. These modeshapes can be estimated 

using the techniques described in Section 3.4.2, increasing significantly the computational cost of 

the procedure.  

The accuracy of the predictions of the modal frequencies and damping ratios obtained from the 
new and the conventional methods for 20p  and 40p   is presented in Table 3.3 and 3.4 and 

compared to the actual values obtained from the eigenvalue analysis of the finite element model 

of the structure. It is observed that both methods fail to give sufficiently accurate estimates of the 

modal damping ratios for all four modes. Generally, the new method is more efficient and 

accurate since it has faster converge properties and provide accurate results for the modal 

frequencies and damping ratios of all four modes.  
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Figure 3.4: Stabilization Diagram constructed using the simplification presented in Section 3.4.1.3. 

 

 

Figure 3.5: Stabilization Diagram constructed using the conventional method. 
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Table 3.3: Comparison between the identified values of the modal frequencies and modal damping ratios 

and the nominal values estimated by the FEM, for the new method. 

1st mode 2nd mode 3rd mode 4th mode 
 

1  (Hz) 1  (%) 2  (Hz) 2  (%) 3  (Hz) 3  (%) 4  (Hz) 4  (%) 

FEM 2.842 2.00 3.569 2.00 4.595 2.00 5.769 2.00 
20p   2.853 2.09 3.589 1.78 4.592 2.30 5.766 2.07 

40p   2.857 2.01 3.585 1.79 4.591 2.33 5.763 1.97 

 

Table 3.4: Comparison between the identified values of the modal frequencies and modal damping ratios 

and the nominal values estimated by the FEM, for the conventional method. 

1st mode 2nd mode 3rd mode 4th mode 
 

1  (Hz) 1  (%) 2  (Hz) 2  (%) 3  (Hz) 3  (%) 4  (Hz) 4  (%) 

FEM 2.842 2.00 3.569 2.00 4.595 2.00 5.769 2.00 
20p   2.855 2.18 3.585 1.77 4.595 2.30 5.767 2.03 

40p   2.842 1.97 3.569 1.76 4.595 2.31 5.769 1.75 

 
 

3.5.2 Identification of closely spaced  and overlapping modes using simulated 
measurement data 

In this section the methodologies will be tested for closely spaced and overlapped modes. The 

modal identification of a structure that has closely and overlapping modes is always a challenging 

problem. This problem is studied in this subsection in detail. Specifically, the proposed three step 

algorithm is applied and its efficiency is tested for the identification of closely spaced modes using 

simulated measurement data of the response of a model structure. In the literature, a two step 

algorithm is commonly used for modal identification. This example demonstrates that the first two 

identification steps are sometimes inadequate especially for the case of closely and overlapping 

modes. For this case the application of the third step is necessary and is shown to improve 

significantly the modal identification results. 

A three dimensional beam model of a two-span bridge-like structure, shown in Figure 3.6, is 

considered in the simulation studies. The two spans are weakly connected and almost similar in 

properties. This has an effect of having pairs of two very closely-spaced bending modes. The 

dynamics of the structure considered in this artificial example is encountered in existing bridge 

structures. Specifically, the behavior of the two span bridge resembles the behavior observed for 

the four span G2 Kavala bridge of Egnatia Odos Motorway (Ntotsios et al. 2009). The four-span 

Kavala bridge has four closely spaced bending modes due to the almost similar properties of the 

four spans and the fact that these spans are weakly connected with each other. A finite element 

model for the simulated two-span bridge is constructed. The simulated measurement data used 

for the modal identification are the vibration responses predicted at several locations by the finite 

element model of a structure. These vibrations are induced by excitation forces applied at the 

deck and modeled by white noise processes. The “measured” CPSD function matrices used for 
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the simulation is derived directly using equation (3.3) where the Frequency Response Function is 

calculated from the finite element model of the structure using a modal damping ratio of 2% and 

the intensity of the white noise excitation is 1. The model of the structure has been properly 

selected to have pairs of closely spaced and overlapping modes.  

 
 

 
Figure 3.6: Two-span model of a bridge-like structure. 

 

The first step of the proposed identification algorithm described in Sections 3.4.1.1 to 3.4.1.3 is 

next applied in the frequency band that contain the first two pairs of closely spaced and 

overlapping modes for identifying the structural poles that yield the modal frequencies r  and the 

modal damping ratios r . The stabilization diagrams for new method (see Section 3.4.1.3) and 

the conventional (see Section 3.4.1.1) are constructed with maximum value of order 100p   

and presented in Figures 3.7 and 3.8, respectively. The interpretation of the symbols (markers) 

green cross (+), red square and red triangular in these figures is kept the same as the one used 

for Figures 3.2 to 3.5. It should be noted that applying the conventional method for the first step of 

the algorithm the poles estimated are not obtained in groups of four r , *
r , 1/ r  and *1/ r  for 

the discrete time models. This makes the distinction between physical and mathematical more 

difficult resulting in many spurious mathematical poles that can not be removed easily from the 

stabilization procedure. 
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Figure 3.7: Stabilization Diagram constructed using the simplification presented in Section 3.4.1.3 

 

 

Figure 3.8: Stabilization Diagram constructed using the conventional method 
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Comparing the stabilization diagrams presented in Figures 3.7 and 3.8 it is observed that several 

spurious mathematical modes appear for both the cases of the new and the conventional 

methods. The number of spurious mathematical modes for the case of the conventional method 

is significantly higher than the corresponding number for the new method. For both methods the 
physical modes have been identified and the procedure has converged for values of 20p  . For 

the conventional method, the convergence is slower increasing the lowest order of the common 

denominator polynomial in which all four modes of the structure first appear stabilized. Finally, the 

predictions of the modal frequencies and damping ratios obtained from the new method and the 
conventional method for 20p   and 40p   is presented in Tables 3.5 and 3.6 respectively. 

The accuracy of these prediction is inferred by comparing the predicted values to the actual 

values obtained from the eigenvalue analysis of the finite element model of the structure. It is 

observed that generally, the both methods are efficient and accurate with fast converge 

properties and provide accurate results for the two pairs of closely-spaced modes. 

 

Table 3.5: Comparison between the identified values of the modal frequencies and modal damping ratios 

and the nominal values estimated by the FEM, for the new method. 

1st mode 2nd mode 3rd mode 4th mode 
 

1  (Hz) 1  (%) 2  (Hz) 2  (%) 3  (Hz) 3  (%) 4  (Hz) 4  (%) 

FEM 3.228 2.00 3.286 2.00 4.916 2.00 5.004 2.00 

20p   3.221 1.94 3.293 1.98 4.916 2.02 5.008 1.97 

40p   3.231 2.00 3.288 2.00 4.917 2.00 5.006 2.00 

 

Table 3.6: Comparison between the identified values of the modal frequencies and modal damping ratios 

and the nominal values estimated by the FEM, for the conventional method. 

1st mode 2nd mode 3rd mode 4th mode 
 

1  (Hz) 1  (%) 2  (Hz) 2  (%) 3  (Hz) 3  (%) 4  (Hz) 4  (%) 

FEM 3.228 2.00 3.286 2.00 4.916 2.00 5.004 2.00 

20p   3.225 2.05 3.293 1.98 4.916 2.02 5.008 1.97 

40p   3.231 2.00 3.288 2.00 4.917 2.00 5.006 2.00 

 

From the results, it can be concluded that both methodologies appear to work adequately, easily 

identifying the modes of the structure. The new method is more efficient since it takes advantage 

of the special structure of the denominator polynomial in CPSD to converge faster and provide 

accurate results consistent with the structure of the denominator polynomial. 

Next, in order to account of the fact that the existence of measurement noise may hinder the 

identification of the structural modes, the identification will also be based on simulated 

acceleration time histories generated by solving the equations of motion of the structure to 

discrete white noise excitation. For this, the identification of the modes of the bridge shown in 
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Figure 3.6 is performed again but this time the simulated CPSD functions are computed using 

simulated vibration response time histories predicted at same locations as before. These 

vibrations are induced by excitation forces applied at the deck and modeled by discrete white 

noise processes. The equations of motion are then solved to compute the acceleration response 

time histories. The CPSD function matrices of the acceleration response of the model are 

estimated from these simulated time histories using the methodologies described in Appendix 

3.A.  

In generating the simulated acceleration response time signals to be used for identification using 

OMA, it should be noted that in order to clearly identify the closely spaced modes, the time 
duration of these responses should be several times greater than (2 / )  , where   is the 

distance between the modal frequencies of the closely spaced modes. It is expected that the 
larger the duration of the measured response in relation to (2 / )  , the better the estimates of 

the closely spaced modal properties. As the duration is increased, the measurements tend to 

contain the necessary information for the distinction of the closely and overlapped modes. 

The first two steps of the proposed identification algorithm described in Section 3.4.2 are applied 

in the frequency band that contain the closely spaced modes for identifying the modal properties 

r , r , ru , rg , A  and B  that define the CPSD matrix. The third step of the algorithm 

described in Section 3.4.3 is also applied, where the original non-linear optimization problem 

(3.13) is solved with respect to the parameters r , r  and rg , using as initial values for the 

minimization algorithm the values of the parameters already computed by the first two steps of 

the identification algorithm.  

Specifically, the first step of the proposed identification algorithm described in Sections 3.4.1.1 to 

3.4.1.3 is applied in the frequency band that contain the first two pairs of closely spaced and 

overlapping modes for identifying the structural poles that yield the modal frequencies r  and the 

modal damping ratios r . The stabilization diagrams for the new method (see Section 3.4.1.3) 

and the conventional one (see Section 3.4.1.1) are constructed with maximum value of order 
100p   and presented in Figures 3.9 and 3.10, respectively. Comparing the stabilization 

diagrams it is observed that several spurious mathematical modes appear for both the cases of 

the new and the conventional methods. The number of spurious mathematical modes for the 

case of the conventional method is significantly higher than the corresponding number for the 

new method. It should be noted that for both methods higher order denominator models seem to 

provide poles that makes the stabilization procedure not very reliable. As before, this problem 

could be solved by implementing another criterion in the stabilization procedure that takes into 
account the comparison of the modeshapes computed by the poles of order p  and 1p  .  

Also, the new method converges much faster as the value of p  increases. Specifically, for the 

new method the physical modes have been identified and the procedure has converged for 
values of 68p   for the first pair of closely spaced modes and 40p   for the second pair of 

closely spaced modes. For the conventional method, the convergence is much slower and seems 

to fail to identify the first pair of closely spaced modes.  
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Figure 3.9: Stabilization Diagram constructed using the simplification presented in Section 3.4.1.3 

 

 

Figure 3.10: Stabilization Diagram constructed using the conventional method 
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The accuracy of the predictions of the modal frequencies and damping ratios obtained from the 
new method for  40p   and 100p   is presented in Table 3.7. The accuracy of the predictions 

of the modal frequencies and damping ratios obtained from the conventional method for  40p   

and 100p   is presented in Table 3.8. In both tables the identified values are compared to the 

actual values obtained from the eigenvalue analysis of the finite element model of the structure. It 

is obvious that the new method performs much better for closely spaced modes. However, the 

accuracy of the modal frequencies and damping ratios of the closely spaced modes identified by 

the new method are not as good, especially for the modal damping ratios. To improve the 

accuracy of the modal frequencies and damping ratios, third step of the proposed nonlinear 

optimization algorithm is necessary. 

Table 3.7: Comparison between the identified values of the modal frequencies and modal damping ratios 

and the nominal values estimated by the FEM, for the new method. 

1st mode 2nd mode 3rd mode 4th mode 
 

1  (Hz) 1  (%) 2  (Hz) 2  (%) 3  (Hz) 3  (%) 4  (Hz) 4  (%) 

FEM 3.228 2.00 3.286 2.00 4.916 2.00 5.004 2.00 

40p   3.253 0.36 3.266 1.91 4.918 1.32 5.028 1.66 

100p   3.248 1.32 3.278 1.29 4.920 1.25 5.030 1.60 

 

Table 3.8: Comparison between the identified values of the modal frequencies and modal damping ratios 

and the nominal values estimated by the FEM, for the conventional method. 

1st mode 2nd mode 3rd mode 4th mode 
 

1  (Hz) 1  (%) 2  (Hz) 2  (%) 3  (Hz) 3  (%) 4  (Hz) 4  (%) 

FEM 3.228 2.00 3.286 2.00 4.916 2.00 5.004 2.00 

20p   3.266 1.96 - - 4.922 1.23 5.027 1.64 

100p   3.280 2.47 - - 4.922 1.29 5.029 1.61 

 

Next, the accuracy of the identified modal values using the first two steps is compared to the 

accuracy of the identified modal values using all three steps. Using the stabilization diagram of 

Figure 3.9, the two pairs of closely and overlapping modes are identified and used in the second 

step of the identification algorithm for the estimation of the modeshapes and the reference 

vectors. Both approaches, termed 1st and 2nd approach, presented in Section 3.4.1.2 are applied. 

The resulting modal fits are shown in Figures 3.11 and 3.12 in the vicinity of the two pairs of 

closely spaced modes. Specifically, Figures 3.11 and 3.12 shows the comparison between the 

absolute value ˆ( )S k   of the measured CPSD functions and the absolute value ( ; )S k    

of the CPSD functions predicted by the identified modal model. The third step of the identification 

algorithm is also applied and the resulted modal fits are also shown in Figures 3.11 and 3.12 for 
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the acceleration responses concentrated in the frequency band of the closely spaced and 

overlapping modes. For the third step, also the two approaches, termed 1st and 2nd approach, that 

have been introduced in Section 3.4.1.3 are applied. Table 3.9 summarizes the results for the 

modal frequencies and the modal damping ratios estimated by the third step of the algorithm 

using both the first and the second approach. It can be seen that the estimated values are very 

close to the exact values predicted by the finite element model used to generate the 

measurements especially when using the second approach 

.  

Table 3.9: Comparison between the identified values of the modal frequencies and modal damping ratios 

and the nominal values estimated by the FEM, using the three step algorithm. 

1st mode 2nd mode 3rd mode 4th mode 
 

1  (Hz) 1  (%) 2  (Hz) 2  (%) 3  (Hz) 3  (%) 4  (Hz) 4  (%) 

FEM 3.228 2.00 3.286 2.00 4.916 2.00 5.004 2.00 

1st 
Approach 

3.243 1.71 3.293 1.74 4.921 1.79 5.037 1.74 

2nd 
Approach 

3.234 2.00 3.287 2.09 4.913 1.93 5.013 1.86 

 

It can be easily observed in the Figures 3.11 and 3.12 that for the case of closely and overlapping 

modes the modal model identified by applying only the first two steps of the algorithm is quite 

inadequate compared to the modal model identified using the third step (2nd approach) algorithm. 

It can also be observed that the modal model identified when applying the first approach of the 

three step algorithm can not predict the response of the structure as good as the modal model 

identified when applying the second approach. This has been observed for many cases of closely 

spaced and overlapping modes and is due to the assumption that the residue matrix rR  is of rank 

1.  For the case where the third step of the algorithm is used with the second approach outlined in 

Section 3.4.1.3, the identified modal model predicts very efficiently the closely spaced modes, 

while the corresponding CPSD predicted by the modal model provides a very good fit to the 

measured CPSD functions.  
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Figure 3.11: Comparison between the measured CPSD function and the CPSD functions predicted by the 

modal model that was identified by applying the two step and the three step algorithms in the frequency 
band of the first pair of closely-spaced modes. 
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Figure 3.12: Comparison between the measured CPSD function and the CPSD functions predicted by the 

modal model that was identified by applying the two step and the three step algorithms in the frequency 
band of the second pair of closely-spaced modes. 

 
 

3.5.3 Identification of structural poles using real measurement data 

This section applies the developed modal identification methodologies for estimating the dynamic 

modal characteristics of the Metsovo bridge, shown in Figure 3.13, using ambient vibration 

measurements. Specifically, six uniaxial accelerometers were installed inside the box beam 

cantilever M3 of the left carriageway of Metsovo bridge when the carriageway was under 

construction. The part of the bridge that was constructed and instrumented is the one highlighted 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



 76

in Figure 3.13. This subsection is concentrated in the efficiency of the proposed three step modal 

identification algorithm and thus complete description of the bridge and the instrumentation 

procedure are not given here. A fully detailed study on this bridge is presented in the work 

Panetsos et al. (2009) and Ntotsios (2009).   

 

 

Figure 3.13: General view of the under construction Metsovo ravine bridge (November 2007) 
 
 

The CPSD function matrix of the six measured acceleration responses of the bridge are first 

estimated using the methodologies described in Appendix 3.A. Then the first step of the proposed 

identification algorithm described in Sections 3.4.1 to 3.4.3 is applied in the frequency band 0 to 1 

Hz for identifying the structural poles that yield the modal frequencies r  and the modal damping 

ratios r . The stabilization diagrams for the new method (see Section 3.4.1.3) and the 

conventional one (see Section 3.4.1.1) are constructed with maximum value of order 100p   

and presented in Figures 3.14 and 3.15, respectively. The interpretation of the symbols (markers) 

green cross (+), red square and red triangular in these figures is kept the same as the one used 

for Figures 3.2 to 3.5. Comparing the stabilization diagrams presented in Figures 3.14 and 3.15 it 

is observed that the number of spurious mathematical modes for the case of the conventional 

method is significantly higher than the corresponding number for the new method. Also, much 

clearer stabilization diagrams are observed for the new method compared to the conventional 
method. In addition, the new method converges faster as the value of p  increases. Specifically, 

for the new method the physical modes have been identified and the procedure has converged 
for values of 20p  . For the conventional method, the convergence is slower since the lowest 

order of the common denominator polynomial in which all four modes of the structure first appear 
stabilized is 24p   using the tolerance of tol  3% .  
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Figure 3.14: Stabilization Diagram constructed using the simplification presented in Section 3.4.1.3 

 

 

Figure 3.15: Stabilization Diagram constructed using the conventional method 
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The accuracy of the predictions of the modal frequencies and damping ratios obtained from the 
new method for  20p   and 100p   is presented in Table 3.10 and from the conventional 

method for 24p   and 100p   is presented in Table 3.11. It can be seen that both the new 

and the conventional method provide the same estimate of the modal frequencies for values of 
p  as low as 20p   and 24p  , respectively. Increasing the order of p  does not improve the 

predictions. The values of the damping ratios differ slightly depending on the method and the 
order p  used. Specifically, on can observe that both the new and the conventional method 

provide the same estimate of the modal damping ratios for values of p  as high as 100p  . For 

low values of 20p   for the new method and 24p   for the conventional method, the 

predictions differ significantly. Despite these differences, the predictions of the modal damping 
ratios even for the low p  values are considered to be acceptable.   

Table 3.10: Identified values of the modal frequencies and modal damping ratios for the case of the new 

method 

1st mode 2nd mode 3rd mode 4th mode 5th mode  

1  

(Hz) 
1  

(%) 
2  

(Hz) 
3  

(%) 
3  

(Hz) 
3  

(%) 
4  

(Hz) 
4  

 (%) 
5  

(Hz) 
5  

(%) 
20p   0.158 0.41 0.305 0.20 0.623 0.34 0.685 0.39 0.907 0.21

100p   0.158 0.29 0.305 0.17 0.622 0.47 0.685 0.35 0.907 0.28

 

Table 3.11: Identified values of the modal frequencies and modal damping ratios for the case of the 

conventional method 

1st mode 2nd mode 3rd mode 4th mode 5th mode  

1  

(Hz) 
1  

(%) 
2  

(Hz) 
3  

(%) 
3  

(Hz) 
3  

(%) 
4  

(Hz) 
4  

 (%) 
5  

(Hz) 
5  

(%) 
24p   0.158 0.45 0.305 0.20 0.622 0.47 0.684 0.54 0.908 0.34

100p   0.158 0.27 0.305 0.18 0.622 0.45 0.685 0.37 0.907 0.26

 

Next, using the stabilization diagram of Figure 3.16, five modes of the bridge are identified in the 

[0,1] Hz frequency band and used in the second step of the identification algorithm for the 

estimation of the modeshapes and the reference vectors. The first approach presented in Section 

3.4.2.1 is applied. In addition, the third step of the identification algorithm is also used to improve 

the estimate of the modal model. The measured PSD function ˆ( )S k   is compared in Figure 

3.11 for three measured acceleration responses concentrated in the frequency band 0 to 1 Hz to 

the PSD functions ( ; )S k    predicted by identified modal model using the two-step and the 

three-step algorithms. It can be observed that for this case of real measurement data with non-

closely spaced and non-overlapping modes, and despite the noise in the signals resulted from the 

actual measurements, the modal model identified by the two step algorithm provides an excellent 
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fit to the measured PSDs which is almost identical to the fit provided by the modal model 

identified from the three step algorithm.  
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Figure 3.16: Comparison between the measured CPSD function and the CPSD functions predicted by the 
modal model that was identified by applying the two step and the three step algorithms. 

 

 

3.6 Conclusions 

Frequency domain least squares methods for the identification of non-classically damped modal 

models of linear structures using ambient vibration measurements were developed. The 

identification was based on minimizing the square difference between the measured CPSD matrix 

estimated from the available output only measurements and the CPSD matrix predicted by a 

modal model. The identification involves the estimation of the number of contributing modes, the 

modal frequencies, the modal damping ratios and the complex modeshapes of the contributing 

modes. Computational efficient algorithms for solving the resulting, highly non-convex, nonlinear 

optimization problem were proposed, including features of automatically estimating the number of 

contributing modes, as well as the modal frequencies and the damping ratios of the physical 

modes without or minimal user intervention.  

A three-step approach was proposed to carry out efficiently the optimization. In the first step, the 

modal frequencies and modal damping ratios are estimated by solving a system of linear 

algebraic equations using the description of the CPSD matrix as a rational fraction of polynomials 

with common the denominator polynomial for all entries of the CPSD matrix. One of the novel 
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contributions is the methodology based on the special structure of the common denominator 

polynomial that is revealed by examining the dependence of the CPSD matrices on the 

eigenvalues for the discrete time formulation. Taking advantage of this special structure, one 

simplifies the system of normal equations used to compute the coefficients of the common 

denominator polynomial and also reduces considerably the number of spurious mathematical 

(non-physical) modes that are obtained using the conventional methodology. The modal 

frequencies and the damping ratios of the structure are obtained from the roots of the common 

denominator polynomial estimated using the eigenvalues of the companion matrix. Stabilization 

diagrams are used to estimate the number of contributing modes by distinguishing between 

physical and mathematical modes. In the second step, two alternative approaches were 

introduced to estimate the modeshapes of the structure. The first approach is non-iterative and 

estimates the modal residue matrices by solving a linear system of equations given the values of 

the modal frequencies and damping ratios estimated in the first step. Singular value 

decomposition on the residue matrices provides the complex modeshapes of the structure. The 

second approach is a least squares optimization approach that takes advantage of the quadratic 

dependence of the objective function on the modeshapes and other matrices to reduce the 

number of parameters involved in the nonlinear optimization to the smallest possible number.  

The estimates provided from the first two steps are in most cases very close to the optimal 

estimates. In order to improve the estimates, the full non-convex nonlinear optimization problem 

has to be solved in the third step by using the initial estimates of the parameters obtained in the 

first two steps to accelerate convergence of the optimization algorithm. Two very efficient solution 

approaches were proposed for the third step. It is demonstrated that for closely-spaced and 

overlapping modes the third step improves significantly the accuracy of the modal characteristics.  

The efficiency of the algorithm is tested using simulated ambient vibration data generated by 

simple structural models, as well as real measured ambient vibration data available for a full scale 

structure. The results showed that generally the proposed method for the identification of the 

structural poles in the first step is computationally much more efficient and accurate than existing 

methods since it has faster converge properties and provide accurate results for the modal 

frequencies and damping ratios. For the case of closely-spaced and overlapping modes it was 

demonstrated that the first two steps fail to accurately estimate the modal characteristics of the 

closely spaced modes. The third step of the proposed algorithm is required to improve 

significantly the estimates of the modal characteristics for closely spaced and overlapping modes. 

Finally, the proposed modal identification methodology applied on real measurement data from a 

full scale structure was shown to be very accurate since the fit between the measured and the 

modal model predicted CPSD functions was excellent.  
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Appendix 3.A 

Estimation of auto and cross power spectral densities 

Parts of the presentation that follows have been taken from the work of Parloo (2003) and 
Cauberghe (2004).   
 

3.A.1 The periodogram approach 

The periodogram method is a popular method for the estimation of auto and cross power spectral 

densities (Marple, 1987). Let ( )ox m , 0, , 1m M  , 1, , outo N   be an assembly of outN  

discrete time-domain output sequences. Let ( )refx m  be a sub-vector of ( )x m  containing the 

time sequences of refN  outputs which are serving as reference-responses for the measured data 

set. The basic idea of the periodogram method is to divide the data sequence for each measured 

output of M  samples into P  non-overlapping segments of D  samples each, so that DP M . 

As an alternative to choosing no common samples between adjacent segments, a small overlap 
can be used (Welch, 1967). For each segment s , 0, , 1s P  , the discrete Fourier transform 

of the signal ( )ox m  for all considered responses o , 1, , outo N  , weighted with a time window 

W  of length D , can be computed as 
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  (3.127) 

A similar expression can be found for all reference responses i , 1, , refi N  , assembled in the 

sub-vectors ( )refx m  
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An estimate of the entries of the ( )out refN N  cross power spectral density matrix ( )S j  for 

each response reference-response combination, evaluated at discrete frequency  , is given by 

  
1 *,

,
0

1
( ) ( ) ( )
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where ( )s
oX j  and , ( )s ref

iX j  are respectively the ( 1)outN   and ( 1)refN   vectors 

computed in (3.127) and (3.128).  

The time window W  (e.g., Hanning window) is used to reduce the negative effect of leakage. 

Choosing a higher amount of data samples D  in each segment, at the expense of the number of 

averages P , will reduce the effect of leakage. Moreover, a higher spectral resolution will be 

obtained in the frequency-domain. However, the resulting decrease in the number of averages P  

leads to a higher stochastic uncertainty on the estimates. In practice, a trade-off will have to be 

made between these contradicting aspects. 
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Note that the basic idea behind allowing an overlap between the data segments consists in 

allowing a better contribution of all samples of the raw time history response data to the averaged 

estimate. If no overlap is considered, the contribution of samples near the edges of the segments 

will be suppressed by the presence of the Hanning window. 

 

3.A.2 The correlogram approach 

The periodogram approach can be used as an alternative to the periodogram method for the 

estimation of cross power spectra of the response signals. This method computes the unbiased 

discrete-time domain correlation estimate between the signal ( )ox m , 0, , 1m M  , of a 

response o  and the signal ( )ref
ix m  of a reference-response i . This correlation estimate is given 

by  
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 (3.130) 

with k  the correlation time. The biased correlation estimate uses 1/ M  rather than  1/ M k . 

The cross power spectral density function matrix estimates can then be obtained by Fourier 

transforming the correlation functions obtained from (3.130) 

 , ,( ) ( ) ( ) s

M
j T

o i s o i
k M

S j T W k R k e  



   (3.131) 

where ( )R k  is the ( )out refN N  matrix that contains the correlation estimates calculated in 

(3.130) and ( )W k  is a (2 1)M   point time window.  

The window reduces the effect of leakage due to the large side lobes of the implicit rectangular 

window and therefore the bias error in the cross power spectral density estimate. The use of an 

adequate window (e.g., Hanning, Hamming, etc), symmetric around the origin, is advisable. For 

instance, applying a Hanning window to the correlation estimate will force the correlation to zero 

at the higher lags. Moreover, the application of such a window reduces the stochastic uncertainty 

on the cross power estimate due to the presence of a higher stochastic uncertainty near the 

higher lags of the correlation function estimate. However, when applying a time window, the poles 

(and especially the damping) of the underlining system will be affected. However, for an 

exponential window, the poles can be compensated exactly for the added damping. This is not 

the case for other windows such as Hanning or Hamming.  

Hence, for the purpose of modal parameter estimation, the correlogram approach is best 

combined with the use of an exponential window. Given the form of the correlation function 

estimates, a double sided exponential time data window centered around 0 , 
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                        -M m +Msm T
mW e   with  (3.132) 

with   a decay factor, can be used. The poles est
r  extracted from the estimates can be 

compensated (corrected) for the artificial damping added by the window by using the value of the 
  factor as follows 

 cor est
r r     (3.133) 

Although an averaging procedure is usually not strictly required, the possibility exists to use an 

averaging similar to the periodogram approach. If the time history response sequences consist of 

M  samples, every response sequence can be divided into P  non-overlapping segments of D  

samples each so that DP M . Correlogram estimates of the auto- and cross power spectra 

,
s
o iS , between the responses o , 1, , outo N  , and a subset of reference responses i , 

1, ,
ref

i N  , can be obtained using equations (3.130) and (3.131) for each segments s , 

0, , 1s P  . An averaged correlogram estimate of the auto- and cross power spectra is then 

given by 
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S S
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   (3.134) 

It should be noted that averaging the correlogram estimates decreases the spectral resolution of 

the resulting estimate. Reducing the number of samples used for the computation of the 

correlation functions also increases the bias error due to leakage on these estimates. 
 

3.A.3 The ‘positive’ power spectra approach 

For the identification of modal parameters from output-only measurements, several frequency-

domain identification methods are based on the cross power spectral densities satisfying (3.4). 

However, this technique has several disadvantages: 

 The power spectra have a 4-quadrant symmetry i.e. the modal model contains as poles 

the values r , *
r , r  and *

r . This results in a model order, which is twice the 

modal order needed to model FRFs. For all identification methods based on the full 

spectra, this higher model order results in an increasing calculation time and in a less 

good numerical conditioning.  

 The power spectra contain both stable r , *
r  and unstable poles r , *

r  poles in its 

model. This results in less interesting properties for the interpretation of stabilization 

diagrams, when distinguishing physical from mathematical poles. 

 Power spectra estimated from a limited amount of data are typically characterized by high 

noise levels compared to FRFs. Therefore, an additional noise reduction would be 

preferable.  

 When using the periodogram approach to estimate the power spectra, a tradeoff must be 

made between the stochastic uncertainties and the bias errors introduced by leakage. 
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Some of these disadvantages can be overcome by starting from the first M  positive lags of the 

correlation function nR  given by (3.130). Using the correlogram approach it is sufficient to 

estimate the so called positive spectra (or half spectra), which are obtained by using only the 

correlation having a positive time lag (Cauberghe 2004, Peeters and Van der Auwearer 2005) in 

(3.131) as follows 
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The relation between half spectra (3.135) and the full spectra (3.131) is the following: 
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The modal decomposition of these half spectra only consists of the first two terms in (3.4), that is,  
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The advantage in modal analysis is that models of low order can be fitted without affecting the 

quality.  

Under the white noise input assumption, the output correlations are equivalent to impulse 
response. So, just like in impact testing, it is logical to apply an exponential window ( )W k  to the 

correlations before computing the DFT in equation (3.135). The exponential window reduces the 

effect of leakage and the influence of the higher time lags, which have a larger variance. 

Moreover, the application of an exponential window to impulse responses or correlations is 

compatible with the modal model and the pole estimates can be corrected using equation (3.133).  

 

3.A.4 Choosing reference responses 

Similar to choosing position(s) for the input force(s) (so-called references) during input-output 

modal testing, the choice of good reference response signals during output-only modal testing 

can be important for obtaining high quality data sets.  

If all outN  responses of a structure under test are measured simultaneously, each of the 

structural responses can be used as a reference response. This approach results in a out outN N  

power spectrum matrix ( )S j . If the number of outputs is large, the latter approach can lead to 

a high computational burden especially during the parametric estimation. 

Instead of using all outputs as reference responses, a small number of responses in suitable 

locations of the structure can be chosen as reference responses. Note that the nodal points of 

structural modes should be avoided to be used as reference positions. Moreover, responses with 

a signal to noise ratio superior (or at least equal) compared to the other responses should be 

preferred when choosing reference responses in order to increase the quality of the auto and 

cross power spectral density estimates. If the reference response signals are chosen carefully, 
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similar quality modal information can be extracted from data sets obtained with a limited number 

of references as from data sets where the maximum number of references was used.  

The idea of the reference sensors can be used to obtain measurements for a structure using a 

small number of sensors compared to the measurement locations that one would like to identify 

the modeshape components. In this case the available sensors are divided into two groups. One 

group constitutes the reference group and the sensors are placed at reference locations which 

remain fixed during the measurements. The other group constitutes the moving group and the 

sensors in this group are moved from measurement to measurement to new locations until all 

desirable measurements locations are covered by the available number of moving sensors. The 
measurements from the moving sensors are combined into the vector ( )x m , while the 

measurements from the reference sensors constitute the vector of measurements ( )refx m . In 

choosing the reference locations care should be taken so that nodal points are avoided. 
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Chapter 4 
 

Structural identification methods for finite element 
model updating and prediction variability 
 
4.1 Introduction  

Structural model updating methods (e.g. Mottershead and Friswell, 1993; Farhat and Hemez, 

1993; Capecchi and Vestroni, 1993; Link, 1998; Yuen et al., 2006) have been proposed in the 

past to reconcile mathematical models, usually discretized finite element models, with 

experimental data. Each model updating method has its own advantages and shortcomings, but 

there is no universally acceptable methodology for treating the model updating problem. 

Comprehensive reviews of structural model updating methods can be found in the work by 

Mottershead and Friswell (1993) and Doebling et al. (1998). The estimate of the optimal model is 

sensitive to uncertainties that are due to limitations of the mathematical models used to represent 

the behavior of the real structure, the presence of measurement noise from ambient excitations 

and the processing errors in estimating the modal data. Also, optimal model estimates are 

sensitive to the number and type of measured response time histories or modal data used in the 

reconciling process, as well as the norms used to measure the fit between measured and model 

predicted response time histories or modal properties. The optimal structural models resulting 

from such methods can be used for improving the model response and reliability predictions, as 

well as accounting for the uncertainties in these predictions (Beck and Katafygiotis, 1998; 

Papadimitriou et al., 2001; Beck and Au, 2002). Moreover, these optimal structural models can be 

used for structural health monitoring applications (Sohn and Law, 1997; Fritzen et al., 1998; Vanik 

et al., 2000; Teughels and De Roeck 2005) and structural control (Yuen and Beck 2003). 

Structural model parameter estimation problems based on measured data, such as modal 

characteristics (e.g. Mottershead and Friswell, 1993; Hjelmstad and Shin, 1996; Alvin, 1997; 

Bohle and Fritzen, 2003) or response time history characteristics (Beck and Katafygiotis, 1998), 

are often formulated as weighted least-squares problems in which metrics, measuring the 

residuals between measured and model predicted characteristics, are build up into a single 

weighted residuals metric formed as a weighted average of the multiple individual metrics using 

weighting factors. Standard optimization techniques are then used to find the optimal values of 

the structural parameters that minimize the single weighted residuals metric representing an 

overall measure of fit between measured and model predicted characteristics. Due to model error 

and measurement noise, the results of the optimization are affected by the values assumed for 

the weighting factors. The choice of the weighting factors depends on the model adequacy and 

the uncertainty in the available measured data, which are not known apriori. Different values of 

the weights result in different optimal models and consequently different predictions from the 

optimal models.  

The model updating problem has also been formulated in a multi-objective context (Haralampidis 

et al., 2005) that allows the simultaneous minimization of the multiple metrics, eliminating the 

need for using arbitrary weighting factors for weighting the relative importance of each metric in 
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the overall measure of fit. The multi-objective parameter estimation methodology provides 

multiple Pareto optimal structural models consistent with the data and the residuals used in the 

sense that the fit each Pareto optimal model provides in a group of measured modal properties 

cannot be improved without deteriorating the fit in at least one other modal or response time 

history group.  

Each optimal model in the Pareto set can alternatively be obtained by solving the weighted least-

squares problem for a particular choice of the weight values. The whole Pareto optimal set could 

be estimated by varying the weight values from 0 to 1, excluding the case for which all weight 

values are simultaneously equal to zero. The final task of rationally selecting a unique set of 

weight values on which to base the estimation of the optimal structural model using the weighted 

least-squares method or, equivalently, the task of selecting an optimal structural model among all 

Pareto optimal models, is subjective and is usually left to the experience of the structural 

analysts. 

In this chapter, the structural model updating problem using modal residuals is first formulated as 

a multi-objective optimization problem and then as a single-objective optimization with the 

objective formed as a weighted average of the multiple objectives using weighting factors. The 

problem of rationally estimating the optimal values of the weights or, equivalently, selecting the 

most probable structural model among the Pareto optimal models utilising the available measured 

data is addressed. Thus, the selection of the optimal structural model is based on weight values 

that are estimated based on the data, avoiding an arbitrary a priori selection of these weight 

values. In addition, a Bayesian statistical framework (Beck, 1989; Beck and Katafygiotis, 1998; 

Katafygiotis et al., 1998; Sohn and Law, 1997) for structural model parameter identification is 

used to identify the values of the weights. Using Bayes theorem, the probability distribution of the 

weight values based on the data is formulated as a probability integral over the structural model 

parameters (Christodoulou and Papadimitriou, 2007). An asymptotic approximation is presented 

to analytical approximate this probability distribution. The best values of the weights are selected 

as the ones that maximize the probability distribution of the weights. 

Theoretical and computational issues arising in multi-objective identification are addressed and 

the correspondence between the multi-objective identification and the weighted residuals 

identification is established. Emphasis is given in addressing issues associated with solving the 

resulting multi-objective and single-objective optimization problems. In addition, efficient methods 

are proposed for estimating the gradients and the Hessians of the objective functions using the 

Nelson’s method (Nelson, 1976) for finding the sensitivities of the eigenproperties to model 

parameters.  

This chapter is organized as follows. In Section 4.2 the structural identification problem using 

modal residuals is first formulated as a multi-objective optimization problem and then as an 

equivalent single-objective optimization with the objective formed as a weighted average of the 

multiple objectives using weighting factors. For this, the modal properties are assigned into 

groups and each objective involved in the optimization measures the residuals of the difference 

between the experimental and the model predicted modal properties involved in a modal group. 

The correspondence between the multi-objective identification and the weighted modal residuals 
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identification is also established. A novel optimally weighted modal residuals method is proposed. 

In Section 4.3, a Bayesian statistical system identification framework for structural parameter 

estimation is reviewed to address the problem of estimating the probability distribution and the 

optimal values of the weights based on the measured data. Using asymptotic approximations the 

resulting probability integrals describing the probability distribution of the weight values are 

estimated. Two algorithms are proposed for estimating the optimal values of the weights and the 

corresponding optimal structural model based on the measured modal data. In Section 4.4, 

theoretical and computational issues associated with solving the resulting single-objective and 

multi-objective optimization problems are addressed, including issues related to estimation of 

global optima, convergence of the proposed algorithms, and identifiability. In Chapter 4.5 

emphasis is given in addressing the problem of structural model updating for the case of closely 

spaced modes. Finally, in Section 4.6, theoretical and computational issues are illustrated by 

applying the methodology for updating two model classes, a simple three degrees-of-freedom 

(DOF) model and a much higher fidelity finite element model class, using experimentally obtained 

modal data from a small-scaled three-story laboratory steel building structure tested at a 

reference and a mass modified configuration. Validation studies are performed to show the 

applicability of the methodologies, the advantages of the multi-objective identification, and the 

performance of the most preferred Pareto optimal model. Emphasis is given in investigating the 

variability of the Pareto optimal models and the variability of the response predictions from these 

Pareto optimal models. Comparisons between the results from a simple 3-DOF model class and 

a much higher fidelity finite element model class, are used to assess the effect of model error 

uncertainty on model updating and model response prediction variability. The conclusions are 

summarized in Section 4.7. 

 

4.2 Model updating based on modal residuals 

4.2.1 Modal groups and residuals 

Let 0( ) ( )ˆˆ{ , ,  1, , ,  1, , }Nk k
r r DD R r m k Nw f= Î = =   be the measured modal data from a 

structure, consisting of modal frequencies ( )ˆ k
rw  and modeshape components at 0N  measured 

DOFs, where m  is the number of observed modes and DN  is the number of modal data sets 

available. Consider a parameterized class of linear structural models used to model the dynamic 

behavior of the structure and let NR qq Î  be the set of free structural model parameters to be 

identified using the measured modal data. The objective in a modal-based structural identification 
methodology is to estimate the values of the parameter set q  so that the modal data 

{ ( ),  ( ) , 1, , }dN
r r R r mw q f q Î =  , where dN  is the number of model degrees of freedom 

(DOF), predicted by the linear class of models best matches, in some sense, the experimentally 

obtained modal data in D . For this, let  
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1, ,r m=  , be the measures of fit or residuals between the measured modal data and the 

model predicted modal data for the r -th modal frequency and modeshape components, 

respectively, where 2 T|| ||z z z=  is the usual Euclidian norm, and 
2ˆ( ) ( ) / ( )T

r r r rL Lb q f f q f q=  is a normalization constant that guaranties that the measured 

modeshape ˆ
rf  at the measured DOFs is closest to the model modeshape ( ) ( )r rLb q f q  

predicted by the particular value of q . The matrix 0 dN NL R ´Î  is an observation matrix 

comprised of zeros and ones that maps the dN  model DOFs to the 0N  observed DOFs. 

In order to proceed with the model updating formulation, the measured modal properties are 

grouped into n  groups. Each group contains one or more modal properties. The modal 

properties assigned in the i th group are identified by the set ( )ig k , 1, ,i n=   and 1,2k = , 

with any element in the set ( )ig k  is an integer from 1 to m . An element in the set ( )ig k  with 

1k =  refer to the number of the measured modal frequency assigned in the group i , while the 

elements of the set ( )ig k  with 2k =  refer to the number of the measured modeshape assigned 

in the group i . For the i th group, a norm ( )iJ q  is introduced to measure the residuals of the 

difference between the measured values of the modal properties involved in the group and the 

corresponding modal values predicted from the model class for a particular value of the 
parameter set q . The measure of fit in a modal group is the sum of the individual square errors in 

(4.1) for the corresponding modal properties involved in the modal group. Specifically, the 

measure of fit is given by 

 2 2

(1) (2)

( ) ( ) ( )
r r

i i

i
r g r g

J w fq e q e q
Î Î

= +å å  (4.2)  

The grouping of the modal properties { ( ),  ( ), 1, , }r r r mw q f q =   into n  groups and the 

selection of the measures of fit (residuals) 1( ), , ( )nJ Jq q  are usually based on user 

preference. The modal properties assigned to each group are selected by the user according to 

their type and the purpose of the analysis. 

The aforementioned analysis accommodates general grouping schemes and objective functions. 

For demonstration purposes, a specific grouping scheme is next defined by grouping the modal 

properties into two groups as follows. The first group contains all modal frequencies, with the 

measure of fit 1( )J q  selected to represent the difference between the measured and the model 

predicted frequencies for all modes, while the second group contains the modeshape 

components for all modes with the measure of fit 2 ( )J q  selected to represents the difference 

between the measured and the model predicted modeshape components for all modes. 

Specifically, the two measures of fit are given by 
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       2 2
1 2

1 1

( ) ( )      and      ( ) ( )
r r

m m

r r

J Jw fq e q q e q
= =

= =å å  (4.3) 

The aforementioned grouping scheme is used in the application section for demonstrating the 

features of the proposed model updating methodologies. 

 

4.2.2 Multi-objective identification 

The problem of identifying the model parameter values q  that minimize the modal or response 

time history residuals can be formulated as a multi-objective optimization problem stated as 
follows (Haralampidis et al., 2005). Find the values of the structural parameter set q  that 

simultaneously minimizes the objectives 

 1( ) ( ( ), , ( ))ny J J Jq q q= =            (4.4) 

subject to inequality constrains ( ) 0c q £  and parameter constrains low upperq q q£ £ , where 

1( , , )Nq
q q q= ÎQ  is the parameter vector, Q  is the parameter space, 1( , , )ny y y Y= Î  

is the objective vector, Y  is the objective space, ( )c q  is the vector function of constrains, and 

lowq  and upperq  are respectively the lower and upper bounds of the parameter vector. For 

conflicting objectives 1( ), , ( )nJ Jq q , there is no single optimal solution, but rather a set of 

alternative solutions, known as Pareto optimal solutions, that are optimal in the sense that no 

other solutions in the parameter space are superior to them when all objectives are considered. 

Using multi-objective terminology, the Pareto optimal solutions are the non-dominating vectors in 
the parameter space Q , defined mathematically as follows. A vector q ÎQ  is said to be non-

dominated regarding the set Q  if and only if there is no vector in Q  which dominates q . A 

vector q  is said to dominate a vector 'q  if and only if  

 ( ) ( ')   {1, , }   and     {1, , } :  ( ) ( ')i i j jJ J i n j n J Jq q q q£ " Î $ Î <   (4.5) 

The set of objective vectors ( )y J q=  corresponding to the set of Pareto optimal solutions q  is 

called Pareto optimal front. The characteristics of the Pareto solutions are that the modal 

residuals cannot be improved in any modal group without deteriorating the modal residuals in at 

least one other modal group. Specifically, using the objective functions in (4.3), all optimal models 

that trade-off the overall fit in modal frequencies with the overall fit in the modeshapes are 

estimated. 

The multiple Pareto optimal solutions are due to modelling and measurement errors. The level of 

modelling and measurement errors affect the size and the distance from the origin of the Pareto 

front in the objective space, as well as the variability of the Pareto optimal solutions in the 

parameter space. The variability of the Pareto optimal solutions also depends on the overall 

sensitivity of the objective functions or, equivalently, the sensitivity of the modal properties, to 
model parameter values q .  Such variabilities were demonstrated for the case of two-
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dimensional objective space and one-dimensional parameter space in the work by Christodoulou 

and Papadimitriou (2007).  

It should be noted that in the absence of modelling and measurement errors, there is an optimal 

value q̂  of the parameter set q  for which the model based modal frequencies and modeshape 

components match exactly the corresponding measured modal properties. In this case, all 

objective functions 1
ˆ ˆ( ), , ( )nJ Jq q  take the value of zero and, consequently, the Pareto front 

consists of a single point at the origin of the objective space.  In particular, for identifiable 

problems (Katafygiotis, 1991; Katafygiotis and Beck 1998), the solutions in the parameter space 

consist of one or more isolated points for the case of a single or multiple global optima, 

respectively. For non-identifiable problems (Katafygiotis et al., 1998; Katafygiotis and Lam 2002), 

the Pareto optimal solutions form a lower dimensional manifold in the parameter space.  

 

4.2.3 Weighted modal residuals identification 

The parameter estimation problem is traditionally solved by minimizing the single objective 

 
1

( ; ) ( )
n

i i
i

J w w Jq q
=

=å           (4.6) 

formed from the multiple objectives ( )iJ q  using the weighting factors 0iw ³ , 1, ,i n=  , with 

1
1

n

ii
w

=
=å . The objective function ( ; )J wq  represents an overall measure of fit between the 

measured and the model predicted characteristics. The relative importance of the residual errors 

in the selection of the optimal model is reflected in the choice of the weights. The results of the 

identification depend on the weight values used. Conventional weighted least squares methods 

assume equal weight values, 1 1/nw w n= = = . This conventional method is referred herein 

as the equally weighted modal residuals method. 

 

4.2.4 Comparison between multi-objective and weighted modal residuals 
identification 

Formulating the parameter identification problem as a multi-objective minimization problem, the 

need for using arbitrary weighting factors for weighting the relative importance of the residuals 

( )iJ q  of a modal group to an overall weighted residuals metric is eliminated. An advantage of 

the multi-objective identification methodology is that all admissible solutions in the parameter 

space are obtained. 

It can be readily shown that the optimal solution to the problem (4.6) is one of the Pareto optimal 

solutions. For this, let q̂  be the global optimal solution that minimizes the objective function 

( ; )J wq  in (4.6) for given w . Then this solution is also a Pareto optimal solution since otherwise 

there would exist another solution, say q̂ ¢ , for which equation (4.5) will be satisfied for ˆq q ¢=  

and ˆq q¢ = , that is, ˆ ˆ ˆ ˆ( ) ( )   {1, , }   and     {1, , } :  ( ) ( )i i j jJ J i n j n J Jq q q q¢ ¢£ " Î $ Î <  . 
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As a result of this and the fact that 0iw ³ , it is readily derived using the form of ( ; )J wq  in (4.6) 

that ˆ ˆ( ; ) ( ; )J w J wq q¢ < . The last inequality implies that q̂ ¢ , instead of q̂ , is the global solution 

optimizing ( ; )J wq , which is a contradiction.  

Thus, solving a series of single objective optimization problems of the type (4.6) and varying the 

values of the weights iw  from 0 to 1, excluding the case for which the values of all weights are 

simultaneously equal to zero, Pareto optimal solutions are alternatively obtained. These solutions 

for given w  are denoted by ˆ( )wq . It should be noted, however, that there may exist Pareto 

optimal solutions that do not correspond to solutions of the single-objective weighted modal 

residuals problem (Christodoulou et al. 2008).  

The single objective is computationally attractive since conventional minimization algorithms can 

be applied to solve the problem. However, a severe drawback of generating Pareto optimal 

solutions by solving the series of weighted single-objective optimization problems by uniformly 

varying the values of the weights is that this procedure often results in cluster of points in parts of 

the Pareto front that fail to provide an adequate representation of the entire Pareto shape. Thus, 

alternative algorithms dealing directly with the multi-objective optimization problem and 

generating uniformly spread points along the entire Pareto front should be preferred. Special 

algorithms are available for solving the multi-objective optimization problem. Computational 

algorithms and related issues for solving the single-objective and the multi-objective optimization 

problems are discussed in Section 4.4. 

 

4.2.5 Identification based on optimally weighted modal residuals 

The Pareto optimal models ˆ( )wq  along the Pareto front trade-off the fit between measured and 

model predicted modal data for different modal groups. The objective of this section is to address 
the problem of rationally selecting the optimal value ŵ  of the weighting parameter set 

1( , , )nw w w=   in (4.6) and subsequently estimating the most preferred structural model 

ˆ ˆ ˆ( )opt wq qº  among the Pareto optimal models ˆ( )wq , utilizing the measured data and the 

selected model class. The decision for selecting a single most preferred model ˆ ˆ ˆ( )opt wq qº , 

among the Pareto optimal models ˆ( )wq , for further use in model-based prediction studies and 

reliability assessment, depends on the user preferences.  

From the computational point of view, it is desirable that the selection of the most preferred 

optimal model does not necessitate the computation of the whole Pareto front and Pareto 

solutions, since this can be a very time consuming task for more than a few objectives and, 

therefore, such lengthy computations should be avoided. Moreover, it is desirable that the most 

preferred optimal model is not biased from measured modal properties that contain significant 

measurement and processing error or measured modal properties that cannot be well 

represented by the selected model class. For this, it is reasonable to weight the contribution of 

the modal group residuals ( )iJ q  in the total residual measure (4.6) according to their residual 

error corresponding to the most preferred model. Specifically, modal groups with larger residual 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



 93

errors should be given less weight than modal groups with smaller residual errors. A rational 

choice is to select the weights to be inversely proportional to the values of the modal group 

residuals obtained for the most preferred model. Specifically, the i -th optimal weight value ˆ iw  

could be chosen to be inversely proportional to the average value of the total residual error of the 

modal properties involved in the i -th modal group. That is, the optimal values ˆ iw  of the weights 

are chosen to satisfy the set of equations  

 ˆ/ ( ( )),           1, ,i i iw J w i na q= =   (4.7) 

where  

 ˆ( ) arg min ( ; )w J w
q

q q=  (4.8) 

is the optimal model parameter value that corresponds to the weight values w , and ia  is the 

number of modal properties in the group ig . In particular, for the two objective functions in (4.3), 

1 ma =  and 2 0mNa = . Using (4.7), the optimal weights in (4.6) are given by 

ˆˆ / ( )i i i optw Ja q= , while the optimal value ˆ ˆ ˆ( )opt wq qº  minimizes the optimally weighted 

residuals ˆ( ; )J wq  in (4.6), that is, ˆ ˆ ˆ( )opt wq qº  is given by (4.8) for ˆw w= .  

Since the most preferred Pareto optimal structural model is not known prior to the selection of the 

weights, the corresponding optimal values of the modal residual errors and so the optimal values 

of the weights are not known. Thus, the selection of the optimal weights should be made 

simultaneously with the selection of the optimal model so that at the optimum, the weight values 

are inversely proportional to the optimal residual errors as suggested in (4.7). Specifically, the 

optimal values ŵ  and the most preferred Pareto optimal model ˆ ˆ ˆ( )opt wq qº  are obtained by 

simultaneously solving the set of equations (4.7) and the optimization problem (4.8) with respect 
to w  and q . This is a nested optimization problem that is solved iteratively. Specifically, for each 

iteration on w , required in satisfying (4.7), an optimization problem for estimating ˆ( )wq  needs to 

be solved.  

It can be shown that the aforementioned problem is equivalent to the problem of finding ôptq  that 

minimizes the objective function  

 
1

( ) ln ( )
n

i i
i

I Jq a q
=

=å  (4.9) 

with respect to the parameter set q  and then computing the optimal ŵ  from ˆˆ / ( )i i i optw Ja q= . 

This can be readily verified by noting that the stationarity conditions ( ) | 0
opt

Iq q qq = =  for the 

objective function ( )I q  in (4.9), where q  is the gradient vector with respect to q , are given by  
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1

( )( )
0,           1, ,

( )
opt opt

n
i i

ij i opt j

JI
j n

J
q q q q

a qq
q q q=

= =

¶¶ = = =å
¶ ¶

  (4.10) 

which are exactly the same as the stationarity conditions ˆ ( )
( ; ) | 0

w
J w q qq

=
 =  for (4.6) with w  

replaced by the optimal ˆˆ / ( )i i i optw Ja q=  computed by (4.7). It should be noted that the direct 

optimization of ( )I q  with respect to q  is computationally much more efficient than the equivalent 

problem of solving simultaneously the set of equations (4.7) and the optimization problem (4.8). 

The aforementioned method for selecting the most preferred model among the Pareto optimal 

models that satisfy (4.9) is referred to as the optimally weighted residual method. This choice 

corresponds to one out of the infinitely many Pareto optimal models. It is worth pointing out that 

the logarithmic estimator in (4.9) has also been shown to arise from a Bayesian statistical 

identification point of view (Christodoulou and Papadimitriou, 2007). Specifically, the most 

preferred optimal model is the most probable model that results asymptotically for large number 

of data from a Bayesian approach for structural identification. This Bayesian estimate, which is 

presented in Section 4.3.3, is based on the assumption of Gaussian and independent errors 

between the measured modal properties and the corresponding modal properties predicted by 

the model class.  

 

4.3 Bayesian identification utilizing modal data 
 

4.3.1 Probability distribution of structural parameter values utilizing modal data 

The Bayesian approach to structural identification (Beck, 1989; Beck and Katafygiotis, 1998) uses 

probability distributions to quantify the plausibility of each possible value of the model parameters 

q . Using Bayes’ theorem, the updated (posterior) probability distribution ( )| , ,p Dq s M  of the 

model parameters q  based on the inclusion of the measured data D , the modeling assumptions 

M  and the value of a parameter set s , is obtained as follows: 

 ( ) ( ) ( )| , , | , , | ,p D cp D pq s q s q s=M M M  (4.11) 

where ( )| , ,p D q s M  is the probability of observing the data from a model corresponding to a 

particular value of the parameter set q  conditioned on the modeling assumptions M  and the 

value of s , ( )| ,p q s M  is the initial (prior) probability distribution of a model, and c  is a 

normalizing constant selected such that the PDF ( )| , ,p Dq s M  integrates to one. Herein, the 

modeling assumptions M  refer to the structural modeling assumptions as well as those used to 

derive the probability distributions ( )| , ,p D q s M  and the prior ( )| ,p q s M . The parameter set 

s  contains all parameters that need to be defined in order to completely specify the modeling 

assumptions M . Measured data are accounted for in the updated estimates through the term 
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( )| , ,p D q s M , while any available prior information is reflected in the term ( )| ,p q s M . In 

order to simplify the notation, the dependence of the probability distributions on M  is dropped in 

the analysis that follows. 

The form of ( ) ( )| , , | ,p D p Dq s q sºM  is derived by using a probability model for the 

prediction error vector ( ) ( ) ( )
1 , , ,  1, ,k k k

m Du u u k N     , defined as the difference between 

the measured modal quantities involved in D  for all m  modes and the corresponding modal 

quantities predicted from a particular model within the model class. Specifically, the prediction 

error ( ) ( ) ( )  
r r

k k k
ru u u 

     is given separately for the modal frequencies and the mode shapes by 

the prediction error equations: 

 ( )ˆ ( )
r

k
r r uww w q= +  (4.12) 

 ( )ˆ ( )
r

k
r r rL uff b f q= +  (4.13) 

where ( )

r

kuw  and ( )

r

kuf  are respectively the prediction errors for the modal frequency and 

modeshape components of the r -th mode. 

Following the Bayesian methodology (Beck and Katafygiotis, 1998) the predictions errors are 

modeled by zero-mean Gaussian vector variables. Specifically, the prediction error ( )

r

kuw  for the 

r -th modal frequency is assumed to be a zero mean Gaussian variable, w ws w
( ) 2 ( )2~ (0, ˆ )k k

rr r
u N , 

with standard deviation ( )ˆ krrw
s w . The prediction error parameter 

rw
s  represents the fractional 

difference between the measured and the model predicted frequency of the r -th mode. The 

prediction error for the r -th truncated modeshape vector f Î
( ) 0k N

r
u R  is also assumed to be zero 

mean Gaussian vector, f f
( ) ( )~ ( , )
r r

k ku N C0 , with covariance matrix f
´Î( ) 0 0k N N

r
C R , where 

( , )N S  denotes the multidimensional normal distribution with mean   and covariance matrix 

S . In the analysis that follows, a diagonal covariance matrix f fs f=
0

2
( ) 2 ( )ˆ
r r

k k
r N

C  is assumed, 

where f f=
2 2

( ) ( )
0

0

ˆ ˆ /k k
r rN

N . The prediction error parameter fs r
 represents the difference 

between the measured and the model predicted component of the r -th modeshape relative to an 

average value f
0

( )ˆ k
r N

 of the modeshape components. The parameters 
rw
s  and fs r

, represent 

the prediction error estimates of the measured modal frequencies and modeshapes involved in 

D . 

In the analysis that follows, the parameter set s , introduced in (4.11), is taken to contain the 

parameters ws s=r r
 and fs s+ = rm r , 1, ,r m  . Given the values of the parameter set s , 

assuming independence of the prediction errors in ( )k
ru , and using the Gaussian choice for the 

probability distribution of the prediction errors ( )

r

ku  and ( )

r

ku  , the probability ( )| ,p D q s  of 
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observing the data D  is readily obtained in the form (e.g. Vanik et al., 2000; Papadimitriou and 

Katafygiotis, 2004) 

 ( ) ( )1
| , exp ;

2( 2 ) ( )D

D
DNN

NN
p D J

b
q s q s

p r s
é ù
ê ú= -
ê úë û

 (4.14) 

where 

 ( ) ( )2
1

;
n

i
D i

i i

J J
aq s q
s=

=å  (4.15) 

with ( ) ( )
iiJ Jwq q= ,  ( ) ( )

im iJ Jfq q+ = , 1, ,r m  , 2n m  represents the weighted 

measure of fit between the measured modal data and modal data predicted by a particular model 

within the selected model class 

 
1

( ) ( ) i D

n
NN

i
i

ar s s
=

=  (4.16) 

is a function of the prediction error parameters  , 0( 1)N m N   is the number of measured 

data per modal set, 1/r N   and 0 /m r N N   , 1, ,r m  , satisfying 
1

1
n

i
i




 , represent 

the number of data contained in each modal group in relation to the total number N  of data in a 

modal set, and   0

0

( ) ( )

1 1

ˆˆ
D

NNm
k k

r r
N

r k

b  
 

  is a constant. 

Given the values of the prediction error parameters  , the optimal value of the model parameter 

set   corresponds to the most probable model maximizing the updated PDF ( | , , )p D  M  

given in (4.11). In particular, using (4.14) and assuming a non-informative prior distribution 

( | , ) ( )p    M , the optimal values ̂  of the model parameters   are equivalently obtained 

by minimizing the measure of fit ( ; )DJ    defined in (4.15), i.e.  

 ˆ( ) arg min ( ; )DJ


     (4.17) 

The notation ˆ( )   is used to indicate that the optimal value ̂  depends on the value of the 

prediction error parameter set  . 

 

4.3.2 Relation between weights and prediction error parameter 

It should be noted that the overall measure of fit ( ; )DJ    between the experimental and model 

predicted modal data is constructed as a weighted sum of the individual measures of fit for each 

group of modal properties involved in the data set D , with the weights to be inversely 

proportional to the squares of the prediction error parameters. Comparing ( ; )DJ    and 

( ; )J w  given in (4.15) and (4.6), respectively, it is clear that they are exactly the same provided 
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that the weights iw  are chosen to be inversely proportional to the prediction error parameters 
2
i , i.e.  

 2
2

    and     ( ; / ) ( ; )i
i D

i

w J J
     


   (4.18) 

where the vector notation 2 2 2
1 1/ ( / , , / )n n        was introduced in (4.18) for 

convenience. Thus, the problem of estimating the weight values in the weighted residuals metric 

defined in (4.6) is equivalent to the problem of estimating the prediction error parameters in the 

Bayesian formulation.  

The formulation presented is general and applicable to other grouping schemes. Specifically, the 

formulation for the grouping scheme introduced in (4.3), is obtained by assuming that the 

prediction error parameters 1r  , 1, ,r m  , are the same for all the modal frequencies, 

and that 2r
  , 1, ,r m  , are the same for all modeshapes. In this case, 2n  , the 

prediction error parameters are 1 2( , )   , and the exponents i  appearing in (4.16) are 

given by 1 /m N   and 2 0 /mN N  .  

 

4.3.3 Probability distribution of prediction error parameter values utilizing modal 
data 

The Bayesian framework has been extended (Christodoulou and Papadimitriou, 2007) to 
rationally estimate the optimal values of the prediction error parameters   and the weights w  

from the available measured data D , taking into account modeling error and measurement 
noise. Similar to the case of the parameter set  , probability distributions are used to quantify the 

uncertainty in the values of the parameter set  . Using Bayes’ theorem, the posterior probability 

distribution ( | )p D  of the parameter set   given the data D  is given by  

 
( | ) ( )

( | )
p D

p D
d

     (4.19) 

where ( | )p D   is the probability of observing the data given the values of the parameter set  , 

( )   is the prior probability distribution of the parameter set   before the collection of data, 

while d  is a normalizing constant given by ( | ) ( ) d p D d      so that the probability 

density function in (4.19) integrates to one.  

Using the total probability theorem, the quantity ( | )p D   is given by  

 ( | ) ( | , ) ( ) p D p D d     


   (4.20) 
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where it is assumed that the prior probability distribution ( | ) ( )p      is independent of  . 

Replacing ( | , )p D    in (4.20) by (4.14) and then substituting (4.20) into(4.19), one readily 

derives that  

  0

( )
( | )  ( ) exp 0.5  ( ; )  

( ) D Dp D c NN J d      
  

   (4.21) 

where  1
0  2

DNN

c d b   . The optimal value ̂  of the prediction error parameter set   given 

the data D  is the one that maximizes the function ( | )p D .  

In order to compute the value of the function ( | )p D  for given  , one needs to estimate a 

multi-dimensional integral over the parameter space  . This makes the approach 

computationally very demanding and in most cases inefficient. Asymptotic approximations have 

been introduced (Christodoulou and Papadimitriou, 2007) to approximate analytically the integrals 
and, thus, provide a more efficient algorithm for finding the PDF ( | )p D of the parameter set   

and the optimal value ̂  of the parameter set  . Specifically, as DNN  , i.e. for large 

number of data, the Lapalce method of asymptotic approximation (Bleistein and Handelsman, 

1986) can be applied for the integral in (4.21) to yield (Christodoulou and Papadimitriou, 2007) 

 0

ˆ ˆ( ) ( ( )) exp[ 0.5  ( ( ); )]
( | ) ~ (2 )

( ) ˆ( ( ); )

N D D

D

NN J
p D c

H

          
    


 (4.22) 

where ˆ( )   is the value that minimizes the function ( ; )DJ    with respect to   for given value 

of  , that is, ˆ( )   is given by (4.17), ˆ( ( ); )DH     is the Hessian of the function 

0.5  ( ; )D DNN J    evaluated at ˆ( )  .  

Using the relation (4.19) between the weight values w  and the prediction error parameter set   

one can readily develop the PDF ( | )p w D  of the weights given the data. The PDFs ( | )p D  or 

( | )p w D  quantify the uncertainty in the values of the prediction error parameters or the weight 

values respectively, which in turn quantify the uncertainty in the corresponding Pareto optimal 

models and predictions from these models. 

Assuming that the prior distributions ( )   and ( )   are non-informative uniform distributions 

over the domain of variation of the structural parameter set   and the prediction error parameter 

set  , respectively, one may set ( ) constantc      and ( ) constantc      in (4.22). 

The optimal value ̂  of the prediction error parameter set   is the one that maximizes 

( | )p D  in (4.22) or, equivalently, the one that minimizes the function   

 
1ˆ ˆ( ) ln ( | ) ( ( ); ) ln ( ) ln ( ( ); )

2 2
D

D D D

NN
G p D J H                 (4.23) 
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where 0ln( ) ln(2 )c c c N      is a constant that does not affect the selection of the optimal 

̂ . The optimization of the function in (4.23) can readily be carried out numerically using any 

available algorithm for optimizing a nonlinear function of several variables. It should be noted that 

in evaluating the objective function ( )DG   for given value of  , an internal minimization 

problem is involved for finding ˆ( )   from (4.17). Moreover, the evaluation of the Hessian 

ˆ( ( ); )DH     is also needed. 

For non-informative uniform priors, the optimal estimate ̂  that minimizes the function in (4.23) 

can equivalently be obtained using the maximum likelihood approach. However, the proposed 
Bayesian methodology provides the complete probability distribution ( | )p D , given in (4.22), 

as well as the optimal estimate ̂  that maximizes this distribution for general non-uniform prior 

distributions of the structural model and prediction error parameters. 

Alternatively, applying the stationarity conditions in (4.19) with respect to the elements of   and 

using Laplace method of asymptotic approximation (Bleistein and Handelsman, 1986), valid for 

large number of data, DNN   to the resulting integrals, one readily derives that the optimal 

values ̂  of the parameter set   satisfies the set of equations (Christodoulou and 

Papadimitriou, 2007) 

 2 ˆ( ( )),           1, , 2i iJ i m      (4.24) 

where ˆ( )   is given by (4.17). The result (4.24) indicates that the optimal value 2 ˆˆ ˆ( ( ))i iJ    

of the prediction error variance 2
i  for the i -th modal group involved in the data is the optimal 

residual value between the data involved in the i -th group and the prediction from the optimal 

model ˆ ˆ ˆ( )opt   .  

Using (4.18) and (4.24), the optimal weights in (4.6) are given by ˆˆ / ( )i i i optw J  , while the 

optimal value ˆ ˆ ˆ( )opt    which minimizes ˆ( ; )DJ   , also minimizes the optimally weighted 

residuals ˆ( ; )J w  in (4.6), that is, ˆ ˆ ˆ( )opt w  , where ˆ( ) arg min ( ; )w J w


  .   

It should be noted that the optimal values ̂  and ˆ ˆ ˆ( )opt    are obtained by simultaneously 

solving (4.24) and (4.17) with respect to   and  . Equivalently, the optimal values ŵ  and 

ˆ ˆ ˆ( )opt w   are obtained by simultaneously solving ˆ/ ( ( ))i i iw J w  , 1, , 2i m   and 

ˆ( ) arg min ( ; )w J w


   with respect to w  and  . It can be shown that both problems are 

equivalent to the problem of finding ôpt  that minimizes the objective function  

 
1

( ) ln ( )
n

i i
i

I J  


   (4.25) 
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with respect the parameter set   and then computing the optimal ̂  from 2 ˆˆ ( )i i optJ   or the 

optimal ŵ  from ˆˆ / ( )i i i optw J  . This can be readily verified by noting that the stationarity 

conditions ( ) | 0
opt

I      for the objective function ( )I  , where   is the gradient vector 

with respect to  , are exactly the same as the stationarity conditions ˆ( )
( ; ) | 0DJ

  
 


   for 

(4.17) with 2  replaced by the optimal 2 ˆˆ ( )i i optJ   computed by (4.24).  

It should be pointed out that the objective function (4.25) does not require information from the 
weights w  or the prediction error parameters  . The optimization of ( )I   with respect to   can 

readily be carried out numerically using any available algorithm for optimizing a nonlinear function 
of several variables. The optimization of ( )I   is computationally much more efficient than the 

equivalent problem of solving simultaneously the set of equations (4.24) and the optimization 

problem (4.17).  

Comparing the computational time involved in estimating the optimal weight vector ̂  using 

(4.23) and (4.25), it is worth noting that for (4.23), each function evaluation involved in the 

optimization of the objective ( )DG   with respect to the prediction error parameters   requires 

the solution of an inner optimization problem (4.17) for minimizing the measure of fit ( ; )DJ    

with respect to the parameter set   given the current value of  . However, (4.25) involves a 

single optimization of ( )I   and thus, it is computationally much more efficient than (4.23).  

 

4.4 Computational issues related to model updating formulations 

The proposed single and multi-objective identification problems are solved using available single- 

and multi-objective optimization algorithms. These algorithms are next reviewed and various 

implementation issues are addressed, including estimation of global optima from multiple 

local/global ones, as well as convergence problems. In addition, for gradient-based optimization 

algorithms, computationally efficient formulas are given to estimate the gradients and Hessians of 

the objectives. These formulas are useful for significantly reducing the computational time for the 

case of large number of parameters and very large number of model degrees of freedom. It shold 

be noted that the Hessians of the objective functions are used in (4.22) to obtain the PDF 
( | )p D  of the prediction error parameters  .  

 

4.4.1 Single-objective identification 

The optimization of ( ; )J wq  in (4.6) with respect to q  for given w  and the optimization of ( )I q  

in (4.9) with respect to q  can readily be carried out numerically using any available algorithm for 

optimizing a nonlinear function of several variables. These single objective optimization problems 

may involve multiple local/global optima. Conventional gradient-based local optimization 

algorithms lack reliability in dealing with the estimation of multiple local/global optima observed in 

structural identification problems (Christodoulou and Papadimitriou, 2007; Teughels et al., 2003), 
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since convergence to the global optimum is not guaranteed. Evolution strategies (Zitzler and 

Thiele, 1999) are more appropriate and effective to use in such cases. Evolution strategies are 

random search algorithms that explore the parameter space for detecting the neighborhood of the 

global optimum, avoiding premature convergence to a local optimum. A disadvantage of evolution 

strategies is their slow convergence at the neighborhood of an optimum since they do not exploit 

the gradient information. A hybrid optimization algorithm should be used that exploits the 

advantages of evolution strategies and gradient-based methods. Specifically, an evolution 

strategy is used to explore the parameter space and detect the neighborhood of the global 

optimum. Then the method switches to a gradient-based algorithm starting with the best estimate 

obtained from the evolution strategy and using gradient information to accelerate convergence to 

the global optimum.  

 

4.4.2 Multi-objective identification 

The set of Pareto optimal solutions can be obtained using available multi-objective optimization 

algorithms. Among them, the evolutionary algorithms, such as the strength Pareto evolutionary 

algorithm (Zitzler and Thiele, 1999), are well-suited to solve the multi-objective optimization 

problem. The strength Pareto evolutionary algorithm, although it does not require gradient 

information, it has the disadvantage of slow convergence for objective vectors close to the Pareto 

front (Haralampidis et al., 2005) and also it does not generate an evenly spread Pareto front, 

especially for large differences in objective functions. 

Another very efficient algorithm for solving the multi-objective optimization problem is the Normal-

Boundary Intersection (NBI) method (Das and Dennis, 1998) which produce an evenly spread of 

points along the Pareto front, even for problems for which the relative scaling of the objectives are 

vastly different. For completeness and for the purpose of demonstrating the implementation 

issues arising in multi-objective structural model updating, the idea of the NBI method is briefly 

illustrated geometrically with the aid of the two-dimensional Pareto front shown in Figure 4.1. For 

this, let ( )ˆ iq , 1, ,i n=  , be the global optimal values of the parameter set that minimize the 

individual objectives ( )iJ q , 1, ,i n=  , respectively. The Pareto points ( ) ( )ˆˆ ( )i iJ J q= , shown 

in Figure 1, determine the location of the boundaries of the Pareto front in the objective space. 

These edge points of the Pareto front are estimated using the single-objective optimization 

algorithms outlined in Section 4.4.1. The utopia point 1
ˆ ˆ ˆ[ , , ]T

nJ J J=  , shown in Figure 4.1, is 

introduced as the point in the objective space with coordinates the individual minima 
( )ˆˆ ( )i

i iJ J q=  of the objectives. Let F  be the n n´  matrix with the i -th column equal to the 

vector ( )ˆ iJ . The set of points in the objective space that are convex combinations of ( )ˆ ˆiJ J- , 

obtained by the points 
1

{ : , 1, 0}
nn

i ii
Rb b b b

=
F Î = ³å , is referred to as the Convex Hull of 

Individual Minima (CHIM). These points are all points along the line segment AB in Figure 4.1. 

The Pareto points consist of points on the intersection of the boundary Y¶  of the objective space 

Y  and the normal initiating from any point in the CHIM and pointing towards the origin of the 

objective space.  
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Figure 4.1: Geometric illustration of NBI Method in 2-dimensional objective space. 

 

A point along the Pareto front can be found by solving a single-objective optimization problem. 
Given the coordinates b , bF  represents a point on the CHIM and tnbF + , where t RÎ  and 

n  the normal to the CHIM, represents the set of points on the normal to the CHIM at the point 

bF . The point of intersection of the normal and the bounbary Y¶ , closest to the origin, is the 

global solution of the commonly referred as NBI b  optimization problem (Das and Dennis, 1998):  

 
,

max
t

t
q

 (4.26) 

subject to the constrains  

 *( )tn J Jb qF + = -  (4.27) 

Any constrains from the original multi-objective optimization problem (4.4) can also be considered 

by adding them as constrains in the NBI b  optimization problem. By solving the optimization 

problems NBI b  for various b  values  in the set 
1

{ : 1, 0}
nn

i ii
Rb b b

=
Î = ³å , a pointwise 

representation of the Pareto front is efficiently constructed. The values of the parameters b  are 

selected so that an evenly spread points along the CHIM are obtained, resulting to an evenly 

spread points along the Pareto front, independently of the scales of the objective functions. For 

the two-dimensional objective space, this is achieved by selecting the values of the component 

2b  of 1 2( , )b b b=  to be uniformly spaced in the interval [0,1] with spacing length 

1/( 1)Nd= - , where N  is the number of points along the CHIM including the edge points. The 
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first component 1b  is selected to satisfy 1 2 1b b+ = . More details about the method, the 

selection of b  values for more than two objectives, advantages and drawbacks, can be found in 

the original paper by Das and Dennis (1998). 

It is also of interest to compare the computational time involved for estimating the Pareto optimal 

solutions with the computational time required in conventional weighted residuals methods for 

estimating a single solution. This estimate can be made by noting that each Pareto optimal 

solutions is obtained by solving a single-objective optimization problem NBI b . Thus, this 

computational time is of the order of the number of points used to represent the Pareto front 

multiplied by the computational time required to solve a single-objective NBI b  problem for 

computing each point on the front. However, for the NBI method, convergence can be greatly 

accelerated by using a good starting value for the NBI b  optimization problem close to the optimal 

value. This is achieved by selecting the Pareto optimal solution obtained from the current NBI b  

problem to be used as starting value for solving the next NBI b  problem. 

 

4.4.3 Formulation for gradients of objectives 

In  order to guarantee the convergence of the gradient-based optimization methods for structural 

models involving a large number of DOFs with several contributing modes, the gradients of the 
objective functions with respect to the parameter set q  has to be estimated accurately. It has 

been observed that numerical algorithms such as finite difference methods for gradient evaluation 

does not guarantee convergence due to the fact that the errors in the numerical estimation may 

provide the wrong directions in the search space and convergence to the local/global minimum is 

not achieved, especially for intermediate parameter values in the vicinity of a local/global 

optimum. Thus, the gradients of the objective functions should be provided analytically. Moreover, 

gradient computations with respect to the parameter set using the finite difference method 

requires the solution of as many eigenvalue problems as the number of parameters.  

The gradients of the modal frequencies and modeshapes, required in the estimation of the 

gradient of ( ; )J wq  in (4.6) or ( )I q  in (4.9) or the gradients of the objectives ( )iJ q  in (4.4) are 

computed by expressing them exactly in terms of the values of the contributive modal 

frequencies, modeshapes and the gradients of the structural mass and stiffness matrices with 
respect to q  using Nelson’s method (Nelson, 1976). Special attention is given to the computation 

of the gradients and the Hessians of the objective functions for the point of view of the reduction 

of the computational time required. Analytical expressions for the gradient of the modal 

frequencies and modeshapes are used to overcome the convergence problems. In particular, 

Nelson’s method (Nelson, 1976) is used for computing analytically the first derivatives of the 

eigenvalues and the eigenvectors. The advantage of the Nelson’s method compared to other 

methods is that the gradient of eigenvalue and the eigenvector of one mode are computed from 

the eigenvalue and the eigenvector of the same mode and there is no need to know the 
eigenvalues and the eigenvectors from other modes. For each parameter in the set q  this 
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computation is performed by solving a linear system of the same size as the original system mass 

and stiffness matrices. Nelson’s method is also extended in Section 4.4.4 to compute the second 

derivatives of the eigenvalues and the eigenvectors. 

The computation of the gradients and the Hessian of the objective functions is shown to involve 

the solution of a single linear system, instead of Nq  linear systems required in usual 

computations of the gradient and ( )1N Nq q +  linear systems required in the computation of the 

Hessian. This reduces considerably the computational time, especially as the number of 
parameters in the set q  increase. The expressions for the first derivatives of the objective 

functions are next presented.  
 

4.4.3.1 First derivatives of eigenvalues and eigenvectors using Nelson’s method 

Summarizing, Nelson’s method (Nelson, 1976) specialized for symmetric mass and stiffness 

matrices computes the derivatives of the r -th eigenvalue and eigenvector with respect to a 

parameter jq  in the parameter set q  from the following formulas 

 
2

2( )Tr
r j r j r

j

K M
w f w f
q
¶ = -
¶

  (4.28) 

and 

 * 1 * 1
( )

2
r T T

r r r r r r j r
j

I M A F M
f

f f f f f
q

-¶
= - -

¶
          (4.29) 

where 

 2
r rA K Mw= -           (4.30) 

 

     2
, ( )( )Tr

r j r r r j r j r
j

A
F I M K Mf f f w f

q
¶=- =- - -
¶

        (4.31) 

 

 
( ) ( )

( ) ,              ( )j j j j
j j

M K
M M K K

q qq q
q q

¶ ¶º = º =
¶ ¶

        (4.32) 

For notational convenience, the dependence of several variables on the parameter set q  has 

been dropped. For an n n´  matrix rA  referring to the formulation for the r -th mode, *
rA  is used 

to denote the modified matrix derived from the matrix rA  by replacing the elements of the k -th 

column and the k -th row by zeroes and the ( k , k ) element of rA  by one, where k  denotes the 

element of the modeshape vector rf  with the highest absolute value.  Also, the n  vector *
rb  is 

used to denote the modified vector derived from rb  replacing the k -th element of the vector rb  

by zero. More details can be found in the work by Nelson (Nelson, 1976). 
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4.4.3.2 Gradients of objectives 

The gradient of the square error 2 ( )
rw
e q  is given by 

 

2 2 22
2

2 2

( ) ( ) ( )
( )r r r Tr

r j r j r
j r j r

K Mw w we q e q e qw f w f
q w q w

é ù¶ ¶ ¶¶ ê ú= = -ê ú¶ ¶ ¶ ¶ê úë û
 (4.33) 

and the gradient of the square error 2 ( )
rf
e q  is given by 

 

2

2 2
( )

[ ( )] [ ( )]r

r r r r

r rT T

j j j

L
f

j j j j

e q j f
e q e q

q q q
¶ ¶ ¶

=  = 
¶ ¶ ¶

 (4.34) 

Substituting (4.29) into (4.34), the gradient of the square error 2 ( )
rf
e q  is simplified to 

 

2

*
,

( ) 1

2
r T T

r r j r j r
j

x F z M
fe q f
q

¶
= -

¶
 (4.35) 

where ,r jF  is given in (4.31), 

 2[ ( )]
r r

T T T
r r rz Lf fe q f f=   (4.36) 

and rx  is given by the solution of the linear system of equations 

 *
r r rA X D=  (4.37) 

with 2( ) ( )
r r

T T
r r rD I M L j jf f e q= -   and rX  replaced by rx . The system of equations (4.37) 

can be viewed as the adjoint system for the model updating optimization problem based on modal 

residuals. 

It should be noted that for the specific objective functions 2 ( )
rw
e q  and 2 ( )

rj
e q  given by (4.1), the 

aforementioned expressions for the gradients of the objective functions simplify further. 

Specifically, using (4.1) and noting that ( ) ( ) 0
r r

T T
r rLf fe q f e q j= = , one readily obtains that  

 

2

2 2

( ) 2 ( )

ˆ
r r

r r

w we q e q
w w

¶
=

¶
 (4.38) 

 

 2 ( ) 2 ( )
r r r rej j je q q b =  (4.39) 

where 

  2

ˆ

ˆ
r

T T
r r r

r

L
ej

b f f

j

-
=  (4.40) 

0T T
rz =  and rD  is given by the equation 
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 2 ( )
r

T
r rD L ejb q=  (4.41) 

The computation of the derivatives of the square errors for the modal properties of the r -th mode 
with respect to the parameters in q  requires only one solution of the linear system (4.37), 

independent of the number of parameters in q . For a large number of parameters in the set q  

the above formulation for the gradients of the mean errors in modal frequencies and in the 

modeshape components in (4.1) are computationally very efficient and informative. The 

dependence on jq  comes through the term 2
j r jK Mw-  and the term jM . For the case where 

the mass matrix is independent of q , 0jM =  and the formulation is further simplified.  

It should be noted that for the special case of linear dependence between the global mass and 

stiffness matrices on the parameters in the set q , that is, 0 1
( )

N

j jj
M M Mqq q

=
= +å  and 

0 1
( )

N

j jj
K K Kqq q

=
= +å , the gradients of ( )M q  and ( )K q  are easily computed from the 

constant matrices 0M , 0K , jM  and jK , 1, ,j Nq=  . In order to save computational time, 

these constant matrices are computed and assembled once and, therefore, there is no need this 

computation to be repeated during the iterations involved in optimization algorithms. For the 

general case of nonlinear dependence between the global mass and stiffness matrices on the 

parameters in the set q , the matrices jM  and jK  involved in the formulation (see (4.32)) can 

be obtained numerically at the element level and assembled to form the global matrices. 

 

4.4.4 Formulation for Hessian of objectives 

4.4.4.1 Second derivatives of eigenvalues and eigenvectors extending Nelson’s method 

A similar analysis to that followed in Nelson’s method (Nelson, 1976) for computing the first 

derivative can also be followed for computing the second derivatives of the eigenvalues and the 

eigenvectors, resulting in the following expressions for the second derivatives  

 
2 2

,
Tr
r r ij

i j

g
w f
q q
¶ =
¶ ¶

 (4.42) 

and 

 

2
* 1 *

,( )r T
r r r r r r ij

i j

I M A G d
f

f f f
q q

-¶
= - -

¶ ¶
 (4.43) 

where  

 ( )T
r r r rG I M gf f=- -  (4.44) 
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2 2

,
r rr r r r

r ij r r
i j j i i j i j i j j i

A A K M M M
g

f f l ll f
q q q q q q q q q q q q

é ù¶ ¶¶ ¶ ¶ ¶¶ ¶ ¶ ¶ê ú= + + - - -ê ú¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ê úë û
 (4.45) 

and 

 
2

,

1

2

T
r r r rT

r ij r r
i j j i i j i j

M M M
d M

f f f f
f f

q q q q q q q q

é ù¶ ¶ ¶ ¶¶ ¶ ¶ê ú= + + +ê ú¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ê úë û
 (4.46) 

 

4.4.4.2 Hessians of objectives 

The Hessian of the objective functions 2 ( )
rw
e q  and 2 ( )

rj
e q  can be readily computed from the 

second derivatives of the eigenvalues and the eigenvectors, respectively. Specifically, the ( , )i j  

element of the Hessian of 2 ( )
rw
e q  is obtained by differentiating (4.33) with respect to iq , resulting 

in 

 

2 2 2 2 22 2 2 2

2 2 2

2 2 2
2 2

2 2 2

( ) ( ) ( )

( )

( ) ( )
              [ ( ) ][ ( ) ]

( )

r r r

r r

r r r

i j r i j r i j

T T T
r i r i r r j r j r r r

r r

K M K M g

w w w

w w

e q e q e qw w w
q q w q q w q q

e q e q
f w f f w f f

w w

¶ ¶ ¶¶ ¶ ¶= +
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

¶ ¶
= - - +
¶ ¶

 (4.47) 

The ( , )i j  element of the Hessian of 2 ( )
rj
e q  is obtained by differentiating (4.34) with respect to 

iq , resulting in 

 

2 2 2
2 2

( )
[ ( )] [ ( )]r

r r r r r

T
r r rT T

i j i j i j

j
j j j j j

e q j j j
e q e q

q q q q q q
¶ ¶ ¶ ¶

=   + 
¶ ¶ ¶ ¶ ¶ ¶

 (4.48) 

Substituting (4.43) into (4.48) and using (4.37), the Hessian can be finally simplified to 

 

2 2

2 * 2
,

( )
[ ( )] 2 ( ) 2[ ( )]r

r r r r r

T
r rT T T T T

r r r r r r ij
i j i j

L L x I M g L d
f

f f f f f

e q f f
e q f f e q f

q q q q
¶ ¶ ¶

=   - - - 
¶ ¶ ¶ ¶

(4.49) 

It should be noted that for the specific objective functions 2 ( )
rw
e q  and 2 ( )

rj
e q  given by (4.1), the 

aforementioned expressions for the Hessian of the objective functions simplify further. 

Specifically, using (4.1) and noting that ( ) ( ) 0
r r

T T
r rLf fe q f e q j= = , one readily obtains that 

 

2 2

2 2 4

( ) 2

ˆ( )
r

r r

we q
w w

¶
=

¶
 (4.50) 

 

 
22 2

2 2

2
ˆ ˆ( ) (2 )(2 )

ˆ
r r r

T T
r r r r r r r r

r r

Ij j je q b j j b j j b j
j j
- é ù  = - - -ê úë û

 (4.51) 
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and 

2 2 ( )
r

i j

fe q
q q
¶
¶ ¶

 in (4.49) simplifies to 

( )( )
2 2

2* * 2 * * *
, , , ,2 2

( ) 2
2 ( )

ˆ
r T T T T T T

r r i r r j r r r j r r r i r r r r
i j

r

z F z F L F X X F x I M g
L

fe q b f f f
q q f f

¶
=- - - -

¶ ¶

  (4.52) 

where rz  is given by the solution of the linear system (4.37) with 

( ) ( )ˆ2T T T
r r r r r rD I M L Lf f b f f= - -  and rX  is given by (4.37) with 

( )T T T
r r rD I M Lf f= - . 

It should be noted that only the last term in (4.47) and the last term in (4.52) depend explicitly on 

the derivatives /r if q¶ ¶ . Numerical results suggest that the Hessian of  2 ( )
rw
e q  and 2 ( )

rf
e q  can 

be adequately approximated in the form (4.47) and (4.52), ignoring the contribution from the last 

terms in (4.47) and (4.52). Thus the Hessian of 2 ( )
rw
e q  and 2 ( )

rf
e q  can be computed from the 

solution of the system (4.37), estimates of the eigenvalues and eigenvectors of the mode r , and 

the sensitivities jK  and jM  of the global stiffness and mass matrices with respect to the 

parameters q . 

Summarizing, it should be noted that the computation of the first and second derivatives of the 
square errors for the modal properties of the r -th mode with respect to the parameters in q  

requires only the solutions of the linear system (4.37), independent of the number of parameters 
in q . For a large number of parameters in the set q , the above formulation for the gradients and 

Hessian of the mean errors in modal frequencies and in the modeshape components in (4.1) are 

computationally very efficient and informative. 

 

4.5 Generalization of model updating method for closely spaced modes 

4.5.1 Modeshape residuals  

For the case of closely spaced modes, the modeshapes that are estimated experimentally using 

the modal identification techniques may not exactly correspond to the closely spaced 

modeshapes predicted by the finite element model. It has often been observed with real data that 

in such cases the MAC values for two modeshapes corresponding to two closely spaced modes 

are of the order of 0.5. This lack of correspondence between the experimental and and the model 

predicted modeshapes is due to the fact that the experimental modeshapes belong to the 

subspace spanned by the model predicted modeshapes for the case of closely spaced modes, 

something that it is expected for modes with multiplicity of two or higher. In this case it is not 

appropriate to use the modeshape residual (4.1) since a one to one correspondence is not 
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usually satisfied. In order to take into account this problem in the formulation one needs to 

generalize the definition of the modeshape residuals as follows.  

Consider the modal group r  containing the modal properties 1, , mr r . This modal group is 

introduced herein to correspond to a set of closely spaced modes. However, in a more general 

setting it can be introduced to correspond to a set of arbitrary modes selected by the user. The 

modeshape residual for an experimentally obtained modeshape ˆ
lr
f  is constructed by comparing 

the experimentally obtained modeshape  with a reference analytical modeshape , ( )
lr reff q  that 

belongs to the subspace spanned by the modeshapes 
1
( ), , ( )

mr rf q f q  in the group r  and is 

closest to the experimentally obtained modeshape. Thus the reference analytical modeshape is 

obtained by the expansion  

 , ,
1

( ) ( ) ( ) ( ) ( )
l k l l

m

r ref r k r r r
k

Lf q f q b q q b q
=

= =Få  (4.53) 

where  
 

 
1

( )
mr r rL Lq f fé ùF = ê úë û  (4.54) 

and 1, ,( ) [ ( ), , ( )]
l l l

T
r r m rb q b q b q= . The coefficients ( )

lr
b q  in the expansion (4.53) are 

selected so that ( )
lr
f q  is closest to ˆ

lr
f , that is,  

 
2ˆ( ) arg min ( ) ( )

l l l

rl

r r r r
b

b q q b q f= F -  (4.55) 

One can readily show that (4.55) yields  

 
1 ˆ( ) ( ) ( ) ( )

l l

T T
r r r r rb q q q q f

-é ù= F F Fê úë û  (4.56) 

The modal residual between the measured modal data and the model predicted modal data for 

the modeshape component ˆ
lr
f  involved in the modal group r  is next defined by 

 

2 2

,2
2 2

ˆ ˆ( ) ( ) ( )

ˆ ˆ
l l l l

rl

l l

r ref r r r r

r r

f

f q f q b q f
e

f f

- F -
= =  (4.57) 

These modal residuals for the individual modeshape in the group r  are used to define the total 

modal residuals for all modeshapes in the group r  by 

 

2

2 2
2

1 1

ˆ( ) ( )
( )

ˆ

l l

r rl l

l

m m
r r r

l l
r

f

q b q f
e q e

f
F

= =

F -
= =å å  (4.58) 
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It should be noted that for modes that are not closely spaced, the elements , ( )
lj rb q  of the 

normalization vector ( )
lr
b q  are expected to have values close to zero for lj r  and so the 

measure of fit ( )
rf
e q  is approximately the same as ˆ ˆ( ) ( ) ( ) /

r r rr r rLfe q f q b q f f= -  defined 

in (4.1).  
 

4.5.2 Gradients of objectives  

Next, the gradient of the modeshape residuals 2 ( )
rl
e qF  with respect to the model parameters are 

obtained. Using (4.58), one has that  

 

2

,
1

( )
rl k

m
rT

k r
kj j

L
e q f

r
q q
F

=

¶ ¶
=

¶ ¶å  (4.59) 

where  

 2
,

1

( )
r rk l

m

k r
l

j jr e q
=

= å  (4.60) 

It should be noted that (4.59) is of the form (4.34) for one modal property with 1m  . For 

1, , mr r  modal properties, equation (4.34) can be written in the form  

 

2

2
,

1 1 1

( )
( )rl k k

r rk k

m m m
r rT T

k r
l l kj j j

L L
f

j j

e q f f
e q r

q q q= = =

¶ ¶ ¶
=  =

¶ ¶ ¶å å å  (4.61) 

with 2
, ( )

r rk k
k r j jr e q= . Note also that ,k rr  is given by , 2 ( )

r kk
k r rejr q b=  in (4.39).  

Comparing (4.59), (4.60) with (4.61), it can be seen that the formulation for the gradients of the 

modeshapes presented in Section 4.4.3.2 can directly be used to handle the modeshape 

residuals (4.59) for closely spaced modes by replacing 2
, ( )

r rk k
k r j jr e q=  in the formulas 

presented in Section 4.4.3.2 by the quantity ,k rr  given in (4.60).  

Finally, it can be readily shown that the quantity ,k rr  defined in (4.60) is given by   

 , ,
1

2 2
r ll

m

k r k r k
l

e bjr b
=

= = Eå  (4.62) 

where  

 2

ˆ( ) ( )

ˆ
l l

rl

l

r r r

r

ej
q b q f

f

F -
=  (4.63) 
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1r rm

e ej j
é ùE= ê úë û  (4.64) 

and  

 [ ]
1,

, m

k r

T

k k row

k r

b B

b

b
-

ì üï ïï ïï ïï ï= =í ï ïï ïï ïï ïî 

 (4.65) 

with [ ]k rowB -  denoting the k  row of matrix B  given by 
1
( ) ( )

mr rB b q b qé ù= ê úë û .  

 

4.6 Application on a scaled three-story building structure 

Experimental data from a scaled three-story steel building structure are used to demonstrate the 

applicability and effectiveness of the proposed model updating methods, assess the effect of 

model error uncertainties on the variability of the Pareto optimal models, as well as investigate 

the response prediction accuracy and variability of the updated models. 

  

4.6.1 Description of the laboratory structure 

A schematic diagram of the side and the front views of the laboratory structure are given in Figure 

4.2a. The floors of the building are made of identical steel beams of hollow orthogonal cross 

section. The two interstory columns that support each floor are made up of identical thin steel 

plates. The columns and beams are connected through angles with the help of bolts and nuts. 

The horizontal members are made to be much stiffer compared to the vertical structural 

elements so that the structural behaviour can be adequately represented by a shear beam 
building model. The total height of the structure is approximately 2.4m. The y  direction of the 

frame is made to be stiffer to prevent coupling of motion with the x  direction, the latter being the 

principal direction of interest. Detailed description and plans of the steel beams and columns can 

be found in Christodoulou (2007). The structure is considered as the reference structure and it is 

denoted by 0C .  
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Figure 4.2: (a) Front and side views of 3-story building structure with added concentrated masses, (b) 

parameterized 3-DOF model class (c) parameterized 546 DOF finite element model class. 

 

A second structural configuration is considered by adding concentrated masses made from lead 

in both sides of each floor of the reference structure as shown in Figure 4.2a. The added weight 

due to the concentrated masses is approximately 9.5 Kg per floor, while the total added mass 

corresponds to approximately 42% of the mass of the reference structure. The modified structural 

configuration with the concentrated masses is denoted by 1C .  

  

4.6.2 Modal identification 

The modal properties of the two structural configurations 0C  and 1C  are identified from 

frequency response functions that are obtained by processing the excitation force and 

acceleration response time histories generated from impulse hammer tests (Ewins, 2000). An 

array of three acceleration sensors located on the structure as schematically shown in Figure 1a, 

record the acceleration time histories during the test along the x  direction. Multiple data sets are 

generated and processed that correspond to different excitation position of the impulse hammer 

at the second and third floor of the structure along the x  direction. The common denominator 

least-squares complex frequency-domain method (Ntotsios, 2009) is used to obtain the optimal 

values of the modal parameters assuming classically damped modes. Table 4.1 reports the 

values of the identified modal frequencies and modeshape components at the measured 

locations of the lowest three bending modes for the reference 0C  and mass modified 1C  

structural configurations. 
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Table 4.1: Lowest three bending modal frequencies and modeshapes identified for the reference and the 

mass modified structural configurations. 

 Reference Structure 0C  Modified Structure 1C  

Mode # 1st 2nd 3rd 1st 2nd 3rd 

Modal Freq. (Hz) 4.646 13.81 19.48 3.908 11.57 16.31 

1st floor 0.4561 1.000 -0.7801 0.4408 1.000 -0.7892 

2nd floor 0.8069 0.3009 1.000 0.8219 0.3528 1.000 
Modeshape 
Components 

3rd floor 1.000 -0.9026 -0.6448 1.000 -0.8709 -0.5708 

 

4.6.3 Parameterized model classes 

In order to investigate the effect of modelling error in model updating and model response 

prediction variability for each structural configuration, the following two parameterised model 

classes are introduced to represent the behaviour of the structure along the x  direction.  

The first model class, which is schematically shown in Figure 4.2b, is a simple 3-DOF mass-

spring chain model. The modelling is based on the assumptions that the floors of the structure are 

rigid and that the stiffness is provided by the interstory plates. A lumped mass model is 

considered. Specifically, the i -th mass of the model includes the mass of the i -th floor and half 

of the mass of the interstory plates that are attached to the i -th floor. Thus, based on the weights 
of the structural elements, the masses 1m , 2m  and 3m  are taken to be equal to  

= =1 2 0m m m  and 0.76=3 0m m , where 22.6=0m Kg. The initial (nominal) values of the 

spring stiffnesses 01k , 02k  and 03k  are taken to be equal, that is, = = =01 02 03 0k k k k . The 

ratio 0 0/k m  was selected so as to minimize the difference between the first modal frequency 

predicted by the model and the first measured modal frequency for the structural configuration 

0C .  

The 3-DOF mass-spring chain model is parameterized introducing three parameters q1 , q2  and 

q3 , one for the stiffness of each spring modelling the interstory stiffness, so that q= 0i i ik k , for 

1, 2,3=i , where =0 0ik k  is the nominal value of the stiffness of each spring in the nominal 

model and ik  is the updated value of the stiffness of each parameterised spring based on the 

measured data. This parameterized model class is denoted by 0Μ . For the modified structure 

1C  with added concentrated masses, the 3-DOF model class is used with modified masses 

1 1m m¢+ , 2 2m m¢+  and 3 3m m¢+  that take into account the additional concentrated lead masses 

1m¢ , 2m¢  and 3m¢  added on the structure at each floor (see Figure 4.2a). The parameter set q  is 

kept the same as the one used for the reference structure 0C . This parameterized model class 

for the modified structural configuration 1C  is denoted by 1Μ .  

The second model class, which is schematically shown in Figure 4.2c, is a detailed finite element  

model. Each floor beam is modeled with a beam element, while the columns between each floor 

are modeled, due to its small thickness, with 12 plate elements each. The sizes of both types of 
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elements are calculated from the structural drawing. The modulus of elasticity and the density 

are based on the material properties. The plate elements near the joints, between columns and 

floors, are assumed to be very stiff compared to the interstory plate elements, in order to model 

the large rigidity in these parts of the structure. The FEM developed based on modeling 

assumptions, the structural drawings and the properties of the materials used, is referred to as 

the initial (nominal) FEM. The total number of DOF is 546.  

The 546-DOF finite element model is parameterised introducing three parameters q1 , q2  and q3 , 

each one associated with the modulus of elasticity of the thin plate elements of first, second and 
third interstory columns, respectively, so that q= 0i i iE E , for 1, 2,3=i , where =0 0iE E  is 

the nominal value of the modulus of elasticity of interstory plate elements in the initial FE model 
and iE  is the updated value of the modulus of elasticity of each parameterised plate element. 

This parameterized model class is denoted by 0,FEΜ . The FEM of the modified structure 1C  with 

the additional concentrated masses is obtained by modifying the FEM of the reference structure, 

adding in the FEM the known values of the concentrated lead masses at the edge nodes of the 
horizontal beam elements used to model the stiffness of the floors. The parameter set q  is kept 

the same as the one used for the reference structure. This parameterized model class for the 

modified structural configuration 1C  is denoted by 1,FEΜ . 

The model within each of the defined model classes with parameter values q q q= = =1 2 3 1  

correspond to the initial (nominal) model of the model class. It should be emphasized that the 
three parameters q1 , q2  and q3  correspond to interstory stiffness properties of the three-story 

structure which are common for all four model classes introduced for the reference and mass 

modified configurations.  

 

4.6.4 Structural model updating 

Model updating results are computed for the model classes 0Μ  and 0,FEΜ  based on the 

experimental data in Table 4.1 available for the reference structural configuration 0C . Similarly, 

model updating results are computed for the model classes 1Μ  and 1,FEΜ  based on the 

experimental data in Table 4.1 available for the structural configuration 1C . The two objective 

functions in (4.1) are used for model updating. Thus, the objective space is two dimensional, 

while the parameter space is three dimensional. The Pareto optimal models are estimated from 

the proposed multi-objective identification method using the NBI algorithm and PN =20 points 

along the Pareto front. The estimation of the optimal models corresponding to the optimally-

weighted and equally weighted residuals methods, as well as the optimal models corresponding 

to the edge points of the Pareto front, is based on the hybrid optimization method combining 

evolution strategies and gradient based methods.  
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Figure 4.3: Pareto front and Pareto optimal solutions in the (a) objective space and (b-d) parameter space, 

along with optimal solutions obtained from the optimally and equally weighted modal residuals methods. 

 

The results from the multi-objective identification methodology are shown in Figure 4.3. For each 

model class and associated structural configuration, the Pareto front, giving the Pareto solutions 

in the two-dimensional objective space, is shown in Figure 4.3a. Specifically, the results in Figure 

4.3a are given for the functions 1 1 1
ˆ ˆ( ) ( ) /Je q q a=  and 2 2 2

ˆ ˆ( ) ( ) /Je q q a=  which, given the 

definition of the objective functions in (4.3), represent a measure of the average errors of the 

modal properties involved in the two modal groups. The non-zero size of the Pareto front and the 

non-zero distance of the Pareto front from the origin are due to uncertainties arising from 

modeling and measurement errors. Specifically, the distance of the Pareto points along the 

Pareto front from the origin is an indication of the size of the overall measurement and modeling 

error. The size of the Pareto front depends on the size of the model error and the sensitivity of the 
modal properties to the parameter values q  (Christodoulou and Papadimitriou, 2007). It is 

observed that the average errors 1
ˆ( )e q  and 2

ˆ( )e q  between the measured and the model 

predicted modal properties obtained from the Pareto optimal models q̂  for the higher fidelity 546-

DOF model classes 0,FEΜ  and 1,FEΜ  are significantly smaller than the residual errors 

corresponding to the 3-DOF model classes 0Μ  and 1Μ . Consequently, for the higher fidelity 

546-DOF model classes, the Pareto front moves closer to the origin of the objective space. In 
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addition it is observed that the sizes of the Pareto fronts for the 546-DOF model classes 0,FEΜ  

and 1,FEΜ  reduce to approximately one third to half the sizes of the Pareto fronts observed for the 

3-DOF model classes 0Μ  and 1Μ . These results certify, as it should be expected based on the 

modeling assumptions in Section 5.3, that the 546-DOF model classes are higher fidelity model 

classes than the 3-DOF model classes. Also the results in Figure 4.3a quantify the quality of fit, 

acceptance and degree of accuracy of a model class in relation to another model class based on 

the measure data.  

Figures 4.3b-d show the corresponding Pareto optimal solutions in the three-dimensional 

parameter space. For each model class, the Pareto optimal solutions are concentrated along a 

one-dimensional manifold in the three-dimensional parameter space. The Figures 4.3b-d show 

the projection of the Pareto solutions in the two-dimensional parameter spaces 1 2( , )q q , 2 3( , )q q  

and 1 3( , )q q . It is observed that a wide variety of Pareto optimal solutions are obtained for both 

model classes and structural configurations that are consistent with the measured data and the 

objective functions used. Comparing the Pareto optimal solutions for a model class, it can be said 

that there is no Pareto solution that improves the fit in both modal groups simultaneously. Thus, 

all Pareto solutions correspond to acceptable compromise structural models trading-off the fit in 

the modal frequencies involved in the first modal group with the fit in the modeshape components 

involved in the second modal group.  

Comparing the Pareto front and Pareto optimal models for the 546-DOF model classes with the 

corresponding ones obtained for the 3-DOF model classes, it can be noted that the results are 

qualitatively similar. However, the size of the one dimensional optimal solutions manifolds for the 

546-DOF model classes 0,FEΜ  and 1,FEΜ  are significantly smaller than the size of the manifolds 

for the 3-DOF model classes 0Μ  and 1Μ . These results clearly demonstrate that as the fidelity 

of the model class improves, the variability of the Pareto optimal models reduces. This has 

important implications in the selection of the weight values used in weighted modal residuals 

method for model updating and model-based prediction studies.  Since the variability of the 

Pareto optimal solutions reduces as the fidelity of the models improves, the effect of the choice of 

weight on weighted modal residuals methods diminishes as the fidelity of the model increases.  

Consider next the common parameter model classes 0Μ  and 1Μ  introduced for modeling the 

reference and modified structural configurations 0C  and 1C , respectively. The Pareto optimal 

values of the common parameter set q  of the 3-DOF model classes 0Μ  and 1Μ  differ, despite 

the fact that the parameters for the two model classes 0Μ  and 1Μ  refer to the same interstory 

stiffnesses of the two different structural configurations. The differences can be attributed mainly 

to the size of modeling errors involved in the 3-DOF model classes. Instead, comparing the 

Pareto optimal values obtained from the common parameter 546-DOF model classes 0,FEΜ  and 

1,FEΜ  for the two structural configurations 0C  and 1C , it is observed that the optimal solution 

manifolds for the 546-DOF model classes are significantly closer than the optimal solution 

manifolds for the 3-DOF model classes. This certifies that the higher fidelity model classes 

provide consistent estimates of the common parameters in model classes introduced to model 
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different structural configurations. Finally, it should be noted from the results in Figures 4.3b-d 

that the Pareto optimal values of the parameters predicted by the higher fidelity model classes 

0,FEΜ  and 1,FEΜ  are significant different from the Pareto optimal values predicted by the simpler 

model classes 0Μ  and 1Μ . Thus, the model updating results and parameter estimates depend 

highly on the fidelity of the model class considered.  

The optimal structural models corresponding to the optimally weighted (OWM) and the equally 

weighted (EWM) residuals methods for the 3-DOF and 546-DOF model classes are also shown in 

the Figure 4.3. It can be seen that these optimal models are points along the Pareto front, as it 

should be expected. The two methods, the OWM and the EWM, in general promote different 

Pareto optimal models for use in model-based prediction studies. For the example case 

considered, the Pareto solutions ( )ˆ owmq  provided by the optimally weighted residuals method for 

the 3-DOF model classes are close to the boundary solution (20)q̂  for both structural 

configurations 0C  and 1C . Also, the Pareto points corresponding to the optimally weighted 

(OWM) and the equally weighted (EWM) residuals methods for the 546-DOF model classes are 

also shown in the Figure 4.3 to be closer than the corresponding Pareto points for the  3-DOF 

model classes.  
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Figure 4.4: (a) Pareto front, (b) projection of Pareto optimal solutions in 1 2( , )q q  plane for model class 

0,FEΜ . 

 

4.6.5 Unidentifiability issues 

Unidentifiability issues are next discussed which were ignored in presenting the Pareto front for 

the model class 0,FEΜ  in Figure 4.3a. Figure 4.4a shows the Pareto front obtained by the 

application of the proposed NBI algorithm for the 546-DOF model class 0,FEΜ . It is observed that 

there is an almost flat part of the Pareto front at the lower right edge of Figure 3a. This is due to 

the unidentifiability problems (Katafygiotis et al., 1998; Katafygiotis and Lam, 2002)  encountered 

in estimating the optimal model corresponding to the right edge point of the Pareto front. In this 

case, the right edge point of the Pareto front is obtained by optimizing the function 2 ( )J q . It turns 
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out that there is a lower dimensional manifold in the three-dimensional parameter space, shown 

in the two-dimensional projection 1 2( , )q q  in Figure 4.4b to extend from point 13 to point 20, that 

give almost the same optimum for 2 ( )J q . Depending on the starting values of the parameter set 

q , the gradient-based optimization algorithm converges to one of the infinite number of optimal 

models in this sub-manifold. As it is noted in Figure 4.4a, the flat unidentifiable portion of the 

Pareto front and the associated manifold in Figure 4.4b are readily obtained by the NBI method. 

From the engineering point of view, the most important point from this flat portion is the most left 

point 13 in Figure 4.4a since all other points in the flat portion deteriorate the fit in the objective 

function 1( )J q  without significantly altering the fit in 2 ( )J q . In order to generate points only on 

the identifiable portion of the Pareto front for pre-selected number of points on it (e.g. 20 points as 

shown in Figure 2a), the analyst can repeat the application of the NBI algorithm with edge points 

of the Pareto front selected to be the points 1 and 13 in Figure 3. It should be noted that in the 

results presented in Figure 4.3 for the model classes 0,FEΜ , only the identifiable part of the 

Pareto front is shown.  

It is worth mentioning that unidentifiable portions of the Pareto front were not observed for the 

other three model classes which implies that the problem was identifiable for all three model 

classes. 

 

4.6.6 Disconnected Pareto front 

More careful examination of the optimal points resulted by the NBI method for the model class 

0Μ  in Figure 4.3 reveals that the NBI points 6 and 7 for model class 0Μ  do not constitute Pareto 

points since it can be easily checked numerically that they do not satisfy conditions (4.5). Figure 

4.5 shows the exact Pareto front and Pareto optimal solutions projected in the two-dimensional 

parameter space 1 2( , )q q  using NBI method for PN =40 points. The NBI points that do not 

satisfy conditions (4.5) have been excluded from the Figures. It is clearly seen that the Pareto 

front in Figure 4.5a and the projection of the one-dimensional Pareto solution manifold in 1 2( , )q q  

plane in Figure 4.5b is disconnected. The missing portion in Figure 4.5 that does not belong to 

Pareto front is the portion of the Pareto front and Pareto solutions in Figure 4.3 that extends 

approximately from point 5 to point 8. From the previous results, it is evident that the NBI method, 

despite the disconnected manifolds that exists, is capable of fully describing the Pareto solutions.  
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Figure 4.5: (a) Pareto front, (b) projection of Pareto optimal solutions in 1 2( , )q q  plane for model class 

0Μ . 

 

4.6.7 Generation of Pareto points using the weighted residuals method 

For comparison purposes, the weighted residuals method was also used to obtain the Pareto 

front by uniformly varying the weights in (4.6) from 0 to 1. Specifically, dividing the interval [0,1] 

for the weight 1w  into equally spaced sub-intervals using a step wD , selecting the 

corresponding values of 2w  to satisfy the condition 1 2 1w w+ = , and estimating the optimal 

solutions for the 1/ wD  pairs of ( 1w , 2w ) values, the Pareto front and the Pareto solutions are 

obtained and shown in Figures 4.5a and 4.5b for model class 0Μ  for 0.05wD = . It can be 

seen that varying the weights in the weighted residuals method, part of the Pareto points can be 

completely missed. Specifically, the top left portion of the Pareto front in Figure 4.5a has been 

missed. Attempts to recover this part by fully exploring the region in the parameter space that 

corresponds to the top left part of the Pareto front have failed. Such attempts included the use of 
different values of the weights w  in (4.6), different starting values for solving the single-objective 

optimization problems, various sizes of wD , and an increasing number of Pareto points. 

Numerically there is no point in the top left part of the Pareto front that corresponds to a weight 

value in the weighted residual method. This is in accordance with the fact that there may be 

Pareto solutions that do not correspond to solutions of the single-objective optimization involving 

the weighted residuals norm (4.6) for any values of the weights. It should however be noted that 

for weight values 1 1w =  and 2 0w = , there is a global optimal solution that corresponds to the 

edge Pareto point A shown in Figure 4.5, as well as a local solution that corresponds to the edge 

Pareto point B of the left portion of the Pareto front. Both solutions, although one global and one 

local for the same weight values 1 1w =  and 2 0w = , are Pareto optimal solutions because they 

correspond to different values of the second objective 2 ( )J q .  

A final issue that is worth mentioning is that varying uniformly the weight values and computing 

the Pareto points using the weighted residuals method does not produce uniformly distributed 

points along the Pareto front. Instead, it may yield a cluster of points as it can be seen in Figure 

4.5. As a consequence, part of the Pareto fronts can be misrepresented or completely missed.  
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4.6.8 Prediction variability using Pareto optimal structural models 

The purpose of the identification is to construct faithful structural models, within a selected model 

class, that can be used for making improved structural performance predictions consistent with 

the measured data. The alternative models obtained along the Pareto front provide different 

performance predictions that are all acceptable based on the measured data and the measures of 

fit employed. The variability of these predictions is next explored.  

The variability in the modal properties predicted by the Pareto optimal models is estimated for the 

model classes 0Μ  and  0,FEΜ  representing structural configuration 0C , and the model classes 

1Μ  and 1,FEΜ  representing structural configuration 1C . The values of the three modal 

frequencies predicted by the Pareto optimal models from each model class, including the Pareto 

optimal models corresponding to the optimally weighted and equally weighted residuals methods, 

are shown in Figure 4.6. The measured modal frequencies for structural configurations 0C  and 

1C  are also shown for comparison purposes. The variability of the corresponding MAC (Modal 

Assurance Criterion) values between the modeshape components predicted by the Pareto 

optimal models for each model class and the measured modeshapes for the three bending 

modes are shown in Figure 4.7.  
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Figure 4.6: Variability of modal frequencies predicted by the Pareto optimal solutions corresponding to 

model classes 0Μ , 1Μ , 0,FEΜ  and 1,FEΜ . The corresponding measured modal frequencies are also 

presented. 
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For each model class, different Pareto optimal models along the Pareto front result in different 

predictions of the structural modal frequencies and MAC values. A relatively large variability in the 

predictions is observed for the 3-DOF model classes 0Μ  and 1Μ . The maximum percentage 

error values between the Pareto optimal model predictions for the first, second and third modal 

frequency are respectively of the order of 6.0%, 2.7% and 4.9% for the model class 0Μ  and of 

the order of 5.1%, 2.3% and 3.1% for the model class 1Μ . The MAC values corresponding to the 

first, second and third mode vary respectively from 0.990, 0.863 and 0.851 for the model classes 

0Μ  and from 0.997, 0.895 and 0.884 for the model classes 1Μ  to values very close to 1.0.  
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Figure 4.7: Variability of MAC values predicted by the Pareto optimal solutions corresponding to model 

classes 0Μ , 1Μ , 0,FEΜ  and 1,FEΜ . 

 

It is clear that there is a trade off between the fit that the Pareto optimal models for model classes 

0Μ  and  0,FEΜ  provide to the modal frequencies and the modeshapes. Specifically, the Pareto 

models with small numbers close to Pareto point 1 provide a very good fit to the modal 

frequencies in the expense of deteriorating the fit in the MAC values to values significantly 

smaller than one. The Pareto models with large numbers close to Pareto point 20 for model 

classes 0Μ  and  0,FEΜ  improve the MAC values to values very close to one in the expense of 

deteriorating the fit in the modal frequencies. Similar trade off in the fit is observed for the Pareto 

optimal models for model classes 1Μ  and  1,FEΜ .  
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Comparing the predictions in Figure 4.5 from the 3-DOF model classes and the 546-DOF model 

classes, the 546-DOF model classes 0,FEΜ  and 1,FEΜ  provide overall significantly better fit in the 

modal frequencies than the fit provided by the 3-DOF model classes  0Μ  and 1Μ . Also, 

comparing the results in Figure 4.7, it is observed that the higher fidelity 546-DOF model classes 

give MAC values between the Pareto optimal models and the measurements that are much 

closer to one than the MAC values obtained for the 3-DOF model class. These results verify that 

higher fidelity model classes tend to give better predictions that are less sensitive to selections 

required in model updating, such as the weight values used in weighted residuals methods.  
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Figure 4.8: (a) Variability of the maximum of the frequency response function at first floor, (b) the probability 

of failure corresponding to allowable interstory drift levels 0.03b=  and 0.04b= . 
 

Similar variability can be constructed for other structural performance indices. Figure 4.8a shows 

the variability of the maximum of the frequency response function at the first floor obtained for the 
Pareto optimal models for all model classes for damping values of 0.02z = . Figure 4.8b shows 

the variability of the probability of failure of the structure to uncertain stochastic loads. Herein, 

failure is defined as the condition for which either one of interstory floor drifts exceeds a level b . 

The failure probability estimates are obtained for white noise excitation of duration 30T = sec, 

strength S =0.001 and for two allowable drift levels 0.03b=  and 0.04b= . The failure 

probability is obtained using efficient stochastic simulation methods available for linear systems 

[38-39] for 2000 samples. In particular, it is worth observing that a large variability in the 

maximum of the frequency response predictions, from [0.238 - 0.349] for the model class 0Μ  

and [0.281 – 0.321] for the model class 0,FEΜ , and in the failure probabilities from [0.011x 410-  – 

5.1x 410- ] for the model class 0Μ  and [0.4x 310-  – 2.1x 310- ] for the model class 0,FEΜ , are 

observed for the Pareto optimal models. Similar variability levels are observed for model classes 

1Μ  and 1,FEΜ . These variabilities are larger than the variabilities in the modal frequencies shown 

in Figures 4.6.  
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Comparing the results in Figure 4.8 for the 3-DOF and the 546-DOF model classes, it is observed 

that the variability in the predictions of the maximum of the frequency response function and the 

probability of failure due to allowable drift exceedance levels of the 546-DOF model class is 

significantly smaller than the corresponding variability obtained from the 3-DOF model class.  

Concluding, the predictions of the various performance indices from the Pareto optimal models 

may vary considerably. The variability in the predictions depends on the fidelity of the model class 

selected for identification. Higher fidelity model classes tend to reduce the variability in the 

predictions, diminishing the importance of selecting the weight values in weighted residuals 

methods. 

 

4.7 Conclusions 

Model updating methods were proposed to characterize and compute all Pareto optimal models 

from a model class, consistent with the measured data and the norms used to measure the fit 

between the measured and model predicted modal properties. The similarities with and 

differences from the conventional weighted modal residuals method were established. Based on 

a Bayesian statistical framework and the measured modal data, the most preferred Pareto 

optimal solution promoted by the proposed optimally weighted modal residuals method 

correspond to weight value for a modal group that is inversely proportional to the optimal residual 

between the measured and the model predicted properties involved in the modal group. The 

optimal values of the structural parameters for the most preferred Pareto optimal model are 

obtained by minimizing the sum of the logarithm of the modal residuals. The most preferred 

Pareto optimal model can be used for model-based predictions in case of more than a few 

objective functions for which the generation and visualization of Pareto optimal models in the 

multi-objective space is computationally less tractable. The Bayesian formulation also quantifies 

the uncertainty in the Pareto optimal models which can be used to further quantify the uncertainty 

in the response predictions from these Pareto optimal models. For this, an asymptotic 

approximation for the probability distribution of the weights has derived that depends on the 

optimal values of the model parameters and the Hessian of the residuals given a weight value. 

Hybrid algorithms based on evolution strategies and gradient methods are necessary and well-

suited optimization tools for solving the resulting non-convex single-objective optimization 

problem and identifying the global optimum from multiple local ones. The proposed NBI method is 

well-suited for solving the multi-objective optimization problem and effectively computing the 

useful identifiable part of the Pareto front, as well as portion of the unidentifiable part of the 

Pareto front at the edge points. Efficient algorithms are introduced for reducing the computational 

cost involved in estimating the gradients and Hessians of the objective functions. The 

computational cost for estimating the gradients and Hessians is shown to be independent of the 

number of structural model parameters. In addition to the optimization algorithm, the Hessian 

estimation is also used to estimate the probability distribution of the weights.  The methodology is 

particularly efficient to system with several number of model parameters and large number of 

DOFs where repeated gradient evaluations are computationally quite time consuming.  
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Theoretical and computational issues were demonstrated by updating simple and higher fidelity 

model classes using experimental data from two configurations of a scaled three-story steel 

structure. A wide variety of Pareto optimal structural models consistent with the measured modal 

data was obtained. The variability in the Pareto optimal models is due to the model and 

measurement error. The large variability in the Pareto optimal models resulted in large variability 

in the response and structural reliability predictions. It has been demonstrated that higher fidelity 

model classes, tend to involve less model error, move the Pareto front towards the origin and 

reduce the size of the Pareto front in the objective space, reduce the variability of the Pareto 

optimal solutions, provide better fit to the measured quantities, and give much better predictions 

corresponding to reduced variability. In particular, as the fidelity of the model class improves, the 

importance of selecting the weight values in weighted residuals methods diminishes. 
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Chapter 5 
 

Fatigue predictions of metallic structures using a limited 
number of vibration sensors 
  
5.1 Introduction  

Damage accumulation due to fatigue is an important safety-related issue in metallic structures. 

The linear Palmgren-Miner damage accumulation law (Palmgren, 1924; Miner, 1945) is often 

used to evaluate fatigue damage using available methods for cycle counting in variable amplitude 

measured stress response time histories and S-N curves obtained from laboratory experiments of 

simple specimens subjected to constant amplitude loads. The damage accumulation predictions 

are based on time histories measurements taken from a sensor network, consisting usually of 

strain rosettes, attached to the structure. Such predictions are only applicable for the locations 

where measurements are available. Due to practical and economical considerations, the number 

of sensors placed in a structure during operation is very limited and in most cases they do not 

cover all critical locations. Moreover, there are locations in the structure that one cannot install 

sensors such as submerged structures, underwater locations in offshore structures (oil refinery 

structures, offshore wind turbines, offshore steel jackets, etc.), heated structural components, 

internal points in solid structures, and non-approachable areas of large extended structures. 

Available fatigue prediction methods based only on measurements cannot be used to predict 

fatigue damage accumulation at such locations where measurements are not available. In order 

to infer damage due to fatigue at structural members where measurements are not available, one 

needs to predict the stress response time histories in these structural members using the 

available measurements obtained from the sensory system. In certain circumstances, such 

predictions can be possible if one combines the available measurements with the information 

obtained from a dynamic model (e.g. a finite element model) of the structure.   

 The methods for fatigue damage accumulation have been extended to treat the case that the 

excitations can be represented by a stochastic vector process with known correlation 

characteristics. Assuming that the structure behaves linearly and the excitation is modeled by a 

Gaussian stochastic vector process, the stress response at any point is a stochastic process that 

can be completely defined using the correlation characteristics of the stochastic excitations (Lutes 

and Sarkani, 2004). The fatigue damage accumulation at a structural location can then be 

computed using the characteristics of the stochastic processes of the components of the stress 

tensor at such a location. Methods for fatigue damage accumulation for Gaussian narrow-band 

stress processes have been introduced using the Rayleigh approximation and extended to handle 

the case of wide-band Gaussian stress processes (e.g. Wirsching and Light, 1980; Lutes et al., 

1984; Lutes and Larsen 1990; Rychlik, 1993; Dirlik, 1985). A review and comparison of spectral 

methods for stochastic fatigue analysis based on wide-band Gaussian stochastic processes can 

be found in the work by Benasciutti and Tovo (2006). The formulations depend on the probability 

distribution of stress cycles corresponding to different stress levels in a stress response time 

history signal and the expected number of peaks per unit time of a stress process. Results for the 
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expected fatigue damage accumulation predicted by the Palmgren-Miner linear law have been 

presented in terms of the spectral moments of the stress process which are readily obtained from 

the power spectral density of the stress components involved. For the important case of wide 

band processes encountered often in applications, the simulation-inspired Dirlik approximation 

(Dirlik, 1985) is widely used and is considered to be the most accurate formula for modeling the 

probability of stress cycles in terms of the spectral moments of the stress process. It is worth 

noting that the aforementioned frequency domain methods based on the stress power spectral 

densities or spectral moments use no information available from a sensor network. Instead, their 

predictive accuracy depends on the assumptions employed for the excitation characteristics and 

the models representing the structural behavior. However, these predictions fail to integrate the 

information provided by a network of sensors. The sensor information is expected to update and 

improve the fatigue predictions, making them consistent with the available measurements.  

In this chapter, the problem of estimating the expected damage accumulation or remaining 

lifetime due to fatigue in the entire body of a structure using output-only vibration measurements 

at a limited number of locations provided by a sensor network installed on the structure is 

addressed. The measurements may consist of response time histories such as e.g. strain, 

acceleration, velocity, displacement, etc. The expected fatigue damage accumulation in the entire 

structure is obtained by integrating (a) methods for predicting strain/stress response time histories 

and their correlation/spectral characteristics in the entire structure from output-only measured 

response time histories available at limited locations in the structure, and (b) frequency domain 

methods for estimating fatigue damage accumulation using the spectral characteristics of the 

predicted strain/stress response time histories. The idea is to use Kalman filter (Kalman and 

Bucy, 1961) methods to predict the strain/stress response time histories at various locations 

within structural components using the measurements available at a limited number of locations. 

A schematic diagram of the fatigue lifetime prediction in the entire structure from limited number 

of sensors using Kalman filter, along with its use in inspection/maintenance decisions, is shown in 

Figure 5.1. Response time history measurements are collected from a limited number of points 

, while stress time history predictions are made at any number of points . For 

each prediction point , the fatigue damage accumulation, or remaining fatigue lifetime T , is 
obtained by combining the information in the stress tensor time history 

1S , ,Sn 1P , ,Pm
P

( )t  for the point , 

fatigue data sets (e.g. S-N-curves) and a damage accumulation model (e.g. Palmgren-Miner 

rule). Such predictions are restricted here to the case of linear structures and excitations that can 

be adequately represented by Gaussian stationary stochastic processes. The excitation time 

histories applied in the structure are considered to be unknown. However, for several operational 

conditions of structures, the excitation time histories can be considered to be samples of a 

Gaussian stationary stochastic process with unknown intensity and frequency content. The 

proposed methodology is thus applicable for the case where the responses can be modeled by 

Gaussian stationary processes and the measured response time histories are long enough so 

that they can be considered to be samples of stationary processes.  

P
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Figure 5.1: Scheme of life-time prediction from a limited number of sensors using a Kalman Filter.  

 

The objective of this work is to formulate the fatigue prediction problem, illustrate the 

methodology and point out its use in evaluating the damage accumulation in the entire structure 

from a limited number of vibration measurements. For this, the present approach is limited to uni-

axial stress processes and simplified models of structures. The extension to multi-axial stress 

processes can be accomplished by using recent developments in frequency domain methods for 

stochastic fatigue based on spectral techniques (Preumont and Piefort, 1994; You and Lee, 1996; 

Pitoiset and Preumont, 2000). These methods reduce the multi-axial stress state to an equivalent 

uniaxial stress state that can treated by available fatigue estimation techniques based on spectral 

methods. In addition, extension to non-Gaussian stress processes, known to significantly affect 

fatigue life predictions (Lutes et al., 1984; Sarkani et al., 1994) can also be accomplished by 

using recent approximations for the probability distribution of the stress cycles (Wang and Sun, 

2005) in terms also of the higher moments of the stress process such as skewness and kurtosis.  

This chapter is organized as follows. In Section 5.2, the frequency domain formulation for 

predicting damage due to fatigue in structural elements subjected to uniaxial stress state in linear 

structures under Gaussian stochastic excitations is reviewed. The formulation is applicable to 

Gaussian wide-band stress processes, often encountered in engineering applications, and 

damage accumulation due to fatigue depends on the spectral moments of the power spectral 

densities of the stress process at a location of a structure. Section 5.3 presents the formulation 

for predicting the strain/stress response time histories and the associated power spectral 

densities at all desirable locations of the structure using Kalman filter and the measured time 

histories at a limited number of locations in the structure. For this, first the state space formulation 

of the equations governing the vibrations of a structure is briefly summarized in Section 5.3.1. 

Using the discrete-time formulation of the state space approach, the Kalman filter approach for 

estimating the power spectral densities of the stresses in the entire body of the structure is 
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presented in Section 5.3.2 and 5.3.3. The approach considers that the unmeasured excitations 

can be represented by Gaussian stationary stochastic processes. Finally, Section 5.4 

demonstrates the effectiveness of the proposed methodology using a chain-like mass-spring 

multi-degree-of-freedom (MDOF) structure and “measured” data that are simulated from various 

types of excitations, including white noise and filtered white noise excitations. Conclusions are 

summarized in Section 5.5. 

 
 

5.2 Frequency domain method for fatigue estimation based on spectral 
moments 

The Palmgren-Miner rule (Palmgren, 1924; Miner, 1945) is commonly used to predict the damage 

accumulation due to fatigue.  According to this rule, a linear damage accumulation law at a point 

in the structure subjected to variable amplitude stress time history is defined by the formula 

 
m

i

i i

n
D

N
  (5.1) 

where  is the number of cycles at a stress level in i ,  is the number of cycles required for 

failure at a stress level 

iN

i , and  is the number of stress levels identified in a stress time history 

at the corresponding structural point.  Available S-N fatigue curves, obtained from laboratory 

experiments on simple specimens that are subjected to constant amplitude loads, are used to 

describe the number of cycles  required for failure in terms of the stress level 

m

iN i . The number 

of cycles  at a stress level in i  are usually obtained using available stress cycle counting 

methods, provided that the stress time histories are available through measurements. 

Alternatively, for the cases where the stress response time histories are not available from 

measurements, frequency domain methods based on spectral moments (e.g. Lutes et al., 1984; 

Benasciutti and Tovo, 2006) can be used to predict the expected damage due to fatigue using the 

linear damage law (5.1). The methodology assumes that the power spectral density of the stress 

process at a structural location is available. For linear systems excited by time-varying loads that 

can be modeled by stationary stochastic processes, these power spectral densities can be 

straightforward computed using available random vibration results (Lutes and Sarkani, 2004).  

The following section outlines such a frequency domain methodology based on spectral moments 

for fatigue estimation for structural members subjected to uniaxial stress state. For multi-axial 

stress states one can apply available methods (Preumont snd Piefort, 1994; You and Lee, 1996; 
Pitoiset and Preumont, 2000) to extend the applicability of the present methodology. Let ( )t  be 

the uni-axial stress at a point in a structural element. The stress is considered to be a stationary 

Gaussian stochastic process. This is the case encountered in linear structures that are subjected 

to stationary Gaussian stochastic processes. Let ( )S   be the power spectral density of the 

stationary Gaussian stochastic stress process (t)  of the uni-axial stress at a structural location 

and  
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 ( )
j

j S d  



    (5.2) 

be the spectral moments of the process. Using frequency domain methods for fatigue estimation 

under stochastic excitations and the continuous version of the damage accumulation law (5.1), 

the expected fatigue damage accumulation for a uni-axial stochastic stress process is given by 

(Benasciutti and Tovo, 2006) 

 1

0 0

( )
[ ] [ ] ( )

( )
an

E D d c TE P p d
N

    


     (5.3) 

where ( ) [ ] ( )n TE P p d  
]d

 is the number of cycles at stress levels within the stress interval 

[ ,   ( )p,   is the probability distribution of the stress levels,  

 ( )N c     (5.4) 

is the number of cycles for failure that correspond to a specific constant amplitude stress level   
obtained from available S-N curves, [ ]E P  is the expected number of peaks per unit time for the 

stress process, and T  the period of observation. The parameters c  and   are constants 

obtained from fatigue test experiments and depend on the material and the type of the test 

specimen.  

The expected time of failure due to fatigue (fatigue lifetime)  corresponds to a critical 

expected damage value  which is often set equal to unity (

lifeT

[ ] crE D D 1crD  ). Using (5.3), the 

fatigue lifetime is given by 

 cr
life

D
T

D
  (5.5) 

where D  is the expected damage rate given by 

 1

0
[ ] ( )D c E P p d  

   (5.6) 

For Gaussian stochastic stress processes, the probability distribution of the stress range 
2   , taken to be twice the random amplitude at stress level within [ , ]d    in a stress 

process, is given by the Dirlik formula (Dirlik, 1985; Bishop and Sherrat, 1990; Benasciutti and 

Tovo, 2005) as  

 

2 2

2
0 0

( ) ( )
2 8 31 2

2
0 0

1
( )

2 2 2
h r dd d

p e e
h r

  
  

  

         
  

08

0

e   (5.7) 
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where , , ,  and  are specific algebraic functions of the spectral moments 1d 2d 3d h r 0 , 1 , 

2 , 4 , given by 

 
 2 2

2 2 1 1
1 2 32

2

2 1
, ,

1 1
mx d d

d d d
r

 


   
  

  1 21 d d   (5.8) 

 
  2

2 3 2 2
2

1 2

1.25
,

1
m

d d r
1

1 1

x d
h r

d d

 


   
 

   d
 (5.9) 

 

1

2
1 2 1 2

1 2 1 2
0 4 0 2 0 4

, ,mx
     
 


  

 
    

  
 (5.10) 

This is a semi-empirical probability density which is a mixture of one exponential and two 

Rayleigh distributions. It has been derived by fitting the shape of a rain-flow range distribution via 

minimizing the normalized error between the rain-flow ranges and the above density model. The 

spectral moments 4210 ,,,   constitute a base for the construction of the approximate closed-

form Dirlik formula for the probability density of the stress range. The Dirlik formula constitutes an 

extension of the Rayleigh distribution to non-narrow band processes. It is widely used for fatigue 

crack estimation under wide-band Gaussian stationary applied stress. Extension to non-Gaussian 

stress processes requiring the skewness and kurtosis of the stress process are available in the 

work by Wang and Sun (2005).  

Using results from random vibration theory, the expected number of cycles [ ]E P  per second for 

a stochastic process is given by the spectral moments of the process in the form  

 4

2

1
[ ]

2
E P


 

  (5.11) 

Starting with (5.6) and noting that ( ) ( ) / 2 (2 ) / 2p p p     , then substituting (5.11) and 

the Dirlik formula (5.7) into (5.6) and finally carrying out the integration in (5.6) analytically, the 

expected damage rate simplifies to (Benasciutti and Tovo, 2006)  

 1 / 2 / 24
0 1 2 3

2

(8 ) (1 ) 2 1 ( | | )
2

aD c d h d r d     


             
    (5.12) 

where , , ,  and r  are defined in 1d 2d 3d h (5.8)-(5.10).  

It is clear from the aforementioned formulation and equations (5.5) and (5.12) that the expected 

fatigue damage rate D  and, consequently, the fatigue accumulation during a time interval T  or 

the fatigue lifetime  at a point in the structure depends only on the spectral moments lifeT i , 

, of the stress process 0,1,2,4i  ( )t . Using the definition of the spectral moments in (5.2), 
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the spectral moments and the fatigue predictions at a point of a structure eventually depend only 

on the power spectral density ( )S   of the stress process ( )t .  

The power spectral densities of the stress response processes at a point can be calculated from 

measurements, provided that these measurements are long enough to be considered stationary. 

However, there is a limited number of points that can be instrumented in the structure. For the 

points where measurements are not available, one has to make predictions of the stress process 

and subsequently the power spectral density of the stress process at a location, given the 

measurements at other locations. This issue of predicting the power spectral densities of the 

stress processes in the entire body of the structure using measurements at limited locations is 

addressed at the next Section 3. Once these measurements and predictions of the stresses are 

estimated at measured and unmeasured locations, the power spectral densities and the 

corresponding damage accumulation or lifetime due to fatigue are obtained, using (5.5) and 

(5.12), everywhere in the structure. In this way, fatigue damage accumulation maps for the entire 

structure are constructed from the limited number of ambient vibration measurements. 

 

5.3 Response predictions in the entire structure using ambient vibration 
measurements 

The objective of this section is to predict the stress response at all points in a structure using the 

measurements at a limited number of locations. This is achieved using an approach that is 

outlined in the next two subsection based on the commonly used Kalman filter method (Kalman 

and Bucy, 1961) for full state estimation of a linear system using limited number of 

measurements.  

 

5.3.1 Equations of motion and state space formulation  

Consider the dynamic response of a linear structural system subjected to deterministic and 

random excitations. Using a spatial discretization method, such as finite element analysis, the 

equations of motion are given by the following set of  second order differential equations  N

M ( ) ( ) ( ) ( )u ( )wq t Cq t Kq t L w t    u t L  (5.13) 

N NKwhere 1( ) Nq t   is the displacement vector, M ,  and C   are respectively the 

mass, damping and stiffness matrices, , 1n( ) u iu t N   and , 1( ) w inNw t 
n ,w inN

 are the applied 

deterministic and stochastic excitation vectors of dimension  and , respectively, and 

 and  are matrices comprised of zeros and ones that map the  

and  deterministic and stochastic excitation loads to the  output DOFs. Throughout the 

analysis, it is assumed that the system matrices 

,u iN

N

,u inN N
uL 

,w inN

,w inN N
wL  ,u inN

M , C  and  are symmetric. Let ( ) measNK y t   

be the vector that collects all measurements at different locations of the structure at time t . 
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These measurements are generally collected from sensors such as accelerometers, strain 

gauges, etc.  For convenience and without loss of generality, it is assumed in the analysis that 

sensors placed in the structure measure the strains.   

Introducing the state vector 1 2[ ]T T T Nx q q      , the equation of motion can be written in the 

state space form  

   ( )c c cx A x B u t G w t    (5.14) 

while the measured output vector  y t  is given by the observation equation 

    y t H x Du t   (5.15) 

where the state transition matrix , and the matrices cA cB  and  are given by cG

  (5.16) 2 2
1 1

0 N N
c

I
A

M K M C


 

 
    



1

N

  (5.17) , ,2 2

1

0 0
      and     u in w inN N N N

c c
u w

B G
M L M L

 


   
          

 

respectively,  is the observation matrix and  for strain 

measurements.  

2measNH  ,20 meas u inN ND  

 

5.3.2 Kalman filter approach  

Since measurements are available in digitized form, the presentation of the Kalman filter is next 

given in discrete time. Using the sampling rate 1/ t , the discrete-time state space model 

corresponding to (5.14) and (5.15) is  

 11 kk k k 1x Ax Bu Gw     (5.18) 

 kk ky Hx Du vk    (5.19) 

where (k )x x k t   and ( )ky y k t  , 1, , sk N  , are the digitized state and output vectors, 

and cA tA e 

kv

( ) (k

 is the state transition matrix for the discrete formulation. The random variables  

and  represent the stochastic excitation and the measurement noise, respectively. They are 

assumed to be independent, white and following normal probability distributions 

kw

0, )p w N Q  and ( ) (0,k )p v N R , where Q  and R  are the stochastic excitation and the 

measurement noise covariances assumed to be constant, independent of time.  
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Kalman filter is used to estimate the state ˆkx  of the system described by (5.18) using the 

measurements in the vector ky  in (5.19). Specifically, in the prediction step, an apriori state 

estimate ˆkx  of the state vector kx  of the system is estimated from equation (Franklin et al., 

1990; Stengel, 1986)  

 1ˆ ˆk k 1kx Ax Bu
    (5.20) 

In the correction step, the measured value ky  is used to calculate a posteriori state estimate ˆkx , 

weighting the measured and estimated signals by the Kalman filter gain factor . This is 

formulated by the equation  

kK

 ˆ ˆ ˆ[k k k k k k ]x x K y Hx Du      (5.21) 

where the Kalman gain factor is given by  

 1[T T
k k kK P H HP H R]   (5.22) 

and, for steady state response, the error covariance matrix [ ( ) ]T
k kP P E e e   k , where 

ˆke x x   k


T

 is the a priori error estimate, satisfies the discrete time Riccati equation:  

  (5.23) 1( )T T T TP APA APH HPH R HPA GQG   

Let k  be a vector containing the digitized stresses at time t k t   at various locations of the 

structure. Using structural mechanics theory, these stresses in the vector k  are related to the 

state vector through a linear transformation k kx   , where   is the transformation matrix that 

associates the state vector to the desired stresses in the entire structure. Consequently, an 

estimate of the stresses ˆk  is related to the state vector estimate ˆkx  through the transformation:  

 ˆk ˆkx    (5.24) 

Herein, the response prediction vector k  is restricted to stresses at elements subjected to 

uniaxial stress states required in lifetime fatigue estimation as described in Section 5.2.  

Using the definition of the cross power spectral density (CPSD), the Kalman filter equations (5.20) 

and (5.21), the fact that  in 0B  (5.20) for the case of stochastic excitations and  in 0D  (5.21) 

for strain measurements, the CPSD ˆ ( )S   of the stress response vector ˆk  can readily be 

obtained with respect to the CPSD ( )yS   of the measurement vector ky  in the form  

 1
ˆ ( ) ( ) ( ) ( ) ( )T T

x yS S E j KS K E j           T T  (5.25) 
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where ( )E j  is the matrix given by  

  (5.26) ( ) ( )j tE j Ie I KH A   

and I  is the identity matrix. Equation (5.25) relates the power spectral densities of the 

components of the stress vector k  at various structural locations with the power spectral 

densities of the measured quantities involved in ky  available at the limited number of measured 

locations. This relation depends on the model (e.g. a finite element model) used to represent the 

behavior of the structure and the assumption that the excitation vector is broad-band so that the 

excitations can be modeled by zero-mean stationary white noise processes with spectral density 

described by [ ]T
k l klE w w Q , where kl  is the Kronecker delta.  

It should be noted that in order to apply (5.23), an estimate of the zero-lag covariance matrix R  
of the measurement noise and the zero-lag covariance matrix Q  of the unknown input stochastic 

vector process has to be provided. The values of the covariance matrix R  which have to be 

chosen, affects the estimates of the cross power spectral density matrix ˆ ( )S   in (5.25). 

However, an optimal estimate of the covariance matrix  can be obtained using the strain 

measurements 

Q

( )y t  and the relation ( )yy yyQ Q Q  between the covariance matrix  of the 

measurement vector 

yyQ

( )y t  and the covariance matrix  of the excitation process. Using Q (5.19) 

with  for strain measurements, this relation is given by 0D 

  (5.27) T
yy xxQ HQ H

where xxQ  is given by the discrete time Lyapunov equation for the system (5.18) in the form 

 0T
xx xxA Q A Q GQGT    (5.28) 

The optimal values of the entries of the covariance matrix Q  can be obtained by minimizing the 

difference between the covariance matrix ( )yy yyQ Q Q  predicted by the linear model given Q  

and the covariance matrix 
1

ˆ (1/ ) sN T
yy s k kk

Q N y


 y  obtained from the measurements in ky , 

1, , sk   N

2

. That is, the optimal value  is obtained by minimizing the objective function  optQ

  (5.29) 2ˆ ˆ( ) || ( ) || / || ||yy yy yyJ Q tr Q Q Q tr Q 

with respect to the elements in . The optimal value  of Q  is then substituted in Q optQ (5.23) to 

completely define the Riccati equation (5.23). The solution  of the Riccati equation is 

substituted in 

P
(5.22) in order to find  which is needed in K (5.25). It should be noted that the 

optimal estimate of , as described above, assumes that the stochastic excitations in the vector Q
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process kw  are sufficiently broadband so that they can be adequately approximated by white 

noise processes.   

 

5.3.3 Estimation of power spectral densities of stresses  

The cross power spectral density matrix ( )yS   of the sampled measurement vector ky , 

involved in (5.25), can be obtained using available signal processing techniques such as the 

Welch technique (Welch, 1967; Hayes, 1996). Once ( )yS   has been estimated from the 

measurements, equation (5.25) can be used to estimate the cross power spectral density ˆ ( )S   

of the stress response vector ˆk .  

Alternatively, the PSD ˆ ( )S   of the stress response vector ˆk  can be obtained by using 

equations (5.20) and (5.21) for the Kalman filter to provide estimates ˆkx  of the system state 

vector which are then used in equations (5.24) to estimate the stress vector ˆk . Finally, available 

signal processing techniques such as the Welch technique are used to compute the PSD ˆ ( )S   

from the sampled stress response vector ˆk . The length of the sampled time history should be 

sufficient large in order for the estimates to be accurate.  

Once the cross power spectral density matrix ˆ ( )S   of the stress vector  process ˆk  containing 

the stresses at all desirable structural locations is obtained, the diagonal elements ˆ[ ( )diag S ]  

of the matrix ˆ ( )S   contain the power spectral density estimates required for fatigue predictions 

at these structural location using equations (5.2), (5.5) and (5.12).  

 

5.4 Application on spring-mass chain-like model 

The applicability and effectiveness of the methodology is illustrated using simulated 

“measurements” from a simple class of -DOF spring mass chain-like model fixed at the two 

ends as shown in Figure 5.2. The model is used to represent a structure consisting of a series of 

bar and body elements as shown in Figure 5.3. The structure consists of  bodies with the i -th 

body having mass . The  and the i  bodies are connected by elastic bar elements which 

provide the stiffness to the system. The number of bar (or spring) elements of the chain model is 

. The material of the bar elements is considered to be steel. For steel bar elements, the 

values of the fatigue constants in equation 

N

N

im 1i 

1N 

i
(5.4) are taken to be  and .  

The -th bar element has length , cross-sectional area  and modulus of elasticity .  For 

simplicity, each bar element is represented by a spring element with stiffness  as 

shown in Figure 5.2. Also, the nodal mass  in Figure 5.2 includes the effect of the i  body 

mass and the lumped mass arising from the bar elements connected to node i . The i  

component  of the vector 

884.06 10c   9.82

L

a 
iE

/i i i iA
iL iA

k E

im

( )iq t ( )q t  corresponds to the displacement of the node i  of the model. 

The system is subjected to an unmeasured excitation applied at node  . For the selected 
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structure, the stress state at critical bar locations is uniaxial so that the fatigue prediction 

methodology can be directly applied.  

 

 

Figure 5.2: -DOF spring mass chain-like model. N

 
 

 

Figure 5.3: Structure consisting of a series of  masses and N 1N   bar elements.  

 

Fatigue predictions from the Kalman filter (KF) methodology are based on a nominal model of the 

structure that corresponds to nominal stiffness values 0,ik k i . The measurements that are 

collected from the actual structure are generated from a reference model introduced to simulate 

the actual behavior of the structure. In order to study the effects of the model error on the 

accuracy of the Kalman filter method for fatigue predictions, the reference model is selected to be 

different from the nominal model. Specifically, the reference model corresponds to the model 

shown in Figure 5.2 with stiffness values perturbed from the nominal stiffness values according to 

the expression , where  are the nominal values used in KF-based fatigue 

predictions and  are samples from a zero mean normal distribution with variance 

. The standard deviation  of the perturbed terms controls the size of the model error and 

reflects the differences observed in real applications between the predictions from a model of a 

structure and the actual behavior of the structure.  

0, (1 )i ik k n 
2(0, )in N s

is

i

i

0,ik

2
is

The measurements are assumed to be strain measurements. These measurements are 

simulated from the reference model of the structure using two types of excitations, referred to as 

Type I and Type II excitations. Type I excitations are assumed to be samples of a Gaussian white 

noise process, thus providing good approximation to an excitation whenever its correlation time is 
sufficiently small compared to the system time constants. In this case the excitation vector ( )u t  
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is modeled by samples generated by a Gaussian stationary white noise vector process ( )n t  with 

constant spectral density matrix 0uS S . Type II excitations are assumed to be samples of a uni-

modal filtered white noise excitation with characteristics given by the second order filter equation 

  (5.30) 2( ) 2 ( ) ( ) ( )f f f f f fq t q t q t n t     

  (5.31) 2( ) ( ) 2 ( ) ( ) ( )f f f f f fu t q t q t q t n t       

The characteristics of the excitation depend on the values of the filter parameters: the dominant 

frequency f  and the damping ratio f . The value of the power spectral density  of  the 

Gaussian stationary white noise process  controls the intensity of the excitation samples 

 generated by the second-order filter.  

0S

( )n t
( )u t

For type I excitation, the discrete state space formulation of the equations of motion for the 

reference model is used to simulated response time history data as well as compute estimates of 

the covariance responses and the power spectral density of the responses using the white noise 
excitation  applied at node ( )n t  . For type II excitation, the responses from the reference model 

can readily be obtained by a discrete state space formulation of an augmented system which 

consists of the equations of motion (5.13) and the filter equations (5.30)-(5.31) excited by the 
white noise process . In this augmented system, the system states includes the states of the 

original system in 

( )n t

(5.14) and the filter states arising from (5.30). For both excitation types, the 

strain and stress response time histories k  and k , respectively, are simulated at all bar 

elements using the discrete state space formulation. The time discretization step used in 

simulating the sampled data is 30.5 10t    . The simulated strain and stress response time 

histories are the reference stress response time histories that are considered to be the exact 

stress response time histories for the excitations used. These response time histories and the 

corresponding power spectral densities are also used with the fatigue methodology in Section 2 

to compute the damage accumulation and lifetime of the entire body of the structure due to 

fatigue. Such predictions constitute the reference (exact) predictions against which the 

predictions from the proposed Kalman filter approach should be compared to for assessing the 

accuracy of the proposed methodology.  

For convenience, the set o  is introduced that contains the bar element numbers where the 

strains are measured. The measured strain response time histories ( )o
k ky   are the 

components of the reference response time history vector k  associated with the bar element 

numbers identified in the set o . In practice, these measurements are collected using appropriate 
sensors such as strain gauges. Let p  be the set that contains the bar element numbers where 

the stresses will be predicted. Herein, the set p  is selected to be {1, , 1}p N  , i.e. it is 

assumed that stresses are predicted at all bar elements.  

Results demonstrating the effectiveness of the proposed methodology are first presented for a 

five degree of freedom system ( 5N  ) shown in Figure 5.2. The nominal values of the nodal 
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masses are Kg, 1 5 21m m  2 4 15m m  Kg and 3 12m  Kg. A uniform distribution of the 

properties of the bar elements is assumed resulting in uniform stiffness 0ik k , . The 

nominal values of the stiffness properties are chosen so that , where 

,  and 

1, ,i N 

0 0 0 0/A Lk E
11 20 /E N m 00 2.1 1  2 2(0.0035)A m 0 0.3L m  are same for all bar elements. For 

the mass and bar properties selected, the nominal values of the natural frequencies of the five 

degree of freedom system are 110.0 Hz, 193.4 Hz and 277.0 Hz, 344.3 Hz, 425.3 Hz. The 

damping matrix C  in the equations of motion (5.13) is chosen assuming that the system is 

classically damped. Specifically, the damping matrix  is selected so that the values of the 

modal damping ratios are 1% for all contributing modes. A single excitation is considered which is 

applied at node 

C

5  . The measured strain response time histories ( )o
k ky   at the bar 

elements identified by the set  are used to predict the stress response time histories at all bar 
elements identified in the set 

o
p  using the proposed Kalman filter approach. These predictions 

depend on the values of the measurement noise covariance R  in the Kalman filter formulation. 

Herein, the noise covariance matrix R  is selected to be a diagonal matrix of the form 
2 ˆ( )yyR diag Q , where   gives the level of the observation error and  denotes the 

diagonal matrix formed from  after setting the non-diagonal terms to zero. In the numerical 

results that follow, the values of 

ˆ( )yydiag Q

ˆ
yy

0.1%

Q

   and 10%   are used which corresponds to very 

small and relatively large observation errors, respectively.  

The simulated measurements and the reference fatigue predictions are first obtained for the Type 

I white noise excitation. For demonstration purposes, comparison between the reference (exact) 

stress power spectral density (PSD) simulated by the model and the estimated PSD from the 
Kalman filter (KF) are given in Figure 5.4 for the bar elements {2,p 4,6} , assuming that the 

measured strains are at bar elements {1,2o } . Results are presented for the case of relatively 

large model error ( ) in Figures 5.4a-b at bar elements 2 and 4 and for the case of zero 

model error ( ) in Figures 5.4c-d at bar elements 4 and 6. It can be seen in Figure 5.4a for 

the case of relatively large model error that the estimated PSDs of the stress at the bar element 

2, where measurements are available, almost coincides with the corresponding reference stress 

PSDs simulated by the model. At the bar element 4, where measurements are not available, 

there is a discrepancy between the estimated and reference (exact) stress PSDs as shown in 

Figure 5.4b. For the case of relatively large model error, the discrepancies observed in Figure 

5.4b are mainly due to the fact that the nominal model used for PSDs predictions from the 

Kalman filter approach differs from the reference model used to simulate the reference PSDs. 

The size of the discrepancies depends on the size of the model error. Specifically, these 

discrepancies are shown in Figure 5.4b for relatively large model error ( ) to be 

significantly higher than the discrepancies observed in Figure 5.4c for zero model error (

5%is 
0is 

5%is 
0is  ). 

For zero model error, the discrepancies shown in Figure 5.4c and 4d for bar elements 4 and 6, 

respectively, are due to the estimation error associated with the Kalman filter. However, it should 

be noted that the predictions of the PSD from the Kalman filter approach are quite good, 
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especially for the high amplitudes around the resonance peaks which mainly contribute to the 

fatigue process.  
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Figure 5.4: Comparison between reference and estimated from Kalman filter PSD of the stress 
response at bar elements 2, 4 and 6; (a,b) relatively large model error 5%s  , (c,d) zero model 

error 0%s  . 

 

Lifetime predictions due to fatigue are next compared in Figures 5.5a-d for all six bar (spring) 

elements of the structure. The lifetime values in these figures are obtained using the fatigue 

prediction formula (5.5). For each bar element, there are six lifetime fatigue predictions. The first 

prediction is based on the reference time histories simulated by the reference model and it is 

used as the exact value against which to study the accuracy of the predictions from the proposed 

Kalman filter methodology. The other five fatigue-based lifetime estimates are the ones predicted 

by the methodologies based on the use of Kalman filter method and the nominal model to 

estimate the stress response time histories at all bar elements. To study the effect of the number 

and location of sensors on the accuracy of the predictions, the five fatigue lifetime estimates 

shown in Figures 5.5a to 5.5d correspond to the following five sensor configurations that differ 
from the number and location of sensors used: one sensor configuration  involving one {6}o 
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sensor placed at location or bar element 6, two sensor configurations {1,2}o   and  

each one involving two sensors placed at locations denoted in the set o , and two sensor 
configurations  and  each one involving three sensors. In order to study 

the effect of model error on the accuracy of the Kalman filter methodology, the results in Figures 

5.5a-c are based on simulated measurements from the reference model chosen to involve zero 

( ), moderate ( ) and relatively large (

{3,4}o 

{1,2,3}o 

2%is 

{2,3,4}o 

0is  5%is  ) model error, while the observation 

error used for KF-based fatigue predictions is negligible ( 0.1%  ). In order to study the effect 

of observation error in the accuracy of the Kalman filter methodology, the results in Figure 5.5d 

are based on simulated measurements from the reference model chosen to involve zero model 

error ( ) and relatively large observation error (0i s 10%  ) used for KF-based fatigue 

predictions. 

0is It can be seen from the results for the fatigue predictions involving zero model error ( ) 

shown in Figure 5.5a that the estimates based on the Kalman filter predictions are quite close to 

the reference fatigue values obtained from the actual (reference) response time histories. It also 

becomes clear that the accuracy of the Kalman filter predictions depend on the number and 

location of sensors in the structure. Specifically, the best predictions are obtained from one 

sensor placed at bar element 6. Similar accuracy in the predictions are obtained from the sensor 
configurations  and  involving two and three sensors. However, the sensor 

configurations  and  provide significantly less accurate predictions in the 

entire structure (all six bar elements) than the predictions provided by one sensor placed at 

location 6.  Specifically, significant discrepancies between the reference and Kalman filter fatigue 
predictions from the sensor configurations 

{3,4}o 
{1,2}o 

{2,3,4}
{1,2,3}o 

o

{1o {1,o, 2} 2,3}  and  are observed in bar 

element 5 and 6. It becomes evident from the results in Figure 5.5a that the locations and number 

of sensors affect the accuracy of the fatigue lifetime predictions from the proposed Kalman filter 

approach. Optimal sensor location methodologies (Papadimitriou, 2004) may be advantageously 

used to obtain the most informative locations that give the best accuracy in the fatigue lifetime 

predictions with the least number of sensors.  
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   (c)      (d) 

Figure 5.5: Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the 

Kalman filter for the  DOF model as a function of the number and location of sensors.  5N 

(a) , 0is  0  , (b) , 2%is  0  , (c) 5%is  , 0  , and (d) 0is  , 10%  . 

 

Comparing the results in Figures 5.5a, 5.5b and 5.5c corresponding to zero ( ), moderate 

( ) and larger ( ) model errors, it is evident that the size of model error affects the 

accuracy of the fatigue prediction provided by the proposed Kalman filter methodology. For a 

fixed sensor configuration, the accuracy of the fatigue predictions obtained from the Kalman filter 

methodology deteriorates as the size of the model error increases. Moreover, the accuracy of the 

predictions depends highly on the number and location of sensors. There are optimal sensor 

locations which give the most accurate fatigue predictions. Specifically, the most accurate 

predictions in the entire structure for the case of moderate model error ( ) are obtained 

from sensor configurations  and 

0is 

2%

2%is  4%is 

o
is 

{6} {2,3,4}o   involving one and three sensors, 

respectively. For the case of larger model error ( 5%is  ), the most accurate predictions in the 

entire structure (all bar elements) are obtained from sensor configurations  involving one 

sensor, followed by the predictions provided by the sensor configuration  involving 

three sensors. 

{6}
{1,2,3

o
o }
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The effect of measurement error on the fatigue predictions provided by the Kalman filter approach 

is next considered by comparing the results in Figure 5.5d obtained for relatively large 
observation error of the order of 10%   with the results in Figures 5.5a-c obtained for very 

small ( 0.1%  ) observation error. It can be seen that the accuracy of the fatigue predictions is 

less sensitive to the magnitude of the observation error than it is to the magnitude of the model 

error. In addition, the accuracy of the fatigue lifetime predictions provided by the Kalman filter for 

the different sensor configurations observed in Figure 5.5d for zero model error and significant 
observation error ( 10% 

0.1%

) does not significantly deteriorate as compared to the accuracy of 

the predictions observed in Figure 5.5a provided by the methodology for zero model error and 
very small (  ) observation error.  

Next, results are also presented for simulated measurements generated from the Type II filtered 

white noise excitation. In this case, one examines the effect of the characteristics of the excitation 

on the accuracy of the proposed methodology. As before, the excitations is applied at node 
5  . Figure 5.6 compares the reference fatigue estimates and the fatigue predictions provided 

by the Kalman filter methodology for three different excitation characteristics: broadband 

excitation corresponding to values 200f Hz   and 0.4f   (Figure 5.6a), and two lightly 

damped excitations ( 0.02f  ) with resonant frequencies close to the first, 1 110f Hz    

(Figure 5.6b), and third 3f 277Hz    (Figure 5.6c), natural frequency of the structure. All 

results shown in Figures 5.6a-c are based on simulated measurements that involve zero model 

error ( ) and negligible measurement error 0i s 0.1%  . The results in Figure 5.6d are based 

on large model error ( ) and for the lightly damped excitation (5%is  0.02f  ) with resonant 

frequency close to the third 3 277Hzf    natural frequency of the structure. All filtered 

white noise excitations correspond to the same variance. Given the values of f  and f , this is 

achieved by selecting appropriately the intensity of the white noise  so that the output  

in 

( )n t ( )u t

(5.31) has the desired value of variance. 
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  (c)      (d) 

Figure 5.6: Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the 

Kalman filter for the  DOF model as a function of the number and location of sensors.  5N 

(a) 200f Hz  , 0.4f  , 0is  , (b) 1 110f Hz   , 0.02f  , , (c) 0is 

3 277Hzf   f, 0.02  s, 0i  , and (d) 3 277f Hz    and 0.02f  , . 5%i s

 

It is clear in Figures 5.6a-c that for the case of zero model error the Kalman filter methodology 

gives very good predictions for a variety of excitation characteristics, including broad-band and 

lightly-damped excitations. As before, the accuracy of the predictions depends on the number 

and location of sensors. The most accurate predictions are obtained from the sensor 
configuration  involving one sensor placed at location (bar element) 6, followed by the 

sensor configurations  and 

{6}o 
{3,4}o  {2,3,4}o   involving two and three sensors. Less 

accurate predictions are obtained form the sensor configurations {1,2}o   and  

involving two and three sensors, respectively. Obviously, optimizing the sensor placement in the 

structure can significantly improve the accuracy of the fatigue lifetime predictions provided by the 

Kalman filter methodology. Comparing the fatigue prediction results given in Figure 5.6d for large 

model error  to the fatigue prediction results in Figure 5.6c for zero model error, it is clear 

that the accuracy of the predictions from the Kalman filter methodology deteriorates as the model 

{1,2,3}o 

5%i s
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error increases. Sensor configuration {6}o   involving one sensor provides predictions with the 

best accuracy compared to the predictions provided by all other sensor configurations used in 

Figure 5.6.  

For the two lightly damped excitations shown in Figures 5.6b and 5.6c, it is observed that the 

fatigue at each bar element depends on the mode excited. For the excitation with dominant 

frequency close to the first natural frequency (Figure 5.6b), the structure responds mainly to its 

first mode and the strains levels due to vibration, depending on the derivatives of the modeshape, 

are higher at bar elements 1 and 6, while due to symmetry they are lower at the middle bar 

elements 3 and 4. Consequently, the bar elements 1 and 6 are expected to have significantly less 

fatigue lifetime while the middle bar elements 3 and 4 are expected to have high fatigue lifetime, 

which is consistent with the results observed in Figure 5.6b. For the excitation with dominant 

frequency close to the third natural frequency, the structure respond mainly with its third mode 

and therefore high strain values are expected also to occur at internal bar elements 2 and 5, while 

due to symmetry the strains at the middle elements 3 and 4 are expected to be small. This is 

consistent with the small fatigue lifetime values predicted for the bar elements 2 and 5, and the 

high fatigue lifetime values predicted for the middle bar elements 3 and 4, as shown in Figure 

5.6c.  
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   (c)      (d) 

Figure 5.7: Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the 

Kalman filter for the  DOF model as a function of the number and location of sensors. 20N 

(a) white noise, , 2%is  0.1%  , (b) 110f Hz  , 0.6f  , 2%is  , 0.1%  , (c) 

2 44f Hz   , 0.02f  , 2%is   , 0.1%  , (d) 2 44f Hz   , 0.02f  , 

, 0%is  10%  .  

 

Finally, results demonstrating the effectiveness of the proposed methodology are presented for a 

twenty degree of freedom system ( 20N  ) shown in Figure 5.2. The nodal masses are 

assumed to be the same, i.e. , 0im m 1,i , N  . A uniform distribution of the properties of the 

bar elements is also assumed resulting in uniform stiffness 0ik k , 1, ,i N 
30

. The nominal 

values of the mass and stiffness properties are chosen so that m0  Kg and , 

where 

0 0 0 /k E A L 0

11
0 2.1 10 / 2E N m  , 2) 2

0 (0.0035A m  and 0 0.3L m  are same for all bar 

elements. For the mass and bar properties selected, the nominal values of the natural 

frequencies of the twenty degree of freedom system range from 22.5 Hz (minimum) to 300.8 Hz 

(maximum). The structure is subjected to either Type I stationary white noise excitation or Type II 
non-white excitation applied at node 10  , with constant spectral density matrix equal to 
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0 10uS S  . The strain response time histories ( )o
k ky   at the measured DOFs are used to 

predict the stress response time histories at all bar elements identified in the set  

using the Kalman filter approach.  

{1, , 21}p  

{10}o 
{5,21}o 

{5,10,21}o 

Lifetime predictions due to fatigue are shown in Figure 5.7 for all twenty one bar (spring) 

elements of the structure. For each bar element, there are six lifetime fatigue predictions. The first 

prediction is based on the reference time histories simulated by the reference model and it is 

used as the exact value against which to study the accuracy of the predictions from the proposed 

Kalman filter methodology. The second fatigue lifetime prediction is based on the use of Kalman 

filter method and the nominal model using sensors at all 21 bar elements. This second prediction 

uses measurements from all 21 bar elements and thus represents the most accurate results that 

can be obtained from the Kalman filter methodology. The other four fatigue-based lifetime 

estimates are the ones predicted by the methodologies based on the use of Kalman filter method 

and the nominal model to estimate the stress response time histories at all bar elements using a 

limited number of sensors. To study the effect of the number and location of sensors on the 

accuracy of the predictions, the four fatigue lifetime estimates shown in Figures 5.7a to 5.7d in 

the entire structure (all 21 bar elements) correspond to the following four sensor configurations 
that differ from the number and location of sensors used: one sensor configuration  

involving one sensor placed at location or bar element 10, one sensor configuration  

involving two sensors placed at locations 5 and 21, one sensor configuration  

involving three sensors, and one sensor configuration {1,5,16,21}o   involving four sensors. 

Figure 5.7a compares results for white noise excitation, Figure 5.7b compares results for 

broadband filtered white noise excitation ( 110f Hz  , 0.6f  ), while Figures 5.7c-d 

compare results for lightly damped filtered white noise excitations ( 0.02f  ) with dominant 

frequency close to the second natural frequency of the structure ( 2 44f Hz   ). Predictions 

in Figure 5.7a-c correspond to moderate model error ( 2%is  ) and very small observation error 

( 0.1%  ). In order to study the effect of observation error in the accuracy of the Kalman filter 

methodology, predictions in Figure 5.7d correspond to zero model error ( ) and large 

observation error (
is 

10%  ).  

0%

It can be seen that despite the moderate model error considered in Figures 5.7a-c and the large 

measurement error considered in Figure 5.7d, the fatigue lifetime prediction values provided by 

the Kalman filter approach for a full sensor configuration involving 21 sensors installed in all 21 

bar elements are quite close to the reference fatigue lifetime values. For given excitation case, it 

becomes clear that the accuracy of the fatigue lifetime predictions based on the Kalman filter 

approach using fewer than 21 sensors depend on the number and location of sensors in the 
structure. Specifically, the best predictions are obtained from the sensor configurations  

involving one sensor located at element 10 and the sensor configuration o
{10}o 

0,21}{5,1  involving 

three sensors located at elements 5, 10 and 21. Such predictions are quite close to the reference 

fatigue values obtained from the actual (reference) response time histories and to the Kalman 

filter prediction provided by a full sensor configuration involving 21 sensors. It should be noted 
that the sensor configuration  gives slightly better fatigue lifetime prediction {5,10,21}o 
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accuracy at all 21 bar elements than the sensor configuration {10}o  . This is due to the fact 

that the sensor configuration   contains the sensor configuration  and in 

addition it involves two extra sensors that provide additional information for reconstructing more 

accurately the response at unmeasured locations. However, the sensor configurations 
 and  involving two and four sensors, respectively, provide 

significantly less accurate predictions, especially at the bar elements 7 to 14, than the predictions 
provided by the sensor configurations 

{5,10,21}o 

, 21}

{1o

{10}o 

{5,21}o  {1,5,16o 

0}  and {5,o 10,21}  involving one and three 

sensors, respectively. It thus becomes evident from the results in Figure 5.7 that the location and 

number of sensors affect the accuracy of the fatigue lifetime predictions. Optimal sensor location 

strategies (Papadimitriou, 2004) may be advantageously used to obtain the most informative 

locations that give the best accuracy in the fatigue lifetime predictions with the least number of 

sensors.  

The relative importance of the model and measurement error on the accuracy of the fatigue 

predictions provided by the Kalman filter is investigated by comparing the results in Figure 5.7d 
obtained for relatively large observation error of the order of 10%   and zero model error with 

the results in Figures 5.7c obtained for very small ( 0.1%  ) observation error and moderate 

model error ( ). It can be seen from these figures that the accuracy of the fatigue 

predictions are less sensitive to the size of the observation error. Specifically, the accuracy of the 

fatigue lifetime predictions provided by the Kalman filter for the different sensor configurations 
observed in Figure 5.7d for zero model error and significant observation error (

is  2%

10%  )  does 

not significantly deteriorate as compared to the accuracy of the predictions observed in Figure 

5.7c provided by the methodology for moderate model error ( 2%is  ) and very small  

observation error ( 0.1%  ).    

 

5.5 Conclusions 

A methodology for estimating damage due to fatigue on the entire body of a structure using 

spectral methods and output only vibration measurements at a limited number of locations was 

presented. The fatigue predictions presented in this work were illustrated for structural members 

subjected to a uni-axial stress state. These predictions can be extended using available methods 

(You and Lee, 1996; Pitoiset and. Preumont, 2000) to structural members subjected to multi-axial 

stress state. Using the available response time history measurements and a model of the 

structure, a Kalman filter approach was used for predicting the power spectral densities of the 

stresses in the entire body of the structure needed in the spectral based fatigue prediction 

methodology. These power spectral density predictions were used to construct fatigue 

accumulation and lifetime prediction maps consistent with measurements provided by a 

monitoring system. Simulated measurements from a spring-mass chain-like structure suggest 

that the proposed methodology for lifetime fatigue prediction provide sufficiently accurate 

estimates even for the cases where the broadband assumptions of the stochastic excitation 

processes are violated. In particular, systematic numerical studies have demonstrated that the 
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accuracy of the proposed methodology depend on the size of the model and observation errors, 

as well as the number and location of sensors.  
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Chapter 6 
 

Structural identification of an experimental vehicle 
model using measured modal characteristics 
  
6.1 Introduction  

In the present chapter, methods for modal identification and structural model updating are 

employed to develop high fidelity finite element models of an experimental vehicle model using 
acceleration measurements. The identification of modal characteristics of the vehicle is based on 
acceleration time histories obtained from impulse hammer tests. Modal identification 

methodologies are used to obtain the modal characteristics from the analysis of the various sets 
of vibration measurements. The modal characteristics are then used to update an increasingly 
complex set of finite element models of the vehicle. The multi-objective structural identification 

method developed in Chapter 4 is used for estimating the parameters of the finite element 
structural models based on minimizing the modal residuals. 

The chapter is organized as follows. In Section 6.2 the description of the laboratory vehicle model 

and the available experimental configuration is presented. Modal identification methodologies are 

applied in Section 6.3 to identify the modal properties (modal frequencies, modal damping rations 

and modeshapes) of the laboratory vehicle structure using vibration measurements obtained from 

hammer tests. In Section 6.4 the proposed model updating methodologies in Chapter 4 are 

applied for updating a class of finite element models of the vehicle, demonstrating the applicability 

of the proposed model updating methods and the prediction accuracy of the Pareto optimal 

models.  
 

6.2 Description of the laboratory vehicle structure and instrumentation 

The vehicle structure, shown in Figure 6.1, is housed at the Machine Dynamics Laboratory of the 

Department of Mechanical Engineering in Aristotle University. Figure 6.2 also shows an overview 

of the experimental set up. In particular, the mechanical system tested consists of a frame 

substructure (parts with red, gray and black color), simulating the frame of a vehicle. The main 

experimental instruments used for performing the experimental measurements include the 

following: 

 accelerometers Piezobeam 8632C10, 8690C10, 8634B5 and K-beam 8312A2 from 

Kistler Instrumente AG, 

 load cell type 9712Β250 from Kistler Instrumente AG, 

 impulse force hammer type 9724Α5000 from Kistler Instrumente AG, 

 analog to digital converter cards, PCI -4551, PCI -4552 Dynamic signal acquisition and 

PCI-6552 E-series from National Instruments, 

 data acquisition and signal processing software. 
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More details can be found in Giagopoulos and Natsiavas (2007). 

Figure 6.2 presents details and the geometrical dimensions of the frame subsystem alone. The 

frame substructure is made of steel with Young’s modulus 11 22.1 10E N= ´ m , Poison’s ratio 

 and density 0.3n = 37850kg mr= . Moreover, the measurement points are indicated in 

Figure 6.3. Measurements are collected from 72 locations. Sensor locations have been chosen in 

such a way so as to gather as much information as possible about the structure’s modal 

response. 

 

 

 

Figure 6.1:  Scaled vehicle model and experimental set up. 
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Figure 6.2: Dimensions of the frame substructure.  

 
 
 

 
             Figure 6.3: Measurement points on the frame substructure.  
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6.3 Modal identification  

Using the available acceleration sensors to measure the vibrations induced by an applied impulse 

force, the frequency response functions (FRF) of the measured DOFs are estimated. These 

frequency response functions are used to estimate the modal properties using the Modal 

Identification Tool (MITooL) (Ntotsios 2009) developed by the System Dynamics Laboratory in 

University of Thessaly. The values of the modal frequencies, modal damping ratios, modeshape 

components and modal participation factors were estimated from the software in the 0 to 200 Hz 

frequency bandwidth. Figures 6.4, 6.5 and 6.6 compare the measured FRFs with the FRFs 

predicted by the identified optimal modal model for three representative sensors referred to as 

sensor 70, 71 and 72 respectively as shown in Figure 6.3. As it is seen a high modal density 

modal model is obtained. Moreover, the fit of the measured FRF is very good which validates the 

effectiveness of the modal identification software. 

The identified values of the modal frequencies and the modal damping ratios are reported in 

Table 6.1. Twenty three modes were clearly identified in the frequency range 0 to 200 Hz with 

values of modal damping ratios of the order of 0.1% to 0.5%, which correspond to low relatively 

damping values. The identified modeshapes have also been recorded so that they can be used 

for updating the finite element models.  
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Figure 6.4: Comparison between measured and optimal modal model predicted FRF for sensor 70. 

 152

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



20 40 60 80 100 120 140 160 180 200
10

-3

10
-2

10
-1

10
0

10
1

frequency (Hz)

F
R

F

Measurement

Modal fit

 
Figure 6.5: Comparison between measured and optimal modal model predicted FRF for sensor 71. 
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Figure 6.6: Comparison between measured and optimal modal model predicted FRF for sensor 72. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 153

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



Table 6.1: Identified and nominal FE model predicted modal frequencies and damping ratios.  

Mode 

Identified 
Modal 

Frequency 
(Hz) 

Identified 
Modal 

Damping 
Ratio (%) 

Nominal 
FEM 

Predicted 
Frequency 

(Hz) 

Difference 
between 

Identified and 
FE Predicted 

Modal 
Frequencies 

(%) 

MAC between 
Identified & FE 

Predicted 
Modeshapes 

1 23.2139 0.4799 23.2348 0.0902 0.9430 

2 42.1225 0.3611 39.1265 -7.1126 0.9539 

3 42.5020 0.2263 41.6084 -2.1024 0.9590 

4 48.2753 0.2218 47.2930 -2.0349 0.9460 

5 58.1552 0.1954 57.5692 -1.0077 0.9039 

6 69.0429 0.2287 66.2020 0.0151 0.9503 

7 69.4700 0.1662 69.0533 -4.7042 0.9030 

8 80.0413 0.1651 80.4391 0.4969 0.9022 

9 86.1449 0.1564 83.2491 -3.3615 0.9375 

10 100.2428 0.1141 101.6080 1.3619 0.9585 

11 102.5815 0.1714 105.9357 3.2701 0.9313 

12 110.4424 0.1838 106.6243 -3.4572 0.7347 

13 115.1205 0.1519 112.5407 -2.2409 0.8288 

14 123.6425 0.0982 129.0741 4.3930 0.8474 

15 127.6472 0.0977 121.7747 -4.6006 0.7592 

16 132.4204 0.1347 131.7794 -0.4841 0.7743 

17 134.9544 0.1673 133.8787 -0.7970 0.7532 

18 138.9425 0.1066 137.3287 -1.1615 0.6472 

19 148.6929 0.1474 146.5237 -1.4590 0.8077 

20 164.3888 0.1026 160.8531 -2.1497 0.8351 

21 171.3352 0.0898 155.7296 -9.1082 0.7465 

22 181.2229 0.1197 169.1026 -6.6874 0.6299 

23 192.7520 0.0819 193.9090 0.5995 0.8080 

 
 

6.4 Updating of finite element vehicle models  

Detailed finite element models were created that correspond to the model used for the design of 

the experimental vehicle. The structure was first designed in CAD environment and then imported 

in COMSOL Multiphysics (COMSOL, 2005) finite element modelling environment. The models 

were constructed based on the geometric details and the material properties of the structure. The 

finite element models for the vehicle were created using three-dimensional triangular shell finite 

elements to model the whole structure.  
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In order to investigate the sensitivity of the model error due to the finite element discretization, 

several models were created increasing the size of the elements in the finite element mesh. The 

resulted twelve finite element models consist of 886 to 44985 triangular shell elements 

corresponding to 2622 to 136074 DOF. The convergence in the first eleven modal frequencies 

predicted by the finite element models with respect to the number of models DOF is given in 

Figure 6.7. According to the results in Figure 6.7, a model of 15202 finite elements having 45564 

DOF was chosen for the adequate modelling of the experimental vehicle. This model is shown in 

Figure 6.8 and for comparison purposes, Table 6.1 lists the values of the modal frequencies 

predicted by the nominal finite element models along with the percentage error between the 

identified and the nominal finite element model predicted modal frequencies. Also, Table 6.1 

reports the MAC values between the identified and the nominal finite element model predicted 

modeshapes.  Comparing with the identified modal frequency values it can be seen that, with the 

exception of the modes 21 and 22, the nominal FEM-based modal frequencies are fairly close to 

the experimental ones. Ten representative modeshapes predicted by the nominal finite element 

model for the ten lower frequency modes are shown in Figures 6.9 to 6.18. 
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Figure 6.7: Relative error of the modal frequencies predicted by the finite element models with respect to 

the models’ number of degrees of freedom.  
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Figure 6.8: Finite element model of the experimental vehicle consisted of 15202 triangular shell elements 

and 45564 DOF. 

 
 
 
 

                    
Figure 6.9: Modeshape predicted by the finite element model for the first mode at 23.23 Hz. 
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Figure 6.10: Modeshape predicted by the finite element model for the second mode at 39.13 Hz. 

 
 

           
Figure 6.11: Modeshape predicted by the finite element model for the third mode at 41.61 Hz. 

 
 

                     
Figure 6.12: Modeshape predicted by the finite element model for the fourth mode at 47.29 Hz. 
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Figure 6.13: Modeshape predicted by the finite element model for the fifth mode at 57.57 Hz. 

 

   
Figure 6.14: Modeshape predicted by the finite element model for the sixth mode at 66.20 Hz. 

 

   
Figure 6.15: Modeshape predicted by the finite element model for the seventh mode at 69.05 Hz. 
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Figure 6.16: Modeshape predicted by the finite element model for the eight mode at 80.44 Hz. 

 
 

   
Figure 6.17: Modeshape predicted by the finite element model for the ninth mode at 83.25 Hz. 

 

   
Figure 6.18: Modeshape predicted by the finite element model for the tenth mode at 101.60 Hz. 
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Five different parameterizations of the finite element model of the experimental vehicle are 

employed in order to demonstrate the applicability of the proposed finite element model updating 

methodologies, and point out issues associated with the multi-objective identification. The first 

parameterized model consists of three parameters, shown in Figure 6.19, where the first 
parameter  accounts for the modulus of elasticity of the lower part of the experimental vehicle, 

the second parameter q  accounts for the modulus of elasticity of the parts (joints) that connect 

the lower part with the upper part (frame) of the experimental vehicle, while the third parameter 
 accounts for the modulus of elasticity of the upper part of the experimental vehicle. The 

second parameterized model consists of six parameters, shown in Figure 6.20, where the first 
parameter  accounts for the modulus of elasticity of the lower part of the experimental vehicle, 

the second parameter q  accounts for the modulus of elasticity of the parts (joints) that connect 

the lower part with the upper part of the experimental vehicle, while the other four parameters q , 

,  and  account for the modulus of elasticity of the different components of the upper part 

of the experimental vehicle as shown in Figure 6.20. The third parameterized model consists of 
eight parameters, shown in figure 6.21, where the first parameter  accounts for the modulus of 

elasticity of the lower part of the experimental vehicle, the second parameter  accounts for the 

modulus of elasticity of the parts (joints) that connect the lower part with the upper part of the 
experimental vehicle, while the other six parameters q , , , ,  and   account for the 

modulus of elasticity of the different components of the upper part of the experimental vehicle as 

shown in Figure 6.21. The forth parameterized model consists of nine parameters, shown in 
Figure 6.22, where the first parameter q  accounts for the modulus of elasticity of the lower part 

of the experimental vehicle, the next four parameters q , ,  and q  account for the modulus 

of elasticity of the parts (joints) that connect the lower part with the upper part of the experimental 
vehicle, while the other four parameters , ,  and  account for the modulus of elasticity 

of the different components of the upper part of the experimental vehicle as shown in Figure 6.22. 

Finally, the fifth parameterized model consists of eleven parameters, shown in Figure 6.23, where 
the first parameter q  accounts for the modulus of elasticity of the lower part of the experimental 

vehicle, the next four parameters , ,  and  account for the modulus of elasticity of the 

parts (joints) that connect the lower part with the upper part of the experimental vehicle, while the 
other six parameters q , , , ,  and  account for the modulus of elasticity of the 

different components of the upper part of the experimental vehicle as shown in Figure 6.23. The 
nominal finite element models corresponds to values of  with i
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The parameterized finite element model classes are updated using the ten lowest modal 

frequencies and modeshapes obtained from the modal analysis, and the two modal groups with 

modal residuals given by (4.3). 
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Figure 6.19: Three parameters finite element model class of the experimental vehicle. 

 
Figure 6.20: Six parameters finite element model class of the experimental vehicle. 

 

 
Figure 6.21: Eight parameters finite element model class of the experimental vehicle. 
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Figure 6.22: Nine parameters finite element model class of the experimental vehicle. 

 

 
Figure 6.23: Eleven parameters finite element model class of the experimental vehicle. 

 

The results from the multi-objective identification methodology is first presented for the case of 

the three parameter model shown in Figure 6.19. The NBI optimization algorithm was used to 

estimate the Pareto solutions. For each model class and associated structural configuration, the 

Pareto front, giving the Pareto solutions in the two-dimensional objective space, is shown in 

Figure 6.24a. The non-zero size of the Pareto front and the non-zero distance of the Pareto front 

from the origin are due to modeling and measurement errors. Specifically, the distance of the 

Pareto points along the Pareto front from the origin is an indication of the size of the overall 

measurement and modeling error. The size of the Pareto front depends on the size of the model 
error and the sensitivity of the modal properties to the parameter values q  (Christodoulou and 

Papadimitriou 2007). Figures 6.24b-d show the corresponding Pareto optimal solutions in the 

three-dimensional parameter space. Specifically, these figures show the projection of the Pareto 

solutions in the two-dimensional parameter spaces ,  and . It should be 1 2( , )q q 1 3( , )q q 2 3( , )q q
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noted that the equally weighted and the optimally solution is also computed and is shown in 

Figure 6.24. 
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Figure 6.24: Pareto front and Pareto optimal solutions for the three parameter model classes in the (a) 

objective space and (b-d) parameter space.  

 

It is observed that a wide variety of Pareto optimal solutions are obtained for different structural 

configurations that are consistent with the measured data and the objective functions used. The 

Pareto optimal solutions are concentrated along a one-dimensional manifold in the three-

dimensional parameter space shown in Figure 6.25. Comparing the Pareto optimal solutions, it 

can be said that there is no Pareto solution that improves the fit in both modal groups 

simultaneously. Thus, all Pareto solutions correspond to acceptable compromise structural 

models trading-off the fit in the modal frequencies involved in the first modal group with the fit in 

the modeshape components involved in the second modal groups. The variability in the values of 

the model parameters are of the order of 10%, 22% and 7% for ,  and  respectively. 1q 2q 3q

It should be noted in Figures 6.25 and 6.24a that the Pareto solutions 17 to 20 form a one 

dimensional solution manifold in the parameter space that correspond to the non-identifiable 

solutions obtained by minimizing the second objective function 2 ( )J q . Specifically, it is observed 

that there is an almost flat part of the Pareto front at the lower right edge of Figure 6.24a. This is 

due to the unidentifiability problems (Katafygiotis et al. 1998, Katafygiotis and Lam 2002, 
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Christodoulou et al. 2008) encountered in estimating the optimal model corresponding to the right 

edge point of the Pareto front. In this case, the right edge point of the Pareto front is obtained by 

optimizing the function 2 ( )J q . Depending on the starting values of the parameter set q , the 

gradient-based optimization algorithm converges to one of the infinite number of optimal models 

in this sub-manifold. As it is noted in Figure 6.24a, the flat unidentifiable portion of the Pareto front 

and the associated manifold in Figure 6.25 are readily obtained by the NBI method. From the 

engineering point of view, the most important point from this flat portion is the most left point 17 in 

Figure 6.24a since all other points in the flat portion deteriorate the fit in the objective function 

1( )J q  without significantly altering the fit in 2 ( )J q . In order to generate points only on the 

identifiable portion of the Pareto front for pre-selected number of points on it (e.g. 20 points as 

shown in Figure 6.24a), the analyst can repeat the application of the NBI algorithm with edge 

points of the Pareto front selected to be the points 1 and 17 in Figure 6.24. 
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Figure 6.25: Pareto optimal solutions in the three-dimensional parameter space.  
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For the case of the six, eight, nine and eleven parameters, the Pareto fronts, giving the Pareto 

solutions in the two-dimensional objective space from the multi-objective identification 

methodology are shown in Figure 6.26. Comparing these results with the results in Figure 6.24a 

obtained for the case of the three parameter model it can be concluded that the model class with 

three parameters give a significantly worse fit to the experimental results considering both 

objectives , . In Figure 6.26 it is observed that generally the fit gets better when increasing 

the number of model parameters. However, the improvement obtained by increasing the number 

of parameters from six to eleven is not as significant as the improvement obtained by incrasing 

the number of parameters from three to six. Comparing the Pareto fronts in Figure 6.26 it can be 

observed that the nine and eleven parameter model classes are able to fit better the experimental 

results compared with the models with six and eight parameters. This is shown in Figure 6.26 

observing that the distance from the origin of the Pareto fronts for the case of the nine and eleven 

parameter model classes is comparatively shorter than the six and eight parameter model 

classes.  
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Figure 6.26: Pareto fronts for the six, eight, nine and eleven parameter model classes. 

 

The corresponding Pareto optimal solutions for the six parameter model class are shown in 

Figure 6.27. The variability in the values of the model parameters are of the order of 9% for , 

5% for , 29% for , 19% for , 7% for  and 17% for  respectively. It should be noted 

that the highest variability of 29% is observed at the stiffness of the members located at the front 

1q

2q 3q 4q 5q 6q
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part (Figure 6.20) of the vehicle. The lowest variability is observed in the stiffness of the 

connections between the lower and upper part of the vehicle shown in Figure 6.20. 

For the case of the eight parameter model class the corresponding Pareto optimal solutions are 

shown in Figure 6.28. The variability in the values of the model parameters are of the order of 9% 

for , 5% for , 29% for , 24% for , 17% for , 7% for , 20% for   and 20% for  

respectively. It should be noted that the highest variability of 29% is observed at the stiffness of 

the members located at the front part (Figure 6.21) of the vehicle. The lowest variability is 

observed in the stiffness of the connections between the lower and upper part of the vehicle 

shown in Figure 6.21. 

1q 2q 3q 4q 5q 6q 7q 8q

For the case of the nine parameter model class the corresponding Pareto optimal solutions are 

shown in Figure 6.29. The variability in the values of the model parameters are of the order of 

10% for , 19% for , 14% for , 7% for , 3% for , 34% for , 7% for , 5% for  and 

4% for  respectively. It should be noted that the highest variability of 34% is observed at the 

stiffness of the members located at the front part (Figure 6.22) of the vehicle. The lowest 

variability is observed in the stiffness of the connections between the lower and upper part 

located at the rear part of the vehicle (3-7%), and the stiffness of the vertical members located at 

the rear part of the vehicle model (5-7%) shown in Figure 6.22. 

1q

9q
2q 3q 4q 5q 6q 7q 8q

For the case of the eight parameter model class the corresponding Pareto optimal solutions are 

shown in Figure 6.30. The variability in the values of the model parameters are of the order of 

10% for , 17% for , 10% for , 18% for , 8% for , 37% for , 9% for , 9% for , 

6% for , 13% for  and 5% for  respectively. It should be noted that the highest variability 

of 37% is observed at the stiffness of the members located at the front part (Figure 6.23) of the 

vehicle.  
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Figure 6.27: Pareto optimal solutions for the six parameter model.  
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Figure 6.28: Pareto optimal solutions for the eight parameter model.  

0 5 10 15 20 25

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

# of solutions

  
va

lu
e

 

 


1


2


3


4


5


6


7


8


9


w=1


opt

 
Figure 6.29: Pareto optimal solutions for the nine parameter model. 
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Figure 6.30: Pareto optimal solutions for the eleven parameter model.  
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The percentage error between the experimental (identified) values of the modal frequencies and 

the values of the modal frequencies predicted by the six, eight, nine and eleven parameter 

models for the nominal values of the parameters, the equally weighted solution and the Pareto 

optimal solutions 1, 5, 10, 15 and 20 are reported in Tables 6.2, 6.4, 6.6 and 6.8 respectively. 

Tables 6.3, 6.5, 6.7 and 6.9 reports the MAC values between the model predicted and the 

experimental modeshapes for the nominal, the equally weighted and the Pareto optimal models 

1, 5, 10, 15 and 20 for the six, eight, nine and eleven parameter models respectively. It is 

observed that for the modal frequencies the difference between the experimental values and the 

values predicted by the Pareto optimal model vary between 0.01% and 2.09%. Specifically for the 

Pareto solution 1 that corresponds to the one that minimizes the errors in the modal frequencies 

(first objective function), the modal frequency errors are observed to be smaller than 0.8%. 

Highest modal frequencies errors up to 2.09% are observed as one moves towards Pareto 

solution 20 since such solutions are based on minimizing a weighted measure of the residuals in 

both the modal frequencies and the modeshapes. The errors from the Pareto solutions are 

significantly smaller than the errors observed for the nominal model which are as high as 7.11%. 

The MAC values between the experimental modeshapes and the modeshapes predicted by the 

Pareto optimal model 1 vary from 0.91 for the ninth mode to 0.98 for the tenth mode. The MAC 

values for all other modes (1 to 8) are approximately from 0.95 to 0.96. As one moves towards 

the Pareto solution 20 significantly improvement is observed only for the MAC value of the ninth 

mode. This value increases from 0.91 to 0.94. Concluding, it can be said that the six to nine 

parameter models give a very good fit to the experimentally identified modal data.  
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Table 6.2: Relative error between experimental and model predicted modal frequencies for the six 
parameters model. 

Relative modal frequency error (%) 

Pareto solution Mode 
Nominal 
model 

Equally 
weighted 

Optimally 
weighted 1 5 10 15 20 

1 0.09 1.63 1.59 -0.43 0.02 0.57 1.16 1.69 

2 -7.11 -0.64 -0.62 0.04 -0.05 -0.20 -0.41 -0.62 

3 -2.10 1.38 1.36 0.54 0.70 0.92 1.17 1.37 

4 -2.03 -0.76 -0.74 -0.49 -0.47 -0.54 -0.64 -0.77 

5 -1.01 0.04 0.07 0.31 0.38 0.39 0.29 -0.04 

6 0.02 -0.20 -0.17 0.61 0.47 0.27 0.05 -0.32 

7 -4.70 -1.90 -1.87 -0.85 -1.10 -1.36 -1.63 -2.02 

8 0.50 -0.55 -0.53 -0.14 -0.21 -0.30 -0.42 -0.61 

9 -3.36 -0.34 -0.32 0.18 0.02 -0.12 -0.23 -0.40 

10 1.36 1.03 0.96 0.17 0.19 0.28 0.52 1.19 

 
 

Table 6.3: MAC values between experimental and model predicted modeshapes for the six parameters 
model.  

MAC value 

Pareto solution Mode 
Nominal 
model 

Equally 
weighted

Optimally 
weighted 1 5 10 15 20 

1 0.943 0.947 0.947 0.946 0.946 0.947 0.947 0.947 

2 0.954 0.954 0.954 0.953 0.954 0.954 0.954 0.954 

3 0.959 0.969 0.969 0.953 0.960 0.966 0.969 0.969 

4 0.946 0.959 0.960 0.958 0.961 0.962 0.961 0.961 

5 0.904 0.963 0.963 0.961 0.961 0.962 0.962 0.962 

6 0.950 0.958 0.958 0.954 0.955 0.956 0.957 0.957 

7 0.903 0.936 0.936 0.933 0.933 0.934 0.935 0.935 

8 0.902 0.965 0.964 0.940 0.947 0.955 0.961 0.961 

9 0.937 0.939 0.939 0.915 0.922 0.931 0.937 0.937 

10 0.959 0.978 0.979 0.980 0.980 0.980 0.980 0.980 
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Table 6.4: Relative error between experimental and model predicted modal frequencies for the eight 
parameters model. 

Relative modal frequency error (%) 

Pareto solution Mode 
Nominal 
model 

Equally 
weighted 

Optimally 
weighted 1 5 10 15 20 

1 0.09 1.57 1.52 -0.44 -0.10 0.50 1.11 1.65 

2 -7.11 -0.65 -0.63 0.04 -0.05 -0.20 -0.41 -0.79 

3 -2.10 1.31 1.29 0.54 0.66 0.89 1.14 1.34 

4 -2.03 -0.72 -0.70 -0.49 -0.45 -0.51 -0.60 -0.81 

5 -1.01 0.10 0.13 0.34 0.39 0.42 0.33 -0.07 

6 0.02 -0.26 -0.23 0.58 0.47 0.25 0.00 -0.40 

7 -4.70 -1.94 -1.92 -0.83 -1.03 -1.33 -1.66 -2.07 

8 0.50 -0.49 -0.49 -0.14 -0.19 -0.29 -0.40 -0.63 

9 -3.36 -0.36 -0.35 0.21 0.07 -0.10 -0.25 -0.43 

10 1.36 1.14 1.07 0.16 0.18 0.28 0.58 1.21 

 
 

Table 6.5: MAC values between experimental and model predicted modeshapes for the eight parameters 
model. 

MAC value 

Pareto solution Mode 
Nominal 
model 

Equally 
weighted

Optimally 
weighted 1 5 10 15 20 

1 0.943 0.947 0.947 .946 0.946 0.947 0.947 0.947 

2 0.954 0.967 0.967 0.955 0.967 0.967 0.967 0.968 

3 0.959 0.972 0.972 0.953 0.961 0.967 0.971 0.972 

4 0.946 0.958 0.959 0.957 0.960 0.961 0.960 0.958 

5 0.904 0.962 0.962 0.961 0.961 0.961 0.962 0.963 

6 0.950 0.956 0.956 0.954 0.954 0.955 0.956 0.957 

7 0.903 0.936 0.936 0.933 0.934 0.935 0.935 0.936 

8 0.902 0.965 0.965 0.939 0.945 0.955 0.962 0.964 

9 0.937 0.939 0.939 0.914 0.920 0.929 0.936 0.939 

10 0.959 0.978 0.978 0.980 0.980 0.980 0.980 0.978 
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Table 6.6: Relative error between experimental and model predicted modal frequencies for the nine 
parameters model. 

Relative modal frequency error (%) 

Pareto solution Mode 
Nominal 
model 

Equally 
weighted 

Optimally 
weighted 1 5 10 15 20 

1 0.09 1.67 1.63 -0.10 0.11 0.63 1.16 1.65 

2 -7.11 -0.74 -0.71 0.19 0.15 -0.02 -0.30 -0.84 

3 -2.10 1.60 1.55 0.22 0.36 0.70 1.10 1.48 

4 -2.03 -1.00 -0.97 -0.52 -0.46 -0.45 -0.61 -1.15 

5 -1.01 0.25 0.24 0.08 0.14 0.22 0.26 0.11 

6 0.02 -0.28 -0.25 0.82 0.71 0.42 0.07 -0.45 

7 -4.70 -1.92 -1.91 -0.72 -0.91 -1.32 -1.70 -2.09 

8 0.50 -0.47 -0.47 -0.21 -0.26 -0.35 -0.42 -0.56 

9 -3.36 -0.24 -0.25 0.09 -0.01 -0.17 -0.27 -0.38 

10 1.36 0.84 0.83 0.13 0.13 0.26 0.56 0.89 

 
 

Table 6.7: MAC values between experimental and model predicted modeshapes for the nine parameters 
model.  

MAC value 

Pareto solution Mode 
Nominal 
model 

Equally 
weighted

Optimally 
weighted 1 5 10 15 20 

1 0.943 0.947 0.947 0.946 0.947 0.947 0.947 0.947 

2 0.954 0.967 0.967 0.950 0.968 0.968 0.967 0.967 

3 0.959 0.972 0.972 0.962 0.968 0.971 0.971 0.972 

4 0.946 0.959 0.959 0.962 0.963 0.962 0.960 0.959 

5 0.904 0.961 0.961 0.960 0.960 0.960 0.961 0.961 

6 0.950 0.957 0.957 0.953 0.954 0.955 0.956 0.957 

7 0.903 0.938 0.938 0.931 0.933 0.935 0.937 0.938 

8 0.902 0.967 0.967 0.936 0.943 0.955 0.963 0.968 

9 0.937 0.941 0.940 0.911 0.916 0.928 0.937 0.941 

10 0.959 0.978 0.978 0.979 0.979 0.979 0.979 0.977 
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Table 6.8: Relative error between experimental and model predicted modal frequencies for the eleven 
parameters model. 

Relative modal frequency error (%) 

Pareto solution Mode 
Nominal 
model 

Equally 
weighted 

Optimally 
weighted 1 5 10 15 20 

1 0.09 1.75 1.73 -0.05 0.02 0.62 1.17 1.73 

2 -7.11 -0.99 -0.96 0.19 0.16 -0.05 -0.40 -1.04 

3 -2.10 1.64 1.60 0.17 0.25 0.66 1.11 1.60 

4 -2.03 -1.05 -1.02 -0.51 -0.48 -0.45 -0.61 -1.06 

5 -1.01 0.25 0.25 0.08 0.10 0.22 0.26 0.15 

6 0.02 -0.34 -0.32 0.78 0.73 0.38 0.02 -0.40 

7 -4.70 -1.83 -1.82 -0.67 -0.77 -1.23 -1.63 -1.95 

8 0.50 -0.44 -0.44 -0.23 -0.23 -0.35 -0.41 -0.47 

9 -3.36 -0.20 -0.21 0.11 0.08 -0.12 -0.23 -0.28 

10 1.36 0.88 0.87 0.11 0.11 0.24 0.57 1.04 

 
 

Table 6.9: MAC values between experimental and model predicted modeshapes for the eleven parameters 
model.  

MAC value 

Pareto solution Mode 
Nominal 
model 

Equally 
weighted

Optimally 
weighted 1 5 10 15 20 

1 0.943 0.947 0.947 0.946 0.947 0.947 0.947 0.947 

2 0.954 0.968 0.968 0.936 0.968 0.968 0.968 0.967 

3 0.959 0.971 0.972 0.958 0.966 0.970 0.971 0.972 

4 0.946 0.959 0.959 0.963 0.962 0.962 0.960 0.959 

5 0.904 0.961 0.961 0.960 0.958 0.959 0.960 0.961 

6 0.950 0.957 0.957 0.953 0.953 0.955 0.956 0.957 

7 0.903 0.939 0.939 0.931 0.934 0.936 0.938 0.939 

8 0.902 0.966 0.966 0.936 0.941 0.955 0.963 0.967 

9 0.937 0.941 0.940 0.910 0.912 0.927 0.936 0.940 

10 0.959 0.978 0.978 0.978 0.979 0.979 0.979 0.977 
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The identified variability in Pareto optimal solutions has demonstrated in Christodoulou et al. 

(2008) to considerably affect the variability in the response predictions. Herein, the frequency 

response functions (FRF) predicted by the Pareto optimal solutions for the six, eight, nine and 

eleven parameter models are compared in Figures 6.31 to 6.34 respectively to the frequency 

response function computed directly from the measured data at sensor location 72 (see Figure 

6.3) in the frequency range [20Hz, 105Hz] used for model updating. Compared to the initial 

nominal model, it is observed that the updated Pareto optimal models tend to considerably 

improve the fit between the model predicted and the experimentally obtained FRF in most 

frequency regions close to the resonance peaks. Also, it can be clearly seen that a variability in 

the predictions of the frequency response functions from the different Pareto optimal models is 

observed which is due to the variability in the identified Pareto optimal models. This variability is 

important to be taken into consideration in the predictions from updated models in model updating 

techniques. It should be noted that besides frequency response functions, similar variability is 

observed for other more important response quantities of interest such as the reliability of the 

structure against various modes of failure, as well as the fatigue accumulation and lifetime of the 

structure subjected to stochastic loads arising from the variability in road profiles.  
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Figure 6.31: Comparison between measured and the predicted FRF from the Pareto models 1, 5, 10, 15, 20 

for the six parameter model. 
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Figure 6.32: Comparison between measured and the predicted FRF from the Pareto models 1, 5, 10, 15, 20 

for the eight parameter model. 
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Figure 6.33: Comparison between measured and the predicted FRF from the Pareto models 1, 5, 10, 15, 20 

for the eight parameter model. 
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Figure 6.34: Comparison between measured and the predicted FRF from the Pareto models 1, 5, 10, 15, 20 

for the eleven parameter model. 
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The discrepancies between the experimental and the model predicted modal frequencies as well 

as the deviations of the MAC values from unity are due to (a) the model error, (b) the 

parameterization employed, and (c) the measurement errors. Specifically, the model error arises 

from the assumptions used to construct the mathematical model of the structure. For the 

laboratory vehicle model one should emphasize that the sources of model error are due to the 

assumptions used to build up the connections between the various parts comprising the structure, 

as well as the use of shell elements to represent the members of the structure and the 

connections between the lower and the upper part of the model. Also, relative small errors results 

from the size of the finite elements employed in the discretization scheme. Another source that 

affects the model updating results and the errors between the model predictions and the 

measurements is the parameterization employed. A quite extensive search for the effect of the 

parameterization scheme (number and type of parameters) on the fidelity of the finite element 

model has been explored in this work. However, introducing more parameters to be updated will 

improve the fit and reduce the errors between the predictions and the experiment. However, 

these errors cannot be eliminated and the remaining errors could be attributed mainly to the 

model errors that arise from the assumptions made to build the mathematical model for the 

vehicle structure. The resulting errors provide guidance for modifying the assumptions made to 

build the model in an effort to further improve modeling and obtain higher fidelity models able to 

adequately represent the behavior of the experimental vehicle structure in the frequency range of 

interest.  

 

6.5 Conclusions 

Structural model updating method were used to develop high fidelity finite element models of an 

experimental vehicle model using the lowest ten modal characteristics of the structure. A multi-

objective structural identification method was used for estimating the parameters of the finite 

element structural models based on minimizing two groups of modal residuals, one associated 

with the modal frequencies and the other with the modeshapes. The construction of high fidelity 

models consistent with the data depends on the assumptions made to build the mathematical 

model, the finite elements selected to model the different parts of the structure, the dicretization 

scheme controlling the size of the finite elements, as well as the parameterization scheme used 

to define the number and type of parameters to be updated by the methodology. In this work, a 

detailed finite element model with approximately 45000 DOF consisting of shell elements was 

build. The effect of the parameterization scheme on the Pareto optimal models and the model 

adequacy was explored. The multi-objective identification method resulted in multiple Pareto 

optimal structural models for each parameterization scheme that are consistent with the 

measured (identified) modal data and the two groups of modal residuals used to measure the 

discrepancies between the measured modal values and the modal values predicted by the model. 

These Pareto optimal models are due to uncertainties arising from model and measurement 

errors. A wide variety of Pareto optimal structural models was obtained that trade off the fit in 

various measured modal quantities. The size of observed variations in the Pareto optimal 

solutions depends on the information contained in the measured data, as well as the size of 
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model and measurement errors. The variability in the Pareto optimal vehicle models results in 

considerable variability in the predictions of the response, frequency response functions and 

reliability from these structural models. Such variability should be taken into consideration when 

using the updated models for predictions. Finally, a very good fit between the predictions from the 

Pareto optimal models and the measured modal data was obtained using six to nine parameter 

model classes. The discrepancies between the predicted and measured modal characteristics 

were very small. These small discrepancies verify the high fidelity of the model class used to 

model the vehicle. 
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Chapter 7            

 

Conclusions and future work 
 

7.1 Conclusions 

The research work presented in the thesis contributes to the following three interrelated research 
areas of structural identification and response/damage prediction using vibration measurements: 
(1) identification of non-classically damped modal models of linear structures, (2) finite element 

structural model updating and prediction variability and (3) fatigue-based damage accumulation  
predictions in the entire body of metallic structures using a limited number of vibration sensors. 
Summarizing, the novel contributions in this thesis are as follows. 

• Time and frequency domain least squares methods for identifying non-classically-

damped modal models of linear structures from multiple-support excitations and multiple 

responses were proposed. A common structure of the time and frequency formulations is 

revealed and exploited to develop an identification software common for both 

formulations. A computationally very efficient three-step algorithm to solve the highly non-

convex nonlinear optimization problem was developed. Specifically, the first step 

provides estimates of the modal frequencies and modal damping ratios by solving a 

system of linear algebraic equations. Stabilization diagrams are used to identify the 

number of contributing modes, distinguishing between physical and mathematical modes. 

The second step provides estimates of the modeshapes and the participation factors by 

solving a system of linear algebraic equations for the modal residue matrices of the 

contributing modes and using singular value decomposition to estimate the complex 

modeshapes and modal participation factors. The first two steps usually give fast and 

accurate estimates of the modal characteristics. A third step is added to improve the 

estimates of the modal characteristics for the case of closely spaced and overlapping 

modes by efficiently solving the original nonlinear optimization problem with initial 

estimates of the modal parameters those obtained from the two-step algorithm. Such 

choice of initial estimates significantly accelerates the convergence of gradient based 

acceleration algorithms. Analytical expressions for the gradient of the objective function 

with respect to the parameters are also integrated to further accelerate the convergence 

of the optimization.  

• Frequency domain least squares methods for the identification of non-classically damped 

modal models of linear structures using ambient vibration measurements were also 

proposed. Computationally efficient two-step and three-step algorithms for solving the 

resulting, highly non-convex, nonlinear optimization problem were developed. The first 

step of the proposed algorithm provides estimates of the modal frequencies and modal 

damping ratios by solving a system of linear algebraic equations for the coefficients of the 

common denominator polynomial. Conventional stabilization diagrams are used to 

identify the number of contributing modes, distinguishing the physical from the spurious 

mathematical poles. Taking advantage of the special structure of the common 
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denominator polynomial that is revealed in this thesis for the analytical cross power 

spectral density matrices, one simplifies the system of normal equations used to compute 

the coefficients of the common denominator polynomial. This reduces considerably the 

computational time and the number of spurious mathematical (non-physical) modes that 

are obtained using the conventional stabilization diagrams. Given the poles selected in 

the first step, the second step of the algorithm identifies the modeshapes and all other 

modal parameters that fully describe the modal model of the structure using two different 

approaches, one non-iterative and one iterative. Finally the third step of the algorithm 

solves a fully nonlinear optimization problem for the identification of all modal parameters 

simultaneously, with initial estimates the values obtained from the two-step algorithm. 

Two very efficient solution schemes were proposed for the third step. Applications on 

simple structures with simulated measurements verify that the use of the third step is 

recommended to improve the estimates of the modal parameters for cases of closely and 

overlapping modes. 

• Concerning the structural model updating problem using modal residuals, theoretical and 

computational issues arising in single-objective and multi-objective identification were 

addressed and the correspondence between the multi-objective identification, the 

weighted modal residuals identification and the Bayesian statistical identification was 

established. A novel optimally weighted modal residuals method was also proposed to 

select the most preferred Pareto model from the set of multiple Pareto optimal models 

available. Emphasis is given in addressing issues associated with solving the resulting 

multi-objective and single-objective optimization problems, including issues related to 

estimation of global optima, convergence of the proposed algorithms, and identifiability. 

Hybrid methods were developed to identify global optima and the normal boundary 

intersection method was adopted and integrated into the identification to efficiently 

estimate the Pareto front and the Pareto optimal models.  In addition, efficient methods 

were proposed for estimating the gradients and the Hessians of the objective functions 

based on the Nelson’s method for finding the sensitivities of the eigenproperties to model 

parameters. In particular, the Hessian computations are useful in the Bayesian 

asymptotic formulas for quantifying the uncertainty in the Pareto optimal models. Finally, 

in order to face the severe problems of corresponding measured and model predicted 

modes encountered for closely spaced modes, the definition of objectives in the 

aforementioned model updating methods was generalized and efficient gradient 

estimation algorithms were developed extending the use of the model updating 

methodology.  

• A novel methodology was put forward for estimating damage accumulation due to fatigue 

in the entire body of a metallic structure using output-only vibration measurements from a 

sensor network installed at a limited number of structural locations. This was achieved by 

integrating (a) Kalman filter methods for predicting strain/stress response time histories 

and their correlation/spectral characteristics in the entire structure from output-only 

measured response time histories available at limited locations in the structure, and (b) 

frequency domain methods for estimating fatigue damage accumulation using the 
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spectral characteristics of the predicted strain/stress response time histories. Simulated 

measurements from simple structures subjected to uniaxial stress states demonstrate 

that the methodology is very promising in providing fatigue damage accumulation maps 

exploiting measured information collected from a sensor network under various 

operational conditions of the structure. The results are useful for fatigue lifetime 

prognosis and designing optimal maintenance strategies for critical components of 

metallic structures using vibration measurements.  

• The applicability and effectiveness of the developed single- and multi-objective 

methodologies were explored using experimental modal data from a small-scale three-

story building structure and a small-scale vehicle structure. Simple and higher fidelity 

finite element model classes with as high as tenths of thousands of degrees of freedom 

were updated. It was demonstrated that the Pareto optimal models differ significantly, 

resulting in large variability in response and reliability predictions from these Pareto 

optimal models. A wide variety of Pareto optimal structural models consistent with the 

measured modal data was obtained that trade-off the fit in various measured modal 

quantities. The variability in the Pareto optimal models is due uncertainties arising from 

model and measurement error. In particular, the size of observed variations in the Pareto 

optimal solutions depends on the information contained in the measured data, as well as 

the size of model and measurement errors. The variability in the Pareto optimal models 

may result in considerable variability in the predictions of the response and reliability from 

these Pareto structural models. Such variability should be taken into consideration when 

using the updated models for predictions. It has been demonstrated that higher fidelity 

model classes, tend to involve less model error, move the Pareto front towards the origin 

and reduce the size of the Pareto front in the objective space, reduce the variability of the 

Pareto optimal solutions, provide better fit to the measured quantities, and give much 

better predictions corresponding to reduced variability. In particular, as the fidelity of the 

model class improves, the importance of selecting the weight values in weighted 

residuals methods diminishes. 

 

7.2 Future work 

Concerning the work proposed about methods for the identification of non-classically-damped 

modal models of linear structures, an important direction for future work is to develop modal 
identification techniques to estimate the modal properties of fixed base structures using ambient 
vibration measurements and including the ambient measurements at the base as input 

measurements in the software. This is a challenging problem that remains unresolved. Such 
theoretical development along with the corresponding software will allow one to identify, in the 
expense of adding more sensors at the multiple bases of a structure, the modal properties of (a) 

the fixed base buildings and bridges using ambient vibration measurements, while ignoring the 
effects of soil structure interaction, and (b) fixed support vehicle bodies, ignoring the effects of the 
suspension system. 

 179

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



 180

Another issue that it should be noted concerning the proposed model updating methods is that 

component mode synthesis methods dividing the structure to linear substructural components 

with fixed properties and linear substructural components with uncertain properties to be 

identified can be incorporated into the methodology to further reduce the computational effort 

required in optimization problems. The linear substructures with fixed properties can be 

represented by their lower contributing modes which remain unchanged during the model 

updating process. The method can be particular effective for finite element models with large 

number of DOF and for parameters that are introduced to monitor localized areas of a structure. 

This is usually the case for which the identification method are applied for locating damage in a 

structure.  

The proposed model updating methodologies, such as multi-objective identification, Bayesian 

identification and optimally weighted residuals can be extended to handle nonlinear structures 

with localized nonlinearities. In this nonlinear case the measured data and the residuals are 

based directly on the measured response time histories instead of the modal characteristics. A 

challenging problem is to automate the computation of the gradients of the objective functions 

with respect to the model parameters since it requires developing of efficient methods for 

estimating the gradients of the response time histories for general nonlinear systems with various 

types of nonlinearities.  

Another future direction is to extend the Bayesian model selection and parameter estimation to 

handle multiple sets of measurements corresponding to different operational conditions of the 

structure.  

The method for predicting damage accumulation due to fatigue in the entire body of metallic 

structures exploiting measurements from a limited number of sensors can be extended to handle 

bi-axial stress states as well as to include more accurate rainflow counting methods. Also, the 

effectiveness of the proposed fatigue prediction methods should be explored for more complex 

structures, including realistic vehicle bodies and airframes. Finally, the fatigue damage 

accumulation methodology in the entire body of a structure can also be seen as a tool for a life-

time prognosis within structural health monitoring concepts. Specifically, the proposed method 

can be used to estimate the accumulation of damage due to fatigue during operation in the entire 

body of a structure taking into account the actual conditions collected from a sensor network 

placed at limited number of locations. The fatigue accumulation and lifetime predictions provided 

by the proposed methodology in this thesis should be useful for designing optimal maintenance 

strategies for most critical components of metallic structures using information collected from a 

sensor network.  

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



References 
 

[1] Alvin K.F., (1997), “Finite element model update via Bayesian estimation and 

minimization of dynamic residuals,” AIAA Journal, Vol. 35, pp.  879-886. 

[2] Arici Y. and Mosalam K.M., (2003), “System identification of instrumented bridge 
systems”, Earthquake Engineering and Structural Dynamics, Vol. 32, pp. 999–1020. 

[3] Basseville M., Benveniste A., Goursat M., Hermans L., Mevel L., Van der Auweraer H., 
(2001), “Output-only subspace-based structural identification: from theory to industrial 
testing practice”, ASME Journal of Dynamic Systems Measurement and Control, Vol. 123 

(4), pp. 668-676. 

[4] Beck J.L., (1978), “Determining models of structures from earthquake records”, Report 
No. EELRL 78-01, Earthquake Engineering Research Laboratory, California Institute of 

Technology, Pasadena, CA. 

[5] Beck J.L. and Jennings P.C., (1980), “Structural identification using linear models and 
earthquake records”, Earthquake Engineering and Structural Dynamics, Vol. 8, pp. 145-

160. 

[6] Beck J.L., (1989), “Statistical System Identification of Structures”, Proceedings of the 5th 
International Conference on Structural Safety and Reliability (ASCE), San Francisco, 

pp.1395-1402. 

[7] Beck J.L., May B.S., Polidori D.C., (1994), “Determination of modal parameters from 
ambient vibration data for structural health monitoring”, Proceedings of the 1st World 

Conference on Structural Control, Los Angeles, USA, pp. 1395-1402. 

[8] Beck J.L. and Katafygiotis L.S., (1998), “Updating models and their uncertainties- I: 
Bayesian statistical framework”, Journal of Engineering Mechanics (ASCE), Vol. 124, pp. 

455-461. 

[9] Beck J.L. and Au S.K., (2002), “)Bayesian updating of structural models and reliability 
using Markov chain Monte Carlo simulation”, Journal of Engineering Mechanics (ASCE), 

Vol. 128, pp. 380-391. 

[10] Benasciutti D. and Tovo R., (2005), “Spectral methods for lifetime prediction under wide-
band stationary random processes”, International Journal of Fatigue, Vol. 27, pp. 867–

877. 

[11] Benasciutti D. and Tovo R., (2006), “Comparison of spectral methods for fatigue analysis 
of broad-band Gaussian random processes”, Probabilistic Engineering Mechanics, Vol. 

21, pp. 287–299. 

[12] Bishop N.N.M. and Sherrat F., (1990), “A theoretical solution for the estimation of the 
rainflow ranges from power spectral density data”, Fatigue and Fracture of Engineering 

Materials and Structures, Vol. 13 (4), pp. 311-326. 

[13] Blackman R.B. and Tukey J.W., (1958), The measurement of power spectra from the 
point of view of communication engineering, Dover Publications, Inc., New York. 

 181

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



[14] Bleistein N. and Handelsman R., (1986), Asymptotic expansions for integrals, Dover 
Publications, Inc., New York, USA. 

[15] Bohle K. and Fritzen C.P., (2003), “Results obtained by minimizing natural frequencies 
and MAC-value errors of a plate model”, Mechanical Systems and Signal Processing, 
Vol. 17 (1), pp. 55-64. 

[16] Boswald M., Goge D., Fullekrug U.,  Govers Y., (2006), “A review of experimental modal 
analysis methods with respect to their applicability to test data of large aircraft structures”, 
International Conference on Noise and Vibration Engineering (ISMA2006), Katholieke 

Universiteit Leuven, Leuven, Belgium. 

[17] Boswald M. and Govers Y., (2008), “Taxi vibration testing - An alternative method to 
ground vibration testing of large aircraft”, International Conference on Noise and Vibration 

Engineering (ISMA2008), Katholieke Universiteit Leuven, Leuven, Belgium. 

[18] Brincker R., Zhang L., Andersen P., (2001), “Modal identification of output-only systems 
using frequency domain decomposition”, Smart Materials and Structures, Vol. 10, pp. 

441-445.  

[19] Capecchi D. and Vestroni F., (1993), “Identification of finite-element models in structural 
dynamics”, Engineering Structures, Vol. 15 (1) , pp. 21-30. 

[20] Cauberghe B., (2004), “Applied frequency-domain system identification in the field of 
experimental and operational modal analysis”, PhD Thesis, Department of Mechanical 
Engineering, Vrije Universiteit Brussel, Belgium.  

[21] Chaudhary M.T.A., Abe M., Fujino Y., (2000), “System identification of two base-isolated 
buildings using seismic records”, Journal of Structural Engineering (ASCE), Vol. 126(10), 
pp. 1187-1195. 

[22] Chaudhary M.T.A., Abe M., Fujino Y. (2002), “Investigation of atypical seismic response 
of a base-isolated bridge”, Engineering Structures, Vol. 24, pp. 945–953. 

[23] Christodoulou K. and Papadimitriou C., (2007), “Structural identification based on 

optimally weighted modal residuals”, Mechanical Systems and Signal Processing, Vol.  
21, pp.  4-23. 

[24] Christodoulou K., Ntotsios E., Papadimitriou C., Panetsos, P., (2008), "Structural Model 

Updating and Prediction Variability using Pareto Optimal Models." Computer Methods in 
Applied Mechanics and Engineering, Vol. 198 (1), pp.138-149. 

[25] Clough R.W. and Penzien J., (1993), Dynamics of structures, McGraw-Hill. 

[26] COMSOL AB, (2005), COMSOL Multiphysics User’s Guide. [http://www.comsol.com/]. 

[27] Das I., Dennis J.E., Jr., (1998), “Normal-Boundary Intersection: A new method for  
generating the Pareto surface in nonlinear multi-criteria optimization problems”, SIAM 

Journal of Optimization, Vol. 8, pp. 631-657. 

[28] Devriendt C. and Guillaume P., (2008), “Identification of modal parameters from 
transmissibility measurements”, Journal of Sound and Vibration, Vol. 314 (1-2), pp. 343-

356. 

 182

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7

http://www.comsol.com/
http://www.sciencedirect.com/science/journal/0022460X


[29] Dirlik T., (1985), Applications of Computers to Fatigue Analysis, PhD Thesis, Warwick 
University.  

[30] Doebling S.W., Farrar C.R. , Prime M.B., (1998), “A summary review of vibration-based 
damage identification methods”, The Shock and Vibration Digest, Vol. 30 (2), pp. 91-105. 

[31] Ewins D.J., (2000), Modal Testing: Theory, Practice and Application, Second edition. 

Research Studies Press LTD. 

[32] Farhat, C. and Hemez, P.M., (1993), “Updating Finite Element Dynamics Models Using 
an Element-by-Element Sensitivity Methodology”, American Institute of Aeronautics and 

Astronautics Journal, Vol. 31(9), pp. 1702-1711. 

[33] Farrar C., Baker W., Bell T., Cone K., Darling T., Duffey, T., Eklund A., Migliori A., (1994), 
“Dynamic Characterization and Damage Detection in the I-40 Bridge over the Rio 

Grande”, Technical Report LA-12767-MS, Los Alamos National Laboratory. 

[34] Felber A.J., (1993), “Development of a hybrid bridge evaluation system”, PhD Thesis, 
University of British Columbia, Vancouver, Canada. 

[35] Franklin G.F., Powell J.D., Workman M.L., (1990), Digital Control of Dynamic Systems, 
Second Edition, Addison-Wesley. 

[36] Fritzen C.P., Jennewein D., Kiefer T., (1998), “Damage detection based on model 

updating methods”, Mechanical Systems and Signal Processing, Vol. 12 (1), pp. 163-186. 

[37] Giagopulos D. and Natsiavas S. (2007), “Hybrid (numerical-experimental) modeling of 
complex structures with linear and nonlinear components”, Nonlinear Dynamics, Vol. 47 

(1-3), pp. 193-217. 

[38] Guillaume P., Hermans L., Van der Auweraer H., (1999), “Maximum Likelihood 
Identification of Modal Parameters from Operational Data”, Proceedings of the 17th 

International Modal Analysis Conference (IMAC17), pp. 1887-1893. 

[39] Haralampidis Y., Papadimitriou C., Pavlidou M., (2005), “Multi-objective framework for 
structural model identification”, Earthquake Engineering and Structural Dynamics, Vol. 34 

(6), pp. 665-685. 

[40] Hermans L., Van der Auweraer H., Guillaume P., (1998), “A frequency-domain maximum 
likelihood approach for the extraction of modal parameters from output-only data”, 

Proceedings of the 23rd International Seminar on Modal Analysis (ISMA23), pp. 367-376. 

[41] Hermans L. and Van der Auweraer H., (1999), “Modal testing and analysis of structures 
under operational conditions: Industrial applications”, Mechanical Systems and Signal 

Processing, Vol 13 (2), pp. 193-216. 

[42] Hayes M., (1996), Statistical Digital Signal Processing and Modeling, John Wiley & Sons. 

[43] Heylen, W., Lammens, S., Sas, P. (1997), Modal Analysis Theory and Testing, 

Katholieke Universiteit Leuven, Department of Mechanical Engineering. 

[44] Hjelmstad K.D. and Shin S.,(1996), “Crack identification in a cantilever beam from modal 
response”, Journal of Sound and Vibration, Vol. 198, pp. 527-545. 

[45] Kailtath T., (1980), Linear systems, Prentice-Hall, New Jersey, U.S. 

 183

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



[46] Kalman R.E. and Bucy., R.S., (1961), “New results in linear filtering and prediction 
theory”, J. of Basic Eng., Trans. ASME, Series D, Vol. 83 (3), pp. 95–108. 

[47] Katafygiotis L.S., (1991), Treatment of model uncertainties in structural dynamics, 
Technical Report EERL91-01, California Institute of Technology, Pasadena, CA. 

[48] Katafygiotis L.S. and Beck J.L., (1998), “Updating models and their uncertainties. II: 

Model identifiability”, Journal of Engineering Mechanics (ASCE), Vol. 124 (4), pp. 463-
467. 

[49] Katafygiotis L.S., Papadimitriou C., Lam H.F., (1998), “A probabilistic approach to 

structural model updating”, International Journal of Soil Dynamics and Earthquake 
Engineering, Vol. 17, pp. 495-507. 

[50] Katafygiotis L.S. and Yuen K.V., (2001), “Bayesian spectral density approach for modal 

updating using ambient data”, Earthquake Engineering and Structural Dynamics Vol. 30 
(8), pp. 1103-1123.  

[51] Katafygiotis L.S. and Lam H.F., (2002), “Tangential-projection algorithm for manifold 

representation in unidentifiable model updating models”, Earthquake Engineering and 
Structural Dynamics, Vol. 31 (4), pp. 791-812. 

[52] Klepka A. and Tadeusz U., (2008), “Hardware and software tools for in-flight flutter 

testing”, International Conference on Noise and Vibration Engineering (ISMA2008), 
Katholieke Universiteit Leuven, Leuven, Belgium, 15-17 September, 2008. 

[53] Kim C., Kim N., Jung D., Yoon J., (2001), “Effect of vehicle mass on the measured 

dynamic characteristics of bridges from traffic-induced vibration test”, Proceedings of the 
19th International Modal Analysis Conference (IMAC19), pp. 1106-1111. 

[54] Lin C.C., Hong L.L., Ueng J.M., Wu K.C., Wang C.E., (2005), “Parametric identification of 

asymmetric buildings from earthquake response records”, Smart Materials and 
Structures, Vol. 14, pp. 850-861. 

[55] Link M., (1998), “Updating analytical models by using local and global parameters and 

relaxed optimization requirements”, Mechanical Systems and Signal Processing, Vol. 12 
(1), pp.  7-22. 

[56] Liu H., Yanga Z., Gaulkeb M.S., (2005), “Structural identification and finite element 

modeling of a 14-story office building using recorded data”, Engineering Structures, Vol. 
27, pp. 463–473. 

[57] Ljung L., (1999), System Identification: Theory for the User. Prentice-Hall, New York, 

USA. 

[58] Lutes L.D., Corazao M., Hu S-L.J., Zimmerman J., (1984), “Stochastic fatigue damage 
accumulation”, Journal of Structural Engineering ASCE, Vol. 110 (11), pp. 2585-2601. 

[59] Lutes L.D. and Larsen C.E., (1990), “Improved spectral method for variable amplitude 
fatigue prediction”, Journal of Structural Engineering, ASCE, Vol. 116 (4), pp. 1149-1164. 

[60] Lutes L.D. and Sarkani S., (2004), Random Vibrations: Analysis of Structural and 

Mechanical Systems, Elsevier Butterworth-Heinemann. 

 184

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



[61] Lus H., Betti R., Longman R.W., (1999), “Identification of Linear Structural Systems using 
Earthquake-Induced Vibration Data”, Earthquake Engineering and Structural Dynamics, 

Vol. 28, pp. 1449–1467. 

[62] Mahmoudabadi M., Ghafory-Ashtiany M., Hosseini M., (2007), “Identification of modal 
parameters of non-classically damped linear structures under multi-component 

earthquake loading”, Earthquake Engineering and Structural Dynamics, Vol. 36, pp. 765-
782. 

[63] Marple S.L., (1987), Digital spectral analysis, Prentice-Hall, New York, USA. 

[64] McVerry G.H., (1980), “Structural identification in the frequency domain from earthquake 
records”, Earthquake Engineering and Structural Dynamics, Vol. 8, pp. 161-180. 

[65] Miner M.A., (1945), “Cumulative damage in fatigue, Applied Mechanics”, Transactions, 

ASME, Vol. 12 (3), A159-A164 

[66] Mottershead J.E., Friswell M.I., (1993), “Model updating in structural dynamics: A 
survey”, Journal of Sound and Vibration, Vol. 167, pp. 347-375. 

[67] Natsiavas S., (1999), Ταλαντώσεις Μηχανικών Συστημάτων, Εκδόσεις Ζήτη. 

[68] Nelson R.B., (1976), “Simplified calculation of eigenvector derivatives”, AIAA Journal, 
Vol. 14 (9), pp. 1201-1205. 

[69] Nikolaou I., (2008), “Structural modal identification methods based on earthquake-
induced vibrations”, MS Thesis Report No. SDL-08-2, Department of Mechanical and 
Industrial Engineering, University of Thessaly, Volos, Greece. 

[70] Ntotsios E., Papadimitriou C., Panetsos P., Karaiskos G., Perros K., Perdikaris Ph., 
(2008), “Bridge health monitoring system based on vibration measurements”, Bulletin of 
Earthquake Engineering, doi: 10.1007/s10518-008-9067-4. 

[71] Ntotsios E., (2009), “Experimental modal analysis using ambient and earthquake 
vibrations: Theory, Software and Applications”, MS Thesis Report No. SDL-08-1, 
Department of Mechanical and Industrial Engineering, University of Thessaly, Volos. 

[72] Oden, J.T., Belytschko, T., Fish, J., Hughes, T.J.R., Johnson, C., Keyes, D., Laud, A., 
Petzold, L., Srolovitz, D., Yip, S., (2006), Simulation-Based Engineering Science (SBES) 
– Revolutionizing Engineering Science through Simulation, Report of the National 

Science Foundation: Blue Ribbon Panel on SBES. 

[73] Palmgren A., (1924), Die Lebensdauer von Kugallagern, VDI-Zeitschrift, 68(14) 339-341. 

[74] Panetsos P., Ntotsios E., Liokos N.A., Papadimitriou C., (2009), “Identification of 

Dynamic models of Metsovo (Greece) Bridge using Ambient Vibration Measurements”, 

ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and 
Earthquake Engineering, Rethymno, Rhodes, Greece. 

[75] Parloo E., (2003), “Application of Frequency-domain System Identification in the Field of 
Operational Modal Analysis”, Ph.D. Thesis, Department of Mechanical Engineering, Vrije 
Universiteit Brussel, Belgium. 

 185

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



[76] Papageorgiou A.S., Lin B.C., (1989), “Influence of lateral-load-resisting system on the 
earthquake response of structures – A system identification study”, Earthquake 

Engineering and Structural Dynamics, Vol. 18, pp. 799-814. 

[77] Papadimitriou C., Beck J.L., Katafygiotis L.S., (2001), “Updating robust reliability using 
structural test data”, Probabilistic Engineering Mechanics, Vol. 16, pp. 103-113. 

[78] Papadimitriou C. and Katafygiotis L.S., (2004), “Bayesian Modeling and Updating” In: 
Engineering Design Reliability Handbook, E. Nikolaidis, D.M. Ghiocel and S. Singhal 
(Eds), CRC Press, New York. 

[79] Peeters B. and De Roeck G., (1999), “Reference-based stochastic subspace 
identification for output-only modal analysis”, Mechanical Systems and Signal 
Processing, Vol. 13 (6), pp. 855-878. 

[80] Peeters B., (2000), “System Identification and Damage Detection in Civil Engineering”, 
PhD thesis, Dept. of Civil Engineering, Katholieke Universiteit Leuven, Belgium. 

[81] Peeters B. and De Roeck G., (2001), “One-year monitoring of the z24-bridge: 

environmental effects versus damage events”, Earthquake Engineering and Structural 
Dynamics, Vol. 30 (2), pp. 149-171. 

[82] Peeters B., Van der Auweraer H., Guillaume P., Leuridan J., (2004), “The PolyMAX 

frequency-domain method: A new standard for modal parameter estimation?”, Shock and 
Vibration, Vol. 11 (2-4), pp. 395-409. 

[83] Peeters B., Van der Auweraer H., (2005), “Recent developments in operational modal 

analysis”, EURODYN 2005, C. Soize & G.I Schueller (eds), Millpress, Rotterdam, pp. 
149-154.  

[84] Peeters B., Hendricx W., Debille J. (2009), “Modern solutions for ground vibration testing 

of large aircraft”, Sound and Vibration, Vol. 43 (1), pp. 8-15. 

[85] Pitoiset X., Preumont A., (2000), “Spectral methods for multiaxial random fatigue analysis 
of metallic structures”, International Journal of Fatigue, Vol. 22, pp. 541–550. 

[86] Preumont A. and Piefort V., (1994), “Predicting random high cycle fatigue life with finite 
elements”, ASME Journal of Vibration and Acoustics, Vol. 16, pp. 245–248. 

[87] Roberts S., (2001), “Identification of the modal parameters affecting automotive ride 

characteristics”, Proceedings of the 19th International Modal Analysis Conference 
(IMAC19), pp. 270-274. 

[88] Rychlik I., (1993), “On the ‘narrow-band’ approximation for expected fatigue damage”, 

Probabilistic Engineering Mechanics, Vol. 8, pp. 1–4. 

[89] Safak E. (1995), “Detection and identification of soil-structure interaction in buildings from 
vibration recordings”, Journal of Structural Engineering (ASCE), Vol. 121 (5), pp. 899-

906. 

[90] Sarkani S., Kihl D.P., Beach J.E., (1994), “Fatigue of welded joints under narrowband 
non-Gaussian loadings”, Probabilistic Engineering Mechanics, Vol. 9, pp. 179-190. 

 186

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



[91] Sohn H. and Law K.H., (1997), “Bayesian probabilistic approach for structural damage 
detection”, Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 1259-1281. 

[92] Siringoringo D.M. and Fujino Y., (2007), “Dynamic characteristics of a curved cable-
stayed bridge identified from strong motion records”, Engineering Structures, Vol. 29, pp. 
2001-2017. 

[93] Smyth A.W., Pei J-S., Masri S.F., (2003), “System identification of the Vincent Thomas 
suspension bridge using earthquake records”, Earthquake Engineering and Structural 
Dynamics, Vol. 32, pp. 339–367. 

[94] Souty C., (2008), “Modal identification of the structure of an aircraft with the LSCF 
method”, International Conference on Noise and Vibration Engineering (ISMA2008), 
Katholieke Universiteit Leuven, Leuven, Belgium, 15-17 September. 

[95] Stengel R.F., (1986), Stochastic Optimal Control: Theory and Applications, John Wiley & 
Son. 

[96] Tan R.Y. and Cheng W.M. (1993), “System identification of a non-classically damped 

linear system”, Computers and Structures, Vol. 46, pp. 67–75. 

[97] Teughels A., De Roeck G., Suykens J.A.K., (2003), “Global optimization by coupled local 
minimizers and its application to FE model updating”, Computers and Structures, Vol. 81 

(24-25), pp. 2337-2351. 

[98] Teughels A. and De Roeck G., (2005), “Damage detection and parameter identification 
by finite element model updating”, Archives of Computational Methods in Engineering, 

Vol. 12 (2), pp. 123-164. 

[99] Van Overschee P. and De Moor B., (1996), Subspace Identification for Linear Systems: 
Theory-Implementation-Applications, Kluwer Academic Publishers. 

[100] Vanik M.W., Beck J.L., Au S.K., (2000), “Bayesian probabilistic approach to structural 
health monitoring”, Journal of Engineering Mechanics (ASCE), Vol. 126, pp. 738-745. 

[101] Verboven P., (2002), “Frequency domain system identification for modal analysis”, PhD 

Thesis, Department of Mechanical Engineering, Vrije Universiteit Brussel, Belgium. 

[102] Wang X. and Sun J.Q., (2005), “Multi-stage regression fatigue analysis of non-Gaussian 
stress processes”, Journal of Sound and Vibration, Vol. 280, pp. 455-465. 

[103] Welch P.D., (1967), “The use of fast Fourier transform for the estimation of power 
spectra: A method based on time averaging over short modified periodograms”, IEEE 
Transactions on Audio and Electroacoustics, Vol. 15, pp. 70-73. 

[104] Werner S.D., Beck J.L., Levine M.B., (1987), “Seismic response evaluations of Meloland 
road overpass using 1979 Imperial Valley earthquake records”, Earthquake Engineering 
and Structural Dynamics, Vol. 15, pp. 249-274. 

[105] Wilson J.C., (1986), “Analysis of the observed seismic response of a highway bridge”, 
Earthquake Engineering and Structural Dynamics, Vol. 14, pp. 339–354. 

[106] Wirsching P.H. and Light M.C.,  (1980), “Fatigue under wide band random stress”, 

Journal of Structural Engineering ASCE, Vol. 106(7(, pp. 1593-160. 

 187

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



 188

[107] You B.R. and Lee S.B., (1996), “A critical review on multiaxial fatigue assessments of 
metals”, International Journal of Fatigue, Vol. 18 (4), pp. 235–44. 

[108] Yuen K.V. and Beck J.L., (2003), “Reliability-based robust control for uncertain dynamical 
systems using feedback of incomplete noisy response measurements”, Earthquake 
Engineering and Structural Dynamics, Vol. 32 (5), pp. 751-770. 

[109] Yuen K.V., Beck J.L., Katafygiotis L.S., (2006), “Unified probabilistic approach for model 
updating and damage detection”, Journal of Applied Mechanics – Transactions of the 
ASME, Vol. 73 (4), pp. 555-564. 

[110] Zitzler E. and Thiele L., (1999), “Multi-objective Evolutionary Algorithms: A Comparative 
Case Study and the Strength Pareto Approach”, IEEE Transactions on Evolutionary 
Computation, Vol. 3 (4), pp.257-271. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7


	Cover
	Εργαστήριο Δυναμικής Συστημάτων
	System Dynamics Laboratory

	Inner_cover
	Summary_GR
	Summary
	Contents
	Figure_Contents
	Table_Contents
	Chapter_1
	Chapter_2
	Chapter_3
	Chapter_4
	4.5 Generalization of model updating method for closely spaced modes
	4.6.1 Description of the laboratory structure
	4.6.2 Modal identification
	4.6.3 Parameterized model classes


	Chapter_5
	5.3.1 Equations of motion and state space formulation 
	5.3.2 Kalman filter approach 
	5.3.3 Estimation of power spectral densities of stresses 

	Chapter_6
	Chapter_7
	References
	References


