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EuxapioTieg

H mrapouca O1dakTopikr) diatpifr] ektrovribnke oT0 EpyacTthpio Auvauikiig ZuoTnudtwy Tou
TUAMATOS MnxavoAdywv Mnxavikwv oTto MNavemaTtipio @scoaliag.

®dr1dvovtag oTo TEAOG QUTAG TNG TTPOCTIABEIag, TTPWTA a1’ OAQ, Ba BeAa va guxapiIoTACW TOV
empBAéTTovTa TNG BI0aKTOPIKAG epyaciag pou, KaBnynti k. Kwaota [Mamadnuntpiou, yia tnv
evBappuvaon, TTOAUTIUN BonBeia kai kaBodriynar] Tou Katd 6An Tn didpKeEIa TG CUVEPYATIag Uag,
aAAG Kal yia Th dIOPKA TOU TTPOCTTABEIO VA PE YUNOEl OTIG ApXES Kal agieg TTou TTIKpATOUV OTNV
01eBvA  emoTnPovIKn KoivotnTa. ETTiong, euxapiotw Ta  ummoAoimta péEAn NG TPIMEAOUG
OUMPBOUAEUTIKAG €MITPOTING TNG dIdAKTOPIKAG dIaTpIBRg pou, Kabnyntég kk. NatoidBa Zwtrhpn Kai
Kapapdvo 21ipo, kaBwg kal Ta utréAoitTa pgéAN TNG TTTAPEAOUG ETTITPOTING YIA TNV TTPOCEKTIKA
avAayvwan Tng epyaciag Jou Kal yia TIG TTOAUTIUEG UTTOOEIEEIG TOuG. EuxapioTieg o@eidw ae GAoug
TOUG METATITUXIOKOUG KaOI TTPOTITUXIOKOUG @iAoug kal @oItnTéG Tou EpyacTtnpiou Auvauikng
2uoTnuUdTwyY yia Tnv dpioTn ouvepyooia TTou gixaue Katd Tn OIAPKEID TNG €KTTOVNONG TG
Trapoucag d1I6aKTOPIKNAG dIaTpIRrG. EuxapioTw GAoug Toug GIAOUG Kal GIAEG JOU Kal KUPIWG TOUG
"pnyopn, Alovion kal Mapia yia Tnv avoxr Toug, TNV UTTOOTAPIER TOUG KAl YIA TIG WPAIEG OTIVUES
TTou TTepAoape OAa autd Ta Xpovia.

Méavw at’ éAaq, gipal uyvwpwy OToUG YoVveig pou, MNuwpyo kai MNMapaokeur yia Tnv oAdYuxn ayatrn
Kal uttogovy Toug OAa autd Ta Xpovia KaBWwG Kal yia Tn UTTOOTAPIEN TTou pou édwaav va
ouvexiow TIG OTTOUSEG POU. Z& auToUG Kal A@IEPWVW TV EPYACia auTh.

NT6TO10G BayyéAng,
Aekéuppng 2009, BéAog.
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2TOUC YOVEIC uou,

lwpyo kai MNapaokeun
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MepiAnyn

216X0G TNG €pyaoiag eival n avdamTuén Kal ToToTroinon HeBodoAoyIWV yia TNV avayvwpion
OUVANIKWV HOVTEAWY CUVOETWVY KATOOKEUWV KABWG Kal yia Tnv TTPORAEWn TNG CUCCWPEUONG
BAaBwv Adyw kéTTwong, HE aglotroinon TANPOPOPIWY aTTd METPAOEIS TNG TOAAVTWTIKAG
amoKpPIONG TwWV KATOOKEUWYV. Ta avayvwpiopéva JOVTEAQ avagépovTtal g€  PaBnuaTika
IIOMOPPIKA HOVTEAD KABWG KAl O€ UNXAVIKA JOVTENA TTETTEPACUEVWV OTOIXEIWV. OI TTPOTEIVOUEVEG
pEBOBOAOYIEG KOAUTITOUV EQAPUOYES KUPIWG O€ KATAOKEUEG OXNMATWY £0AQOUG/aEPOG OAAG Kal
KOATAOKEUEG TTONITIKOU pnyavikou. H gpyaaia sival Xwpiopévn o€ Tpia CUOXETICOUEVA PEPN.

Mépoc A: Tapouaidlovtal peBodoAoyieg BEATIOTOTTOINGNG €AAXIOTWY TETPAYWVWY YIa TNV
avayvwplion IBI0POPPIKWY POVTEAWV PN KAAOIKAG aTTOORECNG KATAOKEUWY XPNOIYOTTOIWVTAS (1)
METPNOEIG aTTOKPIONG Kal YETPAOEIG BIEyepong OTIG TTOAAATTAEG BACEIS TNG KATOOKEUNG, Kal (2)
METPAOEIG UOVO TNG ATTOKPIONG TNG KATAOKEUNG O¢€ di€yepon atrd ayvwaoTta Asitoupyikd @oprtia lMNa
TNV TTPWTN TTEPITITWON, alotmoinbnke n eviaia doun Twv €§ICWOEWY OTO TTEdia XPOVOU Kal
OUXVOTATWYV yia Thv avdmTuén aAyopiBuou Kal AoyiOPIKOU avayvwpiong Koivo yia Tig duo
dlatutmwoels. H peBodoroyia avayvwpiong Bagifetal oTnv €AAXIOTOTIOINGN TOU METPOU TNG
O1a@OPAG PETOEU TwV METPOUPEVWY Kal TwV TTPORAETTOPEVWY ATTO TO IBIOPOPPIKG HOVTEAO
XPOVOIOTOPIWY OaTTOKPIONG YIa TO TTEdI0 XpOvou KaBWG Kal Tou PETPOU TNG dIapopds PETAEU TOU
METAOXNMATIOUOU Fourier Twv HETPOUPEVWYV KAl TWV TTPOPRAETTOPEVWYV ATTO TO IBIONOPYPIKO HOVTEAO
XPOVOIOTOPIWY ATTOKPIONG YIa TO TTedio guyxvoTATWYV. Na Tn deUTepn TTEPITITWAN, N HeBodoAoyia
BaoileTal oTnVv eAayioToTroinon Tou HETPOU TNG SlIOPOPAG HETALU TWV HETPOUPEVWV KAl TWV
TTPOPRAETTOMEVWY aTTO TO IDIOPOPPIKO HOVTEAO OUVAPTACEWY OIAQACHATIKAG TTUKVOTNTOG.
AélotroiiBnke n doun Twv e6lI0WOEWV yia TNV avdatTuén UTTOAOYIOTIKA aTTOSOTIKWY aAyopiBuwv
Ouo Kal TPIWV BnuUdTwy yia Tnv €TAUCN TOU €VTOVA WN-KUPTOU, KN YPAMMIKOU, TTPOBAANATOG
BeATIoTOTTOINONG TTOU TTPOKUTITEl VIO TOV TIPOCOIOPICUO TWV IDIONOPPIKWV XOPAKTNPICTIKWY,
OTTWG 0 ApIBUAS TWV IBIOUOPPUWIV, Ol IBIOCUXVOTNTEG, Ol CUVTEAEDTEG ATTOGRECNG, Ol IDIOUOPPIKEG
OUVIOTWOEG Kal Ol IDIONOPPIKOI OUVTEAEDTEG auvelo@opds. E@apudlovtag tov aiyépiBuo duo
BNUATWY Ta IDIOPOPPIKA XAPOKTNPIOTIKA UTTOAOyifovTal ypriyopa Kail JE akpipeia emAdovTag d0o
aAYEBPIKA YPOUUIKA ouoThPOTa Kal epapudlovTag avdAuon SVD. To T1pito Bripa Tou aAyopiBuou
EMAUEl TO APXIKO MN YPOUUIKO TIPOBANUa BEATIOTOTTOINONG XPNOIMOTIOIVTOS WG APXIKEG
EKTIMACEIG TWV 1I810UOPPIKWY XOPAKTNPIOTIKWY TIG TIMEG TTOU TTPOKUTITOUV aTré Ta dUO TTPWTA
Bruara, emTaxuvoviag aiobntd TN OUYKAION Twv OIGBECIYWY  TEXVIKWY €AAXIOTOTTOINONG
BaBuidag. H epapuoyy TOU TpiTOU BrAPOTOG Tou OAyopiBuou KpiveTal ammapaitnTn yia TOV
UTTOAOYIONO  KUPIWG TWV KOVTIVWV  Kal  ETTIKAAUTITOMEVWY  1I01I0oppwy. H  TTpoTeivouevn
peBodoAoyia aUTOUATOTIOIEN TV EKTIMNON TWV IBIOUOPPIKWY XAPAKTNPIOTIKWY XWPEIG TNV, N ME
eENAXIOTN, €TTEUPACN TOU XPNOTN Kal €TTOMEVWG €ival €@apudaiun otn diapkr, real-time
TTapakoAouBnan TG SOpIKAG AKEPAIOTNTAG KATACKEUWV.

Mépocg B: MapouaidlovTtal KavoTopeg HEBodOI avaBewpnaong HOVTEAWY TTETTEPACUEVWV OTOIXEIWV
Kal TIPOBAEWNG TNG ATTOKPIONG KATAOKEUWY BACEl TWV IBIOPNOPPIKWY XAPOKTNPIOTIKWV. EgeTdleTal
Kal avadelkvUeTal N avTioToixia JETAEU Twv PNEBGdWYV TTOAUKPITNPIAKNG AvayvwpIong, GUUBATIKAG
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HMOVOKPITNPIAKIG avayvwpiong oTaBUIoPEVWY UTTOAOITTWY, Kal Bayesian oTaTIOTIKNAG avayvwpiong
MovTéAWV KaTaokeuwyv. O1 péBodol KataAfyouv GTn avayvwpion TTOAATTAWY Pareto BEATIOTWY
MOVTEAWV TTETTEPACPEVWY OTOIXEIWY HPE ONUAVTIKY METARANTOTNTA, €VW) €TTIONG TTPOTEIVETAI
pEBOBOG €TTIAOyNG Tou TIpoTiunTéou Pareto povréAdou. H petafAntétnTa Twv UTTOAOYICOPEVWV
Pareto povtéAwv o@eileTal o¢ GEAAPOTA POVTEAOTTOINONG KAl CQAAPOTO  WETPAOEWV KOl
eTTNPealouv Tn PETABANTOTNTA pEyEBWV aTTOKPIONG TToU TTPORAETTOVTAlI aTTO Ta Pareto povréAa.
2uykekpiuéva, n Bayesian oTamioTIKr] PEBOSOG avayvwpiong TTPOCQEPEI TO TTAEOVEKTNUA TNG
TTO0OTIKOTTOINONG TNG aBefaidtntag oTa Pareto BEATIOTa povTéAa kal €1 T BAcel AuTtAg
TPORAEWn TNG apepaidtnTag oe peyédn amokpiong. E&etalovral BewpnTikd Kal UTTOAOYIOTIKA
Béuata  TTOU  TTPOKUTITOUV  KOTG TNV €@apuoyry Twv  peBodoloyiwv  avabewpnong,
oupTtrepIAaUBavouévwy BePdTwyY TTOU a@OPOUV TNV UTTAPEN OAIKWV-TOTTIKWYV BEATIOTWY AUCEWV,
™ oUykKAIon Twv TIPOTEIVOPEVWY OAyopiBuwy, Kol TTPOBAAUOTA PN QvOyVWPICINOTATAG.
MpoteivovTal uBpidikoi aAyopIBuol BEATIOTOTTOINGNG VIO TOV UTTOAOYIOUO TWV OAIKWV BEATIOTWY Kal
uloBeTeiTal  TTOAUKPITNPIGKOG  aAyoplBuog  BeAtiotoroinong NBI yia  Tov  uttoAoyIioTIKG
amodoTIKOTEPO  UTTOAOYIOUG Tou pETWTIOU Pareto kal Twv BéATIoOTwv Pareto  povréAwv.
AvaTtrTiocovTal €TTiIoNG UTTOAOYIGTIKG aTTODO0TIKOI aAyOpIBuoI yIa TOV avaAuTIKO UTTOAOYIONO Twv
TTPWTWV Kol QEUTEPWY TTAPAYWYWY TWV AVTIKEIYEVIKWY OCUVOPTACEWY aTTapaiTATWV yia Tnv
EMTAYXUVON TNG OUYKAIONG KOTA TNV TTOAUKPITNPIOKA Kal povokpitnplakr BeAtiotorroinon. Ol
aAyopiBuol Bagifovrar otn péBodo Tou Nelson yia Tov UTTOAOYIOUO TwV TTOPAYWYWY TWV
IDIOMOPPIKWY TTAPAPETPWY. ATTOBEIKVUETAI OTI O UTTOAOYIOTIKOG XPOVOG TTOU OTTAITEITAl YIO TOV
uttoAoyioud Twv Pareto BEATIOTwY POVTEAWV gival ave¢dpTnTOg aTrd TOV apPIBUO TwV TTAPANETPWYV
Tou povTéhou. O avoAuTIKOG UTTOAOYIOHOG Twv OLUTEPWY TTAPAYWYWY TWV  AVTIKEINEVIKWV
OUVOPTACEWV gival €TTiONG aTTapaiTNTOG KAl OTnNV €@apuoyr] Twv Bayesian aOUPTITWTIKWV
OX€0€WV TIOU TTOCOTIKOTTOIOUV Tnv afefaidtnta Twv Pareto BEATIOTwWY PovTéAwv. Idiaitepn
Eueaon OideTal €TTioNG yia Tn YeEVIKEUON TOU OPICHOU TWV QVTIKEIMEVIKWY CUVAPTHOEWY TTOU
eUTTAéKOVTOI OTIG pEBoDOAOYiEG avabewpnong HOVTEAWY £TO1 WWOTE VA QVTIUETWTTIOTOUV goBapd
TTPORAAUATA AVTIOTOIXIAG METAEU PETPOUUEVWYV KAl UTTOAOYICOUEVWY aTTO TO POVTEAO IBIOUOPPUIV
TTOU TTAPOUCIAoVTal OTIG TTEPITITWOEIG EUPAVIONG KOVTIVWV 1I010op@wV. AfiIdAoya BewpnTIKA Kal
UTTOAOYIOTIKA B€paTa KATadEIKVUOVTAI JE EQAPHUOYEG O€ HIA MIKPAG KAIMAKAG PMETAAAIKT) KATAOKEUR
Kal o€ éva PETAAAIKO OKEAETO epyacTnplakoU POVTEAOU OXAMATOG XPNOCIMOTTOIWVTAG WETPROEIG
TaAdvTwong. EmTuyxavetar n  mmoTomoinon Twv  peBodoloyiwv  Kal  eEakpIfwvovTal  TO
TTAEOVEKTAPATA TWV TTPOTEIVOUEVWY TTOAUKPITNPIOKWY PEBOdWYV avaBewpnong. TEAOG, JEAETATAI N
emidpaon Twv CQEAAUATWY POVTEAOTTOINONG KAl PETPACEWY OTNV HETARANTOTNTA Twv Pareto
BEATIOTWV POVTEAWV Kal OTIG TIPORAEWEIG HEYEBWV OTTOKPIONG ATTO TA JOVTEAQ QUTA.

Mépog I: Mapouoidletar pia kaivotépog pebodoloyia yia Tnv TTPORAEYN TNG CUCCWPEUONG
BAaBwv Adyw KOTTwWoNG O€ OAOKANPO TO @opéa HETAAAIKWY KOTOOKEUWV HE aglOTToinan
TTANPOPOPIWV ATTO PETPACEIG TNG TOAAVTWTIKAG TOUG ATTOKPIONG € TTEPIOPIOUEVO apIBud Béoewv
oTtnv kataokeur). E@apudlovrtal diabéaipeg oTaTIoTIKEG JEBODOAOYIEG EKTIUNONG TNG KOTTWONG TTOU
Baaoifovtalr oTtov kavova Palmgren-Miner, oTig S-N KauTTUAEG KOTTWONG yia ATTAd dOMIKA OTOIXEIO
TTOU UTTOKEIVTAlI O€ OTaBEePOU €UPOUG KUKAIKEG QOPTIOEIG, Kal OTNV KATAvOurR lavotntag Tou
e0poug TwV TAoEWV Katd Dirlik XpnoIuoTToIVTAG TIGC CUVAPTACEIG BIAQACUATIKAG TTUKVOTATAG TWV
METpOUPEVWY TAoEwV oTnv kataokeur. O cuvapTACEIG JIOQATUATIKAG TTUKVOTNTAG TWV TACEWV
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oe OA0 TOV @Opéa TNG KOTAOKEUNG TIPOPRAETTOVTAI OTTO  TIG METPOUUEVEG OTTOKPIOEIG
xpnoigotroiwvTtag 1o Kalman filter kai éva duvapikd povTéAo TnNG KATaokeung. H akpifeia Twv
mpoPAéwewv Tou Kalman filter pmopolv va BeAtiwBouv eicdyoviag TG peBodoAoyieg
avabswpnong Tou avamTuxdnkav oto B Mépog. H ammédoon kal akpifeia TG TTPOTEIVOPEVNG
peBodohoyiag Trapoucidletal pe Eva aTTAOIKO HOVTEAO peEPIKWY BaBuwv eAeubepiag yia Tnv
TTEPITITWON YOVOAEOVIKIG KATAGTACONG TWV TAGEWV.
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Summary

This thesis concentrates on the development and validation of methods for identifying dynamic
models of complex structures as well as predicting fatigue damage accumulation by exploiting
measured vibration information. The identified models refer to mathematical modal models as
well as linear finite element models of structures, while the applications cover mainly ground/air
vehicles and civil structures. The thesis is divided into three interrelated parts.

Part A: Least-squares optimization methods are introduced for identifying non-classically damped
modal models of complex structures using (1) output response measurements obtained from
measured excitations at multiple support, and (2) output-only ambient vibration measurements. In
the first case, a common structure of the time and frequency formulations is revealed and
exploited to develop an identification software common for both formulations. The measure of fit
represents the difference between the measured response time histories (or their Fourier
transform) and the response time histories (or their Fourier transforms) predicted by a modal
model when subjected to multiple support measured excitations. In the second case, the measure
of fit represents the difference between measured and modal model predicted cross power
spectral density functions. Computationally efficient two-step and three-step algorithms are
developed to solve the resulting highly non-convex nonlinear optimization problems and identify
the modal characteristics such as number of contributing models, modal frequencies, modal
damping ratios, modeshapes and modal participation factors or operational reference vectors.
The two-step approach is a very fast and accurate non-iterative algorithm, involving solution of
two linear systems and singular value decomposition operations for estimating the modal
characteristics. The third step solves the original nonlinear optimization problem using the
estimates from the two-step approach to notably accelerate convergence of gradient based
optimization algorithms. It is demonstrated that the third step is required only for closely spaced
and overlapping modes to improve the estimates of the modal characteristics. The proposed
methodology automates the estimation of the modal characteristics without, or with minimal, user
interference and thus is especially applicable to continuous, real-time, structural health monitoring
purposes.

Part B: The problem of finite element structural model updating and response prediction variability
based on measured modal characteristics is revisited. The correspondence between the recently
proposed multi-objective identification, the conventional single-objective weighted residuals
identification and the Bayesian statistical identification is established. These methods result in
multiple Pareto optimal finite element models. An optimally weighted modal residuals method is
also proposed for selecting the most preferred Pareto optimal model. The variability of these
optimal models depends on the model and measurement error and affects the variability in the
response predictions. In particular, Bayesian statistical identification offers the advantage of
guantifying the uncertainty in the Pareto optimal models and the response predictions.
Theoretical and computational issues arising in multi-objective and single-objective identification
are addressed, including issues related to estimation of global optima, convergence of the
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proposed algorithms, and identifiability. Hybrid methods are proposed to identify global optima
and the normal boundary intersection method is adopted to efficiently estimate the Pareto front
and the Pareto optimal models. Finally, computational efficient algorithms are developed for
estimating the gradients and the Hessians of the single and multiple objectives based on Nelson’s
method for finding the sensitivity of eigenproperties to model parameters. It is shown that the
computation time for estimating the Pareto optimal models is independent of the number of model
parameters involved. The simplified computation of the Hessians of the objectives is useful in the
Bayesian asymptotic formulas quantifying the uncertainty in the Pareto optimal models. Particular
emphasis is also given in generalizing the definition of objectives in model updating methods to
face the severe problems of corresponding measured and model predicted modes encountered
for closely spaced modes. Theoretical and computational issues are illustrated by applying the
model updating methodologies to small-scale three-story laboratory steel building structure and
small-scale vehicle structure using experimentally obtained modal data. Validation studies are
performed to show the applicability of the methodologies, the advantages of the multi-objective
identification, and the performance of the most preferred Pareto optimal model. The effect of
model error uncertainty on model updating and model response prediction variability is assessed.

Part C: A novel methodology is presented for estimating damage accumulation due to fatigue in
the entire body of a metallic structure using output-only vibration measurements from a sensor
network installed at a limited number of structural locations. Available frequency domain
stochastic fatigue methods based on Palmgren-Miner damage rule, S-N fatigue curves on simple
specimens subjected to constant amplitude loads, and Dirlik’s probability distribution of the stress
range are used to predict the expected fatigue damage accumulation of the structure in terms of
the power spectral density (PSD) of the stress processes. The PSD of stresses at unmeasured
locations covering the entire body of the structure are estimated from the response time history
measurements available at the limited measured locations using Kalman filter and a dynamic
model of the structure. The accuracy of the Kalman filter predictions can be improved by
integrating the model updating techniques developed in Part B. The effectiveness and accuracy
of the proposed formulation is demonstrated using a multi-degree-of-freedom spring-mass chain
model arising from structures that consist of members with uniaxial stress states.
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Chapter 1

Introduction

1.1 Research context

Mathematical or physics-based models (e.g. modal models or finite element models) are widely
used to represent the dynamic behaviour of a structure. However, it is always observed that the
initial model developed is often a poor reflection of the observed structural behavior, particularly
in the field of structural dynamics. This is due to uncertainties that arise from the simplified
assumptions and idealizations used for developing models for simulating the behaviour of
engineering structures, as well as models for simulating the loads (mechanical, thermal, etc) that
are applied on the structures. These uncertainties include:

Modelling uncertainties: arising in modelling the constitute behaviour of materials, the damage
mechanisms (e.g. due to fatigue, corrosion), the support conditions of structures and their
interaction with their environment, the connection between structural members (fixity conditions,
friction mechanisms, impact phenomena), the geometric variability due to manufacturing

processes.

Loading uncertainties: arising from the lack of detailed knowledge of the spatial and temporal
variation of the forces (mechanical, thermal, etc) applied to engineering structures. Examples
include spatial variability of road roughness affecting the dynamics of vehicles, spatial and
temporal variability of earthquake-induced excitations on civil engineering structures, turbulent
wind loads affecting the design of aircrafts, variability of thermal loads affecting the design of a
large class of mechanical and aerospace structures.

Numerical uncertainties: stemming from PDE spatial discretization using finite element methods,
temporal discretization used in numerical time integration schemes, rounding-off errors in
numerical solutions due to computer inaccuracies.

The uncertainties may affect considerably the prediction of performance and safety of the
analyzed systems. Modeling tools and techniques are needed to identify accurate mechanical
models taking into account all uncertain factors, properly quantify uncertainties for the purpose of
integrating them with the mechanical models, as well as analyze through model simulation the
effect of uncertainties on the performance of engineering structures.

Structural identification, in particular, is an inverse problem according to which a model of a
structure, usually a modal model for linear structures or a finite element model for linear and
nonlinear structures, is adjusted so that either the time histories, frequency response functions, or
modal characteristics, simulated from the model, best match the corresponding quantities
measured or identified from vibration data recorded during various states of structural operation.
This inverse process aims at providing updated models and their corresponding uncertainties in
these models based on the available measured data. These updated models are expected to give
more accurate response predictions to future loadings, as well as allow for an estimation of the
uncertainties associated with such response predictions.
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Recently, it has been recognized that the development of reliable algorithms and software that
exploit measured data for the updating and validation of mathematical/mechanical models as well
as the quantification and propagation of uncertainties in simulations, constitutes one of
challenging issues for the advancement of engineering sciences (Oden et al., 2006). In most
cases, the model updating/validation is based on simulated data that do not correspond to
realistic situations encountered in practical applications. However, even simple models and
simulated data present theoretical and computational challenges related to their
identification/updating. Greater challenges are expected using real measurements for the
updating and validation of complex models that involve a very large number of DOFs.

The objective of this thesis is to confront these challenges and provide solutions to a number of
important issues encountered in the identification of models of structures and their use for
response/damage predictions, exploiting the information contained in vibration measurements.
Novel contributions of this thesis constitute the use of vibration measurements for the
improvement of the fidelity of mathematical/mechanical models and estimating the confidence in
the response/reliability predictions from these models. Such predictions are important in
evaluating the performance and safety of structures and making informed decisions for cost-
effective maintenance of these structures.

1.2 Organization of this Thesis

The research work presented in the thesis contributes to three interrelated research areas of
model identification and prediction using vibration measurements:

(1) Development of methods for identifying non-classically damped modal models of linear
structures, presented in Chapters 2 and 3,

(2) Development of identification methods for finite element model updating and response
prediction variability, presented in Chapters 4 and 6, and

(3) Development of methods for predicting the fatigue damage accumulation in the entire body of
metallic structures exploiting vibration measurements from a limited number of sensors,
presented in Chapter 5.

The analyzed structures are assumed to behave linearly and the identification of finite element
models in the second research area is based for convenience on modal properties (modal
frequencies and modeshapes) identified from the measured excitation/response time history.
Modal identification methods required to give accurate estimates of these modal characteristics
are thus developed in the first research area. New contributions in this direction are provided for
the case of input-output vibration measurements as well as the case of output-only vibration
measurements. Emphasis is also given in the integration of the information contained in vibration
measurements for making informed response predictions using the identified mechanical models.
In the third research area, a problem that is formulated and solved for the first time is related to
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the estimation of fatigue damage accumulation in the entire body of a metallic structure using
ambient vibration measurements collected from a limited number of sensors placed on the
structure. The application areas of this research are mainly related to ground/air vehicle and civil
structures. Emphasis though is given to applications on ground vehicles.

A more detailed overview of the contents of this thesis is given in the following.

In Chapter 2, time and frequency domain least squares methods for the identification of non-
classically-damped modal models of linear structures using multiple-support excitations and
multiple responses are proposed. The methods are extension of the Beck (1978) and McVerry
(1980) algorithms developed for classically-damped modal models. The identification involves the
estimation of the number of contributing modes, the modal frequencies, the modal damping
ratios, the modeshapes, the modal participation factors, the pseudo-response matrix, and the
initial conditions of the contributing modes. A common structure of the response in the time and
frequency domains is revealed and exploited to develop an identification method common for
both time and frequency domain formulations. Novel computationally efficient algorithms for
solving the resulting highly non-convex nonlinear optimization problems proposed that result in
automatically estimating the number of contributing modes, as well as the modal frequencies,
modal damping ratios, modeshapes and modal participation factors of the physical modes without
or minimal user intervention. Specifically, a three-step approach is proposed to carry out
efficiently the optimization. The proposed algorithms for identifying non-classically damped
models are applicable to the cases where the damping is not proportionally distributed through
out a structure. The computational efficiency and the accuracy of the modal identification
methods developed are illustrated using input-output acceleration measurements from a bridge
structure subjected to multi-support earthquake excitations.

The methodologies and computational algorithms presented in Chapter 2 are extended in
Chapter 3 to develop frequency domain least squares methods for the identification of non-
classically damped modal models of linear structures using ambient vibration measurements. The
identification is based on minimizing the square difference between the measured CPSD matrix
estimated from the available output only measurements and the CPSD matrix predicted by a non-
classically damped modal model. The identification involves the estimation of the number of
contributing modes, the modal frequencies, the modal damping ratios and the complex
modeshapes of the contributing modes. Computational efficient algorithms for solving the
resulting, highly non-convex, nonlinear optimization problem is proposed that result in
automatically estimating the number of contributing modes, as well as the modal frequencies, the
damping ratios and the modeshapes of the physical modes without or minimal user intervention.
A three-step approach was proposed to carry out efficiently the optimization. The effectiveness,
computational efficiency and accuracy of the develoepd algorithms are illustrated using simulated
ambient vibration data from simple structural models subjected to unknown white noise
excitations and real measured data from a full scale bridge structure subjected to ambient wind
excitations.

In Chapter 4, the problem of finite element model updating using vibration measurements is
addressed. The updating is based on the modal characteristics obtained from vibration
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measurements using the modal identification methodologies presented in Chapters 2 and 3.
Thus, the model updating methodologies are concentrated on structures that behave linearly.
Modal grouping schemes are introduced along with modal residuals norms measuring the fit
between the measured and model predicted modal properties. The structural model updating
problem is first formulated as a multi-objective optimization problem and then as a single-
objective optimization with the objective formed as a weighted average of the multiple objectives
using weighting factors. The multi-objective identification method characterizes and computes all
Pareto optimal models from a model class, consistent with the measured data and the residuals
used to measure the fit between the measured and model predicted modal properties. The
similarities with and differences from the conventional weighted modal residuals method is
established. The problem of rationally estimating the optimal values of the weights or,
equivalently, selecting the most probable structural model among the Pareto optimal models
utilising the available measured data is addressed. A rational approach for chossing an optimal
weight value for carrying out the model updating is proposed based on the measured modal data.
Thus, the selection of the optimal structural model is based on weight values that are estimated
based on the data, avoiding an arbitrary a priori selection of these weight values. This optimal
weight value is shown to arise from the application of a Bayesian statistical framework for model
selection. The Bayesian framework also quantifies the uncertainty in the Pareto optimal models
by updating the probability distribution of the weights using the modal data. Emphasis is also
given in addressing theoretical and computational issues associated with solving the resulting
multi-objective and single-objective optimization problems, including important issues related to
estimation of global optima, convergence of the proposed algorithms, and identifiability. Novel
computationally efficient algorithms are also proposed for estimating the gradients and the
Hessians of the objective functions using the Nelson’s method (Nelson, 1976) for finding the
sensitivities of the eigenproperties to model parameters. Theoretical and computational issues
are demonstrated by updating simple and higher fidelity model classes using experimental data
from two configurations of a scaled three-story steel structure.

In chapter 5 addresses the problem of estimating the expected damage accumulation or
remaining lifetime due to fatigue in the entire body of a metallic structure using output-only
vibration measurements obtained from a sensor network installed at a limited number of structural
locations. Available frequency domain stochastic fatigue methods based on Palmgren-Miner
damage rule, S-N fatigue curves on simple specimens subjected to constant amplitude loads, and
Dirlik’s probability distribution of the stress range are used to predict the expected fatigue damage
accumulation of the structure in terms of the power spectral density (PSD) of the stress
processes. The PSD of stresses at unmeasured locations are estimated from the response time
history measurements available at the limited measured locations using Kalman filter and a
dynamic finite element model of the structure. The effectiveness and accuracy of the proposed
formulation is demonstrated using a multi-degree-of-freedom spring-mass chain model arising
from structures that consist of members with uniaxial stress states.

In Chapter 6 vibration experiments from a scaled vehicle model carried out in the Machine
Dynamics Laboratory of the Department of Mechanical Engineering in Aristotle University were
used to explore and compare the applicability and effectiveness of the proposed methods for
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system identification and structural model updating and to develop high fidelity finite element
models of the experimental vehicle using acceleration measurements. The identification of modal
characteristics of the vehicle is based on acceleration time histories obtained from impulse
hammer tests. Modal identification methodologies are used to obtain the modal characteristics
from the analysis of the various sets of vibration measurements. The modal characteristics are
then used to update an increasingly complex set of finite element models of the vehicle. A
detailed finite element model of the vehicle developed using shell elements. The multi-objective
structural identification method developed in Chapter 4 is used for estimating the optimal finite
element structural models based on minimizing the modal residuals. Varius parameterization
schemes are introduced and their affect on the updating results, the fidelity of the optimal finite
element models, as well as the variability and uncertainty in response predictions from these finite
element models are explored. The sources of these variabilities in the finite element model and
thei response prediction are identified.

Finally, Chapter 7 summarizes the conclusions and the novel contributions of this work. Also it
presents suggestions for future research on issues related to this thesis.
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Chapter 2

Least squares identification of non-classically damped modal
models of structures subjected to multiple support excitations

2.1 Introduction

The evaluation of the actual dynamic characteristics of engineering structures through
measurements of their dynamic response has been attracting an increasing research effort
worldwide. Measured response data of civil engineering structures (e.g. bridges, buildings, dams,
towers and offshore structures) from earthquake-induced vibrations, and vehicles from vibrations
induced by road roughness, offer an opportunity to study quantitatively and qualitatively their
dynamic behaviour within the resulting vibration levels. These vibration measurements can be
processed for the estimation of the modal characteristics of these structures, as well for the
calibration of corresponding (finite element) models used to simulate their behaviour. The
information for the identified modal models and the updated finite element models is useful for
validating the assumptions used in model development or for improving modelling, analysis and
design procedures. Also, such information is useful for structural health monitoring purposes.

This chapter is concerned with the development methods for identifying the modal characteristics
of vehicle and civil engineering structures based on vibration measurements that are caused by
multiple support excitations. The evaluation of the actual dynamic characteristics of engineering
structures through measurements of their dynamic response has been attracting an increasing
research effort worldwide (Wilson, 1986; Werner et al., 1987; Safak, 1995; Lus et al., 1999;
Chaudhary et al., 2000; Chaudhary et al., 2002; Smyth et al., 2003; Arici and Mosalam, 2003; Lin
et al., 2005; Liu et al., 2005; Siringoringo and Fujino, 2007). For earthquake-induced vibrations on
civil structures and for road roughness induced vibrations on vehicles, the modal characteristics
are estimated from the measured acceleration excitations occurred at the multiple supports of the
structure and the measured vibration responses. It has been observed from response
measurements of these structures that their dynamic properties are markedly different during
response to strong motion than in small amplitude ambient and forced vibration tests. Hence, it is
of considerable interest and importance to extract information about structural behaviour from
strong motion data.

Modal identification algorithms provide estimates of the modal frequencies, modal damping ratios,
modeshapes at the measured DOFs and modal participation factors using classically-damped or
non-classically damped modal models. For the case of earthquake-induced vibrations, modal
identification methods have been developed in time domain (Beck, 1978; Beck and Jennings,
1980) and in frequency domain (McVerry, 1980), based on a minimization of the measure of fit
between the time history or its Fourier transform of the acceleration responses estimated from the
measurements and the corresponding ones predicted from a classically-damped modal model of
the structure. Beck (1978) and Beck and Jennings (1980), had presented an output-error
approach for the identification of linear, time-invariant models from strong motion records, through
the minimization of a measure of fit including displacement, velocity and acceleration records.
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McVerry (1980), has applied an output-error approach in the frequency domain, using the Fast
Fourier Transform of the acceleration response time histories to estimate the modal properties
through least-squares matching. These methods have been applied to identify the modal
characteristics of bridges (Werner et al., 1987; Chaudhary, 2002) and buildings (Papageorgiou
and Lin, 1989) by processing input-output earthquake recordings. Werner et al. (1987) formulated
a methodology in the time domain for the case of measured input excitation, such as earthquake
excitation, for an elastic system with classical normal modes and with motion measurements from
any number of input and system response degrees of freedom. Their procedure was an extension
of the least-squares-output-error method which was used by Beck (1978).

Extensions for identifying non classically-damped modal models in the frequency domain have
also been developed by Chaudhary et al. (2000). Tan and Cheng (1993) proposed an iterative
identification algorithm, which was based on the modal sweep concept and the band-pass filtering
process, to identify the modal parameters of a non-classically damped linear structure from its
recorded earthquake response. Mahmoudabadi et al. (2006) developed a method for parametric
system identification in frequency domain for classically and non-classically damped linear
systems subjected up to six components of earthquake ground motions, which is able to work in
multi-input/multi-output (MIMO) case.

Most of the aforementioned methods, although they have developed for earthquake engineering
applications, they are also in principle applicable to aerospace and vehicle engineering to identify
modal models from input-output vibration measurements of various structural components
induced by multiple support excitations. A particular example is the modal identification of the
vehicle body using multi-support input acceleration measurements at the connections of the
vehicle body with the suspensions and output acceleration measurements at various locations of
the vehicle body.

The methods developed by McVerry (1980) in the frequency domain and Beck and Jennings
(1980) in the time domain, are extended in this work to treat non-classically damped modal
models, since damping may not be proportionally distributed in various structural components.
For the special case of bridges, non - proportionally damping appears due to the energy
dissipation mechanism provided locally by the elastomeric bearings and the foundation soil. For
base isolated buildings, non proportional damping may appear due to the energy dissipation
mechanism provided locally by the isolation system. For vehicles, non-proportional damping may
result from the damping mechanisms provided locally by the front and rear suspension systems.
Least-squares output-error methods are used in which the optimal values of the modal
parameters are obtained by minimizing the discrepancy between measured responses and the
predicted responses of the system. Time domain output error methods process the response time
histories measured from a network of sensors (e.g. accelerometers), while frequency domain
output error methods process the Fourier transforms of the measured response time histories.

A novel aspect of this study is the use of a three step approach to solve the resulting highly non-
convex nonlinear optimization problem. The first step provides estimates of the modal
frequencies and modal damping ratios by solving a system of linear algebraic equations.
Stabilization diagrams are used to identify the number of contributing modes by distinguishing
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between physical and mathematical modes. The second step provides estimates of the
modeshapes and the participation factors by solving a system of linear algebraic equations for the
modal residue matrices of the contributing modes and using singular value decomposition to
estimate the complex modeshapes and modal participation factors. The first two steps usually
give accurate estimates of the modal characteristics. A third step is added to improve the
estimates of the modal characteristics by efficiently solving the full nonlinear optimization problem
with initial estimates of the modal parameters those obtained from the first and second steps. The
gradients of the objective function with respect to the parameters are obtained analytically in
order to significantly accelerate the convergence of the optimization in the third step. The
effectiveness of the proposed methodology is illustrated applied to earthquake recordings
available from a full-scale reinforced concrete bridge.

This Chapter is organised as follows. The state space formulation of the equation of motion of
structures subjected to multi-support excitations is presented in Section 2.2. The formulation of
the response in terms of the modal characteristics of the non-classically damped modal model is
presented in Sections 2.3. A common structure of the response in time and frequency domain is
revealed that is useful in the unification of the identification algorithms for the time and frequency
domain formulations. Section 2.4 formulates the identification of the modal characteristics as a
least squares optimization problem, while Section 2.5 presents efficient optimization algorithms
for estimating the modal characteristics. The effectiveness of the proposed methodology in terms
of the accuracy and computational efficiency is demonstrated in the application Section 2.6. The
conclusions of this work are summarized in Section 2.7.

2.2  State space formulation of equations of motion

Consider a structure that is subjected to multiple support (base) excitations. The equations of
motion for the structure, assumed to behave within the linear range, can be derived using a
spatial discretization method, such as finite element analysis. Let M e R™", C, e R™ and

K e R™ be the fixed-support mass, damping and stiffness matrices, respectively, of a finite
element model of the structure, Y, (t) eR" be the response at the DOFs of the mathematical

model of the structure and Z(t) € R be the displacement of the supports DOFs, where n is
the number of model DOFs and N, is the number of excitation DOFs at the supports (bases).

The response Y. (t) of the finite element model of the structure is given by (Clough and Penzien,
1993; Werner et al., 1987)
y. (1) = s(t) +q(t) (2.1)

where 5(t) is the pseudostatic component and ((t) is the dynamic component of the response.

The pseudostatic component of the response represents the ‘static’ contributions of the individual
support motions to the system response and it is given by

s(t) =Dz(t) (2.2)
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where D=-K™ K,, is the pseudostatic matrix, which expresses the responses in all degrees
of freedom due to unit support motions, where K is the stiffness matrix that couples the system
and base degrees of freedom (DOFs).

The dynamic component g(t) in (2.1) accounts for the contributions of the system'’s fixed-base

modal vibrations about its pseudostatic reference position. The equation of motion for the
dynamic response component (part) of the response is given by

M di(t) +C,d(t) + Kat) = LZ(t) 2.3)

whereL=—(M D+M ), and M is the mass matrix that couple the system and base

degrees of freedom (DOFs). Throughout the analysis, it is assumed that the system matrices M ,
C, and K are symmetric.

In the general case of a non-classically damped structure, the set of equations (2.3) must be
converted to a set of first order state space formulation. This is accomplished by introducing the
state vector X= [qT qT ]T . Equations (2.3) along with the complementary equation

Md(t) = Md(t) can be written in the state space form

PX+Qx = MZG) (2.4)

where the matrices P and Q are given by

o_[Co M [k o0 .
“lm o] 9o -m @9

Let y(t)eRN"“‘ be the observation vector containing the measured output acceleration

responses, given in general by
y(t)=C,¥,(t)=C.x+D.Z(t) (2.6)

where Ca e R"" is a matrix indicating which DOFs are measured (considered in the output
measurements). Using (2.1), (2.2), (2.3) and the fact that L=—(M D+M ), the matrices C_

and D are given by C,=-C, MK C,]eRN2" and

c

DC = Ca (M 71L + D) = —CaM 71Msb I= RNoutXNin

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



2.3 Non-classically damped modal models

Modal analysis is used to describe the response at the measured (observable) degrees of
freedom of the structure in terms of the complex eigenproperties (eigenvalues and eigenvectors)
and the excitation. The analysis is used in subsequent Sections for solving the inverse problem of
identifying the eigenproperties given input-output measurements.

2.3.1 Time domain formulation
Let v, eC* bpe the complex eigenvector and A, the corresponding compex eigenvalue

satisfying the eigenproblem associated with the system (2.4), i.e.

(PA+Q)y =0 2.7)

Introducing the eigenmatrix ¥ =[1//1 YLy, w:]eCZ”XZ”, where the superscript

<*> denotes complex conjugate, it can easily be shown (Natsiavas, 1999) that the eigenmatrix ¥
is partitioned in the form

o @
¥ = [@A q)*A*} e 2 (2.8)

where ® € C™" is the eigenmatrix associated with the displacement DOFs ((t) of the state
vector X(t). The complex eigenvectors satisfy the orthogonality condition ' PW = diag [ar]

and WYTPY =diag[ ]. The matrix A =diag(4,)eC™" is a diagonal matrix with diagonal

elements the complex eigenvalues A, =—/f, / ¢, represented in the form

A=—CotjoJl-¢F=-a tijb, r=1..,m (2.9)
with the modal frequency @, and the modal damping ratio ¢, satisfying @, =|ﬂr| and

¢, =—Re{A,}/w,. The parameters o, =, @, and b, = ®,/1-¢? are expressed in terms
of the modal frequency @, and the modal damping ratio £, . Given ¢, and br in (2.9), the

modal frequency @, and the damping ratio ¢, are obtained from the following relationships
o, =+Ja’+b? and ¢, =a, /./a’+b’.

For the realization of modal analysis method the following transformation is introduced

£(t)

x(t)="¥ ;(t) (2.10)

10
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where & =[&(t),---,& ()] e C™ is the vector of the main modal coordinates. Using

conventional modal analysis, the vector y(t;Q) in (2.6) of the acceleration responses at the
N

written in the form

ot Mmeasured degrees of freedom, based on the non-classically damped modal models, can be

m

JA) =UER)+U"E () +DZ(t) =D [u& (1) +u & (0] + D,Z(t) (2.12)

r=1

where the complex-valued modal coordinates &, (t), r=1---,m, satisfy the complex modal

state space equations
EM)=AE M)+ 2(t) (2.12)

D, =-C,M'M_ e R" ™ is a real matrix,
q) 2 Ny xm
U=[u,u,]=C, DA =C,DA* e CM (2.13)

is the matrix of the complex eigenvectors U, = 4°C_¢ € C", r=1,---,m, at N, DOFs, and

out
' =/a, )QrT L e C*" is the complex vector of the modal participation factors relating the N,
inputs to the I' mode of the system. The modal response &, (t) can be obtained by solving (2.12)

using the complex-valued initial condition & (0). From the modal formulation, it is evident that
the parameter set €= {/lr,gr,[r,fro, r=1...m, DC} completely defines the acceleration
response at the measured DOFs using m complex modes.

Alternatively, the acceleration response can be conveniently written in the form
u T o *T %
y(©) =2 [u e, (O +u71 77 (0]+ D.Z(t) (2.14)
=1

where the modal vector 77, (t) satisfies the modal vector equation

7,(0) = A7, () + Z(1) (2.15)
which is solved using the non-zero initial conditions 77, (0) with &, (0) = [Igr 0).
Alternatively, the acceleration response can be conveniently written in the form

y(t) = i[uj@ () +u, 1, 7, (1)]+D,Z(t)+ i u& (0™ +uE (0)e™]  (2.16)

r=1

11
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where the modal vector 77, (t) satisfies the modal vector equation (2.15) which is solved using

zero initial conditions 77,(0)=0.

2.3.2 Frequency domain formulation

The finite Fourier transform (FT) f(a)) of a function f (t) over a time segment T is defined by

]
f(w) = j f (t)e I dt (2.17)
0

Using the fact that the finite FT fr (w) of the derivative gér (t) of a function &, (t) is related to the
FT ggr (@) of the function & (t) as

£(@) = [E M dt=e & (T) - £, (0)+ jl, (o) @2.18)

and applying FT to both sides of (2.11) and (2.12), one has that the FT y(w) of the response

y(t) is related to the FT i(a)) of the excitation by

N TN T (0) , u(9)
X(a))_|:;(ja)—/1r " jo—-A ]+D }Z(a)) z|: jo-2  jo-A; }_
ewi{u@( ) L (T)}

jo-4, jo-4

(2.19)

2.3.3 Common structure of response in time and frequency domain

Comparing the structure of equations (2.16) and (2.19), it should be noted that for either the time
or the frequency domain formulation the acceleration response vector y(t) attime t = KAt or its

Fourier tranform Y(w) at frequency component @ = KA, where At is the discretization step

(sampling time interval), A® is the sampling frequency interval and K is a time or frequency
index set, can be written in the common form

Y, (0) =2 [u i (A) + U1 7 (A)]+ D

= (2.20)
+Z[(06 +be M)A (4,) + (e +b'e M)A (4]
12
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where for the time domain formulation, y, (Q) represents the acceleration response Yy(KAt),
U (/”tr) is given by the solution of the modal equation (2.15) with zero initial conditions,

o, =U,& (0)e C™*, b =0eC™,
A(A)=e" and  Z =Z(kAt) (2.21)

while for the frequency domain formulation, Y, Q) represents the Fourier transform Y(kKAw®) of

the acceleration response Y(t), &, =U,&, (0)eCM?, b =-u,& (T)eCh?,

7 (kAw) 1 .
A =, A)y)=———-— and Z =7(kA 2.22
Qk( r) jkAa)—ﬁ,r Ak( r) jkAC()—ﬂr =k _( a)) ( )

It should be noted that for the time domain formulation, the following expressions hold true:
A(A) = A4 ) and 7, (A) =13 (4 ) -

Note that the parameter set & has been introduced in (2.20) to include all the necessary modal

and other variables that completely define the response vector yk. From the structure of the

response function in (2.20), the parameter set @ includes the modeshapes U, , the participation

vectors [I , the eigenvalues A, , the elements of the real matric D, , and the initial conditions ¢,

and b, .

Note that consistent estimates of ¢, and b, should give u, =g, /& (0)=-b./& (T) or
equivalently @, =—[&,(0)/&, (T)]b, , something that will be violated in practical applications due
to model error and measurement noise.

Also, introducing the functions

0 (@7) =1 (A)+[£.(0) =& (T)e A (4,) (2.23)
h (67) =1, 7 (A)+[& (0) - & (T)e *T1A (4)) (2.24)

equation (2.20) can also be written in an alternative convenient form

m

Y =2 [u.9,(6) +u’h (6)]+ D2, (2.25)

r=1

where the parameter set 87 is defined by

07 =(,,4,,£(0),&(T)) (2.26)

The importance of the alternative form (2.25) will be made clear in the next section

13
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2.4  Least-squares identification of structural modes

A modal model output least-squares error identification approach seeks the optimal values of the
parameter set § that minimize a measure of fit between the modal model predictions Yi (Q)
k=1,---,N and the corresponding response )_7k estimated from the measured data. That is, the
modal model identification is formulated as a minimization problem of finding the values of € that

minimizes the weighted measure of fit

N T 1 N 2
Y[t fwlat]=22 s @.27)

k=0

1(0)=

<|r

where the error gkNL (Q) between the measured and modal model predicted responses

& (0)=y,(8)- 9 (2.28)

is a nonlinear fucntion of the parameter set &, N is the number of sample data over the
N 2 2

analysed time period T, and V = Zuyk H is the normalization factor, and Hy” =y'"Wy with
k=0 - -~

W e R NowMNou being a user selected weighting matrix. Herein, it is selected to be the identity
matrix, W =1 .

2.5 Optimization algorithm

A three step approach is used to estimate the modal properties by solving the least-squares
optimization problem. The first step provides estimates of the modal frequencies and modal
damping ratios by re-formulating the objective (error) function in a convenient way so that these
modal properties can be obtained by solving a system of linear algebraic equations using the
common denominator model (Heylen et al., 1997). Stabilization diagrams are also used as part of
the approach to distinguish between physical and mathematical modes and automatically
estimate the number of contributing modes. This first step is an extension of the PolyMAX or
polyreference least-squares complex frequency domain method, developed by Peeters et al.
(2004). It is employed herein to treat non-classically damped modal models describing the
system’s response characteristics based on earthquake-induced vibration data. The second step
provides estimates of the modeshapes and the participation factors given the estimates of the
modal frequencies and modal damping ratios obtained in the first step, by solving a system of
linear algebraic equations. It should be noted that two different approaches have been developed
for the computation of the modeshapes and participation factors in this second step. The first
approach is based on the form (2.20) for the response predictions Y, (Q) with unknown

parameters to be the residues R, :grﬂ € CNoMn | the real matrix D, and the vectors ¢, and
p,. Noting that the objective function is quadratic in these parameters, one can apply the

stationarity conditions to estimates these residue terms by solving a system of linear algebraic

14
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equations. Then noting that residue terms admit the representation R, = gr[: , the modeshapes

and the participation factors are derived directly by the Singular Value Decomposition (SVD) for
the resulting numerator matrix R . The second approach is based on the form (2.25) for the

response predictions Y, (Q) Advantage is taken of the fact that the error function is quadratic
with respect to the modeshapes U, and the real matrix D, . The modeshapes are computed by

taking stationary conditions that lead to a linear system of equations from which the modeshapes
U, and the elements of the matrix D, are readily derived with respect to the system parameters

in 6°=(8",---,65), where 6% is defined in (2.26). An optimization with respect to the
parameter set 6% is required in this step. The first two steps usually give accurate estimates of

the modal characteristics. However, a third step is often recommended to improve these
estimates, especially for closely spaced and overlapping modes, by efficiently solving the full
nonlinear optimization problem with initial estimates of the modal parameters those obtained from
the first and second steps.

These steps are described in more details in the sub-sections that follow.

2.5.1 Step 1: Identification of contributing modes, modal Frequencies and
damping ratios

Consider the frequency domain formulation of the response. Assuming zero initial and final
conditions of the response, the FT of the responses in (2.19) can also be written in the form

. LN TH ul’ - C.n
= =rir 4 = 14D |i(w)=H(jo)i 2.29
(@) Zl[ Py ]+ i(w)=H(jo)i(w) (2:29)

where the frequency response function

H(jo)=>

r=1

(2.30)

wli w5 |_Beie)
jo-4jo-4 )" " |7 As(jo)

is a rational fraction of two polynomials in S =S(jw) of order p =2m, of which the denominator
polynomial A(S) € C given by

p
A(s)=) s'a, (2.31)
r=0
is common for all output quantities, and the numerator polynomial matrix B(jw) € CNo*Nn s
given by
p
B(s)=)_s"5, (2.32)
r=0
15
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with S=S(jw)= jw is the polynomial basis in the continuous time formulation and
s=5(jw) =exp(jwAt) in a discrete time formulation of the system dynamics, while

a= (ao,ai,---,ap)T eRP" and B eR" M r=0,.--,p, are the coefficients of the

denominator and numerator polynomials, respectively.

Using the relation (2.30), it is clear that the poles of the structure are given by the roots of the
denominator A(S). Given the values of the coefficients ¢ of the denominator polynomial, these

roots are readily obtained by the solution of the eigenvalue problem for the companion matrix

(Kailath, 1980; Haylen et al., 1997). So the problem of finding the poles is reduced to the problem
of finding the coefficients of the denominator polynomial A(S) € C . This can be readily done by

using the formulation for the FRF in (2.29) and substituting in the error function (2.28) to obtain
B(jw,, ) »
c NL (Q) _ ( J Kk ﬂ)

= 7 -y 2.33
&)= o) ) 239

where the parameter set @ consists of the coefficients ¢ and S, r=0,---,p, of the
polynomials. It should be noted that the error function (2.33) is a nonlinear function of & and a
linear function of ., r=0,---, p. Instead of using the nonlinear error function (2.33), one can

redefine the error function
& (0)=Aljo; )M (9)=B(jo, B)Z(w) - Y A(jo, @) (2.34)

which is a linear function of the parameters ¢ and S, r =0,---, p. So the optimization problem
can be readily solved analytical and obtain the coefficients & and ﬂr, r=0,---,p from the
solution of a linear system of equations. Specifically, replacing §kN" (Q) in (2.27) by §k" (Q)

carrying out the optimization of (2.27) analytically using the stationarity conditions, and finally
eliminating the variables ., I = 0,---, p in the resulting linear system, one readily obtains the

following reduced system of normal equations for estimating the coefficients «

{NZ(T ~SIR'S, )}g: 0 (2.35)

o=1

where R, S and T, 0=1,---,N_,, are real matrices defined by

R=Re(Z27Z) e R (PHelpry (2.36)
S, =Re(ZY,) e RN (PP (2.37)
T, =Re(Y,TY,) e R (P (2.38)

and Z and Y,, 0=1,---,N_,,, are complex matrices given by
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2kT (0)1)®[51( jwl)"'sp ( Ja)l):l
Z= : e ¢V (NntpD) (2.39)

2kT (a)N)®[Sl(ij)"'Sp(ij )]

_[sl(ja)l)...sp ( ja)l)]® ¥, (@)
Yo= : e CH P (2.40)

_[sl(ja)N)...sp(ja)N )}@)70 (a)N)

In the above equations, @, k=12,...,N, are the discrete frequencies at which the FRF are

evaluated and ® denotes the Kronecker product. This equation can be solved for the
denominator polynomial & in a least-squares sense. To avoid finding the trivial solution o =0,

a constraint is imposed on the parameters. Such a constraint also removes the parameter
redundancy that exists in the common denominator model (multiplying numerator and
denominator with the same matrix yields different numerator and denominator polynomials, but
the same transfer function matrix). Specifically, to remove the parameter redundancy the value of
the coefficient ¢ is selected to be ¢, =1.

Once these coefficients ¢ are obtained, the poles g, of the polynomial A(S) are readily
obtained by solving an eigenvalue problem of order p=2m of the companion matrix of the
polynomial A(S) (Heylen et al., 1997). The eigenvalues A are then obtained from g, using the
relation 4. =1In(z,)/At.

Stabilization diagrams (Haylen et al., 1997) can be used to distinguish between the mathematical
and the physical modes and eventually keep only the physical modes of the system. When trying
to estimate the modal parameters from real data, it is generally a good idea to over-specify the
model order considerably, i.e. to try to fit high order models that contain much more modes than
present in the measured data. In particular, the poles corresponding to a certain model order are
compared to the poles of a one order lower model. If their differences are within pre-set limits, the
poles are considered as stable one. The spurious mathematical poles will not stabilize at all
during this process and can be sorted out of the estimated modal parameter data set more easily.
Thus the previous methodology not only provide estimates of the modal frequencies and modal
damping ratios but also gives the number of contributing modes through the appropriate-
conventional use of stabilization diagrams. Examples of stabilization diagrams will be shown in
the application Section 2.6.

2.5.2 Step 2: Identification of modeshapes and participation factors

In the second step, the number of contributing modes M and the estimated values of the poles
A, are considered to be known and are used with (2.20) or (2.25) in order to obtain estimates of

the remaining unknown modal parameters, the modeshapes U, _, the participation factors [r, the

Y,
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real matrix D, and the vectors a,

and g or the initial conditions &, (0) and & (T). Two

different approaches have been developed for the computation of these quantities in the second
step.

2.5.2.1 First approach

In the first approach, given the number of contributing modes m and the estimated values of the
poles A, estimates of the residue matrices R, _rlr , the real matrix D_, and the vectors a,

and ér are obtained by minimizing (2.27) with gk (Q) given by (2.28) and yk(Q) given by

(2.20) with gr[T replaced by R, . It is evident from the structure of the problem that the objective

r

function is quadratic in the elements R,, D, &

a and f,. So, using the stationarity conditions,

one can develop a system of linear equations for the elements R, D,, a and f, . For

=r
completeness, this system of equations is given next as a function of the measurements Z, yk
and the values of the system poles A, estimated in the first step. Defining the matrix of unknown

guantities partitioned as follows:

:[Re(Ri-..Rm) Im(R,---R.) | D, | Re(a ---a,) Im(a ---a,)
| Re(f ) —IM(B, )] € RNz

(2.41)

it can be readily shown that the stationarity conditions yield the following system of equations for
X:

{igi )} X = RELZN_; (i)éf} (2.42)

where

Q'II (4) :[QkT (/_1) ZkT uT (&)e-jaﬂ /uT (4)] € C2M(2+Nin)+Niy (2.43)

and u = u( jw) is a complex valued vector given by

U= {E} eC™ (2.44)
- |u

with
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1 1
- +— -
(jo)-4 (jo)-4
E+: . ECm
1 1
- +— -
(jo)-2, (jo)-4,
11
(jo)-24  (jo)-4
4= : eC"
11
(j0) =4, (j0)~4,
1 (A) + 1. (4)
Qk(i,)Z Qk(/lm)—'—gk(//i’m) E(szN"‘

in () = n ()

i () = i (A7)

and
_ék =Y
For the frequency domain formulation, v, (it) simplifies to

u (4)=pu(2)®%

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

The solution of the system of equations in (2.42) provide estimates of the residue matrices R,

the real matrix D, and the vectors &, and f,. Given the residue matrix R, and noting that it

admits the representation R, =Uu, I_I , i.e. is expected to be of rank one, the modeshapes U, and

the modal participation factors L are derived directly by the Singular Value Decomposition (SVD)

for the resulting numerator matrices R, using the left-hand and right-hand singular vectors

corresponding to the highest singular value. For closely spaced and overlapping modes this
approach may fail to give accurate enough estimates of the modal characteristics for the closely

spaced modes.
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2.5.2.2 Second approach
The second approach is based on the form (2.25) for the response predictions Y, (Q) In this

case the parameters to be identified are u,, I,, & (0), & (T), r=1---,m, and the real matrix

D, . The total number of parameters is 2m(1+ N, + N, )+ N_,N,, for non-classically damped

out

modal models. The total number of parameters can be reduced to 2m(1+ N, ), containing the

parameters |,, & (0) and & (T) for each mode by recognizing that the objective function in
(2.27) is quadratic with respect to the complex modeshape U, and the real matrix D, . Applying

the optimality conditions in (2.27) with respect to the components of U, and D, a linear system

of equations results for obtaining U, and D, with respect to the parameters L, & (0) and

& (T) . This system of equations is given in Nikolaou (2008). The resulting nonlinear optimization

problem with respect to the remaining 2m(1+N, ) parameters |, & (0) and & (T),
r=1---,m, is solved in Matlab using available gradient-based optimization algorithms

2.5.3 Step 3: Modal identification by full nonlinear optimization

The two-step approach gives results that are very close to the optimal estimates. However, for
closely spaced and overlapping modes, the two step approach may not be adequate. In this case
it is recommended to solve the full nonlinear optimization problem for the identification of all
modal parameters simultaneously. Specifically, the modal parameters in the set & are identified
by minimizing the objective function (2.27) with & (&) given by (2.28). The number of

contributing modes M are obtained using the stabilization diagrams in the first step of the
algorithm. The initial estimates for the parameters involved in the optimization problem can be
obtained by the first and second steps of the algorithm, assisting the convergence of the
optimization algorithm and reducing the computational cost. Two approaches are next introduced
depending on the form of the response function Xk (Q) and the type of the modal parameters

involved.

2.5.3.1 First approach

In the first approach the response vector yk (Q) is given by (2.20) with gr[T

r

replaced by R..

The modal parameter set @ to be identified contains the parameters w,, ¢,, R., a., S,

r=1---,m, and D, that completely define the response vector in (2.20). The total number of

parameters is 2m(1+ N N, )+ NN, +4N,, for non-classically damped modal models.

out out out

The minimization of the objective function (2.27) can be carried out efficiently, significantly
reducing the computational cost, by recognizing that the error function in (2.27) is quadratic with
respect to the complex matrices R, the real matrix D, , and the elements in the vectors a, and

ér. This observation is used to develop explicit expressions that relate the parameters R, a,,
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B, and D, to the modal frequencies @, and the damping ratios ¢, , so that the number of

r

parameters involved in the optimization is reduced to 2m. This reduction is considerable for a

relatively large number of measurement points. Applying the optimality conditions with respect to
the components of R, &, S, and D, a linear system of equations result for obtaining R, a,,
gr and D, with respectto @, and £, I =1,---,m. This linear system is given in (2.42). The
resulting nonlinear optimization problem with respect to the remaining variables @, and ¢, ,
r=1---,m, is solved in Matlab using available gradient-based optimisation algorithms. The

starting values of the parameters required in the optimization are obtained from the estimates
provided by the first and second steps of the algorithm. These starting values are usually very
close to the optimal values for most of the modes and thus the optimization algorithm converges
in a relatively few iterations.

Once the modal frequencies @, and the damping ratios ¢, are estimated by the optimization

problem, the solution of the system of equations in (2.42) provide estimates of the residue
matrices R, the real matrix D, and the vectors @, and f,. Given the residue matrix R and

noting that it admits the representation R, =gr|_:, i.e. is expected to be of rank one, the
modeshapes U, and the modal participation factors [r are derived directly by the Singular Value
Decomposition (SVD) for the resulting numerator matrices R, using the left-hand and right-hand

singular vectors corresponding to the highest singular value. For closely spaced and overlapping
modes this approach may fail to give accurate enough estimates of the modal characteristics for
the closely spaced modes.

2.5.3.2 Second approach

In the second approach the response vector is given by (2.25). The modal parameter set & to be
identified contains the parameters @,, ¢, U,, l,, & (0), & (T), r=1---,m, and the real
matrix D, that completely define the response vector in (2.25). The total number of parameters is

2m(2+N,, + N,,)+ N_,N,, for non-classically damped modal models.

out

The minimization of the objective function (2.27) can be carried out efficiently, significantly
reducing the computational cost, by recognizing that the error function in (2.27) is quadratic with
respect to the complex modeshapes U, and the elements in the matrix D, . This observation is

used to develop explicit expressions that relate the parameters U, and D, to the vectors [r, the
modal frequencies @, , the damping ratios &, , and the initial conditions &, (0), & (T) so that
the number of parameters involved in the optimization is reduced to 2m(N,, +2) . This reduction

is considerable for a relatively large number of measurement points. Applying the optimality
conditions with respect to the components of U, and D_, a linear system of equations results for

obtaining U, and D, with respecttothe w,, &, 1l,, & (0) and & (T), r=21---,m. This linear

system is given in Nikolaou (2008). The resulting nonlinear optimization problem with respect to
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the remaining variables |,, o,, ¢,, & (0) and & (T), r=21---,m, is solved in Matlab using

available gradient-based optimisation algorithms. The starting values of the parameters required
in the optimization are obtained from the estimates provided by the first and second steps of the
algorithm. These starting values are usually very close to the optimal values for most of the
modes and thus the optimization algorithm converges in a relatively few iterations. The
derivatives of the objective function with respect to the modal parameters are evaluated
analytically, accelerating the convergence of the algorithm. Modal sweep approaches (Werner et
al. 1987) could also be implemented to improve the effectiveness of the proposed algorithm.

2.6 Application

This section applies the developed modal identification methodologies for estimating the dynamic
modal characteristics of a representative bridge on the Egnatia Odos motorway, using
earthquake induced vibration measurements. Egnatia Motorway is a new, 670 km long highway,
that transverses Northern Greece in an E-W direction. The R/C bridge of Polymylos that were
instrumented with special accelerometer arrays are the 9th Ravine Bridge on the Veroia -
Polymylos section (Figure 2.1). The bridge has two, almost identical, statically independent
branches, one for each traffic direction, one of which was instrumented. Modal identification
results (modal frequencies modal damping ratios and modeshape components) for the Polymylos
bridge are estimated for the low level, magnitude M = 4.6, earthquake event that occurred on

21/2/2007 (2:04:38 GMT) at a distance 35km Northeast of the bridge.

The T-shaped o Polymylos bridge is curved in plan and has a total length of 170m. The deck
cross section is a box girder of height varying parabolically from 9m at the central pier to 4m at
the two abutments. It is supported monolithically by a central pier (M1), of 35m height, which is
founded on a massive rectangular R/C rock socket at its basement and continues with two
transverse flanges for the rest of its height. Each of the two 85m-long cantilever parts of the deck
girder rests on each abutment through special elastomeric bearings that allow free sliding in the
longitudinal direction (to accommodate thermal expansions/contractions), while functioning as
normal elastomeric pads in the transverse (radial) direction.
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Figure 2.1: View of Polymylos bridge

Two 12-channel Kinemetrics K2 ® recording units were installed on the northern branch of the o
Polymylos bridge (on deck level at the middle of the total bridge deck), each supporting 12
uniaxial Kinemetrics Episensor ® accelerometers (+ 2g full scale) installed on both sides of the
bridge deck. The recording units have a 19-bit resolution, a sampling rate capacity of up to
200sps and a dynamic range of 108 dB @ 200 sps. Fifteen sensors were installed on the deck,
three on the basement of the central pier and three on each of the two abutments (at the support
level of the elastomeric bearings), as shown in Figure 2.2. Thus, the nine sensors monitor the
earthquake-induced excitations at the two abutments and the basement of the pier. The particular
layout of the instrumentation permits the analysis of earthquake-induced response of the bridge.
The 3 to 4-letter sensor labels follow the following convention: The last letter denotes the
orientation of the uniaxial sensor (L: longitudinal, T: transverse, V: vertical). The previous one
denotes the side of the bridge deck on which the sensor lies (R: right, L : left). Finally, the first one
or two letters denote the bridge section that the sensor lies on (first letters U1 and U3 refer here
to the abutment level where the elastomeric bearings are seated, U2 refers to the base of the
central pier and all other letters refer to positions on the level of the bridge deck). The numbers
next to each sensor label denotes the length of the cable used to connect the sensor to each
recording unit. Among the 15 accelerometers located on the bridge deck, 8 record in the vertical,
1 in the longitudinal and the rest 6 in the transverse direction.
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Figure 2.2: Instrumentation layout of Polymylos bridge
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The modal identification carried out in the time domain and in the frequency domain using the
measurements of the 24 accelerometers which were installed on the northern branch of the 9"
Polymylos bridge. In particular, in the time domain the modal identification carried out using both
non-classically damped and classically damped modal models. From the 15 accelerometers
located on the bridge deck, accelerometers A2LV, A2RV and M2RV were excluded because they
were damaged during the earthquake event. The accelerometer U1LV which monitors the
earthquake-induced excitations at the right abutment of the bridge was also excluded for the
same reason.

Using all the eight available input sensors which monitor the earthquake-induced excitations at
the two abutments and the basement of the pier and all twelve available output sensors, the
values of the modal frequencies and modal damping ratios resulted from Stabilization Diagrams
are presented in Figure 2.3 for: (a) the Fourier Transform of the accelerations of all vertical
sensors, and (b) the Fourier Transform of the accelerations of all transverse sensors. After
distinguishing the physical from the mathematical poles the values of the modal frequencies and
modal damping ratios are presented in Table 2.1. Eight values of modal frequencies and modal
damping ratios were identified. These values for the modal frequencies and the damping ratios
were used for applying the next two steps described in Chapters 3 and 4 and estimating the
modeshape components and participation factors on the measured locations of the bridge.
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(@)

(b)

Figure 2.3: Stabilization Diagram for the Polymylos bridge: (a) vertical Sensors, (b) transverse sensors.

Table 2.1: Identified modal frequencies @ and damping ratios é’ of the Polymylos Bridge, obtained by the
Stabilization Diagram for Earthquake Vibrations.

Polymylos Bridge

Mode Stabilization Diagram
o Hz ¢ (%)

1% Transverse 1,28 2.07
1* Bending (deck) 2.19 0.42
2" Transverse 2.56 4.39
2" Bending (deck) 3.19 0.66
3" Transverse 4.46 1.46
3" Bending (deck) 6.89 0.66
4™ Transverse 7.25 1.20
1% Torsional 8.40 0.58
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In Table 2.1 the values for the modal frequencies and damping ratios resulted from the
identification algorithms for non-classically and classically damped modal models in time and
frequency domain are presented and compared with the values identified using ambient vibration
measured data presented in the work by Ntotsios et al. (2008) based on the system identification
theory presented in Chapter 3 of this thesis.

Comparing the modal frequencies and damping ratios resulted from the Stabilization Diagrams
and the modal identification algorithm for time and frequency domain it is observed that there are
no major discrepancies. This validates that the values of the modal frequencies and the modal
damping ratios which result from the Stabilization Diagrams constitute a very good approach of
the optimal values that result from the modal identification algorithm.

Table 2.2: Identified and design FE model predicted modal frequencies @ and damping ratios § of the
Polymylos bridge for Earthquake Vibrations.

. . Ambient

Earthquake Vibrations Vibrations

Mode Frequency Domain Time Domain Time Domain (N;:)tzios
(non-classically (non-classically (classically 26083

damped) damped) damped)
@ Hz (% wHz ¢ %) wHz ¢ (%) @ Hz
1* Transverse 1.26 2.07 1.29 1.8 1.29 1.8 1.13
1% Bending (deck) 2.19 0.47 2.19 0.4 2.20 0.6 2.13
2nd Transverse 2.61 3.86 2.57 4.12 2.56 35 2.22
2" Bending (deck) 3.19 0.61 3.19 0.66 3.20 0.7 3.07
3" Transverse 4.45 1.55 4.30 2.49 4.23 3.2 4.10
3" Bending (deck) 6.88 0.58 6.89 0.44 6.89 0.6 6.66
4" Transverse 7.17 1.38 7.24 1.2 7.24 1.2 6.78
1% Torsional 8.41 0.73 8,39 2,1 -

From the earthquake vibration data, it is noted that eight modes were successfully and reliably
identified for the Polymylos bridge: four transverse modes, three bending modes and one
torsional. In Table 2.2, comparing the modal damping ratios, resulted from time domain and
frequency domain, it is observed that the bending modes have significantly lower values of
damping, of the order of 0.4% to 0.7%, than the damping values of the lower transverse modes
which are of the order of 1.2% to 4.12%. The higher damping values observed for the lower
transverse modes can be attributed to the energy dissipation arising from the higher modal
deformation levels of the elastomeric bearings at the ends of the bridges which dominate the
motion of these modes. Also, soil damping could also have contributed to the higher damping
values observed for these modes.

Comparing the modal frequencies resulted from non-classically damped case and classically
damped case for the time domain it is observed that there are no major discrepancies. For the
modal damping ratios of bending modes, it is observed that the resulted values from non-
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classically damped case have lower values of the order of 0.4%-0.6% than the values resulted
from classically damped case which are of the order of 0.6%-0.7%. For the transverse modes it is
observed that the resulted damping ratios from non-classically and classically damped case of 1%
and 4™ mode have the same values, while the resulted damping ratios of the rest two modes
have different values.

Comparing the results from time domain and frequency domain using non-classically damped
modal models it is observed that the modal frequency of the 3" transverse mode resulted from
the time domain has lower value of the order of 4.23 Hz than the value resulted from the
frequency domain which are of the order of 4.30 Hz. For the rest modes there are no major
discrepancies between the values of the modal frequencies. Differences are also observed for the
modal damping ratios for the transverse modes of the order of 0.26% - 0,94% and of the order of
0.05% - 0.14% for the bending modes.

From the results in Table 2.2, it is observed that the modal frequencies due to earthquake
vibrations are 4% to 15% higher than the modal frequencies identified in Ntotsios et. al (2008)
from the ambient vibrations. No conclusive explanation can be given for these differences without
making assumptions about the bridge behavior within the measured vibration levels. These
differences could be attributed to the nonlinear softening hysteretic behavior of the structural
components, especially the elastomeric bearings. The results in Ntotsios et. al (2008) reveal that
the peak acceleration responses for the earthquake induced vibrations are 1.4 to 3.8 times lower
than the peak acceleration responses of the ambient vibrations (Table 2.3). Accepting that the
estimation of the equivalent modal frequencies is dominated by the peak vibration levels, this
could justify a higher secant stiffness of the elastomeric bearings for the lower earthquake peak
vibration levels which results in stiffer structures and thus justifies the increase in the equivalent
values of the modal frequencies observed in Table 2.2 for earthquake induced vibrations.
However, this explanation cannot be used to justify the higher modal frequency values observed
for the modes associated with bending of the deck since these modes are not affected by the
bearing stiffness. It is unlikely that similar softening nonlinear effects will arise by the deformation
of the pier and deck elements in these low vibration levels.

In Ntotsios et. al (2008) the values of the modal frequencies were also identified using much
shorter duration segments of the ambient vibrations recordings shown in Figure 2.4, selected so
that the peak acceleration levels are the same as or smaller that the peak acceleration of the
earthquake recordings. The estimated values of the modal frequencies obtained by analyzing
these short duration segments were found to be almost identical to the values of the modal
frequencies that were estimated using the whole, approximate 30 minutes, segment of the
records shown in Figure 2.4. This verifies that at the low vibration levels considered, the
aforementioned differences in the peak acceleration levels between the ambient and the
earthquake induced vibrations cannot justify the large differences in the modal frequencies
observed in Table 2.2.
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Earthquake (EV) induced Vibrations (Ntotsios et. al, 2008).

Figure 2.4: Accelerations time history measurements from ambient (Ntotsios et. al, 2008) and earthquake

Table 2.3: Comparison of Peak and RMS response acceleration obtained from Ambient (AV) and

Peak response (cm/secz) RMS (cm/secz)
Channel AV EV AV/EV AV EV AV/EV
B2LV 23.2470 | 7.1062 | 3.2714 | 0.9181 | 1.9397 | 0.4733
M2LL 2.1767 | 1.0009 | 2.1747 | 0.0922 | 0.2407 | 0.3830
M2LV 11.2310 | 2.9575 | 3.7975 | 0.6044 | 0.7350 | 0.8223
SLV 15.9950 | 6.6148 | 2.4181 | 0.8847 | 2.0163 | 0.4388
T3RT 5.9160 | 3.3652 | 1.7580 | 0.1825 | 0.7129 | 0.2561
B2RV 26.9220 | 7.3206 | 3.6776 | 0.9704 | 1.7120 | 0.5668
B2RT 7.7054 | 2.3919 | 3.2215 | 0.2928 | 0.6667 | 0.4392
M2RT 43362 | 2.5179 | 1.7221 | 0.2582 | 0.6141 | 0.4204
A2RT 5.5674 | 2.5210 | 2.2084 | 0.2559 | 0.5911 | 0.4329
SRV 17.4100 | 12.3900 | 1.4052 | 0.9418 | 2.5206 | 0.3737
SRT 49252 | 2.5542 | 1.9283 | 0.2783 | 0.5786 | 0.4810
TIRT 1.2481 | 2.3865 | 0.5230 | 0.0401 | 0.6104 | 0.0657

2.3 of the

In contrast to the peak vibration levels, the levels of the RMS response in Table
approximately 30 minutes ambient acceleration measurements are 0.25 to 0.82 times the
corresponding root mean square earthquake response levels. Accepting that the estimation of the
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equivalent modal frequencies in Table 2.2 is dominated by the RMS vibration levels, the modal
frequencies due to higher RMS earthquake vibration levels are expected to decrease if softening
of the elastomeric bearings take place, which is not consistent with the opposite increasing trend
observed in Table 2.2.

A more reasonable explanation that can account for the differences in the identified values of the
modal frequencies in Table 2.2 is soil structure interaction effects (Safak 1995). In this work
(earthquake vibration case), the modal properties of the system were identified using as input
acceleration the eight recordings at the two abutments and the base of the central pier and as
output accelerations the twelve available recordings along the bridge deck. Thus, ignoring the
rigid body rotation of the central pier foundation at the low vibration levels measured, the modal
frequencies identified by the input-output earthquake vibration measurements are those of the
fixed base bridge, excluding the effects of soil-structure interaction since the base motion of the
abutment and the pier foundation were used as input accelerations in the modal identification
process. In contrast, in Ntotsios et. al (2008) for the ambient vibration case, the modal properties
of the system, obtained from the ambient measurements due to excitations from the traffic and
wind loads, were identified using only the twelve output accelerations recorded along the bridge
deck. Thus, the modal frequencies due to ambient vibrations correspond to the dynamic
characteristics of the combined system consisting of the bridge and accounting for soil structure
interaction effects. This interaction effect is due to the additional soil flexibility provided at the
base supports of the bridge. The presence of this effect is also supported from the non-zero
vibration levels recorded at the base of the pier and the top of the side abutments during ambient
measurements. Thus, soil-structure interaction effects cause the combined soil-foundation-
superstructure system to appear as less stiff than the superstructure (fixed-based bridge) itself,
resulting in lower values of the modal frequencies which is consistent with the results observed in
Table 2.2.

The modeshape components at the measured locations for the eight identified modes are shown
in Figure 2.5 for the Polymylos Bridge obtained by the time domain identification algorithm using
non-classically damped modal models. The identified modeshapes are in general complex
valued. Figure 2.6 represents in polar plots the modeshapes based on earthquake-induced
vibrations. These plots have the advantage to show directly the extent of non-classically damping
characteristics of a modeshape. If all components of a modeshape vector are collinear (in phase
or 180 degrees out of phase) then this mode is said to be classically (or proportionally) damped.
On the contrary, the more these modeshape components are scattered in the complex plane, the
more the mode is non-classically (or non-proportionally). For example, in Figure 2.6 it is observed
that the 1% transverse mode (1.29 Hz) is nearly classically damped. In Figure 2.7 the earthquake-
induced accelerations and the accelerations predicted by the optimal modal model for selected
sensors are compared. In Figure 2.8 the Fourier transform (FT) of the earthquake-induced
accelerations and the FT of the accelerations predicted by the optimal modal model for selected
sensors are compared. A very good fit is observed, validating the effectiveness of the proposed
modal identification software based on earthquake recordings.
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Figure 2.5: The eight identified modeshapes of the Polymylos bridge.
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Figure 2.6: Polar plots representation of the eight identified modeshapes of the Polymylos Bridge.
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Figure 2.8: Comparison between measured and optimal modal model predicted Fourier Transforms of
accelerations recordings for selected sensors of the Polymylos Bridge

2.7 Conclusions

Time and frequency domain least squares methods for the identification of non-classically-
damped modal models of linear structures from multiple-support excitations and multiple
responses were developed. The methods are extension of the Beck (1978) and McVerry (1980)
algorithms developed for classically-damped modal models. The identification involves the
estimation of the number of contributing modes, the modal frequencies, the modal damping
ratios, the complex modeshapes, the pseudo-response matrix, and the initial conditions of the
contributing modes. The common structure of the time and frequency domain formulation is
revealed and exploited to develop an identification formulation common for both time and
frequency domains. Computational efficient algorithms for solving the resulting highly non-convex
nonlinear optimization problems were proposed, including features of automatically estimating the
number of contributing modes, as well as the modal frequencies and the damping ratios of the
physical modes without or minimal user intervention. Specifically, a three-step approach was
proposed to carry out efficiently the optimization. In the first step, non-iterative conventional least
squares complex frequency domain algorithms along with stabilization diagrams are used to
automatically estimate the modal frequencies and the damping ratios of the modal model and to
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distinguish between the physical and mathematical modes. In the second step, two alternative
approaches were introduced to estimate the modeshapes and the participation factors. The first
approach is non-iterative and estimates the modal residue matrices by solving a linear system of
equations given the values of the modal frequencies and damping ratios estimated in the first
step. Singular value decomposition on the residue matrices provides the complex modeshape
components and the participation factors. The second approach is a least squares optimization
approach that takes advantage of the quadratic dependence of the objective function on the
modeshapes and other matrices to reduce the number of parameters involved to the smallest
possible number, consisting of the participation factors and the modal initial conditions. The
estimates provided from the first two steps are in most cases close to the optimal estimates. In
order to improve the estimates, the full non-convex nonlinear optimization problem has to be
solved in the third step by using the initial estimates of the parameters obtained in the first two
steps to accelerate convergence of the optimization algorithm. An efficient solution method was
proposed. It is demonstrated that the third step improves significantly the accuracy of the modal
characteristics for closely-spaced and overlapping modes.

The proposed non-classically damped modal identification algorithms are applicable to the cases
where the damping is not proportionally distributed through out a structure. Such cases arise in
base isolated building and bridges using local dissipation mechanics such as elastomeric
bearings and viscous dampers. Also it arises in the analysis of the combined vehicle-suspension
structural systems. The computational efficiency and the accuracy of the modal identification
methods developed were illustrated using input-output acceleration measurements from a bridge
structure subjected to multi-support earthquake excitations.
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Chapter 3

Least squares identification of non-classically damped
modal models based on ambient vibrations

3.1 Introduction

Experimental modal analysis (EMA) identifies a modal model from the measured forces applied to
the test structure and the measured vibration responses. Classically, one applies an artificial,
measurable input to the system and one measures the output. From these measurements, the
experimental model can be obtained by a variety of parameter estimation methods. During an
EMA, the structure is often removed from its operating environment and tested in laboratory
conditions. The latter experimental situation can differ significantly from the real-life operating
conditions. Also, cases exist where it is rather difficult to apply an artificial force on a structure,
especially for massive civil structures for which large exciters have to be used to excite the
structure.

Vibration measurements during various operational conditions of the structure are easily obtained
using a monitoring system. Such measurements in most cases contain only responses of the
structure at various locations. The excitation forces caused by wind, turbulence, waves, traffic
and other excitation sources on civil structures, ground and air vehicles, are difficult to measure
and they are not available. System identification techniques have been developed to identify the
modal model from the structure under its operational conditions from vibration responses only.
These techniques, referred to as operational modal analysis (OMA) or output-only modal
identification techniques, take advantage of the ambient excitation which is generated from wind
and traffic on civil infrastructure (e.g. bridges, buildings), road roughness on ground vehicles,
wind and waves on offshore structures and turbulence on aircrafts. The main assumption for
these modal identification methods is that the excitations are broadband processes so that can be
modeled by white noise.

There are certain advantages for using output only measurements for identifying the structural
modes. In operational modal analysis there is no need to use artificial devises for exciting the
structure (Farrar et al. 1994). Instead, the modes are identified from the vibrations obtained
during the operation of the structure. This has certain advantages for massive civil structures for
which large exciters have to be used to excite the structure. The use of exciters is not only very
costly but it is also time-consuming and impractical (Peeters and De Roeck, 1999) for structural
health monitoring applications. Ambient vibration measurement can directly be used for
continuously monitoring the civil engineering structures (Peeters, 2000; Peeters and De Roeck,
2001). Such ambient vibration measurements have also been recently used in identifying the
modal characteristics of ground and air vehicles (Peeters et al., 2004; Souty 2008; Boswald et al.,
2006; Boswald and Govers, 2008; Klepka and Tadeusz, 2008; Peeters et al., 2009). Finally, it is
worth noting that the OMA methods provide the modal properties that correspond to the real
operation conditions of the structure. This allows the identification of more realistic modal models
for in-operation structures. These conditions may differ significantly from the ones obtained during
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laboratory forced excitation tests. Examples of this situation include the modal properties
obtained for bridges using large exciters. Such modal analyses are usually performed under
closed traffic conditions. For bridges that are open in traffic, one should expect changes in mass
loading due to the vehicles passing through the bridge (Kim et al., 2001; Roberts, 2001). These
changes alter the modal properties of the structure.

OMA proved very useful in civil engineering, where it is very difficult and expensive to excite
constructions such as bridges and buildings with a hammer or shaker and to obtain artificially
induced vibration levels that exceed the natural vibrations due to traffic or wind. Also in
mechanical engineering, OMA is successfully applied to obtain data-based dynamic models of,
for instance, a vehicle during road testing or an aircraft during flight tests.

The drawbacks of the operational modal analysis methods are the broadband assumptions on the
unknown input and the low signal to noise ratios for the low level vibrations on which usually the
measurements are made. In particular, all operational modal analysis methods are based on the
fact that the unknown input forces can be adequately modeled by white noise processes. This
condition is often violated since excitation forces may contain harmonic components which will
appear as peaks in the spectra and may be erroneously identified by the methods as structural
modes.

This chapter is concerned with developing methods for identification of non-classically modal
modes using ambient vibrations. The evaluation of the actual dynamic characteristics of
structures through measurements of their dynamic response induced by ambient excitations has
been attracting an increasing research effort worldwide. There are a number of methods and
respective software developed either in time or frequency domain for the identification of modal
properties. The peak-picking method (Felber, 1993) is the simplest method to estimate the modal
parameters of a structure subjected to ambient loading. It is based on the power spectra that are
obtained from the measured time histories using discrete Fourier transform. The locations of the
peaks of the power spectra give an estimate of the modal frequencies. The mode shapes are
determined by computing the cross power spectral density functions between all outputs and a
reference sensor. The method requires that the damping is low and the modes are well-
separated. Violation of these two assumptions may lead to erroneous results. A disadvantage of
the method is the subjective selection of modal frequencies and the lack of accurate damping
estimates. However, the major advantage of the method is its speed. In general, the method
identifies the operational deflection shapes instead of mode shapes, since there is no modal
model that is fitted to the measured data. In particular, for the case of closely spaced modes such
operational deflection shapes will be the superposition of the modeshapes of the multiple closely-
spaced modes.

Nowadays, the stochastic subspace identification (Van Overschee and De Moor, 1996; Hermans
and Van der Auweraer, 1999; Peeters and De Roeck, 1999; Basseville at al., 2001) has been well
developed and widely used for identifying the modal properties from ambient vibration
measurements. In this method, a stochastic state space model is identified directly from
measured output data or output correlations. It can be shown that this stochastic state space
model is a good representation of a vibrating structure, provided that the unknown excitation
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forces can be modeled by white noise processes. Successful real-life modal analysis applications
of stochastic subspace identification can be found in the literature (e.g. Hermans and Van der
Auweraer, 1999; Peeters, 2000; Basseville at al., 2001).

Statistical methods for the estimation of the modal parameters based on output-only
measurements have also been proposed. Frequency-domain maximum likelihood approaches for
the estimation of modal parameters from output-only data were proposed by Hermans et al.
(1998), Guillaume et al. (1999), Verboten (2002), Parloo (2003) and Cauberghe (2004). A
Bayesian statistical approach for modal identification has also been proposed by Katafygiotis and
Yuen (2001) using ambient data. The method is based on the statistics of an estimator of the
spectral density. This approach allows for the direct calculation of the probability density functions
(PDF) of the modal parameters which can then be approximated by an appropriately selected
multi-variant Gaussian distribution.

Besides the aforementioned modal identification approaches, several methods proposed are
based on fitting directly the measured data with modal model predicted data using least-squares
type of approaches. In Beck et al. (1994) a methodology for modal identification is proposed
using time-domain least-squares methods based on correlation functions of the output time
histories. In Brinker et al. (2001), Verboten (2002) and Cauberghe (2004) frequency-domain
least-squares methods based on full cross-power spectral densities (CPSD) are proposed.
Peeters and Van der Auweraer (2005) have proposed a frequency-domain least-squares modal
identification method based on half spectra. Finally, Devriendt and Guillaume (2008) have
recently proposed an approach to identify modal parameters from scalar transmissibility
measurements where the unknown ambient loads can be arbitrary (colored noise, swept sine,
impact, etc.).

In this chapter a frequency domain least-squares approach is proposed to identify the modal
parameters of a structure. A three step approach is proposed to solve the nonlinear optimization
problem. The first step of the proposed algorithm provides estimates of the poles (modal
frequencies and modal damping ratios) by solving a system of linear algebraic equations for the
coefficients of the common denominator polynomial. Conventional stabilization diagrams are
used to distinguish the physical from the spurious mathematical poles (Heylen et al., 1997). One
of the novel parts of this chapter is the methodology that is developed based on the special
structure of the common denominator polynomial that is revealed for the cross power spectral
density matrices. Taking advantage of this special structure, one simplifies the system of normal
equations used to compute the coefficients of the common denominator polynomial and also
reduces considerably the number of spurious mathematical (non-physical) modes that are
obtained using the conventional stabilization diagrams. Given the poles selected in the first step,
the second step of the algorithm identifies the modeshapes and all other modal parameters that
fully describe the modal model of the structure using two different approaches. Finally the third
step of the algorithm solves a fully nonlinear optimization problem for the identification of all
modal parameters simultaneously, with initial estimates the values obtained in the previews two
steps. The third step is recommended to improve the estimates of the modal parameters
especially for cases of closely and overlapping modes. The efficiency of the algorithm is tested
using simulated measured data but also using real measured data from structures.
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This chapter is organized as follows. Section 3.2 present the equations that relate the cross
power spectral density to the modal parameters of a non-classically damped modal model of a
structure. Available methods for estimating the CPSD using output measured response time
histories are briefly reviewed in the Appendix 3.A. The least squares method for
identifying/estimating the modal properties is formulated in Section 3.3. Section 3.4 presents the
optimization algorithms and the three step approach. Section 3.5 illustrates the effectiveness of
the methodology using simulated and real measurements from structures. Finally, conclusions of
this work are presented in Section 3.6.

3.2 Modal decomposition of cross power spectral density functions
Consider a N DOF representation of a linear mechanical system given in (2.3). Let f (t) e R

denote the force input vector at continuous time t and Xx(t) € R" the output displacement vector.
Let the (NOut X Nin) Frequency Response Function (FRF) matrix between the outputs and inputs

be given by equation (Heylen et al., 1997)

: - I} 7
H(Ja)):z|: _gr_r + url, } 3.1)

r=1 Ja)_/’i’r Ja)_/l:

where 4., U, and [r are respectively the pole, mode shape and modal participation factor of
mode I, and m is the number of contributing modes with m<n.

It is known (Ljung, 1999; Lutes and Sarkani, 2004) that for stationary stochastic processes the
cross power spectral density matrix S, (jw) € C™" of the response vector X(t) can be written
as a function of the transfer function H(j®) and the cross power spectral density matrix

S (jw) of the (unknown) force vector f (t) as follows:
Sy (j@)=H(jo)Sq (j@)H™ (jo) (3.2)
Assuming that the forces acting on the structure are independent white noise sequences, then

the cross power spectral density matrix of the forces is constant, independent of j@, given by

S¢ (Jw) =S, thatis diagonal and real. In this case equation (3.2) is written in the form
Sy (j®) =H(jow)S;H™ (jo) (3.3)

It is shown in Heylen et al. (1997) and Ntotsios (2009) that by assuming white noise inputs and
substituting (3.1) in (3.3) the cross power spectral density matrix Sxx(ja)) of the responses

evaluated at frequency @, can be modally decomposed as follows

T * 5T T * AT
o ug o ug g, U, g u;
S(j0)= Y| == p === =

- - - - = (3.4)
| Jo—4,  Jo-4 -—Jo-4 -—Jo-1
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where N is the number degrees of freedom, A =-¢ @, + jo,[1-¢? is the complex
eigenvalue of the I -th contributing mode, @, is the I -th modal frequency, ¢, is the I -th modal
damping ratio, U, € CNox js the complex modeshape of the r-th mode, g, € CNox are vector

guantities called operational reference vector, given in Ntotsios (2009), that depend on the
characteristics of the modal model and the CPSD of the white noise input vector, while the
symbol Z" denotes the complex conjugate of the complex number Z .

The operational reference vector ¢, for mode I is given by (Ntotsios, 2009)

. h'(-4.) 0 u-
TS, | LT L ‘ c>" 35
g =LS [ L] e | um |° (35)
where
U=[u,..u,]eC™ (3.6)
Iy
L= : |[eR™ (3.7)
IT
LAY
and h(jw), h"(jw) are diagonal matrices given by
1 0
jo—4
h(jow) = eC™" (3.8)
0 _ 1
i Jo—2, |
and
! - 0
Jo—4
h'(jo) = e C™" (3.9)
0 - L -
| Jo—A4, |

The reference vector g, is a complex function of the cross power spectrum matrix of the

unknown random input forces and the modal parameters of the structure. Its physical
interpretation is less obvious than the modal participation factors.
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It should be noticed that the modal decomposition of the power densities of the outputs has a
symmetry in the poles i.e. both the positive and negative poles are present in the model. This
symmetry is referred to as a 4-quadrant symmetry. Given this similarity between the modal
decomposition of the cross spectral densities of the output time histories and the modal
decomposition of the FRFs, the modal parameter estimation techniques developed for FRFs can
be extended to handle the case where the cross power spectral density matrix is available from
output-only data.

In most modal identification applications the modal parameters are set to be identified within a
specific frequency range of interest [a)l,a)z]. In those cases the CPSD function matrix can be

written alternatively as
T * T T * AT .
n !rgr + grgr grgr grur _ nl(_]a)) A+

S(j0) =] - — = — io— 71 | (]
G002 53 G i o o | mje)

,(jo)B  (3.10)

where M is the number of contributing modes in the frequency range of interest and
Aec RV N B e RN Nt gra real symmetric matrices, called the upper and lower residual
term, accounting for the approximate contribution of the out-of-bound modes to the selected
frequency range of interest (Heylen et al. 1997). For the case that the CPSD function matrix is
given for the acceleration response, the frequency functions n,(j®) and n,( jo) are given by

n(jo)=1 (3.11)
and

n,(jo)=(jo)' =0'eR (3.12)

Note that the parameter set € has been introduced in (3.10) to include all the necessary modal
and other parameters that completely define the CPSD matrix S(jw, ). From the structure of
the CPSD matrix in (3.10), the parameter set @ includes the poles A, the modeshape vectors

u, , the reference vectors ¢, and the elements of the real matrices A and B.

3.3 Identification of structural modes

A modal model output-error identification approach seeks the optimal values of the parameter set
@ that minimize a measure of fit between the CPSD matrix S, (8) =S, (jo,,0). k=1---,N,
predicted by the modal model and the corresponding CPSD matrix §k = §k(ka) estimated

from the measured data at the N__. DOFs. That is, the modal model identification is formulated

out
as a minimization problem of finding the values of @ that minimizes the weighted measure of fit

NL 1 & N NL 1 & NL|I? <
()= 2rlfat T wat ] =2 le] (3.13)
k=0 k=0
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where

& (8)=5:(8)-S (3.14)

is a nonlinear function of the parameter set 8, S, (Q) = S(ja)k,Q), o, =kAw, Aw is the

frequency discretization step (sampling frequency interval), N_ is the number of sample data

~ |12
SkH is the

N(I)
over the analyzed frequency band, K is the frequency index set, V :Z
k=0

normalization factor, and ||!||2 =tr {XTWX} with W e RV*No peing a user selected weighting

matrix. Herein, the weighting matrix W is selected to be the identity matrix, W =1 .

From the computer implementation point of view, it is necessary to describe the modal model
predicted CPSD function matrix S, (Q)ES(ja)k,Q) in terms of real-valued variables in the

parameter set @. Introducing the modal frequencies @, and the modal damping ratios ¢, ,

instead of the complex poles A, , as well as the real and imaginary parts of the modeshape vector

u

U, =U, o, + U, and the reference vectors g: =g’

=r,Re

+ jg:,lm , the CPSD matrix predicted by

the modal model is completely described by the real parameter set

T T
6’={a)r, o Yrer Yrims 9 o 9,0 r=1..m, A B} (3.15)
where M is the number of contributing modes which is also an unknown in the identification

process. The total number of model parameter involved in the prediction of the response at N,

2
out

DOFs given m modes is 2m(1+2N_,)+ NZ, +N_,. Computational efficient algorithms for

solving this highly nonlinear, non-convex optimization problem involving the objective function
JN (Q) in (3.13) with respect to the parameter set @ in (3.15) are presented in the next Section

3.4.

In order to use equation (3.13) and (3.14) for the identification of modal parameters from output-
only data, accurate estimates of the cross power spectral densities S, , between the responses,

are to be obtained from finite sequences of measured time samples. Basically, two classical
methods exist for the estimation of auto and cross power spectral density estimates (Marple
1987), the periodogram and the correlogram approach. The periodogram (Marple 1987) method
operates directly on the data set to yield power spectrum estimates. The correlogram approach
(Blackman and Tukey 1958) first makes an estimate of the correlation functions in the time-
domain and then proceeds by Fourier transforming the correlation sequences into power spectral
densities. For both approaches, the user is faced with a tradeoff to produce statistically reliable
estimates of highest possible spectral resolution from finite sequences of measured time data.
For completeness, these methods are briefly presented in Appendix 3.A.
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3.4  Optimization algorithm

A three step approach is used to estimate the modal properties by minimising the objective
function (3.13). The first step provides estimates of the modal frequencies and modal damping
ratios by re-formulating the objective function in a convenient way so that these modal properties
can be obtained by solving a system of linear algebraic equations using the common denominator
model (Heylen et al., 1997). Stabilization diagrams are also used as part of the approach to
estimate the number of contributing modes and distinguish between physical and mathematical
modes. This first step is an extension of the PolyMAX or polyreference least-squares complex
frequency domain method, developed by Peeters et al. (2004) for the case of frequency response
functions. It is developed herein to treat the CPSD functions of non-classically damped modal
models describing the system response characteristics based on ambient vibration data. In
particular, advance is taken of the structure of the poles describing the CPSD functions of the
discrete time system in order to simplify the estimation of the poles. The second step provides
estimates of the modeshapes and the operational referense vectors given the estimates of the
modal frequencies and modal damping ratios, by solving a system of linear algebraic equations. It
should be noted that two different approaches have been developed for the computation of the
modeshapes and operational referense vectors in this second step. In the first approach the
residue matrices

R =U, g eCMuwte (3.16)
are assumed to be the unknown parameters and the CPSD function matrix in (3.10) is given in
the form

. u R R R! R n(jo .
S(JCO,Q)=Z{ — S+t ———— |~ 1(1_ ) A+n (jow)B(3.17)
r=1 Ja)_ﬂ‘r Ja)_/lr _Ja)_//i’r _Ja)_//i’r nZ(Ja))

Recognizing that the objective function in (3.13) is quadratic with respectto R, A and B, one

can apply the stationarity conditions to estimate these residue terms, formulating and solving the
resulting linear system of equations for R, A and B. Then the modeshapes U, and the

operational reference vectors g, are derived directly by the Singular Value Decomposition (SVD)
of the resulting numerator matrix R, . In the second approach, advantage is taken of the fact that
the error function in (3.13) with S(j®,d) given by (3.10) is quadratic with respect to the
modeshapes U, and the matrices A and B. This observation is used to develop explicit
expressions that relate the parameters U,, A and B to the vectors 9 the modal frequencies
o, and the damping ratios ¢, , so that the number of parameters involved in the optimization is
reduced from 2m(L1+2N_,)+ N2, +N_, to 2m(N

ot +1) . This reduction is considerable for a
relatively large number of measurement points. The modeshapes U, and the matrices A and B

out out

are computed by taking stationary conditions that lead to a linear system of equations from which
these parameters are readily derived. The first two steps usually give accurate estimates of the
modal characteristics. However, a third step is often recommended to improve these estimates,
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especially for closely spaced and overlapping modes, by efficiently solving the full nonlinear
optimization problem (3.13) with respect to all modal parameters @,, §,, U,, d,, A and B

involved in (3.10). The initial estimates of the modal parameters are those obtained from the first
and second steps. Such initial estimates are very good estimates that guarantee accelarated
convergence to the global optimum. These steps are described in more details in the sub-
sections that follow.

3.4.1 Step 1: Identification of contributing modes, modal frequencies and
damping ratios

Consider the modal decomposition of the CPSD matrix assuming white noise inputs given in (3.4)
by means of a common-denominator function

T * AT
. m| ug ug
S(jw,0)=) | —=

+- =
| Jo—4,  Jo-4

r

gu U | Ny(s(jo)

=T =

~jo-24  —jo-A | d,(s(jo))

(3.18)

which is a rational fraction of two polynomials in S=S(j®) of order p=2m, of which the

denominator polynomial d_ (S) € C given by
£ m
d,(s)=> s"a" (3.19)
r=0

is common for all output quantities, and the numerator polynomial matrix N_(jo) € (C NowNou

given by
p
N, (s) =Y s p" (3.20)
r=0

with s=S(jw)= jw is the polynomial basis in the continuous time formulation,
s=5(jw) =exp(jwAt) is the polynomial basis in the discrete time formulation, while

a= (ao,al,---,ap)T eRP" and B eR"wMNu r=0,... p, are the coefficients of the
denominator and numerator polynomials, respectively.

For the continuous time formulation given in (3.18), it is obvious that the poles of the structure are
Ay=A, A=A, A, =—4 and A,,=-A for r=0,---,m. Using the discrete time

formulation the poles g, of the structure are obtained from the transformation

r

, =e (3.21)

and thus correspond to g, 4, 1/ 1. and 1/ 42 .

Using the relation (3.18), it is clear that the poles of the structure are given by the roots of the

denominator polynomial d_(S). Given the values of the coefficients aE”‘] of the denominator

polynomial, these roots are readily obtained by the solution of an eigenvalue problem for the
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companion matrix (Kailath, 1980; Haylen et al., 1997). So the problem of finding the poles is
reduced to the problem of finding the coefficients of the denominator polynomial drn (s) eC. This

can be readily done by using the formulation for the CPSD functions matrix in (3.18) and
substituting in the error function (3.14) to obtain

NL _Nm(ja),ﬂ[m]) 3
&y (Q)—W—Sk (3.22)

where the parameters @ in (3.22) consist of the coefficients &/™ and A™, r=0,---,p.

It should be noted that the error function (3.22) is a nonlinear function of & and a linear function

of B., r=0,---,p. Instead of using the nonlinear error function (3.22), one can redefine the

error function

& (0)=d, (jo;a™)e" (0) =N, (o, ™)~ d, (jo;a™)S, (3.23)

which is a linear function of the parametersg[m} and ﬂr[m}, r=0,---, p. So the optimization
problem can be readily solved analytical and obtain the coefficients ¢ and ., r =0,---, p from

the solution of a linear system of equations. This linear system of equations is developed in the
next subsection.

3.4.1.1 Reduced normal equations

Each row of the common denominator model in (3.18) can be expressed in the form:

Vo=12,-N,, (3.24)
where
p
(Noo (@) = 25" (£5") (3.25)
P
d, (@)=Y s"a™ (3.26)

The polynomial coefficients f,, € R and a, € R™ are assembled in the following matrices:

éoo

B, = /_301 e]R(Nom(ml))x1 V0=12,---,N, (3.27)

ut

B
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0
a
a=| ' leRPY? (3.28)
p
A ]
g : . R((N S+)(pe1) (3.29)
R
a
Error functions for each @, can be written as a vector EOL (49) e CN | of the form
& (@1,9)
L
& (@,,0
E: (Q) = ( ? ) = [x Yo]{é"} (3.30)
a

‘9;_ (a)Nm :Q)

and X and Y, 0=1,---,N_,, are complex matrices given by

. : < ¢ Nor(Now (p4) (3.31)

Y = : e CNox(p+D) (3.32)

—§0 (a)Nw )[Ql(a)Nw )"'Qp (a)Nw )]

Similar to (3.13) the following cost function can be written according to the error function (3.23):

| N

@)=Y Y tr|(et (@,0)) (ot (@1, 0))] (3:33)

0=1 k=1

The minimization of the cost function leads to a Weighted Least-Squares Problem. Substituting
equations (3.30), (3.31) and (3.32) in (3.33) yields
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Nout

r@-Sre @) (e o) - Sl

o=1

Nout

B gT)[i(:](x n)(%j}{tr{@a?doé} (3.34)

o=1
where J € CNo* MNP g the 3acobian matrix
J,=(XY,) (3.35)

In case of real-valued coefficients @, it can be shown that the expression J;'J, can be
substituted by its real part. Hence, the cost function (3.34) becomes

NDU(
JL(Q):Ztr{QT Re(J;TJO)Q} (3.36)
0=1
where
* R Z Nout+1)( p+1)x( Noyt+1)( p+1,
Re(3.7J,) = [ZT T°] S S (3.37)
with
R=Re(XTX) e R"ulPriyMaulprd (3.38)
Z, =Re(XTY,) € RNou(Pr(p) (3.39)
T, =Re(Y,TY,) e R(PH (P (3.40)

The cost function is minimized by setting the derivatives of (3.36) with respect to the unknown
polynomial coefficients @ equal to zero:

L
DO _arp, +2,2)=0 Vo =1, Ny, (341)
op, -
L |
aJa @) _ 2) (Z35,+T,@)=0  Vo=L1--,N,, (3.42)
a =+

These equations are the so - called normal equations which can be written (using equations
(3.37) and (3.40)) in the form:

2Re(3.7J,)0=0 (3.43)

We focus on the polynomial denominator « from which result the poles and the modal
coefficients in order to set up a stabilization diagram. Consequently, least-squares problem can
be simplified by substituting the coefficients /3, , which result from (3.41)
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B, =-R'Z«a (3.44)

into (3.42). Thus, equation (3.42) becomes:

Mg =0 (3.45)
where M e RPPP s given by
|
M=2%(T,-Z;R"Z,) (3.46)
o=1

and can be computed from the measured data. The solution of this equation gives the
denominator polynomial coefficients « in a least-squares sense. To avoid finding the trivial
solution & =0, a constraint is imposed on the parameters. Such a constraint also removes the
parameter redundancy that exists in the common denominator model (multiplying nhumerator and
denominator with the same scalar yields different numerator and denominator polynomials, but
the same CPSD function matrix). Specifically, to remove the parameter redundancy the value of
the coefficient ¢ is selected to be ¢, =1.

Once these coefficients ¢ are obtained, the poles x, of the polynomial d(S)are readily
obtained by solving an eigenvalue problem of order p=4m of the companion matrix of the
polynomial d(S) (Heylen et al. 1997). The eigenvalues A, are obtained from g, using the

relations (3.21).

3.4.1.2 Stabilization diagrams

In modal analysis applications the accuracy of the estimated modal parameters is important.
When trying to estimate the modal parameters from real data, it is generally a good idea to over-
specify the model order considerably, i.e. to try to fit high order models that contain much more
modes than present in the measured data. Stabilization diagrams (Heylen et al., 1997) can be
used to distinguish between the mathematical and the physical modes and eventually keep only
the physical modes of the system. In particular, the poles corresponding to a certain model order
are compared to the poles of a one order lower model. If their differences are within pre-set limits,
the poles are considered as stable one. The spurious mathematical poles will not stabilize at all
during this process and can be sorted out of the estimated modal parameter data set more easily.
Thus the previous methodology not only provide estimates of the modal frequencies and modal
damping ratios but also gives the number of contributing modes through the appropriate-
conventional use of stabilization diagrams. Examples of stabilization diagrams will be shown in
Section 3.5.
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3.4.1.3 Simplification using special structure of common denominator model

It should be noted that the denominator polynomial d_(S) in (3.18) using the transformation
(3.21) in the discrete time formulation can be given in the form

() =TT~ )5~ )= s~ @47

r

which is of order p =4m . Carrying out the product of the factors, the denominator polynomial
d, (s) can be written in the form

do(s)=[](a..s' +a,5° +a,,5° +a,5 +a,,) (3.48)
r=1
with

a,,=8,=1 (3.49)

. 1 1 1
8o =8y = M+l +—+ *=2Re{yr}+2Re{—} (3.50)

Hy Hy M,

1 ~f 1 1
a,, :‘u, 4 > +(ﬂr +yr)[—+ *]:"u’ ‘4 5 +2+2Re{ 'u} (3.51)
z Pt m H

Consequently equation (3.48) can be written in general form as

m
do(s) =[] (a s +a,5°+a,,5" +a,,s +a,) (3.52)
r=1

Proposition: The polynomial d, (S) admits the representation

2m-1 2m-1
d,(s)= > a"s* +alns?™ + " alMs (3.53)
k=0 k=0

which specifies that the coefficients of the term s* are the same as the coefficients of the term
s thatis, al" =al"  k=0,1...,2m.

Proof: The proposition will be shown to be true using mathematical induction.
For m =1 the formulation (3.53) gives

1 1
d,(s) =alls’ +al’s’ +alls? +alls +all=> alls  +alls?+ > alls'™  (354)
k=0 k=0

which is true due to the representation (3.52) and selecting a([ﬁ =8, al[l] =a,;, and aE} =a,,.
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Assuming that formulation (3.53) holds for m it will be shown that it also stands for m+1, that is

2(m+1)-1 el ke . ] 2(m+1)-1 ]
_ m+ m-+ 2(m+1) m+1] 4(m+1)-k
d ()= z 3, s  + @S + Z a, gt (3.55)
k=0 k=0

Using the representation (3.52) the denominator d ., (S) can be written as

3 2

m+l(s) d (S)( m+1, O + a‘erl,lS +a S+ a'erl,ls + aerl,O) (3'56)

m+1,2

Setting b, =a,,,,,, b, =a,,,,, &,,,, =1 and substituting (3.53) into (3.56) yields

dmﬂ(s):(z al"s* +al"s 2“‘+Zak s'm kj(s +hs*+b,s* +hs +1)  (357)
k=0

and by multiplying the expressions in the parentheses yields

2m-1 2m-1 2m-1
d_.(s)= Z alMs* + Z bal™s * + Z b,al™s 2 + Z bals**? + > al"lsk +
k=0

bla[m §2ml 4 a[m]sz”‘*2+b1a2m 2m+3 a[m]82m+4

-1 -1 m-1
Z al[(m]s4(m+1)—k—4 4 Z blai[<m]84(m+1)7k73 n z bzai[<m]54(m+1)7kfz +
k=0

2m-1

z blaLm]S4(m+l) k-1 + z ak 4(m+1) k

(3.58)

Observing the symmetry in (3.58) where all pairs of order s*, s*™™ for Yk =0,...,2(m+1)
have the same polynomial coefficients, with the only exception of the term bzang]szm*z, the above
equation can obviously be written in the general form (3.55), where the coefficients a,[<m+1} can be

directly derived from the coefficients a,Em] and the values of b, and b,.

2(m+1)-1 . e 2(m+1)-1 .
m+ m-+ 2 1 m+ 4 1)-k
dpa(s)= > a™ls* +alfrd 2™ 4 z alm gt (3.59)
k=0 k=0

This implementation reduces the number of the unknown polynomial coefficients

a=(a, a,..., a,,) in (345) from p+l=4m+1 to §+1:2m+1 coefficients

a'=(a,, a,,..., a,,) taking advantage of the fact that a, = a,,_, . Substituting @, =, ,
into (3.45) and considering only the first 2m+1 equations, the unknown vector
a'=(ay, a,..., &,y,)" of the coefficients defining the denominator polynomial d,,(s) is given

by the set of linear equations

IQ
Io

(3.60)
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R(2m+1)x(2m+l)

where the matrix |\7| 1S is derived from the elements of the matrix M as follows:

M, =M, +M
M M

k=12,...,2m

l,tm—k ?

(3.61)

lemal — Vhoma

This special structure of the denominator polynomial d_(S) reduces by a factor of two the

computational time for obtaining the modes of the structure using stabilization diagrams. In
addition, the mathematical poles estimated using the special structure (3.60) of the reduced
normal equations is a subset of the mathematical poles estimated with the original set (3.45) of
reduced normal equations. This has an effect of limiting the number of spurious mathematical
modes that are manifested in the stabilization diagrams. This results in better ways of
distinguishing between the mathematical and the physical modes. It should be noted using the
above simplified formulation for the denominator polynomial d_(S) given in (3.53) does not

impose that the resulting poles to come in groups of four giving £, , ,u:, 1/ u, and 1/ ,u: for
r=0,---,m. Such poles are also considered as spurious mathematical poles.

3.4.2 Step 2: Identification of modeshapes and operational reference vectors

In the second step, the number of contributing modes M and the estimated values of the poles
A are considered to be known and are used with (3.10) in order to obtain estimates of the

remaining unknown modal parameters, the modeshapes

r

U, , the operational reference vectors
g, and the real matrices A and B. Two different approaches have been developed for the

computation of these quantities in this second step.

3.4.2.1 First approach

In the first approach, given the number of contributing modes m and the estimated values of the
poles A, estimates of the residue matrices R, and the real matrices A and B are obtained by

minimizing (3.13) with gkNL (Q) given by (3.14) with S, (Q) given by

*

oo R R RY RT 1 n(jo) .
S = L+ L+ L+ r -1 A4n B (3.62
3 e P s P s AT TS ML

Note that (3.62) is the same as (3.10) with U, g: replaced by R, .

It is evident from the structure of the problem that the objective function is quadratic in the
elements of R,, A and B. So, using the stationarity conditions, one can develop systems of

linear equations for the elements of R, A and B. For completeness, these systems of

equations are given next as a function of the measurements and the values of the system poles
A, . An important result of this approach is that the optimal estimates of R,, A and B that
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minimize the objective function (3.13) given the number of contributing modes and the values of
A, are obtained by a non-iterative approach.

First the complex-valued matrix R, r=1,...,m in (3.62) involved in the description of the modal

model are expressed in terms of the real and imaginary parts as follows:

R =L, +jG, (3.63)

with L ,G, € RN The CPSD function matrix of equation (3.62) is then written as

S(ja;):Z[Lr/,zr+ +G, u + Lk +G:k;]— nl(J_w) A+n (jo)B (3.64)
r=1 nZ(Ja))
where

= (j) 269

_ .y 1 1
=n - - 3.66
He 1(10)){]@—& o7 } (3.66)

. 1 1
k'=n + _ 3.67
: 1(Jw){_jw_/1r —jw-@r} (3.67)

C 1 1
k- =n - = 3.68
r 1(Ja))1|:—1a)—ﬂ, —ja)—/lr:| ( )

r

For the case that the CPSD function matrix is estimated using the acceleration response
measurements, the frequency functions n,(j®) and n,(jo) are given by (3.11) and (3.12). It

should be also noted that for the case that n,(jo) € R and n,(jw) e R are real the following

relation holds true:

k™ =4 and k= =pu

r

(3.69)

r

Consider first the case | # | and define the vectors of unknown quantities partitioned as follows:

ZliT :[L1,|i"'|-m,|i I-1,i|"'|-m,i| Gr:l,n'”Gm,n Gl,n"'Gm,n A A B Bn] (3.70)

for | =1,...,N

(3.63), while similar definitions hold for the quantities G, ;, A; and Bj. It can be readily shown

and i=1...,N,,where L ,

v Nyt s . isthe (I,1) element of the matrix L, involved in

out

that the stationarity conditions yield the group of N, (NOut —1) algebraic systems of equations
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+

M X L=
{XT H}Z“: a; ¢, 1=1...,N,,, I=L... N, I=#i (3.71)
b,

where the left-hand side matrix, partitioned by the four submatrices M, X, X' and H, is
common for all the systems of equations. The submatrices are given by

1
=z
=
)

- Re{;_z*_”} iRe{ﬁ+K+T} iRe{H+_T} zRe{:KT}
k=1 k=1 k=1 k=1
N, N, N, N,
ZRe{_+K+T} ZRe{EJr_H—} ZRE{HJFK;I—} zRe{/;lJrE—T}
r: r: e
2Relu ) D Re{uwk} D Re{uwuT) DRejuk)
=1 =1 =1 =1
N, N, N, N,
2 Relu k) D Re{wu™} DReluwk) D Reiyu’]
| k=1 =1 =1 =1 a
. ) -
- Re{—lu*} 0 > Refnu'} 0
k=1 n, = k=1 -
N, n N,
0 - Re{—lﬁ} 0 > Re{nu'}|
X = “ 2 “ - (3.73)
N n N,
-y Re{—lﬂ} 0 > Re{nu | 0
k=1 ‘ k=1
N n N
0 —> Re {—Ul} 0 > Refnu
N k=1 nz - k=1 |
and
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N, n2 N, n2 ]
D Re {—12} 0 -> Re {—1} 0
k=1 n2 k=1 nz
N, n2 N, n2
0 > Re {—12} 0 -> Re {—1}
H= e SN (3.74)
N,, n2 Y '
~Y'Re {—1} 0 > Re{n?} 0
k=1 n, k=1
N, nZ N,
0 > Re{—l} 0 > Refn?}
L k=1 n, k=1 |

Using the relations in (3.69), it can be readily shown that the matrix M is symmetric, i.e.
M =MT and can be written as

M = ZRe{g ,QT} (3.75)
k=1
with
/_,l+
p=1£ (3.76)
T H
-

Also, it is obvious from (3.74) that H is also symmetric. Thus, the system matrix in (3.71) is
symmetric.

The right-hand side vector for each (l,1)system in (3.71) is partitioned by the three subvectors

a;, a; and b, given by

Z Re {,t_fSﬁII }
a =1 (3.77)
Re{£+ All}
k=1
N

i
X
@D
—~—
I":‘
_UJ)
N

- — (3.78)

|
|
=z

S

Py
@
——
'z
%)
Ny

=~
Il
N

and
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b, = 2 (3.79)
N, _
D Rein “}
k=1
Nw —
Re nls”}
k=1
Finally, the vectors /_f and Ki involved in all above equations are given as
+ +
H k;
ur=13 1 rand k¥ =1 : (3.80)
7 Kn
where m is the number of contributing modes .
Consider next the case of | =i and define the vectors of the rest of the unknown quantities
A :[Ll,ii b Gui G A By (3.81)
for i=1,..., N, - It can be readily shown that the stationarity conditions yield a group of
N, /2 algebraic systems of equations given by
+
[Md xd} & 362)
T -l 1
Xd Hd

b,

where the left-hand side matrix, partitioned by the four submatrices M, X,, X] and H,, is

common for all the systems of equations. The matrices are given by

N, N, N, N,
zRe{E+E+T}+ZRe{ﬂ+K+T} ZRe{E+E—T}+zRe{_+K—T}
asa
Z Re{,u",u+T } + Re{,u_K*T } Re {,U"K"T } + Re{,u_,u_T }
k=1 - k=1 - k=1 - k=1 -
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. i . i}
- Re{—ly*} Re{nu"}
k= n, = k=1 -
Xe=| | \ (3.84)
-, Re{&y‘} Re{nl,u‘}
| k=1 b T k=1 o]
and
[N, 2 N,, 2
Re{n—lz} - Re{n—l}
- n -
H, _Le ? « ? (3.85)
20 N, n2 N, n2
> Re {—1} > Re {—12}
k=1 2 k=1 n2

Using the relations in (3.69), it can be readily shown that the matrix M, is symmetric, i.e.
M, = MJ . Also, it is obvious from (3.85) that H is also symmetric. Thus, the system matrix in
(3.82) is symmetric.

The right-hand side vector for each (i,1) system in (3.82) is partitioned by the three subvectors

a;, &, and b. given by
N,, R
a = {Z Re{u’s, }} (3.86)
k=1
N, _
a; :{ Re{;_zsii}} (3.87)
k=1
and

(3.88)

The vectors ,ui and Ki are given in (3.80).

The solutions of the systems of equations in (3.71) and (3.82) provide estimates of the residue
matrices R, and the real matrices A and B . Given the residue matrices R, and noting that it

admits the representation R, = U, ng , I.e. is expected to be of rank one, the modeshapes U, and
the operational reference vectors ¢, are obtained by applying singular value decomposition SVD

oneach R, =R

R=UXV' (3.89)
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. The

out

where U :(gl---gNom), % =(y1---yNom), ¥ =diag(o;), and |0'1|2...2‘(7N

modeshape vector U

U, corresponds to the larger singular value o, and is given by U =oU,,

while the operational reference vectors g, is given by ¢, =V,. However, for the case of closely

spaced and overlapping modes this approach sometimes fail to estimate all contributing closely
spaced modes. An example of this case will be presented in subsection 3.5.2.

3.4.2.2 Second approach

In the second approach, given the number of contributing modes m and the estimated values of

the poles A, estimates of the modeshapes U, , the operational reference vectors g, and the

real matrices A and B are obtained by minimizing (3.13) with gkNL (Q) given by (3.14) and
S, (Q) given by

T * xT T * a7 )
& U u u u
S(jw,0) =Y __rgr N __rgr . 9_ . g * _nl(!a))A+
r=1 Ja)_/lr Ja)_ﬂ' _Ja)_ﬂ’r _Ja)_ﬂr nZ(Ja))

r

n(jo)B  (3.90)

The number of parameters that are involved in the optimization using the formulation in (3.90) is

2m(1+2N,,)+ N2, + N_, . By recognizing that the the error function in (3.13) is quadratic with
respect to the modeshapes U,, A and B, advantage is taken to develop explicit expressions

that relate the parameters U, , A and B to the vectors g, and the poles A, so that the number

of parameters involved in the optimization is reduced to 2m(N_,. +1). This reduction is

out

considerable for a relatively large number of measurement points. So, using the stationarity
conditions, one can develop a system of linear equations for the elements of U,, A and B with

respect to the vectors g, and the poles A, . For completeness, this system of equations is given
next as a function of the measurements, the vectors ¢, and the values of the system poles A, .

First the complex-valued modeshape U, r=1,...,m involved in the description of the modal

model (3.90) are expressed in terms of the real and imaginary parts as follows:
u, = Qr + ler (3.92)

with the vectors @, ,y, € R The CPSD function matrix of equation (3.90) is then written as

S(jw) = Z[?rﬁrﬂ —ng/_lr_T +Kr+QrT +&_%:]—%A+ n(jo)B (3.92)
r=1 2

where
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;_z::nl(jco)[ 3 + S } (3.93)

jo—2, jw_—ﬂ:
My =n1(J'co)jL_a)9_f/1r _ ng_:ﬂ:} (3.94)
K =n1(ja)){_jag)'_/1r +—ja%:—i::l (3.95)
ko =nl(ja))j{_jag)r_/1r _—ja%:—ﬂ::l (3.96)

For the case that the CPSD function matrix is given for the acceleration response the frequency
functions Nn,(jw) and n,(jw) are already given by (3.11) and (3.12). It should be also noted

that n,(jw) € R and n,(jw) € R are real the following relation holds true:

k™ =u" and K~ =pu (3.97)
Define the vector of unknown quantities partitioned as follows:
vec{d'}
vec{¥" |
X — c RZNGUK(N0u1+m) (398)
vec{A'}
vec{B'}
where
@ Z[ﬁ gm]eRmem (3.99)
Y=ly, .. oy, ]eRYT (3.100)

The stationarity conditions with respect in the parameters in X vyield the algebraic system of

2N, (N, +m) equations for X:

out
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(3.101)

where the left-hand side matrix is partitioned by the submatrices L, p,q=1,...,4 given by

Ny
- Re{ [M TOM M (1, ®K’ )}} & R™oa Mo (3.102)
k=1
Ny
L, = Re{ [M TOM +M/T (le ® K)}} € R™M Mo (3.103)
k=1
N¢ ,
L, =- Re{z o M7l } g R Nou (3.104)
k=1
N¢ )
L, = Re{Zn MT®I }e IR Nou N (3.105)
Ny
Re{z |v| OM M (1, ® K)J} & R e (3.106)
k=1 out
N
Re{z |v| TOM AMT(1, ® K)]} & R M (3.107)
k=1 out
L, =~ Re{z 0 MT®I } € RM™MNowxNou (3.108)
k=1
L, = Re{Zn MT®I }e R Na*Now (3.109)
k=1 ot
N¢ n )
L, =— Re{z - [|NOut QM +K/ ]} R Mow N (3.110)
k=1 1o
N¢ n )
L, =— Re{zn—[ Lot ©M T +K; ]} € R™ou*Now (3.111)
k=1 1o
N n2 -
L., = Re{z 2 L } € IR NawNau (3.112)
k=1 1o
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k=1 n2

N¢ 2
n 2 N2
f 1 NOUXNOU
I_34——Re{§ —INgm}eR N

L41:Re{Nf [ o ®M T 4K/ ]}eRmmeNsm

= Re{ 5 0y [ o ®M ™+ K,‘]} & R™MNow* N

N¢ 2
n 2 N2
|_43 = — Re{z 1 |N2 } c RNout Nout

k=1 n2 out

and

out

N
2 NN
L44:Re{2nllN2}eR oMo

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

The right-hand side vector of the system in (3.101) is partitioned by the four subvectors g l_)z

b, and b, given by

k=1

b = Re{Nf (l\/l+T 1 )vec{§T}}eRmNout

Ny

b, - Re{kz(w 8l, )Vec{s‘T}}emem

=1

b, =- Re{i%vec{SAT }} e RV
2

k=1

N¢ R ,
= Re{z nlvec{ST }} e RN

k=1

and the matrices M, K*, M;" and K, are given by

M* :[,uf EHGCN"“‘W

K*=[k' ... k;]eC

—m
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(3.119)

(3.120)

(3.121)

(3.122)

(3.123)
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. x 2
M," = : € CMNouwNou (3.124)

KT = : € CNow*™Now (3.125)

where the ® denotes the Kronecker product, IN denotes the identity matrix dimensioned

out

N, % N,, and <Z>I denotes the | row of matrix Z .

For given the number of m contributing modes and values of the poles estimated in the first step
of the algorithm, the solution of the system of equations in (3.101) gives the modeshape
components of the structure at the measured DOF with respect to the vectors g, . The optimal

values of the modeshapes that minimize the objective described in (3.13) with gkNL (Q) given by

(3.14) are computed by nonlinear optimization algorithms with respect to the elements of the
complex vectors g, . For this, the complex-valued vectors g, r=1,...,m involved in the

optimization are expressed in terms of the real and imaginary parts so the resulting number of
parameters involved in the optimization algorithm is 2mN_, . Each iteration of the optimization
(N, +m).

procedure demand the solution of the system of equations in (3.101) of size 2N

out out

3.4.3 Step 3: Modal identification by full nonlinear optimization

For closely spaced and overlapping modes, the two step approach may not be adequate. In this

case the full nonlinear optimization problem can be solved for the identification of all modal
parameters. Specifically, the modal parameters in the set @ are identified by minimizing the

objective function (3.13) with &;'" (&) given by (3.14). The number of contributing modes m are
obtained using the stabilization diagrams in the first step of the algorithm. The initial estimates for
the parameters involved in the optimization problem can be obtained by the first and second

steps of the algorithm, assisting the convergence of the optimization algorithm and reducing the

computational cost. Two approaches are next introduced depending on the form of the CPSD
function S( jw, @) and the type of the modal parameters involved.

3.4.3.1 First approach

In the first second approach the CPSD function is given by (3.17). The modal parameter set @ to
be identified contains the parameters @,, &,, R, r=1---,m, A and B that completely
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define the CPSD matrix in (3.17). The total number of parameters is 2m(L+NZ.)+NZ, +N_,

out out

for non-classically damped modal models.

The minimization of the objective function (3.13) can be carried out efficiently, significantly
reducing the computational cost, by recognizing that the error function in (3.13) is quadratic with
respect to the complex matrices R, and the elements in the matrices A and B. This

observation is used to develop explicit expressions that relate the parameters R, A and B to
the modal frequencies @, and the damping ratios ¢, , so that the number of parameters involved

in the optimization is reduced to 2m . This reduction is considerable for a relatively large number
of measurement points. Applying the optimality conditions with respect to the components of R, ,

A and B, linear systems of equations result for obtaining R,, A and B with respectto @, and
¢, r=>1---,m. These linear systems are given in (3.71) and (3.82). The resulting nonlinear
optimization problem with respect to the remaining variables @, and ¢,, r =1,---,m, is solved

in Matlab using available gradient-based optimisation algorithms. The starting values of the
parameters required in the optimization are obtained from the estimates provided by the first and
second steps. These starting values are usually very close to the optimal values for most of the
modes and thus the optimization algorithm converges in a relatively few iterations. Noting that the
matrices R admit the representation R =u,g’, r=1---,m, the modeshapes U, and the

operational reference vectors (, are derived directly by the Singular Value Decomposition (SVD)
for the resulting numerator matrices R, using the left-hand and right-hand singular vectors

corresponding to the highest singular value.

3.4.3.2 Second approach
In the second approach the CPSD function is given by (3.10). The modal parameter set & to be

identified contains the parameters @,, ¢,, U,, 0,, r=1---,m, A and B that completely
)+ NZ, + N,

out

define the CPSD matrix in (3.10). The total number of parameters is 2m(1+ 2N

out

for non-classically damped modal models.

The minimization of the objective function (3.13) can be carried out efficiently, significantly
reducing the computational cost, by recognizing that the error function in (3.13) is quadratic with
respect to the complex modeshapes U, and the elements in the matrices A and B. This

observation is used to develop explicit expressions that relate the parameters U,, A and B to
the vectors @, , the modal frequencies @, and the damping ratios ¢, so that the number of

parameters involved in the optimization is reduced to 2m(N_.+1). This reduction is

out

considerable for a relatively large number of measurement points. Applying the optimality
conditions with respect to the components of U, , A and B, a linear system of equations results

for obtaining U,, A and B with respect to the ¢,, @, and &,, r=1---,m. These linear

systems are given in (3.101). The resulting nonlinear optimization problem with respect to the
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remaining variables g, , @, and &,, I =1,---,m, is solved in Matlab using available gradient-

based optimisation algorithms. The starting values of the parameters required in the optimization
are obtained from the estimates provided by the first and second steps. These starting values are
usually very close to the optimal values for most of the modes and thus the optimization algorithm
converges in a relatively few iterations.

3.5 Validation using simulated and measured ambient vibrations

In the remaining sections of this chapter the proposed identification techniques are validated by
means of three examples. First the methodology that has been developed for the first step of the
algorithm and presented in Sections 3.4.1.1, 3.4.1.2 and 3.4.1.3 is tested using simulated
ambient vibration measurements. Specifically, the methodology that is developed in Section
3.4.1.3 based on the special structure of the common denominator polynomial is applied and
compared with the conventional methodology for the identification of the structural poles. Next,
the proposed three step algorithm is applied and its efficiency is tested for the identification of
closely spaced and overlapping modes using simulated measurement data of the response of a
model structure. Finally, a real-life example for the identification of the modal properties of a full-
scale bridge using ambient response measurements is presented.

3.5.1 Identification of structural poles using simulated measurement data

This example is concentrated on the efficiency of the first step of the proposed modal
identification algorithm where the poles of the structure are identified creating stabilization
diagrams. The methodology developed in Section 3.4.1.3 based on the special structure of the
common denominator polynomial is applied and compared with the conventional methodology for
the identification of the structural poles developed in Section 3.4.1.1. A three dimensional beam
model of a two-span bridge-like structure, shown in Figure 3.1, is considered in the simulation
studies. The simulated measurement data used for the modal identification are the vibration
responses predicted at several locations by a finite element model of a structure. These
vibrations are induced by excitation forces applied at the deck and modeled by white noise
processes. The “measured” CPSD function matrices used for the simulation are derived directly
using equation (3.3) where the Frequency Response Function is calculated from the finite
element model of the structure using a modal damping ratio of 2% and the intensity of the white
noise excitation is 1.

EA
Y y ' w G

3.1: Two-span model of a bridge-like structure.
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The first step of the proposed identification algorithm described in Section 3.4.1 is applied in the
frequency band that contain the first four modes of the structure for identifying the structural poles
that yield the modal frequencies @, and the modal damping ratios ¢, . The stabilization diagram

that is constructed by solving sequentially the system of linear equations in (3.60) and using the
simplification presented in Section 3.4.1.3 increasing the order of the common denominator
polynomial order with maximum value of order p =100 is presented in Figure 3.2. In Figure 3.2
the green cross (+) marker represent the poles that do not derive in groups of four y75 y:,
1/ p, and 1/ ,u: for the discrete time models described in Section 3.4.1.1 and are ignored in the

stabilization procedure. All other markers represent the poles that appear in groups of four with
the red square markers representing the poles stabilized considering the modal frequencies and
the red triangular markers representing the poles stabilized considering both the modal
frequencies and modal damping ratios. The magenta xi (x) markers correspond to non stabilized

spurious mathematical poles that comes in groups of four ¢, ,u:, 1/ M, and 1/ ,u:.

For the conventional case, the stabilization diagram constructed in the same way by solving
sequentially the system of linear equations in (3.45) but without using the simplification presented
in Section 3.4.3, is presented in Figure 3.3. Similar to Figure 3.2 the green cross (+) marker in
Figure 3.3 represent the poles that are not derived in groups of four £, y:, 1/ M, and 1/ ,u: for

the discrete time models described in Section 3.4.1 and are ignored in the stabilization procedure.
All other markers represent the poles that appear in groups of four with the red square markers
representing the poles stabilized considering the modal frequencies and the red triangular
markers representing the poles stabilized considering both the modal frequencies and modal
damping ratios. It should be noted that in the conventional method the poles are never derived
exactly following the form of 1, , ,ur*, 1/, and 1/ ,u:, but they have small computational errors,

due to the fact that such a sequence of four poles has not being enforced in the conventional
method. In order to be grouped and accepted as physical poles, a tolerance criterion must be
implemented when comparing the poles computed with the ideal case of z,, ,u:, 1/;1r and

1/ 4 . For the case of Figure 3.3 the tolerance is selected to be tol =3% and the four poles are

Al-|A
assumed to approximately form a sequence of 4, 4, , l/,ur and 1/ M, i |r||/1—|r <tol with
r
A, are the poles in the continuous time formulation given by
In
A = A (3.126)
At
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Figure 3.2: Stabilization Diagram constructed using the simplification presented in Section 3.4.1.3.
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Figure 3.3: Stabilization Diagram constructed using the conventional method.
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Comparing the stabilization diagrams presented in Figures 3.2 and 3.3 it is observed that several
spurious mathematical modes appear for both the cases of the new and the conventional
methods. The number of spurious mathematical modes for the case of the conventional method

is significantly higher than the corresponding number for the new method. Also, both methods
converge fast as the value of P increases. Specifically, for both methods the physical modes

have been identified and the procedure has converged for values of p=20. It has been

observed that, for the conventional method, by decreasing the tolerance criterion, the order of the
polynomial in which all four physical modes are computed is increased. Finally, the predictions of
the modal frequencies and damping ratios obtained from the new and the conventional method
for p=20 and p =40 are presented in Table 3.1 for the new method and in Table 3.2 for the
conventional method. The accuracy of the predictions is inferred by comparing these predicted
values with the actual values obtained from the eigenvalue analysis of the finite element model of
the structure. It is observed that both methodologies in this case of simulated experimental data
easily identify the modes of the structure giving accurate results for the values of the modal
frequencies and the modal damping ratios. Generally, both methodologies appear to work
adequately, easily identifying the modes of the structure. The new method is more efficient since
it takes advantage of the special structure of the denominator polynomial in CPSD to converge
faster and provide accurate results consistent with the structure of the denominator polynomial.

Table 3.1: Comparison between the identified values of the modal frequencies and modal damping ratios
and the nominal values estimated by the FEM, for the new method.

1% mode 2" mode 3" mode 4™ mode
@ Hz) | & (%) | @, (Hz) | &, (%) | @, (H2) | &5 (%) | @, H2) | &, (%)
FEM 2.842 2.00 3.569 2.00 4.595 2.00 5.769 2.00
p= 20 2.844 2.04 3.570 2.00 4.596 2.00 5.770 1.99
p=40 2.845 2.00 3.570 2.00 4.596 2.00 5.770 2.00

Table 3.2: Comparison between the identified values of the modal frequencies and modal damping ratios

and the nominal values estimated by the FEM, for the conventional method.

1% mode 2" mode 3" mode 4™ mode
@, (Hz) ¢, (%) @, (Hz) ¢, (%) @, (Hz) G5 (%) w, (Hz) ¢4 (%)
FEM 2.842 2.00 3.569 2.00 4.595 2.00 5.769 2.00
p= 20 2.845 2.02 3.570 2.00 4.596 2.00 5.770 2.00
p=40 2.845 2.00 3.570 2.00 4.596 2.00 5.770 2.00
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It should be noted that the aforementioned results are based on simulated CPSD functions that
are computed directly from the finite element model of the structure and the PSD of the white
noise excitation. Next, the identification of the first four modes of the same model is performed
again but this time the simulated CPSD functions are computed using simulated vibration
response time histories predicted at same locations as before. These vibrations are induced by
excitation forces applied at the deck and modeled by discrete white noise processes. The
equations of motion are then solved to compute the acceleration response time histories. The
CPSD function matrices of the acceleration response of the model are estimated from these
simulated time histories using the methodologies described in Appendix 3.A.

The stabilization diagrams for new method (see Section 3.4.1.3) and the conventional (see
Section 3.4.1.1) are constructed with maximum value of order p =100 and presented in Figures
3.4 and 3.5, respectively. The interpretation of the symbols (markers) green cross (+), red square
and red triangular in these figures is kept the same as the one used for Figures 3.2 and 3.3. It
should be noted that applying the conventional method for the first step of the algorithm the poles
estimated are not obtained in groups of four g, , ,u:, 1/ u, and 1/,u: for the discrete time

models and the same tolerance criterion of tol =3% is used. This makes the distinction
between physical and mathematical more difficult resulting in many spurious mathematical poles
that can not be removed easily from the stabilization procedure. Compared to Figures 3.4 and
3.5, it can be seen that a slower converge is observed as the value of P increases, especially for
the conventional method. Specifically, for the conventional method the stabilization of the poles
seem not to be as efficient as for the new method even for high order denominator models.

Both methods seem to have been converged in modal frequencies for values of p =20 but it

should be noted that for both methods higher order denominator models seem to provide poles
that makes the stabilization procedure not very reliable. This problem could be solved and
eliminate the spurious modes appearing for high values of P by implementing another criterion

in the stabilization procedure that takes into account the comparison of the modeshapes
computed by the poles of order p and p—1. Specifically the modal assurance criterion (MAC)
could be implemented for comparing two modeshapes in the stabilization procedure but this
requires the estimation of all modeshapes given the poles. These modeshapes can be estimated
using the techniques described in Section 3.4.2, increasing significantly the computational cost of
the procedure.

The accuracy of the predictions of the modal frequencies and damping ratios obtained from the
new and the conventional methods for p=20and p =40 is presented in Table 3.3 and 3.4 and
compared to the actual values obtained from the eigenvalue analysis of the finite element model
of the structure. It is observed that both methods fail to give sufficiently accurate estimates of the
modal damping ratios for all four modes. Generally, the new method is more efficient and
accurate since it has faster converge properties and provide accurate results for the modal
frequencies and damping ratios of all four modes.
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Figure 3.4: Stabilization Diagram constructed using the simplification presented in Section 3.4.1.3.
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Figure 3.5: Stabilization Diagram constructed using the conventional method.
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Table 3.3: Comparison between the identified values of the modal frequencies and modal damping ratios

and the nominal values estimated by the FEM, for the new method.

1% mode 2" mode 3" mode 4™ mode
@, (Hz) ¢ (%) @, (Hz) ¢, (%) @, (Hz) G5 (%) o, (Hz) ¢4 (%)
FEM 2.842 2.00 3.569 2.00 4,595 2.00 5.769 2.00
p= 20 2.853 2.09 3.589 1.78 4,592 2.30 5.766 2.07
p= 40 2.857 2.01 3.585 1.79 4591 2.33 5.763 1.97

Table 3.4: Comparison between the identified values of the modal frequencies and modal damping ratios

and the nominal values estimated by the FEM, for the conventional method.

1% mode 2" mode 3" mode 4™ mode
o Hz) | & (%) | @, Hz) | &, (%) | @, (H2) | & (%) | o, (Hz) | &, (%)
FEM 2.842 2.00 3.569 2.00 4.595 2.00 5.769 2.00
p= 20 2.855 2.18 3.585 1.77 4.595 2.30 5.767 2.03
p=40 2.842 1.97 3.569 1.76 4.595 2.31 5.769 1.75
3.5.2 Identification of closely spaced and overlapping modes using simulated

measurement data

In this section the methodologies will be tested for closely spaced and overlapped modes. The
modal identification of a structure that has closely and overlapping modes is always a challenging
problem. This problem is studied in this subsection in detail. Specifically, the proposed three step
algorithm is applied and its efficiency is tested for the identification of closely spaced modes using
simulated measurement data of the response of a model structure. In the literature, a two step
algorithm is commonly used for modal identification. This example demonstrates that the first two
identification steps are sometimes inadequate especially for the case of closely and overlapping
modes. For this case the application of the third step is necessary and is shown to improve
significantly the modal identification results.

A three dimensional beam model of a two-span bridge-like structure, shown in Figure 3.6, is
considered in the simulation studies. The two spans are weakly connected and almost similar in
properties. This has an effect of having pairs of two very closely-spaced bending modes. The
dynamics of the structure considered in this artificial example is encountered in existing bridge
structures. Specifically, the behavior of the two span bridge resembles the behavior observed for
the four span G2 Kavala bridge of Egnatia Odos Motorway (Ntotsios et al. 2009). The four-span
Kavala bridge has four closely spaced bending modes due to the almost similar properties of the
four spans and the fact that these spans are weakly connected with each other. A finite element
model for the simulated two-span bridge is constructed. The simulated measurement data used
for the modal identification are the vibration responses predicted at several locations by the finite
element model of a structure. These vibrations are induced by excitation forces applied at the
deck and modeled by white noise processes. The “measured” CPSD function matrices used for
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the simulation is derived directly using equation (3.3) where the Frequency Response Function is
calculated from the finite element model of the structure using a modal damping ratio of 2% and
the intensity of the white noise excitation is 1. The model of the structure has been properly
selected to have pairs of closely spaced and overlapping modes.

- L TN' -1- L -
Al<<L

Figure 3.6: Two-span model of a bridge-like structure.

The first step of the proposed identification algorithm described in Sections 3.4.1.1 to 3.4.1.3 is
next applied in the frequency band that contain the first two pairs of closely spaced and
overlapping modes for identifying the structural poles that yield the modal frequencies @, and the
modal damping ratios ¢, . The stabilization diagrams for new method (see Section 3.4.1.3) and
the conventional (see Section 3.4.1.1) are constructed with maximum value of order p =100
and presented in Figures 3.7 and 3.8, respectively. The interpretation of the symbols (markers)
green cross (+), red square and red triangular in these figures is kept the same as the one used
for Figures 3.2 to 3.5. It should be noted that applying the conventional method for the first step of
the algorithm the poles estimated are not obtained in groups of four g, , ,u:, 1/ M, and 1/ ,u: for

the discrete time models. This makes the distinction between physical and mathematical more
difficult resulting in many spurious mathematical poles that can not be removed easily from the
stabilization procedure.
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Figure 3.7: Stabilization Diagram constructed using the simplification presented in Section 3.4.1.3
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Figure 3.8: Stabilization Diagram constructed using the conventional method
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Comparing the stabilization diagrams presented in Figures 3.7 and 3.8 it is observed that several
spurious mathematical modes appear for both the cases of the new and the conventional
methods. The number of spurious mathematical modes for the case of the conventional method
is significantly higher than the corresponding number for the new method. For both methods the
physical modes have been identified and the procedure has converged for values of p =20 . For
the conventional method, the convergence is slower increasing the lowest order of the common
denominator polynomial in which all four modes of the structure first appear stabilized. Finally, the
predictions of the modal frequencies and damping ratios obtained from the new method and the
conventional method for p=20 and p =40 is presented in Tables 3.5 and 3.6 respectively.
The accuracy of these prediction is inferred by comparing the predicted values to the actual
values obtained from the eigenvalue analysis of the finite element model of the structure. It is
observed that generally, the both methods are efficient and accurate with fast converge
properties and provide accurate results for the two pairs of closely-spaced modes.

Table 3.5: Comparison between the identified values of the modal frequencies and modal damping ratios
and the nominal values estimated by the FEM, for the new method.

1% mode 2" mode 3" mode 4™ mode
o Hz) | & (W) | @, (H2) | &, (%) | o, (H) | & (%) | @, Hz) | &, (%)
FEM 3.228 2.00 3.286 2.00 4,916 2.00 5.004 2.00
p= 20 3.221 1.94 3.293 1.98 4,916 2.02 5.008 1.97
p= 40 3.231 2.00 3.288 2.00 4.917 2.00 5.006 2.00

Table 3.6: Comparison between the identified values of the modal frequencies and modal damping ratios

and the nominal values estimated by the FEM, for the conventional method.

1% mode 2" mode 3" mode 4™ mode
@ Hz) | & (%) | @, (H2) | &, (%) | @, (H2) | &5 (%) | @, (H2) | &, (%)
FEM 3.228 2.00 3.286 2.00 4,916 2.00 5.004 2.00
p= 20 3.225 2.05 3.293 1.98 4,916 2.02 5.008 1.97
p= 40 3.231 2.00 3.288 2.00 4.917 2.00 5.006 2.00

From the results, it can be concluded that both methodologies appear to work adequately, easily
identifying the modes of the structure. The new method is more efficient since it takes advantage
of the special structure of the denominator polynomial in CPSD to converge faster and provide
accurate results consistent with the structure of the denominator polynomial.

Next, in order to account of the fact that the existence of measurement noise may hinder the
identification of the structural modes, the identification will also be based on simulated
acceleration time histories generated by solving the equations of motion of the structure to
discrete white noise excitation. For this, the identification of the modes of the bridge shown in
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Figure 3.6 is performed again but this time the simulated CPSD functions are computed using
simulated vibration response time histories predicted at same locations as before. These
vibrations are induced by excitation forces applied at the deck and modeled by discrete white
noise processes. The equations of motion are then solved to compute the acceleration response
time histories. The CPSD function matrices of the acceleration response of the model are
estimated from these simulated time histories using the methodologies described in Appendix
3.A.

In generating the simulated acceleration response time signals to be used for identification using
OMA, it should be noted that in order to clearly identify the closely spaced modes, the time
duration of these responses should be several times greater than (27 / Aw), where Aw is the

distance between the modal frequencies of the closely spaced modes. It is expected that the
larger the duration of the measured response in relation to (27 / Aw), the better the estimates of
the closely spaced modal properties. As the duration is increased, the measurements tend to
contain the necessary information for the distinction of the closely and overlapped modes.

The first two steps of the proposed identification algorithm described in Section 3.4.2 are applied
in the frequency band that contain the closely spaced modes for identifying the modal properties
o, U, g,, A and B that define the CPSD matrix. The third step of the algorithm

r’
described in Section 3.4.3 is also applied, where the original non-linear optimization problem
(3.13) is solved with respect to the parameters @,, ¢, and @, , using as initial values for the

minimization algorithm the values of the parameters already computed by the first two steps of
the identification algorithm.

Specifically, the first step of the proposed identification algorithm described in Sections 3.4.1.1 to
3.4.1.3 is applied in the frequency band that contain the first two pairs of closely spaced and
overlapping modes for identifying the structural poles that yield the modal frequencies @, and the

modal damping ratios ¢, . The stabilization diagrams for the new method (see Section 3.4.1.3)

and the conventional one (see Section 3.4.1.1) are constructed with maximum value of order
p=100 and presented in Figures 3.9 and 3.10, respectively. Comparing the stabilization
diagrams it is observed that several spurious mathematical modes appear for both the cases of
the new and the conventional methods. The number of spurious mathematical modes for the
case of the conventional method is significantly higher than the corresponding number for the
new method. It should be noted that for both methods higher order denominator models seem to
provide poles that makes the stabilization procedure not very reliable. As before, this problem

could be solved by implementing another criterion in the stabilization procedure that takes into
account the comparison of the modeshapes computed by the poles of order p and p—1.

Also, the new method converges much faster as the value of p increases. Specifically, for the

new method the physical modes have been identified and the procedure has converged for
values of p =68 for the first pair of closely spaced modes and p =40 for the second pair of

closely spaced modes. For the conventional method, the convergence is much slower and seems
to fail to identify the first pair of closely spaced modes.
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Figure 3.9: Stabilization Diagram constructed using the simplification presented in Section 3.4.1.3
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Figure 3.10: Stabilization Diagram constructed using the conventional method
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The accuracy of the predictions of the modal frequencies and damping ratios obtained from the
new method for p=40 and p =100 is presented in Table 3.7. The accuracy of the predictions

of the modal frequencies and damping ratios obtained from the conventional method for p =40
and p =100 is presented in Table 3.8. In both tables the identified values are compared to the

actual values obtained from the eigenvalue analysis of the finite element model of the structure. It
is obvious that the new method performs much better for closely spaced modes. However, the
accuracy of the modal frequencies and damping ratios of the closely spaced modes identified by
the new method are not as good, especially for the modal damping ratios. To improve the
accuracy of the modal frequencies and damping ratios, third step of the proposed nonlinear
optimization algorithm is necessary.

Table 3.7: Comparison between the identified values of the modal frequencies and modal damping ratios
and the nominal values estimated by the FEM, for the new method.

1% mode 2" mode 3" mode 4™ mode
@ Hz) | & () | o, H2) | &, (%) | o, (Hy) | & (%) | @, (Hz) | &, (%)
FEM 3.228 2.00 3.286 2.00 4.916 2.00 5.004 2.00
p= 40 3.253 0.36 3.266 1.91 4.918 1.32 5.028 1.66
p= 100 3.248 1.32 3.278 1.29 4.920 1.25 5.030 1.60

Table 3.8: Comparison between the identified values of the modal frequencies and modal damping ratios
and the nominal values estimated by the FEM, for the conventional method.

1% mode 2" mode 3" mode 4™ mode
@ Hz) | & (W) | o, H2) | &, (%) | o, (Hy) | & (%) | @, Hz) | &, (%)
FEM 3.228 2.00 3.286 2.00 4.916 2.00 5.004 2.00
p= 20 3.266 1.96 - - 4.922 1.23 5.027 1.64
p= 100 3.280 2.47 - - 4.922 1.29 5.029 1.61

Next, the accuracy of the identified modal values using the first two steps is compared to the
accuracy of the identified modal values using all three steps. Using the stabilization diagram of
Figure 3.9, the two pairs of closely and overlapping modes are identified and used in the second
step of the identification algorithm for the estimation of the modeshapes and the reference
vectors. Both approaches, termed 1% and 2" approach, presented in Section 3.4.1.2 are applied.
The resulting modal fits are shown in Figures 3.11 and 3.12 in the vicinity of the two pairs of
closely spaced modes. Specifically, Figures 3.11 and 3.12 shows the comparison between the

absolute value HSA(kAa))H of the measured CPSD functions and the absolute value ||S(kAa); Q)”

of the CPSD functions predicted by the identified modal model. The third step of the identification
algorithm is also applied and the resulted modal fits are also shown in Figures 3.11 and 3.12 for
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the acceleration responses concentrated in the frequency band of the closely spaced and
overlapping modes. For the third step, also the two approaches, termed 1* and 2" approach, that
have been introduced in Section 3.4.1.3 are applied. Table 3.9 summarizes the results for the
modal frequencies and the modal damping ratios estimated by the third step of the algorithm
using both the first and the second approach. It can be seen that the estimated values are very
close to the exact values predicted by the finite element model used to generate the
measurements especially when using the second approach

Table 3.9: Comparison between the identified values of the modal frequencies and modal damping ratios

and the nominal values estimated by the FEM, using the three step algorithm.

1% mode 2" mode 3" mode 4™ mode
@, (Hz) ¢, (%) ®, (Hz) ¢, (%) w; (Hz) g5 (%) w, (Hz) ¢, (%)
FEM 3.228 2.00 3.286 2.00 4.916 2.00 5.004 2.00
St
1 3.243 1.71 3.293 1.74 4921 1.79 5.037 1.74
Approach
nd
2 3.234 2.00 3.287 2.09 4,913 1.93 5.013 1.86
Approach

It can be easily observed in the Figures 3.11 and 3.12 that for the case of closely and overlapping
modes the modal model identified by applying only the first two steps of the algorithm is quite
inadequate compared to the modal model identified using the third step (2nd approach) algorithm.
It can also be observed that the modal model identified when applying the first approach of the
three step algorithm can not predict the response of the structure as good as the modal model

identified when applying the second approach. This has been observed for many cases of closely
spaced and overlapping modes and is due to the assumption that the residue matrix R, is of rank

1. For the case where the third step of the algorithm is used with the second approach outlined in
Section 3.4.1.3, the identified modal model predicts very efficiently the closely spaced modes,
while the corresponding CPSD predicted by the modal model provides a very good fit to the
measured CPSD functions.
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Figure 3.11: Comparison between the measured CPSD function and the CPSD functions predicted by the
modal model that was identified by applying the two step and the three step algorithms in the frequency
band of the first pair of closely-spaced modes.
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Figure 3.12: Comparison between the measured CPSD function and the CPSD functions predicted by the
modal model that was identified by applying the two step and the three step algorithms in the frequency
band of the second pair of closely-spaced modes.

3.5.3 Identification of structural poles using real measurement data

This section applies the developed modal identification methodologies for estimating the dynamic
modal characteristics of the Metsovo bridge, shown in Figure 3.13, using ambient vibration
measurements. Specifically, six uniaxial accelerometers were installed inside the box beam
cantilever M3 of the left carriageway of Metsovo bridge when the carriageway was under
construction. The part of the bridge that was constructed and instrumented is the one highlighted
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in Figure 3.13. This subsection is concentrated in the efficiency of the proposed three step modal
identification algorithm and thus complete description of the bridge and the instrumentation
procedure are not given here. A fully detailed study on this bridge is presented in the work
Panetsos et al. (2009) and Ntotsios (2009).

Figure 3.13: General view of the under construction Metsovo ravine bridge (November 2007)

The CPSD function matrix of the six measured acceleration responses of the bridge are first
estimated using the methodologies described in Appendix 3.A. Then the first step of the proposed
identification algorithm described in Sections 3.4.1 to 3.4.3 is applied in the frequency band O to 1
Hz for identifying the structural poles that yield the modal frequencies @, and the modal damping

ratios §,. The stabilization diagrams for the new method (see Section 3.4.1.3) and the
conventional one (see Section 3.4.1.1) are constructed with maximum value of order p =100

and presented in Figures 3.14 and 3.15, respectively. The interpretation of the symbols (markers)
green cross (+), red square and red triangular in these figures is kept the same as the one used
for Figures 3.2 to 3.5. Comparing the stabilization diagrams presented in Figures 3.14 and 3.15 it
is observed that the number of spurious mathematical modes for the case of the conventional
method is significantly higher than the corresponding number for the new method. Also, much
clearer stabilization diagrams are observed for the new method compared to the conventional
method. In addition, the new method converges faster as the value of P increases. Specifically,

for the new method the physical modes have been identified and the procedure has converged
for values of p=20. For the conventional method, the convergence is slower since the lowest

order of the common denominator polynomial in which all four modes of the structure first appear
stabilized is p = 24 using the tolerance of tol = 3%.
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Figure 3.14: Stabilization Diagram constructed using the simplification presented in Section 3.4.1.3
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Figure 3.15: Stabilization Diagram constructed using the conventional method
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The accuracy of the predictions of the modal frequencies and damping ratios obtained from the
new method for P =20 and p =100 is presented in Table 3.10 and from the conventional

method for p=24 and p =100 is presented in Table 3.11. It can be seen that both the new

and the conventional method provide the same estimate of the modal frequencies for values of
p aslowas p=20 and p =24, respectively. Increasing the order of p does not improve the

predictions. The values of the damping ratios differ slightly depending on the method and the
order P used. Specifically, on can observe that both the new and the conventional method

provide the same estimate of the modal damping ratios for values of p as high as p =100. For
low values of p=20 for the new method and p =24 for the conventional method, the

predictions differ significantly. Despite these differences, the predictions of the modal damping
ratios even for the low P values are considered to be acceptable.

Table 3.10: Identified values of the modal frequencies and modal damping ratios for the case of the new
method

1% mode 2" mode 3 mode 4™ mode 5" mode

w, 1 @, ¢ 23 ¢s w, ¢4 Wy Cs
Hz) | (%) | (Hz) (%) Hz) | (%) | (Hz) | (%) | (Hz) | (%)
p= 20 | 0.158 | 0.41 | 0.305 0.20 0.623 | 0.34 | 0.685 | 0.39 | 0.907 | 0.21

p=100 | 0.158 | 0.29 | 0.305 | 0.17 | 0.622 | 0.47 | 0.685 | 0.35 | 0.907 | 0.28

Table 3.11: Identified values of the modal frequencies and modal damping ratios for the case of the
conventional method

1% mode 2" mode 3" mode 4™ mode 5" mode

w, ¢ @, ¢ 23 ¢ @, ¢4 23 Cs
(Hz) | %) | (Hz) (%) Hz) | (%) | (Hz) | (%) | (Hz) | (%)
p= 24 | 0.158 | 0.45 | 0.305 0.20 0.622 | 0.47 | 0.684 | 0.54 | 0.908 | 0.34

p=100 | 0.158 | 0.27 | 0.305 | 0.18 | 0.622 | 0.45 | 0.685 | 0.37 | 0.907 | 0.26

Next, using the stabilization diagram of Figure 3.16, five modes of the bridge are identified in the
[0,1] Hz frequency band and used in the second step of the identification algorithm for the
estimation of the modeshapes and the reference vectors. The first approach presented in Section
3.4.2.1 is applied. In addition, the third step of the identification algorithm is also used to improve

the estimate of the modal model. The measured PSD function HSA(kAa))H is compared in Figure
3.11 for three measured acceleration responses concentrated in the frequency band 0 to 1 Hz to
the PSD functions ||S(kAa);Q)|| predicted by identified modal model using the two-step and the

three-step algorithms. It can be observed that for this case of real measurement data with non-
closely spaced and non-overlapping modes, and despite the noise in the signals resulted from the
actual measurements, the modal model identified by the two step algorithm provides an excellent
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fit to the measured PSDs which is almost identical to the fit provided by the modal model
identified from the three step algorithm.

sensor 1 CPSD
sensor 2 CPSD
sensor 3 CPSD
o e modal fit (2 steps)
i modal fit (3 steps)

PSD
| I |

S
IR M

"
........
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10" ¢ t
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Figure 3.16: Comparison between the measured CPSD function and the CPSD functions predicted by the
modal model that was identified by applying the two step and the three step algorithms.

3.6 Conclusions

Frequency domain least squares methods for the identification of non-classically damped modal
models of linear structures using ambient vibration measurements were developed. The
identification was based on minimizing the square difference between the measured CPSD matrix
estimated from the available output only measurements and the CPSD matrix predicted by a
modal model. The identification involves the estimation of the number of contributing modes, the
modal frequencies, the modal damping ratios and the complex modeshapes of the contributing
modes. Computational efficient algorithms for solving the resulting, highly non-convex, nonlinear
optimization problem were proposed, including features of automatically estimating the number of
contributing modes, as well as the modal frequencies and the damping ratios of the physical
modes without or minimal user intervention.

A three-step approach was proposed to carry out efficiently the optimization. In the first step, the
modal frequencies and modal damping ratios are estimated by solving a system of linear
algebraic equations using the description of the CPSD matrix as a rational fraction of polynomials
with common the denominator polynomial for all entries of the CPSD matrix. One of the novel
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contributions is the methodology based on the special structure of the common denominator
polynomial that is revealed by examining the dependence of the CPSD matrices on the
eigenvalues for the discrete time formulation. Taking advantage of this special structure, one
simplifies the system of normal equations used to compute the coefficients of the common
denominator polynomial and also reduces considerably the number of spurious mathematical
(non-physical) modes that are obtained using the conventional methodology. The modal
frequencies and the damping ratios of the structure are obtained from the roots of the common
denominator polynomial estimated using the eigenvalues of the companion matrix. Stabilization
diagrams are used to estimate the number of contributing modes by distinguishing between
physical and mathematical modes. In the second step, two alternative approaches were
introduced to estimate the modeshapes of the structure. The first approach is non-iterative and
estimates the modal residue matrices by solving a linear system of equations given the values of
the modal frequencies and damping ratios estimated in the first step. Singular value
decomposition on the residue matrices provides the complex modeshapes of the structure. The
second approach is a least squares optimization approach that takes advantage of the quadratic
dependence of the objective function on the modeshapes and other matrices to reduce the
number of parameters involved in the nonlinear optimization to the smallest possible number.

The estimates provided from the first two steps are in most cases very close to the optimal
estimates. In order to improve the estimates, the full non-convex nonlinear optimization problem
has to be solved in the third step by using the initial estimates of the parameters obtained in the
first two steps to accelerate convergence of the optimization algorithm. Two very efficient solution
approaches were proposed for the third step. It is demonstrated that for closely-spaced and
overlapping modes the third step improves significantly the accuracy of the modal characteristics.

The efficiency of the algorithm is tested using simulated ambient vibration data generated by
simple structural models, as well as real measured ambient vibration data available for a full scale
structure. The results showed that generally the proposed method for the identification of the
structural poles in the first step is computationally much more efficient and accurate than existing
methods since it has faster converge properties and provide accurate results for the modal
frequencies and damping ratios. For the case of closely-spaced and overlapping modes it was
demonstrated that the first two steps fail to accurately estimate the modal characteristics of the
closely spaced modes. The third step of the proposed algorithm is required to improve
significantly the estimates of the modal characteristics for closely spaced and overlapping modes.
Finally, the proposed modal identification methodology applied on real measurement data from a
full scale structure was shown to be very accurate since the fit between the measured and the
modal model predicted CPSD functions was excellent.
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Appendix 3.A
Estimation of auto and cross power spectral densities

Parts of the presentation that follows have been taken from the work of Parloo (2003) and
Cauberghe (2004).

3.A.1 The periodogram approach

The periodogram method is a popular method for the estimation of auto and cross power spectral
densities (Marple, 1987). Let X,(m), m=0,---,M -1, 0=1,---,N_, be an assembly of N,
ref

discrete time-domain output sequences. Let X" (M) be a sub-vector of X(m) containing the

time sequences of N outputs which are serving as reference-responses for the measured data

set. The basic idea of the periodogram method is to divide the data sequence for each measured
output of M samples into P non-overlapping segments of D samples each, so that DP <M .
As an alternative to choosing no common samples between adjacent segments, a small overlap
can be used (Welch, 1967). For each segment S, S=0,---,P —1, the discrete Fourier transform

of the signal X,(m) for all considered responses 0, 0=1,---, N, weighted with a time window

W of length D, can be computed as

D-1 .
Ketio) =T, S 60 +ioe 7 | o127
k=0
A similar expression can be found for all reference responses i, i =1,---, N, , assembled in the
sub-vectors X" (m)
D-1 )
X (jo) =T, (ZW (K)x™ (sD +k)e j (3.128)
k=0

An estimate of the entries of the (N, x N ) cross power spectral density matrix S(jw) for

ref

each response reference-response combination, evaluated at discrete frequency @, is given by

S,i(j0) == 3 [ X (i) (X2 () | @129

where X:(jw) and X*™ (jw) are respectively the (N, x1) and (N x1) vectors
computed in (3.127) and (3.128).

The time window W (e.g., Hanning window) is used to reduce the negative effect of leakage.
Choosing a higher amount of data samples D in each segment, at the expense of the number of
averages P, will reduce the effect of leakage. Moreover, a higher spectral resolution will be
obtained in the frequency-domain. However, the resulting decrease in the number of averages P
leads to a higher stochastic uncertainty on the estimates. In practice, a trade-off will have to be
made between these contradicting aspects.
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Note that the basic idea behind allowing an overlap between the data segments consists in
allowing a better contribution of all samples of the raw time history response data to the averaged
estimate. If no overlap is considered, the contribution of samples near the edges of the segments
will be suppressed by the presence of the Hanning window.

3.A.2 The correlogram approach

The periodogram approach can be used as an alternative to the periodogram method for the
estimation of cross power spectra of the response signals. This method computes the unbiased
discrete-time domain correlation estimate between the signal X,(m), m=0,---,M -1, of a

ref

response 0 and the signal X;° (M) of a reference-response 1. This correlation estimate is given

by
1 M —k-1
R, (k)= VRIS (m+k)x™ (m) for0<k <M -1
. i (3.130)
R, ; (k) =M—|k| D X (m+[k)x,(m)  for -(M-1)<k<0
- m=0

with K the correlation time. The biased correlation estimate uses 1/ M rather than 1/(M—k).

The cross power spectral density function matrix estimates can then be obtained by Fourier
transforming the correlation functions obtained from (3.130)

M
Sei () =T, D W(K)R,; (k)e ™" (3.131)

k=—-M

where R(K) is the (N, x N, ) matrix that contains the correlation estimates calculated in
(3.130) and W (k) isa (2M +1) point time window.

The window reduces the effect of leakage due to the large side lobes of the implicit rectangular
window and therefore the bias error in the cross power spectral density estimate. The use of an
adequate window (e.g., Hanning, Hamming, etc), symmetric around the origin, is advisable. For
instance, applying a Hanning window to the correlation estimate will force the correlation to zero
at the higher lags. Moreover, the application of such a window reduces the stochastic uncertainty
on the cross power estimate due to the presence of a higher stochastic uncertainty near the
higher lags of the correlation function estimate. However, when applying a time window, the poles
(and especially the damping) of the underlining system will be affected. However, for an
exponential window, the poles can be compensated exactly for the added damping. This is not
the case for other windows such as Hanning or Hamming.

Hence, for the purpose of modal parameter estimation, the correlogram approach is best
combined with the use of an exponential window. Given the form of the correlation function
estimates, a double sided exponential time data window centered around O,
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W =g A with “M<m<+M (3.132)

m

with B a decay factor, can be used. The poles /IreSt extracted from the estimates can be

compensated (corrected) for the artificial damping added by the window by using the value of the
[ factor as follows

A=A+ B (3.133)

Although an averaging procedure is usually not strictly required, the possibility exists to use an
averaging similar to the periodogram approach. If the time history response sequences consist of
M samples, every response sequence can be divided into P non-overlapping segments of D
samples each so that DP <M . Correlogram estimates of the auto- and cross power spectra
S®., between the responses 0, 0=1---,N and a subset of reference responses |,

0,i’ ' " Vout !
i=1---, Nref , can be obtained using equations (3.130) and (3.131) for each segments S,
s=0,---,P—-1. An averaged correlogram estimate of the auto- and cross power spectra is then

given by

o

-1
S..=>»S: (3.134)

0,i 0,i

[
I
o

It should be noted that averaging the correlogram estimates decreases the spectral resolution of
the resulting estimate. Reducing the number of samples used for the computation of the
correlation functions also increases the bias error due to leakage on these estimates.

3.A.3 The ‘positive’ power spectra approach

For the identification of modal parameters from output-only measurements, several frequency-
domain identification methods are based on the cross power spectral densities satisfying (3.4).
However, this technique has several disadvantages:

e The power spectra have a 4-quadrant symmetry i.e. the modal model contains as poles
the values 4, , 4, —4, and —A . This results in a model order, which is twice the

modal order needed to model FRFs. For all identification methods based on the full
spectra, this higher model order results in an increasing calculation time and in a less
good numerical conditioning.

e The power spectra contain both stable 4, A~ and unstable poles —4, , =4 poles in its
model. This results in less interesting properties for the interpretation of stabilization
diagrams, when distinguishing physical from mathematical poles.

e Power spectra estimated from a limited amount of data are typically characterized by high
noise levels compared to FRFs. Therefore, an additional noise reduction would be
preferable.

e When using the periodogram approach to estimate the power spectra, a tradeoff must be
made between the stochastic uncertainties and the bias errors introduced by leakage.
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Some of these disadvantages can be overcome by starting from the first M positive lags of the
correlation function R given by (3.130). Using the correlogram approach it is sufficient to

estimate the so called positive spectra (or half spectra), which are obtained by using only the
correlation having a positive time lag (Cauberghe 2004, Peeters and Van der Auwearer 2005) in
(3.131) as follows

~W(O)R,;(0)

M
S,i (jo) +TSZW (K)R,; (k)e 1 (3.135)
k=1

The relation between half spectra (3.135) and the full spectra (3.131) is the following:

Si(j@) =857 (@) +(Sy; (@) (3.136)

The modal decomposition of these half spectra only consists of the first two terms in (3.4), that is,

oo Mmbugt Ul
SH (JCO)=Z ja):r/i + ja):r/l* (3.137)

The advantage in modal analysis is that models of low order can be fitted without affecting the
quality.

Under the white noise input assumption, the output correlations are equivalent to impulse
response. So, just like in impact testing, it is logical to apply an exponential window W (k) to the
correlations before computing the DFT in equation (3.135). The exponential window reduces the
effect of leakage and the influence of the higher time lags, which have a larger variance.
Moreover, the application of an exponential window to impulse responses or correlations is
compatible with the modal model and the pole estimates can be corrected using equation (3.133).

3.A.4 Choosing reference responses

Similar to choosing position(s) for the input force(s) (so-called references) during input-output
modal testing, the choice of good reference response signals during output-only modal testing
can be important for obtaining high quality data sets.

If all N,, responses of a structure under test are measured simultaneously, each of the

structural responses can be used as a reference response. This approach resultsina N_, x N,

power spectrum matrix S( jw) . If the number of outputs is large, the latter approach can lead to
a high computational burden especially during the parametric estimation.

Instead of using all outputs as reference responses, a small number of responses in suitable
locations of the structure can be chosen as reference responses. Note that the nodal points of
structural modes should be avoided to be used as reference positions. Moreover, responses with
a signal to noise ratio superior (or at least equal) compared to the other responses should be
preferred when choosing reference responses in order to increase the quality of the auto and
cross power spectral density estimates. If the reference response signals are chosen carefully,
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similar quality modal information can be extracted from data sets obtained with a limited number
of references as from data sets where the maximum number of references was used.

The idea of the reference sensors can be used to obtain measurements for a structure using a
small number of sensors compared to the measurement locations that one would like to identify
the modeshape components. In this case the available sensors are divided into two groups. One
group constitutes the reference group and the sensors are placed at reference locations which
remain fixed during the measurements. The other group constitutes the moving group and the
sensors in this group are moved from measurement to measurement to new locations until all
desirable measurements locations are covered by the available number of moving sensors. The
measurements from the moving sensors are combined into the vector X(m), while the
measurements from the reference sensors constitute the vector of measurements fef (m). In

choosing the reference locations care should be taken so that nodal points are avoided.
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Chapter 4

Structural identification methods for finite element
model updating and prediction variability

4.1 Introduction

Structural model updating methods (e.g. Mottershead and Friswell, 1993; Farhat and Hemez,
1993; Capecchi and Vestroni, 1993; Link, 1998; Yuen et al., 2006) have been proposed in the
past to reconcile mathematical models, usually discretized finite element models, with
experimental data. Each model updating method has its own advantages and shortcomings, but
there is no universally acceptable methodology for treating the model updating problem.
Comprehensive reviews of structural model updating methods can be found in the work by
Mottershead and Friswell (1993) and Doebling et al. (1998). The estimate of the optimal model is
sensitive to uncertainties that are due to limitations of the mathematical models used to represent
the behavior of the real structure, the presence of measurement noise from ambient excitations
and the processing errors in estimating the modal data. Also, optimal model estimates are
sensitive to the number and type of measured response time histories or modal data used in the
reconciling process, as well as the norms used to measure the fit between measured and model
predicted response time histories or modal properties. The optimal structural models resulting
from such methods can be used for improving the model response and reliability predictions, as
well as accounting for the uncertainties in these predictions (Beck and Katafygiotis, 1998;
Papadimitriou et al., 2001; Beck and Au, 2002). Moreover, these optimal structural models can be
used for structural health monitoring applications (Sohn and Law, 1997; Fritzen et al., 1998; Vanik
et al., 2000; Teughels and De Roeck 2005) and structural control (Yuen and Beck 2003).

Structural model parameter estimation problems based on measured data, such as modal
characteristics (e.g. Mottershead and Friswell, 1993; Hjelmstad and Shin, 1996; Alvin, 1997;
Bohle and Fritzen, 2003) or response time history characteristics (Beck and Katafygiotis, 1998),
are often formulated as weighted least-squares problems in which metrics, measuring the
residuals between measured and model predicted characteristics, are build up into a single
weighted residuals metric formed as a weighted average of the multiple individual metrics using
weighting factors. Standard optimization techniques are then used to find the optimal values of
the structural parameters that minimize the single weighted residuals metric representing an
overall measure of fit between measured and model predicted characteristics. Due to model error
and measurement noise, the results of the optimization are affected by the values assumed for
the weighting factors. The choice of the weighting factors depends on the model adequacy and
the uncertainty in the available measured data, which are not known apriori. Different values of
the weights result in different optimal models and consequently different predictions from the
optimal models.

The model updating problem has also been formulated in a multi-objective context (Haralampidis
et al., 2005) that allows the simultaneous minimization of the multiple metrics, eliminating the
need for using arbitrary weighting factors for weighting the relative importance of each metric in
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the overall measure of fit. The multi-objective parameter estimation methodology provides
multiple Pareto optimal structural models consistent with the data and the residuals used in the
sense that the fit each Pareto optimal model provides in a group of measured modal properties
cannot be improved without deteriorating the fit in at least one other modal or response time
history group.

Each optimal model in the Pareto set can alternatively be obtained by solving the weighted least-
squares problem for a particular choice of the weight values. The whole Pareto optimal set could
be estimated by varying the weight values from 0 to 1, excluding the case for which all weight
values are simultaneously equal to zero. The final task of rationally selecting a unique set of
weight values on which to base the estimation of the optimal structural model using the weighted
least-squares method or, equivalently, the task of selecting an optimal structural model among all
Pareto optimal models, is subjective and is usually left to the experience of the structural
analysts.

In this chapter, the structural model updating problem using modal residuals is first formulated as
a multi-objective optimization problem and then as a single-objective optimization with the
objective formed as a weighted average of the multiple objectives using weighting factors. The
problem of rationally estimating the optimal values of the weights or, equivalently, selecting the
most probable structural model among the Pareto optimal models utilising the available measured
data is addressed. Thus, the selection of the optimal structural model is based on weight values
that are estimated based on the data, avoiding an arbitrary a priori selection of these weight
values. In addition, a Bayesian statistical framework (Beck, 1989; Beck and Katafygiotis, 1998;
Katafygiotis et al., 1998; Sohn and Law, 1997) for structural model parameter identification is
used to identify the values of the weights. Using Bayes theorem, the probability distribution of the
weight values based on the data is formulated as a probability integral over the structural model
parameters (Christodoulou and Papadimitriou, 2007). An asymptotic approximation is presented
to analytical approximate this probability distribution. The best values of the weights are selected
as the ones that maximize the probability distribution of the weights.

Theoretical and computational issues arising in multi-objective identification are addressed and
the correspondence between the multi-objective identification and the weighted residuals
identification is established. Emphasis is given in addressing issues associated with solving the
resulting multi-objective and single-objective optimization problems. In addition, efficient methods
are proposed for estimating the gradients and the Hessians of the objective functions using the
Nelson’s method (Nelson, 1976) for finding the sensitivities of the eigenproperties to model
parameters.

This chapter is organized as follows. In Section 4.2 the structural identification problem using
modal residuals is first formulated as a multi-objective optimization problem and then as an
equivalent single-objective optimization with the objective formed as a weighted average of the
multiple objectives using weighting factors. For this, the modal properties are assigned into
groups and each objective involved in the optimization measures the residuals of the difference
between the experimental and the model predicted modal properties involved in a modal group.
The correspondence between the multi-objective identification and the weighted modal residuals
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identification is also established. A novel optimally weighted modal residuals method is proposed.
In Section 4.3, a Bayesian statistical system identification framework for structural parameter
estimation is reviewed to address the problem of estimating the probability distribution and the
optimal values of the weights based on the measured data. Using asymptotic approximations the
resulting probability integrals describing the probability distribution of the weight values are
estimated. Two algorithms are proposed for estimating the optimal values of the weights and the
corresponding optimal structural model based on the measured modal data. In Section 4.4,
theoretical and computational issues associated with solving the resulting single-objective and
multi-objective optimization problems are addressed, including issues related to estimation of
global optima, convergence of the proposed algorithms, and identifiability. In Chapter 4.5
emphasis is given in addressing the problem of structural model updating for the case of closely
spaced modes. Finally, in Section 4.6, theoretical and computational issues are illustrated by
applying the methodology for updating two model classes, a simple three degrees-of-freedom
(DOF) model and a much higher fidelity finite element model class, using experimentally obtained
modal data from a small-scaled three-story laboratory steel building structure tested at a
reference and a mass modified configuration. Validation studies are performed to show the
applicability of the methodologies, the advantages of the multi-objective identification, and the
performance of the most preferred Pareto optimal model. Emphasis is given in investigating the
variability of the Pareto optimal models and the variability of the response predictions from these
Pareto optimal models. Comparisons between the results from a simple 3-DOF model class and
a much higher fidelity finite element model class, are used to assess the effect of model error
uncertainty on model updating and model response prediction variability. The conclusions are
summarized in Section 4.7.

4.2 Model updating based on modal residuals

4.2.1 Modal groups and residuals

Let D:{&fk),¢fk) eR% r=21---m k=1, N,} be the measured modal data from a
structure, consisting of modal frequencies @fk) and modeshape components at N, measured
DOFs, where m is the number of observed modes and N, is the number of modal data sets

available. Consider a parameterized class of linear structural models used to model the dynamic
behavior of the structure and let 6 € R™ be the set of free structural model parameters to be

identified using the measured modal data. The objective in a modal-based structural identification
methodology is to estimate the values of the parameter set € so that the modal data

{w, (), ¢,(9) RM,r=1-.-,m}, where N, is the number of model degrees of freedom

(DOF), predicted by the linear class of models best matches, in some sense, the experimentally
obtained modal data in D . For this, let

88

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



B, (0)Lo, (0) — o,

~

¢

and €, 0)=

_w(0)—&7
- ~2

e, (@)

(4.1)

r

r=1,---,m, be the measures of fit or residuals between the measured modal data and the

model predicted modal data for the I -th modal frequency and modeshape components,
respectively,  where lzlf=2"z is the usual Euclidan  norm, and

~ 2
B, (8) = gz_SrT Lo (), /H Lo, (Q)H is a normalization constant that guaranties that the measured

modeshape QAﬁr at the measured DOFs is closest to the model modeshape [, ()L, (0)

predicted by the particular value of 6. The matrix Le R ™M s an observation matrix
comprised of zeros and ones that maps the N, model DOFs to the N, observed DOFs.

In order to proceed with the model updating formulation, the measured modal properties are
grouped into N groups. Each group contains one or more modal properties. The modal
properties assigned in the ith group are identified by the set ¢.(k), i=1,---,n and k=1,2,

with any element in the set @, (k) is an integer from 1 to m. An element in the set g, (k) with

k =1 refer to the number of the measured modal frequency assigned in the group 1, while the
elements of the set g;(k) with k =2 refer to the number of the measured modeshape assigned

in the group i. For the ith group, a norm J,(8) is introduced to measure the residuals of the

difference between the measured values of the modal properties involved in the group and the

corresponding modal values predicted from the model class for a particular value of the
parameter set 6. The measure of fit in a modal group is the sum of the individual square errors in

(4.1) for the corresponding modal properties involved in the modal group. Specifically, the
measure of fit is given by

J(@) =) @)+ > e (0) (4.2)

regi (1) regi(2)
The grouping of the modal properties {w, (@), ¢,(¢),r =1,---,m} into n groups and the
selection of the measures of fit (residuals) J,(6),---,J,(f) are usually based on user
preference. The modal properties assigned to each group are selected by the user according to

their type and the purpose of the analysis.

The aforementioned analysis accommodates general grouping schemes and objective functions.
For demonstration purposes, a specific grouping scheme is next defined by grouping the modal
properties into two groups as follows. The first group contains all modal frequencies, with the
measure of fit J,(f) selected to represent the difference between the measured and the model

predicted frequencies for all modes, while the second group contains the modeshape
components for all modes with the measure of fit J,(0) selected to represents the difference

between the measured and the model predicted modeshape components for all modes.
Specifically, the two measures of fit are given by
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L(O)=> €2 (0) and J,(0) =D e (0) (4.3)
r=1 r=1

The aforementioned grouping scheme is used in the application section for demonstrating the
features of the proposed model updating methodologies.

4.2.2 Multi-objective identification

The problem of identifying the model parameter values @ that minimize the modal or response

time history residuals can be formulated as a multi-objective optimization problem stated as
follows (Haralampidis et al., 2005). Find the values of the structural parameter set @ that

simultaneously minimizes the objectives
y=3(9) = (3,(8).---,3,(0)) (4.4)

subject to inequality constrains C(¢) <0 and parameter constrains 6, <8 <90, . . where

0 =(6,,---,0y,) €O is the parameter vector, O is the parameter space, ¥ =(Y;,"**,¥,) €Y
is the objective vector, Y is the objective space, C(f) is the vector function of constrains, and

0, and Qupper are respectively the lower and upper bounds of the parameter vector. For

conflicting objectives J,(8),---,J,(8), there is no single optimal solution, but rather a set of

alternative solutions, known as Pareto optimal solutions, that are optimal in the sense that no
other solutions in the parameter space are superior to them when all objectives are considered.

Using multi-objective terminology, the Pareto optimal solutions are the non-dominating vectors in
the parameter space ©, defined mathematically as follows. A vector 8 € © is said to be non-

dominated regarding the set © if and only if there is no vector in © which dominates 6. A
vector @ is said to dominate a vector @' if and only if

‘]l(Q)S‘L(QI) ViE{l,"',n} and J jE{l,"',n} : J](Q)<JJ(Q') (4.5)

The set of objective vectors Y = J(f) corresponding to the set of Pareto optimal solutions 6 is

called Pareto optimal front. The characteristics of the Pareto solutions are that the modal
residuals cannot be improved in any modal group without deteriorating the modal residuals in at
least one other modal group. Specifically, using the objective functions in (4.3), all optimal models
that trade-off the overall fit in modal frequencies with the overall fit in the modeshapes are
estimated.

The multiple Pareto optimal solutions are due to modelling and measurement errors. The level of
modelling and measurement errors affect the size and the distance from the origin of the Pareto
front in the objective space, as well as the variability of the Pareto optimal solutions in the
parameter space. The variability of the Pareto optimal solutions also depends on the overall

sensitivity of the objective functions or, equivalently, the sensitivity of the modal properties, to
model parameter values . Such variabilities were demonstrated for the case of two-
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dimensional objective space and one-dimensional parameter space in the work by Christodoulou
and Papadimitriou (2007).

It should be noted that in the absence of modelling and measurement errors, there is an optimal
value é of the parameter set # for which the model based modal frequencies and modeshape
components match exactly the corresponding measured modal properties. In this case, all
objective functions Jl(é),---, Jn(é) take the value of zero and, consequently, the Pareto front
consists of a single point at the origin of the objective space. In particular, for identifiable
problems (Katafygiotis, 1991; Katafygiotis and Beck 1998), the solutions in the parameter space
consist of one or more isolated points for the case of a single or multiple global optima,
respectively. For non-identifiable problems (Katafygiotis et al., 1998; Katafygiotis and Lam 2002),
the Pareto optimal solutions form a lower dimensional manifold in the parameter space.

4.2.3 Weighted modal residuals identification

The parameter estimation problem is traditionally solved by minimizing the single objective

3(6;w) = >-wJ,(0) (4.6)

formed from the multiple objectives J,(6) using the weighting factors W, >0, i =1,---,n, with

in:1V\/i =1. The objective function J(6;W) represents an overall measure of fit between the

measured and the model predicted characteristics. The relative importance of the residual errors
in the selection of the optimal model is reflected in the choice of the weights. The results of the
identification depend on the weight values used. Conventional weighted least squares methods
assume equal weight values, W, =--- =W, =1/n. This conventional method is referred herein

as the equally weighted modal residuals method.

4.2.4 Comparison between multi-objective and weighted modal residuals
identification

Formulating the parameter identification problem as a multi-objective minimization problem, the
need for using arbitrary weighting factors for weighting the relative importance of the residuals
J.(8) of a modal group to an overall weighted residuals metric is eliminated. An advantage of

the multi-objective identification methodology is that all admissible solutions in the parameter
space are obtained.

It can be readily shown that the optimal solution to the problem (4.6) is one of the Pareto optimal
solutions. For this, let 6 be the global optimal solution that minimizes the objective function
J(6;w) in (4.6) for given W. Then this solution is also a Pareto optimal solution since otherwise

there would exist another solution, say @', for which equation (4.5) will be satisfied for 0 = 6
and ' =0, thatis, 3,(0")<J3,() Vie{l--,n} and I jefl-,n}:J,(0)<I,@).
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As a result of this and the fact that W, >0, it is readily derived using the form of J(8;W) in (4.6)

that J (é’;w) <J (é, W) . The last inequality implies that é' , instead of é is the global solution
optimizing J(@; W), which is a contradiction.

Thus, solving a series of single objective optimization problems of the type (4.6) and varying the
values of the weights W, from 0 to 1, excluding the case for which the values of all weights are

simultaneously equal to zero, Pareto optimal solutions are alternatively obtained. These solutions
for given W are denoted by 6(w). It should be noted, however, that there may exist Pareto

optimal solutions that do not correspond to solutions of the single-objective weighted modal
residuals problem (Christodoulou et al. 2008).

The single objective is computationally attractive since conventional minimization algorithms can
be applied to solve the problem. However, a severe drawback of generating Pareto optimal
solutions by solving the series of weighted single-objective optimization problems by uniformly
varying the values of the weights is that this procedure often results in cluster of points in parts of
the Pareto front that fail to provide an adequate representation of the entire Pareto shape. Thus,
alternative algorithms dealing directly with the multi-objective optimization problem and
generating uniformly spread points along the entire Pareto front should be preferred. Special
algorithms are available for solving the multi-objective optimization problem. Computational
algorithms and related issues for solving the single-objective and the multi-objective optimization
problems are discussed in Section 4.4.

4.2.5 lIdentification based on optimally weighted modal residuals

The Pareto optimal models €(w) along the Pareto front trade-off the fit between measured and

model predicted modal data for different modal groups. The objective of this section is to address
the problem of rationally selecting the optimal value \I_V of the weighting parameter set

\Lv:(wl,---,wn) in (4.6) and subsequently estimating the most preferred structural model

éopt Eé(@) among the Pareto optimal models é(\LV) utilizing the measured data and the

selected model class. The decision for selecting a single most preferred model 0, =0(W),

among the Pareto optimal models é(\LV) for further use in model-based prediction studies and

reliability assessment, depends on the user preferences.

From the computational point of view, it is desirable that the selection of the most preferred
optimal model does not necessitate the computation of the whole Pareto front and Pareto
solutions, since this can be a very time consuming task for more than a few objectives and,
therefore, such lengthy computations should be avoided. Moreover, it is desirable that the most
preferred optimal model is not biased from measured modal properties that contain significant
measurement and processing error or measured modal properties that cannot be well
represented by the selected model class. For this, it is reasonable to weight the contribution of
the modal group residuals Ji(Q) in the total residual measure (4.6) according to their residual

error corresponding to the most preferred model. Specifically, modal groups with larger residual
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errors should be given less weight than modal groups with smaller residual errors. A rational
choice is to select the weights to be inversely proportional to the values of the modal group
residuals obtained for the most preferred model. Specifically, the i-th optimal weight value Wi

could be chosen to be inversely proportional to the average value of the total residual error of the
modal properties involved in the i-th modal group. That is, the optimal values Wi of the weights

are chosen to satisfy the set of equations

wo=0,/3, (Bw), =10 (4.7)

where

0(w) =argmin J (¢; ) (4.8)
0

is the optimal model parameter value that corresponds to the weight values W, and ¢; is the
number of modal properties in the group g, . In particular, for the two objective functions in (4.3),
oy=m and «a,=mN,. Using (4.7), the optimal weights in (4.6) are given by

W= q; /J, (Q:,pt), while the optimal value 6, =@(W) minimizes the optimally weighted

Zopt —

residuals J(0; W) in (4.6), thatis, 6, . = (W) is given by (4.8) for W= W.

Zopt —

Since the most preferred Pareto optimal structural model is not known prior to the selection of the
weights, the corresponding optimal values of the modal residual errors and so the optimal values
of the weights are not known. Thus, the selection of the optimal weights should be made
simultaneously with the selection of the optimal model so that at the optimum, the weight values
are inversely proportional to the optimal residual errors as suggested in (4.7). Specifically, the

optimal values W and the most preferred Pareto optimal model 6, = 6(W) are obtained by

simultaneously solving the set of equations (4.7) and the optimization problem (4.8) with respect
to W and 6. This is a nested optimization problem that is solved iteratively. Specifically, for each

iteration on W, required in satisfying (4.7), an optimization problem for estimating 6(W) needs to
be solved.
It can be shown that the aforementioned problem is equivalent to the problem of finding Qopt that

minimizes the objective function

1(0) =30, 3,(0) 4.9)

with respect to the parameter set 6 and then computing the optimal W from W, = v, / J, (éopt) .
This can be readily verified by noting that the stationarity conditions V,1(6) |ﬂ:€ong for the

objective function 1(6) in (4.9), where YQ is the gradient vector with respect to @, are given by
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91(0)
09,

=0, j=21---,n (4.10)

which are exactly the same as the stationarity conditions VJ(6;w) | =0 for (4.6) with W

=6 (w)

replaced by the optimal W, = «, / J, (éo ) computed by (4.7). It should be noted that the direct

pt
optimization of | (#) with respect to # is computationally much more efficient than the equivalent
problem of solving simultaneously the set of equations (4.7) and the optimization problem (4.8).
The aforementioned method for selecting the most preferred model among the Pareto optimal
models that satisfy (4.9) is referred to as the optimally weighted residual method. This choice
corresponds to one out of the infinitely many Pareto optimal models. It is worth pointing out that
the logarithmic estimator in (4.9) has also been shown to arise from a Bayesian statistical
identification point of view (Christodoulou and Papadimitriou, 2007). Specifically, the most
preferred optimal model is the most probable model that results asymptotically for large number
of data from a Bayesian approach for structural identification. This Bayesian estimate, which is
presented in Section 4.3.3, is based on the assumption of Gaussian and independent errors
between the measured modal properties and the corresponding modal properties predicted by
the model class.

4.3 Bayesian identification utilizing modal data

4.3.1 Probability distribution of structural parameter values utilizing modal data

The Bayesian approach to structural identification (Beck, 1989; Beck and Katafygiotis, 1998) uses
probability distributions to quantify the plausibility of each possible value of the model parameters
0 . Using Bayes’ theorem, the updated (posterior) probability distribution p(Q| D,Q,M) of the

model parameters € based on the inclusion of the measured data D, the modeling assumptions
M and the value of a parameter set ¢ , is obtained as follows:

p(@ID,a, M)=cp(D|0,0,M)p(8|a, M) (4.11)

where p(D |Q,g,AM) is the probability of observing the data from a model corresponding to a
particular value of the parameter set 6 conditioned on the modeling assumptions 1/ and the
value of o, p(Q|g,M) is the initial (prior) probability distribution of a model, and C is a
normalizing constant selected such that the PDF p(Q| D,g,M) integrates to one. Herein, the

modeling assumptions M refer to the structural modeling assumptions as well as those used to
derive the probability distributions p(D | 6,0, M ) and the prior p(@ |, M ). The parameter set
o contains all parameters that need to be defined in order to completely specify the modeling

assumptions /. Measured data are accounted for in the updated estimates through the term

94

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



p(D |Q,g,M), while any available prior information is reflected in the term p(Q|g,M). In

order to simplify the notation, the dependence of the probability distributions on A/ is dropped in
the analysis that follows.

The form of p(D|68,0,M)=p(D|g,c) is derived by using a probability model for the
prediction error vector g(k) =[gl<k’,...,g,$f’] k=1,..., ND, defined as the difference between

the measured modal quantities involved in D for all m modes and the corresponding modal
guantities predicted from a particular model within the model class. Specifically, the prediction

error gr(k) = [ui)k) g;k)} is given separately for the modal frequencies and the mode shapes by

the prediction error equations:

@, =w, () +u? 4.12)

&, =B,Lg, () +ul (4.13)

where uik) and g{fjk) are respectively the prediction errors for the modal frequency and
modeshape components of the 7 -th mode.

Following the Bayesian methodology (Beck and Katafygiotis, 1998) the predictions errors are
modeled by zero-mean Gaussian vector variables. Specifically, the prediction error U,(:) for the

7 -th modal frequency is assumed to be a zero mean Gaussian variable, ufj) ~ N(0, crird)f,m) ,
with standard deviation awoﬁf,k). The prediction error parameter o, represents the fractional

difference between the measured and the model predicted frequency of the 7-th mode. The

prediction error for the 7 -th truncated modeshape vector @;’:) € R"0 is also assumed to be zero

mean Gaussian vector, u.’ ~ N(0,C"), with covariance matrix C’gf € R" - where

N(u,Y) denotes the multidimensional normal distribution with mean g and covariance matrix
2

~

>.. In the analysis that follows, a diagonal covariance matrix C’Cff“) :afj ¢£k> . is assumed,
X o 120 ly,
~ 2 ~ 2
where gbﬁk)HN = gbf,’”” / N,. The prediction error parameter o, represents the difference
vy~ I 4

between the measured and the model predicted component of the 7 -th modeshape relative to an

average value H(ﬁﬁk’) of the modeshape components. The parameters o, and o, , represent

Ny
the prediction error estimates of the measured modal frequencies and modeshapes involved in
D.

In the analysis that follows, the parameter set o, introduced in (4.11), is taken to contain the
parameters o, = o, and 0, =0, , I =1,...,m. Given the values of the parameter set o,

assuming independence of the prediction errors in g,(k), and using the Gaussian choice for the

probability distribution of the prediction errors ug:) and g;rk) , the probability p(D|Q,g) of
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observing the data D is readily obtained in the form (e.g. Vanik et al., 2000; Papadimitriou and
Katafygiotis, 2004)

1 NN
Dl0,g)= exp|———=>Jp (&; 4.14
N s LS pl 7 Jollio) .
where
JD(Q;Q>:Z%Ji (9) (4.15)
i=1 i

win 3, (0)=1, (8), 3

measure of fit between the measured modal data and modal data predicted by a particular model
within the selected model class

mH(Q):Jg (Q) r=1...,m, n=2m represents the weighted

n
plo) =] ()™ (4.16)
i=1
is a function of the prediction error parameters o, N =m(N, +1) is the number of measured

n

data per modal set, &, =1/N and «,,,, =N,/N, r=1---,m, satisfying Zai =1, represent
i=1

the number of data contained in each modal group in relation to the total number N of data in a

m ND
modal set, and b=[ [ ] [ & (

No
¢?(k)H ) is a constant
_r )
r=1 k=1 No

Given the values of the prediction error parameters ¢, the optimal value of the model parameter
set @ corresponds to the most probable model maximizing the updated PDF p(€| D, o, M)
given in (4.11). In particular, using (4.14) and assuming a non-informative prior distribution
p(@| o, M) =r,(0), the optimal values é of the model parameters @ are equivalently obtained

by minimizing the measure of fit J,(8; o) defined in (4.15), i.e.

6(c) =argminJ, (6;0) (4.17)
o

The notation @(c) is used to indicate that the optimal value & depends on the value of the
prediction error parameter set o .

4.3.2 Relation between weights and prediction error parameter

It should be noted that the overall measure of fit J;(&;c) between the experimental and model

predicted modal data is constructed as a weighted sum of the individual measures of fit for each
group of modal properties involved in the data set D, with the weights to be inversely
proportional to the squares of the prediction error parameters. Comparing JD(Q;Q') and

J(@;w) given in (4.15) and (4.6), respectively, it is clear that they are exactly the same provided

96

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



that the weights W, are chosen to be inversely proportional to the prediction error parameters

Giz ,l.e.

w=25 and I(@alg?)=3,0:0) @19
O;

where the vector notation a/o’=(a,/0},-",a,/c?) was introduced in (4.18) for

convenience. Thus, the problem of estimating the weight values in the weighted residuals metric
defined in (4.6) is equivalent to the problem of estimating the prediction error parameters in the
Bayesian formulation.

The formulation presented is general and applicable to other grouping schemes. Specifically, the
formulation for the grouping scheme introduced in (4.3), is obtained by assuming that the
prediction error parameters o, =0, [ =1,---,m, are the same for all the modal frequencies,

and that o, =0,, I =1,---,m, are the same for all modeshapes. In this case, n=2, the

prediction error parameters are o = (01 ,02) , and the exponents «; appearing in (4.16) are
givenby o, =m/N and o, =mN,/N .

4.3.3 Probability distribution of prediction error parameter values utilizing modal
data

The Bayesian framework has been extended (Christodoulou and Papadimitriou, 2007) to
rationally estimate the optimal values of the prediction error parameters ¢ and the weights W

from the available measured data D, taking into account modeling error and measurement
noise. Similar to the case of the parameter set @, probability distributions are used to quantify the
uncertainty in the values of the parameter set ¢ . Using Bayes' theorem, the posterior probability
distribution p(o | D) of the parameter set o given the data D is given by

D)= p(Dlo) 7, (o)
d

where p(D | o) is the probability of observing the data given the values of the parameter set o,

p(o (4.19)

T, (o) is the prior probability distribution of the parameter set ¢ before the collection of data,

while d is a normalizing constant given by d =.[ p(D|o) 7 (c) do so that the probability
density function in (4.19) integrates to one.

Using the total probability theorem, the quantity p(D | o) is given by

p(D|g) =] p(D]8,c) 7() d@ (4.20)
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where it is assumed that the prior probability distribution p(€|c) =7 (8) is independent of o .
Replacing p(D|8,0) in (4.20) by (4.14) and then substituting (4.20) into(4.19), one readily

derives that

p(1D) =, %22 [7(0) exp[-05NN, 3,(@:)] do @21
plo) 3

NN
where ¢, =d b<\/27r) ° . The optimal value o of the prediction error parameter set o given
the data D is the one that maximizes the function p(c | D).
In order to compute the value of the function p(c | D) for given o, one needs to estimate a
multi-dimensional integral over the parameter space ®. This makes the approach

computationally very demanding and in most cases inefficient. Asymptotic approximations have

been introduced (Christodoulou and Papadimitriou, 2007) to approximate analytically the integrals
and, thus, provide a more efficient algorithm for finding the PDF p(o | D) of the parameter set o

and the optimal value & of the parameter set o . Specifically, as NN, — oo, i.e. for large

number of data, the Lapalce method of asymptotic approximation (Bleistein and Handelsman,
1986) can be applied for the integral in (4.21) to yield (Christodoulou and Papadimitriou, 2007)

7, (o) 7,(8(c)) exp[—0.5NN, I, (8(a); 2)]
plo) Ho(0(0); )

p(c|D) ~c,(2)"™ (4.22)

where é(g) is the value that minimizes the function J(&;c) with respect to @ for given value
of o, that is, é(g) is given by (4.17), HD(é(g);g) is the Hessian of the function
0.5NN, J,(&; o) evaluated at é(g).

Using the relation (4.19) between the weight values W and the prediction error parameter set
one can readily develop the PDF p(w| D) of the weights given the data. The PDFs p(c | D) or
p(w| D) quantify the uncertainty in the values of the prediction error parameters or the weight
values respectively, which in turn quantify the uncertainty in the corresponding Pareto optimal
models and predictions from these models.

Assuming that the prior distributions 7,(¢) and 7_(c) are non-informative uniform distributions
over the domain of variation of the structural parameter set 8 and the prediction error parameter
set o, respectively, one may set 7,(¢) =, =constant and z_(c)=C, =constant in (4.22).
The optimal value & of the prediction error parameter set ¢ is the one that maximizes
p(o | D) in (4.22) or, equivalently, the one that minimizes the function

Gy () =—In p(c| D)+ x = o

Jo(@le)0)+n ple) +2In|Ho @()ic) (429
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where x = In(c,c,c, )+ N, In(27) is a constant that does not affect the selection of the optimal
é. The optimization of the function in (4.23) can readily be carried out numerically using any

available algorithm for optimizing a nonlinear function of several variables. It should be noted that
in evaluating the objective function G,(c) for given value of o, an internal minimization

problem is involved for finding &(c) from (4.17). Moreover, the evaluation of the Hessian

Hp (é(g); o) is also needed.

For non-informative uniform priors, the optimal estimate & that minimizes the function in (4.23)

can equivalently be obtained using the maximum likelihood approach. However, the proposed
Bayesian methodology provides the complete probability distribution p(c | D), given in (4.22),

as well as the optimal estimate & that maximizes this distribution for general non-uniform prior

distributions of the structural model and prediction error parameters.

Alternatively, applying the stationarity conditions in (4.19) with respect to the elements of g and

using Laplace method of asymptotic approximation (Bleistein and Handelsman, 1986), valid for
large number of data, NN, — oo to the resulting integrals, one readily derives that the optimal

values Q of the parameter set o satisfies the set of equations (Christodoulou and
Papadimitriou, 2007)

o? =13, (0(a)), i=1---,2m (4.24)
where é(g) is given by (4.17). The result (4.24) indicates that the optimal value &7 = J, 6(5))

of the prediction error variance O'i2 for the i-th modal group involved in the data is the optimal

residual value between the data involved in the i-th group and the prediction from the optimal

ool 6, = 0(6).
Using (4.18) and (4.24), the optimal weights in (4.6) are given by W, = ¢; /J, (_Opt) while the

optimal value 6,

Ot = (&) which minimizes J 5(8;0), also minimizes the optimally weighted

residuals J(€;W) in (4.6), that is _H(W) where H(W) arg min J(9;w) .

’ _opt

It should be noted that the optimal values & and 0 _é(é') are obtained by simultaneously

Zopt
solving (4.24) and (4.17) with respect to o and €. Equivalently, the optimal values V_V and
O

é(\LV) =argmin J(4;w) with respect to W and @. It can be shown that both problems are
9

—H(W) are obtained by simultaneously solving W, =¢;/J; (H(W)) -+-,2m and

equivalent to the problem of finding 0

Oy that minimizes the objective function

1(0) =3¢, 3,(6) (4.25)
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with respect the parameter set & and then computing the optimal o from (3'i2 =J (Qopt) or the

optimal W from W, =, /J, (éo ). This can be readily verified by noting that the stationarity

pt
conditions V,1(9) |Q=Qom:O for the objective function 1(€), where V, is the gradient vector

with respect to @, are exactly the same as the stationarity conditions VJ,(&;0) | =0 for

0=0(c)

(4.17) with & replaced by the optimal &2 = J. (6,,,) computed by (4.24).

pt

It should be pointed out that the objective function (4.25) does not require information from the
weights W or the prediction error parameters ¢ . The optimization of |(£) with respectto @ can

readily be carried out numerically using any available algorithm for optimizing a nonlinear function
of several variables. The optimization of |(#) is computationally much more efficient than the
equivalent problem of solving simultaneously the set of equations (4.24) and the optimization
problem (4.17).

Comparing the computational time involved in estimating the optimal weight vector ¢ using

(4.23) and (4.25), it is worth noting that for (4.23), each function evaluation involved in the
optimization of the objective GD(Q) with respect to the prediction error parameters ¢ requires

the solution of an inner optimization problem (4.17) for minimizing the measure of fit JD(Q; o)

with respect to the parameter set € given the current value of ¢ . However, (4.25) involves a
single optimization of 1(@) and thus, it is computationally much more efficient than (4.23).

4.4  Computational issues related to model updating formulations

The proposed single and multi-objective identification problems are solved using available single-
and multi-objective optimization algorithms. These algorithms are next reviewed and various
implementation issues are addressed, including estimation of global optima from multiple
local/global ones, as well as convergence problems. In addition, for gradient-based optimization
algorithms, computationally efficient formulas are given to estimate the gradients and Hessians of
the objectives. These formulas are useful for significantly reducing the computational time for the
case of large number of parameters and very large number of model degrees of freedom. It shold

be noted that the Hessians of the objective functions are used in (4.22) to obtain the PDF
p(c | D) of the prediction error parameters o .

4.4.1 Single-objective identification

The optimization of J(6;W) in (4.6) with respect to § for given W and the optimization of |(8)
in (4.9) with respect to @ can readily be carried out numerically using any available algorithm for
optimizing a nonlinear function of several variables. These single objective optimization problems
may involve multiple local/global optima. Conventional gradient-based local optimization
algorithms lack reliability in dealing with the estimation of multiple local/global optima observed in
structural identification problems (Christodoulou and Papadimitriou, 2007; Teughels et al., 2003),
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since convergence to the global optimum is not guaranteed. Evolution strategies (Zitzler and
Thiele, 1999) are more appropriate and effective to use in such cases. Evolution strategies are
random search algorithms that explore the parameter space for detecting the neighborhood of the
global optimum, avoiding premature convergence to a local optimum. A disadvantage of evolution
strategies is their slow convergence at the neighborhood of an optimum since they do not exploit
the gradient information. A hybrid optimization algorithm should be used that exploits the
advantages of evolution strategies and gradient-based methods. Specifically, an evolution
strategy is used to explore the parameter space and detect the neighborhood of the global
optimum. Then the method switches to a gradient-based algorithm starting with the best estimate
obtained from the evolution strategy and using gradient information to accelerate convergence to
the global optimum.

4.4.2 Multi-objective identification

The set of Pareto optimal solutions can be obtained using available multi-objective optimization
algorithms. Among them, the evolutionary algorithms, such as the strength Pareto evolutionary
algorithm (Zitzler and Thiele, 1999), are well-suited to solve the multi-objective optimization
problem. The strength Pareto evolutionary algorithm, although it does not require gradient
information, it has the disadvantage of slow convergence for objective vectors close to the Pareto
front (Haralampidis et al., 2005) and also it does not generate an evenly spread Pareto front,
especially for large differences in objective functions.

Another very efficient algorithm for solving the multi-objective optimization problem is the Normal-
Boundary Intersection (NBI) method (Das and Dennis, 1998) which produce an evenly spread of
points along the Pareto front, even for problems for which the relative scaling of the objectives are
vastly different. For completeness and for the purpose of demonstrating the implementation
issues arising in multi-objective structural model updating, the idea of the NBI method is briefly
illustrated geometrically with the aid of the two-dimensional Pareto front shown in Figure 4.1. For
this, let é(i), i=1---,n, be the global optimal values of the parameter set that minimize the

individual objectives J;(#), i =1,---,n, respectively. The Pareto points i(i) = i(é(i)), shown
in Figure 1, determine the location of the boundaries of the Pareto front in the objective space.
These edge points of the Pareto front are estimated using the single-objective optimization
algorithms outlined in Section 4.4.1. The utopia point i: [JAl,n-,JAn]T , shown in Figure 4.1, is
introduced as the point in the objective space with coordinates the individual minima
ji = Ji(é(i)) of the objectives. Let ® be the nxn matrix with the i-th column equal to the

vector i(i). The set of points in the objective space that are convex combinations of i(i) —i,
obtained by the points {®3: 0 € R”,Zin:lb’i =13 >0}, is referred to as the Convex Hull of

Individual Minima (CHIM). These points are all points along the line segment AB in Figure 4.1.
The Pareto points consist of points on the intersection of the boundary JY of the objective space
Y and the normal initiating from any point in the CHIM and pointing towards the origin of the
objective space.
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J;

Figure 4.1: Geometric illustration of NBI Method in 2-dimensional objective space.

A point along the Pareto front can be found by solving a single-objective optimization problem.
Given the coordinates (3, ®3 represents a point on the CHIM and ®3+tn, where t € R and

N the normal to the CHIM, represents the set of points on the normal to the CHIM at the point
®3 . The point of intersection of the normal and the bounbary OY , closest to the origin, is the

global solution of the commonly referred as NBI ; optimization problem (Das and Dennis, 1998):

n}axt (4.26)
0.t

subject to the constrains

P+tn=J3(0)—-J" (4.27)

Any constrains from the original multi-objective optimization problem (4.4) can also be considered
by adding them as constrains in the NBI ; optimization problem. By solving the optimization

problems NBI ; for various (3 values in the set {3 €R" :Zin:lﬂi =1, >0}, a pointwise

representation of the Pareto front is efficiently constructed. The values of the parameters 3 are

selected so that an evenly spread points along the CHIM are obtained, resulting to an evenly
spread points along the Pareto front, independently of the scales of the objective functions. For
the two-dimensional objective space, this is achieved by selecting the values of the component
B, of B8=(8,,5,) to be uniformly spaced in the interval [0,1] with spacing length

6 =1/(N —1), where N is the number of points along the CHIM including the edge points. The

102

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



first component (3, is selected to satisfy (3, + (3, =1. More details about the method, the
selection of (3 values for more than two objectives, advantages and drawbacks, can be found in

the original paper by Das and Dennis (1998).

It is also of interest to compare the computational time involved for estimating the Pareto optimal
solutions with the computational time required in conventional weighted residuals methods for
estimating a single solution. This estimate can be made by noting that each Pareto optimal
solutions is obtained by solving a single-objective optimization problem NBI ;. Thus, this

computational time is of the order of the number of points used to represent the Pareto front
multiplied by the computational time required to solve a single-objective NBI; problem for

computing each point on the front. However, for the NBI method, convergence can be greatly
accelerated by using a good starting value for the NBI , optimization problem close to the optimal

value. This is achieved by selecting the Pareto optimal solution obtained from the current NBI ,

problem to be used as starting value for solving the next NBI ; problem.

4.4.3 Formulation for gradients of objectives

In order to guarantee the convergence of the gradient-based optimization methods for structural
models involving a large number of DOFs with several contributing modes, the gradients of the
objective functions with respect to the parameter set # has to be estimated accurately. It has
been observed that numerical algorithms such as finite difference methods for gradient evaluation
does not guarantee convergence due to the fact that the errors in the numerical estimation may
provide the wrong directions in the search space and convergence to the local/global minimum is
not achieved, especially for intermediate parameter values in the vicinity of a local/global
optimum. Thus, the gradients of the objective functions should be provided analytically. Moreover,
gradient computations with respect to the parameter set using the finite difference method
requires the solution of as many eigenvalue problems as the number of parameters.

The gradients of the modal frequencies and modeshapes, required in the estimation of the
gradient of J(&;w) in (4.6) or 1(€) in (4.9) or the gradients of the objectives J.(6) in (4.4) are

computed by expressing them exactly in terms of the values of the contributive modal
frequencies, modeshapes and the gradients of the structural mass and stiffness matrices with
respect to 6 using Nelson’s method (Nelson, 1976). Special attention is given to the computation
of the gradients and the Hessians of the objective functions for the point of view of the reduction
of the computational time required. Analytical expressions for the gradient of the modal
frequencies and modeshapes are used to overcome the convergence problems. In particular,
Nelson’s method (Nelson, 1976) is used for computing analytically the first derivatives of the
eigenvalues and the eigenvectors. The advantage of the Nelson’'s method compared to other
methods is that the gradient of eigenvalue and the eigenvector of one mode are computed from

the eigenvalue and the eigenvector of the same mode and there is no need to know the
eigenvalues and the eigenvectors from other modes. For each parameter in the set 6 this
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computation is performed by solving a linear system of the same size as the original system mass
and stiffness matrices. Nelson’s method is also extended in Section 4.4.4 to compute the second
derivatives of the eigenvalues and the eigenvectors.

The computation of the gradients and the Hessian of the objective functions is shown to involve
the solution of a single linear system, instead of N, linear systems required in usual

computations of the gradient and N, (Ne —1—1) linear systems required in the computation of the

Hessian. This reduces considerably the computational time, especially as the number of
parameters in the set 6 increase. The expressions for the first derivatives of the objective
functions are next presented.

4.4.3.1 First derivatives of eigenvalues and eigenvectors using Nelson’s method

Summarizing, Nelson’s method (Nelson, 1976) specialized for symmetric mass and stiffness
matrices computes the derivatives of the I -th eigenvalue and eigenvector with respect to a
parameter 0j in the parameter set @ from the following formulas

&uf
a_gj:?:(Kj —w!M ), (4.28)
and
(elo) NP |
— =g M)ATE >4 ¢'M, 4.29
391_ ( ?V?f )Ar - 2@@ J?r ( )
where
A =K-uwM (4.30)
0
E i :—%@ =—(1-M¢, ¢/ )K; —wiM ), (4.31)
]
oM (6 oK (6
MjZMj(Q):%’ K,-EKJ-(Q)Z—%(_—) (4.32)

For notational convenience, the dependence of several variables on the parameter set § has
been dropped. For an nxn matrix A referring to the formulation for the I -th mode, A: is used
to denote the modified matrix derived from the matrix A by replacing the elements of the K -th
column and the K -th row by zeroes and the (k , k) element of A by one, where k denotes the
element of the modeshape vector ?r with the highest absolute value. Also, the n vector p,* is
used to denote the modified vector derived from b, replacing the K -th element of the vector b,

by zero. More details can be found in the work by Nelson (Nelson, 1976).
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4.4.3.2 Gradients of objectives

The gradient of the square error afjr (0) is given by

0e2 (0) 0¢® (0) on? |0 (0) T
ol B Riidiad P R R K. —w’M. 4.33
00, Ow; 00, Ow? & |(K; —wrM)e (433
and the gradient of the square error 5; (0) is given by
9, () dp d¢
— [V 2 ()]—="=[V] €2 ()L —=- 4.34
A sl A Gl (43
Substituting (4.29) into (4.34), the gradient of the square error 55 (@) is simplified to
de; () .. 1
 — —x'FE . —=2'M. 4.35
391_ =D JQ_Sr ( )
where Er'j is given in (4.31),
z; =V, e, (Ol ¢ (4.36)
and X, is given by the solution of the linear system of equations
A'X, =D, (4.37)

with D, = (I — qurgbrT)LTY%eir (€) and X, replaced by X, . The system of equations (4.37)

can be viewed as the adjoint system for the model updating optimization problem based on modal
residuals.

It should be noted that for the specific objective functions 53» (6) and €,§r (0) given by (4.1), the
aforementioned expressions for the gradients of the objective functions simplify further.

Specifically, using (4.1) and noting that 5; @)LS, = 5; (&), =0, one readily obtains that

92 (0) 22, (0)

— (4.38)
Ow? oF
2 _
V., e, (0)=2¢e, (8)5 (4.39)
where
e, = (4.40)
Pr
T T . . .

Z =0 and D, is given by the equation
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D, =L"26e, (0) (4.41)

The computation of the derivatives of the square errors for the modal properties of the I -th mode
with respect to the parameters in € requires only one solution of the linear system (4.37),

independent of the number of parameters in . For a large number of parameters in the set 6

the above formulation for the gradients of the mean errors in modal frequencies and in the
modeshape components in (4.1) are computationally very efficient and informative. The
dependence on Gj comes through the term KJ- —waj and the term Mj . For the case where

the mass matrix is independent of 6, Mj = 0 and the formulation is further simplified.

It should be noted that for the special case of linear dependence between the global mass and

stiffness matrices on the parameters in the set @, that is, M (8) =M, +Z?11M101 and

K(9) =K, +Z:‘;Kj9j , the gradients of M (#) and K(f) are easily computed from the
constant matrices M,, K, Mj and Kj , J=1L1---,N,. In order to save computational time,

these constant matrices are computed and assembled once and, therefore, there is no need this
computation to be repeated during the iterations involved in optimization algorithms. For the
general case of nonlinear dependence between the global mass and stiffness matrices on the
parameters in the set 6, the matrices Mj and Kj involved in the formulation (see (4.32)) can

be obtained numerically at the element level and assembled to form the global matrices.

4.4.4 Formulation for Hessian of objectives

4.4.4.1 Second derivatives of eigenvalues and eigenvectors extending Nelson’s method

A similar analysis to that followed in Nelson’s method (Nelson, 1976) for computing the first
derivative can also be followed for computing the second derivatives of the eigenvalues and the
eigenvectors, resulting in the following expressions for the second derivatives

and
ki =(1 -6, o M)ATG, —4,d, (4.43)
00,00, = - =
where
G =—(1-Mg¢/)g, (4.44)
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¢, ¢, 2K ‘M M M
gri,:aA* ¢ 0N 0% | D ) M 9N OM 9 D 5 @as)
=100, 00, 90, 96, |96,00, T 9600, 96, 00, 90, 06, |~
and
OM 0, OM 0¢. 1 9°M o 0¢
d. =a¢' =L = 4= + =M= 4.46
i = 96, 90, 90, 96, 2 96,00, & a6, 00, (@49

4.4.4.2 Hessians of objectives
The Hessian of the objective functions 5f,r (6) and g;r (0) can be readily computed from the
second derivatives of the eigenvalues and the eigenve;tors, respectively. Specifically, the (i, j)
element of the Hessian of 55, (8) is obtained by differentiating (4.33) with respect to 6., resulting
in

0%; (0) 0% (8) dw? dw? 02l (8) 9%

0000, AW 06, 96,  Ow? 06,06,

PO 5 (K, =M 116 (K, — M gy 1+ 2D
NG} W

(4.47)

# 9,

The (i, j) element of the Hessian of gir (6) is obtained by differentiating (4.34) with respect to

0., resulting in

0O oyl

= i 4.48
9000, 99, [V, Ve, @ )] 0, Y5, aeae (4.48)
Substituting (4.43) into (4.48) and using (4.37), the Hessian can be finally simplified to
0% (0)  o¢ 09,
£ — L[V, V, e (O L—="—2x"(1-M —2[V! &2 (9)ILo,d, . (4.49
2600 98 [V, VY, @OT ) ( ¢ 9,)9, — 2V, €] (0)]Lo,d, ; (4.49)

i j
It should be noted that for the specific objective functions 5f,r (@) and €,§r (0) given by (4.1), the
aforementioned expressions for the Hessian of the objective functions simplify further.
Specifically, using (4.1) and noting that 5; @)LS, = 5; (&), =0, one readily obtains that

0% (6)

2
=— 4.50
a( r2)2 ~4 ( )

V. V. @)=

[(ﬁsor 228 —4) =B e l} (4.51)

SDr
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0% (6)

and in (4.49) simplifies to
96,00,
0%% (0 . . . . .
89"'8(0‘):— AZHZ (27627, )L | ETX XTEL ~2xT(1 =M, 6,
i ol ||L - S
(4.52)
where Z  is given by the solution of the linear system (4.37) with

D, = (I -M T?r ?J ) L (ZBr Lo, —ér) and X, is given by (4.37) with
D, =(1-MTg.¢ L.

It should be noted that only the last term in (4.47) and the last term in (4.52) depend explicitly on
the derivatives 0¢, /06, . Numerical results suggest that the Hessian of 55» (0) and 55 (0) can

be adequately approximated in the form (4.47) and (4.52), ignoring the contribution from the last
terms in (4.47) and (4.52). Thus the Hessian of 55, (6) and 55 (@) can be computed from the

solution of the system (4.37), estimates of the eigenvalues and eigenvectors of the mode I, and
the sensitivities K i and M i of the global stiffness and mass matrices with respect to the

parameters 6.

Summarizing, it should be noted that the computation of the first and second derivatives of the
square errors for the modal properties of the r-th mode with respect to the parameters in 6

requires only the solutions of the linear system (4.37), independent of the number of parameters
in 0. For a large number of parameters in the set @, the above formulation for the gradients and
Hessian of the mean errors in modal frequencies and in the modeshape components in (4.1) are
computationally very efficient and informative.

4.5 Generalization of model updating method for closely spaced modes

4.5.1 Modeshape residuals

For the case of closely spaced modes, the modeshapes that are estimated experimentally using
the modal identification techniques may not exactly correspond to the closely spaced
modeshapes predicted by the finite element model. It has often been observed with real data that
in such cases the MAC values for two modeshapes corresponding to two closely spaced modes
are of the order of 0.5. This lack of correspondence between the experimental and and the model
predicted modeshapes is due to the fact that the experimental modeshapes belong to the
subspace spanned by the model predicted modeshapes for the case of closely spaced modes,
something that it is expected for modes with multiplicity of two or higher. In this case it is not
appropriate to use the modeshape residual (4.1) since a one to one correspondence is not
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usually satisfied. In order to take into account this problem in the formulation one needs to
generalize the definition of the modeshape residuals as follows.

Consider the modal group I containing the modal properties Ij,...,I . This modal group is

introduced herein to correspond to a set of closely spaced modes. However, in a more general
setting it can be introduced to correspond to a set of arbitrary modes selected by the user. The

modeshape residual for an experimentally obtained modeshape ?r. is constructed by comparing
(0) that
belongs to the subspace spanned by the modeshapes ¢, (Q),...,gbrm (0) in the group r and is

the experimentally obtained modeshape with a reference analytical modeshape ¢wef

closest to the experimentally obtained modeshape. Thus the reference analytical modeshape is
obtained by the expansion

b (0) =3 Lo, (05, (©)=2,(8)3, (0) (4.53)
k=1
where
®,(0)=|Lg, - Lo ] (4.54)

and f3, (Q):[ﬁl,r, (Q),-n,ﬁmrI ()]". The coefficients B, (0) in the expansion (4.53) are

selected so that ¢, (€) is closest to ¢, , that s,

2

8,(0) = argmin [, (6)3, (6)— &, (4.55)
Oy
One can readily show that (4.55) yields
5, () =[27 (02, (9)] @] (©)3, (4.56)

The modal residual between the measured modal data and the model predicted modal data for
the modeshape component <br| involved in the modal group I is next defined by

2

G ()=,
A

e @s.0-4

2

2 _

O

(4.57)

A

&

These modal residuals for the individual modeshape in the group I' are used to define the total
modal residuals for all modeshapes in the group I by

2

%@:i%:iﬁﬁm@aa

1=1

(4.58)

~

Ih
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It should be noted that for modes that are not closely spaced, the elements ﬁj,r. (0) of the

normalization vector ﬁrl () are expected to have values close to zero for j#1, and so the

measure of fit €, (0) is approximately the same as €, 0)=
in (4.1).

A=

4.5.2 Gradients of objectives

Next, the gradient of the modeshape residuals eiq (0) with respect to the model parameters are

obtained. Using (4.58), one has that

—a% ©_ % (4.59)

where

Per =2V, €5 (0) (4.60)

1=1

It should be noted that (4.59) is of the form (4.34) for one modal property with m=1. For
r,...,r, modal properties, equation (4.34) can be written in the form

ae% )

I

1=1

_Zpkr

(4.61)

m
_Z—WW P
I=

with p, =V, 5; (8) - Note also that p, , is given by p, . = 2e, (8)8, in(4.39).

Comparing (4.59), (4.60) with (4.61), it can be seen that the formulation for the gradients of the
modeshapes presented in Section 4.4.3.2 can directly be used to handle the modeshape
residuals (4.59) for closely spaced modes by replacing p,, = sirk (@) in the formulas

presented in Section 4.4.3.2 by the quantity p, . given in (4.60).

Finally, it can be readily shown that the quantity p, . defined in (4.60) is given by

= f:zgfn B = 2Eh, (4.62)
where .
_2,(0)8,(0) -,
T

(4.63)
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BE=le, -~ &, | (4.64)

0 e
and
B
b=1 % [=[B ] (4.65)
B,
with [B, _,,,| denoting the K row of matrix B givenby B :[gﬁ @ - B (Q)]

4.6 Application on a scaled three-story building structure

Experimental data from a scaled three-story steel building structure are used to demonstrate the
applicability and effectiveness of the proposed model updating methods, assess the effect of
model error uncertainties on the variability of the Pareto optimal models, as well as investigate
the response prediction accuracy and variability of the updated models.

4.6.1 Description of the laboratory structure

A schematic diagram of the side and the front views of the laboratory structure are given in Figure
4.2a. The floors of the building are made of identical steel beams of hollow orthogonal cross
section. The two interstory columns that support each floor are made up of identical thin steel
plates. The columns and beams are connected through angles with the help of bolts and nuts.
The horizontal members are made to be much stiffer compared to the vertical structural

elements so that the structural behaviour can be adequately represented by a shear beam
building model. The total height of the structure is approximately 2.4m. The Yy direction of the

frame is made to be stiffer to prevent coupling of motion with the X direction, the latter being the
principal direction of interest. Detailed description and plans of the steel beams and columns can

be found in Christodoulou (2007). The structure is considered as the reference structure and it is
denoted by C, .
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Figure 4.2: (a) Front and side views of 3-story building structure with added concentrated masses, (b)

parameterized 3-DOF model class (c) parameterized 546 DOF finite element model class.

A second structural configuration is considered by adding concentrated masses made from lead
in both sides of each floor of the reference structure as shown in Figure 4.2a. The added weight
due to the concentrated masses is approximately 9.5 Kg per floor, while the total added mass
corresponds to approximately 42% of the mass of the reference structure. The modified structural
configuration with the concentrated masses is denoted by C,.

4.6.2 Modal identification

The modal properties of the two structural configurations C, and C, are identified from

frequency response functions that are obtained by processing the excitation force and
acceleration response time histories generated from impulse hammer tests (Ewins, 2000). An
array of three acceleration sensors located on the structure as schematically shown in Figure 1a,
record the acceleration time histories during the test along the x direction. Multiple data sets are
generated and processed that correspond to different excitation position of the impulse hammer
at the second and third floor of the structure along the z direction. The common denominator
least-squares complex frequency-domain method (Ntotsios, 2009) is used to obtain the optimal
values of the modal parameters assuming classically damped modes. Table 4.1 reports the
values of the identified modal frequencies and modeshape components at the measured
locations of the lowest three bending modes for the reference C, and mass modified C,

structural configurations.
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Table 4.1: Lowest three bending modal frequencies and modeshapes identified for the reference and the
mass modified structural configurations.

Reference Structure C, Modified Structure C;
Mode # lst 2nd 3rd 1st an 3rd
Modal Freq. (Hz) 4.646 13.81 19.48 3.908 11.57 16.31
1* floor 0.4561 1.000 -0.7801 0.4408 1.000 -0.7892
Modeshape nd
Components 2" floor 0.8069 0.3009 1.000 0.8219 0.3528 1.000
3" floor 1.000 -0.9026  -0.6448 1.000 -0.8709 -0.5708

4.6.3 Parameterized model classes

In order to investigate the effect of modelling error in model updating and model response
prediction variability for each structural configuration, the following two parameterised model
classes are introduced to represent the behaviour of the structure along the x direction.

The first model class, which is schematically shown in Figure 4.2b, is a simple 3-DOF mass-
spring chain model. The modelling is based on the assumptions that the floors of the structure are
rigid and that the stiffness is provided by the interstory plates. A lumped mass model is
considered. Specifically, the i-th mass of the model includes the mass of the i-th floor and half

of the mass of the interstory plates that are attached to the i -th floor. Thus, based on the weights
of the structural elements, the masses m,, m, and m, are taken to be equal to

m, =m, = m, and m, = 0.76m,, where m, = 22.6Kg. The initial (nominal) values of the
spring stiffnesses k,,, k,, and k,, are taken to be equal, that is, k,, = ky, = k,; = k,. The
ratio k, / m, was selected so as to minimize the difference between the first modal frequency
predicted by the model and the first measured modal frequency for the structural configuration
C,.

The 3-DOF mass-spring chain model is parameterized introducing three parameters 01 , 92 and
93, one for the stiffness of each spring modelling the interstory stiffness, so that k, = 97:]‘702-: for
1 =1,2,3, where k,, =k, is the nominal value of the stiffness of each spring in the nominal
model and £, is the updated value of the stiffness of each parameterised spring based on the
measured data. This parameterized model class is denoted by I\/\O. For the modified structure
C, with added concentrated masses, the 3-DOF model class is used with modified masses
m,+m,, m,+m, and M, +m; that take into account the additional concentrated lead masses
m1' , mé and m3’ added on the structure at each floor (see Figure 4.2a). The parameter set 0 is
kept the same as the one used for the reference structure C, . This parameterized model class

for the modified structural configuration C, is denoted by M, .
The second model class, which is schematically shown in Figure 4.2c, is a detailed finite element

model. Each floor beam is modeled with a beam element, while the columns between each floor
are modeled, due to its small thickness, with 12 plate elements each. The sizes of both types of
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elements are calculated from the structural drawing. The modulus of elasticity and the density
are based on the material properties. The plate elements near the joints, between columns and
floors, are assumed to be very stiff compared to the interstory plate elements, in order to model
the large rigidity in these parts of the structure. The FEM developed based on modeling
assumptions, the structural drawings and the properties of the materials used, is referred to as
the initial (nominal) FEM. The total number of DOF is 546.

The 546-DOF finite element model is parameterised introducing three parameters ¢, , 0, and 0,,

each one associated with the modulus of elasticity of the thin plate elements of first, second and
third interstory columns, respectively, so that £, = 0.E,,, for ¢ =1,2,3, where E,, = E| is

the nominal value of the modulus of elasticity of interstory plate elements in the initial FE model
and £ is the updated value of the modulus of elasticity of each parameterised plate element.

This parameterized model class is denoted by M, . The FEM of the modified structure C, with

the additional concentrated masses is obtained by modifying the FEM of the reference structure,

adding in the FEM the known values of the concentrated lead masses at the edge nodes of the
horizontal beam elements used to model the stiffness of the floors. The parameter set 6 is kept

the same as the one used for the reference structure. This parameterized model class for the
modified structural configuration C, is denoted by M, (..
The model within each of the defined model classes with parameter values 6,=0,=0,=1

correspond to the initial (nominal) model of the model class. It should be emphasized that the
three parameters 6,, 0, and 6, correspond to interstory stiffness properties of the three-story

structure which are common for all four model classes introduced for the reference and mass
modified configurations.

4.6.4 Structural model updating

Model updating results are computed for the model classes M, and M, based on the
experimental data in Table 4.1 available for the reference structural configuration C . Similarly,
model updating results are computed for the model classes M, and M, based on the
experimental data in Table 4.1 available for the structural configuration C,. The two objective

functions in (4.1) are used for model updating. Thus, the objective space is two dimensional,
while the parameter space is three dimensional. The Pareto optimal models are estimated from
the proposed multi-objective identification method using the NBI algorithm and N, =20 points

along the Pareto front. The estimation of the optimal models corresponding to the optimally-
weighted and equally weighted residuals methods, as well as the optimal models corresponding
to the edge points of the Pareto front, is based on the hybrid optimization method combining
evolution strategies and gradient based methods.
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Figure 4.3: Pareto front and Pareto optimal solutions in the (a) objective space and (b-d) parameter space,

along with optimal solutions obtained from the optimally and equally weighted modal residuals methods.

The results from the multi-objective identification methodology are shown in Figure 4.3. For each
model class and associated structural configuration, the Pareto front, giving the Pareto solutions
in the two-dimensional objective space, is shown in Figure 4.3a. Specifically, the results in Figure

4.3a are given for the functions 51(é) = \/Jl(é)/al and ¢, (é) = \/.JZ(QA)/oz2 which, given the

definition of the objective functions in (4.3), represent a measure of the average errors of the
modal properties involved in the two modal groups. The non-zero size of the Pareto front and the
non-zero distance of the Pareto front from the origin are due to uncertainties arising from
modeling and measurement errors. Specifically, the distance of the Pareto points along the
Pareto front from the origin is an indication of the size of the overall measurement and modeling

error. The size of the Pareto front depends on the size of the model error and the sensitivity of the
modal properties to the parameter values 6 (Christodoulou and Papadimitriou, 2007). It is

observed that the average errors 51(é) and ez(é) between the measured and the model

predicted modal properties obtained from the Pareto optimal models é for the higher fidelity 546-
DOF model classes My, and M, are significantly smaller than the residual errors
corresponding to the 3-DOF model classes I\/\o and M1- Consequently, for the higher fidelity

546-DOF model classes, the Pareto front moves closer to the origin of the objective space. In
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addition it is observed that the sizes of the Pareto fronts for the 546-DOF model classes M,
and M, reduce to approximately one third to half the sizes of the Pareto fronts observed for the
3-DOF model classes M, and M. These resullts certify, as it should be expected based on the

modeling assumptions in Section 5.3, that the 546-DOF model classes are higher fidelity model
classes than the 3-DOF model classes. Also the results in Figure 4.3a quantify the quality of fit,
acceptance and degree of accuracy of a model class in relation to another model class based on
the measure data.

Figures 4.3b-d show the corresponding Pareto optimal solutions in the three-dimensional
parameter space. For each model class, the Pareto optimal solutions are concentrated along a
one-dimensional manifold in the three-dimensional parameter space. The Figures 4.3b-d show
the projection of the Pareto solutions in the two-dimensional parameter spaces (6,,6,), (6,,6,)

and (6,,6,). It is observed that a wide variety of Pareto optimal solutions are obtained for both

model classes and structural configurations that are consistent with the measured data and the
objective functions used. Comparing the Pareto optimal solutions for a model class, it can be said
that there is no Pareto solution that improves the fit in both modal groups simultaneously. Thus,
all Pareto solutions correspond to acceptable compromise structural models trading-off the fit in
the modal frequencies involved in the first modal group with the fit in the modeshape components
involved in the second modal group.

Comparing the Pareto front and Pareto optimal models for the 546-DOF model classes with the
corresponding ones obtained for the 3-DOF model classes, it can be noted that the results are
gualitatively similar. However, the size of the one dimensional optimal solutions manifolds for the
546-DOF model classes My and M, . are significantly smaller than the size of the manifolds

for the 3-DOF model classes M, and M, . These results clearly demonstrate that as the fidelity

of the model class improves, the variability of the Pareto optimal models reduces. This has
important implications in the selection of the weight values used in weighted modal residuals
method for model updating and model-based prediction studies. Since the variability of the
Pareto optimal solutions reduces as the fidelity of the models improves, the effect of the choice of
weight on weighted modal residuals methods diminishes as the fidelity of the model increases.

Consider next the common parameter model classes M, and M, introduced for modeling the
reference and modified structural configurations C, and C,, respectively. The Pareto optimal
values of the common parameter set ¢ of the 3-DOF model classes M, and M, differ, despite
the fact that the parameters for the two model classes M, and M, refer to the same interstory

stiffnesses of the two different structural configurations. The differences can be attributed mainly
to the size of modeling errors involved in the 3-DOF model classes. Instead, comparing the
Pareto optimal values obtained from the common parameter 546-DOF model classes M. and

M for the two structural configurations C, and C,, it is observed that the optimal solution

manifolds for the 546-DOF model classes are significantly closer than the optimal solution
manifolds for the 3-DOF model classes. This certifies that the higher fidelity model classes
provide consistent estimates of the common parameters in model classes introduced to model
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different structural configurations. Finally, it should be noted from the results in Figures 4.3b-d
that the Pareto optimal values of the parameters predicted by the higher fidelity model classes
Mg and M, (. are significant different from the Pareto optimal values predicted by the simpler

model classes MO and I\/\l. Thus, the model updating results and parameter estimates depend

highly on the fidelity of the model class considered.

The optimal structural models corresponding to the optimally weighted (OWM) and the equally
weighted (EWM) residuals methods for the 3-DOF and 546-DOF model classes are also shown in
the Figure 4.3. It can be seen that these optimal models are points along the Pareto front, as it
should be expected. The two methods, the OWM and the EWM, in general promote different
Pareto optimal models for use in model-based prediction studies. For the example case

é (owm)

considered, the Pareto solutions provided by the optimally weighted residuals method for

the 3-DOF model classes are close to the boundary solution Q(ZO) for both structural
configurations C, and C,. Also, the Pareto points corresponding to the optimally weighted
(OWM) and the equally weighted (EWM) residuals methods for the 546-DOF model classes are

also shown in the Figure 4.3 to be closer than the corresponding Pareto points for the 3-DOF
model classes.
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Figure 4.4: (a) Pareto front, (b) projection of Pareto optimal solutions in (91,92) plane for model class

MO,FE'

4.6.5 Unidentifiability issues

Unidentifiability issues are next discussed which were ignored in presenting the Pareto front for
the model class M, in Figure 4.3a. Figure 4.4a shows the Pareto front obtained by the
application of the proposed NBI algorithm for the 546-DOF model class I\/\O’FE . It is observed that

there is an almost flat part of the Pareto front at the lower right edge of Figure 3a. This is due to
the unidentifiability problems (Katafygiotis et al., 1998; Katafygiotis and Lam, 2002) encountered
in estimating the optimal model corresponding to the right edge point of the Pareto front. In this
case, the right edge point of the Pareto front is obtained by optimizing the function JZ(Q). It turns
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out that there is a lower dimensional manifold in the three-dimensional parameter space, shown
in the two-dimensional projection (91,92) in Figure 4.4b to extend from point 13 to point 20, that

give almost the same optimum for JZ(Q). Depending on the starting values of the parameter set
0, the gradient-based optimization algorithm converges to one of the infinite number of optimal

models in this sub-manifold. As it is noted in Figure 4.4a, the flat unidentifiable portion of the
Pareto front and the associated manifold in Figure 4.4b are readily obtained by the NBI method.
From the engineering point of view, the most important point from this flat portion is the most left
point 13 in Figure 4.4a since all other points in the flat portion deteriorate the fit in the objective
function J; (@) without significantly altering the fit in J,(€). In order to generate points only on

the identifiable portion of the Pareto front for pre-selected humber of points on it (e.g. 20 points as
shown in Figure 2a), the analyst can repeat the application of the NBI algorithm with edge points
of the Pareto front selected to be the points 1 and 13 in Figure 3. It should be noted that in the
results presented in Figure 4.3 for the model classes MO,FE’ only the identifiable part of the

Pareto front is shown.

It is worth mentioning that unidentifiable portions of the Pareto front were not observed for the
other three model classes which implies that the problem was identifiable for all three model
classes.

4.6.6 Disconnected Pareto front

More careful examination of the optimal points resulted by the NBI method for the model class
M, in Figure 4.3 reveals that the NBI points 6 and 7 for model class M, do not constitute Pareto

points since it can be easily checked numerically that they do not satisfy conditions (4.5). Figure
4.5 shows the exact Pareto front and Pareto optimal solutions projected in the two-dimensional
parameter space (6,,6,) using NBI method for N, =40 points. The NBI points that do not

satisfy conditions (4.5) have been excluded from the Figures. It is clearly seen that the Pareto
front in Figure 4.5a and the projection of the one-dimensional Pareto solution manifold in (01,02)

plane in Figure 4.5b is disconnected. The missing portion in Figure 4.5 that does not belong to
Pareto front is the portion of the Pareto front and Pareto solutions in Figure 4.3 that extends
approximately from point 5 to point 8. From the previous results, it is evident that the NBI method,
despite the disconnected manifolds that exists, is capable of fully describing the Pareto solutions.

118

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



14 ‘

o
N

I I I I I

‘ ‘ ‘ — b)
e | - a | | | | | \(

A N "0., ! ® NBI 40 points ) 1'37”*”’}”’}”’T”T”’}””
o 0_15”7\7 X _WRM 20 points | _| DI S
2 Co
$ | B | | ~ g | | | | | |

¥ T 0y E e F——+ A - ——— - ——+ - —H4 - ———— —4
% ot J“/J\P : 4\ @ / | | | | |
o | | | 09 -1 L
$ ! | | | B I ey | | |
Soos R S R R R
e | o6 | | 07777\777\777\777 o | /7\7777
l l ""M ' [ R e
0 ! ! ! 1 | | ! 1 I
0 0.01 0.02 0.03 0.04 0.05 08 09 1 11 12 13 14 15
modal frequency error - & 91

Figure 4.5: (a) Pareto front, (b) projection of Pareto optimal solutions in (91,92) plane for model class

M, .

4.6.7 Generation of Pareto points using the weighted residuals method

For comparison purposes, the weighted residuals method was also used to obtain the Pareto
front by uniformly varying the weights in (4.6) from 0 to 1. Specifically, dividing the interval [0,1]
for the weight W, into equally spaced sub-intervals using a step Aw, selecting the

corresponding values of W, to satisfy the condition W, +W, =1, and estimating the optimal
solutions for the 1/ Aw pairs of (W, ,W,) values, the Pareto front and the Pareto solutions are
obtained and shown in Figures 4.5a and 4.5b for model class M, for Aw=0.05. It can be

seen that varying the weights in the weighted residuals method, part of the Pareto points can be
completely missed. Specifically, the top left portion of the Pareto front in Figure 4.5a has been
missed. Attempts to recover this part by fully exploring the region in the parameter space that

corresponds to the top left part of the Pareto front have failed. Such attempts included the use of
different values of the weights W in (4.6), different starting values for solving the single-objective

optimization problems, various sizes of Aw, and an increasing number of Pareto points.
Numerically there is no point in the top left part of the Pareto front that corresponds to a weight
value in the weighted residual method. This is in accordance with the fact that there may be
Pareto solutions that do not correspond to solutions of the single-objective optimization involving

the weighted residuals norm (4.6) for any values of the weights. It should however be noted that
for weight values W, =1 and W, =0, there is a global optimal solution that corresponds to the

edge Pareto point A shown in Figure 4.5, as well as a local solution that corresponds to the edge
Pareto point B of the left portion of the Pareto front. Both solutions, although one global and one
local for the same weight values W, =1 and W, = 0, are Pareto optimal solutions because they

correspond to different values of the second objective J, ().

A final issue that is worth mentioning is that varying uniformly the weight values and computing
the Pareto points using the weighted residuals method does not produce uniformly distributed
points along the Pareto front. Instead, it may yield a cluster of points as it can be seen in Figure
4.5. As a consequence, part of the Pareto fronts can be misrepresented or completely missed.
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4.6.8 Prediction variability using Pareto optimal structural models

The purpose of the identification is to construct faithful structural models, within a selected model
class, that can be used for making improved structural performance predictions consistent with
the measured data. The alternative models obtained along the Pareto front provide different
performance predictions that are all acceptable based on the measured data and the measures of
fit employed. The variability of these predictions is next explored.

The variability in the modal properties predicted by the Pareto optimal models is estimated for the
model classes M, and M, representing structural configuration C,, and the model classes
M, and M, representing structural configuration C,. The values of the three modal

frequencies predicted by the Pareto optimal models from each model class, including the Pareto
optimal models corresponding to the optimally weighted and equally weighted residuals methods,
are shown in Figure 4.6. The measured modal frequencies for structural configurations CO and
C, are also shown for comparison purposes. The variability of the corresponding MAC (Modal

Assurance Criterion) values between the modeshape components predicted by the Pareto
optimal models for each model class and the measured modeshapes for the three bending
modes are shown in Figure 4.7.
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Figure 4.6: Variability of modal frequencies predicted by the Pareto optimal solutions corresponding to
model classes My, M, My and M, (¢ . The corresponding measured modal frequencies are also
presented.
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For each model class, different Pareto optimal models along the Pareto front result in different
predictions of the structural modal frequencies and MAC values. A relatively large variability in the
predictions is observed for the 3-DOF model classes M, and M,. The maximum percentage

error values between the Pareto optimal model predictions for the first, second and third modal
frequency are respectively of the order of 6.0%, 2.7% and 4.9% for the model class I\/\o and of

the order of 5.1%, 2.3% and 3.1% for the model class M1- The MAC values corresponding to the

first, second and third mode vary respectively from 0.990, 0.863 and 0.851 for the model classes
M, and from 0.997, 0.895 and 0.884 for the model classes M, to values very close to 1.0.
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Figure 4.7: Variability of MAC values predicted by the Pareto optimal solutions corresponding to model

classes M, M, MO,FE and MLFE.

Itis clear that there is a trade off between the fit that the Pareto optimal models for model classes
I\/\0 and MO,FE provide to the modal frequencies and the modeshapes. Specifically, the Pareto

models with small numbers close to Pareto point 1 provide a very good fit to the modal
frequencies in the expense of deteriorating the fit in the MAC values to values significantly
smaller than one. The Pareto models with large numbers close to Pareto point 20 for model
classes My and M, improve the MAC values to values very close to one in the expense of

deteriorating the fit in the modal frequencies. Similar trade off in the fit is observed for the Pareto
optimal models for model classes M, and M, . .
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Comparing the predictions in Figure 4.5 from the 3-DOF model classes and the 546-DOF model
classes, the 546-DOF model classes M. and M, . provide overall significantly better fit in the

modal frequencies than the fit provided by the 3-DOF model classes I\/\O and M1- Also,

comparing the results in Figure 4.7, it is observed that the higher fidelity 546-DOF model classes
give MAC values between the Pareto optimal models and the measurements that are much
closer to one than the MAC values obtained for the 3-DOF model class. These results verify that
higher fidelity model classes tend to give better predictions that are less sensitive to selections
required in model updating, such as the weight values used in weighted residuals methods.
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Figure 4.8: (a) Variability of the maximum of the frequency response function at first floor, (b) the probability
of failure corresponding to allowable interstory drift levels b = 0.03 and b =0.04.

Similar variability can be constructed for other structural performance indices. Figure 4.8a shows
the variability of the maximum of the frequency response function at the first floor obtained for the
Pareto optimal models for all model classes for damping values of ( =0.02. Figure 4.8b shows
the variability of the probability of failure of the structure to uncertain stochastic loads. Herein,
failure is defined as the condition for which either one of interstory floor drifts exceeds a level b .
The failure probability estimates are obtained for white noise excitation of duration T = 30 sec,
strength S =0.001 and for two allowable drift levels b =0.03 and b=0.04. The failure
probability is obtained using efficient stochastic simulation methods available for linear systems
[38-39] for 2000 samples. In particular, it is worth observing that a large variability in the
maximum of the frequency response predictions, from [0.238 - 0.349] for the model class MO

and [0.281 — 0.321] for the model class I\/\O’FE , and in the failure probabilities from [0.011x10’4 -
5.1x107*] for the model class M, and [0.4x10~° — 2.1x10°] for the model class M , are

observed for the Pareto optimal models. Similar variability levels are observed for model classes
M, and M, ;. These variabilities are larger than the variabilities in the modal frequencies shown

in Figures 4.6.
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Comparing the results in Figure 4.8 for the 3-DOF and the 546-DOF model classes, it is observed
that the variability in the predictions of the maximum of the frequency response function and the
probability of failure due to allowable drift exceedance levels of the 546-DOF model class is
significantly smaller than the corresponding variability obtained from the 3-DOF model class.

Concluding, the predictions of the various performance indices from the Pareto optimal models
may vary considerably. The variability in the predictions depends on the fidelity of the model class
selected for identification. Higher fidelity model classes tend to reduce the variability in the
predictions, diminishing the importance of selecting the weight values in weighted residuals
methods.

4.7 Conclusions

Model updating methods were proposed to characterize and compute all Pareto optimal models
from a model class, consistent with the measured data and the norms used to measure the fit
between the measured and model predicted modal properties. The similarities with and
differences from the conventional weighted modal residuals method were established. Based on
a Bayesian statistical framework and the measured modal data, the most preferred Pareto
optimal solution promoted by the proposed optimally weighted modal residuals method
correspond to weight value for a modal group that is inversely proportional to the optimal residual
between the measured and the model predicted properties involved in the modal group. The
optimal values of the structural parameters for the most preferred Pareto optimal model are
obtained by minimizing the sum of the logarithm of the modal residuals. The most preferred
Pareto optimal model can be used for model-based predictions in case of more than a few
objective functions for which the generation and visualization of Pareto optimal models in the
multi-objective space is computationally less tractable. The Bayesian formulation also quantifies
the uncertainty in the Pareto optimal models which can be used to further quantify the uncertainty
in the response predictions from these Pareto optimal models. For this, an asymptotic
approximation for the probability distribution of the weights has derived that depends on the
optimal values of the model parameters and the Hessian of the residuals given a weight value.

Hybrid algorithms based on evolution strategies and gradient methods are necessary and well-
suited optimization tools for solving the resulting non-convex single-objective optimization
problem and identifying the global optimum from multiple local ones. The proposed NBI method is
well-suited for solving the multi-objective optimization problem and effectively computing the
useful identifiable part of the Pareto front, as well as portion of the unidentifiable part of the
Pareto front at the edge points. Efficient algorithms are introduced for reducing the computational
cost involved in estimating the gradients and Hessians of the objective functions. The
computational cost for estimating the gradients and Hessians is shown to be independent of the
number of structural model parameters. In addition to the optimization algorithm, the Hessian
estimation is also used to estimate the probability distribution of the weights. The methodology is
particularly efficient to system with several number of model parameters and large number of
DOFs where repeated gradient evaluations are computationally quite time consuming.
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Theoretical and computational issues were demonstrated by updating simple and higher fidelity
model classes using experimental data from two configurations of a scaled three-story steel
structure. A wide variety of Pareto optimal structural models consistent with the measured modal
data was obtained. The variability in the Pareto optimal models is due to the model and
measurement error. The large variability in the Pareto optimal models resulted in large variability
in the response and structural reliability predictions. It has been demonstrated that higher fidelity
model classes, tend to involve less model error, move the Pareto front towards the origin and
reduce the size of the Pareto front in the objective space, reduce the variability of the Pareto
optimal solutions, provide better fit to the measured quantities, and give much better predictions
corresponding to reduced variability. In particular, as the fidelity of the model class improves, the
importance of selecting the weight values in weighted residuals methods diminishes.
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Chapter 5

Fatigue predictions of metallic structures using a limited
number of vibration sensors

51 Introduction

Damage accumulation due to fatigue is an important safety-related issue in metallic structures.
The linear Palmgren-Miner damage accumulation law (Palmgren, 1924; Miner, 1945) is often
used to evaluate fatigue damage using available methods for cycle counting in variable amplitude
measured stress response time histories and S-N curves obtained from laboratory experiments of
simple specimens subjected to constant amplitude loads. The damage accumulation predictions
are based on time histories measurements taken from a sensor network, consisting usually of
strain rosettes, attached to the structure. Such predictions are only applicable for the locations
where measurements are available. Due to practical and economical considerations, the number
of sensors placed in a structure during operation is very limited and in most cases they do not
cover all critical locations. Moreover, there are locations in the structure that one cannot install
sensors such as submerged structures, underwater locations in offshore structures (oil refinery
structures, offshore wind turbines, offshore steel jackets, etc.), heated structural components,
internal points in solid structures, and non-approachable areas of large extended structures.
Available fatigue prediction methods based only on measurements cannot be used to predict
fatigue damage accumulation at such locations where measurements are not available. In order
to infer damage due to fatigue at structural members where measurements are not available, one
needs to predict the stress response time histories in these structural members using the
available measurements obtained from the sensory system. In certain circumstances, such
predictions can be possible if one combines the available measurements with the information
obtained from a dynamic model (e.g. a finite element model) of the structure.

The methods for fatigue damage accumulation have been extended to treat the case that the
excitations can be represented by a stochastic vector process with known correlation
characteristics. Assuming that the structure behaves linearly and the excitation is modeled by a
Gaussian stochastic vector process, the stress response at any point is a stochastic process that
can be completely defined using the correlation characteristics of the stochastic excitations (Lutes
and Sarkani, 2004). The fatigue damage accumulation at a structural location can then be
computed using the characteristics of the stochastic processes of the components of the stress
tensor at such a location. Methods for fatigue damage accumulation for Gaussian narrow-band
stress processes have been introduced using the Rayleigh approximation and extended to handle
the case of wide-band Gaussian stress processes (e.g. Wirsching and Light, 1980; Lutes et al.,
1984, Lutes and Larsen 1990; Rychlik, 1993; Dirlik, 1985). A review and comparison of spectral
methods for stochastic fatigue analysis based on wide-band Gaussian stochastic processes can
be found in the work by Benasciutti and Tovo (2006). The formulations depend on the probability
distribution of stress cycles corresponding to different stress levels in a stress response time
history signal and the expected number of peaks per unit time of a stress process. Results for the
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expected fatigue damage accumulation predicted by the Palmgren-Miner linear law have been
presented in terms of the spectral moments of the stress process which are readily obtained from
the power spectral density of the stress components involved. For the important case of wide
band processes encountered often in applications, the simulation-inspired Dirlik approximation
(Dirlik, 1985) is widely used and is considered to be the most accurate formula for modeling the
probability of stress cycles in terms of the spectral moments of the stress process. It is worth
noting that the aforementioned frequency domain methods based on the stress power spectral
densities or spectral moments use no information available from a sensor network. Instead, their
predictive accuracy depends on the assumptions employed for the excitation characteristics and
the models representing the structural behavior. However, these predictions fail to integrate the
information provided by a network of sensors. The sensor information is expected to update and
improve the fatigue predictions, making them consistent with the available measurements.

In this chapter, the problem of estimating the expected damage accumulation or remaining
lifetime due to fatigue in the entire body of a structure using output-only vibration measurements
at a limited number of locations provided by a sensor network installed on the structure is
addressed. The measurements may consist of response time histories such as e.g. strain,
acceleration, velocity, displacement, etc. The expected fatigue damage accumulation in the entire
structure is obtained by integrating (a) methods for predicting strain/stress response time histories
and their correlation/spectral characteristics in the entire structure from output-only measured
response time histories available at limited locations in the structure, and (b) frequency domain
methods for estimating fatigue damage accumulation using the spectral characteristics of the
predicted strain/stress response time histories. The idea is to use Kalman filter (Kalman and
Bucy, 1961) methods to predict the strain/stress response time histories at various locations
within structural components using the measurements available at a limited number of locations.
A schematic diagram of the fatigue lifetime prediction in the entire structure from limited number
of sensors using Kalman filter, along with its use in inspection/maintenance decisions, is shown in
Figure 5.1. Response time history measurements are collected from a limited number of points
S,,--+,S,, while stress time history predictions are made at any number of points P,,---,P, . For

each prediction point P, the fatigue damage accumulation, or remaining fatigue lifetime T , is
obtained by combining the information in the stress tensor time history o(t) for the point P,
fatigue data sets (e.g. S-N-curves) and a damage accumulation model (e.g. Palmgren-Miner
rule). Such predictions are restricted here to the case of linear structures and excitations that can
be adequately represented by Gaussian stationary stochastic processes. The excitation time
histories applied in the structure are considered to be unknown. However, for several operational
conditions of structures, the excitation time histories can be considered to be samples of a
Gaussian stationary stochastic process with unknown intensity and frequency content. The
proposed methodology is thus applicable for the case where the responses can be modeled by
Gaussian stationary processes and the measured response time histories are long enough so
that they can be considered to be samples of stationary processes.
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Figure 5.1: Scheme of life-time prediction from a limited number of sensors using a Kalman Filter.

The objective of this work is to formulate the fatigue prediction problem, illustrate the
methodology and point out its use in evaluating the damage accumulation in the entire structure
from a limited number of vibration measurements. For this, the present approach is limited to uni-
axial stress processes and simplified models of structures. The extension to multi-axial stress
processes can be accomplished by using recent developments in frequency domain methods for
stochastic fatigue based on spectral techniques (Preumont and Piefort, 1994; You and Lee, 1996;
Pitoiset and Preumont, 2000). These methods reduce the multi-axial stress state to an equivalent
uniaxial stress state that can treated by available fatigue estimation techniques based on spectral
methods. In addition, extension to non-Gaussian stress processes, known to significantly affect
fatigue life predictions (Lutes et al., 1984; Sarkani et al., 1994) can also be accomplished by
using recent approximations for the probability distribution of the stress cycles (Wang and Sun,
2005) in terms also of the higher moments of the stress process such as skewness and kurtosis.

This chapter is organized as follows. In Section 5.2, the frequency domain formulation for
predicting damage due to fatigue in structural elements subjected to uniaxial stress state in linear
structures under Gaussian stochastic excitations is reviewed. The formulation is applicable to
Gaussian wide-band stress processes, often encountered in engineering applications, and
damage accumulation due to fatigue depends on the spectral moments of the power spectral
densities of the stress process at a location of a structure. Section 5.3 presents the formulation
for predicting the strain/stress response time histories and the associated power spectral
densities at all desirable locations of the structure using Kalman filter and the measured time
histories at a limited number of locations in the structure. For this, first the state space formulation
of the equations governing the vibrations of a structure is briefly summarized in Section 5.3.1.
Using the discrete-time formulation of the state space approach, the Kalman filter approach for
estimating the power spectral densities of the stresses in the entire body of the structure is
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presented in Section 5.3.2 and 5.3.3. The approach considers that the unmeasured excitations
can be represented by Gaussian stationary stochastic processes. Finally, Section 5.4
demonstrates the effectiveness of the proposed methodology using a chain-like mass-spring
multi-degree-of-freedom (MDOF) structure and “measured” data that are simulated from various
types of excitations, including white noise and filtered white noise excitations. Conclusions are
summarized in Section 5.5.

5.2 Frequency domain method for fatigue estimation based on spectral
moments

The Palmgren-Miner rule (Palmgren, 1924; Miner, 1945) is commonly used to predict the damage
accumulation due to fatigue. According to this rule, a linear damage accumulation law at a point
in the structure subjected to variable amplitude stress time history is defined by the formula

m

D 22% (5.1)

where N, is the number of cycles at a stress level o;, N, is the number of cycles required for
failure at a stress level o;, and m is the number of stress levels identified in a stress time history

at the corresponding structural point. Available S-N fatigue curves, obtained from laboratory
experiments on simple specimens that are subjected to constant amplitude loads, are used to
describe the number of cycles N, required for failure in terms of the stress level o; . The number

of cycles N, at a stress level o, are usually obtained using available stress cycle counting

methods, provided that the stress time histories are available through measurements.
Alternatively, for the cases where the stress response time histories are not available from
measurements, frequency domain methods based on spectral moments (e.g. Lutes et al., 1984;
Benasciutti and Tovo, 2006) can be used to predict the expected damage due to fatigue using the
linear damage law (5.1). The methodology assumes that the power spectral density of the stress
process at a structural location is available. For linear systems excited by time-varying loads that
can be modeled by stationary stochastic processes, these power spectral densities can be
straightforward computed using available random vibration results (Lutes and Sarkani, 2004).

The following section outlines such a frequency domain methodology based on spectral moments
for fatigue estimation for structural members subjected to uniaxial stress state. For multi-axial
stress states one can apply available methods (Preumont snd Piefort, 1994; You and Lee, 1996;
Pitoiset and Preumont, 2000) to extend the applicability of the present methodology. Let o (t) be
the uni-axial stress at a point in a structural element. The stress is considered to be a stationary
Gaussian stochastic process. This is the case encountered in linear structures that are subjected
to stationary Gaussian stochastic processes. Let SU (w) be the power spectral density of the
stationary Gaussian stochastic stress process o (t) of the uni-axial stress at a structural location

and
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A :J‘_Ozo|a)|J S, (w)dw (5.2)

be the spectral moments of the process. Using frequency domain methods for fatigue estimation
under stochastic excitations and the continuous version of the damage accumulation law (5.1),
the expected fatigue damage accumulation for a uni-axial stochastic stress process is given by
(Benasciutti and Tovo, 2006)

E[D]= j:%da = ¢ 'TE[P] jo“’ o' p(o)do (5.3)

where N(o) =TE[P]p(c)do is the number of cycles at stress levels within the stress interval
[o,0+do], p(o) is the probability distribution of the stress levels,

N(o)=co™ (5.4)

is the number of cycles for failure that correspond to a specific constant amplitude stress level o
obtained from available S-N curves, E[P] is the expected number of peaks per unit time for the
stress process, and T the period of observation. The parameters C and « are constants
obtained from fatigue test experiments and depend on the material and the type of the test
specimen.

The expected time of failure due to fatigue (fatigue lifetime) T, corresponds to a critical

ife

expected damage value E[D]= D, which is often set equal to unity (D, =1). Using (5.3), the

fatigue lifetime is given by

D
T = [_;r (5.5)
where D is the expected damage rate given by
D =c'E[P] j: o“p(c)do (5.6)

For Gaussian stochastic stress processes, the probability distribution of the stress range
Ao =20, taken to be twice the random amplitude at stress level within [, +do] in a stress

process, is given by the Dirlik formula (Dirlik, 1985; Bishop and Sherrat, 1990; Benasciutti and
Tovo, 2005) as

Ao 2
p(Ao) = —— Gganfi, GA0 ety AT ey (5.7)

2% | h 2r2 %, 2%

129

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



where d;, d,, d,, h and r are specific algebraic functions of the spectral moments A;, 4,

A,, A, given by

2(Xm—a22) 1-a,-d, +d;
e ST GTAk 69
ho15(a—di=dyr) e %, ] (5.9)

(5.10)

This is a semi-empirical probability density which is a mixture of one exponential and two
Rayleigh distributions. It has been derived by fitting the shape of a rain-flow range distribution via
minimizing the normalized error between the rain-flow ranges and the above density model. The
spectral moments A,,4,,4,,4, constitute a base for the construction of the approximate closed-

form Dirlik formula for the probability density of the stress range. The Dirlik formula constitutes an
extension of the Rayleigh distribution to non-narrow band processes. It is widely used for fatigue
crack estimation under wide-band Gaussian stationary applied stress. Extension to non-Gaussian
stress processes requiring the skewness and kurtosis of the stress process are available in the
work by Wang and Sun (2005).

Using results from random vibration theory, the expected number of cycles E[P] per second for
a stochastic process is given by the spectral moments of the process in the form

1 i

E[P]=— 5.11
[P1=—— ) (5.11)

Starting with (5.6) and noting that p(c)= p(Ac)/2= p(20)/2, then substituting (5.11) and

the Dirlik formula (5.7) into (5.6) and finally carrying out the integration in (5.6) analytically, the
expected damage rate simplifies to (Benasciutti and Tovo, 2006)

D = (8xc)™ %@g’z [dlh“r(u a)+ 2“’2r(1+%j d,|rf +d3)} (5.12)

where d,, d,, d,, h and r are defined in (5.8)-(5.10).

It is clear from the aforementioned formulation and equations (5.5) and (5.12) that the expected
fatigue damage rate D and, consequently, the fatigue accumulation during a time interval T or
the fatigue lifetime T, at a point in the structure depends only on the spectral moments 4,

i1=0,1,2,4, of the stress process o (t). Using the definition of the spectral moments in (5.2),
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the spectral moments and the fatigue predictions at a point of a structure eventually depend only
on the power spectral density S_ (@) of the stress process o (t).

The power spectral densities of the stress response processes at a point can be calculated from
measurements, provided that these measurements are long enough to be considered stationary.
However, there is a limited number of points that can be instrumented in the structure. For the
points where measurements are not available, one has to make predictions of the stress process
and subsequently the power spectral density of the stress process at a location, given the
measurements at other locations. This issue of predicting the power spectral densities of the
stress processes in the entire body of the structure using measurements at limited locations is
addressed at the next Section 3. Once these measurements and predictions of the stresses are
estimated at measured and unmeasured locations, the power spectral densities and the
corresponding damage accumulation or lifetime due to fatigue are obtained, using (5.5) and
(5.12), everywhere in the structure. In this way, fatigue damage accumulation maps for the entire
structure are constructed from the limited number of ambient vibration measurements.

5.3 Response predictions in the entire structure using ambient vibration
measurements

The objective of this section is to predict the stress response at all points in a structure using the
measurements at a limited number of locations. This is achieved using an approach that is
outlined in the next two subsection based on the commonly used Kalman filter method (Kalman
and Bucy, 1961) for full state estimation of a linear system using limited number of
measurements.

5.3.1 Equations of motion and state space formulation

Consider the dynamic response of a linear structural system subjected to deterministic and
random excitations. Using a spatial discretization method, such as finite element analysis, the
equations of motion are given by the following set of N second order differential equations

M(t)+Cq(t) + Ka(t) = Lu(t) + L,w(t) (5.13)

where (t) e RM* is the displacement vector, M, C and K e RM" are respectively the

x1 x1

and W(t) e RN
and N,

mass, damping and stiffness matrices, g(t)eRN“"" are the applied

deterministic and stochastic excitation vectors of dimension N, ; respectively, and

n ,in?

L, R™ ™ and L, € R™ ™" are matrices comprised of zeros and ones that map the N,

and N, deterministic and stochastic excitation loads to the N output DOFs. Throughout the
analysis, it is assumed that the system matrices M , C and K are symmetric. Let y(t) € R"m=

be the vector that collects all measurements at different locations of the structure at time t.
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These measurements are generally collected from sensors such as accelerometers, strain
gauges, etc. For convenience and without loss of generality, it is assumed in the analysis that
sensors placed in the structure measure the strains.

Introducing the state vector ZT = [qT qT] e R™" | the equation of motion can be written in the

state space form

x=Ax+B.u(t)+Gw(t) (5.14)
while the measured output vector y(t) is given by the observation equation

y(t)=Hx+Du(t) (5.15)

where the state transition matrix A, , and the matrices B, and G, are given by

0 |
'% :{_M _1K _M_lc}eRszzN (5.16)
0 0
BC:[ M j|€R2NXN”"” and Gcz[ M }ERZNXNW"" (5.17)
Y -M™L,

. N 2N . B H Nmeas 2Nuin
respectively, H e R"™="“" s the observation matrix and D=0eR ™"

measurements.

for strain

5.3.2 Kalman filter approach

Since measurements are available in digitized form, the presentation of the Kalman filter is next
given in discrete time. Using the sampling rate 1/At, the discrete-time state space model
corresponding to (5.14) and (5.15) is

X, = Ax_, +Bu, , +Gw, (5.18)

¥ = HX +Du, +y, (5.19)

where X, = X(kAt) and y, = y(kAt), k=1,---,N,, are the digitized state and output vectors,
and A=e"™" is the state transition matrix for the discrete formulation. The random variables W,
and V, represent the stochastic excitation and the measurement noise, respectively. They are

assumed to be independent, white and following normal probability distributions
p(w,)~ N(0,Q) and p(v,) ~ N(O,R), where Q and R are the stochastic excitation and the

measurement noise covariances assumed to be constant, independent of time.
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Kalman filter is used to estimate the state Xk of the system described by (5.18) using the
measurements in the vector Y, in (5.19). Specifically, in the prediction step, an apriori state
estimate X, of the state vector X, of the system is estimated from equation (Franklin et al.,

1990; Stengel, 1986)

X =AX,+By, (5.20)

In the correction step, the measured value Y, is used to calculate a posteriori state estimate X, ,
weighting the measured and estimated signals by the Kalman filter gain factor K, . This is

formulated by the equation

X =% + K[y, —HX - Duy,] (5.21)

where the Kalman gain factor is given by

K, =PHT[HPRH" +R]* (5.22)

and, for steady state response, the error covariance matrix P, =P =E[g (g )"], where

& = X—X_ is the a priori error estimate, satisfies the discrete time Riccati equation:

P = APA" — APHT (HPH™ +R)™“HPA + GQG’ (5.23)

Let o, be a vector containing the digitized stresses at time t = KAt at various locations of the
structure. Using structural mechanics theory, these stresses in the vector g, are related to the
state vector through a linear transformation g, = XX, , where X is the transformation matrix that

associates the state vector to the desired stresses in the entire structure. Consequently, an
estimate of the stresses &, is related to the state vector estimate X, through the transformation:

N A

5, =3%, (5.24)

Herein, the response prediction vector g, is restricted to stresses at elements subjected to

uniaxial stress states required in lifetime fatigue estimation as described in Section 5.2.

Using the definition of the cross power spectral density (CPSD), the Kalman filter equations (5.20)
and (5.21), the fact that B =0 in (5.20) for the case of stochastic excitations and D =0 in (5.21)
for strain measurements, the CPSD Sé (w) of the stress response vector (j‘k can readily be

obtained with respect to the CPSD Sy(a)) of the measurement vector Y, in the form

S;(@) =25, (@)2" =2E"(jo)KS, (0)K'E™ (jo)z’ (5.25)
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where E(jw) is the matrix given by

E(jo)=le" —(1 —-KH)A (5.26)

and | is the identity matrix. Equation (5.25) relates the power spectral densities of the
components of the stress vector g, at various structural locations with the power spectral

densities of the measured quantities involved in Yy, available at the limited number of measured

locations. This relation depends on the model (e.g. a finite element model) used to represent the
behavior of the structure and the assumption that the excitation vector is broad-band so that the
excitations can be modeled by zero-mean stationary white noise processes with spectral density
described by E[w, W/ ]=QJd,,, where &, is the Kronecker delta.

It should be noted that in order to apply (5.23), an estimate of the zero-lag covariance matrix R
of the measurement noise and the zero-lag covariance matrix Q of the unknown input stochastic

vector process has to be provided. The values of the covariance matrix R which have to be
chosen, affects the estimates of the cross power spectral density matrix Sé(a)) in (5.25).

However, an optimal estimate of the covariance matrix Q can be obtained using the strain
measurements Y(t) and the relation Q  =Q, (Q) between the covariance matrix Q of the
measurement vector Y(t) and the covariance matrix Q of the excitation process. Using (5.19)

with D =0 for strain measurements, this relation is given by
Q,, =HQ,H' (5.27)

where Q,, is given by the discrete time Lyapunov equation for the system (5.18) in the form

AQA"-Q, +GQG' =0 (5.28)

The optimal values of the entries of the covariance matrix Q can be obtained by minimizing the

difference between the covariance matrix ny = ny (Q) predicted by the linear model given Q
~ N, . .

and the covariance matrix Q, =(1/ NS)ZHXKXI obtained from the measurements iny,,

k=1---,N,. Thatis, the optimal value Q,, is obtained by minimizing the objective function

opt
J(Q)=tr|Q, Q) -Q, I* /tr QI (5.29)

with respect to the elements in Q. The optimal value Q,, of Q is then substituted in (5.23) to

completely define the Riccati equation (5.23). The solution P of the Riccati equation is

substituted in (5.22) in order to find K which is needed in (5.25). It should be noted that the
optimal estimate of Q, as described above, assumes that the stochastic excitations in the vector
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process W, are sufficiently broadband so that they can be adequately approximated by white

noise processes.

5.3.3 Estimation of power spectral densities of stresses
The cross power spectral density matrix Sy(a)) of the sampled measurement vector Y,,

involved in (5.25), can be obtained using available signal processing techniques such as the
Welch technique (Welch, 1967; Hayes, 1996). Once Sy(a)) has been estimated from the

measurements, equation (5.25) can be used to estimate the cross power spectral density S (w)

of the stress response vector g, .

Alternatively, the PSD Sé(a)) of the stress response vector Qk can be obtained by using
equations (5.20) and (5.21) for the Kalman filter to provide estimates Xk of the system state
vector which are then used in equations (5.24) to estimate the stress vector Qk . Finally, available
signal processing techniques such as the Welch technique are used to compute the PSD Sé (w)
from the sampled stress response vector é‘k . The length of the sampled time history should be
sufficient large in order for the estimates to be accurate.

Once the cross power spectral density matrix S P (w) of the stress vector process é‘k containing
the stresses at all desirable structural locations is obtained, the diagonal elements diag[S; (@)]
of the matrix Sé (@) contain the power spectral density estimates required for fatigue predictions

at these structural location using equations (5.2), (5.5) and (5.12).

5.4  Application on spring-mass chain-like model

The applicability and effectiveness of the methodology is illustrated using simulated
“measurements” from a simple class of N -DOF spring mass chain-like model fixed at the two

ends as shown in Figure 5.2. The model is used to represent a structure consisting of a series of
bar and body elements as shown in Figure 5.3. The structure consists of N bodies with the | -th
body having mass m,. The i—1 and the i bodies are connected by elastic bar elements which

provide the stiffness to the system. The number of bar (or spring) elements of the chain model is
N +1. The material of the bar elements is considered to be steel. For steel bar elements, the

values of the fatigue constants in equation (5.4) are taken to be ¢ =4.06x10%® and a=9.82.
The i-th bar element has length L;, cross-sectional area A and modulus of elasticity E,. For

simplicity, each bar element is represented by a spring element with stiffness k. = E.A /L, as
shown in Figure 5.2. Also, the nodal mass M, in Figure 5.2 includes the effect of the i body

mass and the lumped mass arising from the bar elements connected to node i. The i
component g (t) of the vector q(t) corresponds to the displacement of the node i of the model.

The system is subjected to an unmeasured excitation applied at node p . For the selected
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structure, the stress state at critical bar locations is uniaxial so that the fatigue prediction
methodology can be directly applied.

q,(1) q,(1) qx (1)

Figure 5.2: N -DOF spring mass chain-like model.

q,(1) (1) gy ()

Figure 5.3: Structure consisting of a series of N masses and N +1 bar elements.

Fatigue predictions from the Kalman filter (KF) methodology are based on a nominal model of the
structure that corresponds to nominal stiffness values k; =K,;. The measurements that are

collected from the actual structure are generated from a reference model introduced to simulate
the actual behavior of the structure. In order to study the effects of the model error on the
accuracy of the Kalman filter method for fatigue predictions, the reference model is selected to be
different from the nominal model. Specifically, the reference model corresponds to the model
shown in Figure 5.2 with stiffness values perturbed from the nominal stiffness values according to
the expression K; =K,;(1+n;), where k; are the nominal values used in KF-based fatigue

predictions and n, ~ N(0,s’) are samples from a zero mean normal distribution with variance
s’ . The standard deviation S, of the perturbed terms controls the size of the model error and

reflects the differences observed in real applications between the predictions from a model of a
structure and the actual behavior of the structure.

The measurements are assumed to be strain measurements. These measurements are
simulated from the reference model of the structure using two types of excitations, referred to as
Type | and Type Il excitations. Type | excitations are assumed to be samples of a Gaussian white

noise process, thus providing good approximation to an excitation whenever its correlation time is
sufficiently small compared to the system time constants. In this case the excitation vector U(t)
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is modeled by samples generated by a Gaussian stationary white noise vector process N(t) with
constant spectral density matrix S, = S; . Type Il excitations are assumed to be samples of a uni-

modal filtered white noise excitation with characteristics given by the second order filter equation
G, (t)+2¢ 0,4, (t) + o7 q, (t) = n(t) (5.30)

u(t):qf(t):_2§fwaf(t)_wqu(t)"‘n(t) (5.31)

The characteristics of the excitation depend on the values of the filter parameters: the dominant
frequency @, and the damping ratio ¢, . The value of the power spectral density S, of the
Gaussian stationary white noise process N(t) controls the intensity of the excitation samples
u(t) generated by the second-order filter.

For type | excitation, the discrete state space formulation of the equations of motion for the
reference model is used to simulated response time history data as well as compute estimates of
the covariance responses and the power spectral density of the responses using the white noise
excitation N(t) applied at node o . For type Il excitation, the responses from the reference model
can readily be obtained by a discrete state space formulation of an augmented system which
consists of the equations of motion (5.13) and the filter equations (5.30)-(5.31) excited by the
white noise process N(t). In this augmented system, the system states includes the states of the
original system in (5.14) and the filter states arising from (5.30). For both excitation types, the
strain and stress response time histories g, and o, , respectively, are simulated at all bar

elements using the discrete state space formulation. The time discretization step used in
simulating the sampled data is At =0.5x10"%. The simulated strain and stress response time
histories are the reference stress response time histories that are considered to be the exact
stress response time histories for the excitations used. These response time histories and the
corresponding power spectral densities are also used with the fatigue methodology in Section 2
to compute the damage accumulation and lifetime of the entire body of the structure due to
fatigue. Such predictions constitute the reference (exact) predictions against which the
predictions from the proposed Kalman filter approach should be compared to for assessing the
accuracy of the proposed methodology.

For convenience, the set 0 is introduced that contains the bar element numbers where the
strains are measured. The measured strain response time histories Yy, = gk(“’) are the
components of the reference response time history vector &, associated with the bar element

numbers identified in the set 0. In practice, these measurements are collected using appropriate
sensors such as strain gauges. Let P be the set that contains the bar element numbers where

the stresses will be predicted. Herein, the set p is selected to be p={L---,N +1}, i.e. itis

assumed that stresses are predicted at all bar elements.

Results demonstrating the effectiveness of the proposed methodology are first presented for a
five degree of freedom system (N =5) shown in Figure 5.2. The nominal values of the nodal
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masses are M =M, =21Kg, m, =m, =15Kg and m, =12Kg. A uniform distribution of the
properties of the bar elements is assumed resulting in uniform stiffness ki = k0 ,i=1--- N.The
nominal values of the stiffness properties are chosen so that k,=E,A,/L,, where

E,=2.1x10"N/m?, A =(0.0035)’m? and L, =0.3m are same for all bar elements. For

the mass and bar properties selected, the nominal values of the natural frequencies of the five
degree of freedom system are 110.0 Hz, 193.4 Hz and 277.0 Hz, 344.3 Hz, 425.3 Hz. The
damping matrix C in the equations of motion (5.13) is chosen assuming that the system is
classically damped. Specifically, the damping matrix C is selected so that the values of the
modal damping ratios are 1% for all contributing modes. A single excitation is considered which is
applied at node p=5. The measured strain response time histories Y, =§,f°) at the bar
elements identified by the set 0 are used to predict the stress response time histories at all bar
elements identified in the set P using the proposed Kalman filter approach. These predictions
depend on the values of the measurement noise covariance R in the Kalman filter formulation.
Herein, the noise covariance matrix R is selected to be a diagonal matrix of the form
R = n°diag ((jyy) , where & gives the level of the observation error and diag ((jyy) denotes the

diagonal matrix formed from ny after setting the non-diagonal terms to zero. In the numerical
results that follow, the values of 7 =0.1% and 77 =10% are used which corresponds to very

small and relatively large observation errors, respectively.

The simulated measurements and the reference fatigue predictions are first obtained for the Type
| white noise excitation. For demonstration purposes, comparison between the reference (exact)

stress power spectral density (PSD) simulated by the model and the estimated PSD from the
Kalman filter (KF) are given in Figure 5.4 for the bar elements p ={2,4,6}, assuming that the

measured strains are at bar elements 0 ={1,2}. Results are presented for the case of relatively
large model error (S; =5%) in Figures 5.4a-b at bar elements 2 and 4 and for the case of zero

model error (S, =0) in Figures 5.4c-d at bar elements 4 and 6. It can be seen in Figure 5.4a for

the case of relatively large model error that the estimated PSDs of the stress at the bar element
2, where measurements are available, almost coincides with the corresponding reference stress
PSDs simulated by the model. At the bar element 4, where measurements are not available,
there is a discrepancy between the estimated and reference (exact) stress PSDs as shown in
Figure 5.4b. For the case of relatively large model error, the discrepancies observed in Figure
5.4b are mainly due to the fact that the nominal model used for PSDs predictions from the
Kalman filter approach differs from the reference model used to simulate the reference PSDs.
The size of the discrepancies depends on the size of the model error. Specifically, these
discrepancies are shown in Figure 5.4b for relatively large model error (S, =5%) to be

significantly higher than the discrepancies observed in Figure 5.4c for zero model error (S, =0).

For zero model error, the discrepancies shown in Figure 5.4c and 4d for bar elements 4 and 6,
respectively, are due to the estimation error associated with the Kalman filter. However, it should
be noted that the predictions of the PSD from the Kalman filter approach are quite good,
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especially for the high amplitudes around the resonance peaks which mainly contribute to the
fatigue process.
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Figure 5.4: Comparison between reference and estimated from Kalman filter PSD of the stress

response at bar elements 2, 4 and 6; (a,b) relatively large model error s =5%, (c,d) zero model
error $=0%.

30
0

Lifetime predictions due to fatigue are next compared in Figures 5.5a-d for all six bar (spring)
elements of the structure. The lifetime values in these figures are obtained using the fatigue
prediction formula (5.5). For each bar element, there are six lifetime fatigue predictions. The first
prediction is based on the reference time histories simulated by the reference model and it is
used as the exact value against which to study the accuracy of the predictions from the proposed
Kalman filter methodology. The other five fatigue-based lifetime estimates are the ones predicted
by the methodologies based on the use of Kalman filter method and the nominal model to
estimate the stress response time histories at all bar elements. To study the effect of the number
and location of sensors on the accuracy of the predictions, the five fatigue lifetime estimates

shown in Figures 5.5a to 5.5d correspond to the following five sensor configurations that differ
from the number and location of sensors used: one sensor configuration 0 ={6} involving one
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sensor placed at location or bar element 6, two sensor configurations 0=9{1,2} and 0={3,4}

each one involving two sensors placed at locations denoted in the set 0, and two sensor
configurations 0 ={L,2,3} and 0={2,3,4} each one involving three sensors. In order to study
the effect of model error on the accuracy of the Kalman filter methodology, the results in Figures
5.5a-c are based on simulated measurements from the reference model chosen to involve zero
(S, =0), moderate (S, =2%) and relatively large (S; =5% ) model error, while the observation
error used for KF-based fatigue predictions is negligible (77 =0.1%). In order to study the effect

of observation error in the accuracy of the Kalman filter methodology, the results in Figure 5.5d
are based on simulated measurements from the reference model chosen to involve zero model
error (S, =0) and relatively large observation error (77 =10%) used for KF-based fatigue

predictions.

It can be seen from the results for the fatigue predictions involving zero model error (S, =0)

shown in Figure 5.5a that the estimates based on the Kalman filter predictions are quite close to
the reference fatigue values obtained from the actual (reference) response time histories. It also
becomes clear that the accuracy of the Kalman filter predictions depend on the number and
location of sensors in the structure. Specifically, the best predictions are obtained from one
sensor placed at bar element 6. Similar accuracy in the predictions are obtained from the sensor
configurations 0 ={3,4} and 0={2,3,4} involving two and three sensors. However, the sensor
configurations 0={L,2} and 0={1,2,3} provide significantly less accurate predictions in the

entire structure (all six bar elements) than the predictions provided by one sensor placed at
location 6. Specifically, significant discrepancies between the reference and Kalman filter fatigue
predictions from the sensor configurations 0={1,2} and 0={L,2,3} are observed in bar
element 5 and 6. It becomes evident from the results in Figure 5.5a that the locations and number
of sensors affect the accuracy of the fatigue lifetime predictions from the proposed Kalman filter
approach. Optimal sensor location methodologies (Papadimitriou, 2004) may be advantageously
used to obtain the most informative locations that give the best accuracy in the fatigue lifetime
predictions with the least number of sensors.
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Figure 5.5: Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the
Kalman filter for the N =5 DOF model as a function of the number and location of sensors.

@S =0,7=0,00)8=2%,7=0,0)8=5%,7=0,and(d) S, =0, 7=10%.

Comparing the results in Figures 5.5a, 5.5b and 5.5¢ corresponding to zero (S; = 0), moderate
(S, =2%)) and larger (S; = 4% ) model errors, it is evident that the size of model error affects the

accuracy of the fatigue prediction provided by the proposed Kalman filter methodology. For a
fixed sensor configuration, the accuracy of the fatigue predictions obtained from the Kalman filter
methodology deteriorates as the size of the model error increases. Moreover, the accuracy of the
predictions depends highly on the number and location of sensors. There are optimal sensor
locations which give the most accurate fatigue predictions. Specifically, the most accurate
predictions in the entire structure for the case of moderate model error (S, =2%) are obtained
from sensor configurations 0={6} and 0={2,3,4} involving one and three sensors,
respectively. For the case of larger model error (S, =5% ), the most accurate predictions in the
entire structure (all bar elements) are obtained from sensor configurations 0 ={6} involving one
sensor, followed by the predictions provided by the sensor configuration 0={1,2,3} involving

three sensors.
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The effect of measurement error on the fatigue predictions provided by the Kalman filter approach

is next considered by comparing the results in Figure 5.5d obtained for relatively large
observation error of the order of 17 =10% with the results in Figures 5.5a-c obtained for very

small (17 =0.1%) observation error. It can be seen that the accuracy of the fatigue predictions is

less sensitive to the magnitude of the observation error than it is to the magnitude of the model
error. In addition, the accuracy of the fatigue lifetime predictions provided by the Kalman filter for

the different sensor configurations observed in Figure 5.5d for zero model error and significant
observation error (17 =10%) does not significantly deteriorate as compared to the accuracy of

the predictions observed in Figure 5.5a provided by the methodology for zero model error and
very small (17 =0.1%) observation error.

Next, results are also presented for simulated measurements generated from the Type Il filtered
white noise excitation. In this case, one examines the effect of the characteristics of the excitation

on the accuracy of the proposed methodology. As before, the excitations is applied at node
p =5. Figure 5.6 compares the reference fatigue estimates and the fatigue predictions provided

by the Kalman filter methodology for three different excitation characteristics: broadband
excitation corresponding to values @; =200Hz and ¢, =0.4 (Figure 5.6a), and two lightly

damped excitations (¢, =0.02) with resonant frequencies close to the first, @, = @, *110Hz
(Figure 5.6b), and third @, = @, = 277Hz (Figure 5.6c), natural frequency of the structure. All

results shown in Figures 5.6a-c are based on simulated measurements that involve zero model
error (S, = 0) and negligible measurement error 77 = 0.1%. The results in Figure 5.6d are based

on large model error (S; =5%) and for the lightly damped excitation (£, =0.02) with resonant
frequency close to the third @; = @, = 277Hz natural frequency of the structure. All filtered
white noise excitations correspond to the same variance. Given the values of @, and ¢ , this is
achieved by selecting appropriately the intensity of the white noise N(t) so that the output u(t)

in (5.31) has the desired value of variance.
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Figure 5.6: Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the
Kalman filter for the N =5 DOF model as a function of the number and location of sensors.

(@ @, =200Hz, {; =0.4, 5, =0, (b) @, =w, =110Hz, {, =0.02, 5, =0, (c)
w, =0,~27THz, , =0.02, s, =0,and (d) @, =@, * 277THz and §; =0.02, s, =5%.

It is clear in Figures 5.6a-c that for the case of zero model error the Kalman filter methodology
gives very good predictions for a variety of excitation characteristics, including broad-band and
lightly-damped excitations. As before, the accuracy of the predictions depends on the number
and location of sensors. The most accurate predictions are obtained from the sensor
configuration 0 ={6} involving one sensor placed at location (bar element) 6, followed by the
sensor configurations 0={3,4} and 0={2,3,4} involving two and three sensors. Less
accurate predictions are obtained form the sensor configurations 0=9{1,2} and 0={1,2,3}

involving two and three sensors, respectively. Obviously, optimizing the sensor placement in the
structure can significantly improve the accuracy of the fatigue lifetime predictions provided by the
Kalman filter methodology. Comparing the fatigue prediction results given in Figure 5.6d for large
model error S; =5% to the fatigue prediction results in Figure 5.6¢ for zero model error, it is clear

that the accuracy of the predictions from the Kalman filter methodology deteriorates as the model
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error increases. Sensor configuration 0 ={6} involving one sensor provides predictions with the

best accuracy compared to the predictions provided by all other sensor configurations used in
Figure 5.6.

For the two lightly damped excitations shown in Figures 5.6b and 5.6¢, it is observed that the
fatigue at each bar element depends on the mode excited. For the excitation with dominant
frequency close to the first natural frequency (Figure 5.6b), the structure responds mainly to its
first mode and the strains levels due to vibration, depending on the derivatives of the modeshape,
are higher at bar elements 1 and 6, while due to symmetry they are lower at the middle bar
elements 3 and 4. Consequently, the bar elements 1 and 6 are expected to have significantly less
fatigue lifetime while the middle bar elements 3 and 4 are expected to have high fatigue lifetime,
which is consistent with the results observed in Figure 5.6b. For the excitation with dominant
frequency close to the third natural frequency, the structure respond mainly with its third mode
and therefore high strain values are expected also to occur at internal bar elements 2 and 5, while
due to symmetry the strains at the middle elements 3 and 4 are expected to be small. This is
consistent with the small fatigue lifetime values predicted for the bar elements 2 and 5, and the
high fatigue lifetime values predicted for the middle bar elements 3 and 4, as shown in Figure
5.6c¢.
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Figure 5.7: Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the
Kalman filter for the N =20 DOF model as a function of the number and location of sensors.

(@) white noise, S, =2%, 1=0.1%, (b) o, =110Hz, ¢, =0.6,s,=2%, 17=0.1%, (c)
=w,~44Hz, {, =002, 5,=2% , n=01%, ) o, =w,~44Hz, ¢, =0.02,
s, =0%, 7=10%.

oF

Finally, results demonstrating the effectiveness of the proposed methodology are presented for a
twenty degree of freedom system (N =20) shown in Figure 5.2. The nodal masses are
assumed to be the same, i.e. M, =M, i=1---,N . A uniform distribution of the properties of the

bar elements is also assumed resulting in uniform stiffness ki = ko, i=1---,N. The nominal
values of the mass and stiffness properties are chosen so that m, =30Kg and k, = E;A, /L,
where E,=2.1x10"N/m*, A =7z(0.0035°m* and L,=0.3m are same for all bar

elements. For the mass and bar properties selected, the nominal values of the natural
frequencies of the twenty degree of freedom system range from 22.5 Hz (minimum) to 300.8 Hz

(maximum). The structure is subjected to either Type | stationary white noise excitation or Type I
non-white excitation applied at node p =10, with constant spectral density matrix equal to
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S, =S, =10. The strain response time histories Yy, = £° at the measured DOFs are used to
predict the stress response time histories at all bar elements identified in the set p={L,---,21}

using the Kalman filter approach.

Lifetime predictions due to fatigue are shown in Figure 5.7 for all twenty one bar (spring)
elements of the structure. For each bar element, there are six lifetime fatigue predictions. The first
prediction is based on the reference time histories simulated by the reference model and it is
used as the exact value against which to study the accuracy of the predictions from the proposed
Kalman filter methodology. The second fatigue lifetime prediction is based on the use of Kalman
filter method and the nominal model using sensors at all 21 bar elements. This second prediction
uses measurements from all 21 bar elements and thus represents the most accurate results that
can be obtained from the Kalman filter methodology. The other four fatigue-based lifetime
estimates are the ones predicted by the methodologies based on the use of Kalman filter method
and the nominal model to estimate the stress response time histories at all bar elements using a
limited number of sensors. To study the effect of the number and location of sensors on the
accuracy of the predictions, the four fatigue lifetime estimates shown in Figures 5.7a to 5.7d in

the entire structure (all 21 bar elements) correspond to the following four sensor configurations
that differ from the number and location of sensors used: one sensor configuration 0 ={10}

involving one sensor placed at location or bar element 10, one sensor configuration 0 ={5, 21}
involving two sensors placed at locations 5 and 21, one sensor configuration 0={5,10,21}
involving three sensors, and one sensor configuration 0={1,5,16,21} involving four sensors.

Figure 5.7a compares results for white noise excitation, Figure 5.7b compares results for
broadband filtered white noise excitation (@; =110Hz, &, =0.6), while Figures 5.7c-d

compare results for lightly damped filtered white noise excitations (¢; =0.02) with dominant
frequency close to the second natural frequency of the structure (@; = w, = 44Hz). Predictions

in Figure 5.7a-c correspond to moderate model error (S; = 2% ) and very small observation error
(n7=0.1%). In order to study the effect of observation error in the accuracy of the Kalman filter
methodology, predictions in Figure 5.7d correspond to zero model error (S, =0%) and large

observation error (17 =10%).

It can be seen that despite the moderate model error considered in Figures 5.7a-c and the large
measurement error considered in Figure 5.7d, the fatigue lifetime prediction values provided by
the Kalman filter approach for a full sensor configuration involving 21 sensors installed in all 21
bar elements are quite close to the reference fatigue lifetime values. For given excitation case, it
becomes clear that the accuracy of the fatigue lifetime predictions based on the Kalman filter
approach using fewer than 21 sensors depend on the number and location of sensors in the
structure. Specifically, the best predictions are obtained from the sensor configurations 0 ={10}

involving one sensor located at element 10 and the sensor configuration 0 ={5,10, 21} involving
three sensors located at elements 5, 10 and 21. Such predictions are quite close to the reference
fatigue values obtained from the actual (reference) response time histories and to the Kalman

filter prediction provided by a full sensor configuration involving 21 sensors. It should be noted
that the sensor configuration 0={5,10,21} gives slightly better fatigue lifetime prediction
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accuracy at all 21 bar elements than the sensor configuration 0 ={10}. This is due to the fact
that the sensor configuration 0={5,10,21} contains the sensor configuration 0 ={10} and in

addition it involves two extra sensors that provide additional information for reconstructing more
accurately the response at unmeasured locations. However, the sensor configurations
0={5,21} and 0={1,5,16,21} involving two and four sensors, respectively, provide

significantly less accurate predictions, especially at the bar elements 7 to 14, than the predictions
provided by the sensor configurations 0={10} and 0={5,10,21} involving one and three
sensors, respectively. It thus becomes evident from the results in Figure 5.7 that the location and
number of sensors affect the accuracy of the fatigue lifetime predictions. Optimal sensor location
strategies (Papadimitriou, 2004) may be advantageously used to obtain the most informative
locations that give the best accuracy in the fatigue lifetime predictions with the least number of
Sensors.

The relative importance of the model and measurement error on the accuracy of the fatigue
predictions provided by the Kalman filter is investigated by comparing the results in Figure 5.7d
obtained for relatively large observation error of the order of 7 =10% and zero model error with
the results in Figures 5.7c obtained for very small (77 =0.1%) observation error and moderate

model error (S, =2%). It can be seen from these figures that the accuracy of the fatigue

predictions are less sensitive to the size of the observation error. Specifically, the accuracy of the
fatigue lifetime predictions provided by the Kalman filter for the different sensor configurations
observed in Figure 5.7d for zero model error and significant observation error (17 =10%) does
not significantly deteriorate as compared to the accuracy of the predictions observed in Figure
5.7c provided by the methodology for moderate model error (S, =2%) and very small

observation error (17 = 0.1%).

55 Conclusions

A methodology for estimating damage due to fatigue on the entire body of a structure using
spectral methods and output only vibration measurements at a limited number of locations was
presented. The fatigue predictions presented in this work were illustrated for structural members
subjected to a uni-axial stress state. These predictions can be extended using available methods
(You and Lee, 1996; Pitoiset and. Preumont, 2000) to structural members subjected to multi-axial
stress state. Using the available response time history measurements and a model of the
structure, a Kalman filter approach was used for predicting the power spectral densities of the
stresses in the entire body of the structure needed in the spectral based fatigue prediction
methodology. These power spectral density predictions were used to construct fatigue
accumulation and lifetime prediction maps consistent with measurements provided by a
monitoring system. Simulated measurements from a spring-mass chain-like structure suggest
that the proposed methodology for lifetime fatigue prediction provide sufficiently accurate
estimates even for the cases where the broadband assumptions of the stochastic excitation
processes are violated. In particular, systematic numerical studies have demonstrated that the
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accuracy of the proposed methodology depend on the size of the model and observation errors,
as well as the number and location of sensors.
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Chapter 6

Structural identification of an experimental vehicle
model using measured modal characteristics

6.1 Introduction

In the present chapter, methods for modal identification and structural model updating are
employed to develop high fidelity finite element models of an experimental vehicle model using
acceleration measurements. The identification of modal characteristics of the vehicle is based on
acceleration time histories obtained from impulse hammer tests. Modal identification
methodologies are used to obtain the modal characteristics from the analysis of the various sets
of vibration measurements. The modal characteristics are then used to update an increasingly
complex set of finite element models of the vehicle. The multi-objective structural identification
method developed in Chapter 4 is used for estimating the parameters of the finite element
structural models based on minimizing the modal residuals.

The chapter is organized as follows. In Section 6.2 the description of the laboratory vehicle model
and the available experimental configuration is presented. Modal identification methodologies are
applied in Section 6.3 to identify the modal properties (modal frequencies, modal damping rations
and modeshapes) of the laboratory vehicle structure using vibration measurements obtained from
hammer tests. In Section 6.4 the proposed model updating methodologies in Chapter 4 are
applied for updating a class of finite element models of the vehicle, demonstrating the applicability
of the proposed model updating methods and the prediction accuracy of the Pareto optimal
models.

6.2 Description of the laboratory vehicle structure and instrumentation

The vehicle structure, shown in Figure 6.1, is housed at the Machine Dynamics Laboratory of the
Department of Mechanical Engineering in Aristotle University. Figure 6.2 also shows an overview
of the experimental set up. In particular, the mechanical system tested consists of a frame
substructure (parts with red, gray and black color), simulating the frame of a vehicle. The main
experimental instruments used for performing the experimental measurements include the

following:

. accelerometers Piezobeam 8632C10, 8690C10, 8634B5 and K-beam 8312A2 from
Kistler Instrumente AG,

Ll load cell type 9712B250 from Kistler Instrumente AG,

. impulse force hammer type 9724A5000 from Kistler Instrumente AG,

. analog to digital converter cards, PCIl -4551, PCI -4552 Dynamic signal acquisition and

PCI-6552 E-series from National Instruments,

. data acquisition and signal processing software.
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More details can be found in Giagopoulos and Natsiavas (2007).

Figure 6.2 presents details and the geometrical dimensions of the frame subsystem alone. The
frame substructure is made of steel with Young's modulus E = 2.1x10" N/m2 , Poison’s ratio
v =0.3 and density p= 7850 kg/m3. Moreover, the measurement points are indicated in

Figure 6.3. Measurements are collected from 72 locations. Sensor locations have been chosen in
such a way so as to gather as much information as possible about the structure’s modal
response.

Figure 6.1: Scaled vehicle model and experimental set up.
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Figure 6.2: Dimensions of the frame substructure.

Figure 6.3: Measurement points on the frame substructure.
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6.3 Modal identification

Using the available acceleration sensors to measure the vibrations induced by an applied impulse
force, the frequency response functions (FRF) of the measured DOFs are estimated. These
frequency response functions are used to estimate the modal properties using the Modal
Identification Tool (MITooL) (Ntotsios 2009) developed by the System Dynamics Laboratory in
University of Thessaly. The values of the modal frequencies, modal damping ratios, modeshape
components and modal participation factors were estimated from the software in the 0 to 200 Hz
frequency bandwidth. Figures 6.4, 6.5 and 6.6 compare the measured FRFs with the FRFs
predicted by the identified optimal modal model for three representative sensors referred to as
sensor 70, 71 and 72 respectively as shown in Figure 6.3. As it is seen a high modal density
modal model is obtained. Moreover, the fit of the measured FRF is very good which validates the
effectiveness of the modal identification software.

The identified values of the modal frequencies and the modal damping ratios are reported in
Table 6.1. Twenty three modes were clearly identified in the frequency range 0 to 200 Hz with
values of modal damping ratios of the order of 0.1% to 0.5%, which correspond to low relatively
damping values. The identified modeshapes have also been recorded so that they can be used
for updating the finite element models.

Measurement
w \l0dal fit

1
40 160 180 200

frequency (Hz)

Figure 6.4: Comparison between measured and optimal modal model predicted FRF for sensor 70.
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Figure 6.5: Comparison between measured and optimal modal model predicted FRF for sensor 71.
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Figure 6.6: Comparison between measured and optimal modal model predicted FRF for sensor 72.
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Table 6.1: Identified and nominal FE model predicted modal frequencies and damping ratios.

Difference
dentified Identified Nomnal L DeWeen  MAC between
Mode Modal 'V'Od?" Predicted FE Predicted Idennﬂgd & FE
requeney DAPNS Frequency oaal  Pedcled
(Hz) Frequencies
(%)
1 23.2139 0.4799 23.2348 0.0902 0.9430
2 42.1225 0.3611 39.1265 -7.1126 0.9539
3 42.5020 0.2263 41.6084 -2.1024 0.9590
4 48.2753 0.2218 47.2930 -2.0349 0.9460
5 58.1552 0.1954 57.5692 -1.0077 0.9039
6 69.0429 0.2287 66.2020 0.0151 0.9503
7 69.4700 0.1662 69.0533 -4.7042 0.9030
8 80.0413 0.1651 80.4391 0.4969 0.9022
9 86.1449 0.1564 83.2491 -3.3615 0.9375
10 100.2428 0.1141 101.6080 1.3619 0.9585
11 102.5815 0.1714 105.9357 3.2701 0.9313
12 110.4424 0.1838 106.6243 -3.4572 0.7347
13 115.1205 0.1519 112.5407 -2.2409 0.8288
14 123.6425 0.0982 129.0741 4.3930 0.8474
15 127.6472 0.0977 121.7747 -4.6006 0.7592
16 132.4204 0.1347 131.7794 -0.4841 0.7743
17 134.9544 0.1673 133.8787 -0.7970 0.7532
18 138.9425 0.1066 137.3287 -1.1615 0.6472
19 148.6929 0.1474 146.5237 -1.4590 0.8077
20 164.3888 0.1026 160.8531 -2.1497 0.8351
21 171.3352 0.0898 155.7296 -9.1082 0.7465
22 181.2229 0.1197 169.1026 -6.6874 0.6299
23 192.7520 0.0819 193.9090 0.5995 0.8080

6.4  Updating of finite element vehicle models

Detailed finite element models were created that correspond to the model used for the design of
the experimental vehicle. The structure was first designed in CAD environment and then imported
in COMSOL Multiphysics (COMSOL, 2005) finite element modelling environment. The models
were constructed based on the geometric details and the material properties of the structure. The
finite element models for the vehicle were created using three-dimensional triangular shell finite
elements to model the whole structure.

154

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



In order to investigate the sensitivity of the model error due to the finite element discretization,
several models were created increasing the size of the elements in the finite element mesh. The
resulted twelve finite element models consist of 886 to 44985 triangular shell elements
corresponding to 2622 to 136074 DOF. The convergence in the first eleven modal frequencies
predicted by the finite element models with respect to the number of models DOF is given in
Figure 6.7. According to the results in Figure 6.7, a model of 15202 finite elements having 45564
DOF was chosen for the adequate modelling of the experimental vehicle. This model is shown in
Figure 6.8 and for comparison purposes, Table 6.1 lists the values of the modal frequencies
predicted by the nominal finite element models along with the percentage error between the
identified and the nominal finite element model predicted modal frequencies. Also, Table 6.1
reports the MAC values between the identified and the nominal finite element model predicted
modeshapes. Comparing with the identified modal frequency values it can be seen that, with the
exception of the modes 21 and 22, the nominal FEM-based modal frequencies are fairly close to
the experimental ones. Ten representative modeshapes predicted by the nominal finite element
model for the ten lower frequency modes are shown in Figures 6.9 to 6.18.

10" |
10°

10"

Relative error (%)

10%

10°

10 I I |
6

number of degrees of freedom x 10%

Figure 6.7: Relative error of the modal frequencies predicted by the finite element models with respect to
the models’ number of degrees of freedom.

155

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



=
(]

CRARAPANANATYS |
EH

7 7 7 7 7 7 7
] Y — @ o=
— — — (] (] [ ]

Finite element model of the experimental vehicle consisted of 15202 triangular shell elements

Figure 6.8
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Figure 6.10: Modeshape predicted by the finite element model for the second mode at 39.13 Hz.

Figure 6.11: Modeshape predicted by the finite element model for the third mode at 41.61 Hz.

Figure 6.12: Modeshape predicted by the finite element model for the fourth mode at 47.29 Hz.
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Figure 6.13: Modeshape predicted by the finite element model for the fifth mode at 57.57 Hz.

Figure 6.14: Modeshape predicted by the finite element model for the sixth mode at 66.20 Hz.

Figure 6.15: Modeshape predicted by the finite element model for the seventh mode at 69.05 Hz.
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Figure 6.16: Modeshape predicted by the finite element model for the eight mode at 80.44 Hz.

Figure 6.17: Modeshape predicted by the finite element model for the ninth mode at 83.25 Hz.

Figure 6.18: Modeshape predicted by the finite element model for the tenth mode at 101.60 Hz.
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Five different parameterizations of the finite element model of the experimental vehicle are
employed in order to demonstrate the applicability of the proposed finite element model updating
methodologies, and point out issues associated with the multi-objective identification. The first

parameterized model consists of three parameters, shown in Figure 6.19, where the first
parameter ¢, accounts for the modulus of elasticity of the lower part of the experimental vehicle,

the second parameter 6, accounts for the modulus of elasticity of the parts (joints) that connect

the lower part with the upper part (frame) of the experimental vehicle, while the third parameter
93 accounts for the modulus of elasticity of the upper part of the experimental vehicle. The

second parameterized model consists of six parameters, shown in Figure 6.20, where the first
parameter ¢, accounts for the modulus of elasticity of the lower part of the experimental vehicle,
the second parameter 6, accounts for the modulus of elasticity of the parts (joints) that connect
the lower part with the upper part of the experimental vehicle, while the other four parameters 6,
0,, 0 and 6, account for the modulus of elasticity of the different components of the upper part
of the experimental vehicle as shown in Figure 6.20. The third parameterized model consists of
eight parameters, shown in figure 6.21, where the first parameter ¢, accounts for the modulus of
elasticity of the lower part of the experimental vehicle, the second parameter 6, accounts for the
modulus of elasticity of the parts (joints) that connect the lower part with the upper part of the
experimental vehicle, while the other six parameters 6,, 6, , 0., 6,, 6. and 6, account for the
modulus of elasticity of the different components of the upper part of the experimental vehicle as

shown in Figure 6.21. The forth parameterized model consists of nine parameters, shown in
Figure 6.22, where the first parameter 6, accounts for the modulus of elasticity of the lower part

of the experimental vehicle, the next four parameters 0,, 6,, 0, and 6, account for the modulus
of elasticity of the parts (joints) that connect the lower part with the upper part of the experimental
vehicle, while the other four parameters 6, 6., 6, and 6, account for the modulus of elasticity
of the different components of the upper part of the experimental vehicle as shown in Figure 6.22.

Finally, the fifth parameterized model consists of eleven parameters, shown in Figure 6.23, where
the first parameter 6, accounts for the modulus of elasticity of the lower part of the experimental

vehicle, the next four parameters 6,, 6,, 6, and 6, account for the modulus of elasticity of the

parts (joints) that connect the lower part with the upper part of the experimental vehicle, while the
other six parameters 6;, 60,, 6, 6,, 0,, and 0,, account for the modulus of elasticity of the

different components of the upper part of the experimental vehicle as shown in Figure 6.23. The
nominal finite element models corresponds to values of §,=1 with i =1,...,11.

The parameterized finite element model classes are updated using the ten lowest modal
frequencies and modeshapes obtained from the modal analysis, and the two modal groups with
modal residuals given by (4.3).
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Figure 6.19: Three parameters finite element model class of the experimental vehicle.

Figure 6.21: Eight parameters finite element model class of the experimental vehicle.
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Figure 6.23: Eleven parameters finite element model class of the experimental vehicle.

The results from the multi-objective identification methodology is first presented for the case of
the three parameter model shown in Figure 6.19. The NBI optimization algorithm was used to
estimate the Pareto solutions. For each model class and associated structural configuration, the
Pareto front, giving the Pareto solutions in the two-dimensional objective space, is shown in
Figure 6.24a. The non-zero size of the Pareto front and the non-zero distance of the Pareto front
from the origin are due to modeling and measurement errors. Specifically, the distance of the
Pareto points along the Pareto front from the origin is an indication of the size of the overall
measurement and modeling error. The size of the Pareto front depends on the size of the model
error and the sensitivity of the modal properties to the parameter values € (Christodoulou and
Papadimitriou 2007). Figures 6.24b-d show the corresponding Pareto optimal solutions in the
three-dimensional parameter space. Specifically, these figures show the projection of the Pareto
solutions in the two-dimensional parameter spaces (6,,6,), (6,,6,) and (6,,6;) . It should be
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noted that the equally weighted and the optimally solution is also computed and is shown in

Figure 6.24.
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Figure 6.24: Pareto front and Pareto optimal solutions for the three parameter model classes in the (a)
objective space and (b-d) parameter space.

It is observed that a wide variety of Pareto optimal solutions are obtained for different structural
configurations that are consistent with the measured data and the objective functions used. The
Pareto optimal solutions are concentrated along a one-dimensional manifold in the three-
dimensional parameter space shown in Figure 6.25. Comparing the Pareto optimal solutions, it
can be said that there is no Pareto solution that improves the fit in both modal groups
simultaneously. Thus, all Pareto solutions correspond to acceptable compromise structural
models trading-off the fit in the modal frequencies involved in the first modal group with the fit in
the modeshape components involved in the second modal groups. The variability in the values of
the model parameters are of the order of 10%, 22% and 7% for 6,, 6, and 0, respectively.

It should be noted in Figures 6.25 and 6.24a that the Pareto solutions 17 to 20 form a one
dimensional solution manifold in the parameter space that correspond to the non-identifiable
solutions obtained by minimizing the second objective function JZ(Q). Specifically, it is observed

that there is an almost flat part of the Pareto front at the lower right edge of Figure 6.24a. This is
due to the unidentifiability problems (Katafygiotis et al. 1998, Katafygiotis and Lam 2002,
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Christodoulou et al. 2008) encountered in estimating the optimal model corresponding to the right
edge point of the Pareto front. In this case, the right edge point of the Pareto front is obtained by
optimizing the function J,(€). Depending on the starting values of the parameter set 0, the

gradient-based optimization algorithm converges to one of the infinite number of optimal models
in this sub-manifold. As it is noted in Figure 6.24a, the flat unidentifiable portion of the Pareto front
and the associated manifold in Figure 6.25 are readily obtained by the NBI method. From the
engineering point of view, the most important point from this flat portion is the most left point 17 in
Figure 6.24a since all other points in the flat portion deteriorate the fit in the objective function
J,(8) without significantly altering the fit in J,(#). In order to generate points only on the

identifiable portion of the Pareto front for pre-selected number of points on it (e.g. 20 points as
shown in Figure 6.24a), the analyst can repeat the application of the NBI algorithm with edge
points of the Pareto front selected to be the points 1 and 17 in Figure 6.24.
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Figure 6.25: Pareto optimal solutions in the three-dimensional parameter space.
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For the case of the six, eight, nine and eleven parameters, the Pareto fronts, giving the Pareto
solutions in the two-dimensional objective space from the multi-objective identification
methodology are shown in Figure 6.26. Comparing these results with the results in Figure 6.24a
obtained for the case of the three parameter model it can be concluded that the model class with
three parameters give a significantly worse fit to the experimental results considering both
objectives J,, J,. In Figure 6.26 it is observed that generally the fit gets better when increasing

the number of model parameters. However, the improvement obtained by increasing the number
of parameters from six to eleven is not as significant as the improvement obtained by incrasing
the number of parameters from three to six. Comparing the Pareto fronts in Figure 6.26 it can be
observed that the nine and eleven parameter model classes are able to fit better the experimental
results compared with the models with six and eight parameters. This is shown in Figure 6.26
observing that the distance from the origin of the Pareto fronts for the case of the nine and eleven
parameter model classes is comparatively shorter than the six and eight parameter model

classes.
0.0275 I l l I I I I I
i i i i i ® 6 parameter model
0.0271 - . L [ Lo '/ e 8parameter model
° | | | | ® 9 parameter model
‘ 1 l l l
0.0265! - - 697 e L [ ! ® 11 parameter model
:. S 231 i i i V  Equally Weighted
o ©° | w w O Optimally Weighted
0.026----- A R e i P ‘ Y ‘g
®o 00 °, | : : : | |
N 00255 - pe.® 27 R R S S R
= e I S R S
| ' [ ] o, 10 | | | | |
0.025 - T ‘:,!,,,L.,,,ll‘,z,,,,L ,,,,, PO H— b
l K S ® e 134 l l l
| | " I ® 15 ! !
I | 0.0 | [ J 16 17 |
0-0245"""l""”l””"l*.*’t’*l"””l”*9""”*’*1%!719'1*20"”
| | | .' | | | |
| | | | ‘ ‘ | | |
| | | | \. |
0.024 - R R SR R P 18- 2PV e
1 1 1 1 1 1 1 1
006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

0.023
0.

Figure 6.26: Pareto fronts for the six, eight, nine and eleven parameter model classes.

The corresponding Pareto optimal solutions for the six parameter model class are shown in
Figure 6.27. The variability in the values of the model parameters are of the order of 9% for 6,

5% for 60,, 29% for 0,, 19% for 0,, 7% for 6, and 17% for 0 respectively. It should be noted

that the highest variability of 29% is observed at the stiffness of the members located at the front
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part (Figure 6.20) of the vehicle. The lowest variability is observed in the stiffness of the
connections between the lower and upper part of the vehicle shown in Figure 6.20.

For the case of the eight parameter model class the corresponding Pareto optimal solutions are
shown in Figure 6.28. The variability in the values of the model parameters are of the order of 9%
for 6, 5% for 0,, 29% for 0,, 24% for 0,, 17% for 0, 7% for 6, 20% for €, and 20% for 6,

respectively. It should be noted that the highest variability of 29% is observed at the stiffness of
the members located at the front part (Figure 6.21) of the vehicle. The lowest variability is
observed in the stiffness of the connections between the lower and upper part of the vehicle
shown in Figure 6.21.

For the case of the nine parameter model class the corresponding Pareto optimal solutions are
shown in Figure 6.29. The variability in the values of the model parameters are of the order of
10% for 6, 19% for 0,, 14% for 0,, 7% for 0,, 3% for 0, 34% for 6y, 7% for 0, , 5% for 6, and
4% for 0, respectively. It should be noted that the highest variability of 34% is observed at the

stiffness of the members located at the front part (Figure 6.22) of the vehicle. The lowest
variability is observed in the stiffness of the connections between the lower and upper part
located at the rear part of the vehicle (3-7%), and the stiffness of the vertical members located at
the rear part of the vehicle model (5-7%) shown in Figure 6.22.

For the case of the eight parameter model class the corresponding Pareto optimal solutions are
shown in Figure 6.30. The variability in the values of the model parameters are of the order of
10% for 6, 17% for 6,, 10% for 6, 18% for 0,, 8% for O, 37% for 0y, 9% for 0, , 9% for O,

6% for 0, 13% for 0,, and 5% for ¢, respectively. It should be noted that the highest variability

of 37% is observed at the stiffness of the members located at the front part (Figure 6.23) of the
vehicle.

# of solutions

Figure 6.27: Pareto optimal solutions for the six parameter model.
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# of solutions

Figure 6.28: Pareto optimal solutions for the eight parameter model.

# of solutions

Figure 6.29: Pareto optimal solutions for the nine parameter model.
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Figure 6.30: Pareto optimal solutions for the eleven parameter model.
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The percentage error between the experimental (identified) values of the modal frequencies and
the values of the modal frequencies predicted by the six, eight, nine and eleven parameter
models for the nominal values of the parameters, the equally weighted solution and the Pareto
optimal solutions 1, 5, 10, 15 and 20 are reported in Tables 6.2, 6.4, 6.6 and 6.8 respectively.
Tables 6.3, 6.5, 6.7 and 6.9 reports the MAC values between the model predicted and the
experimental modeshapes for the nominal, the equally weighted and the Pareto optimal models
1, 5, 10, 15 and 20 for the six, eight, nine and eleven parameter models respectively. It is
observed that for the modal frequencies the difference between the experimental values and the
values predicted by the Pareto optimal model vary between 0.01% and 2.09%. Specifically for the
Pareto solution 1 that corresponds to the one that minimizes the errors in the modal frequencies
(first objective function), the modal frequency errors are observed to be smaller than 0.8%.
Highest modal frequencies errors up to 2.09% are observed as one moves towards Pareto
solution 20 since such solutions are based on minimizing a weighted measure of the residuals in
both the modal frequencies and the modeshapes. The errors from the Pareto solutions are
significantly smaller than the errors observed for the nominal model which are as high as 7.11%.
The MAC values between the experimental modeshapes and the modeshapes predicted by the
Pareto optimal model 1 vary from 0.91 for the ninth mode to 0.98 for the tenth mode. The MAC
values for all other modes (1 to 8) are approximately from 0.95 to 0.96. As one moves towards
the Pareto solution 20 significantly improvement is observed only for the MAC value of the ninth
mode. This value increases from 0.91 to 0.94. Concluding, it can be said that the six to nine
parameter models give a very good fit to the experimentally identified modal data.
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Table 6.2: Relative error between experimental and model predicted modal frequencies for the six

parameters model.

Relative modal frequency error (%)

Mode Nominal Equally Optimally Pareto solution
model weighted weighted 1 5 10 15 20
1 0.09 1.63 1.59 -0.43 0.02 0.57 1.16 1.69
2 -7.11 -0.64 -0.62 0.04 -0.05 -0.20 -041 -0.62
3 -2.10 1.38 1.36 0.54 0.70 0.92 1.17 1.37
4 -2.03 -0.76 -0.74 -0.49 -047 -054 -0.64 -0.77
5 -1.01 0.04 0.07 0.31 0.38 0.39 0.29 -0.04
6 0.02 -0.20 -0.17 0.61 0.47 0.27 0.05 -0.32
7 -4.70 -1.90 -1.87 -0.85 -110 -1.36 -1.63 -2.02
8 0.50 -0.55 -0.53 -0.14 -0.21 -0.30 -0.42 -0.61
9 -3.36 -0.34 -0.32 0.18 0.02 -0.12 -0.23 -0.40
10 1.36 1.03 0.96 0.17 0.19 0.28 0.52 1.19

Table 6.3: MAC values between experimental and model predicted modeshapes for the six parameters

model.

MAC value

Mode Nominal Equally Optimally Pareto solution
model weighted weighted 1 5 10 15 20
1 0.943 0.947 0.947 0.946 0.946 0.947 0.947 0.947
2 0.954 0.954 0.954 0.953 0.954 0.954 0.954 0.954
3 0.959 0.969 0.969 0.953 0.960 0.966 0.969 0.969
4 0.946 0.959 0.960 0.958 0.961 0.962 0.961 0.961
5 0.904 0.963 0.963 0.961 0.961 0.962 0.962 0.962
6 0.950 0.958 0.958 0.954 0.955 0.956 0.957 0.957
7 0.903 0.936 0.936 0.933 0.933 0934 0.935 0.935
8 0.902 0.965 0.964 0.940 0.947 0.955 0.961 0.961
9 0.937 0.939 0.939 0.915 0.922 0.931 0.937 0.937
10 0.959 0.978 0.979 0.980 0.980 0.980 0.980 0.980
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Table 6.4: Relative error between experimental and model predicted modal frequencies for the eight
parameters model.

Relative modal frequency error (%)

Mode Nominal Equally Optimally Pareto solution
model weighted weighted 1 5 10 15 20
1 0.09 1.57 1.52 -0.44 -0.10 0.50 111 1.65
2 -7.11 -0.65 -0.63 0.04 -0.05 -0.20 -041 -0.79
3 -2.10 1.31 1.29 0.54 0.66 0.89 1.14 1.34
4 -2.03 -0.72 -0.70 -049 -045 -051 -0.60 -0.81
5 -1.01 0.10 0.13 0.34 0.39 0.42 0.33 -0.07
6 0.02 -0.26 -0.23 0.58 0.47 0.25 0.00 -0.40
7 -4.70 -1.94 -1.92 -0.83 -103 -133 -166 -2.07
8 0.50 -0.49 -0.49 -0.14 -0.19 -029 -040 -0.63
9 -3.36 -0.36 -0.35 0.21 0.07 -0.10 -0.25 -0.43
10 1.36 1.14 1.07 0.16 0.18 0.28 0.58 1.21

Table 6.5: MAC values between experimental and model predicted modeshapes for the eight parameters

model.

MAC value

Mode Nominal Equally Optimally Pareto solution
model weighted weighted 1 5 10 15 20
1 0.943 0.947 0.947 946 0946 0.947 0.947 0.947
2 0.954 0.967 0.967 0.955 0.967 0.967 0.967 0.968
3 0.959 0.972 0.972 0.953 0.961 0.967 0.971 0.972
4 0.946 0.958 0.959 0.957 0.960 0.961 0.960 0.958
5 0.904 0.962 0.962 0.961 0961 0.961 0.962 0.963
6 0.950 0.956 0.956 0.954 0.954 0.955 0.956 0.957
7 0.903 0.936 0.936 0.933 0.934 0935 0.935 0.936
8 0.902 0.965 0.965 0.939 0.945 0.955 0.962 0.964
9 0.937 0.939 0.939 0.914 0.920 0.929 0.936 0.939
10 0.959 0.978 0.978 0.980 0.980 0.980 0.980 0.978
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Table 6.6: Relative error between experimental and model predicted modal frequencies for the nine

parameters model.

Relative modal frequency error (%)

Mode Nominal Equally Optimally Pareto solution
model weighted weighted 1 5 10 15 20
1 0.09 1.67 1.63 -0.10 0.11 0.63 1.16 1.65
2 -7.11 -0.74 -0.71 0.19 0.15 -0.02 -0.30 -0.84
3 -2.10 1.60 1.55 0.22 0.36 0.70 1.10 1.48
4 -2.03 -1.00 -0.97 -052 -046 -045 -0.61 -1.15
5 -1.01 0.25 0.24 0.08 0.14 0.22 0.26 0.11
6 0.02 -0.28 -0.25 0.82 0.71 0.42 0.07 -0.45
7 -4.70 -1.92 -1.91 -0.72 -091 -132 -1.70 -2.09
8 0.50 -0.47 -0.47 -0.21 -0.26 -0.35 -0.42 -0.56
9 -3.36 -0.24 -0.25 009 -0.010 -017 -0.27 -0.38
10 1.36 0.84 0.83 0.13 0.13 0.26 0.56 0.89

Table 6.7: MAC values between experimental and model predicted modeshapes for the nine parameters

model.

MAC value

Mode Nominal Equally Optimally Pareto solution
model weighted weighted 1 5 10 15 20
1 0.943 0.947 0.947 0.946 0.947 0.947 0.947 0.947
2 0.954 0.967 0.967 0.950 0.968 0.968 0.967 0.967
3 0.959 0.972 0.972 0.962 0.968 0.971 0.971 0.972
4 0.946 0.959 0.959 0.962 0.963 0.962 0.960 0.959
5 0.904 0.961 0.961 0.960 0.960 0.960 0.961 0.961
6 0.950 0.957 0.957 0.953 0.954 0.955 0.956 0.957
7 0.903 0.938 0.938 0.931 0.933 0.935 0.937 0.938
8 0.902 0.967 0.967 0.936 0.943 0.955 0.963 0.968
9 0.937 0.941 0.940 0.911 0.916 0.928 0.937 0.941
10 0.959 0.978 0.978 0.979 0.979 0.979 0.979 0.977
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Table 6.8: Relative error between experimental and model predicted modal frequencies for the eleven
parameters model.

Relative modal frequency error (%)

Mode Nominal Equally Optimally Pareto solution
model weighted weighted 1 5 10 15 20
1 0.09 1.75 1.73 -0.05 0.02 0.62 1.17 1.73
2 -7.11 -0.99 -0.96 0.19 0.16 -0.05 -040 -1.04
3 -2.10 1.64 1.60 0.17 0.25 0.66 1.11 1.60
4 -2.03 -1.05 -1.02 -0.51 -048 -045 -0.61 -1.06
5 -1.01 0.25 0.25 0.08 0.10 0.22 0.26 0.15
6 0.02 -0.34 -0.32 0.78 0.73 0.38 0.02 -0.40
7 -4.70 -1.83 -1.82 -0.67 -0.77 -1.23 -1.63 -1.95
8 0.50 -0.44 -0.44 -0.23 -0.23 -035 -041 -047
9 -3.36 -0.20 -0.21 0.11 0.08 -0.12 -0.23 -0.28
10 1.36 0.88 0.87 0.11 0.11 0.24 0.57 1.04

Table 6.9: MAC values between experimental and model predicted modeshapes for the eleven parameters

model.

MAC value

Mode Nominal Equally Optimally Pareto solution
model weighted weighted 1 5 10 15 20
1 0.943 0.947 0.947 0.946 0.947 0.947 0.947 0.947
2 0.954 0.968 0.968 0.936 0.968 0.968 0.968 0.967
3 0.959 0.971 0.972 0.958 0.966 0.970 0.971 0.972
4 0.946 0.959 0.959 0.963 0.962 0.962 0.960 0.959
5 0.904 0.961 0.961 0.960 0.958 0.959 0.960 0.961
6 0.950 0.957 0.957 0.953 0.953 0.955 0.956 0.957
7 0.903 0.939 0.939 0.931 0.934 0936 0.938 0.939
8 0.902 0.966 0.966 0.936 0.941 0.955 0.963 0.967
9 0.937 0.941 0.940 0.910 0.912 0.927 0.936 0.940
10 0.959 0.978 0.978 0.978 0.979 0.979 0.979 0.977
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The identified variability in Pareto optimal solutions has demonstrated in Christodoulou et al.
(2008) to considerably affect the variability in the response predictions. Herein, the frequency
response functions (FRF) predicted by the Pareto optimal solutions for the six, eight, nine and
eleven parameter models are compared in Figures 6.31 to 6.34 respectively to the frequency
response function computed directly from the measured data at sensor location 72 (see Figure
6.3) in the frequency range [20Hz, 105Hz] used for model updating. Compared to the initial
nominal model, it is observed that the updated Pareto optimal models tend to considerably
improve the fit between the model predicted and the experimentally obtained FRF in most
frequency regions close to the resonance peaks. Also, it can be clearly seen that a variability in
the predictions of the frequency response functions from the different Pareto optimal models is
observed which is due to the variability in the identified Pareto optimal models. This variability is
important to be taken into consideration in the predictions from updated models in model updating
techniques. It should be noted that besides frequency response functions, similar variability is
observed for other more important response quantities of interest such as the reliability of the
structure against various modes of failure, as well as the fatigue accumulation and lifetime of the
structure subjected to stochastic loads arising from the variability in road profiles.
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Figure 6.31: Comparison between measured and the predicted FRF from the Pareto models 1, 5, 10, 15, 20
for the six parameter model.
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Figure 6.32: Comparison between measured and the predicted FRF from the Pareto models 1, 5, 10, 15, 20
for the eight parameter model.
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Figure 6.33: Comparison between measured and the predicted FRF from the Pareto models 1, 5, 10, 15, 20
for the eight parameter model.
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Figure 6.34: Comparison between measured and the predicted FRF from the Pareto models 1, 5, 10, 15, 20
for the eleven parameter model.
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The discrepancies between the experimental and the model predicted modal frequencies as well
as the deviations of the MAC values from unity are due to (a) the model error, (b) the
parameterization employed, and (c) the measurement errors. Specifically, the model error arises
from the assumptions used to construct the mathematical model of the structure. For the
laboratory vehicle model one should emphasize that the sources of model error are due to the
assumptions used to build up the connections between the various parts comprising the structure,
as well as the use of shell elements to represent the members of the structure and the
connections between the lower and the upper part of the model. Also, relative small errors results
from the size of the finite elements employed in the discretization scheme. Another source that
affects the model updating results and the errors between the model predictions and the
measurements is the parameterization employed. A quite extensive search for the effect of the
parameterization scheme (number and type of parameters) on the fidelity of the finite element
model has been explored in this work. However, introducing more parameters to be updated will
improve the fit and reduce the errors between the predictions and the experiment. However,
these errors cannot be eliminated and the remaining errors could be attributed mainly to the
model errors that arise from the assumptions made to build the mathematical model for the
vehicle structure. The resulting errors provide guidance for modifying the assumptions made to
build the model in an effort to further improve modeling and obtain higher fidelity models able to
adequately represent the behavior of the experimental vehicle structure in the frequency range of
interest.

6.5 Conclusions

Structural model updating method were used to develop high fidelity finite element models of an
experimental vehicle model using the lowest ten modal characteristics of the structure. A multi-
objective structural identification method was used for estimating the parameters of the finite
element structural models based on minimizing two groups of modal residuals, one associated
with the modal frequencies and the other with the modeshapes. The construction of high fidelity
models consistent with the data depends on the assumptions made to build the mathematical
model, the finite elements selected to model the different parts of the structure, the dicretization
scheme controlling the size of the finite elements, as well as the parameterization scheme used
to define the number and type of parameters to be updated by the methodology. In this work, a
detailed finite element model with approximately 45000 DOF consisting of shell elements was
build. The effect of the parameterization scheme on the Pareto optimal models and the model
adequacy was explored. The multi-objective identification method resulted in multiple Pareto
optimal structural models for each parameterization scheme that are consistent with the
measured (identified) modal data and the two groups of modal residuals used to measure the
discrepancies between the measured modal values and the modal values predicted by the model.
These Pareto optimal models are due to uncertainties arising from model and measurement
errors. A wide variety of Pareto optimal structural models was obtained that trade off the fit in
various measured modal quantities. The size of observed variations in the Pareto optimal
solutions depends on the information contained in the measured data, as well as the size of
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model and measurement errors. The variability in the Pareto optimal vehicle models results in
considerable variability in the predictions of the response, frequency response functions and
reliability from these structural models. Such variability should be taken into consideration when
using the updated models for predictions. Finally, a very good fit between the predictions from the
Pareto optimal models and the measured modal data was obtained using six to nine parameter
model classes. The discrepancies between the predicted and measured modal characteristics
were very small. These small discrepancies verify the high fidelity of the model class used to
model the vehicle.

176

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 03:40:48 EET - 137.108.70.7



Chapter 7

Conclusions and future work

7.1 Conclusions

The research work presented in the thesis contributes to the following three interrelated research
areas of structural identification and response/damage prediction using vibration measurements:
(1) identification of non-classically damped modal models of linear structures, (2) finite element
structural model updating and prediction variability and (3) fatigue-based damage accumulation
predictions in the entire body of metallic structures using a limited number of vibration sensors.
Summarizing, the novel contributions in this thesis are as follows.

e Time and frequency domain least squares methods for identifying non-classically-
damped modal models of linear structures from multiple-support excitations and multiple
responses were proposed. A common structure of the time and frequency formulations is
revealed and exploited to develop an identification software common for both
formulations. A computationally very efficient three-step algorithm to solve the highly non-
convex nhonlinear optimization problem was developed. Specifically, the first step
provides estimates of the modal frequencies and modal damping ratios by solving a
system of linear algebraic equations. Stabilization diagrams are used to identify the
number of contributing modes, distinguishing between physical and mathematical modes.
The second step provides estimates of the modeshapes and the participation factors by
solving a system of linear algebraic equations for the modal residue matrices of the
contributing modes and using singular value decomposition to estimate the complex
modeshapes and modal participation factors. The first two steps usually give fast and
accurate estimates of the modal characteristics. A third step is added to improve the
estimates of the modal characteristics for the case of closely spaced and overlapping
modes by efficiently solving the original nonlinear optimization problem with initial
estimates of the modal parameters those obtained from the two-step algorithm. Such
choice of initial estimates significantly accelerates the convergence of gradient based
acceleration algorithms. Analytical expressions for the gradient of the objective function
with respect to the parameters are also integrated to further accelerate the convergence
of the optimization.

e Frequency domain least squares methods for the identification of non-classically damped
modal models of linear structures using ambient vibration measurements were also
proposed. Computationally efficient two-step and three-step algorithms for solving the
resulting, highly non-convex, nonlinear optimization problem were developed. The first
step of the proposed algorithm provides estimates of the modal frequencies and modal
damping ratios by solving a system of linear algebraic equations for the coefficients of the
common denominator polynomial. Conventional stabilization diagrams are used to
identify the number of contributing modes, distinguishing the physical from the spurious
mathematical poles. Taking advantage of the special structure of the common
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denominator polynomial that is revealed in this thesis for the analytical cross power
spectral density matrices, one simplifies the system of normal equations used to compute
the coefficients of the common denominator polynomial. This reduces considerably the
computational time and the number of spurious mathematical (non-physical) modes that
are obtained using the conventional stabilization diagrams. Given the poles selected in
the first step, the second step of the algorithm identifies the modeshapes and all other
modal parameters that fully describe the modal model of the structure using two different
approaches, one non-iterative and one iterative. Finally the third step of the algorithm
solves a fully nonlinear optimization problem for the identification of all modal parameters
simultaneously, with initial estimates the values obtained from the two-step algorithm.
Two very efficient solution schemes were proposed for the third step. Applications on
simple structures with simulated measurements verify that the use of the third step is
recommended to improve the estimates of the modal parameters for cases of closely and
overlapping modes.

e Concerning the structural model updating problem using modal residuals, theoretical and
computational issues arising in single-objective and multi-objective identification were
addressed and the correspondence between the multi-objective identification, the
weighted modal residuals identification and the Bayesian statistical identification was
established. A novel optimally weighted modal residuals method was also proposed to
select the most preferred Pareto model from the set of multiple Pareto optimal models
available. Emphasis is given in addressing issues associated with solving the resulting
multi-objective and single-objective optimization problems, including issues related to
estimation of global optima, convergence of the proposed algorithms, and identifiability.
Hybrid methods were developed to identify global optima and the normal boundary
intersection method was adopted and integrated into the identification to efficiently
estimate the Pareto front and the Pareto optimal models. In addition, efficient methods
were proposed for estimating the gradients and the Hessians of the objective functions
based on the Nelson’s method for finding the sensitivities of the eigenproperties to model
parameters. In particular, the Hessian computations are useful in the Bayesian
asymptotic formulas for quantifying the uncertainty in the Pareto optimal models. Finally,
in order to face the severe problems of corresponding measured and model predicted
modes encountered for closely spaced modes, the definition of objectives in the
aforementioned model updating methods was generalized and efficient gradient
estimation algorithms were developed extending the use of the model updating
methodology.

¢ A novel methodology was put forward for estimating damage accumulation due to fatigue
in the entire body of a metallic structure using output-only vibration measurements from a
sensor network installed at a limited number of structural locations. This was achieved by
integrating (a) Kalman filter methods for predicting strain/stress response time histories
and their correlation/spectral characteristics in the entire structure from output-only
measured response time histories available at limited locations in the structure, and (b)
frequency domain methods for estimating fatigue damage accumulation using the
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spectral characteristics of the predicted strain/stress response time histories. Simulated
measurements from simple structures subjected to uniaxial stress states demonstrate
that the methodology is very promising in providing fatigue damage accumulation maps
exploiting measured information collected from a sensor network under various
operational conditions of the structure. The results are useful for fatigue lifetime
prognosis and designing optimal maintenance strategies for critical components of
metallic structures using vibration measurements.

e The applicability and effectiveness of the developed single- and multi-objective
methodologies were explored using experimental modal data from a small-scale three-
story building structure and a small-scale vehicle structure. Simple and higher fidelity
finite element model classes with as high as tenths of thousands of degrees of freedom
were updated. It was demonstrated that the Pareto optimal models differ significantly,
resulting in large variability in response and reliability predictions from these Pareto
optimal models. A wide variety of Pareto optimal structural models consistent with the
measured modal data was obtained that trade-off the fit in various measured modal
guantities. The variability in the Pareto optimal models is due uncertainties arising from
model and measurement error. In particular, the size of observed variations in the Pareto
optimal solutions depends on the information contained in the measured data, as well as
the size of model and measurement errors. The variability in the Pareto optimal models
may result in considerable variability in the predictions of the response and reliability from
these Pareto structural models. Such variability should be taken into consideration when
using the updated models for predictions. It has been demonstrated that higher fidelity
model classes, tend to involve less model error, move the Pareto front towards the origin
and reduce the size of the Pareto front in the objective space, reduce the variability of the
Pareto optimal solutions, provide better fit to the measured quantities, and give much
better predictions corresponding to reduced variability. In particular, as the fidelity of the
model class improves, the importance of selecting the weight values in weighted
residuals methods diminishes.

7.2 Future work

Concerning the work proposed about methods for the identification of non-classically-damped
modal models of linear structures, an important direction for future work is to develop modal
identification techniques to estimate the modal properties of fixed base structures using ambient
vibration measurements and including the ambient measurements at the base as input
measurements in the software. This is a challenging problem that remains unresolved. Such
theoretical development along with the corresponding software will allow one to identify, in the
expense of adding more sensors at the multiple bases of a structure, the modal properties of (a)
the fixed base buildings and bridges using ambient vibration measurements, while ignoring the
effects of soil structure interaction, and (b) fixed support vehicle bodies, ignoring the effects of the
suspension system.
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Another issue that it should be noted concerning the proposed model updating methods is that
component mode synthesis methods dividing the structure to linear substructural components
with fixed properties and linear substructural components with uncertain properties to be
identified can be incorporated into the methodology to further reduce the computational effort
required in optimization problems. The linear substructures with fixed properties can be
represented by their lower contributing modes which remain unchanged during the model
updating process. The method can be particular effective for finite element models with large
number of DOF and for parameters that are introduced to monitor localized areas of a structure.
This is usually the case for which the identification method are applied for locating damage in a
structure.

The proposed model updating methodologies, such as multi-objective identification, Bayesian
identification and optimally weighted residuals can be extended to handle nonlinear structures
with localized nonlinearities. In this nonlinear case the measured data and the residuals are
based directly on the measured response time histories instead of the modal characteristics. A
challenging problem is to automate the computation of the gradients of the objective functions
with respect to the model parameters since it requires developing of efficient methods for
estimating the gradients of the response time histories for general nonlinear systems with various
types of nonlinearities.

Another future direction is to extend the Bayesian model selection and parameter estimation to
handle multiple sets of measurements corresponding to different operational conditions of the
structure.

The method for predicting damage accumulation due to fatigue in the entire body of metallic
structures exploiting measurements from a limited number of sensors can be extended to handle
bi-axial stress states as well as to include more accurate rainflow counting methods. Also, the
effectiveness of the proposed fatigue prediction methods should be explored for more complex
structures, including realistic vehicle bodies and airframes. Finally, the fatigue damage
accumulation methodology in the entire body of a structure can also be seen as a tool for a life-
time prognosis within structural health monitoring concepts. Specifically, the proposed method
can be used to estimate the accumulation of damage due to fatigue during operation in the entire
body of a structure taking into account the actual conditions collected from a sensor network
placed at limited number of locations. The fatigue accumulation and lifetime predictions provided
by the proposed methodology in this thesis should be useful for designing optimal maintenance
strategies for most critical components of metallic structures using information collected from a
sensor network.
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