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Abstract
The evolution of General-Purpose Graphics Processing Units (GPGPUs)

in conjunction with the increasing need for performance and low power
consumption, gave birth to heterogeneous systems, parallel architectures
and led to the creation of many parallel programming models like OpenCL
[4], OpenMP [5], OpenACC [1], MPI [6], Unified Parallel C (UPC) [7], CUDA
[22]  and more.  Their  purpose is  to offer  the programmer a  high level
access to devices capable of parallel execution, efficient utilization of all
parallel resources in a system, high portability and easier maintainability
of source code.

This  thesis  presents  a  source  to  source  transformation  tool  named
“ACCLL”  which  translates  a  program from the  relatively  new OpenACC
programming model [1] to the well established OpenCL Standard [4] using
the  LLVM  [2]  compiler  infrastructure  and  mainly  their  native  C/C++
compiler Clang [3]. 

ACCLL is an implementation of the OpenACC programming model [1] on
top of the OpenCL Standard [4]. Its purpose is to give the programmer the
ability to express the parallelism of  their  programs in  a more abstract
representation  in  the  source  code  and  allow  access  to  all  OpenCL
advantages (offline compiler) and analysis tools at the same time. 

Some  examples  of  tools  are  Profilers  (Intel®  Vtune  [12],  Intel®
Graphics  Performance  Analyzer  [13],  AMD  APP  Profiler  [14]),  formal
analysis  tools  (GPUVerify  [9]),  Automatic  Hardware  Generation  tools
(SOpenCL [10]) and more.

The following pages describe the structure,  flow and implementation
decisions that have been taken during the development phase.

6

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 04:34:19 EET - 137.108.70.7



Περίληψη
Η  εξέλιξη  των  μονάδων  επεξεργασίας  γραφικών  γενικού  σκοπού

(GPGPUs) σε συνδυασμό με την ανάγκη για αυξανόμενη αποδοτικότητα
και  μειωμένη  κατανάλωση  ισχύος,  έδωσαν  το  έναυσμα  για  την
δημιουργία  ετερογενών  συστημάτων,  παράλληλων  αρχιτεκτονικών  και
μοντέλων παράλληλου  υπολογισμού  όπως το OpenCL [4],  OpenMP [5],
OpenACC [1], MPI [6], Unified Parallel C (UPC) [7], CUDA [22] και άλλα.
Σκοπός  τους  είναι  να  δώσουν  στον  προγραμματιστή  πρόσβαση  στις
δυνατότητες των νέων παράλληλων αρχιτεκτονικών με αφηρημένο και
συνεπή  τρόπο,  να  προσφέρουν αποτελεσματική  αξιοποίηση  των  πόρων
του εκάστοτε συστήματος, φορητότητα και ευκολότερη συντήρηση του
πηγαίου κώδικα.

Στα πλαίσια της διπλωματικής μου εργασίας ανέπτυξα ένα εργαλείο
μετατροπής  πηγαίου  κώδικα  από  το  υψηλού  επιπέδου,  σχετικά  νέο
μοντέλο παράλληλου  προγραμματισμού  OpenACC [1]  στο χαμηλότερου
επιπέδου,  καθιερωμένο  μοντέλο  OpenCL  [4]  χρησιμοποιώντας  την
υποδομή μεταγλωττιστών LLVM [2] και κυρίως τον Clang μεταγλωττιστή
[3] ο οποίος είναι βασισμένος σε αυτήν την υποδομή. Αυτό το εργαλείο
(accll) είναι μια υλοποίηση του OpenACC μοντέλου προγραμματισμού [1]η
οποία  πατάει  επάνω  στο  μοντέλο  OpenCL  [4].  Σκοπός  του  είναι
μετατρέπει  μια  υψηλού  επιπέδου  παράλληλη  εφαρμογή  γραμμένη  σε
OpenACC [1], σε μία αντίστοιχης λειτουργικότητας εφαρμογή γραμμένη
στο χαμηλότερου επιπέδου OpenCL μοντέλο [4].

Με αυτόν τον τρόπο, ο προγραμματιστής αποκτά πρόσβαση σε όλα τα
εργαλεία  ανάλυσης  τα  οποία  έχουν  σχεδιαστεί  για  το  ήδη  υπάρχων
μοντέλο OpenCL [4] όπως Profilers (Intel® Vtune [12], Intel® Graphics
Performance Analyzer  [13],  AMD APP Profiler  [14]),  εργαλεία ανάλυσης
εγκυρότητας  (GPUVerify  [9]),  εργαλεία  αυτόματης  δημιουργίας  υλικού
(SOpenCL [10]) και πολλά άλλα.

Οι  παρακάτω  σελίδες  παρουσιάζουν  την  δομή,  ροή  και  τις
σχεδιαστικές  αποφάσεις  που  πάρθηκαν  κατά την  ανάπτυξη  αυτού  του
εργαλείου.
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Chapter 1

Introduction
Over  the  last  years  the  computational  needs  of  many  scientific

applications,  rapidly  grown  databases  and  the  Entertainment  Industry,
combined with some technology constraints such as power consumption
issues,  transistor  size  and  cooling  limitations,  motivated  computer
scientists on the quest for solutions which offer increased performance.
We walk the path of parallel architectures like multicore processors, vector
instruction sets (SIMD), GPGPU’s and system configurations with different
types of computational units also known as Heterogeneous Systems [11].
A computational unit could be a general purpose processor, a graphics
processing unit (GPU), a digital signal processor (DSP), a co-processor or
even a ASIC or FPGA. All these types of processors can be installed in a
system  today  and  each  one  may  have  different  instruction  set
architecture (ISA).

One  great  challenge  the  parallel  architectures  and  heterogeneous
systems [11] introduce, is the ability for the programmer to write portable
programs capable of exploiting all the computational resources present to
any particular  system they run on.  Many Parallel  programming models
and  frameworks  have  been  designed  to  fill  the  void  from the  classic
sequential computing to the new parallel computing era. 

OpenACC [1] is a relatively new programming model that came out on
November 2011. It’s design purpose is to simplify parallel programming
on heterogeneous systems [11] compared to other programming models
like OpenCL [4] which can be considered quite verbose. An advantage of
OpenACC regarding the  OpenCL language is that with the former it is not
necessary to alter the sequential version of the source code too much
beyond importing some compiler directives in the appropriate places. If
the compiler supports  them it  generates code that can be run on any
supported  device,  if  not,  they  are  being  ignored  and  the  compiled
program will run sequentially. This is not achievable with OpenCL, in which
as  a  rule,  the  parallel  version  of  a  program  differs  a  lot  from  the
sequential.

This  thesis  presents  a  new  tool  named  “ACCLL”  that  translates  a
OpenACC program to its equivalent OpenCL program at source code level
with the same functionality,  using the LLVM [2] compiler infrastructure
and mainly their native C/C++ compiler front end, Clang [3]. Its purpose
is to give the programmer the ability to express the parallelism of their
programs in a more abstract representation in the source code and allow
access to all OpenCL advantages (e.g. offline compiler) and analysis tools
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at  the  same  time,  like  Profilers  (Intel®  Vtune  [12],  Intel®  Graphics
Performance Analyzer [13], AMD APP Profiler [14]), formal analysis tools
(GPUVerify [9]), Automatic Hardware Generation tools (SOpenCL [10]) and
more.

Having  such  a  tool  available,  also  gives  the  programmer  the
opportunity  to  familiarize  themselves  with  all  the benefits  the  modern
parallel  architectures  can  offer,  using  a  more  abstract  parallel
programming model  with  smoother  learning  curve.  Another  interesting
use case of  this  tool  can be to evaluate, test and strengthen the new
OpenACC  programming  model  on  top  of  a  robust,  well  defined  and
popular  parallel  framework  such  as  OpenCL.  As  time passes  and  new
parallel  programming models  appear,  these type of  tools  may become
essential in the design process and improvement of the aforementioned
programming models.

The  following  chapters  provide  some  background  information,  some
implementation decisions taken during the development, the structure of
the  presented  tool  “ACCLL”,  among  with  code  examples  for  the  most
common source code patterns in a OpenACC program.

Chapter  2  provides  some  brief  background  information  about  the
discrete technologies and tools this project puts together. These are the
OpenCL and OpenACC programming models and the LLVM [2]/Clang [3]
compiler infrastructure.

Chapter 3 elaborates in depth the internal changes to Clang [3], some
key  design  decisions  with  more  technical  details.  It  contains  a
presentation of the newly added classes and their usefulness, changes to
the Parser and the semantic checking phases of a OpenACC directive.

Chapter 4 explains the mapping between the two individual program
models  (OpenCL,  OpenACC)  and  some  limitations  of  the  selected
approach.

Chapter 5 is an introduction to the main tool (accll), giving the general
design structure of the whole project and the reasons behind the selection
of  LLVM/Clang  infrastructure  among  other  choices.  It  also  covers  the
individual Stages from the original source code through its final form, the
OpenACC Runtime support and the ACCLL Runtime library, discussing the
decisions made during development and their importance. In the end of
the chapter there are details about the asynchronous execution model, its
differences with the synchronous execution model and the way these two
are expressed via the OpenCL API.

For each Stage there is a detailed presentation about its actions and
changes it induces among any technical problems and design decisions
taken during the development phase. The most critical and ‘hard working’
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Stages are the one that implements the data movements and the one
that creates the OpenCL kernels from the OpenACC Compute Constructs.

Finally, chapter 6 provides evaluation and testing information gathered
from a  collection of test files of various online benchmarks. It also points
some outstanding testing issues and the implementation’s decisions on
each one of them.

In the end there is also a complete example of a simple vector addition
program in the original OpenACC form and the final OpenCL form this tool
produces.
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Chapter 2

Background
As the time of writing, the latest versions of these two programming

interfaces  are  OpenACC  2.0  [1]  and  OpenCL  2.0  [4].  The  versions
described in this document are the OpenACC 1.0 [1] and OpenCL 1.2 [4]
except if explicitly stated otherwise.

2.1 The OpenCL Standard

One of the most embraced technologies in the industry is the OpenCL
Standard [4] which provides a clean and consistent API, Framework and
Libraries for developing parallel programs. It  gives the programmer full
control over the device’s resources. A key feature of the OpenCL Standard
[4]  is  that  the  device  code  can  be  compiled  at  Runtime,  providing
portability and flexibility among systems with different compute devices.

2.1.1 Execution Model

An OpenCL device consists of one or more compute units each one of
one  or  more  processing  elements.  The  code  executes  within  the
processing elements.
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An  OpenCL  application  involves  a  host  program  and  one  or  more
kernels  containing  the  computations.  The  host  program  submits
commands  to  the  device  which  executes  them  on  the  processing
elements.

An  OpenCL  kernel  is  the  core  computational  representation  of  the
parallel  program.  Typically  it  expresses  the  parallelism  at  the  finest
granularity possible, consuming a single unit of input data and producing
a single unit of output data.

Each kernel execution has an index space (NDRange) where an instance
of  the computation  code runs  for  each work-item in  this  index space.
Every  work-item  operates  on  different  data  using  its  unique  index
information (SIMD execution) like global id and local id. Work-items can be
organized  into  work-groups  by  the  user  to  provide  different  scales  of
granularity in a flexible way.

The host program creates a command-queue to coordinate execution of
the kernels and data transfers on the devices in two ways:

• In-order Execution
Commands  are  launched  in  the  order  they  appear  in  the
command-queue and complete in order.

• Out-of-order Execution
Commands are issued in order, but do not wait to complete before
following commands execute.

12

Figure 2: An example of NDRange index
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2.1.2 Memory Model

There are four distinct memory regions in a OpenCL device:

• Global Memory (big, slow):
This memory region permits read/write access to all work-items in
all work-groups. 

• Constant Memory (cached):
A  region  of  global  memory  that  remains  constant  during  the
execution  of  a  kernel.  The  host  allocates  and  initializes  memory
objects placed into constant memory.

• Local Memory (small, fast):
A memory region local to a work-group. This memory region can be
used to allocate variables that are shared by all work-items in that
work-group.

• Private Memory:
A region of memory private to a work-item. Variables defined in one
work-item’s private memory are not visible to another work-item.

13

Figure 3: OpenCL Memory Model

Source: The OpenCL Specification - Khronos Group
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2.1.2.1 Synchronization

There are 3 means of synchronization in OpenCL:

1. Command-queue barrier
Ensures  that  all  previously  queued  commands  have  finished
execution and any resulting updates to memory objects are visible
to subsequently enqueued commands before they begin execution.

2. Waiting on an event
All OpenCL API functions that enqueue commands return an event
that  identifies  the  command  and  memory  objects  it  updates.  A
subsequent  command  waiting  on  that  event  is  guaranteed  that
updates to those memory objects are visible before the command
begins execution.

3. Barrier synchronization in work-items in a single work-group
For the purposes of this document, this case can be ignored. The
reason  is  that  there  is  no  way  to  express  this  type  of
synchronization  using  the  OpenACC  programming  model.  The
workaround in  this  case  is  to  break  the  Compute  Region  at  the
synchronization points creating two or more Compute Regions (see
Table 1). This works because there is an implicit barrier by default
between Compute Regions.

For example, the following codes are algorithmically equivalent although
performance may be different:

2.1.2.2 Memory Objects

Kernels take memory objects as parameters which can be either input
or output or both. OpenCL memory objects can be either buffer objects or
image  objects.  Their  main  differences  is  that  a  simple  buffer  object

14

OpenCL kernel OpenACC kernels loop Construct
__kernel foo() {

//do this
//sync for 

work-items
//do that

}

#pragma kernels loop
{

//do this
}
//implicit barrier at host code
#pragma kernels loop
{

//do that
}

Table 1: Work-item synchronization equivalent in OpenACC
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contains  its  elements  in  a  one-dimension collection whereas an image
object can contain elements organized in a two- or three- dimensional
collection.  Also elements in an image object follow an internal  storage
format and reads/writes are performed with specific built-in functions and
not directly as in the case of a simple buffer object. For the needs of this
document, image objects can be ignored. The reason is that there is no
way  to  express  this  type  of  object  using  the  OpenACC  programming
model.

A  buffer  object  stores  a  one-dimensional  collection  of  elements.
Elements of a buffer object may have scalar,  vector,  or a user-defined
data type. The minimum number of elements in a memory object is one.

2.2 The OpenACC Programming Model

OpenACC  [1]  is  a  programming  standard  for  parallel  computing
developed by Cray [18], CAPS [19], Nvidia [20] and PGI [21]. The standard
is designed to simplify parallel programming of heterogeneous CPU/GPU
systems [11].

The  OpenACC  API  describes  a  collection  of  compiler  directives  and
runtime routines to specify loops and regions of code in standard C, C++
and FORTRAN to be offloaded from a host CPU to an attached accelerator,
providing  portability  across  operating  systems,  host  CPU's  and
accelerators.

Programmers can create high-level host+accelerator programs without
the  need  to  explicitly  initialize  the  accelerator,  manually  allocate/free
device  memory,  offload  programs  to  the  accelerator, or  initiate
accelerator  startup  and  shutdown.  All  these  details  are  implicitly
integrated  into  the  programming  model  letting  the  compilers  and
runtimes manage all the hard work. The programming model allows the
programmer to provide performance related details to the compiler, like
data locality information, loop mapping strategies, and more.

2.2.1 Execution Model

The OpenACC execution model is quite similar to the OpenCL execution
model.  There is  a host program managing the attached devices which
offloads code regions specified by the user to the currently connected
device.  The device  executes  parallel  regions  and kernel  regions  which
both  may  contain  loop  regions.  Each  loop  region  nested  in  a  kernels
region is  executed as a distinct kernel.  On the other hand the parallel
region defines a  single  kernel  as  it  is,  even if  it  contains  nested loop
regions.

15
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The host program is responsible for memory allocation/deallocation on
the device, data initialization and transfer, sending the computation to the
device,  passing  arguments  to  the  parallel  region,  queuing  the  device
code, synchronization and transferring results back to the host. 

In the hardware level,  most current accelerators support two or three
levels  of  parallelism. There may be limited support for synchronization
across coarse-grain parallel  operations. Some accelerators also support
fine-grain parallelism, often implemented as multiple threads of execution
within a single execution unit. Finally, most accelerators support SIMD or
vector operations within each execution unit.

2.2.2 Memory Model

The accelerator usually has its own completely separate address space
from the host.  In this case, the host may not be able to access device
memory  directly  and  all  data  movement  between  host  memory  and
device memory must be performed by the host through runtime library
calls.

The concept of  separate host and accelerator memories is visible in
OpenCL, where one has to declare one host and one device buffer before
any data  movement  between the  two different  address  spaces.  These
data  movements  often  overshadow  user  code.  The  OpenACC
programming  model,  implicitly  performs  all  these  data  movements
instead, without the need of the second explicit declaration for the device
buffer.

2.2.3 Directive Format

An OpenACC directive applies to the immediately following statement,
structured block or loop. More Information about clauses for each directive
exists  in  the  OpenACC  Specification  [1].  In  C  and  C++,  OpenACC
directives are specified with the #pragma mechanism. The general syntax
of an OpenACC directive is:

#pragma acc directive-name [clause [[,] clause]...] new-line

Table 2 has a brief presentation of the supported directives among their
specific syntax.

16
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2.2.4 Conditional Compilation

The _OPENACC macro name is defined to have a unique value for each
version of the OpenACC Standard.

2.2.5 Internal Control Variables

An  OpenACC  implementation  defines  two  internal  control  variables
(ICVs) that control the behavior of the program. These ICVs are initialized
by the implementation, or through environment variables or OpenACC API
routines. The ICVs are:

• acc-device-type-var :  controls  which type of  accelerator  device is
used.

• acc-device-num-var  :  controls  which  accelerator  device  of  the
selected type is used.

17

Directive Type C/C++ Syntax

 Compute
Constructs

#pragma acc parallel [clause [[,] clause]...] new-line
structured block

Compute
Constructs

#pragma acc kernels [clause [[,] clause]...] new-line
structured block

Data
Construct

#pragma acc data [clause [[,] clause]...] new-line
structured block

Host_Data
Construct

#pragma acc host_data [clause [[,] clause]...] new-line
structured block

Loop
Construct

#pragma acc loop [clause [[,] clause]...]new-line
for loop

Cache #pragma acc cache( list ) new-line

Combined #pragma acc parallel loop [clause [[,] clause]...]new-line
for loop

Combined #pragma acc kernels loop [clause [[,] clause]...]new-line
for loop

Declare #pragma acc declare declclause [[,] declclause]... new-line

Update #pragma acc update clause [[,] clause]... new-line

Wait #pragma acc wait [( scalar-integer-expression )] new-line

Table 2: OpenACC directives and syntax
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2.2.6 Subarray Support

In order to minimize the amount of data transfers between host and
device,  the  programmer  can  specify  a  subarray  of  an  array  to  be
transferred from/to a device, minimizing the usage of memory bandwidth.
This results to less bottlenecks and performance loss.

In C and C++, a subarray has the following syntax

arr[start:length]

2.3 The LLVM Infrastructure

The LLVM Project [2] is a collection of modular and reusable compiler
and tool-chain technologies. It is designed to support transparent, lifelong
program analysis and transformation for arbitrary programs, by providing
high-level  information  to  compiler  transformations  at  compile-time,
link-time, run-time, and in idle time between runs.

LLVM defines  a  common,  low-level  intermediate  code representation
(IR) in Static Single Assignment (SSA) form [16] and the LLVM compiler
framework together  provide  a  combination  of  key  capabilities  that  are
important for practical, lifelong analysis and transformation of programs.

2.4 Clang Compiler - The LLVM Front end for C/C++

The  Clang  [3]  Compiler  is  a  compiler  front  end  for  the  C,  C++,
Objective-C and Objective-C++ programming languages. It uses LLVM [2]
as its back end and its goal is to offer a replacement to the GNU Compiler
Collection  (GCC)  [15].  Development  is  completely  open-source,  with
several  major  software  development  companies  involved,  including
Google  and  Apple.  Clang  builds  on  the  LLVM  optimizer  and  code
generator,  allowing  it  to  provide  high-quality  optimization  and  code
generation support for many targets.

2.4.1 Abstract Syntax Tree (AST)

Clang’s AST [8] closely resembles both the written C++ code and the
C++ standard.  For example,  parenthesis expressions and compile time
constants  are  available  in  an  unreduced  form in  the  AST.  This  makes
Clang’s AST a good fit for refactoring tools.

2.4.2 AST Context & AST Nodes

All  the necessary information about the AST for a translation unit  is
bundled  up  in  the  ASTContext  class  [8].  Clang’s  AST  [8]  nodes  are
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modeled on a class hierarchy that does not have a common ancestor.
Instead, there are multiple larger hierarchies for basic node types like Decl
and Stmt. 

The two most basic nodes in the Clang AST [8] are statements (Stmt
[8]) and declarations (Decl [8]). Expressions (Expr [8]) are also statements
in Clang’s AST [8].  This  design allows recursive traversal  of  the whole
translation unit using the RecursiveASTVisitor class [8]. Thus, to traverse
the  full  AST,  one  starts  from  the  TranslationUnitDecl  [8]  and  then
recursively traverses everything that can be reached from that node.

2.4.3 RecursiveASTVisitor

A class that does preorder depth-first traversal on the entire Clang AST
and visits each node.

This class performs three distinct tasks: 

• TraverseNode(Node *x)
Traverse the AST (i.e.  go to each node).  It  is  the entry point for
traversing an AST rooted at x.

• WalkUpFromNode(Node *x)
Walk up the class hierarchy, starting from the node's dynamic type,
until  the  top-most  class  (e.g.  Stmt  [8]  ,Decl  [8],  or  Type  [8])  is
reached. 

• VisitNode(Node *x)
given a (node, class) combination, where 'class' is some base class
of the dynamic type of  'node',  call  a user-overridable function to
actually visit the node.

2.4.4 LibTooling Library & Replacements Mechanism

Clang Tooling [8] provides several infrastructures to write tools that are
interested  in  syntactic  and  semantic  information  about  a  program.
LibTooling [8] is one of them, it is a library to support writing standalone
tools based on Clang [3] giving full access to the AST Tree. This source to
source transformation tool is based on LibTooling [8].

One of the core refactoring utilities is the Replacement class [8] defined
for the Refactoring framework [8] of Clang. Replacement represents an
independent  replacement  of  a  range  of  text  in  a  specific  file.  Its
constructor takes as parameters a range of text to be replaced and a
string with the new text which is going to replace the old one.
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Chapter 3

ACCLL - OpenACC to OpenCL Transformation Tool
Considering the the purpose and needs which led to the creation of

such a tool, as long as the features it is going to offer, the choice of the
LLVM [2] & Clang [3] Infrastructure among other options was made for the
following outstanding features:

First of all its modular design and clean codebase offers the ability to
choose specific features and extend them independently. Second, being
an open source project with an active and growing community provides a
satisfying  amount  of  internal  documentation  and  feedback.  It  also
produces code that meets quality/production standards using state of the
art code transformation techniques.

The OpenACC Specification [1] defines directives for both C/C++ and
FORTRAN languages. The accll tool aims only at C language support. C++
support is very experimental and not tested.

The  development  of  accll  is  divided  in  two major  components.  One
consists  of  all  the  necessary  internal  changes  to  Clang  in  order  to
represent  information  related  with  the  OpenACC  Constructs  (support
component),  and  the  other  consists  of  the  transformation  logic  that
produces the final code (the actual tool component).

First of all it was necessary to make Clang aware of these new OpenACC
directives by applying some internal changes mainly at the parsing phase
to gather all this new information. This was achieved by extending the
Clang AST [8] with new classes to represent all the needed information
about any OpenACC directive, clause and argument in the original source
code.

The Clang Preprocessor and Parser were extended with new methods
that recognize the start of an OpenACC directive and parse it until they
reach the End of Directive token (EOD). New Diagnostic messages were
added to report possible warnings or errors to the programmer due to
syntax errors.

The  Clang’s  Sema class  [8],  responsible  for  all  semantic  checks  on
syntactically  correct  code,  was  extended  too  to  support  OpenACC
directives.  New  Diagnostic  messages  were  added  to  report  possible
warnings or errors to the programmer due to semantic errors. If there are
errors in the source code, the appropriate Diagnostics are printed and
accll exits with an error code.
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The  Clang  AST  was  extended  with  a  new  kind  of  Statement,  the
AccStmt to represent all the new OpenACC structures. After the semantic
checking,  if  the  code is  error  free,  the  collected OpenACC information
goes into the AST making all the OpenACC structures reachable from any
external tool which traverses the AST using the RecursiveASTVisitor.

The second component is the actual  implementation of  this external
tool (accll). After a series of passes for each input file, the tool splits the
initial code annotated with OpenACC directives into two new source files.
One that  contains  the  OpenCL [4]  host  program (creation  of  platform,
context, queue, data transfers, etc) and one that contains the OpenCL
device code (OpenCL kernels). 

For example:

Support for multiple input files is still in experimental state.

Some important details worth mentioning at this point are:

• The original input file is not altered by the transformation process.
• If there are no OpenACC Compute Constructs in a specific input file,

only the OpenCL host code file is being created.
• If there are no OpenACC directives and no OpenACC Runtime calls

at all in a specific input file, this file is being ignored by ACCLL.

More details and in depth explanation of the behavior of the tool comes in
the following chapters.

One  high  priority  goal  during  development  was  to  keep  the  Clang
internal changes as limited as possible and put most of the work in the
external tool.

Some additional concerns were the reuse of already existing features of
LLVM and Clang as much as possible, like LLVM data containers, the LLVM
Runtime Type Information system (RTTI), code style and feedback to the
community.
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OpenACC Original Input Filename foo.c

OpenCL host program Filename foo_accll.c

OpenCL device code Filename foo_accll.cl

Table 3: Filenames

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 04:34:19 EET - 137.108.70.7



3.1 Clang Internal Changes

This chapter describes the internal  changes to Clang in more detail.
One of the goals of these changes was not to alter the expected behavior
of Clang when there are no OpenACC directives in the source code.

3.2 Driver & Front end Support

The  modified  Clang  ignores  by  default  any  OpenACC  directives  to
maintain  compatibility  with  the  mainstream  ‘vanilla’  version.  A  new
command line option flag “-fopenacc” has been added to explicitly enable
the parsing of OpenACC directives. If this flag is not present in the Clang
invocation, the OpenACC directives are being ignored.

The OpenACC Specification [1], in section 2.2 Conditional Compilation,
demands the definition of the macro _OPENACC with the value 201111. If
the “-fopenacc” option flag is present, the Driver defines this macro to the
Preprocessor.

3.3 Representation of Directives

3.3.1 Class DirectiveInfo

This class keeps information about the kind of the directive, its name,
clauses or arguments (if any), the associated AccStmt with this directive
and the parent directive (if it is nested). 

There are also helper methods to determine what sort of directive is
(Compute, Combined, Executable, Data), whether it has optional clauses
or not, what types of clauses are valid for this directive and a couple other
more  which  make  easier  the  identification  later  in  the  transformation
process.

For  example  the  method  hasOptionalClauses()  returns  true  if  the
specific directive can be used without any clauses, else returns false.

3.3.2 Class ClauseInfo

This class keeps information about the kind of the clause, its name,
arguments (if any), the associated directive with this clause and whether
it is implementation defined (implicit or explicit by the user).

There are also helper methods to determine whether this is a data or
private clause,  if  it  takes optional  arguments and their  number (none,
one, list of arguments).
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3.3.3 Class Arg and Derived Classes

This class is the base class for the different kinds of arguments a clause
or directive can have. Each argument kind corresponds to a derived class
as shown by the following table:

The  OpenACC Specification  does  not  dictate  such a  separation.  The
reason behind this  decision was the simplification of  development and
extensibility while improving readability and avoiding code duplication.

These classes  keep information about  the  original  expression  in  the
source  code,  the  nesting  of  the  argument,  the  parent  type  clause  or
directive, type specific information and whether this is an implementation
default argument or not (implicit or user defined).

Probably the most important method is the Matches() method with the
following signature:

bool Arg::Matches(Arg *Target);

This method checks whether the calling argument is semantically equal
to the Target argument passed as parameter, for example if both refer to
the same variable, array, struct data member or constant value. A current
limitation of this method is that It does not perform alias analysis over
pointers and data between the calling argument and the Target.

3.3.4 Class AccStmt

This class represents an OpenACC directive existent in the source code,
as  an  AST  Node  in  the  Clang’s  AST.   It  keeps  information  about  the
directive  kind  and  its  sub-statement  if  that  exists.  The  kind  of
sub-statement conforms to the OpenACC Specification.

23

Argument kind Derived Class Name

Raw Expression RawExprArg

Variable Reference VarArg

Array Reference ArrayArg

Array Subscript Expression ArrayElementArg

Subarray Expression SubarrayArg

Constant Integer Value ConstArg

Table 4: OpenACC Argument Subclasses
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3.4 Parser Support

In principle any kind of compiler directive (pragma) is not part of the
language. They merely specify a compiler’s behavior for the given input.
Typically the Preprocessor takes care of these pragmas and Clang takes
this approach. The changes in Clang Parser among some minor tweaks in
the Preprocessor,  give  Clang the desired ability  to recognize  OpenACC
directives,  clauses and arguments  in  places specified by the OpenACC
Specification.

Because OpenACC directives and clauses contain arguments which are
valid C/C++ expressions, it was inevitable to move most of the OpenACC
directive handling from the Preprocessor to the Parser. This was almost a
one  way  decision.  The  alternative  approach  was  to  bloat  the
Preprocessor’s code base with duplicated code from the Parser which was
non  intuitive  and  contradictory  to  the  general  concept  of  keeping  the
internal changes as less as possible.

Therefore,  the  new  pragma  handler  for  OpenACC  directives  is
implemented at two stages. 

The first (Preprocessor) stage watches the input token stream for the
beginning  of  a  new  OpenACC  directive  by  the  ‘#pragma  acc’  string
sequence.  Then  It  generates  a  new  annotation  token  of  kind
tok::annot_pragma_acc and inserts it into the token stream of the current
translation unit (the Lexer considers each input file as a stream of tokens).
This way the Preprocessor is bypassed and the Parser can take control
over the directive, recognizing any valid C/C++ expression as normal.

Next, the second (Parser) stage reads this newly added token from the
input token stream. From now on the Parser takes action until the End Of
Directive  (EOD)  token.  The  Parser  is  also  responsible  for  cleaning  any
pending  tokens  in  case  of  error.  This  is  normally  a  work  for  the
Preprocessor, but this is a special case as explained earlier.

Note  that  although  this  design  is  far  from  ideal  it  still  is  the  less
intrusive  strategy  feasible  at  the  moment,  given  the  current  design
structure of Clang’s Preprocessor and Parser. As this time of writing, there
are some discussions in the cfe-dev mailing list [17] about this issue but a
proper solution implies a big refactor/rewriting of core components of the
Parser and Preprocessor code base.

New Parser methods consume any kind of OpenACC directive or clause.
The  argument  parsing  utilizes  already  implemented  methods  such  as
ParseExpression() [8].

Some changes extend the Parser in order to understand the subarray
syntax as specified by the OpenACC Standard.
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The Clang front end to LLVM aims to keep as much Source Location
information  as  possible  by  not  altering  or  ignoring  any  explicit  user
written code (such as obsolete parentheses or casts). The idea behind this
behavior is to make Clang suitable for source transformation tools like the
one it is described here, and to shift code modification from the front end
to  the  LLVM  IR  level.  By  this  structure  it  is  straightforward  that  all
optimizations take place at the LLVM IR level. The new changes honor this
philosophy by keeping as much Source Location information as needed for
a decent refactoring from the external tool.

During  the  parsing  phase,  syntactic  checks  look  through  the  user’s
source code and the Diagnostics mechanism [8] emits  the appropriate
warnings/errors if necessary.

3.5 Semantic Checking Support

Clang performs all the semantic checking routines from the Sema class
[8].  Rather  than  ‘polluting’  this  class  with  new  methods  and  data
structures  necessary  to  perform  OpenACC  semantic  checking,  a  new
helper class ‘ACCInfo’ has been defined to act as a wrapper to Sema. This
design decision allows any semantic checks relative to OpenACC to be
part of the external tool rather than hide in the Clang’s internals [8]. Such
a move is still  under consideration; while it  will  leverage the ability to
modify  the  semantic  checks,  it  will  be  harder  to  take  advantage  of the
powerful internal Diagnostics mechanism.

The  OpenACC  directives  appear  in  the  source  code  before  the
statement they annotate, therefore after parsing a directive, the ACCInfo
wrapper remembers it until the next statement’s parsing finishes. This is
done with the member pointer

DirectiveInfo *PendingDirective;

As the name indicates, this pointer remembers the last semantically
correct and unconsumed directive the Parser discovered. 

After  parsing  the  next  statement,  a  semantic  check  takes  place  to
confirm whether the PendingDirective (if exists) can annotate it. If there is
a conflict,  the Diagnostics  mechanism prints  an error  and the ACCInfo
wrapper discards the PendingDirective.

The  update,  wait,  declare,  cache  directives  do  not  apply  to  any
statements.  In  Particular  the  Executable  directives  (update,  wait)  and
cache  directive  are  treated  as  standalone  statements.  The  declare
directive provides a compact way to express data movements; it really
annotates variable declarations.
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The  useful  statements  OpenACC  directives  can  annotate  are  the
Compound  statement  (CompoundStmt  [8])  and  the  For  statement
(ForStmt [8]). The OpenACC Specification allows the nesting of OpenACC
Constructs with some rules and restrictions. For example the nesting of
Data Constructs is allowed but Compute Constructs nesting is disallowed.

A container structure called ‘RegionStack’ with LIFO semantics keeps
track of the currently open Constructs at any location in the source code.
Each  time  the  AccInfo  wrapper  detects  an  opening  of  a  Construct,  it
performs a validity check before this Construct enters the RegionStack.
Notice that even if there are syntax or semantic violations in a clause or
argument, the associated directive still gets inserted into the RegionStack
to avoid false positive Diagnostics later in the annotated code. Each time
a Construct reaches its end, the respective entry gets removed from the
RegionStack.

The OpenACC Specification compels the implementation to give implicit
values to some clauses (num_gangs, num_workers, vector_length) if the
user did not. These values are not constrained by the Specification; the
implementation can choose any valid value.  The semantic check takes
care of this issue. These clauses act more like an advice to compiler. The
compiler can use different values depending on the analysis results.

Currently the default value for each one of them is '1'. There is also a
heuristic method which tries to find more suitable values but it is still in
experimental  state.  There  are  some  issues  with  this  approach  in  this
version of the tool that are discussed with more details on chapter 7.

There is also a check for duplicate arguments inside data clauses. This
is mostly a sanity check not mandatory by the OpenACC Standard, but
very useful as it  exposes ill  defined code and informs the programmer
with an error.
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Chapter 4

Map OpenACC Constructs to OpenCL Structures
& API Calls

Before  any  more  implementation  details,  it  is  vital  to  describe  the
relations  between  the  execution  model,  memory  model  and  data
structures between the two programming interfaces,  OpenACC [1] and
OpenCL [4] respectively.

The Execution Model of OpenACC dictates a In-Order Execution Model of
device code,  with implicit  barriers  by default.  The device code regions
execute in the same order they appear in the source code. This behavior
in OpenCL corresponds to an In Order Command Queue.

Mainly  for  performance  enhancement  reasons   there  is  support  for
asynchronous execution with the use of the async clause. The device in
this case executes the device code regions out of order in general, but still
in  a  relative  order  depending  on  the  async  clause’s  argument.
Asynchronous  device  code  regions  with  matching  async  arguments
execute  in  the  same  order  as  they  appear  in  the  source  code.  This
behavior  in  OpenCL corresponds  to  an Out  of  Order  Command Queue
using Barriers and Markers for synchronization. This is the approach this
tool  follows.  Any synchronous  device  code can be expressed with  this
approach by issuing explicit Barriers to the Out of Order Command Queue
after each kernel or data move command.

The  gangs  and  workers  in  OpenACC correspond  to  one  dimensional
index  space  of  global  and  local  workers  respectively.  The  biggest
difference  between the  two execution  models  is  that  in  OpenCL  multi
dimensional  index  spaces  can  be  expressed,  instead  of  only  one
dimensional  index  space  in  OpenACC.  The  compiler  may  recognize
patterns of nested loop regions as multi dimensional index spaces but this
is still an experimental feature.

The  Memory  Model  of  both  programming  models  is  quite  similar.
OpenCL offers more flexibility as a low level API. OpenACC does not define
any  new  data  structures,  therefore  there  is  not  a  unique  data  type
mapping between the two memory models.

Features like Memory Mapping or Constant Memory in OpenCL do not
have an OpenACC dual, however It is up the implementation’s decision
whether  to  exploit  these  features  or  not  depending  on  performance
improvements.
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Apart  from  that,  any  resource  allocations,  deallocations  and  data
transfers between host and device are done in the same spirit.

The implementation maps each host memory region (variable, array) to
be offloaded to the associated device to an OpenCL Memory Object of
type  cl_mem.  Using  this  object  any  data  transfers  take  place  by  the
appropriate OpenCL API calls. When the cl_mem object is not needed any
more it is released.

Arguments of async clauses, either explicit or implicit (implementation
defined), map to a cl_event OpenCL object. Later on, this object can be
passed  as  parameter  to  a  clEnqueueBarrierWithWaitList()  OpenCL  API
call, which is a map for the wait directive.

In some cases it is more beneficial to use a Marker to group multiple
asynchronous OpenCL Commands, each one with its own cl_event, to a
single  common cl_event.  This  simplifies  code  generation  and  provides
better  performance by  reducing  the  number  of  Barriers  needed to  be
inserted between execution and data transfer Commands.

Consider for example an asynchronous update directive which updates
more than one memory regions. A later wait directive associated with this
asynchronous update directive has to wait only for the cl_event of  the
Marker instead of each cl_event from the update directive separately.

Table 5 below summarizes these mappings.
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OpenACC OpenCL

Memory buffer (variable) cm_mem object

Update directive ClEnqueueReadBuffer()
clEnqueueWriteBuffer()

Async clause cl_event
clEnqueueBarrierWithWaitList()

clEnqueueMarkerWithWaitList()

Gangs, workers NDRange

Table 5: Mapping from OpenACC to OpenCL
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Chapter 5

External Transformation Tool
The external transformation tool (accll) utilizes Clang’s LibTooling library

[8]. It takes as parameter one or more input files of C source code (*.c)
with OpenACC directives,  and outputs  two files.  One that contains the
device code (OpenCL kernels) and one that contains the host program
(OpenCL API calls, instrumentation of execution).

The  OpenCL  development  header  files  must  be  accessible  from  a
standard system include directory  or  in  a  directory  provided by the -I
option. The tool neither emits binary code (object files) nor performs any
linking,  therefore  beyond  the  development  header  files,  an  OpenCL
Runtime [4] is not a requirement for the execution of this tool.

The tool sets up the command line options that will finally invoke the
code  transformation  phases.  These  options  consist  of  any  input
parameters  the  programmer  explicitly  requested  and  some  implicit
options like the “-fopenacc” option for Clang.

Depending on the transformation Stage the tool  enables/disables  all
Clang  Diagnostics  [8]  over  the  input  files.  Diagnostics  are  enabled  by
default at least for the first and last Stage to indicate any warnings/errors
before  the  code  transformation starts  and after  when it  completes.  In
some intermediate Stages where the transformation is in progress and the
final code is incomplete, the default behavior (Diagnostics enabled) floods
the  output  with  false  warnings,  therefore  these  Stages  disable  the
Diagnostics  mechanism  using  the  extra  “-w”command  line  argument.
Each Stage can run either on ‘full Warnings’ or ‘no Warnings’ mode.

5.1 Transformation Stages

The  tool  consists  of  several  Stages  before  it  completes  the
transformation.  Each  Stage  focuses  on  a  specific  transformation  task,
writes its changes to the output file and finishes (Figure 4). In case of error
the program terminates with an error message indicating the Stage which
generated the failure and omits any following Stages.
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The structure of a Stage consists of the following Clang components:

A derived class from RecursiveASTVisitor [8] which contains all the user
defined actions for a Translation Unit. An ASTConsumer [8] class which
handles  a  Translation  Unit  by  calling  the  derived  RecursiveASTVisitor
object  over  it.  One  ConsumerFactory  [8]  object  that  creates  a  new
ASTConsumer object to consume the current Translation Unit. It is used in
combination of the following component, one RefactoringTool [8] object
whose purpose is to run the refactoring actions based on the LibTooling
infrastructure [8] and to coordinate the refactoring of all translation units.

The invocation happens as shows in Figure 4.

The next subsections discuss each Stage separately.

5.2 Input File Validation

This Stage takes the initial list of input files provided by the user and
checks whether they contain OpenACC directives. It is also responsible for
the creation of any new files. The following Stages write to these new files
and do not create other files.

The common case is to create two new files for each input file, one
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Figure 5: ACCLL components and data flow

Figure 4: Stage data flow
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containing  the  OpenCL  host  program and  one  containing  the  OpenCL
device code (kernels). In case there are no OpenACC Compute Constructs
in a specific input file, the tool creates only the host program and in case
there are no OpenACC directives at all, the tool ignores this input file. The
original input files remain untouched in any case.

At  the end of  this  Stage the new file  which is  going to contain the
OpenCL host program is just a copy of the original file. The new file with
OpenCL device code (kernels) is empty at the moment. The next Stages
take the list of new files and modify them appropriately.

5.3 Unraveling of the If Clause

This  Stage  acts  only  on  directives  which  contain  a  'if'  clause.  It
constructs the control flow of the OpenACC region at C/C++ level based
on  the  'if'  clause's  semantics.  A  simple  If  statement  which  tests  the
condition  expression  of  the  'if'  clause  argument  is  enough.  The  ‘then’
statement contains the parallel device version of the original code region
and the ‘else’ statement contains the host version.

The host version remains untouched as it is the one that executes the
region sequentially in the host, ignoring any OpenACC Constructs nested
in the annotated code region. The device version is the one that sends the
computation  for  execution  to  a  device  according  to  the  OpenACC
execution model. The selection between these two versions depends on
the boolean value of the argument of the If clause which is a valid C/C++
condition expression.

For example the tool restructures the following code:

into this code:
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#pragma acc parallel if (cond)
{ /* do something */ }

Code Example 1: Directive with 'if' clause

if (cond) {
#pragma acc parallel

{ /* do something */ }
}else
{ /* do something */ }

Code Example 2: Restructured directive with 'if' clause
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This Stage reveals the control flow of the code region by restructuring
the original C code with a transformation at the language level. It does not
perform any other kind of transformation.

5.4 Resolve Ambiguity of Parallelization Method

In  some cases  the  OpenACC Standard  does  not  specify  the  kind  of
parallelization a segment of code is subject to. The implementation has to
decide in these cases the desired behavior.

For example the  x = 10; statement below can be either a separate kernel
running on multiple workers or part of the previous kernel running on a
single worker:

These  cases  of  unspecified  parallelization  are  an  example  of
unspecified behavior in the OpenACC Specification. Hopefully this kind of
code  does  not  appear  very  often  in  a  real  life  application.  This
implementation takes a safe path by keeping these statements of unclear
parallelization status to be executed only by one worker at device. The
programmer is responsible for restructuring the code to make sure these
unspecified statements are going to be parallelized correctly on device.
The Stage emits a warning if the code suffers from this issue encouraging
the programmer to rewrite the specific code segment with no ambiguities.

This Stage rewrites the above example as follows:
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#pragma acc kernels
{

//device code;
#pragma acc loop
for () 
{

//distribute computation between workers/groups
}

x = 10;  //statement with unspecified parallelization method
}

Code Example 3: Ambiguous parallelization method
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Note that this behavior mimics the semantics of the parallel directive
and may change in later versions of this tool or later OpenACC Revisions.

This Stage acts exclusively on a kernels directive Construct. While other
Stages  rewrite  the OpenACC Constructs  to  the lower  OpenCL API,  this
Stage performs a higher level transformation by restructuring OpenACC
Constructs at the OpenACC programming model level.

This  Stage  and the  previous  one  are  preparation  Stages  before  the
actual  transformation  from  the  OpenACC  programing  model  to  the
OpenCL programing model.

5.5 Data Transfers

This Stage lowers the OpenACC data clauses and the update directive
into OpenCL API calls. It also searches for any implicit data movements
and generates code for them according to the specified semantics.

For example in the following OpenACC region, the movement of x is
explicit but the movement of y is implicit:
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#pragma acc kernels
{

//device code;
#pragma acc loop
for () 
{

//distribute computation among workers/groups
}

#pragma acc loop gang(1), worker(1)
for (int __i__ = 0; __i__ < 1; ++__i__)
{

x = 10;  //executed by one worker only
}

}

Code Example 4: Resolved ambiguity of parallelization method
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For  each  directive  which  can  hold  data  clauses  a  wrapper  scope  is
created (an opening bracket ‘{‘ before entry to the region, and a closing
bracket ‘}’ when the region is complete). With this method we can reuse
variable names for memory objects and other useful structures for every
different directive, without caring about possible variable redeclarations.

There are four main different categories (types) of data clauses for a
data buffer and four actions which complete a particular data movement.
Some  of  them  are  optional  depending  on  the  data  clause  type's
semantics.

The clause variants with the ‘present’  prefix do not create/release a
new cl_mem object.  Such an object  is  supposed to be present  from a
previously defined data clause of an already open implicit or explicit data
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Data clause types

copy present_or_copy

copyin present_or_copyin

copyout present_or_copyout

create present_or_create

Table 6: Data clause types

Data movement actions

create a cl_mem object

move the data to the device before entry to the region

move the data back to the host when the region is complete

release the cl_mem object

Table 7: Data movement actions

#pragma acc parallel copy(x)

{

x = y;

}

Code Example 5: Implicit and explicit data movements
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region. If  the implementation cannot find a matching cl_mem object in
this case, a compile or runtime error will be triggered depending on the
implementation’s approach. In the current version of this implementation
this triggers a compile time error.

For example the following code:

transforms to:

This  Stage  also  handles  any  wait  directive  on  asynchronous  data
movements  (from  update  directives)  transforming  them  to  the
appropriate OpenCL API calls as Table 5 on chapter 4 shows. It is a design
decision not to handle the case of asynchronous Compute Constructs here
but  in  a  separate  stage  (subsection  5.7)  in  concern  of  a  more  sane
organization of the actions each stage performs.

The examples below show an asynchronous data movement due to an
asynchronous  update  directive  with  the  creation  of  the  device  buffers
(cl_mem  objects)  before  and  after  transformation  from  OpenACC  to
OpenCL. Note that the copy clause transfers the data buffers to device at
the beginning of the region and back to the host at the end of the region.
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#pragma acc data copy(x)
{ /* code */ }

Code Example 6: Data movement in OpenACC

{
cl_mem __accll_x = clCreateBuffer(context, 

CL_MEM_READ_WRITE, 
sizeof(int), NULL, &error);

    clCheckError(error, "create buffer for 'x'");
    error = clEnqueueWriteBuffer(queue, __accll_x, CL_TRUE, 0, 
   sizeof(x), &x, 0,NULL, NULL);

clCheckError(error, "write buffer 'x'");
    { /* code */ }

error = clEnqueueReadBuffer(queue, __accll_x, CL_TRUE, 0, 
sizeof(x), &x, 0,NULL, NULL);

clCheckError(error, "read buffer 'x'");
error = clReleaseMemObject(__accll_x);
clCheckError(error, "release '__accll_x'");

}

Code Example 7: Data movement in OpenCL
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int a, c;
#pragma acc data copy(a)
{

//do something
#pragma acc update host(a) async(c)

}

Code Example 8: OpenACC asynchronous data movement

int a, c;
//#pragma acc data copy(a)
{

cl_mem __accll_a =
clCreateBuffer(context, (1 << 0), sizeof(int), ((void *)0), &error);
clCheckError(error, "create buffer for 'a'");
error = clEnqueueWriteBuffer(queue, __accll_a, CL_TRUE, 0,

sizeof(int), &a, 0, NULL, NULL);
clCheckError(error, "write buffer 'a'");

//#pragma acc update host(a) async(c)
{

cl_event __accll_update_event_tmp_0;
error = clEnqueueReadBuffer(queue, __accll_a, CL_FALSE, 0,

sizeof(int), &a, 0, NULL,
&__accll_update_event_tmp_0);

clCheckError(error, "read buffer 'a'");
const cl_event __accll_event_wait_list[] = {
__accll_update_event_tmp_0 };
error = clEnqueueMarkerWithWaitList(queue, 1,

__accll_event_wait_list,
&__accll_update_event_c_0);

clCheckError(error, "marker with wait list");
}
error = clEnqueueReadBuffer(queue, __accll_a, CL_TRUE, 0,

sizeof(int), &a, 0, NULL, NULL);
clCheckError(error, "read buffer 'a'");
error = clReleaseMemObject(__accll_a);
clCheckError(error, "release 'a'");

}

Code Example 9: OpenCL asynchronous data movement
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5.6 Kernel Preparation

This  Stage  deploys  the  work-item  functions  like  get_global_id()  and
get_local_id()  as  specified  at  6.12.1  of  OpenCL  Specification  to  reveal
geometry  related  information  to  each  worker  on  the  device  (location
inside the index-space).

This  is  the appropriate time to initialize the loop-control-variables  of
loop  directives  with  the  worker’s  local  or  global  ID  depending  on  the
semantics of the current Compute Construct. 

The loop-body-statement of an OpenACC annotated For sub-statement
is the code segment of device code about to become a unique discrete
OpenCL kernel. 

The next step is to enclose the device code in a If statement checking
the condition-expression of  the For  sub-statement.  This  enhances code
correctness  taking  into  account  the  possibility  of  differences  between
for-range and kernel index space geometry during execution.

For example the following loop directive:

will become:

A similar wrapping with geometry information is done in the body of the
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#pragma acc loop gang(100)
for (int i=0; i<100; ++i) 
{

z[i] = x[i] + y[i];  //kernel body
}

Code Example 10: Device Code in OpenACC

__kernel 
void uniqKernelName(__global int *x, __global int *y, __global int *z) 
{

int i = get_global_id(0);
if (i < 100) {

z[i] = x[i] + y[i];
}

}

Code Example 11: Device Code in OpenCL (kernel)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 04:34:19 EET - 137.108.70.7



parallel directive as well. All the kernel parameters are passed as pointers
even if they are constant scalar values. The reason for this approach is
that there is no analysis Stage at the time to mark them as read-only. This
decision may produce final code with non optimal performance depending
on  the  underlying  OpenCL  implementation  and  the  way  it  passes  the
various kinds of kernel parameters.

5.7 Generation of OpenCL kernels and API calls

This  is  the  stage  in  which  most  of  the  OpenACC  to  OpenCL
transformation takes place. Having all the data transfers already present
in the code, what is left is to populate the device code output file with the
device code (kernels), enrich the host program with OpenCL API calls and
perform some proper error checking.

The OpenACC Constructs that must be translated into OpenCL kernels
are  the  parallel  directive  and  the  Combined  directives  (parallel  loop,
kernels loop). The kernels directive defines a collection of OpenCL kernels
rather  than  a  standalone  OpenCL  kernel.  More  details  about  some
unspecified behavior regarding this directive are given in detail in section
5.4.

This  Stage  performs  the  following  actions,  where  most  of  them are
pretty straightforward at this point thanks to the work accomplished by
the previous Stages:

It  creates  each kernel's  signature  (definition)  and body (declaration)
handling  any  private  and  firstprivate  parameters  with  possible  data
initialization.  The  generation  of  any  reduction  algorithm also  happens
here. Kernels are written to a separate file (*.cl file).

It  calls  the  generated  kernels  in  the  appropriate  places  in  the  host
program by creating any cl_kernel objects, preparing their arguments and
the proper geometry. This is  the perfect time to orchestrate any event
based  synchronization  needed  with  cl_event  objects  for  each
asynchronous kernel invocations, populating the wait lists of the proper
OpenCL API calls, enqueue them to a command queue, waiting for them
to  complete  and  finally  releasing  any  OpenCL  resources  (cl_kernel,
cl_mem objects) used for the specific kernel execution command. Note
that  data  movements  asynchronous  or  not  are  handled  in  a  previous
stage (chapter 5.5).

The following examples show an asynchronous kernel invocation before
and after  transformation from OpenACC to  OpenCL,  omitting  any data
movements for simplicity.
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int x, y;

#pragma acc parallel async(1)

{

x = y;

}

Code Example 12: OpenACC asynchronous device code

Int x, y;

//#pragma acc parallel async(1)

{

size_t global_ws = 1;

size_t local_ws = 1;

cl_kernel accll_kernel_parallel_0 =

clCreateKernel(program, "accll_kernel_parallel_0", &error);

clCheckError(error, "create accll_kernel_parallel_0");

error = clSetKernelArg(accll_kernel_parallel_0, 0, sizeof(cl_mem),  

&__accll_x);

clCheckError(error, "clSetKernelArg 0 for 'accll_kernel_parallel_0'");

error = clSetKernelArg(accll_kernel_parallel_0, 1, sizeof(cl_mem), 

&__accll_y);

clCheckError(error, "clSetKernelArg 1 for 'accll_kernel_parallel_0'");

error = clEnqueueNDRangeKernel(queue, accll_kernel_parallel_0, 1, 

NULL,&global_ws, &local_ws, 0, NULL, 

&__accll_device_code_event_const_1_0);

clCheckError(error, "enqueue accll_kernel_parallel_0");

error = clReleaseKernel(accll_kernel_parallel_0);

clCheckError(error, "release accll_kernel_parallel_0");

}

Code Example 13: OpenCL asynchronous kernel invocation
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This Stage is also responsible for the loading & building actions over the
OpenCL kernels in the host program. This feature is implemented as a
library routine in  the ACCLL Runtime library (chapter  7.2).  Usually  this
code is placed at the top of the entrance point of the host program (main
function).

5.8 Formatting the Output

The  last  Stage  aims  to  polish  the  output  by  properly  applying  a
formatting style over the final code like indentation, spaces newlines, etc.
It  does not  aim to alter  the functionality  of  the code,  just  to  improve
readability.

It  was  feasible  to  format  the  code  at  the  same  time  with  the
Replacements mechanism [8], but  this  approach  did  not  seem  very
attractive for two reasons. First of all it requires a great amount of data
keeping  for  each  Stage  separately  just  to  offer  a  reading-friendly
representation  in  the  intermediate  states  of  code  no  one  is  typically
expected to see, except for debugging purposes. It also obfuscates and
bloats the implementation with slow code (calculating indentation, etc).

Having the style formatting logic in a distinct Stage is cleaner, less error
prone,  fits  better  with the whole separate Stage approach of  the tool,
allows  changes  to  the  formatting  style  in  a  more  consistent  way.
Thankfully all these features are already implemented in a different Clang
based tool named clang-format [8]. This Stage is really a stripped down
version of this tool.

For  the  debugging  purposes  of  an  intermediate  Stage,  the  missing
formatting style in conjunction with very few newline characters, can be
an  issue  (hard  to  read  output).  This  can  be  easily  circumvented  by
bypassing  all  the  following  Stages  of  the  erroneous  Stage  but  the
formatting Stage (this one).

5.9 Runtime Support

The runtime system is a core component for most programming models
and programming languages. It works together with the compiler usually
to  simplify  the  implementation  and  maintenance  of  the  non-trivial
features. While it is more flexible to implement a specific functionality at
the runtime level, embedding it directly into the compiler can increase the
optimization opportunities and final code quality overall. This is a tradeoff
decision most of the times without a priori knowledge about the actual
advantages and disadvantages in each case.
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The  following  subsections  describe  some  decisions  taken  about  the
OpenACC and ACCLL Runtime systems.

5.9.1 OpenACC Runtime Support

The implementation of the OpenACC Runtime is a wrapper for OpenCL
API calls that offer the desired functionality. In most cases the necessary
functionality is pretty straightforward to implement.

The  tool  replaces  some  of  these  routines  in  early  Stages  with  the
semantically equivalent directive. 

For example the

acc_async_wait_all()

Runtime routine becomes

#pragma acc wait

In this version of the tool, the Runtime is not thread safe. It has been
tested only with single host thread test applications. Currently the binary
code of the runtime is embedded into the user’s executable which may
not be ideal. A shared library would surely be a better approach and a
transition to that is under development.

5.9.2 ACCLL Runtime Library

This  Runtime  library  contains  useful  helper  functions  for  common
actions  in  the  final  transformed  code,  like  error  checking,  loading  the
OpenCL kernels source code from a separate file, building that source,
initializing the OpenCL Runtime and shutting it down.

It  is  preferable to have these functionalities into a separate library for
easier modification, extensibility and debugging.

5.10 Asynchronous Execution Model Details

In the context of the asynchronous execution model,  each command
executes  without  depending  on  the  execution  status  of  any  previous
commands. Asynchronous execution models provide a way to exploit all
the  compute  power  of  a  device  by  running  many  independent
computations  at  the  same time,  without  waiting  one another.  Even in
these types of workloads there is need of coordination at some level. The
next subsections outline the Asynchronous and Blocking Execution Model
in OpenCL [4].
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5.10.1 Blocking Execution

To  express  the  blocking  behavior  over  an  Out-of-Order  Command
Queue,  the  implementation  implicitly  enqueues  a  Barrier  after  each
Compute Command. The data movement Commands are used with the
blocking_[read | write] parameter set to CL_TRUE.

5.10.2 Asynchronous Execution and Synchronization

The asynchronous execution in terms of OpenCL structures is expressed
by  an  Out-of-Order  Command  Queue.  Among  the  compute  and  data
movement commands, the implementation inserts Barriers and Markers in
proper places to control the control flow as demanded by the user.

More details and examples about the implementation's asynchronous
execution  support  can  be  found  on  sub  chapters  5.5  and  5.7  for
asynchronous  data  movements  and  asynchronous  kernel  execution
respectively.

As an extension of OpenACC 2.0, a single wait directive can wait for
both  asynchronous  data  movements  and  asynchronous  Compute
Constructs. The process of these asynchronous actions of different nature
is  splitted  in  different  Stages.  Doing  this  separation  in  each  Stage
independently is easier to implement, debug and optimize.
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Chapter 6

Evaluation & Testing
The validity of the result OpenCL code is tested only with Intel's OpenCL

runtime implementation version 3.0.67279 on a 64-bit GNU/Linux system
running Debian unstable [30] and kernel version 3.11. Therefore some of
the  issues  discussed  below  may  behave  differently  using  another
operating system or underlying OpenCL runtime.

There is  a number of different test files from various places like the
yacf  project  [24]  related to accULL project  [25],  the HydroBench Suite
[26], the EPCC OpenACC Benchmark Suite [27], the NPB2.3 OpenACC-C
[28] and the OpenACC Testcase [29]. The last three can be found on the
public online repository of Pathscale [23]. 

All  the above benchmark suites contain similar test cases for proper
evaluation of all code transformations like kernel generation/calling, error
handling data movements and updates this tool  applies. The OpenACC
Testcase  [29]  in  particular  consists  of  some  simple  yet  complete  test
cases  that  cover  all  the  aforementioned code transformations and the
majority of its test files pass.

This  first  version  of  the  ACCLL  tool  is  mostly  a  research  and
experimentation project which is quite far from productive usage, limited
and not feature complete. The next paragraphs point the most significant
known limitations among the test files they affect.

The test file “alias_pointer.c” fails as it requires proper alias analysis,
still  a  missing  feature  of  this  implementation  as  discussed  in  3.3.3.
Therefore aliasing of memory buffers is not supported in this version of
this tool.

Another  issue is  that  due to  some pending bugs,  Clang may return
incorrect  ending  source  locations  for  the  preprocessor's  macros  in  an
expression, resulting one more test file (“macro_func.c”) to fail because of
the  incorrect  information  Clang  passes  to  the  tool.  This  regression  is
triggered  only  when a  macro  is  used  at  the  end  of  an  expression  or
statement. There is no general workaround in this version of the tool. The
safest path to circumvent this issue is not to use macros inside OpenACC
Compute  Constructs.  A  rather  more  flexible  workaround  is  not  to  use
macros at the end of expressions or statements inside OpenACC Compute
Constructs.

Inter-procedural  data  flow  analysis  and  dynamic  memory  allocation
analysis  are  also  missing,  causing  one  more  test  file  to  fail
(“present_pointer.c”).

43

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 04:34:19 EET - 137.108.70.7



There  is  also  a  collection  of  internal  test  files  mostly  for  parser
validation,  semantics  correctness  and  proper  warning/error  messages
emission.

One common regression between all test cases is that because the tool
generates hard coded index-spaces for all kernel invocations, the size of it
may not be supported by an accelerator selected at runtime. This issue
almost always appears when there are data buffers with more elements
that the current accelerator's threads. Some of the test files contain such
data buffers that issue and fail to pass. Using a smaller buffer size in order
not  to  exceed  the  accelerator's  number  of  threads,  all  of  them pass
without any other issue.

The  only  workaround  at  the  moment  is  advising  the  programer  to
manually  edit  their  programs  by  explicitly  specifying  the  expected  or
desired geometry of the device code in the OpenACC directive using the
gangs and workers clauses and also properly edit the device code to take
care of this smaller index-space.

The  drawbacks  of  this  workaround  are  that  in  order  to  achieve
maximum performance, the programer should provide different versions
of  the OpenACC Compute Constructs (parallel, kernel, loop directives and
its combinations) for accelerators with different number of threads, with
loss of portability and code duplication among other side effects.

Finally multi  dimension arrays are not fully supported as there is no
support yet for multi dimensional index spaces as discussed on chapter 4.

Table 8 below gives a detailed description of  the OpenACC Testcase
benchmark [29] and the status of each test file.
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As  this  implementation  is  subsequent  to  existing  commercial
implementations, one of its goals is to be compatible with them. These
test files among the the correctness also check for compatibility between
existing solutions. In the current version of the accll tool there are some
small  deviations  in  the  data  clauses  manipulation  causing failure  to  a
significant number of relatively more complicated test files. As this project
grows and matures these defects will be eliminated and full compatibility
with other implementations is the main goal.
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Test file name Pass/Fail (Reason)

alias_pointer.c FAIL (alias analysis)

async_wait.c PASS

declare_update.c PASS

dyn_cont_array_2d2.c FAIL (multi dimensional array)

dyn_cont_array_2d.c FAIL (multi dimensional array)

func_decl.c PASS

macro_func.c FAIL (bad source locations, Clang bug)

present_pointer.c FAIL (inter-procedural data flow analysis)

reduction.c PASS

simple_initialize.c PASS

static_array_2d.c FAIL (multi dimensional array)

struct_mem.c PASS

var_duration.c PASS

Table 8: OpenACC Testcase evaluation
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Conclusion
Given the increasing need for performance year by year, programmers

will always be in the search for better tools, simpler programming models
and faster system infrastructures to run their code.

Moving towards the new era of parallel computing, there are tons of
‘legacy’ sequential applications not exploiting the advanced capabilities of
parallel architectures.

This project at the moment is mainly a Proof of Concept of the fact that
a  big  majority  of  all  these  ‘legacy’  sequential  applications  can  easily
experience  a  huge  performance  boost  using  a  user  friendly  way  of
minimum  changes  in  their  current  codebase  by  inserting  OpenACC
directives.  Also  it  shows that  this  new annotated code can be reliably
transformed to a broadly adopted, well defined and tested framework like
OpenCL.
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A complete example: VectorAdd
Below there is a complete example of a simple vector addition program in
the original OpenACC version and the same program in OpenCL this tool
generates, both host program and device code (kernels):

OpenACC version
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#include <stdio.h>

#define SIZE 100

int main(int argc, char **argv) {

    int i;

    int x[SIZE];

    int y[SIZE];

    int z[SIZE];

    int w[SIZE];

    //init

    for (i=0; i<SIZE; ++i) {

        x[i] = i;

        y[i] = SIZE - i;

        z[i] = 0;

    }

    //host computation

    for (i=0; i<SIZE; ++i) {

        w[i] = x[i] + y[i];

    }

    //device computation

#pragma acc kernels loop 
copyin(x,y) copyout(z) gang(SIZE)

    for (i=0; i<SIZE; ++i) {

        z[i] = x[i] + y[i];

    }

    //check results

    for (i=0; i<SIZE; ++i) {

        if (w[i] != z[i]) {

            printf("w[%d] = %d    !=    
z[%d] = %d\n",i,w[i],i,z[i]);

            return 1;

        }

    }

    printf("Success!\n");

    return 0;

}

Code Example 14: VectorAdd in OpenACC
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OpenCL version (host program)

48

/* Generated by accll */

#include <stdio.h>

#include <__accll.h>

#include <stdio.h>

#define SIZE 100

int main(int argc, char **argv) {

  __accll_init_accll_runtime();

  cl_program program =

      __accll_load_and_build("/opt/accll/mine/test-vector-add_accll.cl");

  int i;

  int x[SIZE];

  int y[SIZE];

  int z[SIZE];

  int w[SIZE];

  //init

  for (i = 0; i < SIZE; ++i) {

    x[i] = i;

    y[i] = SIZE - i;

    z[i] = 0;

  }

  //host computation

  for (i = 0; i < SIZE; ++i) {

    w[i] = x[i] + y[i];

  }

Code Example 15: VectorAdd in OpenCL (host program)
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//device computation

  {

    cl_mem __accll_z = clCreateBuffer(context, (1 << 0), sizeof(int[100]),

                                      ((void *)0), &error);

    clCheckError(error, "create buffer for 'z'");

    cl_mem __accll_y = clCreateBuffer(context, (1 << 0), sizeof(int[100]),

                                      ((void *)0), &error);

    clCheckError(error, "create buffer for 'y'");

    error = clEnqueueWriteBuffer(queue, __accll_y, CL_TRUE, 0, 
sizeof(int[100]),

                                 y, 0, NULL, NULL);

    clCheckError(error, "write buffer 'y'");

    cl_mem __accll_x = clCreateBuffer(context, (1 << 0), sizeof(int[100]),

                                      ((void *)0), &error);

    clCheckError(error, "create buffer for 'x'");

    error = clEnqueueWriteBuffer(queue, __accll_x, CL_TRUE, 0, 
sizeof(int[100]),

                                 x, 0, NULL, NULL);

    clCheckError(error, "write buffer 'x'");

    //#pragma acc kernels loop copyin(x, y), copyout(z), gang(100)

    cl_event __accll_device_code_event_implicit__0;

    size_t global_ws = 100;

    size_t local_ws = 1;

    cl_kernel accll_kernel_kernels_loop_0 =

        clCreateKernel(program, "accll_kernel_kernels_loop_0", &error);

    clCheckError(error, "create accll_kernel_kernels_loop_0");

    error = clSetKernelArg(accll_kernel_kernels_loop_0, 0, sizeof(cl_mem),

                           &__accll_x);

    clCheckError(error,

                 "clSetKernelArg number 0 for 'accll_kernel_kernels_loop_0'");

Code Example 16: VectorAdd in OpenCL (host program), part 2
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error = clSetKernelArg(accll_kernel_kernels_loop_0, 1, sizeof(cl_mem),
                           &__accll_y);

    clCheckError(error,

                 "clSetKernelArg number 1 for 'accll_kernel_kernels_loop_0'");

    error = clSetKernelArg(accll_kernel_kernels_loop_0, 2, sizeof(cl_mem),

                           &__accll_z);

    clCheckError(error,

                 "clSetKernelArg number 2 for 'accll_kernel_kernels_loop_0'");

    error = clEnqueueNDRangeKernel(queue, accll_kernel_kernels_loop_0, 
1, NULL,

                                   &global_ws, &local_ws, 0, NULL,

                                   &__accll_device_code_event_implicit__0);

    clCheckError(error, "enqueue accll_kernel_kernels_loop_0");

    error = clEnqueueBarrierWithWaitList(

        queue, 1, &__accll_device_code_event_implicit__0, NULL);

    clCheckError(error, "barrier with wait list");

    error = clReleaseKernel(accll_kernel_kernels_loop_0);

    clCheckError(error, "release accll_kernel_kernels_loop_0");

    error = clReleaseMemObject(__accll_y);

    clCheckError(error, "release 'y'");

    error = clReleaseMemObject(__accll_x);

    clCheckError(error, "release 'x'");

    error = clEnqueueReadBuffer(queue, __accll_z, CL_TRUE, 0, 
sizeof(int[100]),

                                z, 0, NULL, NULL);

    clCheckError(error, "read buffer 'z'");

    error = clReleaseMemObject(__accll_z);

    clCheckError(error, "release 'z'");

  }

Code Example 17: VectorAdd in OpenCL (host program), part 3
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//check results

  for (i = 0; i < SIZE; ++i) {

    if (w[i] != z[i]) {

      printf("w[%d] = %d    !=    z[%d] = %d\n", i, w[i], i, z[i]);

      return 1;

    }

  }

  printf("Success!\n");

  return 0;

}

Code Example 18: VectorAdd in OpenCL (host program), part 4
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/* Generated by accll */

__kernel void accll_kernel_kernels_loop_0(__global int *__accll_x,

                                          __global int *__accll_y,

                                          __global int *__accll_z) {

  /*Main Body*/

  {

    int i = get_global_id(0);

    if (i < 100) {

      __accll_z[i] = __accll_x[i] + __accll_y[i];

    }

  }

}

Code Example 19: VectorAdd in OpenCL (device code - kernel)
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