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ABSTRACT

Tu etepoyevy) Topdhinia cucThpota Yivovtor ohoéva o BNPOQLAT), ETEWDH TEOGPECOUY
uPNAGTERY OmOBOOT PE XEOTERD KOG TOG Xolt ALYOTERT XUTOVEAWG toylog. Autég ot dp-
YATEXTOVIXEC TUTIXG cupmegthopfdvouy éva abotrpa urodoyhc ( xevipwds enelepyaotrig
) xo évar mAfdog emtayuvtev ( hardware accelerators ) otn popof; twv GPUs, DSPs,
oeopa xor FPGAs. BéBoua n pvApn twv emtayuvtov eivor ex gioswe xoatoveunuévny To
YeYOVog ot amontel pnté Sroeptond ot HETAPORH TNG UVANG METUE) TWV BLPORETINWY
OTOYELWY TOU CUGTALATOS. XUVADWE Ot ETTAYUVTIEC EXOUY TEQLORICUEVT] VAT GE oUY-
xpton pe Ty RAM cuatiuatog. Emngoctétwg quyvd 1 wepopyio pvhung twv accelerators
EAEYYETAL A6 NOYIoUXO TIOU YRUYPEL 0 EXBOTOTE TpoypappatioThs. Ot onuepvég ovdyxeg
NG TEYVOAOYLNC UTOAOYIGTWY 00NYoly e quaThpata pe apyttextovixég tonou Non Uni-
form Cache Access ( NUCA )- apyrtextovinéc ot onoieg anontoly npoceypévn totodétnon
Oedopévewy »aTe vo uny Beioxovtor poud and To onuelo 6To onolo auTd Yenoyototolv-
T, ‘Oporr, otny nepintwon twv FPGAs, 1 pviun (BRAMs) Beloxeton opyavepévn og
TOMAGL ot GYETH [ixpd Yol dedopévey Bidonupta ot SwgopeTinég Teptoyés Tou chip.

To mopandve anoteholy evoetleg dtt ebvar anopaitnreg egehypévec uédodor dropor-
pacpol xon Seyelptong g pviung Yy v Bektiotoroinon g TomxdTnTag, Anédoong,
Yehong ebpoug Lhvng, xot eEotxovépnong evEpyelag xatd Ty extéieon evég oiyoptdpou
oe te€toteg mhatgopues. Ilapdho autd TOAAG TRPOYPUUUATIOTIXNG POVTEAY BeV extéTouy
MGG To oy fpa emxoveviog Petall TV SlugopeTix®y Toug atowyeiwy. Tumxd nopa-
detyporta amoterody ta OpenMP[Boal I], OpenCL[SGS10] xade o awtd eivon addvortov
va meptyeaplel 1 emovevio petald tov SpogeTiney Tuphvey  ( Kernels ). Mdiota
TOAAOL TEOYRUPHUTIOTES EQUPPOY GV Telvouv va ebvar ‘dtaohol’ aTov Tpdmo Tou yetollovTo
o SeBopévar meoTyoly vo yenoonotouy xodoiés  ( global ) e Bdgog twv tomxdy (
local ) buffers tngc OpenCL.

H Such| pog meocéyyion oto mpdBinua ebvoe n Avdhuon Ileotinou IedaBacne ot
Mviun yenowonowwvtug to Ioluebpwd Movtélo ot eupuoyée avertuyuéveg Bdor Tou
neoyeappatio ol povtéhou OpenCL. Mtatind, xotd v Siodueasion Tng YETAPpUoTG GUA-
YOUPE TANPOPORIES TOU apopolV TO GTOLYEIN TIVAXWY TY OTOLY TEOCTEAADYOVTOL XAUT TNV
extélearn evog tuprva ( Kernel ). Ytn ouvéyeia to amoteréopata ypnoyonoolvion OoTe
va utooTneiEouv TNy EEuttvy xan Eyxonpn) ToToUETNOT SEBoPEVY OE CUOTAUTA TOU YEN-
cwonotolyv otaldepés wwpupyles pviung, dnee ot xdpteg yoapoy ( GPUs ). o apyrte-
XTOVIXES TIOU XAVOUV Yehon pEUCTOV tEpupytay, 6w ot FPGAs, autéc ot minpogopieg
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yenowonooivta and to SOpenCL [OBDAL1]- éva epyaieio nou nopdyer Verilog £towun
npog chvikeon Exovtag g eloodo mupfiveg OpenCL, ywpic va amarteiton ahharyr) oTOV X001
%4 Toug. Edudtepa, To amoTEAEGPUTI TNE AVAAUGTC YENOYWOTOLOUVTOL XUTH TO GYEBLIOUS
TOU UTOGUG TARTOS UVAUNG %ot TG StoivBeoTg PETOC) TwY SLUQORETINGDY TUPTVGY TOU
tonodetolvTan mdve ot pro FPGA.

iv

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 04:36:08 EET - 137.108.70.7



Contents

1 Introduction

2 Background

2.1 The Polyhedral Model . . ... .. ..
A1l FPolybedoh «.oc0wem oo
2.1.2  Parameterized Polyhedron . . .
2.1.3 Polyhedral Analysis . . . . . ..

2.2 SOpenCL Framework . . . .. ... ..

2.3 Alternatives to Polyhedral Analysis . .

3 Algorithm
3.1 Usage scenaria of the Analysis Results

4 Future Work
5 Conclusion

Bibliography

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 04:36:08 EET - 137.108.70.7

14
19

20

21

22



Chapter 1

Introduction

Heterogeneous parallel systems are becoming increasingly popular, as they offer high
performance with relatively low cost and power dissipation. These architectures typi-
cally include a host system and a number of accelerators, in the form of GPUs, DSPs,
or even FPGAs. Memory on such platforms is inherently distributed. This necessi-
tates explicit data distribution and movement between system components. Typically
accelerators have limited memory capacity, in comparison to system RAM. Quite often
the memory hierarchy within the accelerator is also software controlled. Furthermore,
massive multicore chips in the future will essentially be NUCA, necessitating careful
data placement close to the compute units that will use them. Similarly, in the case of
FPGAs, the on-chip memory (BRAMs) is organized as many, relatively small memory
islands distributed on different areas of the chip.

The above are indicators that sophisticated data distribution and management is
necessary for optimizing locality, performance, bandwidth exploitation and power effi-
ciency. Many popular programming models, however, do not fully expose the communi-
cation pattern. Typical examples are OpenMP [Boall], or even OpenCL [SGS 10| which
makes it impossible to express communication between kernels. Moreover application
programmers tend to be “clumsy” in data management; for example they prefer using
global over local buffers in OpenCL.

Our approach to this problem is Polyhedral Analysis for memory access pattern es-
timation, on applications developed with the OpenCL programming model. At compile
time, we collect information about the elements of arrays that are accessed within a
given kernel. The results are then used to assist the educated and timely placement of
data on systems with fixed memory hierarchies, such as GPUs. On fluid architectures,
such as FPGAs, this information is also exploited by SopenCL [OIZDA 1], a tool that
produces synthesizable Verilog starting from OpenCL kernels, to assist in the design
of the memory subsystem and of the interconnection network between different kernels
instantiated on the FPGA.
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Chapter 2

Background

2.1 The Polyhedral Model

Nested loops structures along with their program statements can be represented using
the Polyhedral Model. Upon analysis of the source code Static Control Parts ( SCoP
) are identified; these are source code fragments which adhere to a certain set of rules
[ACE0S]:

e All variables present in the SCoP must be:

(a) Parameter: The variable’s value remains constant throughout the execution
of the SCoP. or

(b) Iterator: The variable is used as an iterator in one of the enclosing nested
loops.

e Each loop’s bounds must either be a) constant , or b) affine ( a linear combination
of loop iterators, parameters, and or constants ).

— This also applies to the conditions of if-statements.

e References to array elements should have affine combinations of parameters, iter-
ators, and or constants.

e Data flow between statements in the loop must be explicit. Statements may not
communicate with each other using shared variables invisible to the compiler.

Note: There are methods to support certain expressions like floor(), max(), min() in
addition to affine combinations of variables/parameters.

For every SCoP identitied a geometric object can be constructed, we call such ob-
jects Polyhedra. Every integer point of a Polyhedron is mapped to the execution of a
statement. This allows for manipulation of the programs structures through geometric
transformations, while maintaining the original functionality as well as the correctness
of the SCoP.
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2.1.1 Polyhedron
There are two popular definitions of the Polyhedron [L\VO7].

(a) A Polyhedron is defined as the intersection of a finite set of closed linear half-spaces.
This representation is specified by a system of equalities ( matrix A, vector b ) and
inequalities ( matrix C, vector d ):

D:{zeQt|Ax=b Cx=d}

(b) A Polyhedron can be represented, using the Minkowski representation, by a combi-
nation of lines ( L ), rays ( R ), and vertices ( V ):

D:{zeQ"|z=LA+Ru+Vv, pv=20, >d,u=1}

D is defined as a linear combination of lines, a positive linear combination of unidi-
rectional rays and a convex combination of vertices.

Both definitions are equivalent and can be constructed using their dual counterpart.
However, each allows for different kinds of transformations so it is common practise to
keep descriptions of a Polyhedron in both formats because it is considered expensive to
go from one representation to the other.

In polyhedral analysis we claim that D is a geometric object with n dimensions,
where n is the number of iterators that enclose the respective SCoP.

2.1.2 Parameterized Polyhedron

We can extend the above definitions by also supporting parameters as well as iterators
and constants. A parameterized polyhedron can be described as a linear function of p,
an m-vector of parameters:

D(p) : {xeQ"|Azx=Bp+b, Cx>Dp+d}, peQ™

or equivalently

D! . { (E) = @n-l.-m, | Ar (;) - b!, (/1.' (;) 2 d.' }

Which means that the dimension of the Polyhedron D is increased by m, in order to
accompany the addition of parameters.

2.1.3 Polyhedral Analysis

Polyhedral Analysis is the basis for powerful methods that are present in many popular
compilers [SPJ709], [GZAT11]. By constructing Polyhedra the compiler can identify
dependencies between statements as well as reveal hidden parallelism in the source
code. These can be exploited in order to produce better scheduling policies [Has(0]
through compiler transformations that are based on the Polyhedral Model.
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Example: Producing polyhedra starting from SCoPs

for( i=2; i<=n; i++ ) {
for ( j=2; Jj<=min(m,-1+n+2) 2<=i<=n;
;g ) 2<=j<=min (m, -1+n+2)
S1(i,73); J
(a) SCoP (b) Initial set of constraints
{
2<=i<=n;
2<=j<=m;
2<=j<=-14+n+2
}

(c) Final set of constraints

Optimization Passes using the Polyhedral Model

The optimization passes generally execute the following steps:

a) Identify SCoPS

This can be done by letting the developer specify which parts of the source code
follow the restrictions implied by the Polyhedral Model ( See Section 2.1 ). More
advanced compilers automatically discover the SCoPS in a program by analyzing the
statements present in the source code.

b) For every SCoP

Construct a Polyhedron for each statement present in the SCoP.
¢) Perform transformations on the resulting Polyhedra.

d) Produce the optimized source code by extracting statements from the optimized
Polyhedra.

By applying such a method automatic parallelization of an application becomes
possible. When blocks of statements are identified as being able to execute in parallel the
compiler modifies the scheduling of the program in order to exploit the newly discovered
hidden parallelism. This leads to an increase of performance in the application without
the overhead that comes with developing a multithreaded application. The resulting
schedule is guaranteed to be correct because it is based on geometric transformations
that are performed on the Polyhedra, whose integer points map directly to the execution
of statements.

Even if parallel statements are not detected in a SCoP, it is still possible to perform
optimization transformations to the source code. Overhead due to conditions present

4
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in if /for /while statements can be eliminated at the expense of program size. Multiple
copies of the statements present in the if/for/while bodies are constructed and placed
in a way that respects the original schedule of the program.

Optimization Example

For example, consider the following SCoP ( code snippet 2.1 ).

for (1 =1 ; i<=max(n,m); i ++ ) {
for ( j = 1; j<=n; j++ ) |
if ( g =4 )
S1(i,J);
else if ( i<=3 )
52 (1sy )2

if ( j==n )
53 (47 3)s

Figure 2.1: Code Snippet

After the transformations of the Improved Quillere algorithm have been executed,
the source code at code snippet 2.2 is produced. During the optimization pass the
polyhedra presented at figure 2.5 are constructed.

...............
---------
........

-------

------

oooooo

ooooo

(¢) Result of the third recursion

Aj

---------

-------

(d) Final Polyhedra

ot
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for ( i=1; i<=n; i++ ) {
81(i,1);
S2(i,1) 3

for ( j=i+1; Jj<n; j++ ) {
52 (1,30 2
}

S2(i,n);
83(i,n);

Si{n=%1, n=1);
S2(n-1, n-1);
SZ2(n=1, n);
S3(n—-17 n):
SLir, 1)
S2(n, n);
S3(n, n;

for ( i=n+l; i<=m; i++ ) {
83(i, n);

Figure 2.2: Optimized Code Snippet

In the above code snippet, condition checking overhead in if-statements has been
removed. In its place we find blocks of statements, this means that the resulting code
size has increased but the execution time of the source code has been downsized. During
Polyhedral Analysis the compiler may trade code size for code performance, most of the
time this is desired.

However in cases where code size is an important factor the very same techniques
can still be used, they just need to be tuned in order to avoid working to such great
extents, which is a trivial task for the compiler developer.

2.2 SOpenCL Framework

The use of heterogeneous hybrid paraller platforms to accelerate the execution of algo-
rithms is steadily increasing during the past few years. Because hardware accelerators
can drastically improve the performance of the application while keeping the cost and
power consumption rate low.

There are some facts which indicate that designing hardware is harder than devel-
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oping a software implementation of the same algorithm. This claim is supported by the
vast number of tools available to software engineers that assist the developing as well
as the debugging process. Additionally the number of hardware designers is less than
the number of software engineers.

The ideal scenario would be a programming model that provides the advantages of
an algorithm implemented on hardware over software without the overhead that comes
with designing hardware accelerators. A Programming Model that allows the developer
to make use of multiple execution devices present on a platform is OpenCL; below we
present a brief introduction to the OpenCL language.

OpenCL

OpenCL [SGS10] is a programming model designed in order to ease the development
of task-parallel /data-parallel computations in a heterogeneous computing environment
consisting of the host CPU and any attached OpenCL execution devices.

The devices may not share memory with the host CPU and typically have a different
instruction set; due to these facts the OpenCL API assumes heterogeneity between the
host and all devices present on the system. It provices functions to:

e enumerate the avalaible devices
CPUs, GPUs, Hardware Accelerators

e manage contexts containint the devices to be used

perform host-device memory transfers

compile OpenCL programs and kernel functions to be executed on target devices

launch kernels on target devices
e query execution process

check for errors

The programming model abstracts CPUs, GPUs, and other accelerators as devices
that contain one or more compute units composed of one or more SIMD processing
elements that execute instructions in lock-step. For example, in the context of a device
being a CPU a compute unit is a CPU core.

Four types of memory are available for the OpenCL devices:

a) Global
large memory with high latency.

b) Constant
low-latency but small and read-only memory.
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¢) Local

accessible from multiple processing elements withing the same compute unit.

d) Private

memory or device registers accessible within each processing element only.

When using the OpenCL programming model in order to achieve optimum results

regarding the performance of the application the nature of each kernel should be taken
into account before it is assigned for execution on a specific OpenCL device. For exam-

ple, massively data-parallel kernels should be executed on GPUs.

An example C code for the Multiple Debye-Huckel method is presented in figure 2.3,
the equivalent source using the OpenCL Programming Model is shown in figure 2.4.

for ( int igrid=0; igrid<ngrid; igrid++ ) {
float v=0.0f;

for ( int jatom=0; jatom<natoms; jatom++ )
dx = gx[igrid] - ax[jatom];
dv = gyligrid] - ay[jatom];
dz = gz[igrid] - az[jatom];

dist = sqgrt (dx+*dx + dy*dy + dz=xdz);

v += prel % (charge[jatom] / dist)
* exp(—-xkappa * (dist-size[jatom]))
/ (1.0f+xkappaxsize[jatom]);
}
val [igrid]=v;

}

{

Figure 2.3: MDH source code written in C
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__kernel wvoid mdh(__global float =ax,
__global float =*az,
__global float =xcharge, _ global float =xsize,
__glcobal float =*gx, __global float =xgy,
__global float =xgz,
__global fleoat =*val, fleoat prel, float xkappa, int

atoms ) {
int igrind = get_global id(0);

glcobal float =ay,

Elwge w = (.05
float dx, dy, dz, dist;

for ( int jatom = 0; Jjatom < natoms; Jjatom++ ) {
dx = gx[igrid] - ax[jatom];
dy gyligrid] - ay[jatom];
dz gz[igrid] - az[jatom];

1l

Il

dist = sqgrt (dxxdx + dyxdy + dzxdz);

v += prel * (charge[jatom] / dist)
x exp (—xkappa * (dist-size[jatom]))
/ (1.0f+xkappa*size[jatom]) ;
}
val[igrid] = wv;
}

Figure 2.4: MDH source code written in OpenCL

Silicon OpenCL [OBDA 1] attempts to address the problem of harnessing the power
of hardware accelerators without having to directly deal with hardware design. Its
approach is to produce synthesizable Verilog starting from unmodified OpenCL kernels.

Figure 2.5: Visual representation of the SOpenCL transformation process.

In order to achieve this the framework is split into two tools, the Front-End and the
Back-End.
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Front-End

The Front-End produces a C-Function by performing code transformations on OpenCL
kernels. The resulting code encloses the computations that will be exeuted by a single
work-group. In order to execute the total workload of the original OpenCL kernel the
C-Function has to be executed multiple times, in order to cover all the work-groups.

The transformations that directly change the form of the source code that is received
as the front-end’s output are the following:

a) Constructing Triple Nested Loops:
The front-end coarsens the parallelism of the kernel’s body by enclosing it in a triple
nested loop. This tripple nested loop represents the execution of a 3D partitioned
set of threads, in other words a work-group.

In the event of synchronization barriers, multiple triple nested loops may be present
in the C-Function.

b) Variable Privatization:
Since the execution of work-items is “serialized” in the context of the output source
code, when a barrier is present in the source code special action needs to be taken
in order to ensure the correct execution of the algorithm.
After analysis of the statements new arrays are introduced to the code. They func-
tion as temporary storage in order to maintain the values for every work-item accross
the barrier.

Back-End

The Back-End parses the Front-End’s output and produces synthesizable Verilog. For
a given Kernel multiple hardware accelerator instances will be instantiated on a single
FPGA.

Before the actual process which generates Verilog, the back-end’s input undergoes a
series of LLVM Optimization passes:
a) Predication
b) Code Slicing
¢) Swing Modulo Scheduling

Afterwards the template based back-end proceeds to generate the Hardware Accel-
erator, along with testbenches. The full extent of the process can be seen at figure
2.6,

10
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Figure 2.6: Hardware generation tool flow.

Why Polyhedral Analysis is a good choice

Below the typical output of the front-end is presented 2.7. The general format of the
C source code is a series of triple nested loops. This greatly resembles a SCoP, as long
as the statements enclosed in the loops are proven to be legal in the context of a SCoP,
the resulting code is fit for polyhedral analysis.

11
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void function (int _ _global_id_x, int _ global_id_y,
int _ global_id_z,
int _ _global_size_x, int _ _global_size_y,
int __global_size_z,
int _ work_group_id _x, int _ work group_id y,
int _ _work_ group_id_z,
int _ local size x, int _ local_size_y,

int _ local_size_ z)
{

unsigned int _ _kernel_i, _ kernel_j, _ _kernel_k;
unsigned int *__privatized_arrayl, ... ;
for (__kernel k = 0; _ _kernel k < _ local_size z;

__kernel k++) {

for (__kernel_j = 0; __kernel_7j < _ _local_size_y;
__kernel j++) {
for (__kernel i = 0; _ _kernel i1 < _ local_size_ Xx;

__kernel i++) {
< statement >
< statement >

// barrier that has been removed

for (__kernel_k = 0; _ _kernel k < _ local_size_z;
__kernel_k++) {
for (__kernel j = 0; _ _kernel 3 < _ local_size vy;
__kernel_j++) {
for (__kernel i = 0; _ _kernel i1 < _ local_size_ x;

__kernel i++) {
< statement >
< statement >

Figure 2.7: Typical Front-End output
12
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2.3 Alternatives to Polyhedral Analysis

The Polyhedral Model imposes strict rules regarding which blocks of code can be catego-
rized as fit for analysis. However, once we get around this obstacle Polyhedral Analysis
is the prefered choice over the alternative.

a) Profiling
Instead of using this mathematical set of rules one can use profiling tools to estimate
the memory access pattern of an application. This requires a large ammount of
test-runs and as a result takes a lot of time in order to get accurate results.

b) Simulate the memory accesses
Another method of memory access pattern analysis is to parse the code and extract
all possible combinations of variable values that are legal in the context of the appli-
cation. Then the execution of the application is simulated and the resulting memory
accesses are recorded. This is an accurate method but it is a really slow process
because of its overly pedantic nature.

When dealing with large source code files the compiler performance becomes an
important issue. Thus, choosing the Memory Access Pattern analysis method should
take into account the time it takes to complete.

After considering the above cases, as well as the fact that there are ways to create

polyhedra out of ( very specific ) non affine combinations of variables, using the Poly-
hedral Model to create a Memory Access Analysis pass becomes an attractive choice.

13
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Chapter 3

Algorithm

We are using the Polyhedral Extraction Tool [V(i12] to create polyhedra starting from
the output of the back-end, which is a pure C-Function. Below we present our method,
followed by an example:

a) The front-end is executed, using an unmodified OpenCL kernel as input.

b) Its output, a pure C-Function, is parsed by the PET tool.

¢) Throughout the Polyhedral Analysis step, we keep a record of which polyhedra rep-
resent memory accesses. We categorize them to read/writes.

If a polyhedron cannot be constructed (due to non-affine constraints) for a specific
read (write) of an array, all polyhedra regarding reads (writes) to that specific are
dropped; this also includes any future polyhedra representing reads (writes) to that
array’s elements. We do not wish to have a partial view regarding the accesses to
any array.

d) When all the polyhedra are generated, they are exported to a file.

e) The output file is read by the Memory Access Pattern analysis tool. Which performs
the following steps:

1) Generate as many copies of the polyhedra, as the number of the kernel instances
that will be generated on the FPGA.

2) For each different kernel instance inject additional constraints to the set of poly-
hedra related to that specific slice of the computation workload.

3) Use the Loechner & Wilde [L.\W07] method to discover the parametric vertices of
the polyhedra which were generated in the previous step.

4) Finally, output the ranges of the elements which are being accessed to a file;
include additional information regarding the type of the acces, read or write.

14
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Memory Access Pattern Analysis Example

Consider the following source code ( figure 3.1 ), written in OpenCL.

__kernel void matrixMultiply(_ global float =c,
__global const float* a, _ global const float b,
unsigned int size)

int x= get_global_id(0) ;
int y = get_global_id(1);
float element = 0;

int i;

for (i=0; i<size; i++)
element += a[i + y*size] *» b[x +ixsize];

c[x + yxsize] = element;

Figure 3.1: OpenCL Kernel on which to perform Memory Access Pattern Analysis

The output of SOpenCL’s front-end tool is the C-Function presented at figure 3.2.
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__kernel void matrixMultiply( /#parameters are omitted
purposex/ )
{

unsigned int __kernel_i, __ _kernel_ 3j, __ kernel k;

unsigned int x, y,i;
float element;

for (__kernel_k = 0; _ _kernel k < _ local_size_ z;
__kernel k++) {
for (__kernel_j = 0; __kernel_7j < _ _local_size_y;

__kernel_ ij++) {

for (__kernel i = 0; _ _kernel 1 < _ local_size_Xx;

__kernel_ i++) {

x = (__global_id_x + _ _kernel_i);
y = (__global id y + _ kernel_ 7j);

element = 0;

for (1 = 0; i < 1000; i++)
element += al[i + v » 1000] * b[x + 1 % 1000];

c[x + y » 1000] = element;

Figure 3.2: Output of the front-end for the Kernel at figure 3.1

The polyhedra generated for this algorihm are presented in table 3.1.
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Read/Write | Array Constraints
R a {x = _global_id_x + _kernel_i,
y = —global_id_y + _kernel_j,
0 < _kernel_i < _local_size_x,
0 < _kernel_j < _local_size_y,
0 < _kernel_k < _local_size_z,
0 < _global_id_y < _global_size_y,
0 <7< 1000,
i +y* 1000 >0 }
R b {x = _global_id_x + _kernel_i,
y = —global_id_y + _kernel_j,
0 < _kernel_i < _local_size_x,
0 < _kernel_j < _local_size_y,
0 < _kernel_k < _local_size_z,
0 < _global_id_x < _global_size_x,

0 << 1000,
x+1%1000 >0 }
W ¢ {x = _global_id_x + _kernel_i,

y = —global_id_y + —_kernel_j,

0 < _kernel_i < _local_size_x,

0 < _kernel_j < _local_size_y,

0 < _kernel_k < _local_size_z,

0 < _global_id_r < _global_size_x,
0 < _global_id_y < _global_size_y,
x+y*1000>0}

Table 3.1: Polyhedra representing the memory accesses

The next step of the algorithm is to split the working data set to n smaller ones; one
for each instance of the Kernel. The resulting polyhedra are presented in table 3.2.

17

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 04:36:08 EET - 137.108.70.7



Read/Write | Array Constraints
R a; {x = _global_id_x 4 _kernel_i,
y = —global_id_y + _kernel_j,
0 < _kernel_i < _local_size_x,
0 < _kernel_j < _local_size_y,
0 < _kernel_k < _local_size_z,
j* (—global_size_y/n) < _global_id_y ,
_global_id_y < (j + 1) * (—global_size_y/n) ,
0 <12 < 1000,
i +y* 1000 > 0 }
R b,  {x = _global_id_x + _kernel_i,
y = —global_id_y + _kernel_j,
0 < _kernel_i < _local_size_x,
0 < _kernel_j < _local_size_y,
0 < _kernel_k < _local_size_z,
0 < _global_id_x < _global_size_x,

0 <1 < 1000,
x+i%1000> 0}
W ¢; {x = _global_id_x + _kernel_i,

y = —global_id_y + _kernel_j,

0 < _kernel_i < _local_size_x,

0 < _kernel_j < _local_size_y,

0 < _kernel_k < _local_size_z,

0 < _global_id_x < _global_size_x,

j * (—global_size_y/n) < _global_id_y,
_global_id_y < (j + 1) * (—global_size_y/n),
2+ y %1000 > 0}

Table 3.2: Polyhedra split over n different kernel instances

The final results of the algorithm are presented in table 3.3. The format X; indicates
accesses to array X in the context of the jy, instance of the kernel on the FPGA.

Read/Write | Array Range

R a; (1) * (_global_size_y = 1000), (L) * (_global_size_y + 1000) )
R b; 0, —global_size_x + 999 * 1000 )
W ¢; [ (L) * (—global_size_y * 1000),

(2 x _global_size_y — 1) * 1000) + _global_size_x |

Table 3.3: Ranges of the elements that are read/written by each kernel instance

If we merge all ranges X; ( where 0 <= j < n ) we end up with information regarding
the accesses on array X throughout the kernel.
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3.1 Usage scenaria of the Analysis Results

The output of the Memory Analysis is the array access pattern in the form of element
ranges. For every range there it is also indicated whether the elements being accessed
are read or written. Having such information about which parts of the arrays can be
used during the hardware generation as well as during the execution of the application.

Synthesizing Memory Hierarchies based on Memory Access Pattern Analysis

Memory in FPGAs is distributed in the form of memory islands ( Block RAMS ), its size
is much smaller than System RAM. These facts make FPGA memory a resource that
has to dealt with very carefully. Since the cost of accessing memory that lies far from
the source of the request is high it is desired to place the data close to the logic area that
they are used/generated. Fortunately, the back-end can design the Memory Hierarchy of
the FPGA by using insight which is derived from the Memory Access Pattern Analysis
results.

Minimizing the overhead of transferring data between Execution Devices

The OpenCL Language enables the developer to access a number of execution devices
on a platform. In order for this programming model to function the runtime system
manages the data transfer between the different components of the platform. In the
case of SOpenCL execution devices may not be always present on the same physical
platform, in such circumstances transfering data over the network increases the cost of
the operation. Using the analysis results the runtime may chose to only send fractions
of the original dataset to each execution device thereby decreasing the memory transfer
overhead.

Estimate the memory usage of Applications

Even though computer technology has evolved to the point where the average developer
is not really limitted by the memory present on the system, it is still desired to know the
memory footprint of an application. Using our Memory Analysis method the developer
can receive a pretty accurate estimation of the amount of memory his/her algorithm
works with.
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Chapter 4

Future Work

Improve Accuracy of the Results

Currently our method functions under the assumption that all polyhedra generated are
convex; that is between any two integer points of a polyhedron all integer points between
are also included in the same polyhedron, in other words the polyhedron cannot contain
any “holes”. This may result in elements being reported as accessed just because they
happen to exist in said “holes”; even though the method is not 100% accurate it will
always report an element if an access to it exists.

We are currently investigating ways to either handle non-convex polyhedra or split
the polyhedra to sets of convex polyhedra and then gather the results.

Timely Placement of Data

The Memory Access Pattern Analysis provides us a fairly accurate map of the areas in
the memory that are being accessed by a given kernel instance. If we take into account
the underlying hardware we could devise a method to automatically move memory to
the device just before the data is actually required. This way an automatic profiling
mechanism can be implemented to further improve the performance of the hardware.

Automatic Tiling Optimization Pass

Finaly since the access pattern can now be discovered we could implement an additional
Clang pass to automatically modify the syntax tree of an algorithm in order to transform
it to a tiling algorithm. This will improve the locality of memory and provide furthet
improvement to the application performance.
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Chapter 5

Conclusion

Using hardware generators to speed up the performance of applications is an ever in-
creasing trend in modern high performance computing. SOpenCL attempts to automate
the process of generating said hardware accelerators; our memory access pattern analy-
sis algorithm facilitates the use of complex memory hierarchies in heterogeneous parallel
systems with multiple accelerators, by

a) placing data on the chip close to where they are being used, and

b) reducing memory traffic overhead by being selective about the memory segments
that are transferred between the different components of the system
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