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ABSTRACT

This thesis describes new results on computing bounds on the values of the positive
roots of polynomials. Bounding the roots of polynomials is an important sub-problem
in many disciplines of scientific computing.

Many numerical methods for finding roots of polynomials begin with an estimate
of an upper bound on the values of the positive roots. If one can obtain a more
accurate estimate of the bound, one can reduce the amount of work used in searching
within the range of possible values to find the root (e.g. using a bisection method).

Also, the computation of the real roots of higher degree univariate polynomials
with real coefficients is based on their isolation. Isolation of the real roots of a
polynomial is the process of finding real disjoint intervals such that each contains one
real root and every real root is contained in some interval. To isolate the real positive
roots, it is necessary to compute, in the best possible way, an upper bound on the
value of the largest positive root. Although, several bounds are known, the first of
which were obtained by Lagrange and Cauchy, this thesis revealed that there was
much room for improvement on this topic. Today, two of the algorithms presented
in this thesis, are regarded as the best (one of linear computational complexity and
the other of quadratic complexity) and have already been incorporated in the source
code of major computer algebra systems such as Mathematica and Sage.

A certain part of this thesis is also devoted to the analytical presentation of the
continued fraction real root isolation method. Its algorithm and its underlying com-
ponents are presented thoroughly along with a new implementation of the method

using the above mentioned bounds. Intensive computational tests verify that this
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implementation makes the continued fraction real root isolation method the fastest
among its rivals.

After almost thirty years of usage and development, the continued fractions real
root isolation algorithm, introduced back in 1976 by A. Akritas, continues today to
efficiently tackle a basic but still important mathematical problem, the solution of a
polynomial equation. The revived interest in this algorithm is motivated by the need
to solve, in real time, polynomial equations of higher degrees in such diverse scien-
tific fields as control theory, financial theory, signal processing, robotics, computer
vision, computer-aided-design, geometric modeling, industrial problems, to name a
few. The usage of the continued fraction real root isolation algorithm from major
commercial and open source mathematical solvers proves its robustness. This thesis

has contributed towards this direction.
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ABSTRACT (in greek)

Avty n dwtpPn mapovcialel véa amoteAéopato 6E OTL apOpd TOV
VTOAOYIGUO TV Gve opimv TOV TGOV TOV OeTikdv pidv TOV TOAV®VUUKOV
eElonoemv. O VIOLOYICHOG OVTOV TOV Gve oplwv omoteAel £vol OMUOVTIKO
TPOPANUE 0 TOALA O0POPETIKA TESIO TOV EMGTNUOVIKOV VTOAOYIGUAOV Kot
EQUPLOYDV.

Yrdpyovv onuepa moAAES aplOunTikég pnéBodot yio v dpeon Tov prlaov
TOV TOAVOVUUIKOV €EI0DGEMY TOL EEKIVOVV LE L0l EKTIUNOCT TOL Gv® 0piov TV
TIHOV TV Oetikdv prldv. Av KAmolog Umopovse Vo VITOAOYIGEL LE HEYOADTEPN
axpifeto avtd 10 dve 6pro, Ba peiwve dPacTIKA TV AplOUd TOV VTOAOYIGUMV TOV
Bo ypewalotav ywo v avalnmon g pilag tov molvwvopov péoa e €va
OULYKEKPIUEVO EVPOG TIUDV, (T.). KavovTog ¥prion pog pebddov dryotounonc).

Eniong, o vmoAoyiopdg tov mpayuatik®v pridv TOAVOVOUIKOV eEICOCEDV
og petafAntig peydiov PBabpov pe mpoypatikovg cuvteleotéc Paciletor ot
néBodo amopdvmong toug. H amopdveon tov Tpaylatikdv piidv TOA®VOUIKOV
eElomoemV 0Qopl otV €0PECT] TPOYUOTIKOV 1] GLVEYOUEVAOV OlOCTNUATOV
TéTo10V dote Kabéva amd avtd va mepiEyel o pia ko kabe mpaypatikn pia va
TePEXETAL 6€ KOmOowo omd avtd. o va amopoOVAGOLUE TIG TPAYUATIKES OETIKES
pileg, eivar amapoitmto Kotapyds, Vo VITOAOYIGOLUE, HE TOV KOAVTEPO OLVOTO
TpOTO, éval Ave Oplo otn TN g peyorvtepng Betikng pifog. Av kot vapyouvv
apKkeTéC tétoteg pébodor voloyiopov, (uepikés amd Tig omoiec eiyav mpotabdei
apywd omd to Lagrange ko tov Cauchy), avt n Swrppr omodeikvist OtL
VILAPYOVV OPKETA TEPBDPL PerTidoNG ATV TV PEBOSWV. Xfuepa, dLO amd TIC

alyopBkég peBodovg mov mapovsialovror oe vt ™ dwtpPn, Bewpodvral ot

X
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KOADTEPEG TTOL VIAPYOLY (N MO HE YPOUUIKT KOt 1) GAAN HE TETPUYDVIKN
VIIOAOYIOTIKY] TOAVTAOKOTNTO) KOt £X0VV 10N evomuat®bel 6Tov Tnyaio KO
TOAD YVOGTMOV GUOTNUATOV AOYICUIKOD ETIGTNLOVIK®V VITOAOYICU®V OTMG T.). TO
Mathematica, Sage, Mathemagix, «.o.

‘Eva pépog g mapovoog Owtping meptlopfdver emiong kot Ttnv
aVOAVTIKY Topovsiosn TG HEBOOOL ATOUOVOONG TPAYHATIKOV POV LE GLVEXN
KAMaopata. O adyopBuog g pebddov meprypdpeton 61e€ooikd pali pe o véa
VAOTTOINGY| TOL OV EVOMUATMOVEL TIG TOPOTAV® VEES HeBOOOVE VITOAOYIGUOD TV
opiowv. E&avtAntkés vmoAoyiotikés doxkyésg emPefordvovov O6tL 1 véa avn
vAomoinor tov aAyopiBuov kdvel T HEBOSO ATOUOVOONG TPAYUOTIK®OV POV e
cuveyT KAAGUATO TV TOYVTEPT AVAUEGO GE GALES.

Metd and tpiévia oyeddv ypdvia epaproyns kot avimroéng, n uébodog
amopdVmOONG TPAYHOTIK®OV pLdV Le cuveyn KAdopata, mov tpotabnke to 1976
amd Tov A. Akpita, cvveyilel Kot ofuepa vo avTILETOTILEL OTOTEAEGUATIKA £val
Bacikd aAld ®6TOG0 TOAD oNUOVTIKO panpatikd TpoPANUa, avtd g eniAvong
™G moAvwvuuikng e€lomong. To €viovo evdlapépov mov €0€1Ee 1 EPELVNTIKN
Koot teErevtaia yoo T pEBodo avtn, mydlel and v avaykr VmapEng oG
alOmoTNG Kot amodoTIKG HEBOdOL Yy TN AVGM, OE TPAYHATIKO YpOVO,
TOAVOVUUIKOV £E16MGEMV LEYEAOL Babov oe moKilo EMOTNUOVIKA eSO OTMG
n Bewpla eréyyov, owovoulkn Oewpio, emelepyacic ONUATOC, POUTOTIKY|,
VTOAOYIOTIKT)  OpacY], YPAPIKE  VTOAOYIGTAOV, VLTOAOYIOTIKY]  YEWUETPiQ,
Bounyovikd mpoPAnupata, kAm. H viobémon g pebddov amopdvmong
TPAYUATIKOV pldv pHe ocuveyr] KAAopato omd HEYOAN EUTOPIKE KOL OVOIKTOV
KOOKO UoONUOTIKA TOKETO, AOYIGHIKOD OOOEIKVOEL TN OOVOUN TNG KOl TIG
duvatdTTEC ™G, Advaun Kot dvvatdtnteg mov ogeilovior v UEPEL KOl OTA

OTOTEAEGUATO QLTS TNG SLTPIPTG.
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CHAPTER I

Introduction

1.1 Historical Note

One of the oldest and maybe for centuries the only area of study in Algebra had
been polynomial equations. The problem was to find formulas that could give the
roots of polynomials in terms of their coefficients.

It has been found, from historical searches, that the ancient Babylonians, who
created their civilization in 2000 B.C. in Mesopotamia, knew how to find the roots
of 1st and 2nd degree polynomials. Also they could approximate the square roots of
numbers. They formulated the problems and their solutions mostly verbally.

The next big step was done by the ancient Greeks. A group of mathematicians
called Pythagoreans (5th century B.C.), proved that the square roots that appeared
in the study of 2nd degree equations resulted in irrational numbers.

The ancient Greeks were using geometrical designs for solving polynomial equa-
tions of the 1st, 2nd and 3rd degree. That is geometrical designs made with a ruler
and a pair of compasses. Traces of algebraic representation for solving 2nd degree
equations did not exist until 100 B.C. The mathematician Diofante in 250 B.C. in-
troduced a form of algebraic symbolism. The arithmetic of Diofante is for algebra of
the same importance as the elements of Euclid for geometry. The Arabians improved

algebraic calculus but did not manage to solve 3rd degree equations.

1

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 05:25:06 EET - 137.108.70.7



In the Middle Age, European mathematicians improved the things they learned
from the Arabs, the most famous of them being Al-Khwarismi and introduced new
symbols. During the Renaissance, the development of algebra was remarkable, like
all other branches of mathematics.

Approximately at the end of the 15th century the University of Bologna in Italy,
was one of the most famous in Europe. This fame was related with the attempt of
the Bolognese mathematicians to solve 3rd and 4th degree equations.

It seems that Professor Scipio del Ferro, who died in 1526 managed to solve the
equation of the 3rd degree, without ever publishing his work. Niccolo Fontana known
as Tartaglia found again the solution of the 3rd degree equation. This particular
project of Fontana was published in 1545 from a polymath doctor in Milan, Hieronimo
Cardano in his work Ars Magna (The Great Art). Ars Magna also includes a method
for solving polynomial equations of degree four, by reducing them to equations of
degree three.

Of course, after that discovery, the effort was concentrated in finding formulas
which would give the roots of equations of degree 5 or greater than 5.

In the 18th century Josheph Louis Lagrange, influenced drastically the theory
of equations and approximately three years later C.F. Gauss (1777-1855) based on
Lagrange’s conclusions proved The Fundamental Theorem of Algebra.

The proof of the fact that there is not a formula to compute the roots of equations
of degree 5 was given by Paolo Ruffini (1804), who preceded Horner by about 15 years.
The Norwegian mathematician, N.H. Abel (1802-1829), in 1824, generalized Ruffini‘s
work by showing the impossibility of solving the general quintic equation by means of
radicals, thus finally put to rest a difficult problem that had puzzled mathematicians
for many years. Of course there was still the problem of finding the conditions that
such an equation must satisfy in order to be solved. Abel was working on this problem

until his death in 1829.

2
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Eventually this problem was solved by the young French mathematician Evariste
Galois (1811-1832). His theory virtually contains the solution of this problem. Galois
wrote his conclusions in an illegible manuscript 31 pages long, the night before he
died at the age of 20. This manuscript became well known when Joseph Liouville
presented it in the French Academy in 1843.

Since then (and for some time before in fact), researchers have concentrated on
numerical (iterative) methods such as the famous Newton’s method of the 17th cen-
tury, Bernoulli’s method of the 18th, and Graeffe’s method of the early 19th. During
the same period, Fourier conceived the idea to split the problem, of the higher degree
equation solving, in two subproblems; that is, fist to isolate the real roots, and then
to approximate them to any desired degree of accuracy. The major problem was iso-
lation, which attracted immediately the attention of the mathematicians. To isolate
the roots two theorems were initially proposed: Budan’s (1807) and Fourier’s (1820)
theorems on which Vincent’s (1836) and Sturm’s (1829) theorems were based later
on. Vincent’s (1836) theorem, was, in turn, the foundation of the Akritas’ continued

fractions method of 1978, a method that is considered the most efficient today!.

'For Descartes’, Budan’s, Fourier’s, Vincent’s and Sturm’s theorems, see the Appendix. For
details on Vincent’s theorem, see Chapter IV.

3
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CHAPTER II

Bounds

2.1 Definitions

2.1.1 Univariate Polynomials

A polynomial is a mathematical expression of the form

p(z) = apr™ + a1zt . F a1z Fa,, (o > 0) (2.1)

If the highest power of x is 2™, the polynomial is said to be of degree n. It was proved
by Gauss in the early 19th century that every polynomial of positive degree has at
least one zero (i.e. a value z which makes p(z) equal to zero), and that a polynomial
of degree n has n zeros (not necessarily distinct). Often we use z for a real variable,
and z for a complex one. A zero of a polynomial is synonymous to the “root” of the
equation p(z) = 0. A zero may be real or complex, and if the “coefficients” «; are
all real, then complex zeros occur in conjugate pairs a 4¢3, a — i3. The purpose of
the first part of this study is to describe methods which have been developed to find

bounds for the real positive roots of polynomials with real coefficients.

4
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2.1.2 Bounds on the Values of the Roots of Polynomials

In attempting to find the roots of a polynomial equation it is advantageous to
narrow the region within which they must be sought. So, our aim is to establish
sharp bounds, for the positive and negative roots 1, 2, ..., Ty, 1 < m < n, of the
equation p(z) = 0. It is sufficient to restrict ourselves to finding the upper bound,
ub, of only the positive roots of polynomials of type (2.1). Here is why:

Consider along with (2.1) the transformed equations

pi(z) = x”p(%) =0 (2.2a)
po(z) = 2"p(—2x) =0 (2.2b)
po(x) = 2"p(—) = 0 (2.20)

and let the upper bounds of their positive roots be uby, ubs and ubs respectively.

Then the number uibl is clearly a lower bound on the values of the positive roots of
equation (2.1), that is, all positive roots xt of this equation, if they exist, satisfy the

inequality

1
— <zt <ub 2.3
Ubl_x = ( )

1

o Aare, respectively, lower and upper bounds of

Similarly, the numbers —uby and —
the negative roots of (2.1), that is, all negative roots x~ of this equation, if they exist,
satisfy the inequality

1
—uby < pxm < —— 2.4
Ub2 > = wubs ( )

It should be emphasized here that bounds on the values of just the positive roots of

polynomials are scarce in the literature. Especially, in the English literature, only

5
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bounds on the absolute values (positive and negative) of the roots existed until 1978.
As Akritas points out, he was able to find Cauchy’s bound (described below) on the
values of the positive roots in Obrechkoft’s book, (Obreschkoff, 1963). Bounds on
the values of the positive roots of polynomials are important, because it is only those

bounds that can be used in the root isolation process described in Chapter IV.

2.2 Classical Methods for Computing Bounds

In this section we first present the two classical theorems by Cauchy and Lagrange-
MacLaurin. Until recently, the first was the only method used for computing the
bounds, on the values of the positive roots of polynomials. In addition, we in-
clude, Kioustelidis’ bound, (Kioustelidis, 1986), which is closely related to the one by

Cauchy.

2.2.1 Cauchy’s Method

Theorem II.1. Let p(z) be a polynomial as in (2.1), of degree n > 0, with ay,— < 0
for at least one k, 1 < k < n. If X\ is the number of negative coefficients, then an

upper bound on the values of the positive roots of p(x) is given by

k )\Cvk
ub = max _
{1<k<n:a,_ <0} (o%))

Note that if A = 0 there are no positive roots.

Proof. From the definition above we have

Qg

6
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for every k such that a,,_x < 0. For these k, the inequality above could be written

ub™ > (—)\ank) ub™ "
Qg

Summing for all £’s we have

bt =AY (—O‘;’“) ub"™"
0

1<k<n:a,_<0

or

ub™ > Z (— Oég/“) ub™ "
0

1<k<n:a,_1<0

i.e., dividing p(x) = 0 by «g, making unitary the leading coefficient, and replacing =
with ub, x <— ub, the first term, i.e. ub™, would be greater than, or equal to, the sum
of the absolute values of the terms with negative coefficient. Hence, for all x > ub,

p(z) > 0. O

Even though the proof is sound, and easy to follow, it gives us no insight on what is

going on. Hence, we cannot improve on it. The same holds for the following theorem.

2.2.2 The Lagrange—MacLaurin Method

Theorem I1.2. Suppose a,,_y, k > 1, is the first of the negative coefficients' of a

polynomial p(z), as in (2.1). Then an upper bound on the values of the positive roots

B
ub =1+ {/—,
Qg

where B is the largest absolute value of the negative coefficients of the polynomial

of p(x) is given by

p(x).

f there is no negative coefficient then p(z) has no positive roots.

7
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Proof. Set x > 1. If in p(x) each of the nonnegative coefficients oy, as, . . .,
ay_1 is replaced by zero, and each of the remaining coefficients oy, agiq, ...,y is

replaced by the negative number — B, we obtain

n—k+1 _ 1
p(x) > apz™ — B(a" F 42" F 4 1) = apa™ — Bx—1
m —
Hence for x > 1 we have
B —k+1 g k—1
" " = -1)—-B
p(x) > oz 1% o (oz" (x — 1) )
xn—k—i—l

(a2~ 1)~ B)

Consequently for

B
r>1+(/—=ub
Qg

we have p(x) > 0 and all the positive roots 2T of p(z) satisfy the inequality

T < ub. O

2.2.3 Kioustelidis’ Method

Theorem I1.3. Let p(x) be a polynomial as in (2.1), of degree n > 0, with a,_x <0

for at least one k, 1 < k <n. Then an upper bound on the values of the positive roots

of p(x) is given by

ub =2 max bl — .
{1<k<n:o,_ <0} (o7

Proof. From the definition above we have

1 (0773
bE> — [ ==
¢ _2k< 040)

8
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for every k such that a,,_x < 0. For these k, the inequality above could be written

1 e
ub" > — _Onok ub™F
2k (o))

Summing for all £’s we have

n 1 On—k n—k
ub™ > Z 5 (— o )ub

1<k<n:a,_<0

or

1 Ak L
> (1 - — E _ n
ub™ 2 ( 2") ( « ) ub

1<k<n:a,_<0

and because (1 —27") < 1 we get

"> _ank) n—k
ub 1<k<;ank<0 ( ” ub
i.e., dividing p(x) = 0 by «p, making unitary the leading coefficient, and replacing x
with ub, x < ub, the first term, i.e. ub™, would be greater than, or equal to, the sum
of the absolute values of the terms with negative coefficient. Hence, for all > ub,
p(x) > 0.
O

In the next chapter, we will present a theorem by Stefanescu, (Stefanescu, 2005),
that gives some insight into the nature of how these bounds are computed. Extending
Stefanescu’s theorem, (Akritas and Vigklas, 2006), (Akritas, Strzeboriski, and Vigklas,
2006), we obtain a general theorem, which includes the above three methods as special

cases, and from which new, sharper, bounds can be derived.
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CHAPTER III

A General Theorem for Computing Bounds on the

Positive Roots of Univariate Polynomials

3.1 Preliminaries

In the following discussion we shall consider polynomials with integer or ratio-
nal coefficients of any (arbitrary) bit-length. The methods that will be presented
here are methods of infinite precision (based on exact arithmetic) and must not be
confused with numerical or other approximate methods where someone has to take
under consideration various types of errors that infiltrate the computation process

and progressively degrade the final results.

3.2 Stefanescu’s Theorem and its Extension

Despite the fact that in the literature one can find many formulas® that estimate
an upper bound on the largest absolute value of the real or complex roots, (Yap,
2000), (Mignotte, 1992), the most recent addition for a method to compute bound on
the positive roots of polynomials, that is of importance to us, has been by Stefanescu.

Namely, in (Stefanescu, 2005), the following theorem is proved:

LA bibliographical search till 2005 gives over 50 articles or books which give such bounds.
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Theorem IIL.1 (Stefanescu’s, 2005). Let p(x) € R[z]| be such that the number of

variations of signs of its coefficients is even. If
p(x) = ca®™ — bia™ + cox™ — b2 + ..+ cpa®™ — bpa™ + g(z), (3.1)

with g(z) € Ry[z], ¢; > 0,b; > 0,d; > m; > d;y1 for all i, the number

bl 1/(d17m1) bk 1/(dk*mk)
Bs(p) = max (—> ey (—) (3.2)

1 Ck
1s an upper bound for the positive roots of the polynomial p for any choice of c1, ..., c.

We point out that Stefanescu’s theorem introduces the concept of matching or pairing
a positive coefficient with a negative coefficient of a lower order term. That is, to
obtain an upper bound, we match each negative coefficient—in fact we match a nega-
tive term, with a positive one, but for short we mention coefficient—with a preceding
positive one, and take the maximum. Clearly, Stefanescu’s theorem has limited use
since it works only for polynomials with an even number of sign variations?.

The following theorem generalizes Theorem III.1, in the sense that it applies to
polynomials with any number of sign variations. To accomplish this, we introduce
the new concept of breaking-up a positive coefficient into several parts to be paired

with negative coefficients (of lower order terms)3.

’In (Tsigaridas and Emiris, 2006), Tsigaridas and Emiris mention slightly different the same
theorem “Moreover, when the number of negative coefficients is even then a bound due to Stefanescu
can be used which is much better”. Unfortunately, still with this version of the theorem its weakness
remains.

3After the publication of this work, (Akritas, Strzeboriski, and Vigklas, 2006), Stefanescu also
extended Theorem III.1 in (Stefanescu, 2007).
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Theorem II1.2. Let

() = apt" + 17"+ 4+, (o, >0) (3.3)

be a polynomial with real coefficients and let d(p), t(p) denote the degree and the

number of its terms, respectively. Moreover, assume that p(x) can be written as

(@) = q(z) — @(7) + @3(x) — qu(®) + ... + Gam-1(2) — @2m(z) + g(x),  (34)

where all polynomials q;(x), i = 1,2,...,2m and g(x) have only positive coefficients.
In addition, assume that fori=1,2,...,m we have
@2i-1(Z) = €211 4 L ot g (ges ) X 021 (3.5)
and
@2i(x) = Do 11 4 ..+ Doy y(gy,) X201 20), (3.6)

where ey;—11 = d(qai—1) and eg; 1 = d(qei) and the exponent of each term in goi—1(x)
is greater than the exponent of each term in qoi(x). If for all indices i =1,2,...,m,

we have

t(qai—1) > t(q2i), (3.7)

then an upper bound of the values of the positive roots of p(x) is given by

1 1
ub = max ( bai )621'—1’1‘52%1 ( b2i 1(g24) )eQi_l’t(qu)_eQi’t(qu) (3.8)
pr— ) _— PR - 9 .
{i=1,2,...,m} C2i-1,1 C2i—1,t(qa:)

for any permutation of the positive coefficients cai—14, j = 1,2,...,t(qai—1). Other-
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wise, for each of the indices i for which we have*

t(gai—1) < t(qa) (3.9)

we break-up one of the coefficients of qai—1(x) into t(qe;) — t(goi—1) + 1 parts, so that

now t(qei) = t(gai—1) and apply the same formula (3.8) given above.

Proof. Suppose x > 0. We have

Vv

01711’61’1 + ...+ CLt(ql)gL‘elyt(u) — b2’1x52,1 B — b2 t(q2)$62’t(q2)

)

|p(2)]

e2m— €2m—1
+ Com—11T N L Come (o) T T B2mD)
— € _ e
Dam, 1™ — = bom t(ga) T2 + g ()
— e er.1—e
= (e T —byy) + ...

+ erm,t(‘Qm)(CQm_17t(q2m)I@Qm—l,t(qQW)*€2m,t(q2m) _ me,t(q2m)> + g(I)

which is strictly positive for

1

S S
r > max < bai1 > ©2i=1,1762i,1 ( D2i t(g2:) ) i tlazy) " 20 t(az)
' = e
{i=1,2,...,m} C2i—1,1 C2i—1,t(qa:)

]

Remark 1. Pairing positive with negative coefficients and breaking-up a positive
coefficient into the required number of parts—to match the corresponding number of
negative coefficients—are the key ideas of this theorem. In general, formulae analo-
gous to (3.8) hold for the cases where: (a) we pair coefficients from the non-adjacent

polynomials gg—1(z) and go;(x), for 1 < I < 4, and (b) we break-up one or more

1A partial extension of Theorem III.1, presented in (Akritas and Vigklas, 2007), does not treat
the case t(qg2i—1) < t(g2;)-
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positive coefficients into several parts to be paired with the negative coefficients of
lower order terms. In the following section we present several implementations of

Theorem I11.2.

3.3 Algorithmic Implementations of the Generalized

Theorem

Theorem III.2 is stated in such a way, that it is amenable to several implementa-
tions; to wit, the positive-negative coefficient pairing is not unique and can be done
in several ways®.

Moreover, we have quite a latitude in choosing the positive coefficient to be broken
up; and once that choice has been made, we can break it up in equal or unequal parts.
We explore some of these choices below.

We begin with the most straightforward approach for implementing Theorem I11.2,
which is to first take care of all the cases where ¢(g2;—1) < t(g2;), and then, for all
i=1,2,...,m, to pair a positive coefficient of go;_1(z) with a negative coefficient of
¢2i(x)—starting with the coefficients cy;_1 ; and by; ; and moving to the right (in non-

increasing order of exponents), until the negative coefficients have been exhausted.

Example 1. Consider the polynomial

pi(x) = 2% +32% + 227 + 2% — da? + 2% — 42® - 3

5An example of the worst possible pairing strategy is the rule by Lagrange and MacLaurin,
(Akritas and Vigklas, 2006), that was mentioned in (§ 2.2.2)
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for which we have

q(r) = 2°+32° + 227 + 2f

—go(x) = —4a
@(r) = 2°
—qu(r) = —42® 3.

A direct application of Theorem II1.2 pairs the terms {z%, —4z*} of ¢;(x) and g¢o(x),
and ignores the last three terms of ¢y (z). It then splits the coefficient of 2% into two,
say equal parts to account for the two negative terms of g4(z) and forms the pairs

%, —42?} and {%, —3}. The resulting upper bound is 8, whereas the mazimum
positive real root of the polynomial is 1.06815.

Another way of applying Theorem II1.2 would be to pair each of the terms of ¢, (z)
with —4z* of gy(z), and pick the minimum; that is, we pick the minimum of the terms
{29 —42'}, {328, —42*}, {227, —42*} and {2% —4x'}, which is {/4/3 = 1.07457.
Then, we pair each of the negative terms of g4(z) with all of the unmatched positive
terms of ¢;(z) and g¢3(x) and pick the minimum. That is, for the term —4z? we
pick the minimum of {z% —42?}, {227, —42?}, {2° —42?} and {23, —42?} which is
v/2 = 1.1487, whereas for the term —3 we pick the minimum of {2, —3}, {°, —3} and
{2® —3} which is ¥/3 = 1.12983. Finally, the bound is the maz{{/4/3,v/2,V/3} =
1.1487.

This last approach is also encountered in (Hong, 1998) and (Stefanescu, 2005).
The computed bound is close to the optimal value, due to the quadratic complexity
of this method, whereas the first one was linear. In the sequel, we first present imple-
mentation methods of Theorem III.2 that are linear in complexity and the computed

bounds are close to the optimal value.
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3.4 Linear Complexity Bounds

Bounds that we meet most often in the literature, such as Cauchy’s and Kiouste-

lidis’, (§ 2.2.1, § 2.2.3), are of linear complexity.

The General Idea of the Linear Complexity Bounds: These bounds are

computed as follows:

e cach negative coefficient of the polynomial is paired with one of the preceding

unmatched positive coefficients;

e the maximum of all the computed radicals is taken as the estimate of the bound.

In general, we can obtain better bounds if we pair coefficients from non-adjacent
polynomials go_1(x) and ¢9;(z), for 1 <1 < i. The earliest known implementation of
this type is Cauchy’s rule, that was described in (§ 2.2.1). Using Theorem III.2 we

obtain the following interpretation of Cauchy’s and Kioustelidis’ theorems:

Definition 1: Cauchy’s “leading—coefficient” implementation of Theorem III.2.
For a polynomial p(z), as in Eq. (2.1), with A negative coefficients, Cauchy’s method
first breaks-up its leading coefficient, «,,, into A equal parts and then pairs each part

with the first unmatched negative coefficient. That is, we have:

k )\Oénfk
ubo = max —
{1<k<n:a,_<0} (o7}
or, equivalently,
On—k
ubo = max b ——.
{1<k<n:a,_p <0} 70

So, in Ezample 1 we form the pairs {&, 4z}, {2, —42?} and {2, -3}, and

obtain as upper bound the value 1.64375. This improvement in the estimation of the
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bound is due to the fact that the radicals that come into play, namely v/12, v/12,
and v/9, (obtained from the pairs mentioned above) are of higher order and hence

the numbers computed are smaller.
From (§ 2.2.3) we obtain the following:

Definition 2: Kioustelidis’ “leading—coefficient” implementation of Theorem III.2.
For a polynomial p(z), as in Eq. (2.1), Kioustelidis’ method matches the coefficient

—ay,_, of the term —a,,_2" % in p(x) with S#, the leading coefficient divided by 2k,

Qn—k
ubg = 2 max bl—
{1<k<n:a,_<0} (o))
or, equivalently,
Op—k
ubg = max b ——
{1<k<n:a,_j<0} 2—,8

Kioustelidis” “leading-coefficient” implementation of Theorem II1.2; differs from
that of Cauchy’s only in that the leading coefficient is now broken up in unequal parts,

by dividing it with different powers of 2, Kioustelidis (1986).

So, in Example 1 with Kioustelidis’ method we form the pairs {;”—Z, —4xt} {‘5—?, —4z%}
and {g—z, —3}, and obtain as upper bound the value 2.63902.

We can still improve the estimation of the upper bound, if we use Remark 1 and
we pair the two negative terms of g4(z) with the first two (of the three) ignored
positive terms of ¢;(x). In this way, we obtain an upper bound of 1.31951, which is
very close to 1.06815, the maximum positive root of p;(z). This new improvement
is explained by the fact that the radicals v/4, {"/m, and W, obtained from the
pairs {z%, —42'}, {32%, —42?} and {227, -3}, yield even smaller numbers.

Moreover, extensive experimentation confirmed that by pairing coefficients from

the non-adjacent polynomials go—1(x) and go;(z) of p(x), where 1 < 1 < i, we ob-
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tain bounds which are the same as, or better than, the bounds obtained by direct
implementation of Theorem II1.2, and in most cases better than those obtained by
Cauchy’s and Kioustelidis’ rules.

Therefore, using Theorem II1.2, a new linear complexity method, first-\, was
developed for computing upper bounds on the values of the positive roots of polyno-

mials.

Definition 3: “first—\” implementation of Theorem III.2.
For a polynomial p(x), as in (3.3), with A negative coefficients we first take care of
all cases for which #(ga;) > t(goi—1), by breaking-up the last coefficient cg;_14(g,,), Of
¢2i—1(x), into t(qe;) —t(gei—1) + 1 equal parts. We then pair each of the first \ positive
coefficients of p(z), encountered as we move in non-increasing order of exponents,
with the first unmatched negative coefficient.

Although this bound is a significant improvement over the other two bounds by
Cauchy and Kioustelidis, even this approach can lead, in some cases, to an overes-
timation of the upper bound, as seen in the following example, which highlights the

importance of suitable pairing of negative and positive coefficients.

Example 2. Consider the polynomial
p(z) = 2% +10"2% — 10" — 1.

which has one sign variation and, hence, only one positive root, x = 1.
Cauchy’s “leading—coefficient” implementation of Theorem III1.2 forms the pairs
%, —10'%%} and {%, —1}, and taking the maximum of the radicals computed, we
obtain a bound estimate of 1.41421 x 10°°; Kioustelidis’ “leading—coefficient” imple-
mentation of Theorem II1.2 forms the pairs {Z, ~10'%z} and {Z;, —1} yielding an
upper bound of 2 x 10°°; and finally our “first-\" implementation pairs the terms

{z?, —10'2} and {10'2% —1} yielding an upper bound of 10°°.
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A “possible solution” to this problem could also be to scan the positive coef-
ficients backwards (in non-decreasing order of exponents) in which case the pairs
{10992 —10'%} and {z?, —1} are formed, yielding an upper bound of 1.

From the above example, it becomes obvious that in addition to the already
presented implementations of Theorem II1.2 we also need another, different pairing
strategy to take care of cases in which these three approaches perform poorly.

However, the “possible solution” outlined above, may well take care of Example
2, but it picks coefficients from the adjacent polynomials go;—1(x) and go; () of p(x),
with all the associated weaknesses, mentioned above.

Therefore, we did not pick this “possible solution” as our fourth implementation
of Theorem III.2. Instead, we chose the “local-max” pairing strategy, which is defined

as follows:

Definition 4: “local-max” implementation of Theorem III.2.

For a polynomial p(z), as in (3.3), the coefficient —ay, of the term —aga® in p(z) —as
given in Eq. (3.3)— is paired with the coefficient §, of the term a,,2™, where a, is
the largest positive coefficient with n > m > k and ¢ indicates the number of times
the coefficient «,,, has been used.

Note that our “local-maz” strategy can pair coefficients of p(z) from the non-
adjacent polynomials go—1(z) and go;(x) of p(z), where 1 < | < i, and breaks-up
positive coefficients also in unequal parts. Moreover, binary fractions of only the
coefficient «,, get paired with each negative coefficient; this process continues until

we encounter a greater positive coefficient.

10190 2
2 L

Applying our “local-maz” implementation to Ezample 2 we form two pairs {

— 10z} and {1021200 22, —1}, from which we obtain an upper bound of 2. Therefore,

we return the value 2 = min{10°°, 2}, which is the minimum of our “first-\" and

“local-maz” implementations.
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3.4.1 The Pseudocode

Below we present the pseudocode for the four different implementations of Theo-

rem II1.2. Cauchy’s “leading—coefficient” implementation is described in Algorithm 1,

lines 1-14, and the output is ubc. Kioustelidis’ “leading—coefficient” implementation

is described in Algorithm 2, lines 1-14, and the output is ubg. (These two bounds

are presented here for completion.) The “local-maz” implementation is described in

Algorithm 3, lines 1-20, and the output is ubry;. The “first-\" implementation is

described in Algorithms 4 & 5, lines 1-77, and the output is ubgy. The final upper

bound is ub = min{ubgp, ubry}.

Input: A univariate polynomial p(z) = apz™ + a1z™ L + ...+ an, (ap > 0)

Output: An upper bound, ubc, on the values of the positive roots of the polynomial

1 initializations;
2 cd+— {ao,a1,02,...,an—1,an};
3 A <— the number of negative elements of cl;
4 if n+1<=1 or A =0 then return ubc = 0;
5 j=n+1;
7 fori=1tondo
9 if cl(i) < 0 then
10 tempub = (A(—=cl(3) /cl()))/ U=,
11 if tempub > ub then ub = tempub;
12 end
13 end
14 ubc = ub

Algorithm 1: Cauchy’s “leading—coefficient” implementation of Theorem III.2.

20

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 05:25:06 EET - 137.108.70.7



Input: A univariate polynomial p(z) = apz™ + a12" 1 +... + an, (ap > 0)
Output: An upper bound, ubg, on the values of the positive roots of the polynomial
initializations;

c +— {ap,a1,02,...,an-1,an};

A <— the number of negative elements of cl;

if n4+1<=1 or A =0 then return ubx = 0;

j=n+1;

for i =1 to n do

© N 0k W =

if cl(i) < 0 then

10 tempub = 2((—cl(i)/cl(§))) 1/ T,
11 if tempub > ub then ub = tempub;
12 end

13 end

14 ubig = ub

Algorithm 2: Kioustelidis’ “leading—coefficient” implementation of Thm. TIT.2.

Input: A univariate polynomial p(z) = anz™ + an—12" L +... +ag, (an >0)
Output: An upper bound, ubr s, on the values of the positive roots of the polynomial
initializations;

cl +— {ao,a1,02,...,an-1,an};

if n 4+ 1 <=1 then return ub;, M = 0;

j=n+1

t=1,;

fori=n to 1 step —1 do

© N ok N =

if cl(i) < 0 then

10 tempub = (2t (—cl(i)/cl(4)))*/ =D,
11 if tempub > ub then ub = tempub;
12 t+ +;

13 else

14 if ci(i) > cl(j) then

15 Jj=1

16 t=1

17 end

18 end

19 end

20 ubppyr = ub

Algorithm 3: The “local-maz” implementation of Theorem III.2.
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Input: A univariate polynomial p(z) = anz™ + an—12™ 1 +... +ag, (an >0)
Output: An upper bound, ubgy,, on the values of the positive roots of the polynomial
1 initializations;
2 cd+—{ao,a1,02,...,an—1,an};
3 A <— the number of negative elements of cl;
4 if n+1<=1or A=0 then return ubpy = 0;
5 j=n+1;
7 while j > 1 do // make sure t(g2;—1) > t(g2;) holds for all ¢
9 while j > 1 and (cl(j) =0 or cl(j) > 0) do // compute ¢(g2;—1)
11 flag = 0;
12 while j > 1 and cl(j) > 0 do
13 flag =1;
14 posCounter + +;
15 j——
16 end
17 if flag = 1 then LastPstvCoef = j + 1;
18 while j > 1 and cl(j) =0 do
19 j—-
20 end
21 end
22 if j =1 and cl(j) > 0 then posCounter + +;
23 while j > 1 and (cl(j) =0 or cl(j) < 0) do // compute t(g2;)
25 while j > 1 and cl(j) < 0 do
26 negCounter + +;
27 j——
28 end
29 while j > 1 and cl(j) =0 do
30 j—-
31 end
32 end
33 if j =1 and cl(j) < 0 then negCounter + +;
34 if negCounter > posCounter then // replace last coefficient by a list
ooy = SUTCD
35 negCounter—posCounter+1
36 end
37 negCounter = 0;
38 posCounter = 0;
39 end

Algorithm 4: The first part of the “first-A” implementation of Theorem III.2.
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40 i=j=n-+1;

42 whilei >0 and j > 0 and A > 0 do // pair coefficients and process pairs

44 while cl(j) < 0 do

45 ‘ j——

46 end

48 if cl(j) is a list element then // cl(j) is a list element
49 while (cl(i) > 0 or cl(i) is a list) and i > 1 do
50 ‘ i — —

51 end

52 tempub = (—cl(i)/cl(5))/ =2,

53 A——;

54 if tempub > ub then ub = tempub;

55 i——

56 J—=;

57 end

58 end

59 if cl(j) is a list then // cl(j) is a list

60 k = the number of elements of cl(j);

61 temp = cl(j,1);

63 if k > X then

64 ‘ k=X

65 end

66 for v =1 to k do

67 while (cl(i) > 0 or cl(i) is a list) and i > 1 do
68 ‘ i — —

69 end

70 tempub = (—cl(i)/temp)t/ =1,

71 A——

72 if tempub > ub then ub = tempub;
73 T — —;

74 end

75 Ji==

76 end

T7 ubpp = ub

Algorithm 5: The second part of the “first-\” implementation of Theorem III.2.
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3.4.2 Testing Linear Complexity Bounds

In this section, we present some examples using the same classes of polynomials,
as in (Akritas and Strzeboriski, 2005) in order to evaluate our new combined imple-
mentation, min{ “first-\", “local-maz”}, of Theorem I11.2 and to compare it with
Cauchy’s and Kioustelidis’ “leading—coefficient” implementations.

Table 3.1, “uRandom” indicates a random polynomial whose leading coefficient
is one®, whereas “sRandom” indicates a random polynomial obtained with the ran-
domly chosen seed 1001; the average size of the coefficients ranges from —22° to 22,
Additionally, Kioustelidis’” name was shortened to “K” and a “star” indicates that
the bound obtained by “local-maz” was the minimum of the two. MPR stands for

the maximum positive root, computed numerically.

SFor exact mathematical formulas of the benchmark polynomials, please see the Appendix.
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From Table 3.1, we see that Kioustelidis’ method is, in general, better (or much
better) than that of Cauchy. This is not surprising given the fact that Kioustelidis
breaks-up the leading coefficient in unequal parts, whereas Cauchy breaks it up in
equal parts.

Our “first-\" implementation, as the name indicates, uses additional coefficients
and, therefore, it is not surprising that it is, in general, better (or much better) than
both previous methods. In the few cases where Kioustelidis’ method is better than
“first-\", the “local-maxz” method takes again the lead.

Therefore, given their linear cost of execution, we propose that one could safely
use only the last two implementations of Theorem III.2 in order to obtain the best
bounds possible. Certainly, this is worth trying in the continued fractions real root
isolation method in order to further improve its performance. We will carry on this
endeavor in Chapter IV of this study.

Last but not least, it should be noted that these new bounds, “first-\", “local-
maz”, as well as the min{“first-\", “local-maz”} have already been implemented
into one of the newest open-source’ mathematics software system, “SAGE”, (SAGE,

2004-2010). A demonstration of a “SAGE” session calculating bounds on the values

of the positive roots of some polynomials can be found in the next section.

3.4.3 Sage Session Demonstration of New Bounds

In Sage reference manual, (SAGE, 2004-2010), three methods are defined as:

sage.rings.polynomaial.real_roots.cl_maximum_root_first_lambda(cl),
sage.rings.polynomial.real roots.cl_maximum_root_local_max(cl),

sage.rings.polynomaial.real roots.cl_maximum_root (cl)

7Another implementation of our bounds can be found in the computer algebra system
Mathemagix, (Hoeven, Lecerf, Mourrain, and Ruatta, 2008).
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implementing our linear complexity bounds “first-\", “local-maz” and min{ “first—
N7, “local-mazx”}, described earlier, (Akritas, Strzeboriski, and Vigklas, 2006). Given
a polynomial represented by a list of its coefficients, (c1) (as ReallntervalFieldEle-
ments, RIF'), an upper bound on its largest real root is being computed. Computing

for instance the upper bound of the polynomial equation:

2° — 102* + 152° + 42> — 162 + 400 = 0

we have

SDAE The Sage Notebook Tozgle | Home | Published | Log | Settings | Help |
Varsion 4.3 Report a Problem | Sign out |
Untitled [ save || Save & quit |[ Discard & quit |
=t edited on Movember 28, 2010 05:22 AM by v1s2p3

File... » | |Action.. v||Data.. +||sage v| O Typeset

=04 worksheet | Eait | Text | undo | snare | pubiisn |

from sage.rings.polynomial.real roots import *

cl maximum root first lambda ([RIF(400), RIF(-16), RIF(4), RIF(15),RIF(-10),RIF{1)])

10.0000000000001

cl_maximu.m_root_local_max{ [RIF(400), RIF(-16), RIF(4), RIF{(1S),RIF(-10),RIF(1)1)

20.0000000000001

cl maximum root ([RIF(400), RIF(-16), RIF(4), RIF(15),RIF(-10),RIF(1)])

10.0000000000001

evaluate

Figure 3.1: Screen capture of Sage software calculating bounds using the algorithms pro-
posed in (Akritas, Strzeboriski, and Vigklas, 2006).

The bounds above correspond to ubgy, = 10, ubpy = 20, min{ubpr,ubpy} =
10 respectively, whereas the maximum positive root of the polynomial computed

numerically is MPR = 7.9945.
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3.5 Quadratic Complexity Bounds

To further investigate the new proposed bounds it was decided to define, in addi-
tion, new bounds of quadratic complexity this time (based on the linear complexity
counterparts), hoping that their improved estimates should compensate for the extra

time needed to compute them. These bounds are based on the following idea:

The General Idea of the Quadratic Complexity Bounds: These bounds

are computed as follows:

e cach negative coefficient of the polynomial is paired with all the preceding

positive coefficients and the minimum of the computed values is taken;

e the maximum of all those minimums is taken as the estimate of the bound.

In general, the estimates obtained from the quadratic complexity bounds are less
than or equal to those obtained from the corresponding linear complexity bounds, as
the former are computed after much greater effort and time. The quadratic complexity

bounds described below are all extensions of their linear complexity counterparts.

Thus, we have:

Definition 5: “Cauchy Quadratic” implementation of Theorem III.2.

For a polynomial p(z), as in Eq. (2.1), each negative coefficient a; < 0 is “paired”
with each one of the preceding positive coefficients a; divided by A\; — that is, each
positive coefficient a; is “broken up” into equal parts, as is done with just the leading
coefficient in Cauchy’s bound; J; is the number of negative coefficients to the right of,
and including, a; — and the minimum is taken over all j; subsequently, the maximum
is taken over all 7.

That is, we have:
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. a;

ubcg = max  min il —5-.
{a;<0} {a;>0:5>1} )\—]
T

Example 2, continued: For Cauchy Quadratic we first compute

e the minimum of the two radicals obtained from the pairs of terms

%3, —10"z} and {w, —10'2} which is 2,

e the minimum of the two radicals obtained from the pairs of terms {%3, —1} and

100 ,.2 . .
{1%5%, —1} which is 10%,
and we then obtain as a bound estimate the value maz{2, 10%} = 2.

Definition 6: “Kioustelidis’ Quadratic” implementation of Theorem III.2.

For a polynomial p(x), as in Eq. (2.1), each negative coefficient a; < 0 is “paired”
with each one of the preceding positive coefficients a; divided by 2/~% — that is, each
positive coefficient a; is “broken up” into unequal parts, as is done with just the
leading coefficient in Kioustelidis’” bound — and the minimum is taken over all j;
subsequently, the maximum is taken over all i.

That is, we have:

. Gy
ubgg = 2 max min i/ ——,
{a;<0} {a;>0:5>i} a;

or, equivalently,

ubgg = max min i/ ———.
{a;<0} {a;>0:5>i} -

Example 2, continued: For Kioustelidis’ Quadratic we first compute

e the minimum of the two radicals obtained from the pairs of terms

2 —10'0z} and {122 1092} which is 2,
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e the minimum of the two radicals obtained from the pairs of terms {g—i, —1} and

1010042 . . 2
{=5=%, —1} which is 355,

and we then obtain as a bound estimate the value maz{2, 135} = 2.

Definition 7: “first—A Quadratic” implementation of Theorem III.2.

For a polynomial p(z), as in (3.3), with A\ negative coefficients we first take care of
all cases for which ¢(qor) > t(qos—1), by breaking-up the last coefficient cor_14(g,,), Of
Q201 (), into dag—1,4(gy,) = t(q2e) — t(qae—1) + 1 equal parts. Then each negative coeffi-
cient a; < 0 is “paired” with each one of the preceding min(i, \) positive coefficients
a; divided by d; — that is, each of the preceding min(i, ) positive coefficient a; is
“broken up” into d; equal parts, where d; is initially set to 1 and its value changes only
if the positive coefficient a; is broken up into equal parts, as stated in Theorem III.2;
u(j) indicates the number of times a; can be used to calculate the minimum, it is
originally set equal to d; and its value decreases each time a; is used in the compu-
tation of the minimum — and the minimum is taken over all j; subsequently, the

maximum is taken over all 1.

. a;

ubprg = max min i — o
{a;<0} {a;>0:5>min(i,\):u(j)#0} d_J
J

From the above descriptions it is clear that uprg tests just the first min(i, \)

That is, we have:

positive coefficients, whereas all the other quadratic complexity bounds test every

preceding positive coefficient. Hence, uprq is faster (or quite faster) than all of them.

Example 2, continued: For first-A Quadratic we first compute

e the minimum of the two radicals obtained from the pairs of terms
{23, —-10'"%%} and {10z —10'z} which is 1 — evaluated from the second

pair of terms,

30

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 05:25:06 EET - 137.108.70.7



e the minimum of the two radicals obtained from the pairs of terms {2, —1} and

{10022 —1} which is 1,

and we then obtain as a bound estimate the value max{1,1} = 1. Note that once a
term with a positive coefficient has been used in obtaining the minimum, it cannot

be used again!

Definition 8: “local-max Quadratic” implementation of Theorem III.2.

For a polynomial p(z), as in (3.3), each negative coefficient a; < 0 is “paired” with
each one of the preceding positive coefficients a; divided by 2% — that is, each
positive coefficient a; is “broken up” into unequal parts, as is done with just the
locally maximum coefficient in the local max bound; ¢; is initially set to 1 and is
incremented each time the positive coefficient a; is used — and the minimum is taken

over all j; subsequently, the maximum is taken over all i.

b . a;
ubryo = max min i ——4—.
@ {a;<0} {a;>0:5>i} 273]

Since 2% < 297 — where 7 and j are the indices realizing the maz of min; equality

That is, we have:

holds when there are no missing terms in the polynomial — it is clear that the

j—i—t,

estimates computed by “local-max Quadratic” are sharper by the factor 2777

than those computed by “Kioustelidis’ Quadratic”.
Example 2, continued: For “local-maz Quadratic” we first compute

e the minimum of the two radicals obtained from the pairs of terms

%37 —10"2} and {w, —10'%} which is 2,

e the minimum of the two radicals obtained from the pairs of terms {’;—2, —1} and

1010042 soh e 2
5z, —1} which is 155,
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and we then obtain as a bound estimate the value maz{2, 10%} = 2.

3.5.1 The Pseudocode

Below we present the pseudocode for ubr g and ubprg quadratic implementations
of Theorem II1.2. We decided to omit ubcq and ubgq implementations since both
previous theoretical analysis and empirical data establish the better performance of
ubrng and ubprg over these two in every case. The ubrrg, “local-max Quadratic”
implementation is described in Algorithm 6, lines 1-18, whereas the ubprg, “first-\

Quadratic” implementation is described in Algorithms 7 and 8, lines 1-66.

Input : A univariate polynomial p(z) = ana™ + an—12" "L + ...+ ag, (an > 0)
Output: An upper bound uby, g, on the values of the positive roots of the polynomial
initializations;

cl «+— {ao,a1,a2,...,an-1,an};

timesused «— {1,1,1,...,1};

ub = 0;

if n 4+ 1 <1 then return ub = 0;

for m +— n to 1 do

if cl(m) < 0 then

tempub = oo;

© 0 N o oA W N =

fork<—n+1tom+1do

_1
temp = (77:&(1:;1 ) )F=m

otimesused(k)

10
11 timesused(k) + +;
12 if tempub > temp then tempub = temp;

13 end

14 if ub < tempub then ub = tempub;
15 end

16 end
17 ubpyq = ub;

18 return ubpprg;

Algorithm 6: The “local-maz Quadratic” implementation of Theorem III.2.
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Input : A univariate polynomial p(z) = ana™ + an—12" "1 + ...+ ag, (an > 0)

Output: An upper bound ubpr,q, on the values of the positive roots of the polynomial

1 initializations;
2 c+— {ag,a1,a2,...,an—1,an};
3 A <— number of negative elements of cl;
4 usedVector +— {0,0,0,...,0};
5 fori+— 1ton+1do
6 if cl(i) > 0 then usedVector(i) = 1;
7 end
8 if n+1<1or A=0 then return ub = 0;
9 i=n+1;
10 templamda = 0;

[y
[y

flag = 0;

12 while templamda < A do // make sure t(g2;—1) > t(q2;) holds for all ¢
13 if cl(i) > 0 then

14 if flag = 0 then posCounter + +;

15 else if flag =1 then

16 if negCounter > posCounter then

17 usedV ector(position Last PositiveCoef) = negCounter — posCounter + 1;
18 end

19 negCounter = 0;

20 posCounter = 1;

21 flag = 0;

22 end

23 positionLastPositiveCoef = i;

24 else if cl(i) < 0 then

25 flag = 1;

26 negCounter + +;

27 templamda + +;

28 end

29 i——

30 end

31 if negCounter > posCounter then
32 usedV ector(positionLast PositiveCoef) = negCounter — posCounter + 1;
33 end

Algorithm 7: 1st part of “first-A Quadratic” implementation of Theorem III.2.
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34 sumPosCoeff = 0;
35 i=n+1;
// Last of the first-)\ coefficients

36 while sumPosCoeff < A do

37 if usedVector(i) # 0 then

38 sumPosCoef f+ = usedVector(i);
39 flPos = i;

40 end

41 i —

42 end

/* 1f the last of the first-A coefficients is a broken one (usedVector(flPos) > 1), there might
be a chance that the sum of the positive coefficients (including broken ones) is more than
A. For Example: Let the signs of p be + + + - + + - - - + + + - the 5th positive
coefficient will be broken into 2 pieces (usedVector(8) =2). However, the sum of the
first-A (5 non broken) positive coefficients is 6 (incl. broken). As a result we are going
to use the last of the positive first-A coefficients timesToUse(8) — (sum — A) =1 time only.
*/

43 timesToUse(flpos)— = (sumPosCoeff — N);

44 denomVector «— usedVector;

45 m =n;

46 ub = 0;

47 while A > 0 do

48 if cl(m) < 0 then

49 tempub = oo;

50 for k =n+ 1 to max(m + 1, flPos) do
51 if usedVector(k) > 0 then

52 tempB = (7% )ﬁ7
53 if tempub > tempB then

54 tempub = tempB;

55 tempN = k;

56 end

57 end

58 end

59 usedVector(tempN) — —;

60 A——;

61 if ub < tempub then ub = tempub;

62 end

63 m— —;

64 end

65 ubrrg = ub;

66 return ubrrg;

Algorithm 8: 2nd part of “first-\ Quadgc}ltic” implementation of Theorem III.2
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3.5.2 Testing Quadratic Complexity Bounds

In this section, we present some results using the same classes of polynomials®, as
in (Akritas and Strzeboriski, 2005) in order to compare “first-\ Quadratic” and
“local-max Quadratic” implementation of Theorem III.2.

In Table 3.2, “first-\A Quadratic” and “local-maxr Quadratic” names were
shortened to ubprg and ‘ubpyg respectively. Also, in parenthesis the respective
computation time is given for each algorithm, whereas MPR stands for the maximum

positive root, computed numerically.

8For exact mathematical formulas of the benchmark polynomials, please see the Appendix.
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From the data presented in the Table 3.2, it becomes obvious that the sharpness
of the estimates of both ubprq and ubr ¢ is about the same, but ubpr in most cases
runs faster (or quite faster) than ubpag. So, when it comes to quadratic complexity
bounds the ubprg algorithm is undoubtedly the best choice regarding sharpness to
speed of computation, ratio. However, examining both Table 3.2 and Table 3.1,
one must be very careful in his choice of quadratic versus linear complexity bounds
because then he has to trade-off between a slightly better bound estimation and a
greater algorithmic complexity and execution time. This last remark seems to have
been exploited by the commercial computational software program, Mathematica,

(Wolfram Research, 2008), as we can see in the following section.

3.5.3 Mathematica Session Demonstration of New Bounds

The Mathematica’s real root isolation source code, by default, uses the better
bound from each category, i.e. “first—\”, ubpr, from the linear complexity bounds
and “local-max Quadratic”, ubyg from the quadratic complexity ones, (Strzeboriski,
2010). However, its source code also contains implementations of Cauchy’s, (§ 2.2.1),
and Hong’s bound, (Hong, 1998), which we call “Kioustelidis’ Quadratic” in our
work as well as the “local-max”, ubyy and “first-\ Quadratic”, ubprg, bounds.
There is an undocumented system variable which allows to change the bound used to
any combination of those bounds. The new bounds have been added in Mathematica
version 7.

These bounds are always implicity used for calculating intervals isolating polyno-
mial real roots. Intervals are given by command RootIntervals. Real root isolation
is used by any Mathematica function that requires real algebraic number computa-
tion.

See the following examples:
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CHAPTER IV

Application of the New Bounds to Real Root

Isolation Methods

4.1 Introduction

In this chapter we apply the newly proposed linear and quadratic complexity (up-
per) bounds on the values of the positive roots of polynomials on a method for the
isolation of real roots of polynomials. Although there are many root isolations meth-
ods (based on continued fractions, bisection, exclusion, etc) that could greatly benefit
from our new sharper bounds we decided to study their impact on the performance of
the Vincent-Akritas-Strzebonski (VAS) method for the isolation of real roots of poly-
nomials. The VAS real root isolation method is based on continued fractions and till
today is considered the fastest among its rivals, having already being incorporated in
major mathematical software packages.

Computing (lower) bounds on the values of the positive roots of polynomials is a
crucial operation in the VAS method. Therefore, we begin by reviewing some basic

facts about this method, which is based on Vincent’s theorem®, ( Vincent, 1836):

'For a complete overview of Vincent’s theorem of 1836 and its implications to root isolation, see
(Akritas, 2010).
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Theorem IV.1 (Vincent, 1836). If in a polynomial, p(x), of degree n, with rational
coefficients and without multiple roots we perform sequentially replacements of the
form

1 1 1
T4~ +—, T4~ +—, T+ a3+ —,...
T T T

where ay > 0 1s an arbitrary non negative integer and aq, as, ... are arbitrary positive
integers, a; > 0, © > 1, then the resulting polynomial either has no sign variations or
it has one sign variation. In the last case the equation has exactly one positive root,

which 1s represented by the continued fraction

ay + ———g—
1
g+ agz+——

whereas in the first case there are no positive roots.

The thing to note is that the quantities «; (the partial quotients of the continued
fraction) are computed by repeated application of a method for estimating lower
bounds? on the values of the positive roots of a polynomial.

Therefore, the efficiency of the VAS continued fractions method heavily depends

on how good these estimates are.

4.2 Algorithmic Background of the VAS Method

In the sequel we present the VAS algorithm —as found in (Akritas and Strzeboriski,
2005)— and correct a misprint in Step 5 that had appeared in that presentation;

moreover, we explain where the new bound on the positive roots is used.

2A lower bound, £b, on the values of the positive roots of a polynomial f(z), of degree n, is
found by first computing an upper bound, ub, on the values of the positive roots of = f (%) and then
setting (b = L see (§ 2.1.2).
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4.2.1 Description of the VAS-Continued Fractions Algorithm

Using the notation of the paper Akritas and Strzeboriski (2005), let f € Z[z]\ {0}.
By sgc(f) we denote the number of sign changes in the sequence of nonzero coefficients

of f. For nonnegative integers a, b, ¢, and d, such that ad — bc # 0, we put

intrv(a,b, c,d) := @up.04((0,00))

where
b b b
Puped: (0,00) 32— Zj—l—'——d € (min(a, E),maac(g, 3))
and by interval data we denote a list
{a7 b’ C7 d’ p? S}

where p is a polynomial such that the roots of f in intrv(a,b,c,d) are images of
positive roots of p through @, .4, and s = sgc(p).
The value of parameter ag used in step 4 below needs to be chosen empirically.

In our implementation oy = 16.

Algortihm Continued Fractions (VAS).
Input: A squarefree polynomial f € Z[z] \ {0}

Output: The list rootlist of the isolation intervals of the positive roots of f.

1. Set rootlist to an empty list. Compute s < sge(f). If s = 0 return an empty

list. If s = 1 return {(0,00)}. Put interval data {1,0,0, 1, f, s} on intervalstack.

2. If intervalstack is empty, return rootlist, else take interval data {a, b, c,d, p, s}

off intervalstack.

3. Compute a lower bound « € Z on the positive roots of p.
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4. If a > ap set p(x) < plaz), a < aa, ¢ + ac, and «a + 1.

5. If a > 1, set p(x) < p(z + @), b < aa + b, and d < ac +d. If p(0) = 0, add
[b/d,b/d] to rootlist, and set p(x) < p(z)/x. Compute s < sge(p). If s =0 go

to step 2. If s = 1 add intrv(a,b, ¢, d) to rootlist and go to step 2.

6. Compute p;(z) < p(x + 1), and set a; < a, by < a+b, ¢; < ¢, d < c+d,
and 7 < 0. If p;(0) = 0, add [by/dy, b1 /d4] to rootlist, and set py(x) < p1(x)/z,
and r < 1. Compute s; < sgc(p1), and set $g «— s — 81— 7, ag < b, by < a+b,

co < d, and dy < c+d.

7. If s > 1, compute py(z) « (x4 1)"p(537), where m is the degree of p. If

p2(0) = 0, set pa(x) < po(x)/z. Compute sg < sgc(pa).
8. If 51 < s9, swap {a1, b1, c1,di, pr, s1} with {az, by, ¢, d2, p2, 52}

9. If 51 = 0 goto step 2. If s; = 1 add intrv(ay, by, c1,dy) to rootlist, else put

interval data {aq, by, cq,dy, p1, s1} on intervalstack.

10. If s = 0 goto step 2. If s, = 1 add intrv(ag, by, co,ds) to rootlist, else put

interval data {asg, bo, co, da, P2, S2}on intervalstack. Go to step 2.

Please note that the lower bound?, a, on the positive roots of p(x) is computed

in Step 3, and used in Step 5.

4.2.2 The Pseudocode of the VAS-Continued Fractions Algorithm

We present the pseudocode of the VAS-Continued Fractions Root Isolation Method,
below in Algorithm 9, lines 1-13. Note the repeated use of the lower bound (b in lines

4-5.

3As mentioned in (§ 2.2), Cauchy’s bound was the only one known and the first one to be used
in VAS, in 1978. This of course changed, in 2006, after we developed the new bounds.
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Input: The square-free polynomial p(z) € Z[z], p(0) # 0, and the Mdbius transformation

M) = 25 =2, a,bc,del

Output: A list of isolating intervals of the positive roots of p(z)

var <— the number of sign changes of p(z);

if var = 0 then RETURN 0;

if var =1 then RETURN {]a,b[} // a = min(M(0) ,M(c0)), b = max(M(0),M(c0));
¢b +— a lower bound on the positive roots of p(z);

if b > 1 then {p +— p(xz + £b), M <— M (x + £b)};

po1 +— (z 4+ 1)29®P)p(L) Moy «— M(-1+) // Look for real roots in |0,1[;

x+1 x+1
m<— M(1) // Is 1 a root? ;

Plooc «— p(x + 1), Mico — M(xz+ 1) // Look for real roots in |1,4o0[;

© 0w N O oA W N =

if p(1) # 0 then

=
o

‘ RETURN VAS(p()l,Mol) UVAS(ploo,Mloo)

[y
Y

else

Ju—
[

‘ RETURN VAS(po1, Mo1) U{[m, m|} U VAS(p1oc, M1oo)

=
w

end

Algorithm 9: VAS-Continued Fractions Algorithm.

4.2.3 Example of the Real Root Isolation Method

Executing Algorithm 9 for the polynomial 8z* — 182% + 92 — 2 which has one

negative, —v/2/2 and three positive real roots, 1/4, v/2/2 and 2, we have:
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St~ 18r 4 0x — 2
]
V=ad ] h=0 ub= -
Mix)==x 1
r+—x+1 T

r+1

. , —2xt 4+ 2P+ 152+ -3
8z* + 142° — 622 — 132 — 3

V=2 ih=1
Miz) = —
! r+1
r—x+1 1
T +—
r+1
—22% — T3 + 622 + 26 + 12
ﬂ-.l.r =r+ 1
V=1 M0y =1
, a4 1.3 ,
M (ub) = 13 Jxr 11x? + 222+ 12
4
13
* 1
[]-3 ] ﬂ-_l.r =
4 r+2 1
1 I
F [ e ﬂ-.{ =

V=1 M0} = 5 Voo S

1

Mioc) =0 M(0) =

[“! _] 1 i

2

Z 1] M) =1
501

Figure 4.1: Tree-diagram of the VAS-CF Real Root Isolation Algorithm 9, for the
polynomial 8z* — 1823 + 9z — 2.
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4.3 Benchmarking VAS with New Bounds

In this section we compare four implementations of the VAS real root isolation
method using two linear and two quadratic complexity bounds on the values of the
positive roots of polynomials.

The two linear complexity bounds are: Cauchy’s, ubc and min(ubgr, ubry), the
minimum of “first—\" and “local-max” bounds, (Akritas, Strzeboriski, and Vigklas,
2006), whereas the two quadratic complexity ones are: ubk, the Quadratic complex-
ity variant of Kioustelidis” bound, studied by Hong, (Hong, 1998), and ubrag, the
Quadratic complexity version of the “local-mazx” bound, (Akritas, Strzeboriski, and
Vigklas, 2008a).

Our choice of the various bounds in the implementations of VAS is justified as

follows:
1. From the linear complexity bounds we included:

(a) Cauchy’s bound, ube, to be used as a point of reference, since it has been

in use for the past 30 years, and

(b) min(ubpr, ubrar) bound, (Akritas, Strzeboriski, and Vigklas, 2006), which
is the best among the linear complexity bounds, in order to see when
it’s implementation will outperform that of the two quadratic complexity

bounds.
2. From the quadratic complexity bounds we included:

(a) Kioustelidis’ bound, ubgg and

(b) ubprq bound in order to compare their performance; as explained in the

previous chapter ubr g computes sharper estimates than ubg.

45

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 05:25:06 EET - 137.108.70.7



They all use the same implementation of Shaw and Traub’s algorithm for Taylor
shifts (von zur Gathen and Gerhard, 1997). We followed the standard practice and
used as benchmark the Laguerre, Chebyshev (first and second kind), Wilkinson and
Mignotte polynomials*, as well as several types of randomly generated polynomials of
degrees {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000}. For the random

polynomials the size of the coefficients ranges from —2%° to 220,

4For exact mathematical formulas of the benchmark polynomials, please see the Appendix.
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Table 4.1: Special polynomials of some indicative degrees.

Institutional Repository - Library & Information Centre - University of Thessaly
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Polynomial | Degree ubc min(ubpr, ubpy) | ubxg(Hong) | ubpag
Class Time(s) Time(s) Time(s) Time(s)

Laguerre 100 0.23 0.19 0.19 0.17
Laguerre 1000 979 665 729 633
Laguerre 1500 7194 4903 5356 4569

Laguerre 2000 27602 21007 22712 19277
Chebyshevl 100 0.19 0.17 0.16 0.11
Chebyshevl 1000 517 460 496 299
Chebyshevl 1500 3681 3333 3381 2188

ChebyshevI | 2000 16697 15010 14571 10473
ChebyshevIl 100 0.42 0.17 0.15 0.10
ChebyshevII | 1000 529 437 443 296
ChebyshevII | 1500 3772 3198 3190 2166

ChebyshevII | 2000 16559 14492 14370 10184
Wilkinson 100 0.03 0.03 0.03 0.03
Wilkinson 1000 54.6 44.5 43.7 43.3
Wilkinson 1500 339 295 270 265
Wilkinson 2000 1361 1305 1241 1242

Mignotte 100 0.008 0.004 0.008 0.004
Mignotte 1000 0.79 0.78 0.81 0.66
Mignotte 1500 2.05 2.12 2.06 1.77
Mignotte 2000 4.52 4.37 4.47 3.69
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Table 4.2: Polynomials with random 10-bit coefficients.

Degree No. of roots ubc min(ubpr, ubp) ubgg(Hong) ubpmo

Time(s) Time(s) Time(s) Time(s)
Avg(Min/Maz) | Avg(Min/Maz) | Avg(Min/Maz) | Avg(Min/Maz) | Avg(Min/Maz)
100 14 (2/6) 0.01 (0.00/0.01) | 0.01 (0.01/0.02) | 0.01 (0.01/0.02) | 0.01 (0.01/0.01)
200 10 (2/8) 0.06 (0.02/0.18) | 0.06 (0.03/0.16) | 0.05 (0.03/0.14) | 0.04 (0.03/0.09)
300 18 (4/6) 0.14 (0.07/0.24) | 0.12 (0.06/0.22) | 0.13 (0.07/0.19) | 0.09 (0.07/0.13)
400 44 (4/6) 0.17 (0.12/0.21) | 0.18 (0.12/0.25) | 0.17 (0.12/0.20) | 0.16 (0.12/0.20)
500 18 (2/8) 0.70 (0.21/1.96) | 0.54 (0.20/1.22) | 0.3 (0.21/0.56) | 0.32 (0.20/0.50)
600 5.2 (4/6) 0.96 (0.46/1.41) | 0.86 (0.51/1.25) | 0.60 (0.42/0.84) | 0.53 (0.42/0.72)
700 1.0 (2/6) 0.05 (0.45/1.68) | 0.81 (0.44/1.33) | 0.82 (0.44/1.25) | 0.69 (0.50,0.91)
800 5.2 (4/8) 1.97 (0.67/4.09) | 1.68 (0.74/3.33) | L.22 (0.71/2.25) | 1.02 (0.72/1.70)
900 3.6 (2/6) 2.56 (0.68/7.15) | 2.27 (0.72/6.13) | 1.44 (0.71/2.55) | 1.19 (0.67/1.87)
1000 6.4 (4/8) 1.07 (1.63/9.02) | 3.56 (1.54/7.64) | 2.86 (1.57/4.51) | 2.06 (1.38/3.13)
1500 1.0 (2/6) 10.6 (2.73/26.1) | 7.51 (2.33/13.9) | 5.78 (2.35/10.1) | 5.24 (2.43/7.77)
2000 6.8 (4/12) | 53.8 (7.54/137) | 45.5 (7.00/118) | 23.3 (7.67/53.9) | 19.1 (7.61/40.2)

Table 4.3: Polynomials with random 1000-bit coefficients.

Degree No. of roots ubc min(ubgr,, ubrar) ubgq(Hong) ubryg

Time(s) Time(s) Time(s) Time(s)
Avg(Min/Maz) | Avg(Min/Maz) | Avg(Min/Maz) | Avg(Min/Maz) | Avg(Min/Mazx)
100 10 (4/4) 0.01 (0.00/0.02) | 0.01 (0.00/0.02) | 0.01 (0.00/0.02) | 0.01 (0.00/0.02)
200 3.6 (2/6) 0.06 (0.03/0.12) | 0.05 (0.02/0.10) | 0.04 (0.02/0.06) | 0.03 (0.01/0.06)
300 18 (2/8) 0.12 (0.04/0.32) | 0.11 (0.04/0.28) | 0.10 (0.04/0.23) | 0.09 (0.04/0.17)
400 14 (2/6) 0.29 (0.06/0.54) | 0.25 (0.06/0.44) | 0.24 (0.06/0.44) | 0.16 (0.06/0.25)
500 5.2 (4/8) 0.68 (0.16/1.20) | 0.55 (0.17/0.95) | 0.45 (0.21/0.92) | 0.32 (0.21/0.48)
600 3.6 (2/4) 0.76 (0.10/2.09) | 0.54 (0.18/0.96) | 0.43 (0.19/0.66) | 0.39 (0.18/0.52)
700 3.6 (0/6) 1.26 (0.25/2.82) | 1.28 (0.19/2.51) | 0.85 (0.19/1.54) | 0.68 (0.19/1.29)
800 14 (2/6) 3.03 (0.29/5.50) | 2.53 (0.26/4.76) | 1.08 (0.34/1.68) | 0.93 (0.27/1.53)
900 5.6 (4/8) 455 (1.05/9.32) | 3.72 (1.02/7.53) | 2.23 (1.00/3.09) | 1.59 (0.76/2.68)
1000 3.6 (2/6) 2.42 (0.46/4.62) | 2.06 (0.44/3.92) | 1.27 (0.40/2.00) | 1.04 (0.42/1.68)
1500 5.6 (4/8) 16.1 (2.30/40.2) | 9.41 (1.99/18.2) | 7.17 (2.10/11.9) | 5.63 (1.96/10.8)
2000 5.2 (4/6) 23.3 (4.12/79.8) | 19.4 (4.03/65.4) | 13.2 (4.33/33.4) | 10.4 (4.11/20.2)

48

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 05:25:06 EET - 137.108.70.7




Table 4.4:

Monic polynomials with random 10-bit coefficients.

Degree No. of roots ubc min(ubgr,, ubrar) ubgq(Hong) ubrmo

Time(s) Time(s) Time(s) Time(s)
Avg(Min/Mazx) | Avg(Min/Maz) | Avg(Min/Maz) | Avg(Min/Mazx) | Avg(Min/Mazx)
100 18 (2/9) 0.01 (0.01/0.02) | 0.01 (0.00/0.02) | 0.01 (0.01/0.02) | 0.01 (0.00/0.02)
200 5.6 (4/6) 0.08 (0.03/0.16) | 0.06 (0.03/0.13) | 0.06 (0.03/0.09) | 0.05 (0.03/0.08)
300 18 (4/6) 0.12 (0.08/0.22) | 0.12 (0.08/0.21) | 0.12 (0.08/0.15) | 0.10 (0.08/0.15)
400 18 (4/6) 0.19 (0.19/0.29) | 0.19 (0.16/0.26) | 0.18 (0.15/0.26) | 0.17 (0.16/0.20)
500 5.2 (4/10) | 0.4 (0.18/1.38) | 0.42 (0.18/1.19) | 0.33 (0.18/0.74) | 0.32 (0.19/0.63)
600 5.6 (4/8) 0.99 (0.30/2.04) | 0.76 (0.30/1.21) | 0.65 (0.31/0.94) | 0.49 (0.30/0.72)
700 2 (4/8) 1.14 (0.43/1.63) | 0.99 (0.42/1.47) | 0.92 (0.46/1.30) | 0.73 (0.49/0.94)
800 6 (4/8) 1.45 (0.66/1.99) | 1.29 (0.64/1.62) | 1.22 (0.65/1.42) | 0.90 (0.69/1.03)
900 1(2/6) 1.01 (0.74/1.18) | 1.01 (0.71/1.31) | 1.05 (0.69/1.36) | 1.09 (0.72/1.33)
1000 6 (4/8) 3.40 (1.18/7.09) | 3.02 (1.03/5.94) | 2.41 (1.10/4.28) | 1.72 (1.10/2.70)
1500 8 (6/8) 148 (6.06/27.3) | 11.8 (5.86/17.1) | 8.43 (5.98/12.9) | 6.80 (4.90/9.24)
2000 7.6 (4/14) | 54.8 (6.12/137) | 47.6 (6.09/120) | 23.9 (6.15/56.0) | 19.4 (6.03/42.2)

Table 4.5: Monic polynomials with random 1000-bit coefficients.

Degree No. of roots ubg min(ubpr, ubrar) ubgxg(Hong) ubravg

Time(s) Time(s) Time(s) Time(s)
Avg(Min/Mazx) | Avg(Min/Mazx) | Avg(Min/Maz) | Avg(Min/Maz) | Avg(Min/Maz)
100 6.0 (4/8) 0.03 (0.02/0.04) | 0.01 (0.01/0.03) | 0.0L (0.00/0.02) | 0.01 (0.00/0.02)
200 2 (4/8) 0.09 (0.02/0.22) | 0.07 (0.02/0.19) | 0.04 (0.02/0.11) | 0.04 (0.03/0.06)
300 6 (4/8) 0.19 (0.06/0.46) | 0.14 (0.07/0.28) | 0.12 (0.06/0.24) | 0.14 (0.07/0.26)
100 2 (4/8) 0.41 (0.08/1.00) | 0.24 (0.06/0.54) | 0.21 (0.06/0.44) | 0.15 (0.06/0.28)
500 6 (4/8) 0.62 (0.18/1.00) | 0.39 (0.12/0.68) | 0.45 (0.12/0.74) | 0.26 (0.12/0.37)
600 18 (4/6) 1.03 (0.24/3.00) | 0.52 (0.17/1.21) | 0.37 (0.17/0.68) | 0.32 (0.17/0.59)
700 5.2 (2/10) 1.27 (0.20/2.67) | 1.02 (0.21/1.84) | 0.86 (0.19/1.43) | 0.65 (0.19/1.09)
800 5.6 (4/8) 2.92 (0.43/5.41) | 2.40 (0.39/4.46) | 1.02 (0.38/2.02) | 0.79 (0.38/1.38)
900 6.0 (4/8) 122 (0.84/9.86) | 2.67 (0.80/5.78) | 1.84 (0.88/2.47) | 1.43 (0.74/2.22)
1000 5.6 (4/6) 123 (2.21/5.86) | 2.00 (1.34/4.21) | 2.23 (1.34/3.52) | 1.44 (1.15/1.84)
1500 6.8 (6/8) 17.1 (26.06/41.8) | 11.4 (5.25/28.2) | 8.28 (4.86/15.7) | 5.4 (3.30/10.4)
2000 6.4 (6/8) 30.6 (4.80/102) | 24.0 (4.59/80.9) | 16.7 (4.60/474) | 12.6 (5.02/35.9)
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Table 4.6: Products of terms 2?° — r, with random 20-bit 7.

Degree | No. of roots ube man(ubgr, ubpr) ubgo(Hong) ubrag
Time(s) Time(s) Time(s) Time(s)
Avg(Min/Mazx) | Avg(Min/Max) | Avg(Min/Maz) | Avg(Min/Mazx)
100 10 0.05 (0.02/0.09) | 0.05 (0.02/0.09) | 0.03 (0.02/0.04) | 0.02 (0.02/0.02)
200 20 0.31 (0.18/0.39) | 0.27 (0.16/0.38) | 0.24 (0.16/0.32) | 0.15 (0.12/0.20)
300 30 1.07 (0.58/1.37) | 0.89 (0.60/1.11) | 0.87 (0.60/1.04) | 0.57 (0.56/0.60)
400 40 2.22 (1.92/2.58) 1.97 (1.86/2.27) 1.94 (1.86/2.08) 1.50 (1.35/1.70)
500 50 851 (6.03/11.5) | 5.32 (4.24/7.28) | 4.55 (4.25/5.32) | 3.24 (2.87/3.74)
600 60 13.9 (11.7/17.0) 9.15 (8.28/10.2) 8.96 (8.43/9.35) 6.43 (5.96/6.84)
700 70 24.6 (21.7/29.1) | 17.2 (13.7/21.2) | 16.5 (13.3/19.7) | 12.1 (10.6/14.0)
800 80 38.0 (33.7/44.2) | 26.3 (23.6/30.4) | 24.4 (19.4/30.3) | 17.2 (15.1/19.3)
900 90 53.7 (40.4/63.8) | 43.5 (37.0/51.5) | 37.0 (28.8/45.8) | 29.5 (23.1/36.6)
1000 100 89.6 (70.9/103) | 69.1 (52.2/78.5) | 63.9 (45.4/76.5) | 50.0 (42.1/58.)
1500 150 577 (468/696) | 456 (378/533) | 429 (360/473) | 353 (3.11/402)
2000 200 9228 (1917/2711) | 1007 (1674/2342) | 1808 (1614/2279) | 1464 (1204/1767)
Table 4.7: Products of terms z2° — r, with random 1000-bit 7.
Degree | No. of roots ube man(ubgr, ubpar) ubgo(Hong) ubrmo
Time(s) Time(s) Time(s) Time(s)
Avg(Min/Mazx) | Avg(Min/Maz) | Avg(Min/Mazx) | Avg(Min/Max)
100 10 0.08 (0.05/0.10) | 0.08 (0.05/0.12) | 0.11 (0.06/0.31) | 0.09 (0.03/0.23)
200 20 1.65 (0.96/2.14) | 1.42 (0.97/2.09) | 1.28 (1.02/0.1.45) | 1.31 (1.10/1.50)
300 30 754 (5.08/10.8) | 5.20 (4.46/5.65) | 4.8% (3.67/5.49) | 4.24 (3.92/4.69)
400 10 15.7 (10.8/19.7) | 15.7 (13.3/17.5) | 14.7 (12.7/17.3) | 12.7 (11.0/14.1)
500 50 124 (29.2/64.7) | 445 (35.2/48.7) | 35.5 (32.8/40.5) | 35.0 (27.5/49.7)
600 60 117 (91.9/154) 106 (82.6/134) 103 (90.0/121) 92.0 (86.5/97.0)
700 70 248 (208/332) | 252 (221/282) | 240 (205/264) | 180 (163/205)
800 80 549 (351/753) | 481 (410/590) | 474 (412/542) | 382 (364/432)
900 90 1138 (971/1271) | 855 (721/967) | 834 (718/931) | 670 (646/723)
1000 100 1661 (1513/1913) | 1335 (1123/1673) | 1265 (1066/1440) | 1065 (947/1146)
1500 150 0004 (3233/9705) | 8360 (7281/8999) | 8230 (7357/9652) | 6141 (5659/6470)
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Table 4.8: Products of terms x — r with random integer 7.

Bit-length | Degree ube min(ubpr, ubpar) ubgg(Hong) ubrarg
Time(s) Time(s) Time(s) Time(s)
of roots Avg(Min/Maz) | Avg(Min/Mazx) | Avg(Min/Mazx) | Avg(Min/Max)
10 100 | 0.46 (0.28/0.94) | 0.24 (0.18/0.28) | 0.34 (0.27/0.41) | 0.34 (0.30/0.41)
10 200 1.46 (1.24/1.85) | 1.40 (1.28/1.69) | 1.41 (1.26/1.71) | 1.40 (1.20/1.69)
10 500 | 18.1 (16.5/18.9) | 18.1 (16.6/18.8) | 21.2 (17.5/24.4) | 22.1 (18.7/24.2)
1000 20 0.07 (0.04/0.14) | 0.02 (0.02/0.03) | 0.03 (0.02/0.04) | 0.03 (0.02/0.04)
1000 50 | 3.69 (2.38/6.26) | 0.81 (0.60/1.28) | 0.88 (0.52/1.28) | 0.81 (0.52/1.11)
1000 100 | 47.8 (37.6/56.9) | 13.8 (10.3/19.2) | 17.6 (12.4/25.9) | 15.8 (11.3/21.3)

Figure 4.2: The average speed — up of the VAS algorithm for each Table (4.1-4.8) using the
min(ubpr, ubrar) and ubrarg against Cauchy’s bound, ubc.
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Summarizing the testing results® from Tables 4.1 through 4.8 above we have
the Figure 4.2. The time gain for min(ubpr,ubry) and ubryo against Cauchy’s
bound, ubc, was calculated for every row using the formulas: Speed — up = 100 -
|min(ubpr, ubpa) —ube|/ube and Speed —up = 100+ |ubgnrqg — ubc|/ube, respectively.
Then, for every Table, the average value of Speed — up was computed giving a rough
overall estimation on time gain that VAS algorithm received after the incorporation
of the new bounds.

Taking these test results into consideration, one could safely conclude that us-
ing the new proposed bounds (linear or quadratic) in VAS real root isolation algo-
rithm would see a average overall improvement in computation time of about 20%
for min(ubpr, ubryr) and about 40% for uby g bound.

Also, notice that uby g is fastest for all classes of polynomials tested, except for
the case of very many very large roots, Table 4.8. In the case of very many very
large roots VAS using ubr g is a very close second to VAS using our linear complexity
bound min(ubpr, ubrar)®.

We end this chapter by presenting the following graph, Figure 4.3. This graph
depicts the overall time of VAS-CF in comparison with the time spent for computing
bounds. Especially, the left scale shows the total time in seconds (bars) needed by
VAS-CF to isolate the roots of a certain class of polynomials (Laguerre) using both
ubrar, the “local-max” bound, and ubrrg, its quadratic version. The right scale
is associated with the two curves which show the total time spent by VAS-CF in

computing just these bounds.

5The change in memory use was negligible in every case, and hence, it is not included. Also,
timing results are subject to measurement error, which especially affect small timings.

SFor additional discussion on these conclusions, see (Akritas, Strzeboriski, and Vigklas, 2007),
(Akritas, Strzeboriski, and Vigklas, 2008b) and (Akritas, 2009).
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Laguerre Polynomials
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Figure 4.3: Computation times for the Laguerre polynomials of degree (100...1000). The
VAS-CF(LM), VAS-CF(LMQ), (LM), and (LMQ) are described above in the text.
Note that the bars are scaled to the left Y axis whereas the lines to the right
one.
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CHAPTER V

Conclusions

5.1 Final Note

This thesis was motivated by an old, but still important for many modern scientific
fields, problem in polynomial algebra, namely, the determination of upper bounds on
the values of the positive roots of polynomials. The widespread development and use
of computer algebra systems, (CAS), along with an increasing interest in root isolation
methods, provided a fruitful context for reexamination of this classical problem.

We have presented and analyzed a variety of algorithms both of linear and quadratic
computational complexity that take advantage of a theorem that we extended, in or-
der to establish a unified general framework in which the classical ones fitted perfectly
and new ones came out naturally. These algorithms are simple in implementation, and
in most cases outperform in speed and accuracy the established preexisting methods.

The incorporation of these new bounds in the Vincent-Akritas-Strzebonski, (VAS),
continued fractions polynomial real root isolation algorithm offered a significant speed-
up to an already fast method extending significant the range of its applicability and
its robustness.

The immediate adoption of our new algorithms by major mathematical software
systems, such as Mathematica and Sage, bear witness to their usefulness and their

effectiveness. However, this thesis is by no means exhaustive and questions such as:
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e [s there an optimal way to break up the coefficients in the“first-\" method?

e [s it possible to extend these bounds to multivariate polynomials with similar

success?

e Can these bounds be suitably modified to constitute a complex analogue for

polynomials with complex coefficients?

and many others, seek to be answered by our long term on-going research.
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APPENDIX A

Theorems on the Number of Real Roots of a

Polynomial

A.1 Number of Real Roots of a Polynomial in an Interval

After the bounds of the positive and negative real roots of the polynomial equation
p(z) = 0 have been calculated according to the methods presented in Chapter 3.2
the next question that arises concerns the number of real roots of a polynomial in a
given interval (a,b). A picture of the number of real roots of equation p(z) = 0 in
an interval (a,b) is shown in Figure A.1, for the function y = p(z), where the roots
x1, T2, 3 are found as the points of intersection of the graph with the x-axis. We note
that (a) If p(a)p(b) < 0, then on the interval (a,b) there is an odd number of roots of
p(z), counting multiplicities, (b) If p(a)p(b) > 0, then on the interval (a,b) there are
either no roots of p(x) or there is an even number of such roots. The question of the
number of real roots of an algebraic equation in a given interval is solved completely
by the Sturm method, (Kurosh, 1988). Before going into that let us introduce the

notion of the number of sign changes in a set of numbers.
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Figure A.1: A polynomial with three positive real roots.

Definition A.1. Suppose we have an ordered finite set of real numbers different from

Zero:

r1,T9,...77 (l > 2) (Al)

We say that there is a change of sign for a pair of two successive elements 7, rg 1 of

(A.1) if these elements have opposite signs, that is,

Terk+1 < 0 (A.2)

and there is no change of sign if the signs are the same:

Terk+1 > 0 (A.3)

The total number of changes of sign in all pairs of successive elements ry, rr41(k =
1,2,...0—1) of (A.1) is called the number of sign changes or variations of sign, (Var),

in (A.1).

Example A.2. Consider the polynomial p(z) = 2® — 722 + 7. The sequence of its

coefficients is {1, —7,0, 7} which shows a number of sign variations equal 2, (Var = 2).
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A.1.1 Sturm’s Theorem (1827)

For a given polynomial p(z), we can form the Sturm sequence

p(@), p1(2), p2(2), e Pin () (A.4)

where py(x) = p/(z), p2(x) is the remainder, with reversed sign, left after the division
of the polynomial p(z) by pi(x), ps(x) is the remainder, with reversed sign, after
the division of the polynomial p;(z) by ps(z), and so on. The polynomials py(z)(k =
2,...,m) may be computed by a modified Euclidean algorithm. If the polynomial p(z)
does not have any multiple roots, then the last element p,,(z) in the Sturm sequence
is a nonzero real number.

If we represent by Var(r) the number of sign changes in a Sturm sequence for
x = r, provided that the zero elements of the sequence have been ignored, we have

the Sturm’s theorem:

Theorem A.3 (Sturm (1827)). If a polynomial p(x) does not have multiple roots
and p(a) # 0, p(b) # 0, then the number of its real roots N(a,b) in the interval
a < x < bis exactly equal to the number of lost sign changes in the Sturm sequence

of the polynomial p(z) when going from x = a to x = b, that is,

N(a,b) = Var(a) — Var(b) (A.5)

Corollary A.4. If p(0) # 0, then the number Nt of positive and the number N~ of

negative roots of the polynomial p(x) are respectively:

N =Var(0) — Var(4+o0) (A.6a)

N~ =Var(—oo) — Var(0) (A.6b)
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Corollary A.5. For all the roots of a polynomial p(x) of degree n to be real, in the
absence of multiple roots, it is necessary and sufficient that the following condition
holds:

Var(—oo) — Var(4+o00) =n (A7)

Example A.6. Let us determine the number of positive and negative roots of the

equation p(z) = 27 — 7z + 1. The Sturm sequence is

pr)=2"—Tz+1 (A.8a)
pi(z) =2%—1 (A.8b)
pa(z) = 6z — 1 (A.8¢)
ps(x) = 46655 (A.8d)
Var(—oo) =3, Var(0) =2, Var(+oo)=0 (A.9)

We find that equation p(z) = 27 — 7z + 1 has

Nt =2-0=2 positive roots (A.10a)

N~ =3-2=1 negative roots (A.10Db)

and its rest four roots are complex roots. We can easily deduce here a way to isolate
the roots of algebraic equations by using Sturm sequence in order to partition the
interval (a,b) containing all the real roots of the equation into a finite number of

subintervals («, 8) such that Var(a) — Var(5) = 1.
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A.1.2 Fourier’s Theorem (1819)

Sturm arrived at his method (1827) by extending an earlier theorem by Fourier
(1819). Let us return to the method described above (A.1) for the counting of the

number variations of sign in a sequence of numbers:

Definition A.7. Suppose we have a finite ordered sequence of real numbers:

T1,T2, .y T (A.11)

where r; # 0 and 7, # 0. We define: (a) lower number of variations of sign Var,
of the sequence (A.11) for the number of sign changes in an appropriate subsequence
that does not contain zero elements and (b) upper number of variations of sign Var,,
of a sequence of numbers (A.11) for the number of sign changes in a transformed

sequence of (A.11) where the zero elements

Th =Tht1 = ... = Igpm—1 =0 (A.12)

(ri—1 # 0, 7k1m # 0) are replaced by the elements 74,;(i = 0,1,2,...,m — 1) such that

sgn(Fies) = (1) sgn(rim) (A.13)

It is clear that if (A.11) has no zero elements, then the number Var of sign changes
in the sequence coincides with its lower Vary, and upper Var,, number of variation

of sign: Var = Var, = Var,, whereas generally Var,, > Var,.

Example A.8. Let us determine the lower and upper number of changes of sign in
the sequence 1, 0,0, —1, 1. Omitting the zeros, we have Var;, = 2. To calculate Var,,

using (A.13), we form the sequence 1, -0, 0, —1,1 where ¢ > 0, and Var,, = 4.

Theorem A.9 (Fourier, 1820). If the numbers a and b (a < b) are not roots of a

polynomial p(x) of degree n, then the number N(a,b) of real roots of the equation
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p(z) = 0 lying between a and b is equal to the minimal number AVar of the sign

changes lost in the sequence of successive derivatives

"), p"(2) (A.14)

when going from x = a to x = b, or less that AVar by an even number: N(a,b) =
AVar — 2k where AVar = Var,(a) — Vary,(b) and Var,(a) is the lower number of

variations of sign in the sequence (A.14) for x = a, Var,,(b) is the upper number of

variations of sign in that sequence for x =b [k =0,1,..., E(8%%)]

Fourier’s theorem is the only one found in the literature under the names: Budan,
Budan-Fourier, Fourier or Fourier-Budan. We expalin why in the sequel. In the
above theorem it is assumed that each root of the equation p(z) = 0 is counted
according to its multiplicity. If the derivatives p*(z) (k =1,2,...,n) do not vanish
at r = a and x = b, then counting the signs is simplified and AV ar becomes AVar =

Var(a) — Var(b).

Corollary A.10. . If AVar = 0, then there are no real roots of the equation p(x) = 0

between a and b.

Corollary A.11. . If AVar =1, then there is exactly one real root of the equation

p(z) =0 between a and b.

A.1.3 Descartes’ Theorem (1637)

Somewhat easier in applications, but still unable to determine precisely the num-
ber of roots, is Descartes’ rule of signs (given in his work Geometrie in 1637 and

proved by Gauss in 1828), (Bartolozzi and Franci, 1993).

Theorem A.12 (Descartes’ rule of signs, 1637). The number of positive roots of an
algebraic equation p(x) = 0 such that a root of multiplicity m being counted as m

roots, is equal to the nummber of variations in sign in the sequence of coefficients
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Apy Ap—1,Ap—2, ..., AQ <A15)

(where the coefficients equal to zero are not counted) or less than that by an even

integer.

Clearly, Descartes’ rule of sign is an application of the Fourier theorem to the

interval (0, +00). Since

p(x) = azz”™ + ... + ag (A.16a)

P(z) =na, 2" '+ ...+ (A.16D)

PP () =n(n — Daz" 2+ ... + 2a, (A.16¢)
(A.16d)

(A.16e)

(A.16f)

p™(z) = nlay, (A.16g)

sequence (A.15) is, to within positive factors, a collection of derivatives pt)(0) (k =
0,1,2...,n) written in ascending order, i.e. ag, a, 2as, ..., nla,, therefore, the number
of variations in sign in the sequence (A.15) is equal to Var,,(0), zero coefficients not
counted. On the other hand, the derivatives p®)(+00) (k= 0,1,2...,n) have no sign

variations and follows that Var,,(+00) = 0. Then, we have

AVar = Var,,(0) — Vary,(+o00) = Var,(0) (A.17)

and on the basis of the Fourier theorem, the number of positive roots of p(x) = 0 is

either equal to AVar or is less than that by an even integer.

Corollary A.13. If the coefficients of p(x) = 0 are different from zero, then the
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number of negative roots of p(x) = 0, counting multiplicities, is equal to the number
of non-variations of sign in the sequence (A.15) of its coefficients or is less than that

by an even integer. The proof of this follows directly from the application of Descartes

rule to the polynomial p(—zx).

A.1.4 Budan’s Theorem (1807)

Budan’s theorem of 1807 is equivalent to, but not the same, as, Fourier’s theo-
rem. Due to this equivalence, it was not considered essential and therefore, it was
only Fourier’s theorem that gained popularity among researchers. Budan’s theorem
appears in the literature only in Vincent’s paper, (Vincent, 1836) and in Akritas’
work, (Akritas, 1982). Budan’s theorem despite its similarity to Fourier’s, leads in a

different direction. It states:

Theorem A.14 (Budan, 1807). If in an algebraic equation p(x) = 0, we make two
distinct substitutions v = a+1z' and x = S+ 2", where a and 5 are real numbers and

a < f3, getting the equations A(z') = >  a;x' =0 and B(2") =Y bx' = 0. Then
o Var(a;) > Var(b)

o The number of real roots of p(x) = 0 between o and B is: N(«, ) = Var(a;) —

Var(b;) — 2k, where as above k is an integer and k > 0.

To see that this theorem is equivalent to Fourier’s theorem we must replace, in
Fourier’s sequence, by any real number c. Then, the n + 1 resulting numbers are
proportional to the corresponding coefficients of the transformed polynomial equation
plr +¢) = Zogign[p(i)(c) /il]z’ obtained by Taylor’s expansion theorem. Budan’s
theorem is the base of Vincent’s theorem that plays an important role to the real

root isolation algorithms.

64

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 05:25:06 EET - 137.108.70.7



APPENDIX B

Mathematical Formulas of Testing Polynomials

B.1 Mathematical Formulas of the Benchmark Polynomials

Below we present the exact mathematical formulas of the polynomials that were
used for the tests, during the computational evaluation of the various bounds. We
followed the standard practice and used as benchmark the Laguerre polynomials

recursively defined as:

Li(z)=1—x (B.1b)
Loo(z) = %H((Qn 1= @)L (x) — nln 1 (2)) (B.1¢)

Chebyshevl of the first kind recursively defined as:

To(x) =1 (B.2a)

Ti(x) =z (B.2b)

Toi1(x) = 22T, (x) — Th—1 () (B.2¢)
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Chebyshevll of the second kind recursively defined as:

Up(z) =1 (B.3a)
Up(z) =2z (B.3b)
Upni1(x) = 22U, (z) — Up_q(x) (B.3c)

Wilkinson recursively defined as:

W(z) =[] (z 1) (B.4a)
Mignotte recursively defined as:
M,(z) = 2" — 2(bx — 1) (B.5a)

as well as several types of randomly generated polynomials of degrees {100,200, 300,
400, 500, 600, 700, 800, 900, 1000, 1500, 2000}. For the random polynomials the size of
the coefficients ranges from —22° to 22°.  “uRandom” indicates a random polynomial
whose leading coefficient is one, whereas ¢ “sRandom” indicates a random polynomial
obtained with the randomly chosen seed 1001; also “pRandom” denotes products of

factors (x-randomly generated integer root p(z) = [ ogrec(® — 1))
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