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ABSTRACT

This thesis describes new results on computing bounds on the values of the positive

roots of polynomials. Bounding the roots of polynomials is an important sub-problem

in many disciplines of scientific computing.

Many numerical methods for finding roots of polynomials begin with an estimate

of an upper bound on the values of the positive roots. If one can obtain a more

accurate estimate of the bound, one can reduce the amount of work used in searching

within the range of possible values to find the root (e.g. using a bisection method).

Also, the computation of the real roots of higher degree univariate polynomials

with real coefficients is based on their isolation. Isolation of the real roots of a

polynomial is the process of finding real disjoint intervals such that each contains one

real root and every real root is contained in some interval. To isolate the real positive

roots, it is necessary to compute, in the best possible way, an upper bound on the

value of the largest positive root. Although, several bounds are known, the first of

which were obtained by Lagrange and Cauchy, this thesis revealed that there was

much room for improvement on this topic. Today, two of the algorithms presented

in this thesis, are regarded as the best (one of linear computational complexity and

the other of quadratic complexity) and have already been incorporated in the source

code of major computer algebra systems such as Mathematica and Sage.

A certain part of this thesis is also devoted to the analytical presentation of the

continued fraction real root isolation method. Its algorithm and its underlying com-

ponents are presented thoroughly along with a new implementation of the method

using the above mentioned bounds. Intensive computational tests verify that this

viii
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implementation makes the continued fraction real root isolation method the fastest

among its rivals.

After almost thirty years of usage and development, the continued fractions real

root isolation algorithm, introduced back in 1976 by A. Akritas, continues today to

efficiently tackle a basic but still important mathematical problem, the solution of a

polynomial equation. The revived interest in this algorithm is motivated by the need

to solve, in real time, polynomial equations of higher degrees in such diverse scien-

tific fields as control theory, financial theory, signal processing, robotics, computer

vision, computer-aided-design, geometric modeling, industrial problems, to name a

few. The usage of the continued fraction real root isolation algorithm from major

commercial and open source mathematical solvers proves its robustness. This thesis

has contributed towards this direction.

ix
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ABSTRACT (in greek) 

 

Αυτή η διατριβή παρουσιάζει νέα αποτελέσματα σε ότι αφορά τον 

υπολογισμό των άνω ορίων των τιμών των θετικών ριζών των πολυωνυμικών 

εξισώσεων. Ο υπολογισμός αυτών των άνω ορίων αποτελεί ένα σημαντικό 

πρόβλημα σε πολλά διαφορετικά πεδία των επιστημονικών υπολογισμών και 

εφαρμογών. 

Υπάρχουν σήμερα πολλές αριθμητικές μέθοδοι για την εύρεση των ριζών 

των πολυωνυμικών εξισώσεων που ξεκινούν με μια εκτίμηση του άνω ορίου των 

τιμών των θετικών ριζών. Αν κάποιος μπορούσε να υπολογίσει με μεγαλύτερη 

ακρίβεια αυτό το άνω όριο, θα μείωνε δραστικά των αριθμό των υπολογισμών που 

θα χρειαζόταν για την αναζήτηση της ρίζας του πολυωνύμου μέσα σε ένα 

συγκεκριμένο εύρος τιμών, (π.χ. κάνοντας χρήση μιας μεθόδου διχοτόμησης). 

Επίσης, ο υπολογισμός των πραγματικών ριζών πολυωνυμικών εξισώσεων 

μιας μεταβλητής μεγάλου βαθμού με πραγματικούς συντελεστές βασίζεται στη 

μέθοδο απομόνωσής τους. Η απομόνωση των πραγματικών ριζών πολυωνυμικών 

εξισώσεων αφορά στην εύρεση πραγματικών μη συνεχόμενων διαστημάτων 

τέτοιων ώστε καθένα από αυτά να περιέχει μια ρίζα και κάθε πραγματική ρίζα να 

περιέχεται σε κάποιο από αυτά. Για να απομονώσουμε τις πραγματικές θετικές 

ρίζες, είναι απαραίτητο καταρχάς, να υπολογίσουμε, με τον καλύτερο δυνατό 

τρόπο, ένα άνω όριο στη τιμή της μεγαλύτερης θετικής ρίζας. Αν και υπάρχουν 

αρκετές τέτοιες μέθοδοι υπολογισμού, (μερικές από τις οποίες είχαν προταθεί 

αρχικά από το Lagrange και τον Cauchy), αυτή η διατριβή αποδεικνύει ότι 

υπάρχουν αρκετά περιθώρια βελτίωσης αυτών των μεθόδων. Σήμερα, δυο από τις 

αλγοριθμικές μεθόδους που παρουσιάζονται σε αυτή τη διατριβή, θεωρούνται οι  
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 xi

καλύτερες που υπάρχουν (η μια με γραμμική και η άλλη με τετραγωνική 

υπολογιστική πολυπλοκότητα) και έχουν ήδη ενσωματωθεί στον πηγαίο κώδικα 

πολύ γνωστών συστημάτων λογισμικού επιστημονικών υπολογισμών όπως π.χ. το 

Mathematica, Sage, Mathemagix, κ.α. 

Ένα μέρος της παρούσας διατριβής περιλαμβάνει επίσης και την 

αναλυτική παρουσίαση της μεθόδου απομόνωσης πραγματικών ριζών με συνεχή 

κλάσματα. Ο αλγόριθμος της μεθόδου περιγράφεται διεξοδικά μαζί με μια νέα 

υλοποίησή του που ενσωματώνει τις παραπάνω νέες μεθόδους υπολογισμού των 

ορίων. Εξαντλητικές υπολογιστικές δοκιμές επιβεβαιώνουν ότι η νέα αυτή 

υλοποίηση του αλγορίθμου κάνει τη μέθοδο απομόνωσης πραγματικών ριζών με 

συνεχή κλάσματα την ταχύτερη ανάμεσα σε άλλες. 

Μετά από τριάντα σχεδόν χρόνια εφαρμογής και ανάπτυξης, η μέθοδος 

απομόνωσης πραγματικών ριζών με συνεχή κλάσματα, που προτάθηκε το 1976 

από τον Α. Ακρίτα, συνεχίζει και σήμερα να αντιμετωπίζει αποτελεσματικά ένα 

βασικό αλλά ωστόσο πολύ σημαντικό μαθηματικό πρόβλημα, αυτό της επίλυσης 

της πολυωνυμικής εξίσωσης. Το έντονο ενδιαφέρον που έδειξε η ερευνητική 

κοινότητα τελευταία για τη μέθοδο αυτή, πηγάζει από την ανάγκη ύπαρξης μιας 

αξιόπιστης και αποδοτικής μεθόδου για τη λύση, σε πραγματικό χρόνο, 

πολυωνυμικών εξισώσεων μεγάλου βαθμού σε ποικίλα επιστημονικά πεδία όπως 

η θεωρία ελέγχου, οικονομική θεωρία, επεξεργασία σήματος, ρομποτική, 

υπολογιστική όραση, γραφικά υπολογιστών, υπολογιστική γεωμετρία, 

βιομηχανικά προβλήματα, κλπ. Η υιοθέτηση της μεθόδου απομόνωσης 

πραγματικών ριζών με συνεχή κλάσματα από μεγάλα εμπορικά και ανοικτού 

κώδικα μαθηματικά πακέτα λογισμικού αποδεικνύει τη δύναμή της και τις 

δυνατότητές της. Δύναμη και δυνατότητες που οφείλονται εν μέρει και στα 

αποτελέσματα αυτής της διατριβής. 
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CHAPTER I

Introduction

1.1 Historical Note

One of the oldest and maybe for centuries the only area of study in Algebra had

been polynomial equations. The problem was to find formulas that could give the

roots of polynomials in terms of their coefficients.

It has been found, from historical searches, that the ancient Babylonians, who

created their civilization in 2000 B.C. in Mesopotamia, knew how to find the roots

of 1st and 2nd degree polynomials. Also they could approximate the square roots of

numbers. They formulated the problems and their solutions mostly verbally.

The next big step was done by the ancient Greeks. A group of mathematicians

called Pythagoreans (5th century B.C.), proved that the square roots that appeared

in the study of 2nd degree equations resulted in irrational numbers.

The ancient Greeks were using geometrical designs for solving polynomial equa-

tions of the 1st, 2nd and 3rd degree. That is geometrical designs made with a ruler

and a pair of compasses. Traces of algebraic representation for solving 2nd degree

equations did not exist until 100 B.C. The mathematician Diofante in 250 B.C. in-

troduced a form of algebraic symbolism. The arithmetic of Diofante is for algebra of

the same importance as the elements of Euclid for geometry. The Arabians improved

algebraic calculus but did not manage to solve 3rd degree equations.

1
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In the Middle Age, European mathematicians improved the things they learned

from the Arabs, the most famous of them being Al-Khwarismi and introduced new

symbols. During the Renaissance, the development of algebra was remarkable, like

all other branches of mathematics.

Approximately at the end of the 15th century the University of Bologna in Italy,

was one of the most famous in Europe. This fame was related with the attempt of

the Bolognese mathematicians to solve 3rd and 4th degree equations.

It seems that Professor Scipio del Ferro, who died in 1526 managed to solve the

equation of the 3rd degree, without ever publishing his work. Niccolo Fontana known

as Tartaglia found again the solution of the 3rd degree equation. This particular

project of Fontana was published in 1545 from a polymath doctor in Milan, Hieronimo

Cardano in his work Ars Magna (The Great Art). Ars Magna also includes a method

for solving polynomial equations of degree four, by reducing them to equations of

degree three.

Of course, after that discovery, the effort was concentrated in finding formulas

which would give the roots of equations of degree 5 or greater than 5.

In the 18th century Josheph Louis Lagrange, influenced drastically the theory

of equations and approximately three years later C.F. Gauss (1777-1855) based on

Lagrange’s conclusions proved The Fundamental Theorem of Algebra.

The proof of the fact that there is not a formula to compute the roots of equations

of degree 5 was given by Paolo Ruffini (1804), who preceded Horner by about 15 years.

The Norwegian mathematician, N.H. Abel (1802-1829), in 1824, generalized Ruffini‘s

work by showing the impossibility of solving the general quintic equation by means of

radicals, thus finally put to rest a difficult problem that had puzzled mathematicians

for many years. Of course there was still the problem of finding the conditions that

such an equation must satisfy in order to be solved. Abel was working on this problem

until his death in 1829.

2
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Eventually this problem was solved by the young French mathematician Evariste

Galois (1811-1832). His theory virtually contains the solution of this problem. Galois

wrote his conclusions in an illegible manuscript 31 pages long, the night before he

died at the age of 20. This manuscript became well known when Joseph Liouville

presented it in the French Academy in 1843.

Since then (and for some time before in fact), researchers have concentrated on

numerical (iterative) methods such as the famous Newton’s method of the 17th cen-

tury, Bernoulli’s method of the 18th, and Graeffe’s method of the early 19th. During

the same period, Fourier conceived the idea to split the problem, of the higher degree

equation solving, in two subproblems; that is, fist to isolate the real roots, and then

to approximate them to any desired degree of accuracy. The major problem was iso-

lation, which attracted immediately the attention of the mathematicians. To isolate

the roots two theorems were initially proposed: Budan’s (1807) and Fourier’s (1820)

theorems on which Vincent’s (1836) and Sturm’s (1829) theorems were based later

on. Vincent’s (1836) theorem, was, in turn, the foundation of the Akritas’ continued

fractions method of 1978, a method that is considered the most efficient today1.

1For Descartes’, Budan’s, Fourier’s, Vincent’s and Sturm’s theorems, see the Appendix. For
details on Vincent’s theorem, see Chapter IV.

3
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CHAPTER II

Bounds

2.1 Definitions

2.1.1 Univariate Polynomials

A polynomial is a mathematical expression of the form

p(x) = α0x
n + α1x

n−1 + ...+ αn−1x+ αn, (α0 > 0) (2.1)

If the highest power of x is xn, the polynomial is said to be of degree n. It was proved

by Gauss in the early 19th century that every polynomial of positive degree has at

least one zero (i.e. a value z which makes p(z) equal to zero), and that a polynomial

of degree n has n zeros (not necessarily distinct). Often we use x for a real variable,

and z for a complex one. A zero of a polynomial is synonymous to the “root” of the

equation p(x) = 0. A zero may be real or complex, and if the “coefficients” αi are

all real, then complex zeros occur in conjugate pairs α + iβ, α− iβ. The purpose of

the first part of this study is to describe methods which have been developed to find

bounds for the real positive roots of polynomials with real coefficients.

4
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2.1.2 Bounds on the Values of the Roots of Polynomials

In attempting to find the roots of a polynomial equation it is advantageous to

narrow the region within which they must be sought. So, our aim is to establish

sharp bounds, for the positive and negative roots x1, x2, ..., xm, 1 ≤ m ≤ n, of the

equation p(x) = 0. It is sufficient to restrict ourselves to finding the upper bound,

ub, of only the positive roots of polynomials of type (2.1). Here is why:

Consider along with (2.1) the transformed equations

p1(x) ≡ xnp(
1

x
) = 0 (2.2a)

p2(x) ≡ xnp(−x) = 0 (2.2b)

p3(x) ≡ xnp(−1

x
) = 0 (2.2c)

and let the upper bounds of their positive roots be ub1, ub2 and ub3 respectively.

Then the number 1
ub1

is clearly a lower bound on the values of the positive roots of

equation (2.1), that is, all positive roots x+ of this equation, if they exist, satisfy the

inequality

1

ub1

≤ x+ ≤ ub (2.3)

Similarly, the numbers −ub2 and − 1
ub3

are, respectively, lower and upper bounds of

the negative roots of (2.1), that is, all negative roots x− of this equation, if they exist,

satisfy the inequality

−ub2 ≤ x− ≤ − 1

ub3

(2.4)

It should be emphasized here that bounds on the values of just the positive roots of

polynomials are scarce in the literature. Especially, in the English literature, only

5
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bounds on the absolute values (positive and negative) of the roots existed until 1978.

As Akritas points out, he was able to find Cauchy’s bound (described below) on the

values of the positive roots in Obrechkoff’s book, (Obreschkoff , 1963). Bounds on

the values of the positive roots of polynomials are important, because it is only those

bounds that can be used in the root isolation process described in Chapter IV.

2.2 Classical Methods for Computing Bounds

In this section we first present the two classical theorems by Cauchy and Lagrange-

MacLaurin. Until recently, the first was the only method used for computing the

bounds, on the values of the positive roots of polynomials. In addition, we in-

clude, Kioustelidis’ bound, (Kioustelidis , 1986), which is closely related to the one by

Cauchy.

2.2.1 Cauchy’s Method

Theorem II.1. Let p(x) be a polynomial as in (2.1), of degree n > 0, with αn−k < 0

for at least one k, 1 ≤ k ≤ n. If λ is the number of negative coefficients, then an

upper bound on the values of the positive roots of p(x) is given by

ub = max
{1≤k≤n:αn−k<0}

k

√
−λαk
α0

Note that if λ = 0 there are no positive roots.

Proof. From the definition above we have

ubk ≥
(
−λαn−k

α0

)
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for every k such that αn−k < 0. For these k, the inequality above could be written

ubn ≥
(
−λαn−k

α0

)
ubn−k

Summing for all k’s we have

λubn ≥ λ
∑

1≤k≤n:αn−k<0

(
−αn−k

α0

)
ubn−k

or

ubn ≥
∑

1≤k≤n:αn−k<0

(
−αn−k

α0

)
ubn−k

i.e., dividing p(x) = 0 by α0, making unitary the leading coefficient, and replacing x

with ub, x← ub, the first term, i.e. ubn, would be greater than, or equal to, the sum

of the absolute values of the terms with negative coefficient. Hence, for all x > ub,

p(x) > 0.

Even though the proof is sound, and easy to follow, it gives us no insight on what is

going on. Hence, we cannot improve on it. The same holds for the following theorem.

2.2.2 The Lagrange–MacLaurin Method

Theorem II.2. Suppose αn−k, k ≥ 1, is the first of the negative coefficients1 of a

polynomial p(x), as in (2.1). Then an upper bound on the values of the positive roots

of p(x) is given by

ub = 1 + k

√
B

α0

,

where B is the largest absolute value of the negative coefficients of the polynomial

p(x).

1If there is no negative coefficient then p(x) has no positive roots.
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Proof. Set x > 1. If in p(x) each of the nonnegative coefficients α1, α2, . . . ,

αk−1 is replaced by zero, and each of the remaining coefficients αk, αk+1, . . . , αn is

replaced by the negative number −B, we obtain

p(x) ≥ α0x
n −B(xn−k + xn−k−1 + . . .+ 1) = α0x

n −Bx
n−k+1 − 1

x− 1

Hence for x > 1 we have

p(x) > α0x
n − B

x− 1
xn−k+1 =

xn−k+1

x− 1
(α0x

k−1(x− 1)−B)

>
xn−k+1

x− 1
(α0(x− 1)k −B)

Consequently for

x ≥ 1 + k

√
B

α0

= ub

we have p(x) > 0 and all the positive roots x+ of p(x) satisfy the inequality

x+ < ub.

2.2.3 Kioustelidis’ Method

Theorem II.3. Let p(x) be a polynomial as in (2.1), of degree n > 0, with αn−k < 0

for at least one k, 1 ≤ k ≤ n. Then an upper bound on the values of the positive roots

of p(x) is given by

ub = 2 max
{1≤k≤n:αn−k<0}

k

√
−αn−k

α0

.

Proof. From the definition above we have

ubk ≥ 1

2k

(
−αn−k

α0

)
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for every k such that αn−k < 0. For these k, the inequality above could be written

ubn ≥ 1

2k

(
−αn−k

α0

)
ubn−k

Summing for all k’s we have

ubn ≥
∑

1≤k≤n:αn−k<0

1

2k

(
−αn−k

α0

)
ubn−k

or

ubn ≥ (1− 1

2n
)

∑
1≤k≤n:αn−k<0

(
−αn−k

α0

)
ubn−k

and because (1− 2−n) < 1 we get

ubn ≥
∑

1≤k≤n:αn−k<0

(
−αn−k

α0

)
ubn−k

i.e., dividing p(x) = 0 by α0, making unitary the leading coefficient, and replacing x

with ub, x← ub, the first term, i.e. ubn, would be greater than, or equal to, the sum

of the absolute values of the terms with negative coefficient. Hence, for all x > ub,

p(x) > 0.

In the next chapter, we will present a theorem by Ştefănescu, (Ştefănescu, 2005),

that gives some insight into the nature of how these bounds are computed. Extending

Ştefănescu’s theorem, (Akritas and Vigklas , 2006), (Akritas, Strzeboński, and Vigklas ,

2006), we obtain a general theorem, which includes the above three methods as special

cases, and from which new, sharper, bounds can be derived.
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CHAPTER III

A General Theorem for Computing Bounds on the

Positive Roots of Univariate Polynomials

3.1 Preliminaries

In the following discussion we shall consider polynomials with integer or ratio-

nal coefficients of any (arbitrary) bit–length. The methods that will be presented

here are methods of infinite precision (based on exact arithmetic) and must not be

confused with numerical or other approximate methods where someone has to take

under consideration various types of errors that infiltrate the computation process

and progressively degrade the final results.

3.2 Ştefănescu’s Theorem and its Extension

Despite the fact that in the literature one can find many formulas1 that estimate

an upper bound on the largest absolute value of the real or complex roots, (Yap,

2000), (Mignotte, 1992), the most recent addition for a method to compute bound on

the positive roots of polynomials, that is of importance to us, has been by Ştefănescu.

Namely, in (Ştefănescu, 2005), the following theorem is proved:

1A bibliographical search till 2005 gives over 50 articles or books which give such bounds.
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Theorem III.1 (Ştefănescu’s, 2005). Let p(x) ∈ R[x] be such that the number of

variations of signs of its coefficients is even. If

p(x) = c1x
d1 − b1x

m1 + c2x
d2 − b2x

m2 + . . .+ ckx
dk − bkxmk + g(x), (3.1)

with g(x) ∈ R+[x], ci > 0, bi > 0, di > mi > di+1 for all i, the number

B3(p) = max

{(
b1

c1

)1/(d1−m1)

, . . . ,

(
bk
ck

)1/(dk−mk)
}

(3.2)

is an upper bound for the positive roots of the polynomial p for any choice of c1, . . . , ck.

We point out that Ştefănescu’s theorem introduces the concept of matching or pairing

a positive coefficient with a negative coefficient of a lower order term. That is, to

obtain an upper bound, we match each negative coefficient–in fact we match a nega-

tive term, with a positive one, but for short we mention coefficient–with a preceding

positive one, and take the maximum. Clearly, Ştefănescu’s theorem has limited use

since it works only for polynomials with an even number of sign variations2.

The following theorem generalizes Theorem III.1, in the sense that it applies to

polynomials with any number of sign variations. To accomplish this, we introduce

the new concept of breaking-up a positive coefficient into several parts to be paired

with negative coefficients (of lower order terms)3.

2In (Tsigaridas and Emiris, 2006), Tsigaridas and Emiris mention slightly different the same
theorem “Moreover, when the number of negative coefficients is even then a bound due to Ştefănescu
can be used which is much better”. Unfortunately, still with this version of the theorem its weakness
remains.

3After the publication of this work, (Akritas, Strzeboński, and Vigklas, 2006), Ştefănescu also
extended Theorem III.1 in (Ştefănescu, 2007).
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Theorem III.2. Let

p(x) = αnx
n + αn−1x

n−1 + . . .+ α0, (αn > 0) (3.3)

be a polynomial with real coefficients and let d(p), t(p) denote the degree and the

number of its terms, respectively. Moreover, assume that p(x) can be written as

p(x) = q1(x)− q2(x) + q3(x)− q4(x) + . . .+ q2m−1(x)− q2m(x) + g(x), (3.4)

where all polynomials qi(x), i = 1, 2, . . . , 2m and g(x) have only positive coefficients.

In addition, assume that for i = 1, 2, . . . ,m we have

q2i−1(x) = c2i−1,1x
e2i−1,1 + . . .+ c2i−1,t(q2i−1)x

e2i−1,t(q2i−1) (3.5)

and

q2i(x) = b2i,1x
e2i,1 + . . .+ b2i,t(q2i)x

e2i,t(q2i) , (3.6)

where e2i−1,1 = d(q2i−1) and e2i,1 = d(q2i) and the exponent of each term in q2i−1(x)

is greater than the exponent of each term in q2i(x). If for all indices i = 1, 2, . . . ,m,

we have

t(q2i−1) ≥ t(q2i), (3.7)

then an upper bound of the values of the positive roots of p(x) is given by

ub = max
{i=1,2,...,m}

{(
b2i,1

c2i−1,1

) 1
e2i−1,1−e2i,1

, . . . ,

(
b2i,t(q2i)

c2i−1,t(q2i)

) 1
e2i−1,t(q2i)

−e2i,t(q2i)

}
, (3.8)

for any permutation of the positive coefficients c2i−1,j, j = 1, 2, . . . , t(q2i−1). Other-
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wise, for each of the indices i for which we have4

t(q2i−1) < t(q2i) (3.9)

we break-up one of the coefficients of q2i−1(x) into t(q2i)− t(q2i−1) + 1 parts, so that

now t(q2i) = t(q2i−1) and apply the same formula (3.8) given above.

Proof. Suppose x > 0. We have

|p(x)| ≥ c1,1x
e1,1 + . . .+ c1,t(q1)x

e1,t(q1) − b2,1x
e2,1 − . . .− b2,t(q2)x

e2,t(q2)

+

...

+ c2m−1,1x
e2m−1,1 + . . .+ c2m−1,t(q2m−1)x

e2m−1,t(q2m−1)

− b2m,1x
e2m,1 − . . .− b2m,t(q2m)x

e2m,t(q2m) + g(x)

= xe2,1(c1,1x
e1,1−e2,1 − b2,1) + . . .

+ xe2m,t(q2m)(c2m−1,t(q2m)x
e2m−1,t(q2m)−e2m,t(q2m) − b2m,t(q2m)) + g(x)

which is strictly positive for

x > max
{i=1,2,...,m}

{(
b2i,1

c2i−1,1

) 1
e2i−1,1−e2i,1

, . . . ,

(
b2i,t(q2i)

c2i−1,t(q2i)

) 1
e2i−1,t(q2i)

−e2i,t(q2i)

}

Remark 1. Pairing positive with negative coefficients and breaking-up a positive

coefficient into the required number of parts—to match the corresponding number of

negative coefficients—are the key ideas of this theorem. In general, formulae analo-

gous to (3.8) hold for the cases where: (a) we pair coefficients from the non-adjacent

polynomials q2l−1(x) and q2i(x), for 1 ≤ l < i, and (b) we break-up one or more

4A partial extension of Theorem III.1, presented in (Akritas and Vigklas, 2007), does not treat
the case t(q2i−1) < t(q2i).
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positive coefficients into several parts to be paired with the negative coefficients of

lower order terms. In the following section we present several implementations of

Theorem III.2.

3.3 Algorithmic Implementations of the Generalized

Theorem

Theorem III.2 is stated in such a way, that it is amenable to several implementa-

tions; to wit, the positive-negative coefficient pairing is not unique and can be done

in several ways5.

Moreover, we have quite a latitude in choosing the positive coefficient to be broken

up; and once that choice has been made, we can break it up in equal or unequal parts.

We explore some of these choices below.

We begin with the most straightforward approach for implementing Theorem III.2,

which is to first take care of all the cases where t(q2i−1) < t(q2i), and then, for all

i = 1, 2, . . . ,m, to pair a positive coefficient of q2i−1(x) with a negative coefficient of

q2i(x)—starting with the coefficients c2i−1,1 and b2i,1 and moving to the right (in non-

increasing order of exponents), until the negative coefficients have been exhausted.

Example 1. Consider the polynomial

p1(x) = x9 + 3x8 + 2x7 + x6 − 4x4 + x3 − 4x2 − 3

5An example of the worst possible pairing strategy is the rule by Lagrange and MacLaurin,
(Akritas and Vigklas, 2006), that was mentioned in (§ 2.2.2)
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for which we have

q1(x) = x9 + 3x8 + 2x7 + x6

−q2(x) = −4x4

q3(x) = x3

−q4(x) = −4x2 − 3.

A direct application of Theorem III.2 pairs the terms {x9,−4x4} of q1(x) and q2(x),

and ignores the last three terms of q1(x). It then splits the coefficient of x3 into two,

say equal parts to account for the two negative terms of q4(x) and forms the pairs

{x3
2
,−4x2} and {x3

2
,−3}. The resulting upper bound is 8, whereas the maximum

positive real root of the polynomial is 1.06815.

Another way of applying Theorem III.2 would be to pair each of the terms of q1(x)

with −4x4 of q2(x), and pick the minimum; that is, we pick the minimum of the terms

{x9,−4x4}, {3x8,−4x4}, {2x7,−4x4} and {x6,−4x4}, which is 4
√

4/3 = 1.07457.

Then, we pair each of the negative terms of q4(x) with all of the unmatched positive

terms of q1(x) and q3(x) and pick the minimum. That is, for the term −4x2 we

pick the minimum of {x9,−4x2}, {2x7,−4x2}, {x6,−4x2} and {x3,−4x2} which is

5
√

2 = 1.1487, whereas for the term−3 we pick the minimum of {x9,−3}, {x6,−3} and

{x3,−3} which is 9
√

3 = 1.12983. Finally, the bound is the max{ 4
√

4/3, 5
√

2, 9
√

3} =

1.1487.

This last approach is also encountered in (Hong , 1998) and (Ştefănescu, 2005).

The computed bound is close to the optimal value, due to the quadratic complexity

of this method, whereas the first one was linear. In the sequel, we first present imple-

mentation methods of Theorem III.2 that are linear in complexity and the computed

bounds are close to the optimal value.
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3.4 Linear Complexity Bounds

Bounds that we meet most often in the literature, such as Cauchy’s and Kiouste-

lidis’, (§ 2.2.1, § 2.2.3), are of linear complexity.

The General Idea of the Linear Complexity Bounds: These bounds are

computed as follows:

• each negative coefficient of the polynomial is paired with one of the preceding

unmatched positive coefficients;

• the maximum of all the computed radicals is taken as the estimate of the bound.

In general, we can obtain better bounds if we pair coefficients from non-adjacent

polynomials q2l−1(x) and q2i(x), for 1 ≤ l < i. The earliest known implementation of

this type is Cauchy’s rule, that was described in (§ 2.2.1). Using Theorem III.2 we

obtain the following interpretation of Cauchy’s and Kioustelidis’ theorems:

Definition 1: Cauchy’s “leading–coefficient” implementation of Theorem III.2.

For a polynomial p(x), as in Eq. (2.1), with λ negative coefficients, Cauchy’s method

first breaks-up its leading coefficient, αn, into λ equal parts and then pairs each part

with the first unmatched negative coefficient. That is, we have:

ubC = max
{1≤k≤n:αn−k<0}

k

√
−λαn−k

α0

or, equivalently,

ubC = max
{1≤k≤n:αn−k<0}

k

√
−αn−kα0

λ

.

So, in Example 1 we form the pairs {x9
3
,−4x4}, {x9

3
,−4x2} and {x9

3
,−3}, and

obtain as upper bound the value 1.64375. This improvement in the estimation of the
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bound is due to the fact that the radicals that come into play, namely 5
√

12, 7
√

12,

and 9
√

9, (obtained from the pairs mentioned above) are of higher order and hence

the numbers computed are smaller.

From (§ 2.2.3) we obtain the following:

Definition 2: Kioustelidis’ “leading–coefficient” implementation of Theorem III.2.

For a polynomial p(x), as in Eq. (2.1), Kioustelidis’ method matches the coefficient

−αn−k of the term −αn−kxn−k in p(x) with αn

2k
, the leading coefficient divided by 2k.

ubK = 2 max
{1≤k≤n:αn−k<0}

k

√
−αn−k

α0

or, equivalently,

ubK = max
{1≤k≤n:αn−k<0}

k

√
−αn−kα0

2k

.

Kioustelidis’ “leading-coefficient” implementation of Theorem III.2, differs from

that of Cauchy’s only in that the leading coefficient is now broken up in unequal parts,

by dividing it with different powers of 2, Kioustelidis (1986).

So, in Example 1 with Kioustelidis’ method we form the pairs {x9
25
,−4x4}, {x9

27
,−4x2}

and {x9
29
,−3}, and obtain as upper bound the value 2.63902.

We can still improve the estimation of the upper bound, if we use Remark 1 and

we pair the two negative terms of q4(x) with the first two (of the three) ignored

positive terms of q1(x). In this way, we obtain an upper bound of 1.31951, which is

very close to 1.06815, the maximum positive root of p1(x). This new improvement

is explained by the fact that the radicals 5
√

4, 6
√

4/3, and 7
√

3/2, obtained from the

pairs {x9,−4x4}, {3x8,−4x2} and {2x7,−3}, yield even smaller numbers.

Moreover, extensive experimentation confirmed that by pairing coefficients from

the non-adjacent polynomials q2l−1(x) and q2i(x) of p(x), where 1 ≤ l < i, we ob-
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tain bounds which are the same as, or better than, the bounds obtained by direct

implementation of Theorem III.2, and in most cases better than those obtained by

Cauchy’s and Kioustelidis’ rules.

Therefore, using Theorem III.2, a new linear complexity method, first–λ, was

developed for computing upper bounds on the values of the positive roots of polyno-

mials.

Definition 3: “first–λ” implementation of Theorem III.2.

For a polynomial p(x), as in (3.3), with λ negative coefficients we first take care of

all cases for which t(q2i) > t(q2i−1), by breaking-up the last coefficient c2i−1,t(q2i), of

q2i−1(x), into t(q2i)− t(q2i−1)+ 1 equal parts. We then pair each of the first λ positive

coefficients of p(x), encountered as we move in non-increasing order of exponents,

with the first unmatched negative coefficient.

Although this bound is a significant improvement over the other two bounds by

Cauchy and Kioustelidis, even this approach can lead, in some cases, to an overes-

timation of the upper bound, as seen in the following example, which highlights the

importance of suitable pairing of negative and positive coefficients.

Example 2. Consider the polynomial

p(x) = x3 + 10100x2 − 10100x− 1.

which has one sign variation and, hence, only one positive root, x = 1.

Cauchy’s “leading–coefficient” implementation of Theorem III.2 forms the pairs

{x3
2
,−10100x} and {x3

2
,−1}, and taking the maximum of the radicals computed, we

obtain a bound estimate of 1.41421× 1050; Kioustelidis’ “leading–coefficient” imple-

mentation of Theorem III.2 forms the pairs {x3
22
,−10100x} and {x3

23
,−1} yielding an

upper bound of 2 × 1050; and finally our “first–λ” implementation pairs the terms

{x3,−10100x} and {10100x2,−1} yielding an upper bound of 1050.
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A “possible solution” to this problem could also be to scan the positive coef-

ficients backwards (in non-decreasing order of exponents) in which case the pairs

{10100x2,−10100x} and {x3,−1} are formed, yielding an upper bound of 1.

From the above example, it becomes obvious that in addition to the already

presented implementations of Theorem III.2 we also need another, different pairing

strategy to take care of cases in which these three approaches perform poorly.

However, the “possible solution” outlined above, may well take care of Example

2, but it picks coefficients from the adjacent polynomials q2i−1(x) and q2i(x) of p(x),

with all the associated weaknesses, mentioned above.

Therefore, we did not pick this “possible solution” as our fourth implementation

of Theorem III.2. Instead, we chose the “local-max” pairing strategy, which is defined

as follows:

Definition 4: “local-max” implementation of Theorem III.2.

For a polynomial p(x), as in (3.3), the coefficient −αk of the term −αkxk in p(x) —as

given in Eq. (3.3)— is paired with the coefficient αm

2t
, of the term αmx

m, where αm is

the largest positive coefficient with n ≥ m > k and t indicates the number of times

the coefficient αm has been used.

Note that our “local-max” strategy can pair coefficients of p(x) from the non-

adjacent polynomials q2l−1(x) and q2i(x) of p(x), where 1 ≤ l < i, and breaks-up

positive coefficients also in unequal parts. Moreover, binary fractions of only the

coefficient αm get paired with each negative coefficient; this process continues until

we encounter a greater positive coefficient.

Applying our “local-max” implementation to Example 2 we form two pairs {10100

2
x2,

− 10100x} and {10100

22
x2,−1}, from which we obtain an upper bound of 2. Therefore,

we return the value 2 = min{1050, 2}, which is the minimum of our “first–λ” and

“local-max” implementations.
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3.4.1 The Pseudocode

Below we present the pseudocode for the four different implementations of Theo-

rem III.2. Cauchy’s “leading–coefficient” implementation is described in Algorithm 1,

lines 1–14, and the output is ubC . Kioustelidis’ “leading–coefficient” implementation

is described in Algorithm 2, lines 1–14, and the output is ubK . (These two bounds

are presented here for completion.) The “local-max” implementation is described in

Algorithm 3, lines 1–20, and the output is ubLM . The “first–λ” implementation is

described in Algorithms 4 & 5, lines 1–77, and the output is ubFL. The final upper

bound is ub = min{ubFL, ubLM}.

Input: A univariate polynomial p(x) = α0xn + α1xn−1 + . . .+ αn, (α0 > 0)

Output: An upper bound, ubC , on the values of the positive roots of the polynomial

initializations;1

cl←− {α0, α1, α2, . . . , αn−1, αn};2

λ←− the number of negative elements of cl;3

if n+ 1 <= 1 or λ = 0 then return ubC = 0;4

j = n+ 1;5

for i = 1 to n do77

if cl(i) < 0 then99

tempub = (λ(−cl(i)/cl(j)))1/(j−i);10

if tempub > ub then ub = tempub;11

end12

end13

ubC = ub14

Algorithm 1: Cauchy’s “leading–coefficient” implementation of Theorem III.2.
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Input: A univariate polynomial p(x) = α0xn + α1xn−1 + . . .+ αn, (α0 > 0)

Output: An upper bound, ubK , on the values of the positive roots of the polynomial

initializations;1

cl←− {α0, α1, α2, . . . , αn−1, αn};2

λ←− the number of negative elements of cl;3

if n+ 1 <= 1 or λ = 0 then return ubK = 0;4

j = n+ 1;5

for i = 1 to n do77

if cl(i) < 0 then99

tempub = 2((−cl(i)/cl(j)))1/(j−i);10

if tempub > ub then ub = tempub;11

end12

end13

ubK = ub14

Algorithm 2: Kioustelidis’ “leading–coefficient” implementation of Thm. III.2.

Input: A univariate polynomial p(x) = αnxn + αn−1xn−1 + . . .+ α0, (αn > 0)

Output: An upper bound, ubLM , on the values of the positive roots of the polynomial

initializations;1

cl←− {α0, α1, α2, . . . , αn−1, αn};2

if n+ 1 <= 1 then return ubLM = 0;3

j = n+ 1;4

t = 1;5

for i = n to 1 step −1 do77

if cl(i) < 0 then99

tempub = (2t(−cl(i)/cl(j)))1/(j−i);10

if tempub > ub then ub = tempub;11

t+ +;12

else13

if cl(i) > cl(j) then14

j = i;15

t = 116

end17

end18

end19

ubLM = ub20

Algorithm 3: The “local-max” implementation of Theorem III.2.
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Input: A univariate polynomial p(x) = αnxn + αn−1xn−1 + . . .+ α0, (αn > 0)

Output: An upper bound, ubFL, on the values of the positive roots of the polynomial

initializations;1

cl←− {α0, α1, α2, . . . , αn−1, αn};2

λ←− the number of negative elements of cl;3

if n+ 1 <= 1 or λ = 0 then return ubFL = 0;4

j = n+ 1;5

while j > 1 do // make sure t(q2i−1) ≥ t(q2i) holds for all i77

while j > 1 and (cl(j) = 0 or cl(j) > 0) do // compute t(q2i−1)99

flag = 0;1111

while j > 1 and cl(j) > 0 do12

flag = 1;13

posCounter + +;14

j −−15

end16

if flag = 1 then LastPstvCoef = j + 1;17

while j > 1 and cl(j) = 0 do18

j −−19

end20

end21

if j = 1 and cl(j) > 0 then posCounter + +;22

while j > 1 and (cl(j) = 0 or cl(j) < 0) do // compute t(q2i)23

while j > 1 and cl(j) < 0 do2525

negCounter + +;26

j −−27

end28

while j > 1 and cl(j) = 0 do29

j −−30

end31

end32

if j = 1 and cl(j) < 0 then negCounter + +;33

if negCounter > posCounter then // replace last coefficient by a list34

cl(LastPstvCoef) = {
cl(LastPstvCoef)

negCounter − posCounter + 1
, . . .︸ ︷︷ ︸

negCounter−posCounter+1

}

35

end36

negCounter = 0;37

posCounter = 0;38

end39

Algorithm 4: The first part of the “first–λ” implementation of Theorem III.2.
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i = j = n+ 1;40

while i > 0 and j > 0 and λ > 0 do // pair coefficients and process pairs4242

while cl(j) ≤ 0 do4444

j −−45

end46

if cl(j) is a list element then // cl(j) is a list element4848

while (cl(i) ≥ 0 or cl(i) is a list) and i > 1 do49

i−−50

end51

tempub = (−cl(i)/cl(j))1/(j−i);52

λ−−;53

if tempub > ub then ub = tempub;54

i−−;55

j −−;56

end57

end58

if cl(j) is a list then // cl(j) is a list59

k = the number of elements of cl(j);60

temp = cl(j, 1);61

if k > λ then6363

k = λ64

end65

for ν = 1 to k do66

while (cl(i) ≥ 0 or cl(i) is a list) and i > 1 do67

i−−68

end69

tempub = (−cl(i)/temp)1/(j−i);70

λ−−;71

if tempub > ub then ub = tempub;72

i−−;73

end74

j −−;75

end76

ubFL = ub77

Algorithm 5: The second part of the “first–λ” implementation of Theorem III.2.
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3.4.2 Testing Linear Complexity Bounds

In this section, we present some examples using the same classes of polynomials,

as in (Akritas and Strzeboński , 2005) in order to evaluate our new combined imple-

mentation, min{“first–λ”, “local-max”}, of Theorem III.2 and to compare it with

Cauchy’s and Kioustelidis’ “leading–coefficient” implementations.

Table 3.1, “uRandom” indicates a random polynomial whose leading coefficient

is one6, whereas “sRandom” indicates a random polynomial obtained with the ran-

domly chosen seed 1001; the average size of the coefficients ranges from −220 to 220.

Additionally, Kioustelidis’ name was shortened to “K” and a “star” indicates that

the bound obtained by “local-max” was the minimum of the two. MPR stands for

the maximum positive root, computed numerically.

6For exact mathematical formulas of the benchmark polynomials, please see the Appendix.
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From Table 3.1, we see that Kioustelidis’ method is, in general, better (or much

better) than that of Cauchy. This is not surprising given the fact that Kioustelidis

breaks-up the leading coefficient in unequal parts, whereas Cauchy breaks it up in

equal parts.

Our “first–λ” implementation, as the name indicates, uses additional coefficients

and, therefore, it is not surprising that it is, in general, better (or much better) than

both previous methods. In the few cases where Kioustelidis’ method is better than

“first–λ”, the “local-max” method takes again the lead.

Therefore, given their linear cost of execution, we propose that one could safely

use only the last two implementations of Theorem III.2 in order to obtain the best

bounds possible. Certainly, this is worth trying in the continued fractions real root

isolation method in order to further improve its performance. We will carry on this

endeavor in Chapter IV of this study.

Last but not least, it should be noted that these new bounds, “first–λ”, “local-

max”, as well as the min{“first–λ”, “local-max”} have already been implemented

into one of the newest open-source7 mathematics software system, “SAGE”, (SAGE ,

2004–2010). A demonstration of a “SAGE” session calculating bounds on the values

of the positive roots of some polynomials can be found in the next section.

3.4.3 Sage Session Demonstration of New Bounds

In Sage reference manual, (SAGE , 2004–2010), three methods are defined as:

sage.rings.polynomial.real roots.cl_maximum_root_first_lambda(cl),

sage.rings.polynomial.real roots.cl_maximum_root_local_max(cl),

sage.rings.polynomial.real roots.cl_maximum_root(cl)

7Another implementation of our bounds can be found in the computer algebra system
Mathemagix, (Hoeven, Lecerf, Mourrain, and Ruatta, 2008).
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implementing our linear complexity bounds “first–λ”, “local-max” and min{“first–

λ”, “local-max”}, described earlier, (Akritas, Strzeboński, and Vigklas , 2006). Given

a polynomial represented by a list of its coefficients, (cl) (as RealIntervalFieldEle-

ments, RIF ), an upper bound on its largest real root is being computed. Computing

for instance the upper bound of the polynomial equation:

x5 − 10x4 + 15x3 + 4x2 − 16x+ 400 = 0

we have

Figure 3.1: Screen capture of Sage software calculating bounds using the algorithms pro-
posed in (Akritas, Strzeboński, and Vigklas, 2006).

The bounds above correspond to ubFL = 10, ubLM = 20, min{ubFL, ubLM} =

10 respectively, whereas the maximum positive root of the polynomial computed

numerically is MPR = 7.9945.
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3.5 Quadratic Complexity Bounds

To further investigate the new proposed bounds it was decided to define, in addi-

tion, new bounds of quadratic complexity this time (based on the linear complexity

counterparts), hoping that their improved estimates should compensate for the extra

time needed to compute them. These bounds are based on the following idea:

The General Idea of the Quadratic Complexity Bounds: These bounds

are computed as follows:

• each negative coefficient of the polynomial is paired with all the preceding

positive coefficients and the minimum of the computed values is taken;

• the maximum of all those minimums is taken as the estimate of the bound.

In general, the estimates obtained from the quadratic complexity bounds are less

than or equal to those obtained from the corresponding linear complexity bounds, as

the former are computed after much greater effort and time. The quadratic complexity

bounds described below are all extensions of their linear complexity counterparts.

Thus, we have:

Definition 5: “Cauchy Quadratic” implementation of Theorem III.2.

For a polynomial p(x), as in Eq. (2.1), each negative coefficient ai < 0 is “paired”

with each one of the preceding positive coefficients aj divided by λi — that is, each

positive coefficient aj is “broken up” into equal parts, as is done with just the leading

coefficient in Cauchy’s bound; λi is the number of negative coefficients to the right of,

and including, ai — and the minimum is taken over all j; subsequently, the maximum

is taken over all i.

That is, we have:
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ubCQ = max
{ai<0}

min
{aj>0:j>i}

j−i

√
−aiaj

λi

.

Example 2, continued: For Cauchy Quadratic we first compute

• the minimum of the two radicals obtained from the pairs of terms

{x3
2
,−10100x} and {10100x2

2
,−10100x} which is 2,

• the minimum of the two radicals obtained from the pairs of terms {x3
2
,−1} and

{10100x2

2
,−1} which is

√
2

1050
,

and we then obtain as a bound estimate the value max{2,
√

2
1050
} = 2.

Definition 6: “Kioustelidis’ Quadratic” implementation of Theorem III.2.

For a polynomial p(x), as in Eq. (2.1), each negative coefficient ai < 0 is “paired”

with each one of the preceding positive coefficients aj divided by 2j−i — that is, each

positive coefficient aj is “broken up” into unequal parts, as is done with just the

leading coefficient in Kioustelidis’ bound — and the minimum is taken over all j;

subsequently, the maximum is taken over all i.

That is, we have:

ubKQ = 2 max
{ai<0}

min
{aj>0:j>i}

j−i

√
−ai
aj
,

or, equivalently,

ubKQ = max
{ai<0}

min
{aj>0:j>i}

j−i

√
− ai

aj
2j−i

.

Example 2, continued: For Kioustelidis’ Quadratic we first compute

• the minimum of the two radicals obtained from the pairs of terms

{x3
22
,−10100x} and {10100x2

2
,−10100x} which is 2,
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• the minimum of the two radicals obtained from the pairs of terms {x3
23
,−1} and

{10100x2

22
,−1} which is 2

1050
,

and we then obtain as a bound estimate the value max{2, 2
1050
} = 2.

Definition 7: “first–λ Quadratic” implementation of Theorem III.2.

For a polynomial p(x), as in (3.3), with λ negative coefficients we first take care of

all cases for which t(q2`) > t(q2`−1), by breaking-up the last coefficient c2`−1,t(q2`), of

q2`−1(x), into d2`−1,t(q2`) = t(q2`)− t(q2`−1) + 1 equal parts. Then each negative coeffi-

cient ai < 0 is “paired” with each one of the preceding min(i, λ) positive coefficients

aj divided by dj — that is, each of the preceding min(i, λ) positive coefficient aj is

“broken up” into dj equal parts, where dj is initially set to 1 and its value changes only

if the positive coefficient aj is broken up into equal parts, as stated in Theorem III.2;

u(j) indicates the number of times aj can be used to calculate the minimum, it is

originally set equal to dj and its value decreases each time aj is used in the compu-

tation of the minimum — and the minimum is taken over all j; subsequently, the

maximum is taken over all i.

That is, we have:

ubFLQ = max
{ai<0}

min
{aj>0:j>min(i,λ):u(j)6=0}

j−i

√
−aiaj

dj

.

From the above descriptions it is clear that uFLQ tests just the first min(i, λ)

positive coefficients, whereas all the other quadratic complexity bounds test every

preceding positive coefficient. Hence, uFLQ is faster (or quite faster) than all of them.

Example 2, continued: For first–λ Quadratic we first compute

• the minimum of the two radicals obtained from the pairs of terms

{x3,−10100x} and {10100x2,−10100x} which is 1 — evaluated from the second

pair of terms,
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• the minimum of the two radicals obtained from the pairs of terms {x3,−1} and

{10100x2,−1} which is 1,

and we then obtain as a bound estimate the value max{1, 1} = 1. Note that once a

term with a positive coefficient has been used in obtaining the minimum, it cannot

be used again!

Definition 8: “local-max Quadratic” implementation of Theorem III.2.

For a polynomial p(x), as in (3.3), each negative coefficient ai < 0 is “paired” with

each one of the preceding positive coefficients aj divided by 2tj — that is, each

positive coefficient aj is “broken up” into unequal parts, as is done with just the

locally maximum coefficient in the local max bound; tj is initially set to 1 and is

incremented each time the positive coefficient aj is used — and the minimum is taken

over all j; subsequently, the maximum is taken over all i.

That is, we have:

ubLMQ = max
{ai<0}

min
{aj>0:j>i}

j−i

√
− ai

aj

2tj

.

Since 2tj ≤ 2j−i — where i and j are the indices realizing the max of min; equality

holds when there are no missing terms in the polynomial — it is clear that the

estimates computed by “local-max Quadratic” are sharper by the factor 2
j−i−tj

j−i

than those computed by “Kioustelidis’ Quadratic”.

Example 2, continued: For “local-max Quadratic” we first compute

• the minimum of the two radicals obtained from the pairs of terms

{x3
2
,−10100x} and {10100x2

2
,−10100x} which is 2,

• the minimum of the two radicals obtained from the pairs of terms {x3
22
,−1} and

{10100x2

22
,−1} which is 2

1050
,
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and we then obtain as a bound estimate the value max{2, 2
1050
} = 2.

3.5.1 The Pseudocode

Below we present the pseudocode for ubLMQ and ubFLQ quadratic implementations

of Theorem III.2. We decided to omit ubCQ and ubKQ implementations since both

previous theoretical analysis and empirical data establish the better performance of

ubLMQ and ubFLQ over these two in every case. The ubLMQ, “local-max Quadratic”

implementation is described in Algorithm 6, lines 1–18, whereas the ubFLQ, “first–λ

Quadratic” implementation is described in Algorithms 7 and 8, lines 1–66.

Input : A univariate polynomial p(x) = anxn + an−1xn−1 + . . .+ a0, (an > 0)

Output: An upper bound ubLMQ, on the values of the positive roots of the polynomial

initializations;1

cl←− {a0, a1, a2, . . . , an−1, an};2

timesused←− {1, 1, 1, . . . , 1};3

ub = 0;4

if n+ 1 ≤ 1 then return ub = 0;5

for m←− n to 1 do6

if cl(m) < 0 then7

tempub =∞;8

for k ←− n+ 1 to m+ 1 do9

temp = (
−cl(m)
cl(k)

2timesused(k)

)
1

k−m ;
10

timesused(k) + +;11

if tempub > temp then tempub = temp;12

end13

if ub < tempub then ub = tempub;14

end15

end16

ubLMQ = ub;17

return ubLMQ;18

Algorithm 6: The “local-max Quadratic” implementation of Theorem III.2.
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Input : A univariate polynomial p(x) = anxn + an−1xn−1 + . . .+ a0, (an > 0)

Output: An upper bound ubFLQ, on the values of the positive roots of the polynomial

initializations;1

cl←− {a0, a1, a2, . . . , an−1, an};2

λ←− number of negative elements of cl;3

usedV ector ←− {0, 0, 0, . . . , 0};4

for i←− 1 to n+ 1 do5

if cl(i) > 0 then usedV ector(i) = 1;6

end7

if n+ 1 ≤ 1 or λ = 0 then return ub = 0;8

i = n+ 1;9

templamda = 0;10

flag = 0;11

while templamda < λ do // make sure t(q2i−1) ≥ t(q2i) holds for all i12

if cl(i) > 0 then13

if flag = 0 then posCounter + +;14

else if flag = 1 then15

if negCounter > posCounter then16

usedV ector(positionLastPositiveCoef) = negCounter − posCounter + 1;17

end18

negCounter = 0;19

posCounter = 1;20

flag = 0;21

end22

positionLastPositiveCoef = i;23

else if cl(i) < 0 then24

flag = 1;25

negCounter + +;26

templamda+ +;27

end28

i−−;29

end30

if negCounter > posCounter then31

usedV ector(positionLastPositiveCoef) = negCounter − posCounter + 1;32

end33

Algorithm 7: 1st part of “first–λ Quadratic” implementation of Theorem III.2.
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sumPosCoeff = 0;34

i = n+ 1;35

// Last of the first-λ coefficients

while sumPosCoeff < λ do36

if usedV ector(i) 6= 0 then37

sumPosCoeff+ = usedV ector(i);38

flPos = i;39

end40

i−−;41

end42

/* If the last of the first-λ coefficients is a broken one (usedV ector(flPos) > 1), there might

be a chance that the sum of the positive coefficients (including broken ones) is more than

λ. For Example: Let the signs of p be + + + - + + - - - + + + - the 5th positive

coefficient will be broken into 2 pieces (usedV ector(8) = 2). However, the sum of the

first-λ (5 non broken) positive coefficients is 6 (incl. broken). As a result we are going

to use the last of the positive first-λ coefficients timesToUse(8)− (sum− λ) = 1 time only.

*/

timesToUse(flpos)− = (sumPosCoeff − λ);43

denomV ector ←− usedV ector;44

m = n;45

ub = 0;46

while λ > 0 do47

if cl(m) < 0 then48

tempub =∞;49

for k = n+ 1 to max(m+ 1, f lPos) do50

if usedV ector(k) > 0 then51

tempB = (
−cl(m)
cl(k)

denomV ector(k)

)
1

k−m ;
52

if tempub > tempB then53

tempub = tempB;54

tempN = k;55

end56

end57

end58

usedV ector(tempN)−−;59

λ−−;60

if ub < tempub then ub = tempub;61

end62

m−−;63

end64

ubFLQ = ub;65

return ubFLQ;66

Algorithm 8: 2nd part of “first–λ Quadratic” implementation of Theorem III.2
34

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 05:25:06 EET - 137.108.70.7



3.5.2 Testing Quadratic Complexity Bounds

In this section, we present some results using the same classes of polynomials8, as

in (Akritas and Strzeboński , 2005) in order to compare “first–λ Quadratic” and

“local-max Quadratic” implementation of Theorem III.2.

In Table 3.2, “first–λ Quadratic” and “local-max Quadratic” names were

shortened to ubFLQ and ‘ubLMQ respectively. Also, in parenthesis the respective

computation time is given for each algorithm, whereas MPR stands for the maximum

positive root, computed numerically.

8For exact mathematical formulas of the benchmark polynomials, please see the Appendix.
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From the data presented in the Table 3.2, it becomes obvious that the sharpness

of the estimates of both ubFLQ and ubLMQ is about the same, but ubFLQ in most cases

runs faster (or quite faster) than ubLMQ. So, when it comes to quadratic complexity

bounds the ubFLQ algorithm is undoubtedly the best choice regarding sharpness to

speed of computation, ratio. However, examining both Table 3.2 and Table 3.1,

one must be very careful in his choice of quadratic versus linear complexity bounds

because then he has to trade-off between a slightly better bound estimation and a

greater algorithmic complexity and execution time. This last remark seems to have

been exploited by the commercial computational software program, Mathematica,

(Wolfram Research, 2008), as we can see in the following section.

3.5.3 Mathematica Session Demonstration of New Bounds

The Mathematica’s real root isolation source code, by default, uses the better

bound from each category, i.e. “first–λ”, ubFL, from the linear complexity bounds

and “local-max Quadratic”, ubLMQ from the quadratic complexity ones, (Strzeboński ,

2010). However, its source code also contains implementations of Cauchy’s, (§ 2.2.1),

and Hong’s bound, (Hong , 1998), which we call “Kioustelidis’ Quadratic” in our

work as well as the “local-max”, ubLM and “first–λ Quadratic”, ubFLQ, bounds.

There is an undocumented system variable which allows to change the bound used to

any combination of those bounds. The new bounds have been added in Mathematica

version 7.

These bounds are always implicity used for calculating intervals isolating polyno-

mial real roots. Intervals are given by command RootIntervals. Real root isolation

is used by any Mathematica function that requires real algebraic number computa-

tion.

See the following examples:
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CHAPTER IV

Application of the New Bounds to Real Root

Isolation Methods

4.1 Introduction

In this chapter we apply the newly proposed linear and quadratic complexity (up-

per) bounds on the values of the positive roots of polynomials on a method for the

isolation of real roots of polynomials. Although there are many root isolations meth-

ods (based on continued fractions, bisection, exclusion, etc) that could greatly benefit

from our new sharper bounds we decided to study their impact on the performance of

the Vincent-Akritas-Strzeboński (VAS) method for the isolation of real roots of poly-

nomials. The VAS real root isolation method is based on continued fractions and till

today is considered the fastest among its rivals, having already being incorporated in

major mathematical software packages.

Computing (lower) bounds on the values of the positive roots of polynomials is a

crucial operation in the VAS method. Therefore, we begin by reviewing some basic

facts about this method, which is based on Vincent’s theorem1, (Vincent , 1836):

1For a complete overview of Vincent’s theorem of 1836 and its implications to root isolation, see
(Akritas, 2010).
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Theorem IV.1 (Vincent, 1836). If in a polynomial, p(x), of degree n, with rational

coefficients and without multiple roots we perform sequentially replacements of the

form

x← α1 +
1

x
, x← α2 +

1

x
, x← α3 +

1

x
, . . .

where α1 ≥ 0 is an arbitrary non negative integer and α2, α3, . . . are arbitrary positive

integers, αi > 0, i > 1, then the resulting polynomial either has no sign variations or

it has one sign variation. In the last case the equation has exactly one positive root,

which is represented by the continued fraction

α1 +
1

α2 + 1
α3+ 1

...

whereas in the first case there are no positive roots.

The thing to note is that the quantities αi (the partial quotients of the continued

fraction) are computed by repeated application of a method for estimating lower

bounds2 on the values of the positive roots of a polynomial.

Therefore, the efficiency of the VAS continued fractions method heavily depends

on how good these estimates are.

4.2 Algorithmic Background of the VAS Method

In the sequel we present the VAS algorithm –as found in (Akritas and Strzeboński ,

2005)– and correct a misprint in Step 5 that had appeared in that presentation;

moreover, we explain where the new bound on the positive roots is used.

2A lower bound, `b, on the values of the positive roots of a polynomial f(x), of degree n, is
found by first computing an upper bound, ub, on the values of the positive roots of xnf( 1

x ) and then
setting `b = 1

ub , see (§ 2.1.2).
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4.2.1 Description of the VAS-Continued Fractions Algorithm

Using the notation of the paper Akritas and Strzeboński (2005), let f ∈ Z[x]\{0}.

By sgc(f) we denote the number of sign changes in the sequence of nonzero coefficients

of f . For nonnegative integers a, b, c, and d, such that ad− bc 6= 0, we put

intrv(a, b, c, d) := Φa,b,c,d((0,∞))

where

Φa,b,c,d : (0,∞) 3 x −→ ax+ b

cx+ d
∈ (min(

a

c
,
b

d
),max(

a

c
,
b

d
))

and by interval data we denote a list

{a, b, c, d, p, s}

where p is a polynomial such that the roots of f in intrv(a, b, c, d) are images of

positive roots of p through Φa,b,c,d, and s = sgc(p).

The value of parameter α0 used in step 4 below needs to be chosen empirically.

In our implementation α0 = 16.

Algortihm Continued Fractions (VAS).

Input: A squarefree polynomial f ∈ Z[x] \ {0}

Output: The list rootlist of the isolation intervals of the positive roots of f .

1. Set rootlist to an empty list. Compute s ← sgc(f). If s = 0 return an empty

list. If s = 1 return {(0,∞)}. Put interval data {1, 0, 0, 1, f, s} on intervalstack.

2. If intervalstack is empty, return rootlist, else take interval data {a, b, c, d, p, s}

off intervalstack.

3. Compute a lower bound α ∈ Z on the positive roots of p.
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4. If α > α0 set p(x)← p(αx), a← αa, c← αc, and α← 1.

5. If α ≥ 1, set p(x) ← p(x + α), b ← αa + b, and d ← αc + d. If p(0) = 0, add

[b/d, b/d] to rootlist, and set p(x)← p(x)/x. Compute s← sgc(p). If s = 0 go

to step 2. If s = 1 add intrv(a, b, c, d) to rootlist and go to step 2.

6. Compute p1(x) ← p(x + 1), and set a1 ← a, b1 ← a + b, c1 ← c, d1 ← c + d,

and r ← 0. If p1(0) = 0, add [b1/d1, b1/d1] to rootlist, and set p1(x)← p1(x)/x,

and r ← 1. Compute s1 ← sgc(p1), and set s2 ← s− s1− r, a2 ← b, b2 ← a+ b,

c2 ← d, and d2 ← c+ d.

7. If s2 > 1, compute p2(x) ← (x + 1)mp( 1
x+1

), where m is the degree of p. If

p2(0) = 0, set p2(x)← p2(x)/x. Compute s2 ← sgc(p2).

8. If s1 < s2, swap {a1, b1, c1, d1, p1, s1} with {a2, b2, c2, d2, p2, s2}.

9. If s1 = 0 goto step 2. If s1 = 1 add intrv(a1, b1, c1, d1) to rootlist, else put

interval data {a1, b1, c1, d1, p1, s1} on intervalstack.

10. If s2 = 0 goto step 2. If s2 = 1 add intrv(a2, b2, c2, d2) to rootlist, else put

interval data {a2, b2, c2, d2, p2, s2}on intervalstack. Go to step 2.

Please note that the lower bound3, α, on the positive roots of p(x) is computed

in Step 3, and used in Step 5.

4.2.2 The Pseudocode of the VAS-Continued Fractions Algorithm

We present the pseudocode of the VAS-Continued Fractions Root Isolation Method,

below in Algorithm 9, lines 1–13. Note the repeated use of the lower bound lb in lines

4–5.

3As mentioned in (§ 2.2), Cauchy’s bound was the only one known and the first one to be used
in VAS, in 1978. This of course changed, in 2006, after we developed the new bounds.
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Input: The square-free polynomial p(x) ∈ Z[x], p(0) 6= 0, and the Möbius transformation

M(x) = ax+b
cx+d

= x, a, b, c, d ∈ Z

Output: A list of isolating intervals of the positive roots of p(x)

var ←− the number of sign changes of p(x);1

if var = 0 then RETURN ∅;2

if var = 1 then RETURN {]a, b[} // a = min(M(0),M(∞)), b = max(M(0),M(∞));3

`b←− a lower bound on the positive roots of p(x);4

if `b > 1 then {p←− p(x+ `b),M ←−M(x+ `b)};5

p01 ←− (x+ 1)deg(p)p( 1
x+1

),M01 ←−M( 1
x+1

) // Look for real roots in ]0, 1[ ;6

m←−M(1) // Is 1 a root? ;7

p1∞ ←− p(x+ 1),M1∞ ←−M(x+ 1) // Look for real roots in ]1,+∞[ ;8

if p(1) 6= 0 then9

RETURN VAS(p01,M01)
⋃

VAS(p1∞,M1∞)10

else11

RETURN VAS(p01,M01)
⋃
{[m,m]}

⋃
VAS(p1∞,M1∞)12

end13

Algorithm 9: VAS-Continued Fractions Algorithm.

4.2.3 Example of the Real Root Isolation Method

Executing Algorithm 9 for the polynomial 8x4 − 18x3 + 9x − 2 which has one

negative, −
√

2/2 and three positive real roots, 1/4,
√

2/2 and 2, we have:
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Figure 4.1: Tree-diagram of the VAS-CF Real Root Isolation Algorithm 9, for the
polynomial 8x4 − 18x3 + 9x− 2.

44

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 05:25:06 EET - 137.108.70.7



4.3 Benchmarking VAS with New Bounds

In this section we compare four implementations of the VAS real root isolation

method using two linear and two quadratic complexity bounds on the values of the

positive roots of polynomials.

The two linear complexity bounds are: Cauchy’s, ubC and min(ubFL, ubLM), the

minimum of “first–λ” and “local-max” bounds, (Akritas, Strzeboński, and Vigklas ,

2006), whereas the two quadratic complexity ones are: ubKQ, the Quadratic complex-

ity variant of K ioustelidis’ bound, studied by Hong, (Hong , 1998), and ubLMQ, the

Quadratic complexity version of the “local-max” bound, (Akritas, Strzeboński, and

Vigklas , 2008a).

Our choice of the various bounds in the implementations of VAS is justified as

follows:

1. From the linear complexity bounds we included:

(a) Cauchy’s bound, ubC , to be used as a point of reference, since it has been

in use for the past 30 years, and

(b) min(ubFL, ubLM) bound, (Akritas, Strzeboński, and Vigklas , 2006), which

is the best among the linear complexity bounds, in order to see when

it’s implementation will outperform that of the two quadratic complexity

bounds.

2. From the quadratic complexity bounds we included:

(a) Kioustelidis’ bound, ubKQ and

(b) ubLMQ bound in order to compare their performance; as explained in the

previous chapter ubLMQ computes sharper estimates than ubKQ.
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They all use the same implementation of Shaw and Traub’s algorithm for Taylor

shifts (von zur Gathen and Gerhard , 1997). We followed the standard practice and

used as benchmark the Laguerre, Chebyshev (first and second kind), Wilkinson and

Mignotte polynomials4, as well as several types of randomly generated polynomials of

degrees {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000}. For the random

polynomials the size of the coefficients ranges from −220 to 220.

4For exact mathematical formulas of the benchmark polynomials, please see the Appendix.
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Table 4.1: Special polynomials of some indicative degrees.

Polynomial Degree ubC min(ubFL, ubLM) ubKQ(Hong) ubLMQ

Class Time(s) Time(s) Time(s) Time(s)

Laguerre 100 0.23 0.19 0.19 0.17
Laguerre 1000 979 665 729 633
Laguerre 1500 7194 4903 5356 4569
Laguerre 2000 27602 21007 22712 19277

ChebyshevI 100 0.19 0.17 0.16 0.11
ChebyshevI 1000 517 460 496 299
ChebyshevI 1500 3681 3333 3381 2188
ChebyshevI 2000 16697 15010 14571 10473

ChebyshevII 100 0.42 0.17 0.15 0.10
ChebyshevII 1000 529 437 443 296
ChebyshevII 1500 3772 3198 3190 2166
ChebyshevII 2000 16559 14492 14370 10184

Wilkinson 100 0.03 0.03 0.03 0.03
Wilkinson 1000 54.6 44.5 43.7 43.3
Wilkinson 1500 339 295 270 265
Wilkinson 2000 1361 1305 1241 1242

Mignotte 100 0.008 0.004 0.008 0.004
Mignotte 1000 0.79 0.78 0.81 0.66
Mignotte 1500 2.05 2.12 2.06 1.77
Mignotte 2000 4.52 4.37 4.47 3.69
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Table 4.2: Polynomials with random 10-bit coefficients.

Degree No. of roots ubC min(ubFL, ubLM) ubKQ(Hong) ubLMQ

Time(s) Time(s) Time(s) Time(s)
Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

100 4.4 (2/6) 0.01 (0.00/0.01) 0.01 (0.01/0.02) 0.01 (0.01/0.02) 0.01 (0.01/0.01)
200 4.0 (2/8) 0.06 (0.02/0.18) 0.06 (0.03/0.16) 0.05 (0.03/0.14) 0.04 (0.03/0.09)
300 4.8 (4/6) 0.14 (0.07/0.24) 0.12 (0.06/0.22) 0.13 (0.07/0.19) 0.09 (0.07/0.13)
400 4.4 (4/6) 0.17 (0.12/0.21) 0.18 (0.12/0.25) 0.17 (0.12/0.20) 0.16 (0.12/0.20)
500 4.8 (2/8) 0.70 (0.21/1.96) 0.54 (0.20/1.22) 0.35 (0.21/0.56) 0.32 (0.20/0.50)
600 5.2 (4/6) 0.96 (0.46/1.41) 0.86 (0.51/1.25) 0.60 (0.42/0.84) 0.53 (0.42/0.72)
700 4.0 (2/6) 0.95 (0.45/1.68) 0.81 (0.44/1.33) 0.82 (0.44/1.25) 0.69 (0.50/0.91)
800 5.2 (4/8) 1.97 (0.67/4.09) 1.68 (0.74/3.33) 1.22 (0.71/2.25) 1.02 (0.72/1.70)
900 3.6 (2/6) 2.56 (0.68/7.15) 2.27 (0.72/6.13) 1.44 (0.71/2.55) 1.19 (0.67/1.87)
1000 6.4 (4/8) 4.07 (1.63/9.02) 3.56 (1.54/7.64) 2.86 (1.57/4.51) 2.06 (1.38/3.18)
1500 4.0 (2/6) 10.6 (2.73/26.1) 7.51 (2.33/13.9) 5.78 (2.35/10.1) 5.24 (2.43/7.77)
2000 6.8 (4/12) 53.8 (7.54/137) 45.5 (7.90/118) 23.3 (7.67/53.9) 19.1 (7.61/40.2)

Table 4.3: Polynomials with random 1000-bit coefficients.

Degree No. of roots ubC min(ubFL, ubLM) ubKQ(Hong) ubLMQ

Time(s) Time(s) Time(s) Time(s)
Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

100 4.0 (4/4) 0.01 (0.00/0.02) 0.01 (0.00/0.02) 0.01 (0.00/0.02) 0.01 (0.00/0.02)
200 3.6 (2/6) 0.06 (0.03/0.12) 0.05 (0.02/0.10) 0.04 (0.02/0.06) 0.03 (0.01/0.06)
300 4.8 (2/8) 0.12 (0.04/0.32) 0.11 (0.04/0.28) 0.10 (0.04/0.23) 0.09 (0.04/0.17)
400 4.4 (2/6) 0.29 (0.06/0.54) 0.25 (0.06/0.44) 0.24 (0.06/0.44) 0.16 (0.06/0.25)
500 5.2 (4/8) 0.68 (0.16/1.20) 0.55 (0.17/0.95) 0.45 (0.21/0.92) 0.32 (0.21/0.48)
600 3.6 (2/4) 0.76 (0.19/2.09) 0.54 (0.18/0.96) 0.43 (0.19/0.66) 0.39 (0.18/0.52)
700 3.6 (0/6) 1.26 (0.25/2.82) 1.28 (0.19/2.51) 0.85 (0.19/1.54) 0.68 (0.19/1.29)
800 4.4 (2/6) 3.03 (0.29/5.50) 2.53 (0.26/4.76) 1.08 (0.34/1.68) 0.93 (0.27/1.53)
900 5.6 (4/8) 4.55 (1.05/9.32) 3.72 (1.02/7.53) 2.23 (1.00/3.09) 1.59 (0.76/2.68)
1000 3.6 (2/6) 2.42 (0.46/4.62) 2.06 (0.44/3.92) 1.27 (0.40/2.00) 1.04 (0.42/1.68)
1500 5.6 (4/8) 16.1 (2.30/40.2) 9.41 (1.99/18.2) 7.17 (2.10/11.9) 5.63 (1.96/10.8)
2000 5.2 (4/6) 23.3 (4.12/79.8) 19.4 (4.08/65.4) 13.2 (4.33/33.4) 10.4 (4.11/20.2)
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Table 4.4: Monic polynomials with random 10-bit coefficients.

Degree No. of roots ubC min(ubFL, ubLM) ubKQ(Hong) ubLMQ

Time(s) Time(s) Time(s) Time(s)
Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

100 4.8 (2/8) 0.01 (0.01/0.02) 0.01 (0.00/0.02) 0.01 (0.01/0.02) 0.01 (0.00/0.02)
200 5.6 (4/6) 0.08 (0.03/0.16) 0.06 (0.03/0.13) 0.06 (0.03/0.09) 0.05 (0.03/0.08)
300 4.8 (4/6) 0.12 (0.08/0.22) 0.12 (0.08/0.21) 0.12 (0.08/0.15) 0.10 (0.08/0.15)
400 4.8 (4/6) 0.19 (0.19/0.29) 0.19 (0.16/0.26) 0.18 (0.15/0.26) 0.17 (0.16/0.20)
500 5.2 (4/10) 0.44 (0.18/1.38) 0.42 (0.18/1.19) 0.33 (0.18/0.74) 0.32 (0.19/0.63)
600 5.6 (4/8) 0.99 (0.30/2.04) 0.76 (0.30/1.21) 0.65 (0.31/0.94) 0.49 (0.30/0.72)
700 5.2 (4/8) 1.14 (0.43/1.63) 0.99 (0.42/1.47) 0.92 (0.46/1.30) 0.73 (0.49/0.94)
800 5.6 (4/8) 1.45 (0.66/1.99) 1.29 (0.64/1.62) 1.22 (0.65/1.42) 0.90 (0.69/1.03)
900 4.4 (2/6) 1.01 (0.74/1.18) 1.01 (0.71/1.31) 1.05 (0.69/1.36) 1.09 (0.72/1.33)
1000 5.6 (4/8) 3.40 (1.18/7.09) 3.02 (1.03/5.94) 2.41 (1.10/4.28) 1.72 (1.10/2.70)
1500 6.8 (6/8) 14.8 (6.06/27.3) 11.8 (5.86/17.1) 8.43 (5.98/12.9) 6.80 (4.90/9.24)
2000 7.6 (4/14) 54.8 (6.12/137) 47.6 (6.09/120) 23.9 (6.15/56.0) 19.4 (6.03/42.2)

Table 4.5: Monic polynomials with random 1000-bit coefficients.
Degree No. of roots ubC min(ubFL, ubLM) ubKQ(Hong) ubLMQ

Time(s) Time(s) Time(s) Time(s)
Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

100 6.0 (4/8) 0.03 (0.02/0.04) 0.01 (0.01/0.03) 0.01 (0.00/0.02) 0.01 (0.00/0.02)
200 5.2 (4/8) 0.09 (0.02/0.22) 0.07 (0.02/0.19) 0.04 (0.02/0.11) 0.04 (0.03/0.06)
300 5.6 (4/8) 0.19 (0.06/0.46) 0.14 (0.07/0.28) 0.12 (0.06/0.24) 0.14 (0.07/0.26)
400 5.2 (4/8) 0.41 (0.08/1.00) 0.24 (0.06/0.54) 0.21 (0.06/0.44) 0.15 (0.06/0.28)
500 5.6 (4/8) 0.62 (0.18/1.00) 0.39 (0.12/0.68) 0.45 (0.12/0.74) 0.26 (0.12/0.37)
600 4.8 (4/6) 1.03 (0.24/3.09) 0.52 (0.17/1.21) 0.37 (0.17/0.68) 0.32 (0.17/0.59)
700 5.2 (2/10) 1.27 (0.20/2.67) 1.02 (0.21/1.84) 0.86 (0.19/1.43) 0.65 (0.19/1.09)
800 5.6 (4/8) 2.92 (0.43/5.41) 2.40 (0.39/4.46) 1.02 (0.38/2.02) 0.79 (0.38/1.38)
900 6.0 (4/8) 4.22 (0.84/9.86) 2.67 (0.80/5.78) 1.84 (0.88/2.47) 1.43 (0.74/2.22)
1000 5.6 (4/6) 4.23 (2.21/5.86) 2.90 (1.34/4.21) 2.23 (1.34/3.52) 1.44 (1.15/1.84)
1500 6.8 (6/8) 17.1 (26.06/41.8) 11.4 (5.25/28.2) 8.28 (4.86/15.7) 5.44 (3.30/10.4)
2000 6.4 (6/8) 30.6 (4.80/102) 24.0 (4.59/80.9) 16.7 (4.60/47.4) 12.6 (5.02/35.9)
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Table 4.6: Products of terms x20 − r, with random 20-bit r.

Degree No. of roots ubC min(ubFL, ubLM) ubKQ(Hong) ubLMQ

Time(s) Time(s) Time(s) Time(s)
Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

100 10 0.05 (0.02/0.09) 0.05 (0.02/0.09) 0.03 (0.02/0.04) 0.02 (0.02/0.02)
200 20 0.31 (0.18/0.39) 0.27 (0.16/0.38) 0.24 (0.16/0.32) 0.15 (0.12/0.20)
300 30 1.07 (0.58/1.37) 0.89 (0.60/1.11) 0.87 (0.60/1.04) 0.57 (0.56/0.60)
400 40 2.22 (1.92/2.58) 1.97 (1.86/2.27) 1.94 (1.86/2.08) 1.50 (1.35/1.70)
500 50 8.51 (6.03/11.5) 5.32 (4.24/7.28) 4.55 (4.25/5.32) 3.24 (2.87/3.74)
600 60 13.9 (11.7/17.0) 9.15 (8.28/10.2) 8.96 (8.43/9.35) 6.43 (5.96/6.84)
700 70 24.6 (21.7/29.1) 17.2 (13.7/21.2) 16.5 (13.3/19.7) 12.1 (10.6/14.0)
800 80 38.0 (33.7/44.2) 26.3 (23.6/30.4) 24.4 (19.4/30.3) 17.2 (15.1/19.3)
900 90 53.7 (40.4/63.8) 43.5 (37.0/51.5) 37.0 (28.8/45.8) 29.5 (23.1/36.6)
1000 100 89.6 (70.9/103) 69.1 (52.2/78.5) 63.9 (45.4/76.5) 50.0 (42.1/58.9)
1500 150 577 (468/696) 456 (378/533) 429 (360/473) 353 (3.11/402)
2000 200 2228 (1917/2711) 1907 (1674/2342) 1808 (1614/2279) 1464 (1204/1767)

Table 4.7: Products of terms x20 − r, with random 1000-bit r.

Degree No. of roots ubC min(ubFL, ubLM) ubKQ(Hong) ubLMQ

Time(s) Time(s) Time(s) Time(s)
Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

100 10 0.08 (0.05/0.10) 0.08 (0.05/0.12) 0.11 (0.06/0.31) 0.09 (0.03/0.23)
200 20 1.65 (0.96/2.14) 1.42 (0.97/2.09) 1.28 (1.02/0.1.45) 1.31 (1.10/1.50)
300 30 7.54 (5.08/10.8) 5.20 (4.46/5.65) 4.88 (3.67/5.49) 4.24 (3.92/4.69)
400 40 15.7 (10.8/19.7) 15.7 (13.3/17.5) 14.7 (12.7/17.3) 12.7 (11.0/14.1)
500 50 42.4 (29.2/64.7) 44.5 (35.2/48.7) 35.5 (32.8/40.5) 35.0 (27.5/49.7)
600 60 117 (91.9/154) 106 (82.6/134) 103 (90.0/121) 92.0 (86.5/97.0)
700 70 248 (208/332) 252 (221/282) 240 (205/264) 189 (168/205)
800 80 549 (351/753) 481 (410/590) 474 (412/542) 382 (364/432)
900 90 1138 (971/1271) 855 (721/967) 834 (718/931) 670 (646/723)
1000 100 1661 (1513/1913) 1335 (1123/1673) 1265 (1066/1440) 1065 (947/1146)
1500 150 9004 (8233/9705) 8360 (7281/8999) 8230 (7357/9652) 6141 (5659/6470)
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Table 4.8: Products of terms x− r with random integer r.

Bit-length Degree ubC min(ubFL, ubLM) ubKQ(Hong) ubLMQ

Time(s) Time(s) Time(s) Time(s)
of roots Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

10 100 0.46 (0.28/0.94) 0.24 (0.18/0.28) 0.34 (0.27/0.41) 0.34 (0.30/0.41)
10 200 1.46 (1.24/1.85) 1.40 (1.28/1.69) 1.41 (1.26/1.71) 1.40 (1.20/1.69)
10 500 18.1 (16.5/18.9) 18.1 (16.6/18.8) 21.2 (17.5/24.4) 22.1 (18.7/24.2)

1000 20 0.07 (0.04/0.14) 0.02 (0.02/0.03) 0.03 (0.02/0.04) 0.03 (0.02/0.04)
1000 50 3.69 (2.38/6.26) 0.81 (0.60/1.28) 0.88 (0.52/1.28) 0.81 (0.52/1.11)
1000 100 47.8 (37.6/56.9) 13.8 (10.3/19.2) 17.6 (12.4/25.9) 15.8 (11.3/21.3)

Figure 4.2: The average speed−up of the VAS algorithm for each Table (4.1–4.8) using the
min(ubFL, ubLM ) and ubLMQ against Cauchy’s bound, ubC .
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Summarizing the testing results5 from Tables 4.1 through 4.8 above we have

the Figure 4.2. The time gain for min(ubFL, ubLM) and ubLMQ against Cauchy’s

bound, ubC , was calculated for every row using the formulas: Speed − up = 100 ·

|min(ubFL, ubLM)−ubC |/ubC and Speed−up = 100 · |ubLMQ−ubC |/ubC , respectively.

Then, for every Table, the average value of Speed− up was computed giving a rough

overall estimation on time gain that VAS algorithm received after the incorporation

of the new bounds.

Taking these test results into consideration, one could safely conclude that us-

ing the new proposed bounds (linear or quadratic) in VAS real root isolation algo-

rithm would see a average overall improvement in computation time of about 20%

for min(ubFL, ubLM) and about 40% for ubLMQ bound.

Also, notice that ubLMQ is fastest for all classes of polynomials tested, except for

the case of very many very large roots, Table 4.8. In the case of very many very

large roots VAS using ubLMQ is a very close second to VAS using our linear complexity

bound min(ubFL, ubLM)6.

We end this chapter by presenting the following graph, Figure 4.3. This graph

depicts the overall time of VAS-CF in comparison with the time spent for computing

bounds. Especially, the left scale shows the total time in seconds (bars) needed by

VAS-CF to isolate the roots of a certain class of polynomials (Laguerre) using both

ubLM , the “local-max” bound, and ubLMQ, its quadratic version. The right scale

is associated with the two curves which show the total time spent by VAS-CF in

computing just these bounds.

5The change in memory use was negligible in every case, and hence, it is not included. Also,
timing results are subject to measurement error, which especially affect small timings.

6For additional discussion on these conclusions, see (Akritas, Strzeboński, and Vigklas, 2007),
(Akritas, Strzeboński, and Vigklas, 2008b) and (Akritas, 2009).
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Figure 4.3: Computation times for the Laguerre polynomials of degree (100...1000). The
VAS-CF(LM), VAS-CF(LMQ), (LM), and (LMQ) are described above in the text.
Note that the bars are scaled to the left Y axis whereas the lines to the right
one.
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CHAPTER V

Conclusions

5.1 Final Note

This thesis was motivated by an old, but still important for many modern scientific

fields, problem in polynomial algebra, namely, the determination of upper bounds on

the values of the positive roots of polynomials. The widespread development and use

of computer algebra systems, (CAS ), along with an increasing interest in root isolation

methods, provided a fruitful context for reexamination of this classical problem.

We have presented and analyzed a variety of algorithms both of linear and quadratic

computational complexity that take advantage of a theorem that we extended, in or-

der to establish a unified general framework in which the classical ones fitted perfectly

and new ones came out naturally. These algorithms are simple in implementation, and

in most cases outperform in speed and accuracy the established preexisting methods.

The incorporation of these new bounds in the Vincent-Akritas-Strzeboński, (VAS),

continued fractions polynomial real root isolation algorithm offered a significant speed-

up to an already fast method extending significant the range of its applicability and

its robustness.

The immediate adoption of our new algorithms by major mathematical software

systems, such as Mathematica and Sage, bear witness to their usefulness and their

effectiveness. However, this thesis is by no means exhaustive and questions such as:
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• Is there an optimal way to break up the coefficients in the“first–λ” method?

• Is it possible to extend these bounds to multivariate polynomials with similar

success?

• Can these bounds be suitably modified to constitute a complex analogue for

polynomials with complex coefficients?

and many others, seek to be answered by our long term on-going research.
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APPENDIX A

Theorems on the Number of Real Roots of a

Polynomial

A.1 Number of Real Roots of a Polynomial in an Interval

After the bounds of the positive and negative real roots of the polynomial equation

p(x) = 0 have been calculated according to the methods presented in Chapter 3.2

the next question that arises concerns the number of real roots of a polynomial in a

given interval (a, b). A picture of the number of real roots of equation p(x) = 0 in

an interval (a, b) is shown in Figure A.1, for the function y = p(x), where the roots

x1, x2, x3 are found as the points of intersection of the graph with the x-axis. We note

that (a) If p(a)p(b) < 0, then on the interval (a, b) there is an odd number of roots of

p(x), counting multiplicities, (b) If p(a)p(b) > 0, then on the interval (a, b) there are

either no roots of p(x) or there is an even number of such roots. The question of the

number of real roots of an algebraic equation in a given interval is solved completely

by the Sturm method, (Kurosh, 1988). Before going into that let us introduce the

notion of the number of sign changes in a set of numbers.
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Figure A.1: A polynomial with three positive real roots.

Definition A.1. Suppose we have an ordered finite set of real numbers different from

zero:

r1, r2, ...rl (l ≥ 2) (A.1)

We say that there is a change of sign for a pair of two successive elements rk, rk+1 of

(A.1) if these elements have opposite signs, that is,

rkrk+1 < 0 (A.2)

and there is no change of sign if the signs are the same:

rkrk+1 > 0 (A.3)

The total number of changes of sign in all pairs of successive elements rk, rk+1(k =

1, 2, ...l−1) of (A.1) is called the number of sign changes or variations of sign, (V ar),

in (A.1).

Example A.2. Consider the polynomial p(x) = x3 − 7x2 + 7. The sequence of its

coefficients is {1,−7, 0, 7} which shows a number of sign variations equal 2, (V ar = 2).
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A.1.1 Sturm’s Theorem (1827)

For a given polynomial p(x), we can form the Sturm sequence

p(x), p1(x), p2(x), ..., pm(x) (A.4)

where p1(x) = p′(x), p2(x) is the remainder, with reversed sign, left after the division

of the polynomial p(x) by p1(x), p3(x) is the remainder, with reversed sign, after

the division of the polynomial p1(x) by p2(x), and so on. The polynomials pk(x)(k =

2, ...,m) may be computed by a modified Euclidean algorithm. If the polynomial p(x)

does not have any multiple roots, then the last element pm(x) in the Sturm sequence

is a nonzero real number.

If we represent by V ar(r) the number of sign changes in a Sturm sequence for

x = r, provided that the zero elements of the sequence have been ignored, we have

the Sturm’s theorem:

Theorem A.3 (Sturm (1827)). If a polynomial p(x) does not have multiple roots

and p(a) 6= 0, p(b) 6= 0, then the number of its real roots N(a, b) in the interval

a < x < b is exactly equal to the number of lost sign changes in the Sturm sequence

of the polynomial p(x) when going from x = a to x = b, that is,

N(a, b) = V ar(a)− V ar(b) (A.5)

Corollary A.4. If p(0) 6= 0, then the number N+ of positive and the number N− of

negative roots of the polynomial p(x) are respectively:

N+ = V ar(0)− V ar(+∞) (A.6a)

N− = V ar(−∞)− V ar(0) (A.6b)
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Corollary A.5. For all the roots of a polynomial p(x) of degree n to be real, in the

absence of multiple roots, it is necessary and sufficient that the following condition

holds:

V ar(−∞)− V ar(+∞) = n (A.7)

Example A.6. Let us determine the number of positive and negative roots of the

equation p(x) = x7 − 7x+ 1. The Sturm sequence is

p(x) = x7 − 7x+ 1 (A.8a)

p1(x) = x6 − 1 (A.8b)

p2(x) = 6x− 1 (A.8c)

p3(x) = 46655 (A.8d)

so

V ar(−∞) = 3, V ar(0) = 2, V ar(+∞) = 0 (A.9)

We find that equation p(x) = x7 − 7x+ 1 has

N+ = 2− 0 = 2 positive roots (A.10a)

N− = 3− 2 = 1 negative roots (A.10b)

and its rest four roots are complex roots. We can easily deduce here a way to isolate

the roots of algebraic equations by using Sturm sequence in order to partition the

interval (a, b) containing all the real roots of the equation into a finite number of

subintervals (α, β) such that V ar(α)− V ar(β) = 1.

60

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 05:25:06 EET - 137.108.70.7



A.1.2 Fourier’s Theorem (1819)

Sturm arrived at his method (1827) by extending an earlier theorem by Fourier

(1819). Let us return to the method described above (A.1) for the counting of the

number variations of sign in a sequence of numbers:

Definition A.7. Suppose we have a finite ordered sequence of real numbers:

r1, r2, ..., rl (A.11)

where r1 6= 0 and rl 6= 0. We define: (a) lower number of variations of sign V arlo

of the sequence (A.11) for the number of sign changes in an appropriate subsequence

that does not contain zero elements and (b) upper number of variations of sign V arup

of a sequence of numbers (A.11) for the number of sign changes in a transformed

sequence of (A.11) where the zero elements

rk = rk+1 = ... = rk+m−1 = 0 (A.12)

(rk−1 6= 0, rk+m 6= 0) are replaced by the elements r̃k+i(i = 0, 1, 2, ...,m− 1) such that

sgn(r̃k+i) = (−1)m−isgn(rk+m) (A.13)

It is clear that if (A.11) has no zero elements, then the number V ar of sign changes

in the sequence coincides with its lower V arlo and upper V arup number of variation

of sign: V ar = V arlo = V arup whereas generally V arup ≥ V arlo.

Example A.8. Let us determine the lower and upper number of changes of sign in

the sequence 1, 0, 0,−1, 1. Omitting the zeros, we have V arlo = 2. To calculate V arup

using (A.13), we form the sequence 1,−σ, σ,−1, 1 where σ > 0, and V arup = 4.

Theorem A.9 (Fourier, 1820). If the numbers a and b (a < b) are not roots of a

polynomial p(x) of degree n, then the number N(a, b) of real roots of the equation
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p(x) = 0 lying between a and b is equal to the minimal number ∆V ar of the sign

changes lost in the sequence of successive derivatives

p(x), p′(x), ..., pn−1(x), pn(x) (A.14)

when going from x = a to x = b, or less that ∆V ar by an even number: N(a, b) =

∆V ar − 2k where ∆V ar = V arlo(a)− V arup(b) and V arlo(a) is the lower number of

variations of sign in the sequence (A.14) for x = a, V arup(b) is the upper number of

variations of sign in that sequence for x = b [k = 0, 1, ..., E(∆V ar
2

)]

Fourier’s theorem is the only one found in the literature under the names: Budan,

Budan-Fourier, Fourier or Fourier-Budan. We expalin why in the sequel. In the

above theorem it is assumed that each root of the equation p(x) = 0 is counted

according to its multiplicity. If the derivatives pk(x) (k = 1, 2, ..., n) do not vanish

at x = a and x = b, then counting the signs is simplified and ∆V ar becomes ∆V ar =

V ar(a)− V ar(b).

Corollary A.10. . If ∆V ar = 0, then there are no real roots of the equation p(x) = 0

between a and b.

Corollary A.11. . If ∆V ar = 1, then there is exactly one real root of the equation

p(x) = 0 between a and b.

A.1.3 Descartes’ Theorem (1637)

Somewhat easier in applications, but still unable to determine precisely the num-

ber of roots, is Descartes’ rule of signs (given in his work Geometrie in 1637 and

proved by Gauss in 1828), (Bartolozzi and Franci , 1993).

Theorem A.12 (Descartes’ rule of signs, 1637). The number of positive roots of an

algebraic equation p(x) = 0 such that a root of multiplicity m being counted as m

roots, is equal to the nummber of variations in sign in the sequence of coefficients
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an, an−1, an−2, ..., a0 (A.15)

(where the coefficients equal to zero are not counted) or less than that by an even

integer.

Clearly, Descartes’ rule of sign is an application of the Fourier theorem to the

interval (0,+∞). Since

p(x) = anx
n + ...+ a0 (A.16a)

p′(x) = nanx
n−1 + ...+ a1 (A.16b)

p(2)(x) = n(n− 1)anx
n−2 + ...+ 2a2 (A.16c)

... (A.16d)

... (A.16e)

... (A.16f)

p(n)(x) = n!an (A.16g)

sequence (A.15) is, to within positive factors, a collection of derivatives p(k)(0) (k =

0, 1, 2..., n) written in ascending order, i.e. a0, a1, 2a2, ..., n!an, therefore, the number

of variations in sign in the sequence (A.15) is equal to V arlo(0), zero coefficients not

counted. On the other hand, the derivatives p(k)(+∞) (k = 0, 1, 2..., n) have no sign

variations and follows that V arup(+∞) = 0. Then, we have

∆V ar = V arlo(0)− V arup(+∞) = V arlo(0) (A.17)

and on the basis of the Fourier theorem, the number of positive roots of p(x) = 0 is

either equal to ∆V ar or is less than that by an even integer.

Corollary A.13. If the coefficients of p(x) = 0 are different from zero, then the
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number of negative roots of p(x) = 0, counting multiplicities, is equal to the number

of non-variations of sign in the sequence (A.15) of its coefficients or is less than that

by an even integer. The proof of this follows directly from the application of Descartes’

rule to the polynomial p(−x).

A.1.4 Budan’s Theorem (1807)

Budan’s theorem of 1807 is equivalent to, but not the same, as, Fourier’s theo-

rem. Due to this equivalence, it was not considered essential and therefore, it was

only Fourier’s theorem that gained popularity among researchers. Budan’s theorem

appears in the literature only in Vincent’s paper, (Vincent , 1836) and in Akritas’

work, (Akritas , 1982). Budan’s theorem despite its similarity to Fourier’s, leads in a

different direction. It states:

Theorem A.14 (Budan, 1807). If in an algebraic equation p(x) = 0, we make two

distinct substitutions x = α+x′ and x = β+x′′, where α and β are real numbers and

α < β, getting the equations A(x′) =
∑
aix

i = 0 and B(x′′) =
∑
bix

i = 0. Then

• V ar(ai) ≥ V ar(bi)

• The number of real roots of p(x) = 0 between α and β is: N(α, β) = V ar(ai)−

V ar(bi)− 2k, where as above k is an integer and k ≥ 0.

To see that this theorem is equivalent to Fourier’s theorem we must replace, in

Fourier’s sequence, x by any real number c. Then, the n + 1 resulting numbers are

proportional to the corresponding coefficients of the transformed polynomial equation

p(x + c) =
∑

0≤i≤n[p(i)(c)/i!]xi obtained by Taylor’s expansion theorem. Budan’s

theorem is the base of Vincent’s theorem that plays an important role to the real

root isolation algorithms.
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APPENDIX B

Mathematical Formulas of Testing Polynomials

B.1 Mathematical Formulas of the Benchmark Polynomials

Below we present the exact mathematical formulas of the polynomials that were

used for the tests, during the computational evaluation of the various bounds. We

followed the standard practice and used as benchmark the Laguerre polynomials

recursively defined as:

L0(x) = 1 (B.1a)

L1(x) = 1− x (B.1b)

Ln+1(x) =
1

n+ 1
((2n+ 1− x)Ln(x)− nLn−1(x)) (B.1c)

ChebyshevI of the first kind recursively defined as:

T0(x) = 1 (B.2a)

T1(x) = x (B.2b)

Tn+1(x) = 2xTn(x)− Tn−1(x) (B.2c)
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ChebyshevII of the second kind recursively defined as:

U0(x) = 1 (B.3a)

U1(x) = 2x (B.3b)

Un+1(x) = 2xUn(x)− Un−1(x) (B.3c)

Wilkinson recursively defined as:

W (x) =
n∏
i=1

(x− i) (B.4a)

Mignotte recursively defined as:

Mn(x) = xn − 2(5x− 1)2 (B.5a)

as well as several types of randomly generated polynomials of degrees {100, 200, 300,

400, 500, 600, 700, 800, 900, 1000, 1500, 2000}. For the random polynomials the size of

the coefficients ranges from −220 to 220. “uRandom” indicates a random polynomial

whose leading coefficient is one, whereas ‘“sRandom” indicates a random polynomial

obtained with the randomly chosen seed 1001; also “pRandom” denotes products of

factors (x-randomly generated integer root p(x) =
∏

degree(x− n)).
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Akritas, A. G., A. Strzeboński, and P. Vigklas (2007), Advances on the continued
fractions method using better estimations of positive root bounds, Proceedings of
the 10th International Workshop on Computer Algebra in Scientific Computing,
CASC, pp. 24–30.
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