
Πανεπιστήμιο Θεσσαλίας
Πολυτεχνική Σχολή

Τμήμα Μηχανικών Ηλεκτρονικών Τπολογιστών,
Τηλεπικοινωνιών και Δικτύων

Διπλωματική Εργασία

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ
ΠΑΡΑΛΛΗΛΑ ΥΠΟΛΟΓΙΣΤΙΚΑ

ΜΟΝΤΕΛΑ

από

Άγγελος - Χρηστός Αναδιώτης

Επιβλέποντες:

1. Καθηγητής Ηλίας Χούστης

2. Επίκουρος Καθηγήτρια Παναγιώτα Τσομπανοπούλου

Βόλος, Οκτώβριος 2008

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Πανεπιστήμιο Θεσσαλίας

ΒΙΒΛΙΟΘΗΚΗ & ΚΕΝΤΡΟ ΠΛΗΡΟΦΟΡΗΣΗΣ
Ειλικη Συλλογή «Γκρίζα Βιβλιογραφία»

Αριθ. Εισ.: 6647/1
Ημερ. Εισ.: 15-10-2008

Δωρεά: Συγγραφέα
Ταξιθετικός Κωδικός: ΠΤ - ΜΗΥΤΔ

2008
ΑΝΑ

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Πανεπιστήμιο Θεσσαλίας
Πολυτεχνική Σχολή

Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών,
Τηλεπικοινωνιών και Δικτύων

Διπλωματική Εργασία

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ
ΠΑΡΑΛΛΗΛΑ ΤΠΟΛΟΓΙΣΤΙΚΑ

ΜΟΝΤΕΛΑ

από

Άγγελος - Χρηστός Αναδιώτης

Επιβλέποντες.

1. Καθηγητής Ηλίας Χούστης

2. Επίκουρος Καθηγήτρια Παναγιώτα Τσομπανοπούλου

Βόλος, Οκτώβριος 2008

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Contents

Contents i

1 Πρόλογος στην Ελληνική Γλώσσα 1

2 Παράρτημα 5

ι

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Chapter 1

Πρόλογος στην Ελληνική
Γλώσσα

Μέσα σε ένα έντονα ανταγωνιστικό περιβάλλον, όπως είναι αυτό των χρημα­
τοοικονομικών, όπου δημιουργούνται νέα, πιο πολύπλοκα, προϊόντα, η ανάγκη για
επιτάχυνση και ακρίβεια στους υπολογισμούς γίνεται ολοένα και πιο επιτακτική.
Για να καλυφθούν αυτές οι νέες ανάγκες, με τα ήδη υπάρχοντα μαθηματικά -
υπολογιστικά μοντέλα, προχωράμε σε παραλληλοποίηση των υπολογισμών. Με
αυτόν τον τρόπο επιτυγχάνουμε την επιτάχυνσή τους, ένα ποσοστό της οποίας
θα μπορούσε να θυσιαστεί για χάρη της βελτίωσης της ακρίβειας τους.

Η εν λόγω διπλωματική εργασία αποτελεί μια προσπάθεια αποτύπωσης των
βασικών υπολογιστικών μοντέλων που χρησιμοποιούνται στα χρηματοοικονομικά,
ενώ ταυτόχρονα επιχειρήθηκε και μια διαφορετική προσέγγιση στην παραλληλοποίησή
τους. Μέσα σε αυτό το πνεύμα, από τη μία πλευρά παρουσιάζονται τρεις μέθοδοι
αποτίμησης χρηματοοικονομικών παραγώγων σε θεωρητικό επίπεδο, δίνοντας το
απαραίτητο μαθηματικό υπόβαθρο, σε πρακτικό επίπεδο, δίνοντας αλγορίθμους
αποτίμησης που αποτυπώνουν τη θεωρία και, τέλος, σε ένα πιο προχωρημένο
επίπεδο, δίνοντας τους αντίστοιχους παράλληλους υπολογιστικούς αλγορίθμους.
Τέλος, η διπλωματική αυτή εργασία συνοδεύεται και από τον πηγαίο κώδικα που
υλοποιεί τους παράλληλους υπολογισμούς για Ευρωπαϊκά options σε συνδυασμό
με ένα Web interface που καθιστά τα εργαλεία αυτά πιο εύχρηστα.

Σε αυτό το σημείο, να σημειωθεί ότι η γλώσσα γραφής που χρησιμοποιήθηκε για
την παρουσίαση των μοντέλων είναι η αγγλική. Στο Παράρτημα 2 παρατίθεται το
εν λόγω κείμενο στην αγγλική γλώσσα. Στη συνέχεια, θα δώσουμε την περιγραφή
της διάρθρωσης του κειμένου.

1

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

2 ΉΑΠΤΕΡ 1. ΠΡΌΛΟΓΟΣ ΣΤΗΝ ΕΛΛΗΝΙΚΉ ΓΛ ΏΣΣΑ

Η διπλωματική αυτή εργασία αποτελείται από ένα εισαγωγικό κεφάλαιο στην
ελληνική και ένα παράρτημα, όπου παρατίθεται το υπόλοιπο κομμάτι στην αγγ­
λική. Το κομμάτι της που είναι στην αγγλική, αποτελείται από τέσσερα κεφάλαια,
εκ των οποίων το πρώτο είναι εισαγωγικό, και τρία παραρτήματα. Ακολουθεί μια
σύντομη παρουσίαση αυτών που παρουσιάζονται σε αυτό το κομμάτι, τα οποία
και αποτελούν το βασικό πυρήνα της εργασίας.

Στην Εισαγωγή - Κεφάλαιο 1, γίνεται μια παρουσίαση των βασικών χαρακ­
τηριστικών του περιβάλλοντος των χρηματοοικονομικών παραγώγων με τα οποία
θα ασχοληθούμε παρακάτω.

Στις Μεθόδους Monte Carlo - Κεφάλαιο 2, δίνονται οι βασικές αρχές που διέπουν
αυτές τις μεθόδους, τις ανάγκες και τα προβλήματα που ανακύπτουν καθώς και
λύσεις σε αυτά μέσα από τη βιβλιογραφία. Τέλος, δίνονται αλγόριθμοι υπολο­
γισμού Ευρωπαϊκών options με χρήση σειριακών και παράλληλων μεθόδων Monte
Carlo.

Στις Μερικές Διαφορικές Εξισώσεις - Κεφάλαιο 3, παρουσιάζεται η πιο διαδε­
δομένη μέθοδος επίλυσής τους και γίνεται επίδειξή της μέσα από ένα παράδειγμα,
από το οποίο μπορούν να προκύψουν λύσεις που αντιστοιχίζονται σε προβλήματα
στα χρηματοοικονομικά. Τέλος, δίνονται παράλληλοι αλγόριθμοι για την αποτίμηση
Ευρωπαϊκών options με χρήση παράλληλων μεθόδων επιλύοντας μια Μερική Δι­
αφορική Εξίσωση.

Στα Διωνυμικά Δέντρα - Κεφάλαιο 4, παρουσιάζεται ακόμα μια μέθοδος
αποτίμησης παραγώγων. Αφού γίνει μια αρχική περιγραφή της μεθόδου, δίνονται
ο σειριακός και ο παράλληλος αλγόριθμος αποτίμησης Ευρωπαϊκών options .

Στα Πειράματα - Κεφάλαιο 5, δίνονται οι γραφικές παραστάσεις από μετρήσεις
που έγιναν σε προσομοιώσεις του παράλληλου πηγαίου κώδικα. Έχουν προκύψει
από πειραματικά αποτελέσματα και μπορούν να δώσουν μια καλή εικόνα του
γιατί να επιλέξουμε τους παράλληλους υπολογισμούς.

Στα Συμπεράσματα-Μελλοντικό Έργο - Κεφάλαιο 6, παρουσιάζονται κάποια
γενικά συμπεράσματα που έχουν προκύψει μέσα από αυτή τη διπλωματική ερ­
γασία και την αντίστοιχη έρευνα που έγινε για να εκπονηθεί. Επίσης, αναφέρονται
κάποιες κατευθηντήριες σχετικά με την επέκταση και τη συνέχεια αυτής της ερ­
γασίας.

Στο Παράρτημα Α δίνονται κάποιες πληροφορίες για την ουδετερότητα ρίσκου,
την οποία πολλές φορές θεωρούμε δεδομένη και είναι σημαντικό να γνωρίζουμε

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3

γιατί το θεωρούμε αυτό και σε ποιες περιπτώσεις μπορεί να επιτραπεί αυτή η πιο
"απλοϊκή’ προσέγγιση στα μοντέλα μας.

Στο Παράρτημα Β γίνεται μια αναφορά στα Πραγματικά options (Real options)
. Δίνεται ο ορισμός τους και κάποια παραδείγματα αυτών των παραγώγων καθώς
και το πώς μπορούν να επηρεάσουν την τιμή της μετοχής μιας επιχείρησης.

Στο Παράρτημα Γ δίνονται κάποιες τεχνικές λεπτομέρειες που έχουν να κάνουν
με τη λειτουργία του λογισμικού που δίνεται μαζί με αυτή την εργασία.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Chapter 2

Παράρτημα

Ακολουθεί το κείμενο της Διπλωματικής Εργασίας γραμμένο στην αγγλική
γλώσσα.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

University of Thessaly
School of Engineering

Department of Computer and Communication Engineering

Diploma Thesis

Parallel Computational Models in
Finance

by

Angelos - Christos Anadiotis

Supervisors:

1. Professor Elias Houstis

2. Assistant Professor Panagiota Tsompanopoulou

Volos, October 2008

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

To my family

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Contents

Contents i

List of Figures iii

1 Introduction 3
1.1 Preface .. 3
1.2 Options.. 4

1.2.1 Options Types... 4
1.3 Computational Models in Finance ... 6
1.4 Thesis Structure.. 7

2 Monte Carlo Methods 9
2.1 Introduction.. 9
2.2 Monte Carlo Algorithm .. 9
2.3 Serial Random Number Generators... 10

2.3.1 Linear Congruential Generator (LCG).................................. 10
2.3.2 Multiplicative Linear Congruential Generator (MLCG) ... 10
2.3.3 Minimal Standard (MINSTD).. 11
2.3.4 Multiple-Recursive Generator.. 11

2.4 Parallel Random Number Generators..11
2.4.1 Leapfrog... 11
2.4.2 Sequence Splitting... 12
2.4.3 Parameterization.. 12

2.5 Variance Reduction Techniques... 12
2.5.1 Variance Reduction and Efficiency Improvement................ 12
2.5.2 Antithetic Variates... 14
2.5.3 Control Variates.. 15
2.5.4 Moment Matching Methods... 17

2.6 Option Pricing Using Monte Carlo Methods..................................... 19
2.6.1 European Options.. 19

1

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

ii CONTENTS

2.6.2 American Options..22

3 Partial Differential Equations 27
3.1 Introduction.. 27
3.2 Methods for Solving Partial Differential Equations.............................27

3.2.1 Finite Difference Method .. 27
3.3 Option Pricing... 34

3.3.1 European Options...34
3.3.2 American Options...51

4 Binomial Trees 55
4.1 Introduction..55
4.2 Method Overview.. 56
4.3 Parameters Computations...56

4.3.1 The Case u = 1/d...58
4.3.2 The Case p = 1/2...59

4.4 Binomial Tree Setup.. 59
4.5 Option Pricing... 60

4.5.1 European Options...60
4.5.2 American Options...66

5 Experiments 67

6 Conclusions - Future Work 85

Bibliography 87

A Risk Neutrality 91

B Real Options 93

C Implementation 95

List of Symbols and Abbreviations 105

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

ΙΟ
ϊΟ

List of Figures

4.1 Binomial Tree...57
4.2 Process Allocation for Binomial Tree.. 62

.1 Monte Carlo Method - Time ...68

.2 Monte Carlo Method - Memory... 69
5.3 Explicit Finite-Differences Method - Time...70
5.4 Explicit Finite-Differences Method - Memory...71
5.5 Implicit Finite-Differences Method- Time...72
5.6 Implicit Finite-Differences Method - Memory...73
5.7 Crank-Nicolson Method - Time..74
5.8 Crank-Nicolson Method - Memory... 75
5.9 Binomial Method - Time ...76
5.10 Binomial Method - Memory..77
5.11 Monte Carlo - Time (Centaurus).. 80
5.12 Explicit Finite-Differences - Time in Large Overhead (Centaurus) ... 81
5.13 Implicit Finite-Differences - Time in Large Overhead (Centaurus) ... 82
5.14 Crank-Nicolson - Time in Large Overhead (Centaurus)...............................83
5.15 Binomial - Time (Centaurus)...84

C.l Home Page..96
C.2 European Options in General...97
C.3 Binomial Model Form... 98
C.4 Code Page... 99
C.5 Request for Results..100
C.6 Results for Partial Differential Equations ... 101
C.7 About Page.. 102
C.8 Documentation..103

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

List of Algorithms

1 Monte Carlo.. 10
2 Parallel Monte Carlo Method.. 21
3 Tilley Monte Carlo for American Options.. 23
4 Broadie and Glasserman Monte Carlo for American Options 26
5 Explicit Finite-Differences...30
6 SORSolver(u,b, N~, N+ ,a,uj,eps,loops).. 31
7 Implicit Finite-Differences...32
8 Crank-Nicolson... 34
9 Parallel Explicit Finite-Differences... 40
10 Parallel Explicit Finite-Differences Continued.......................................41
11 Parallel Jacobi Method... 45
12 Parallel Jacobi Continued... 46
13 Parallel Jacobi Continued... 47
14 Parallel Implicit Finite-Differences... 47
15 Parallel Crank-Nicolson.. 51
16 Projected SOR Method for American Options using Crank-Nicolson

Scheme .. 54
17 Binomial Method.. 61
18 Parallel Binomial Method... 63
19 Parallel Binomial Method Continued.. 64
20 Parallel Binomial Method Continued.. 65
21 Binomial Method for American Options..66

v

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Acknowledgements

First of all, I would like to thank Professor Elias N. Houstis and Assistant Pro­
fessor Panagiota Tsompanopoulou for their trust and support for this thesis, for
my studies, for my future. Then my family for their being so supportive during
all these years of my studies at University. My closest friends Nikos Papavasiliou
and Antonis Gogakis for their being patient with me. PhD candidate Dimitris
Syrivellis and technical support member Thanasis Fevgas for their advice and
assistance when I was dealing with problems for the simulations. A very special
person for keeping me calm and peaceful when everything seemed so hard.

1

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Chapter 1

Introduction

1.1 Preface

Finance is a branch of economics concerned with resource allocation as well
as resource management, acquisition and investment[7]. It is one of the fastest
developing areas in the modern banking and corporate world. What we are
dealing with in the context of this Thesis, is computational models for financial
markets, the assets that axe traded in them and financial derivative products.
There are many kinds of financial markets; the most important are:

• Stock Markets

• Bond Markets

• Currency Markets

• Commodity Markets

• Options and Futures Markets

We have, then, a collection of markets on which assets of various kinds are
bought and sold. In the beginning it was just a buy/sell trading of assets in
any form (i.e. stocks for stock markets, bonds for bond markets etc.). However
markets have become more sophisticated and investors need a greater range of
opportunities to tailor their dealings to their investment needs. This range is
getting greater with several products known as financial derivatives, derivative
securities, derivative products, contingent claims or just derivatives.

3

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

4 CHAPTER 1. INTRODUCTION

1.2 Options

Option is a contract that gives its owner the right -but not the obligation- to
buy or sell a prescribed asset, currency and. in general, any commodity amount in
a prescribed price and at a prescribed time in the future (or during this prescribed
time in the future).

When an investor buys the right to buy (or sell) a title, then the owner of the
title, known as the writer, is obligated to sell (or buy) this title when the option
holder asks for it. The option holder is known as the buyer of the option or he
is said to be going long on the option. The other party is known as the seller of
the option or he is said to be going short on the option. The option buyer pays
the seller an amount which is called premium; premium is just a small part of
the commodity value. The prescribed price of buying or selling this commodity
is called exercise price or strike price.

1.2.1 Options Types

Depending on exercise time

If an option can be exercised only at its prescribed expiration time, then it is
said to be a European Option. On the other hand, if the option holder has the
right to exercise the option anytime until the expiration time, then the option is
said to be an American Option.

An American option can be considered as a batch or European options with
the same exercise price and with each one to begin when the previous one has
expired. In the context of this Thesis, we are dealing only with European options,
since we can present all the basic option properties can be illustrated through
them.

Depending on the transaction

If the option gives the holder the right to buy or sell the underlying commodity,
then it is called call option or put option respectively.

Call Options

A call option is a financial contract between two parties, the buyer and the
seller of this type of option. Often it is simply labelled a ’’call”. The option
holder has the right to buy an agreed quantity of a particular commodity or
financial instrument (the underlying instrument) from the seller of the option at
a certain time (the expiration date) for a certain price (strike price). The writer

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

1.2. OPTIONS 5

is obligated to sell the commodity or the financial instrument, should the buyer
so decide. The buyer pays the premium for this right.

If the commodity price St is greater than the exercise price K of the option,
then the call option holder is using his right by buying this commodity at the
specified -strike- price and right after that he is selling the commodity at St so

that he wins immediately St — K. His final profit is St — K — [premium].

On the other hand, if the commodity price is less than K, then the call option
holder is not using his right and loses the premium.

The writer of the call option wins the premium and, in the first case he loses
St — K while in the second case he loses nothing and he has the premium as his
profit.

Put Options

A put option, or simply a ’’put”, is a financial contract between two parties,
the seller and the buyer of the option. The put option allows its buyer the right to
sell a commodity or a financial instrument to the writer of the option at a certain
time (expiration date) for a certain price (strike price). The writer is obligated
to purchase the underlying asset at that strike price, if the holder exercises the
option.

A put holder is using his right when the commodity value is less than the
exercise price K at the option expiration date. In this case, the profit is K — St,
where St is the underlying value. Putting it all together, the final profit for the
holder is K — St — [premium]. If the holder wants to get this profit, all he has
to do is to buy the commodity at its price St and sell it at the exercise price K.

On the other hand, if the asset price St is greater than the exercise price K.
the put option holder is not using his right and loses the premium.

A put writer, gets the premium from the buyer and, in the first case he loses
K — St while in the second case he loses nothing and he has the premium as his
profit.

Depending on the relation between the exercise price and the asset price

Depending on the relation between the exercise price of the option and the asset
price, an option can be

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

6 CHAPTER 1. INTRODUCTION

• at-the-money, if the exercise price equals the underlying asset price,

• in-the-money, if the asset price is greater than the exercise price of the
call option (for a put option the asset price must be less than the exercise
price),

• out-of-the-money, if the exercise price is greater than the asset price for
a call option (for a put option the exercise price must be less than the asset
price).

It is obvious that in-the-money options are of greater value than at-the-money
options and at-the-money options are of greater money than out-of-the-money
options.

For a more detailed approach on financial derivatives please refer to [19].

1.3 Computational Models in Finance

In this Thesis we examine the modelling of financial derivative products from
the applied mathematics viewpoint, from modelling through analysis to elemen­
tary computation. We are using the three most common computational methods
applied in finance:

• Monte Carlo at Chapter 2,

• Partial Differential Equations at Chapter 3,

• Binomial Trees at Chapter 4.

Each one of these methods is illustrated in the context of this document. We
use European Options to present our examples and show how these methods are
applied in the real world. Based on the financial theory and these computational
methods, we form real-time financial problems on derivative securities and we are
solving them providing numerical solutions.

For the Monte Carlo method, we are using the asset price random walk and
we simulate different possible paths.

For the Partial Differential Equations method, we are using the Black-Scholes
model for European Options. Then, we are solving this stochastic partial differ­
ential of parabolic type using the finite-difference scheme and more specifically
the following schemes:

• Explicit Finite-Differences illustrated at 3.2.1.1,

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

1.4. THESIS STRUCTURE 7

• Implicit Finite-Differences illustrated at 3.2.1.2 and

• Crank-Nicolson illustrated at 3.2.1.3.

For the binomial trees method, we are using the Cox, Ross and Rubinstein
model.

However, this is not all. We are parallelizing these methods above, so that we
can speed up the computations for two reasons: time and accuracy. The first one
is obvious. The second is a result of the first; meaning that in the same time, we
can run more loops of the simulations, which can improve the accuracy of our
numerical results.

1.4 Thesis Structure

The rest of the Thesis is structured as follows.

Chapter 2 is a reference in Monte Carlo methods in option pricing. First,
the methods semantics and demands are demonstrated so that they are better
understood and then they are used in option pricing.

Chapter 3 is dedicated in Partial Differential Equations. The Finite-Difference
method is demonstrated along with three schemes that can be used in solving
PDEs. Then, these methods are used in option pricing.

Chapter 4 demonstrates Binomial Trees in option pricing. Starting from its
birth, we show how an asset random walk can be modelled by a binomial tree
with certain parameters.

Chapter 5 contains a set of figures and results from experiments ran using the
source code that is a part of this Thesis.

Chapter 6 gives the reader the conclusions that we have come to in the context
of this Thesis and is a plan for what could come next.

In appendices the reader can find additional information on certain topics.
More specifically:

Appendix A gives information on Risk Neutrality.

Appendix B is a first approach to Real Options.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

8 CHAPTER 1. INTRODUCTION

Appendix C gives a short description about the implementation (code, GUI)
and where to find it.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Chapter 2

Monte Carlo Methods

2.1 Introduction

A Monte Carlo method is a computational algorithm that relies on repeated
random sampling to compute its results. Monte Carlo methods are widely ap­
plicable in the field of mathematics and physics. They were invented by physics
researchers during the World War II, but due to their high computational re­
quirements, they were not used massively, until the first electronic computers
were built. Since then, as the computers performance raise, Monte Carlo meth­
ods become more and more popular to researchers in various fields.

In finance, Monte Carlo methods are used to analyse and value basic financial
models through to complex instruments, portfolios and investments by simulating
the sources of uncertainty affecting their value. After simulating a large number
of random walks which provide different values, Monte Carlo methods consider
the final value as the average of all values that came out of the simulation process.

As the problems become more complex by adding more sources of uncertainty,
Monte Carlo methods gain the upper hand among other ones. But as the sim­
ulations become more demanding, the need to speed up the calculations is even
more essential. The parallelism of Monte Carlo methods is a solution to that
problem.

2.2 Monte Carlo Algorithm

When we are trying to value a derivative security (such as an option), we need
to know the prices of the underlying securities. These prices are often modelled
as continuous-time stochastic processes. So, a Monte Carlo algorithm has to

9

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

10 CHAPTER 2. MONTE CARLO METHODS

simulate as many different paths of the underlying asset as possible and, through
the law of large numbers, estimate the expected value of the option, as the mean
of the values that resulted from every different path. This results to Algorithm
1 as shown in [16].

Algorithm 1 Monte Carlo
1: for j = 1 to N do
2: Simulate sample paths of the underlying variables (asset prices, interest

rates, etc.) using the risk neutral measure over the time frame of the option.
For each simulated path, evaluate the discounted cash flows of the derivative
Cj.

3: end for

4: Average the discounted cash flows over the sample paths C = —
________________ _ j=1

1 N
5: Compute the standard deviation = , ——: — ^(Cj-C)2

\ ^ 1=1

2.3 Serial Random Number Generators

In computer systems, a random number generator is an algorithm designed
to generate a sequence of numbers that lack any pattern. Even though, there
are some statistical tests for randomness, intended to ensure that the numbers
produced do not have easily discernible patterns, computer-based systems often
fail to generate random numbers. The most commonly used methods [16] are the
following.

2.3.1 Linear Congruential Generator (LCG)

One of the most commonly used random number generator is the linear con­
gruential generator. It is based on the recurrence

Vn = {ayn-i + c) mod m

where m > 0 is the modulus, a > 0 is the multiplier and c the additive constant.
It is usually denoted LCG(m,a,c,yo), where yo is the initial value for the re­
currence. Due to the modulus, the numbers generated by this generator have a
maximum period of m.

2.3.2 Multiplicative Linear Congruential Generator (MLCG)

This generator is a result of the previous one, if c = 0. In this case, the
recurrence becomes

Vn = {ay„~i) mod m

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

2.4. PARALLEL RANDOM NUMBER GENERATORS 11

If we choose the appropriate parameters, the multiplicative linear congruential
generator can produce a sequence of numbers of maximal period.

2.3.3 Minimal Standard (MINSTD)

For 32-bit machines, the choice LCG{231 - 1,16807,0,1), also known as MIN­
STD for minimal standard, is a popular one.

2.3.4 Multiple-Recursive Generator

This method proposed by L’Ecuyer extends MRG by adding k terms in the
recurrence

Un = {aiUn-i + ί*22Μ-2 + · · · + ockVn-k) mod m

where (<*ί)*=1 are integers in the interval [— (m — 1), (m + 1)]. The period and
the randomness of the numbers produced by this generator are generally much
improved compared with an MRG at the cost of an increase of computation time.

2.4 Parallel Random Number Generators

2.4.1 Leapfrog

The leapfrog method distributes the numbers of a serial random number ge-
neartor in a cyclic fashion to each processor. If we denote by (xi)i=o,i,2,... the
original sequence and L the lag, then processor p gets the following subsequence:

Xi — XiL+p with p = 0,1,2,..., P < L — 1

If the original sequence is

X0, X\i · · · 1 XL— 11 Xhi xL+1 ? · · · 7 X2L—17 X2L7 X2L+17 · · ·

then the subsequence obtained by processor 0 is

xo ,Xl,. • ? %L—1? XL ,XL+1, ■ · • 7 X2L—17 X2L

There are two problems with this method:

• Long-range correlations embedded in the random number generator can
become short-range correlations in the new sequence and destroy the quality
of the parallel random number generator.

• Not scalable scheme, since, when the number of processors P increases, the
length of the sequence (xi)i=o,i,2,... decreases.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

12 CHAPTER 2. MONTE CARLO METHODS

2.4.2 Sequence Splitting

The original sequence is split into blocks and distributed to each processor.
Let us denote the period of the generator by p, the number of processors by P
and the block length by L — [p/P\, we have

Xi = XpL+i with p = 0,1,2,..., P

Then, the original sequence

· · · ,XL-1,XL,XL+1j · · · ,X2L-1,X2L,X2L+1, · · ·

is distributed as follows to processors 0,1,2,...

XQi Xl i · · ■ i XL—1 XL,XL+1, ■ ■ - ,X2L-\ X2L,X2L+1,· ■ ■ j X3L—1

There two problems with this method:

• Long-range correlations can be emphasized and become inter-processor cor­
relations. We know that the sequences produced will not overlap, but we
cannot be sure that they will not show some correlation.

• Not scalable scheme, since, when the number of processors P increases, the
length of the sequence (xi)i=0,1,2,... decreases.

2.4.3 Parameterization

This method is based on parametrization of each stream of numbers. This can
be done in two ways:

• In certain generators, the seed value provides a natural way of dividing the
sequence of a random number generator into independent cycles.

• The function that outputs the next value in the sequence can be parametrized
to give a different stream for a different value.

2.5 Variance Reduction Techniques

There are several techniques used to reduce variance. Here, we will examine the
four most common ones and present them, as illustrated in [17, 1]

2.5.1 Variance Reduction and Efficiency Improvement

The reduction of variance is obviously desirable for many reasons. In this
Section we will examine it from the perspective of improving the computational
efficiency.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

2.5. VARIANCE REDUCTION TECHNIQUES 13

Suppose we want to compute the value of a derivative security -let us denote
it by Θ. In order to do so, we use Monte Carlo methods to generate an i.i.d.
(independent and identically distributed) sequence {9i,i — 1,2,...}, where each

has expected value Θ and variance σ2. A natural estimator of Θ based on n
replications is then the sample mean

1
n

By the central limit theorem, for a large n, this sample mean is approximately
normally distributed with mean Θ, variance σ2/η and error proportional to σ/η.
Thus, decreasing the variance σ2 by 10, and leaving all the rest unchanged, does
as much for error reduction as increasing the number of samples by a factor of
100.

In case we have to choose between two Monte Carlo sequences, we should keep
in mind that the variance is not the only factor that should affect our final choice.
For example, let us suppose that we have two Monte Carlo sequences to value a
derivative security Θ. Let us denote these two sequences by {θ^,ί = 1,2,...} and

i = 1,2,...}. Suppose that both are unbiased, so that Ε[θ^] — ΕΙΘ^] = θ,
but σ\ < σ2· Based on our previous observations, we should conclude that the
first sequence is the most proper one to choose as it gives a more precise estimate
of Θ than the second one. In this case, we should check the case that the first
sequence is more computationally expensive than the second one, and thus it has
smaller variance. So, we need to find a formula that takes care of this case too.

In order to derive this formula, we work as follows. Let us denote a constant
bj,j = 1,2, as the work required to generate one replication of Assuming
computations time t, the number of replications of 0^’) that can be generated will
be [t/bjJ (for simplicity we consider the ratios t/bj to be integers). Thus, the
two estimators are:

bi
t

t/b 1

Σ*
ί=1

, t/b2
and ^if)

t=1

For large t, these estimators are approximately normally distributed with mean
Θ and standard deviations

σι and

Therefore, for large t the first estimator should be preferred over the second in
case that

σ2&ι < σ|&2 (2.1)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

14 CHAPTER 2. MONTE CARLO METHODS

Equation (2.1) gives us a trade-off for estimator variance and computational ef­
ficiency. Based on our conclusions, it is reasonable to use the product of the
variance with the computational work per run as a measure of efficiency. Using
efficiency as a basis for comparison, the lower variance estimator should be pre­
ferred only if the variance ratio σ\/σ\ is smaller than the work ratio 62/61 and
vice versa.

2.5.2 Antithetic Variates

The antithetic variates technique is one of the simplest and most commonly
used techniques in financial pricing problems. We are going to use as an example
the pricing of a european call option on a no-dividend stock to illustrate the
method.

Based on the Black-Scholes model, the stock price follows a log-normal diffu­
sion. Independent replications of the terminal stock price under the risk-neutral
measure can be generated from the formula:

S$? = 50ε(Μΐ/2)σ2)Τ+σλ/^, * = 1, ·.. ,n, (2.2)

where So is the current stock price, r is the riskless interest rate, σ is the stock’s
volatility, T is the option’s maturity and the {Zi} are independent samples from
the standard normal distribution. Based on n replications and assuming an
exercise price K. an unbiased price of the option is given by

C = -'yCi = -Y' e~rT max{0, sl<} - K}
77, ^^ 77 ^J

1=1

(2.3)
i=1

Antithetic variates technique is based on the fact that, if {Zi} has a standard
normal distribution, then so does {—Zi}. By replacing Z, with —Zt in equation
(2.2), we obtain the stock price Sj) and then the price of the option:

Ci = e_rTmax{0,5^ — K) (2.4)

Finally, the price of the call option will be

Cav
1 w-v Ci + Ci
n^ 2i=\

(2.5)

The antithetic pairs {(Zi, —Zi)} are more regularly distributed than any other
2n totally independent samples. The reason for this is that the sample mean
of the antithetic pairs is 0; which is very unlikely for any other set of numbers.
Thus, we may hope that, if the inputs are made more regular, then we will have
more regular outputs as well.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

2.5. VARIANCE REDUCTION TECHNIQUES 15

For the shake of formality, we are going to compare efficiencies. Since Ct and
Ci have the same variance, we have that

Var
Ci + Ci

2 ^{Var[Ci\ + Cov[CiA]) (2.6)

In order to prove our claim, that is Var[CAV] < Var[C], it has to be Cov[Ci, Ci] <
Var[Ci\. Since computing Cav needs twice as many replications as C we need
to check the computational requirements. Considering that generating Zi takes
a negligible fraction of the work per replication, then the total work to generate
Cav is roughly double the work to generate C. So, in order for this technique to
be useful, it must be

2Var[CAV] < Var[C]

By replacing the above equation in (2.6), we get the final requirement, that

Cov[Ci, Ci] < 0

In order to prove the last case, we work as follows. We consider a function φ
such that Ci = φ(Ζ{). This means that φ is the composition of the mappings
from Zi to the stock price and from the stock price to the discounted option
payoff. As being a composition of two monotones, φ is also a monotone, so by a
standard inequality

E[<KZi), Φί-Zij] < Ett(Zi)]EM-Zi)] (2.7)

Thus,
Cov[Ci,Ci] = Ε{φ{Ζί),φ{-Ζί)] - Ε[φ{Ζι)]Ε[φ{-Ζί)] < 0

and we may conclude that this technique improves efficiency.

When we are computing the confidence intervals with antithetic variables,
the standard error must be estimated using the sample standard deviation of
the n averaged pairs (C, + CQ/2 rather than the 2n individual observations
Ci, Ci,..., Cn, Cn, since only the first are independent. In this case, the use of
a variance reduction technique affects the estimation of the standard error and
requires some ’’batching” of observations to deal with dependence.

2.5.3 Control Variates

This method is one of the most popular methods for variance reduction, because
it is both effective and easy to use. It can make use of other known values to
evaluate an unknown variable.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

16 CHAPTER 2. MONTE CARLO METHODS

The most straightforward implementation of control variates replaces the eval­
uation of an unknown expectation with the evaluation of the difference between
the unknown quantity and another expectation whose value is known. We will
see its use through an example. Let Pa be an option price whose payoff depends
on arithmetic average and Pq an option price whose payoff depends on geometric
average. In most cases, arithmetic average is of much more use than geometric
average; but instead of geometric average, arithmetic average cannot be evalu­
ated in a closed form. In such a case, we can use Pq to compute Pa with the
control variate method.

Let’s say that Pa and Pg are the discounted option payoffs for a single simu­
lated path of the underlying asset and Pa = E[Pa] and Pg = E[Pq\. Then,

Pa = Pg + E[Pa - PG]

So, now we have expressed Pa as the sum of Pg -which is known- with the
expected difference between Pa and Pg· An unbiased estimator is thus provided
by

Pa = Pa + (Pg - Pg) (2.8)

Using this scheme, we can adjust the estimator Pa according to the difference
between the known value Pg and the observed value Pg· The known error (Pg —
Pq) is used as a control in the estimation of PA-

The variance of PA is

Var[P^\ = Var[PA] + Var[PG] - 2Cov[PA, PG]

So, this method is considered to be effective, if the covariance between Pa and
Pg is large enough. There are numerical results that indicate that this is indeed
the case.

We can improve equation (2.8) by considering the family of unbiased estima­
tors:

ΡβΑ=ΡΑ + β(Ρα - Pg) (2.9)

which are parametrized by the scalar β. In this case we have:

νατ[ΡβΑ\ = Var[PA] + P2Var[PG\ - 2/3Cov[PA: PG]

So, the β which is minimizing the variance is

. = Covlh.Pc}
VarlPc]

An estimator based on β* is guaranteed not to increase variance and will result
in a strict decrease in variance, as long as PA and Pg are not uncorrelated.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

2.5. VARIANCE REDUCTION TECHNIQUES 17

But in practice, we rarely know β* because we rarely know Cov[Pa, Pg}· How­
ever, given n independent replications {(Pa{, PgPP — l,...,n} of the pairs
(Pa, Pg) we can estimate β* via regression. At this point we face a choice.
Using all n replications to compute an estimate β of β* introduces a bias in the
estimator

l±r^i{ec-l±Pc)

and its estimated standard error because of the dependence between β and the
PGi ■ Reserving ri\ replications for the estimation of β* and the remaining n — n\
replications for the sample mean of the Pg, (typically when n\ <C n) eliminates
the bias but may deteriorate the estimate of β*. Neither issue significantly limits
the applicability of the method, because the possible bias vanishes as n increases
and because the estimator of β* need not be very precise to achieve a reduction
in variance.

The advantage of working with (2.9) over (2.8) becomes even more pronounced
when further controls are introduced. For example, when the asset price is simu­
lated under risk-neutral probabilities, the present value e~rTE[St] of the terminal
price must equal the current price So- We can, therefore, form the estimator

Pa + βι(Pg ~ Pg) + /32(So - e~rTST)

The variance-optimising coefficients (β*,β%) are easily found by multiple regres­
sion. This optimisation step seems particularly crucial in this case; for, whereas
one might guess that β* is close to 1, it seems unlikely that βϊ, would be. Opti­
mising over the /3s also allows us to exploit controls that are negatively correlated
with the option payoff.

2.5.4 Moment Matching Methods

Here, we introduce a variance reduction technique, called quadratic resampling.
This technique is based on moment matching. It will be illustrated through an
example of estimating the European call option price on a single asset and then
generalise.

As we already know, the asset prices are generated from the formula:

ST(i) =

where Zj, i = 1,..., n denote independent standard normal random variables that
drive the simulation. The sample moment of these n Z’s will not exactly match
those of the standard normal. The idea of moment matching is to transform the

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

18 CHAPTER 2. MONTE CARLO METHODS

Z's to match a finite number of the moments of the underlying population. The
first of the standard normal can be matched by defining

Zj — Zi — Zi X — 1, . . . , 71 (2.11)

ΣΖ*
— is the sample mean of the Z's. Note that the Zi s are normally
ni= 1

distributed if the ZTs are normal.

So, if we go back to the asset price generator formula, we can see that a
moment matching estimator of a call option price is the average of the n values
Ci = e-rTmax (Sp(z) — K, 0).

But there is one drawback about this method. As we already know, in the
standard Monte Carlo method, confidence intervals for the true value of C could
be estimated by the sample mean and variance of the estimator -this cannot be
done here, since the n values of C are not independent. So, we need to apply
moment matching to independent batches of runs and estimate the standard error
from the batch means. This reduces the efficacy of the method compared with
matching moments across all runs.

The method, as it was illustrated until now, considers the first moment of a
distribution with zero mean. If this is not the case, then we use the equation

Zi — Zi — Z — μζ, (2.12)

where μζ is the population mean.

If we would like to match two moments of a distribution, then the appropriate
transformation would be

Zi= (Zi-z) — +μζ, i = 1,..., n, (2.13)

where sz is the standard deviation of the Zi s and σζ is the population standard
deviation. For a standard normal, μζ = 0 and σζ = 1. An estimator for a call
option price is the average of the n values of C,.

Using the transformation (2.13), the Z{ s are normal. Hence, the corresponding
Ci axe biased estimators of the true option value. For most financial problems
of practical interest, this bias is likely to be small. However, the bias can be
arbitrarily large in extreme circumstances (even when only the first moment of
the distribution is matched). The dependence and bias in the moment matching
method makes it difficult to quantify the improvement in general analytical terms.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

2.6. OPTION PRICING USING MONTE CARLO METHODS 19

The moment matching method can be applied to matching higher order mo­
ments as well. In addition to different methods for transforming random outcomes
to match specified moments, additional points could be added as another way to
match moments.

Whenever a moment is known, it can be used as a control rather than for
moment matching.

2.6 Option Pricing Using Monte Carlo Methods

Monte Carlo methods are, perhaps, the most popular ones in option pricing.
Even though it is considered to be rather slow, since too many computations are
needed for a trustworthy result, they are widely used mostly because of their
simplicity. But Monte Carlo methods are easily parallelizable as well; this way
we can reduce the time needed for computations, as shown in the experimental
results. In the following Section, we will examine Monte Carlo and Parallel Monte
Carlo methods in European Options pricing.

2.6.1 European Options

Consider a European Call Option, whose value at expiry is E[max(ST — K, 0)],
where St is the underlying security price at expiry. Our goal is to price that
option by evaluating the discounted present value of St· In order to do so, we
should first use a model to simulate the asset price random walk; let it be a
Wiener stochastic process. Then, we are going to evaluate the option price at
expiry. Every loop in Monte Carlo simulation, gives us another asset price at
time T. All we have to do, is to gather those values and get their mean; this way
we have a good approximation of the underlying security price at expiry.

The model that describes the underlying security random walk is[13, 18, 21]:

St+i = Ste(2.14)

where e is a random sample from a standard normal distribution, with zero mean
and deviation one.

After calculating the asset price random walk, we reach to its price at expiry.
At this point we can evaluate the call option as

C = e~rT max(Sr — K, 0)

At this point, we have finished one step of the simulation. After doing the same
thing for many more times, we gather the results and then compute their mean,

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

20 CHAPTER 2. MONTE CARLO METHODS

which will be the option price. Then, we can find the standard deviation of
the expected value and based on it, we can calculate the probability for the call
option price to belong in a certain space.

In case we have more than one stochastic variables, then all we have to do, is
to follow the same procedure described above; only that this time, we will have
to get the random walks for all of the stochastic variables. In case the interest
rate r is a stochastic variable, then we have to find the random walk of r during
the first Monte Carlo simulation and then calculate its mean. Then, we adjust
the calculated value and we do as we have already shown.

Parallel Computations for European Options

The parallelization of European Options pricing computations is rather straight­
forward. If we would like more than one processes to compute values, all we have
to do is to partition the problem in the respect of the loops we have decided that
our simulation should do. When each and every process has finished computing
the option value, we combine them by taking their sample mean.

For example, suppose we had to price a european option with Monte Carlo
simulation and we had decided that we should loop for 1,000,000 times. Then,
suppose that we would like the computations to be done by four processes rather
than one. In this point, we are facing a dilemma: it seems more right that each
process should as the starting asset value So for its computations from the final
value of its previous process, but is this possible in a real parallel world? The
answer is no. There is dependence between the computed asset values, as shown
in (2.14). So, if we would to stick with this idea, then we would not be able
to parallelize the problem, since its process should wait for its previous to end;
actually this multi-processed solution would be less effective, since we would have
the message passing overhead while we could do the same work with only one
process.

The conclusion that we have reached from the previous idea is that each process
should compute the option price from the beginning to the end. But, if we
assigned each process 250,000 loop times, then each process would have calculated
the exact same value and, of course, it would be less accurate, since the option
value would have been computed in 250,000 loop times rather than 1,000,000
loop times. Still, we have not found any other way to parallelize the problem.
In order to increase accuracy, we could assign a different e to each process. This
way, each process would compute a different value and we could take the sample
mean of these four values to be the option value. In this case, even though we do
not solve the initial problem (the loop still lasts 250,000 times), we have a better

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

2.6. OPTION PRICING USING MONTE CARLO METHODS 21

sample for e since we take more than one values. So, putting it all together, we
may lose in one field, but we win in another one.

What we suggest is to increase the loop times for each process, since we have
a significant speedup by multi-processing the computations as shown in Chapter
5. This way, we improve accuracy and the comparison between the serial and the
parallel method is posed on a different basis. The parallelization of the problem
in this case can be taken as an effort not only for speeding the computations but
also for improving accuracy.

Next, we give the algorithm that has been used in the context of this thesis for
European option pricing using parallel Monte Carlo methods. Please note that
we have used the same number of iterations as in the serial method, so that the
comparison would be in the same terms.

Algorithm 2 Parallel Monte Carlo Method
1: For each process:
2: price = 0.0;
3: discount = e~r*T\
4: times = M/nofProcesses;
5: for i = 0 to times do
6: e = getStandardN ormalRandomN umber ();
7: SS = S*r*T + S*a*e* \/T;
8: Snew = S + SS;
9: price+= payoff (Snewy,

10: end for
11: avgPrice = price/times]
12: derivativePrice = discount * avgPrice·,
13: For process 0 after all processes have finished:

nof Processes

Σ derivativePricei

14: optionPrice = 2=1______________
nof Processes

If we used this method in a serial execution, that is we had only one process,
then the cost would be linear O(M), where M stands for the total steps that the
method has to do to complete the computations. If we had more processes, say
P, then the cost would be 0(M/P + 2PK), where K is the cost for sending or
receiving one message, since all processes send their computed value to the first
one, which computes the final option value.

In this case, the problem parallelization seems to be working very nice, be­
cause the computations can get very low and the communications cost is almost

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

22 CHAPTER 2. MONTE CARLO METHODS

insignificant as the problem scales. In Chapter 5 we give some experimental
results that verify these assumptions.

Let us denote that [10, 8, 6] have given some ideas about how we will develop
the source code and the algorithms.

2.6.2 American Options

Although American options are slightly different than the European options,
it is much more difficult to evaluate them using Monte Carlo methods. First
of all, let us note that their difference is the exercise date: European options
have a fixed exercise date, which is the expiration, but American options can be
exercised at any time until their expiration. As we will see next, this fact can be
a check in applying Monte Carlo in American options.

However, some progress has been made. In this Section we will present the
most common schemes that have been proposed until now. Several solutions
have been given to this problem, but we will deal with three of them. At this
point, we need to say that according to [17] the estimators proposed by Tilley [20]
and Barraquand and Martineau [9] are both biased. So is the estimator proposed
by Broadie and Glasserman [12] but they take that in mind and they try to find a
solution to this problem. We will examine all these schemes in following Sections.

Tilley Scheme

Tilley discretizes time in N epochs and simulates different paths for the asset
price for these epochs. The intrinsic value, that is the profit if the option is
exercised, of an American option on path k at epoch t is defined as:

max[0, S(k, t) — X(t)] for a call option
max[0, X(t) — S(k,t)] for a put option

where X(t) is the exercise price at epoch t.

(2.15)

Let z(k, t) be the ’’exercise or hold” indicator variable which takes the value 0 if
the option is not exercised at epoch t on path k and which takes the value 1 if the
option is exercised at epoch t on path k. According to Tilley, in order to estimate
the price of the option, we need to estimate this exercise-or-hold estimator z, given
a finite sample o iR paths drawn from an arbitrage-free distribution of paths.
Note that the latest epoch that the option can be exercised is the expiration
date, where z(k,N) = 1 if and only if I(k,N) > 0. Next, we give the backward
induction algorithm proposed by Tilley.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

2.6. OPTION PRICING USING MONTE CARLO METHODS 23

Algorithm 3 Tilley Monte Carlo for American Options
1: Reorder the stock price paths by stock price, from the lowest price to highest

price for a call option or from highest price to lowest price for a put option.
Reindex the paths from 1 to R according to the reordering.

2: For each path k, compute the intrinsic value I(k, t) of the option.
3: Partition the set of R ordered paths into Q distinct bundles of P paths each.

Assign the first P paths to the first bundle, the second P paths to the second
bundle, and so on, and finally the last P paths to the Qth bundle. It is
assumed that P and Q are integer factors of R.

4: For each path k, the option’s ’’holding” value H(k,t) is computed as the fol­
lowing mathematical expression taken over all paths in the bundle containing
the path k:

H(k,t) = d(k,t)P~1 Σ V(j,t + 1)
all j in bundle containing k

The variable V(k, t) is fully defined in step 8 below. At epoch N, V(k, N) =
I(k,N) for all k

5: For each path, compare the holding value H{k,t) to the intrinsic value I(k,t)
and decide ’’tentatively” whether to exercise or hold. Define an indicator
variable x(k,t) as follows:

, , _ f 1 if I(k,t) > H(k,t) Exrcise
t) - | o ,f Hold

6: Examine the sequence of 0’s and l’s x(k, t); k = 1,2,..., R. Determine a
’’sharp” boundary between the hold decision and the exercise decision as the
start of the first string of l’s the length of which exceeds the length of every
subsequent string of 0’s. Let denote the path index (in the sample as
ordered in substep 1 above) of the leading 1 in such a string. The ’’transition
zone” between hold and exercise is defined as the sequence of 0’s and l’s that
begins with the first 1 and ends with the last 0.

7: Define a new exercise or hold indicator variable y(k,t) that incorporates the
sharp boundary as follows:

, . ί 1 for k > k,(t)
»(M)=\0 for k< Mi)

8: For each path k, define the current value V(k,t) of the option as follows:

V{k,t)
■{

/(M)
H(k,t)

if y(k,t) = 1
if y{k,t) = 0

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

24 CHAPTER 2. MONTE CARLO METHODS

After the algorithm has been processed backward from epoch N to epoch 1,
the indicator variable z(k, t) for t < N is estimated as follows:

,, . _ J 1 if y(k,t) = 1 and y(k,s) = 0 for all s < t
0 otherwise

For more details on the scheme suggested by Tilley, please refer to [20].

Barraquand - Martineau Scheme

Barraquand and Martineau [9] propose a scheme, where, contrarily to Tilley
who partitions the state space, they partition the payoff space. In general, they
first generate some sample paths, then they find some conditional probabilities
and conditions and, finally, they use a backward integration algorithm. Next, we
give more details about these steps.

We generate a given number M of sample paths for the underlying assets price
process X(t). In general, this can be done through direct numerical integration
of the Ito equation:

dx
Vi G [1, n], —- = (r — dxi)dt + Vijdwj (2-16)

i=l

where v is the volatility and w is a Wiener random variable. A simple explicit
Euler scheme is given by:

n

(r-dxi-%ka)(X(t),t)At+ T vij (A (t) ,t) \[Atz\
Xi(t + At) = Xi(t)e J=1

where Zj follow independent standard normal distributions for all j and t. For
d = TI At being the number of time steps in [0, T], we must draw a total of
Mxdxn standard normal variates in order to generate M n-dimensional sample
paths A1(i),... ,XM(t) for all t > 0.

Once the M sample paths X1(t),... ,XM{t) are computed, the number at{t)
of samples crossing Pi{t) and the number bij(t) of samples moving from P%{t) to
Pj (t + Δί) are easily computed:

Oi(t) = Card{k € [1,M], Xk(t) G Pi(t))

bij(t) = Card{k G [1, M],Xk(t) G Pi(t)andXk(t + At) G Pj{t + At)}

Similarly, the sum Ci(t) over of samples Xk of payoff values f{Xk(t)) is computed
from:

d(t) = Σ f(Xk(t))

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

2.6. OPTION PRICING USING MONTE CARLO METHODS 25

By the law of large numbers, we have the following identities:

Pij(t) = lim
M—MX) ai{t) fi(t) = lim

M—> oo
Cj{t)

Using the Monte Carlo estimates of the conditional probabilities and payoff
expectations, an approximation of the American price can be then computed
backwards in time using the following algorithm:

• At time T. the approximate SSAP price is initialised at:

C(i,T)
Ci(T)

*i(T)

• At time T — At, we can compute for all i E [1, k}:

C(i, T — At) = e rAt max
/ Cj(T - At)
\ai(T-At) •

Σο^,τ)
j=1

bij(T-At)
ai(T - At)

• The above procedure is then applied recursively, backwards in time, to
compute all the prices C(z, T — 2At), C(i, T — SAt),..., (7(1,0) = Cssap

For more details in this scheme, please refer to [9].

Broadie and Glasserman Scheme

Broadie and Glasserman [12] propose a scheme based on simulated trees. They
identify the bias problem as the main issue in Monte Carlo simulation for Amer­
ican options and they suggest a solution to this problem. They develop two
estimators, one biased high and one biased low, but both convergent and asymp­
totically unbiased as the computational effort increases. Then, they obtain a valid
confidence interval for the true value P by taking the upper confidence limit from
the ‘high’ estimator and the lower confidence from the ‘low’ estimator. Next, we
give the algorithm Broadie and Glasserman suggest in [12]:

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

26 CHAPTER 2. MONTE CARLO METHODS

Algorithm 4 Broadie and Glasserman Monte Carlo for American Options
1: d> allocate storage
2: integer vector w(j), for j = 1 to d by 1;
3: real matrix v(i,j), for i = 1 to b by 1, j = 1 to d by 1;

t> initialise parameters
4: u(l, 1) = S; w{ 1) = 1;
5: for j = 2 to d by 1 do
6: u(l,j) = ‘state variable’;
7: w(j) = 1;
8: end for

9: j = d;
10: while j > 0 do
11: case 1: (j = d and w(j) < b)
12: v(w(j),j) = ‘node value’;
13: v(w(j) + l,j) — ‘state variable’;
14: w(j) - w(j) + 1;
15: end case 1
16: case 2: (j = d and w(j) = b)
17: v(w(j),j) = ‘node value’;
18: w(j) = 0;

19: 3=3- 1;
20: end Ccise 2
21: case 3: (j < d and w(j) < b)
22: v(w(j),j) = ‘node value’;
23:
24: if j > 1 then
25: v(w(j) + 1 ,j) = ‘state variable’;
26: w(j) = w(j) + 1;
27: for * = j + 1 to d by 1 do
28: t/(l,i) = ‘state variable’;
29: w(i) = 1;
30: end for

31: j = d;
32: else
33: j = 0;
34: end if
35: end case 3
36: case 4: (j < d and w(j) = b)
37: = ‘node value’;
38: w(j) = 0;
39: j=j~ 1;
40: end case 4
41: end while

42: ‘tree estimate’ = u(l, 1);

t> process tree

> return tree estimate

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Chapter 3

Partial Differential Equations

3.1 Introduction

The numerical methods for solving partial differential equations in finance are
not widely used. The reason is the existence of several probabilistic values, for
which Monte Carlo methods are usually preferred. However, if we could discretize
the problem then we could use some algorithms to solve them which could be
proved to be much more efficient. Furthermore, this technique gives us useful
information during the solving process, such as the option price for all values
of the maturity and for all spot prices. Finally, it is useful for computing the
so-called ” Greeks”.

The partial differential equations in financial problems are sometimes posed in
a bounded domain but most of the times in an unbounded domain; in the last
case we must find the suitable boundary conditions and use appropriate numerical
approximations. These partial differential equations are usually of parabolic type
and the numerical methods used to solve them should be sufficiently fast and
accurate.

Here, we are going to present the finite difference and the finite element method
for solving partial differential equations applied in option pricing.

3.2 Methods for Solving Partial Differential Equations

3.2.1 Finite Difference Method

The basic idea here is to replace the partial derivatives by approximations that
arise from Taylor series expansions of functions near the points of interest. So, if

27

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

28 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

we had to use finite differences for the partial derivative

u(x, t + St) — u(x,t)
St

we would use the Taylor’s theorem

u(x, t0 + St) = u(x, t0) + -^-(z, <o)St + 0(St2)

and then we would have

This particular finite difference approximation is called forward difference, since
the differencing is in the forward t direction. There is also the backward difference
approximation, which is defined as follows

The central differences are more accurate for small St than the two other schemes.

Next, we show the three most common methods in solving partial differential
equations using the finite-differences scheme. We are going to use the diffusion
equation in order to illustrate these methods, as the problems that arise in deriva­
tive pricing can be solved either using the diffusion equation, or solving directly
the Black-Scholes[2] equation; the last though is similar to the first. The diffusion
equation is

We are going to partition the x dimension in xo,x\,... ,xn and the t dimension
in to,h,... ,tM- So, each point will be represented by

and the central difference approximation which is defined as follows

du,_ ^ u(x,t + St)-u{x,t-St)
ai(x’t] =------------ 2si------------ + °<(it) 1

(3.1)

with homogeneous Dirichlet boundary conditions

u(0, t) — u(1, t) = 0 and u(x, 0) = uq{x)

u (xn, tm) — un

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.2. METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS 29

3.2.1.1 Explicit Method

By using a forward difference for du/dt and a symmetric central difference for
d2u/dt2, we find that the diffusion equation becomes

.m+l - U'‘
st

+ 0{St) = 1 — 2 u™ + u"η— 1
(Sx)2

+ 0((δχ) (3.2)

Ignoring the terms O(St) and 0((Sx)2), we can rearrange the above equation to
give

u™+1 = aun+l + (1-2αΚ' + α<-1 (3.3)

where
St

{Sx)2

There is a stability problem when we are using explicit finite differences to
solve partial differential equations. This problem arises because we axe using
finite precision computer arithmetic to solve them, which introduces rounding
errors into their numerical solutions. In our example, the system (3.3) is said
to be stable if these rounding errors are not magnified at each iteration; in any
other case it is said to be unstable. More precisely, the system (3.3) is said to be:

• stable, if 0 < a < 5

• unstable, if a > ^

It can be shown that the numerical solution of the finite difference equations
converges to the exact solution of the diffusion equation as Sx —> 0 and St —+ 0,
in the sense that

u™ —* u{nSx, mSt)

if and only if the explicit finite difference method is stable.

Next, we give an example of an algorithm which gives the solution for the
diffusion equation using the explicit finite-difference scheme:

Let us denote that N~ and N+ are the lower and the higher bound respec­
tively for x and we have that:

N~Sx < x < N+Sx

So, the boundary conditions are given by

u-oo{N~Sx, mSt)

and
Uoo{N+Sx, mSt)

Note that we use u-00 and ua0 to indicate that we take these values to be the
lower and the upper bound.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

30 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

Algorithm 5 Explicit Finite-Differences
1: a = δί/δχ2;
2: for n = N~ to N+ do
3: oldu[n\ = payof f(n * <5x);
4: end for
5: for m = 1 to M do
6: τ = m* δί;
7: newu[N~] = u-oo(N~ * δχ,τ)·,
8: newu[N+] = u+0O(N+ * δχ, r);
9: for η — N~ + 1 to N+ do

10: newu[n] = oldu[n] + a* (oldu[n — 1] — 2 * oldu[n\ + oldu[n + 1]);
11: end for
12: for n = N~ to N+ do
13: oldu[n] = newu[n]·,
14: end for
15: end for
16: for n = N~ to N+ do
17: values[n\ — oldu[n]\
18: end for

3.2.1.2 implicit Method

Implicit finite differences do not face the stability problems that arise in explicit
finite differences. So, we can use a large number of x points without having to
take very small time-steps.

For the diffusion equation (3.1), the implicit finite differences scheme uses the
backward difference approximation for du/dt term and the symmetric central
difference approximation for d2u/dx2 term. This leads to the equation

,,m—1

δί
+ 0{δϊ) = ^n+l -2< + <_1

(δχ)2
+ 0((δχ)2) (3.4)

where η = N ,■■■■, N+ and m = 0,..., M. Following the same procedure as
with the explicit scheme, we rearrange the above equation to

- + (1 + ~ “Ci = u
m— 1 (3.5)

The implicit finite difference method leads us to a system which we have to
solve. For this particular problem, the linear system is of the form Ax = 6, where
A is a (N~+N+ — l)x(N~+N+ — 1) matrix and both x and b are (N~+N+ — l)xl

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.2. METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS 31

vectors:

where

/ l + 2a
—a

0

0

—a 0
1 + 2a —a

—a

/ um~l \
UN-+1

m-1
x0

V UN+-1 /

0
0

—a
-a 1 + 2a J

+ a

u

\ UN+)

lN~+l

,.τηu0

\ UN+-1 /

/ \

V /

Ujv- = u.

uJV+

5(Λ^ 6x,mSt), 0<m<M

= u0O(N+6x,mSt), 0 <m<M

(3.6)

and

Ν~δχ < x < Ν+δχ

In order to solve the system (3.6) we choose a direct or an iterative method of
our choice.

Next, we give an example of an algorithm which gives the solution for the dif­
fusion equation using the implicit finite-difference scheme and the SOR method.

Algorithm 6 SORSolver(u,b, N , N+, α,ω, eps, loops)
1: loops = 0;
2: repeat
3: error = 0.0;
4: for η = N~ + 1 to N+ do
5: y = (f>[nj + a * (u[n — 1] + u[n + 1]))/(1 + 2 * cc);
6: y — u[n\ + ω * {y — tt[n]);
7: error-f = (u[n] — j/)2;
8: u[n] = y\
9: end for

10: + + loops;
11: until error > eps;

return loops·,

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

32 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

Algorithm 7 Implicit Finite-Differences
1: a = δί/δχ2;
2: eps = l.Oe — 8;
3: ω — 1.0;
4: άω = 0.05;
5: oldloops — 10000;
6: for n — N~ to N+ do
7: values[n] = payof f{n * δχ);
8: end for
9: for m = 1 to M do

10: τ = m* δί;
11: for n = N~ + 1 to N+ do
12: b[n] — values[n];
13: end for
14: values[N~] = u-oo(N~ * δχ,τ)·,
15: values[N+] = u+00(N+ * δχ,τ)·,
16: SORSolver{values, b, N~, N+, a, ω, eps, loops)·,
17: if loops > oldloops then
18: άω* = —1.0;
19: end if
20: ω-\- — diW,
21: oldloops = loops;
22: end for

3.2.1.3 Crank-Nicolson Method

The Crank-Nicolson scheme is used to overcome the stability limitations of the
explicit scheme and to have 0((δί)2) rate of convergence to the solution of the
partial differential equation -the rate of convergence for the implicit scheme is
0{δί).

This method is based on both explicit and implicit finite differences methods,
by taking their average value. So, for the diffusion equation (3.1), we take the
forward difference approximation for the explicit scheme

o,m+l _ n,m
an an + Ο(δί) = bi+l 2 u™ + w,η— 1 0{{δχ)2)

δί ' {δχ)2

and the backward difference approximation for the implicit scheme

u™ -u™ 1
+ 0{δί) = bi+l Onfall _J_ η . m

η + 0{{δχ)2)
δί ' {δχ)2

Finally, we take the average of the two above equations and we have

771+1q,m+1 _ Ί m 1
— ^ — + 0(St) — —

7/m^71+1 -2 < + +t%X-2 <+1 + «: 771+1
71—1

{δχ)2 {δχ)
+ 0{{δχ)2){ 3.7)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.2. METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS 33

Following the same procedure as with the two previous methods, we are lead to
the Crank-Nicolson scheme:

<+1 - ^W1-4!1 - 2<+1 + <ϊί) = < + - 2< + <+l) (3.8)

where
St

“ ~ (Sx)2

Finally, the problem reduces to calculating

z? = (1 - «X + + Cl) (3-9)

and then solving

(1 + «ΚΤ1 - + <tl) = Zn (3-10)

where n — N ,..., N+ and m = 0,..., M.

Working as above, we reduce our problem to solving the linear system

Cum+1 = bm (3.11)

where the (N + N+ — l)x(N + N+ — 1) matrix C is given by

f 1+ a ~\a 0 0 \

~\a 1 + a

0 ~Ία 0

1
·· -2“

V o 0 -\a l+o/

and the (N + N+ — l)xl vectors um+1 and bm are given by

/ u™!1, \

1(m+l _

*ΛΓ-+1

U.m+1 y

\ <i-1)

(7m \

ym
Z0

V ZN+-1

f \

1
+ 2«

Λ'-
0

0

Wt1

(3.12)

(3.13)

From this point on, we can choose a direct or an iterative method to solve the
linear system. In our case, we will choose an iterative method, which we will
parallelize.

The Crank-Nicolson is both stable and convergent for all values of a > 0.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

34 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

Algorithm 8 Crank-Nicolson
1: a = δί/δχ2·
2: a.2 = a/2;
3: ω = 1.0;
4: dio = 0.05;
5: oldloops = 10000;
6: for n = N~ to N+ do
7: val[n\ = payof f(n * δχ);
8: end for
9: for m = 1 to M do

10: τ = to * δί;
11: for η = N~ + 1 to N+ do
12: b[n\ = (1 — a) * val[n\ + * (val[n + 1] + val[n — 1]);
13: end for
14: val[N~] = u-oo(N~ * δχ, r);
15: val[N+] = u+0O(N+ * δχ, r);
16: SORSolver(val, b, N~,N+, a2, oj, eps, loops)·,
17: if loops > oldloops then
18: άω* = —1.0;
19: end if
20: — du)',
21: oldloops = loops·,
22: end for

Next, we give an example of an algorithm which gives the solution for the
diffusion equation using the Crank-Nicolson scheme and the SOR method.

3.3 Option Pricing

After analysing the methods above for solving partial differential equations, we
will show how they can be applied in option pricing.

3.3.1 European Options

We will use the Black-Scholes model for european options:

dV_
dt + χσ252

d2V RV n
— + rS—-rv = 0 (3.14)

where V is the price of the option, t > 0 is the current time, σ is the asset price
volatility, S > 0 is the asset price and r the constant interest rate.

The boundary conditions for the equation (3.14) are:

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.3. OPTION PRICING 35

• At maturity, t = T, the final condition comes from the no arbitrage princi­
ple. Thus, the value of a call option will be the payoff:

C(S, T) = max(S - E, 0) (3.15)

and the value of a put option will be the payoff:

P{S, T) = max(£ - 5,0) (3.16)

where E is the exercise price of the option.

• At zero asset price, S = 0, we can see that, for a call option, the asset price
can never change, as dS = 0. Thus, the payoff is also zero and the call
option is worthless:

C(0,f) = 0 (3.17)

In case we have a put option, since the asset price cannot change, the
price of the option must equal the exercise price at expiry. So, we take the
discounted value of E with constant interest rate and we have:

P(0,t) = Ee~r(-T-t) (3.18)

For a time-dependent interest rate, we have:

P(0,i) = Ee-tfr{r)dT (3.19)

• As the asset price increases without bound, S —> oo, it becomes more likely
that the call option will be exercised and the exercise price becomes less
important. Thus, as S —> oo, the value of the option becomes that of the
asset and we write:

C(S,t)~S as 5 —» oo (3.20)

On the contrary, if S —» oo, a put option is unlikely to be exercised and we
write:

P(S,t)—* 0 as S —> oo (3-21)

3.3.1.1 Finite Difference Method

Here, we will introduce the finite difference method in european options pricing
as illustrated in [22]. Our goal is to use the three methods analysed above, to
solve the Black-Scholes partial differential equation and evaluate the options.
First, we present the discretization of (3.14) with respect to the variable S, i.e.
the asset price. We divide the interval [0, S'max] into N intervals of length SS —
Smax/N and we approximate the derivatives with finite differences. So, a possible
discretization scheme for (3.14) is:

9Vn Vn+l Vn—1 1 2 o2 ^n+1 + Vn—i
~m + rS"—25S— + 2σ s"-----------Ϊ&

- rVn = 0 (3.22)

where Sn = n6S denotes the n-th discretization point and Vn(t) is intended to
be an approximation of V(t, Sn).

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

36 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

Then, we divide the time interval [0, T] into M intervals of length St = T/M
and we replace the time derivative by a finite difference. For each numerical
method illustrated above, we have:

3.3.1.1.1 Explicit Finite Difference Method

Using the explicit finite difference scheme and, since we have end and not initial
condition values, equation (3.22) becomes:

ym+l _ ym
n n-+rSn

ym+l _ ym+l 1
vn+1 vn—1 | 1 _2q2 rn+l- + -σ o,

St ' ' 2SS ' 2

where n = 0,..., N and m — 0,..., M.

V™+V - 2U-+1 + U^t1
SS2

-rV™+1 = 0.
(3.23)

After working on the above equation, we end up to the equation:

vm =v n = + B„U„m+1 + Οην™γ (3.24)

where
An = - (σ2η2 - nr) St, (3.25)

and

Bn = 1 — (σ2η2 + r) St,

Cn — T, (σ2η2 + nr) St

(3.26)

(3.27)

Now, we have to adjust the boundary conditions, in order to solve the prob­
lem numerically. Based on the beginning of this Section, we have the following
boundary conditions for a european call option:

• At expiry, where T == MSt, we know that

VJX = max(nSS — E, 0). (3.28)

• At S — 0, we have that n — 0 and, so

Aq = 0 Bo = 1 — rSt Co = 0 (3.29)

and the scheme reduces to

(1 - r<5f)U0m+1 = U0m (3.30)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.3. OPTION PRICING 37

• When S —> oo, say S = S*, we have than n = TV and the equation becomes:

VJ? = ANV^l + BnV™+1 + CnV™£ (3.31)

There is a problem with equation (3.31): The value of cannot be
defined. In order to calculate its value, we consider the following: For most
realistic options, we have that:

r d2V n
o as* ~0

(3.32)

We approximate:
d2V

(3.33)

which becomes (using central differences):

T/m+1 _ QT/m+l T/ra+l
VN+1 — ZVN VN—1 * (3.34)

After substituting in equation (3.31) we have that:

vp = Anv™+1 + bnv™+1 (3.35)

where
An = —Nr5t (3.36)

and
Bn = 1 + (TV — 1)r6t (3.37)

Now that we have set up both the equation and the boundary conditions, we
need to solve the system of equations that is being formed. This system consists
of TV linear equations. Since we wish to parallelize the problem, it would better
be TV = 21, as we usually use a number of processes which is a power of 2. Next
we will give an example illustrating how we solve this system.

In this example, we consider four processes and eight discretization points
(TV = 8). So, we have the following linear system:

= BoV0m+1
Vjm == Αιν^+1 + B1V^n+1 + CxV™+l
V2m--= A2V'1m+1 + B2V.2m+1 + C2V™+1
V?--= A3V™+1 + b3v^+1 + c3v4m+1
v4m --= A4F3m+1 + BAVr+l + c4v5m+1

V5m-= A5V4m+1 + b5v™+1 + c5v6m+1

Km-= A6V5m+1 + b6v™+1 + C6V7m+1
V7m --= A7V^+l + B7V7m+1

(3.38)

Let us denote that the first and the last equations have been imposed by the
corresponding boundary conditions.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

38 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

Let M be the coefficients matrix, defined as follows:

'B0 0000000
A\ B\ Ci 0 0 0 0 0
0 A2 B2 C2 0 0 0 0

M= 0 0 A3 B3 C3 0 0 0
0 0 o a4 b4 C4 0 0
0 0 0 0 A3 B3 C5 0
0 0 0 0 0 A6 Be C6
0 0 0 0 0 0 a7 b7

and let
T/m+l
v0 ' '

T/m+l V™
T/m+l
v2 v™
ym+l

and Vm =
VF10

T/m+l
v4 vr
T/m+l
v5 V5m
T/m+l
V6 V6m
ym+l

. V7m .

So, now the system has the form:

Vm — MVm+l

(3.39)

(3.40)

(3.41)

From equation (3.28) we know the value of Vm+l at expiry, so we begin to solve
the system for m = Μ, Μ — 1, M — 2,..., 1.

Since we have four processes, we will assign two lines of each matrix or vector to
each process. So, for example, the second process will hold the following values:

0 A2 B2 C2 0 0 0 0
0 0 A3 B3 C3 0 0 0

ym V?
VT

and Vm+1 =
T/m+l
v2
T/m+l
v3

(3.42)

So, every process, just has to calculate the right part of (3.41). The only problem
in doing so is that it is possible for a process not to have all necessary values
to do these calculations, as in our example. Here, process 1 needs V™+1 from
process 0 to calculate V™ and V™+1 from process 2 to calculate the value of Vj™.
The MPI framework gives us the answer to this problem.

At this point, it worth mentioning that the communication cost is rather sig­
nificant. Each process needs to send and receive two messages, except the first

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.3. OPTION PRICING 39

and the last process that need to send and receive one message. But, although
the communication is often, it is small and fixed (each process exchanges one
message with its neighbours) no matter how many values need to be computed
or how many processes are up, solving the problem.

Each process calculates the vector V™ and sends the values to the previous or
the next processes, if needed. When a process wants to calculate the new values
for vector V™, it first receives any values sent by other processes, if needed. Then,
it has all data needed to proceed with the calculations and the solution of the
system. For more details, see the source code for european option pricing using
the explicit finite difference scheme.

Next we give the algorithm on which we have been based to price European
options using Explicit Finite-Differences in the context of this thesis.

The cost for this method is 0(M * N) for one process and 0(M * N/P) for
P processes considering steady cost 0(1) for the message passing, that is we
have a very good hardware support. If not, then, depending on the system’s
specifications, a respective logarithmic factor will be added in the cost. Let
us denote that the processes exchange four messages, except the first and the
last ones that exchange only two messages. Based on these observations, one
would expect the parallel execution to be faster than the serial one, only if the
communication cost is so small, that the total cost does not become grater than
0(M * N). Unfortunately, this is hard to achieve without the best hardware
support for communications, as shown in Chapter 5.

3.3.1.1.2 Implicit Finite Difference Method

Using the implicit finite difference scheme and, since we have end and not
initial condition values, equation (3.22) becomes:

VT+'-V™ , π Vn+i-V?-i , 1V™1-2V™ + V™1 M
St n 2 6S 2 6S2

After working on the equation above, we end up to the equation:

U„m+1 = AnV™, + BnV™ + CnV™+l (3.44)

where
An = -(nr ~ σ2η2)^; (3.45)

Bn = 1 + (σ2η2 + r)St, (3.46)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

40 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

Algorithm 9 Parallel Explicit Finite-Differences
1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

For each process:
for n = 0 to processChunk do

currentPos = processID * processChunk + n;
oldV[n} — payof f (currentPos * <5x);

end for
if processID == 0 then

Send(oldV\processChunk — 1], nextProcess)·,
end if
if (processID > 0) AND (processID < nof Processes — 1) then

Send(oldV[0], previous Process);
Send(oldV\processChunk — 1], nextProcess);

end if
if processID == nof Processes — 1 then

Send(oldV [0], previousProcess);
end if
for m — Μ — 1 to 0 do

for n = 0 to processChunk do
if processID == 0 then

if n == 0 then
prevValue = 0.0;

else
prevValue — oldV[n — 1];

end if
if n == processChunk — 1 then

Recv(nxtValue, nextProcess)·,
else

nxtValue = oldV[n + 1];
end if
V[n] — An* prevValue + Bn * oldV[n] + Cn* nxtValue·,
if n == processChunk — 1 then

Send(V[n], nextProcess);
end if

else if (processID > 0) AND (processID < nof Processes — 1)
then

if n = 0 then
Recv(prevV alue, previous Processes);

else
prevValue = oldV[n — 1];

end if
if n == processChunk — 1 then

Recv(nxtValue, nextProcess);
else

nxtValue — oldV[n + 1];
end if
V[n
if n == 0 then

Send(y[n], previousProcess);
end if
if n — processChunk — 1 then

Send(V[n\, nextProcess);
end if

An * prevValue + Bn * oldV[n\ + Cn * nxtValue;

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.3. OPTION PRICING 41

Algorithm 10 Parallel Explicit Finite-Differences Continued
51: else if processID —— nof Processes — 1 then
52: if n == 0 then
53: Recv(prevV alue, previous Process);
54: else
55: prevValue = oldV[n — 1];
56: end if
57: if n---- processChunk — 1 then
58: nxtValue = 0.0;
59: else
60: nxtValue = oldV[n -P 1];
61: end if
62: F[n] = An* * prevValue + Bn * oldV[n} + Cn* nxtValue;
63: if n == 0 then
64: Send(V[n],previousProcess)·,
65: end if
66: end if
67: end for
68: for n = 0 to processChunk do
69: oldV[n] = V[n];
70: end for
71: end for
72: for n — 0 to processChunk do
73: derivativePrice[n\ = oldV[n\,
74: end for

and
Cn — — 7j(nr + a2n2)5t (3-47)

Once again, based on the boundary conditions we gave at the beginning of
this Section, we have the following conditions to solve the problem of pricing a
european call option using the implicit finite difference scheme:

• At expiry, T = M6t, we know that

PnM = max(n<5S - E, 0). (3.48)

• At S = 0, we have that n = 0 and, so

A0 = 0 B0 = 1 + rdt C0 = 0 (3.49)

and the scheme reduces to

(1 + r5t)V0m = KT+1· (3.50)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

42 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

• When 5 —►' oo, say 5 = 5*, we have that η = N and the equation becomes:

V^+1 = ANVJ}Li + + CjvVjv+i (3.51)

Like before, there is a problem with equation (3.51): We cannot calculate
the value of V™+4. So, we follow the same procedure, as above, and we
have:

lim
S—>oo

d2V
dS2

0

By using the approximation

d2v
552

(5*,t) ~ 0

we end up to the equation

V^+1 = - Vn-v (3-52)

After substituting in equation (3.51), we have that

V™+1 = ANVtf_, + BnV^ (3.53)

where

An = nrSt (3.54)

and

Bn = 1 + r(l — n)St (3.55)

Now that everything is given, we can proceed to out example in order to demon­
strate the parallel solution process. Once again, we consider four processes and
eight discretization points (N = 8). So, we have to solve the following linear
system:

' B0V™ = F0m+1
AiV™ + BiV™ + C\V2m = V?+1

A2V™ + B2V2m + C2V3m = V2m+1

, A3V2m + B3V3m + C3V4m = V3m+1

A4 V3rn + B4V4m + C4V5m = V4m+1 (' ’
A5V4m + B5V5m + C5V6m = V5m+1

AqV™ + B6V6m + C6VTm = V6m+1

k A7V^ + B7V7m = V7m+1

The first and the last equations have been imposed by the corresponding
boundary conditions.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.3. OPTION PRICING 43

Let M be the coefficients matrix, defined as follows:

and let

B0 0 0 0 0 0 0 0
Ai Bi Cl 0 0 0 0 0
0 a2 B2 C2 0 0 0 0
0 0 As Bs C3 0 0 0
0 0 0 a4 Ba Ca 0 0
0 0 0 0 As Bs Cs 0
0 0 0 0 0 As Bo Co
0 0 0 0 0 0 a7 b7

ym+l _

T/m+l
V0 ‘ VT'
ym+l V{n
Tym+1
v2 v™
ym+\

and Vm =
vri

ym+l
3

v4m
T/m+l
VS V5m
T/m+1
V6 vmv6
ym+l

. V7m .
Now we have to solve the system:

MVm - Vm+l

(3.57)

(3.58)

(3.59)

From equation (3.48) we know the value of the option at expiry, i.e. V(.”l+1,
so we solve the system for τη = Μ, M — 1,..., 1.

Since we have four processes to solve this system, we assign N/4 = 2 lines of
each matrix to each process. So, for example, the second process will hold the
values:

M =
0 A2 B2 C2 0 0 0
0 0 As B3 C3 0 0

Vr‘ V2m
V3m

and Vm+l =
T/m+1
V2
γπι+ί (3.60)

Each process has to solve a smaller system of equations. In order to do so, we
can choose either direct or iterative methods. Due to the nature of the paral­
lelization we have chosen, iterative methods are strongly recommended. In the
context of this thesis, Jacobi method has been used. In more details, we have
that:

xrm,(/c+1) _
*/2

v
m+l,(k) - a2v;m,(fc) _ Q^ymXk)

B2
(3.61)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

44 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

and
- A3V™’{k) - C3vr,{k)

Bs
(3.62)

m (k)where k is the Jacobi method step. For k = 0, we have that Vn is equal to
Vn that was evaluated in the previous step.

As we can easily see, for each value we want to calculate, we need both the
previous and the next values. These values may not always belong to the same
process. In our example, we need either a value from the previous process (for
V™) or a value from the next process (for V"1). Our processes exchange values
using the MPI framework. So, each time a new value is being calculated, then it
is sent to the process that will need it, or that is already waiting for it.

This way, we can parallelize our problem in a higher level and each process is
dealing with a same problem as the original; only smaller.

Next, we give the algorithm for European option pricing using parallel implicit
finite-differences scheme. We also give the algorithm for our parallel version of the
Jacobi method, used by the implicit scheme. Note that for the Jacobi method,
we are solving the system Ax = b where the matrix A splits in A — L + D + U.
Note that L is the lower triangle part of A, D is the diagonal part of A and U is
the upper triangle part of A.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.3. OPTION PRICING 45

Algorithm 11 Parallel Jacobi Method
1
2

3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

For each process:
sent = false·,
for k = 1 to iterations do

for i = 0 to processChunk do
realPos = processID * processChunk + i;
if processID == 0 then

if i — 0 then
prevValue = 0.0;
if processChunk > 1 then

nxtValue = x[i + 1];
xnew[i] — (&[*] — L[i\ * prevValue — U[i\ * nxtValue) / D[i\;

else
if (k == 1) AND (!sent) then

sent = true;
Send(b[i], nextProcess);

end if
Recv(nxtValue, nextProcess);
xnew[i] = (6[i] — L[i\ * prevV alue — U[i\ * nxtV alue) / D[i\;
if kl = iterations then

Send(Xnew [*], nextProcess);
end if

end if
else if i == processChunk — 1 then

if (k == 1) AND (!sent) then
sent — true·,
Send{b[i\, nextProcess·,

end if
prevValue = x[i — 1];
Recv (nxtValue, nextProcess);
Xnew[i] = (&[*] — L[i\ * prevValue — U[i\ * nxtV alue) / D[i\;
if k\ = iterations then

Send(xnew[i\, nextProcess);
end if

else if (i > 0) AND (i < processChunk — 1) then
prevV alue = x[i — 1];
nxtValue = x[i + 1];
xnew\i] = (fr[*] — L[i\ * prevValue — t/[i] * nxtValue)/D[i];

end if

If K is the number of iterations, then the cost of the Parallel Jacobi algorithm
is 0(K * N) for a serial execution and 0(K * N/P) for a parallel one with P
processes. Things here are just like in the Explicit Finite-Differences scheme,
since we have the same number of messages that need to be exchanged at the

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

46 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

Algorithm 12 Parallel Jacobi Continued
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

else if processID == nof Processes — 1 then
if i == 0 then

if (k == 1) AND (!sent) then
sent = true·,
Send{b[i], previous Process);

end if
Recv(prevV alue, previous Process);
if processChunk > 1 then

nxtValue = x[i + 1];
Xnew [*] = (&[*] — L[i\ * prevValue — U[i\ * nxtValue)/D[i);
if k\ = iterations then

S end{xnew [i\, previous Process);
end if

else
nxtValue = 0.0;
%new[i] = (&[*] — L[i\ * prevValue — U[i] * nxtValue)/D[i\;

end if
else if i == processChunk — 1 then

nxtValue = 0.0;
prevV alue = x[i — 1];
%new[i\ = (Φ’] — L[i\ * prevV alue — U[i} * nxtValue) / D[i\;

else if (i > 0) AND (i < processChunk — 1) then
prevV alue = x[i — 1];
nxtValue = x[i + 1];
%new[i] = (&[*] — L[i] * prevValue — U[i] * nxtValue)/D[i\;

end if
else if (processID > 0) AND {processID < nof Processes — 1)

then
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

if (k == 1) AND (!sent) then
sent = true·,
Send(b[i], previous Process);
Send{b\processChunk — l], next Process);

end if
if i == 0 then

Recv{prevV alue, previousProcess);
if processChunk > 1 then

nxtValue = x[i + 1];
%new[i] — (Φ] ~ -b[i] * prevValue — U[i] * nxtV alue) / D[i\;
if k\ = iterations then

Send(xnew [z], previousProcess);
end if

else
Recv{nxtValue, nextProcess);
xnew[z] = (&[*] — L[i] * prevValue — U[i] * nxtValue)/D[i\;
if k\ = iterations then

Send{xnew [z], nextProcess);
end if

end if

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.3. OPTION PRICING 47

86: else if i == processChunk — 1 then
87: prevValue = x[i — 1];
88: Recv(nxtValue,nextProcess·,
89: xnew[i\ = (&[*] — L[i] * prevValue — U[i\ * nxtV alue) / D[i\;
90: if k\ = iterations then
91: Send{xnew [i], nextProcess);
92: end if
93: else if (i > 0) AND (i < processChunk — 1) then
94: prevValue = x[i — 1];
95: nxtV alue — x[i + 1];
96: xnew[i] = (Φ] — L[i] * prevV alue — U[i\ * nxtValue) / D[i]\
97: end if
98: end if
99: end for
100: for i = 0 to processChunk do
101:
102: end for
103: end for

Algorithm 13 Parallel Jacobi Continued

same cost. So, we expect the respective results for the methods that use Parallel
Jacobi to solve their systems, that is the Implicit Finite-Differences method and
the Crank-Nicolson method.

Algorithm 14 Parallel Implicit Finite-Differences
1: For each process:
2: for n = 0 to processChunk do
3: k = processID * processChunk + n;
4: price[n] = payof f[k * &r);
5: derivativePrice[n\ = price[n];
6: end for
7: for 771 = M — 1 to 0 do
8: Parallel Jacobi(STDVals, CoefficientsMatrix,processID, nof Processes, processChunk)
9: end for

10: for i = 0 to processChunk do
11: price[i\ = derivativePrice[i\;
12: end for

The Parallel Implicit Finite-Differences algorithm has a cost of 0(M) for each
process either serial or parallel, but this is a cost on the Jacobi method. Given
that the Jacobi has a rather fast convergence and that there are no restriction in
the choice of a, the Implicit Finite-Differences scheme is expected to be somewhat
faster than the Explicit Finite-Differences scheme. The results in Chapter 5 prove

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

48 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

this assumption.

3.3.1.1.3 Crank-Nicolson Method

Using the Crank-Nicolson scheme, equation (3.22) becomes:

V?+1-V? , lr
St 2[rSn

rSn

di1 df . l^idt1
2Is + 2

2C+1 + Vn-l

Vn+1 , 1 2C2
----------26S----------+2σ s”

vm - TVmvn+1 zvn
JS2
+ Vm,' η—1

<5S2
-w:

rV™+1 +

(3.63)

After working on the equation above, we end up to the following equation:

where
A^ i (η2σ2 — nr) St, (3.65)

BiL) = 1 - ^ (η2σ2 + r) St, (3.66)

= - (η2σ2 + nr) <5t (3.67)

and

A{nR) = i (nr - η2σ2) St, (3.68)

4Λ) = 1 + 5 (η V + r) St, (3.69)

C<*> = — - (nr + η2σ2) <5t (3.70)

Now, we have to adjust the boundary conditions, in order to solve the prob­
lem numerically. For a european call option, we have the following boundary
conditions:

• At expiry, where T = MSt, we know that the option value equals the payoff:

U„M = max(ndS - E, 0) (3.71)

• At S = 0, we have that n = 0 and, so

oII

3o dU) _ n0 -= 1 — IrrSt
2

oII

o° (3.72)

oII

So MR) _
B o -= 1 + —r£i II o (3.73)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.3. OPTION PRICING 49

At S = S*, we have that n = N and the equation becomes:

j(t)i7m-H , rU)t/”»+1 I /'AC τ/m+l /»(-^) τ/m . d(^)t/tm i /^(R)\rm
ΛΝ VN-1 + -°ΛΓ Cv + L'JV CV+1 — ΑΛΓ VN-1 + ·°Λί ViV + CN Vjv+1

(3.74)
Checking back cffl and cj^\ we can see that cffl —Cffl. So, we can
rearrange the equation above as follows:

4^-r1 + 4V+1 + 4L) (^v+i1 + Vn+1) = A™VF_i +
(3.75)

Using the condition
d2V

JSLas? = 0 (3-76)
for the Crank-Nicolson method, we have that:

Vfi+ΐ - 2U™+1 + u™_7 + v^Vi - 2U7 + - 0/•m+1 /■m+l

and so,
U7+1 + V^+1 = 2U™+1 + 2V£* - U7+1 - vy_j (3.77)

By substituting equation (3.77) in equation (3.75), we end up to the fol-
lowing equation:

1 V£+]1 + (4L) + 24L)) V™+1 =

- c{f) vju + ([b(*} + 2C4) UAU (3.78)

Let,

II

5fe; r(L) and d(C _ E>(C 1 O/AC
BN - BN + ZCN (3.79)

and TII r(R) and d(R) __ D (R) 1 9 /~l(R)
ΰΝ — ΰΝ + ZUN (3.80)

So, the final boundary condition is:

ϊ(ί0τ/·τη+1 , £>(L)\rm+1 __ ί(-β)τ/τη , r>(R)\/m
AN Vn_ 1 + nN VN — Άν VN_i+riN VN (3.81)

where

4} = -\nr8t and B[n] = 1 + i(n- l)rSt (3.82)

and
^nr St and BfiP = 1 + ^{r - nr)St (3.83)

Now, that we have set up both the equations and the boundary conditions, we
need to solve the system of equations that is being formed. The system consists
of N linear equations. Bearing in mind that we want to parallelize the solution of
this problem, let’s say by creating p processes, it would better be N = ap since
we would like each process to do the same computations with all the other ones.
Next, we will give an example illustrating how we solve this system of equations.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

50 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

Consider four processes, x = 4, and eight discretization points, N = 8. So, we
have to solve the following linear system:

no
τ/m+l = 4*0 m)

4L> τ/m+l
v0 + b[l) ym+1 + ciL) T/-m+l

y2 = 4β)vr + b[r)vr + c[R) V2m
a(l)Λ2

ym+1 + b(2l) τ/m+l
v2 + dL)

τ/m+l
y3 - a{r) V™ + b(r)n2 v2m + c(R) V3m

4L) τ/m+l
V2 + b[l) τ/m+l

v3 + ciL)vr+1 = 4Λ) V2m + b(r) V3m + c{R) V4m

AL)
i/in+1
v3 + b[l)ym+1

v4 + ym+i
= 4fi) v3m + b[r) v4m + C(R) V5m

a(l)Λ5
τ/m+l
v4 + eWym+i + diL)

τ/m+l
= 4fi) v4m + b{R) V5m + C(R)

V6m
4(L) ym+1 + b^l) τ/m+l

v6 + r(L) ym+1 -a(r) — λ6 V5m + bIR) V6m + r(R)
°6 v7m

4L) τ/m+l
v6 + b\l)ym+1

v7 λψ]v6m + b(r)v7m

(3.84)
Let us denote that the first and the last equation have been imposed by the
corresponding boundary conditions.

As we can observe, the left side of the system (3.84) is known. We begin at
expiry, where the option price is known to be equal to the payoff, and then we
move backwards. If we replace the left side of equation with the corresponding
value, we can easily see that the Crank-Nicolson scheme reduces to the Implicit
Finite-Differences Scheme, as shown in (3.3.1.1.2).

The computations are more complex here, than in the Implicit Finite-Differences
Scheme, since we have to include more values to compute the known quantity.
This means much more communication between the processes, since the processes
on both the left and the right side need to exchange the respective values. In
comparison with the implicit finite-differences scheme, here the communication
cost is doubled. The processes communicate using the Message Passing Interface
(MPI). For more details, please see the source code.

Next, we give the algorithm for European options pricing using the Crank-
Nicolson scheme.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.3. OPTION PRICING 51

Algorithm 15 Parallel Crank-Nicolson
1: For each process:
2: for n = 0 to processChunk do
3: k = processID * processChunk + n;
4: CalculatedPrice[n] = payof f(k * SS);
5: derivativePrice[n\ = CalculatedPrice[n]·,
6: end for
7: for m = Μ — 1 to 0 do
8: ParallelJacobi(STDVals, Coef ficientsMatrix,processID, nof Processes,processChunk);
9: end for

10: for i — 0 to processChunk do
ll: C alculatedPrice[i] = derivativePrice[i\·,
12: end for

The Parallel Crank-Nicolson algorithm has the same cost as the Parallel Im­
plicit Finite-Differences algorithm, since they both have a loop where they call
the Jacobi algorithm. Crank-Nicolson converges faster [15, 14], though, so we ex­
pect a faster execution than the Implicit Finite-Differences scheme. Please refer
to Chapter 5 to see the experimental results.

3.3.2 American Options

The use of Partial Differential Equations and especially of the Finite-Difference
scheme to solve them is more tricky for American options. That is because the
possibility of early exercise makes them a free boundaries problem and, so, we do
not know where they are in order to impose them and solve the equation.

According to [15], there are two strategies to solve free boundaries problems
using Finite-Differences. The first is to track the free boundary problem as a
time-stepping process. But, in American options evaluation, both the boundary
conditions are implicit and, so, they do not give a direct expression for the free
boundary or its time derivatives. The second is to transform the problem to one
with fixed boundary conditions, solve it, and then go back to the initial problem.

We will use the diffusion equation and the Crank-Nicolson scheme to solve this
problem. Of course, the right for early exercise will change the set of equations
to:

(3.85)

(u(x,t) - g(x,r)) > 0 (3.86)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

52 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

-<?(*, r))=° (3.87)

where g(x,r) is the transformed payoff constraint function and is given by:

g[x, τ) = e5(fc+1)2r max (e^k~1)x - e^fc+1)*, o) (3.88)

for the put and

g{x, τ) = e*(fc+1)2r max (e^k+1)x - e^k~1)x, o) (3.89)

for the call. The initial boundary conditions now become:

u(x,0) = g(x, 0),

u(x, r)iscontinuous,
du,
— (x,r)is as continuous as^(x,T),

lim u(x,t) = lim g{x,r) (3.90)
x—XX) X—MX)

So, if we solve these equations, then we can find the free boundary x = Xf(r) a
posteriori by the condition that defines it, that is:

u(xf(T),T)—g(xf(r),T), but u(x,t) > g(x,r) for x > Xf(r)

for the put and

u{xf{r),T) — g{xf(r),T), but u(x,r) > g{x,r) for x < Xf(r)

for the call.

The diffusion equation, as we have transformed it for the American options,
can be approximated by

<+‘ - JO Κϊί - 2·ί+' +

><+)«(«:_,-2.C + ··",) (3.91)

where
St

“ ~ (Sx)2

Now let’s consider the descritised payoff function:

g™ — g(nSx,mSt) (3.92)

So, we have the condition:

K >9n for m > 1 (3.93)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

3.3. OPTION PRICING 53

and the boundary and initial conditions:

_ m m _ m 0 _ 0
UN- — 9n- > UN+ ~ 9n+ > Un — 9n

In the same spirit, Equation (3.10) becomes:

1
(1 + α)<+1 - 2“W-i1 + CD > Zn

(3.94)

(3.95)

So, now, Equation (3.87) is approximated by:

(d + «)u-+1 - \<*(.Cl + CD - 3?) K+1 - 90 = 0 (3.96)

From this point on, we follow the same procedure as in Section 3.2.1.3 and we
have:

/ UN-+1 \

V un+-i /

l 9n-+i \

V 90)

(3.97)

and

bm = K

(Z™ ,, \

V)
Now, Equation (3.11) becomes:

N~+1

ym
Z0

/ \

1

+ 2Q

ym
\ ZJV+-1 /

0

0
771 d~l

(3.98)

v /

CV"+1 > bm, um+l > 5m+1

(um+1 - (Citm+1 - bm) = 0 (3.99)

where C is given by Equation (3.12).

In order to solve this system, we take the projected SOR method. Next we
give the algorithm for solving this problem, as given in [15].

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

54 CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS

Algorithm 16 Projected SOR Method for American Options using Crank-
Nicolson Scheme__
l: loops = 0;
2: «2 — a/2.0;
3: u[N-]=g[N~y,
4: u[A+] =y[A+];
5: repeat
6: error = 0.0;
7: for η = N~ + 1 to N+ do
8: y — (6[n] + a2* (u[n — 1] + u[n + 1]))/(1 + a);
9: y = m&x.(g[n\,u[n] + ω * (y — u[n]));

10: error — error + (u[n] — y) * (tt[n] — y);
11: u[n] = y;
12: end for
13: + + loops',
14: until error > eps;

return loops

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Chapter 4

Binomial Trees

4.1 Introduction

In finance, the binomial options pricing model provides a numerical method for
the valuation of options. The binomial model was first proposed by Cox, Ross
and Rubinstein [11]. Essentially, this model uses a discrete-time model of the
varying price over time of the underlying financial instrument and it arises from
discrete random walk models of the underlying security.

The binomial methods are based on two main assumptions. The first one is
that the continuous asset random walk can be modelled by a discrete random
walk with the following properties:

• The asset price S changes only from one step to another, meaning from
mSt to (to + l)St until the expiration date T = MSt. We denote that St
is a small but not infinitesimal time-step between movements in the asset
price.

• Considering an asset price Sm at time-step mSt, then at time (to +l)St the
asset price Sm+1 should be either uSm > Sm or dSm < Sm. This means
that the asset price may go up multiplied by u or may go down multiplied
by d. Obviously, it should be u > 1 and d < 1.

• The probability p of S going up to uS is known (as is the probability (1-p)
of S going down to dS).

The second assumption is that of a risk-neutral world (explained in Appendix
A), that is, one where an investor’s risk preferences are irrelevant to derivative
security valuation. This assumption may be made whenever it is possible to
hedge a portfolio perfectly and make it riskless.

55

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

56 CHAPTER 4. BINOMIAL TREES

The main idea of this method is to divide the time to expiration in discrete
time slots (St) and during each slot (m + 1)St we consider that the underlying
asset £m+1 can take two possible values: uSm or dSm. In this context, we are
building a tree including all possible scenarios for the asset moving up or down
during each time slot. When we have built the whole tree, we know the values of
the last nodes, as they are the option prices at expiry and can be easily computed,
and then we are moving backwards computing the value of every node, that is,
the asset and, of course, the option price at each slot.

4.2 Method Overview

As we already know, the asset price random walk can be modelled by the
stochastic differential equation:

ds
— — adX + pdt. (4.1)

We recall our second assumption of a risk-neutral world. This means that we can
replace equation (4.1) with the following equation:

I Q
— = adX + rdt. (4.2)

In this model, we assume that every St the asset goes up by u or down by d.
So, if we are at the slot mSt and we have calculated the option price for the slot
(m + l)St then we can get the option price for slot mSt by taking the expected
value of Vm+l discounted by the risk-free interest rate r:

Vm = E[e-r5tVm+1} (4.3)

Note that first we are calculating the binomial tree for the asset price, then
calculate the option price at expiry (i.e. the payoff) and then we go back using
equation (4.3) to value the option at each time slot.

A binomial tree can look like the one shown in Figure 4.2

4.3 Parameters Computations

In this Section we will see how the parameters u,d,p used for computations
by the binomial model are computed. The main idea is that the discrete random
walk illustrated in Figure 4.2 and the continuous random walk of equation (4.1)
should have the same mean and variance. So, if at time step mSt the asset price
is Sm, we equate the expected values and variances of S'm+1 under the continuous
risk-neutral random walk (4.1) and the discrete binomial model 4.2.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

4.3. PARAMETERS COMPUTATIONS 57

Figure 4.1: Binomial Tree

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

58 CHAPTER 4. BINOMIAL TREES

Firstly, we are going to calculate the expected value of the continuous and the
discrete binomial random walk model. Suppose that at time mdt, the asset value
is Sm. Then, the expected value of gm+1 for the continuous random walk will
be:

Ec[Sm+1\Srn] = erStSrn (4.4)

and the expected value of Sm+1 for the discrete binomial random walk will be:

£b[Sm+1 |Sm] = {pu + (1 - p) d) Sm (4.5)

Equating these two expected values, we have that:

pu + (1 — p) d = erSt. (4-6)

Secondly, we are going to calculate the variance of the continuous and the
discrete binomial random walk model. Again, let’s suppose that at time m6t,
the asset value is Sm. Then, the variance of Sm+1, given Sm, for the continuous
random walk will be:

varc[Sm+1 |Sm] = e2r5t (e*2·5*-1) (Smf (4.7)

and the variance of Sm+1, given Srn, for the discrete binomial random walk will
be:

varb[Sm+1 |5m] = (pu2 + (1 -p)d2- e2r5t) (Sm)2 (4.8)

Equating these two variances, we have that:

pu2 + (1 -p)d2 = e(2r+<T2)it (4.9)

So, we have two equations, (4.6) and (4.9), for three unknowns, u, d. and p. In
order to define all these three unknowns uniquely, we need one more equation.
Unfortunately there is no theoretic background to lead us to another equation.
Our choice for the final one will somewhat arbitrary. The most popular choices
are:

u = - (4.10)
d

and

P= 2 (4-n)

Next, we are demonstrating the final formula for each one of these cases.

4.3.1 The Case u = 1/d

In this case, we have equations (4.6), (4.9) and (4.10) to define our three
unknowns. For these three equations, we have that:

d = A - y/A2 - 1, (4.12)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

4.4. BINOMIAL TREE SETUP 59

and

where

u = A + \J 142 — 1

erSt - d
p =-------------------—

u — d

(4.13)

(4.14)

A = i (e-r,5i + β(Γ+σ2)<5ί) (4.15)

This choice leads to a tree in which the starting asset price reccurs every even
time step and which is symmetric about this price. The asset price drift, caused
by the rSt term in (4.1), is reflected in the fact that the probability of an up
movement differs from the probability of a down movement, since p ψ (1 — p).

4.3.2 The Case p = 1/2

In this case we have equations (4.6), (4.9) and (4.11) to define our three un­
knowns. For these three equations, we have that:

d = erSt (l - V>25t - l) , (4.16)

u = eT&t (l + \Jea2&t - l) (4.17)

and

P=\- (4-18)

This choice consider equal probabilities for an up and a down movement and
we find that ud > 1 and that the tree is oriented in the direction of the drift. If
we take a very large time step, then d may become negative, in which case the
binomial method will fail.

4.4 Binomial Tree Setup

We can choose any of the two cases, 4.3.1 or 4.3.2, to build the binomial tree,
as shown in Figure 4.2. Assuming that we start from now that the asset price is
known, So, we can build the tree as follows:

So = dS°0 Si = uSq,

S02 = d2S°0 Sj2 = udS[j S22 = u2 Sq

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

60 CHAPTER 4. BINOMIAL TREES

and so on. At time step mSt each possible value for S is given by the following
formula:

S™ = cr-nunS$, n = 0,1,... ,m. (4.19)

This way we can build the binomial tree for our asset and then use it to value
an option on it. This method is shown in the next Section 4.5.

4.5 Option Pricing

Consider an option that we can value at expiry, that is, we can calculate its
payoff, such as a call or a put option. Suppose that we have M time steps. Then,
at expiry, i.e. at time step MSt, it is:

Vn = max(K - S™ ,0), n = 0,l,...,M, (4.20)

where K is the exercise price and Vj^ denotes the n-th possible value of the put
at time step M. Respectively, for a call option, we have that:

PnM = max(Sf - K,0), n = 0,l,...,M. (4.21)

At this point, we can find the expected value of the option at the time step
prior to expiry, that is (M — l)St, since we know that the probability of going
up is p and the probability of going down is (1 —p). Then, using the risk-neutral
argument, we can calculate the option value at this time step and then move
one step backwards, until we reach today. Next, we are demonstrating how this
method works for European options.

4.5.1 European Options

Consider a European option whose value at time step (m+l)St is known.
We are going to calculate its value V™ at time step mSt. As we have seen before,
V™ equals the discounted expected value of the option at time step mSt, keeping
in mind that the probability of moving up is p and the probability of moving
down is (1 — p). Putting it all together, we have that:

V™ = e~rSt {pV™Xl + (1 - p)V™+1) , η = 0,1,..., m. (4.22)

Since we know the option value at expiry V**, n — 0,1,..., M, we can start from
the payoff function and then recursively define the values V™, η = 0,1,..., m for
m < M until we arrive to the desired option value today Vg°.

Next, we give an example of an algorithm which computes a European option
value using the binomial method:

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

4.5. OPTION PRICING 61

Algorithm 17 Binomial Method

1: discount = e~r6t\
2: array[0] = So;
3: for m = 1 to M do
4: for n = to to 0 do
5: array[n] = u * array[n — 1];
6: end for
7: array [0] = d * array [0];
8: end for
9: for n = 0 to M do

10: array[n\ = payoff (array[n\);
11: end for
12: for to = M to 0 do
13: for n = 0 to to do
14: tmp = p * array[n + 1] + (1 — p) * array[n]·,
15: array[n\ — discount * tmp;
16: end for
17: end for

Parallel Binomial Method

The parallelization of the Binomial is done in the same way with the previous
methods. The main idea is that we first setup the binomial tree which represents
the expected growth of the asset and then work on that tree to price a European
option. Once again, each process does the exact same thing, so that there is
fairness in computational effort.

In more detail, each process builds a part of the binomial for which it has
knowledge. For any other parts, the processes communicate with each other.
In this thesis, the MPI framework has been used for this purpose. The parallel
algorithm is much more complicated than the serial one. This happens because
the tree is getting smaller and smaller; so, if one wants each process to do the
same amount of computations, one needs to pay attention in the distribution of
data for each process, as shown in Figure 4.2 For more details, please read the
algorithm given next. Note that the algorithm assumes the tree has already been
built and it works on that tree to price the option.

The cost of the Parallel Binomial algorithm is O(M) for each process. It has a
very good performance as the processes become more and more (until, certainly,
an upper limit) since the problem that each process needs to solve becomes shorter
and the cost of communication is very small: each process exchange only one
message with its neighbours each time. Experimental results in Chapter 5 can
prove these assumptions.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

62 CHAPTER 4. BINOMIAL TREES

Figure 4.2: Process Allocation for Binomial Tree

Pr
oc

es
s

0

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

4.5. OPTION PRICING 63

Algorithm 18 Parallel Binomial Method
1: For each process:
2: firstPos = 0;
3: lastPos = processChunk — 1;
4: discount = e~r*St;
5: cur Size = processChunk;
6: m = M;
7: for z = 0 to processChunk do
8: assetPrice comes from the binomial tree for the asset;
9: derroaiwePrzce[z] = payo//(asse£Przce[z]);

10: if processID > 0 then
11: if i == 0 then
12: Send(derivativePrice[i\,previousProcess;
13: end if
14: end if
15: end for
16: for m = Μ — 1 to 0 do
17: tmp — mmod(nof Processes)·,
18: if processID < m then
19: if tmp == processID then
20: cur Size------ ;
21: end if
22: end if
23: for i — 0 to cur Size do
24: if processID == 0 then
25: if i == cur Size — 1 then
26: prevValue = derivativePrice[i];
27: if tmp — processID then
28: nxtValue = derivativePrice[i + 1];
29: tmpDerivativePrice[i\ = discount * (jp * nxtValue + (1 —

p) * prevValue);
30: else
31: Recv(nxtValue,nextProcess);
32: tmpDerivativePrice[i\ = discount * (p * nxtValue + (1 —

p) * prevValue);
if (tmp == processID + 1) AND (m > 1) then

Send{tmpDerivativePrice[i\, nextProcess);
end if

end if
else

nxtValue = derivativePrice\i + 1];
prevValue = derivativePrice\i\;
tmpDerivativePrice[i] = discount * (p * nxtValue + (1 — p) *

prevValue);
41: end if

34
35
36
37
38
39
40

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

64 CHAPTER 4. BINOMIAL TREES

42: else if (processID > 0) AND (processlD < nof Processes — 1)
then

Algorithm 19 Parallel Binomial Method Continued

43
44
45
46
47
48

49
50
51

52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69

70
71

72
73
74
75
76

77
78
79
80
81
82
83
84

if processID < m then
if tmp < processID then

nxtValue = derivativePrice[i\;
if i == 0 then

Recv (prevV alue, previousProcess);
tmpDerivativePrice[i\ = discount* (p*nxtValue + (1 —

p) * prevValue)·,
else

prevV alue = derivativePrice[i — 1];
tmpDerivativePrice[i\ = discount * (p* nxtValue + (1 —

p) * prevV alue·,
end if
if (i == cur Size — 1) AND (tmp\ = 0) then

Send(tmpDerivativePrice[i], nextProcess)]
else if (i == 0) AND (tmp == 0) then

Send{tmpDerivativePrice[i\, previousProcess]
end if

else
prevV alue = derivativePrice[i\]
if tmp > processID then

if i =— curSize — 1 then
Recv(nxtValue, nextProcess);
tmpDerivativePrice[i\ = discount * (p* nxtValue +

(1 — p) * prevValue)]
if tmp == processID + 1 then

Send(tmpDerivativePrice [i], nextProcess);
end if

else
nxtValue = derivativePrice[i + 1];
tmpDerivativePrice[i\ = discount* (p*nxtValue +

(1 — p) * prevValue)]
end if
if i == 0 then

Send(tmpDerivativePrice[i\, previousProcess)]
end if

else if tmp == processID then
nxtValue = derivativePrice[i + 1];
tmpDerivativePrice[i\ = discount *(p* nxtValue + (1 —

p) * prevValue)]
if i —— curSize — 1 then

Send{tmpDerivativePrice [i], nextProcess);
end if

end if
end if

else
break]

end if

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

4.5. OPTION PRICING 65

Algorithm 20 Parallel Binomial Method Continued
85
86
87
88
89
90
91
92
93
94

95
96
97
98

99:
100
101
102

103
104
105
106
107
108
109
110

111

112

113

else if processID == nof Processes — 1 then
if processID < m then

if tmp < processID then
nxtValue = derivativePrice[i\;
if i-----0 then

Recv{prevV alue,previousProcess);
else

prevValue = derivativePrice[i — 1];
end if
tmpDerivativePrice[i\ = discount * (p * nxtValue + (1

p) * prevValue)·,
else if tmp == processID then

nxtValue = derivativePrice[i + 1];
prevValue — derivativePrice[i\;
tmpDerivativePrice[i\ = discount * (p * nxtValue + (1

p) * prevValue)·,
end if
if tmp == 0 then

if i — 0 then
Send(tmpDerivativePrice [z]);

end if
end if

else
break·,

end if
end if

end for
for j = 0 to cur Size do

derivativePrice\j\ = tmpDerivativePrice[j\\
end for

end for

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

66 CHAPTER 4. BINOMIAL TREES

At this point, let us denote that it has been helpful reading [5] for developing
the source code and the parallel algorithm for the binomial method.

4.5.2 American Options

The Binomial method seems to be the most straightforward for valuing Amer­
ican options. That is because it is in its nature to compute the asset and the
option values at various time steps. The tricky part in this method is to decide
which of the two choices (exercise the option or retain it) is the best. Next, we
give the algorithm from pricing American options using the Binomial method, as
illustrated in [15].

Algorithm 21 Binomial Method for American Options

l: discount = e~rSt;
2: s[0] [0] = So',
3: for m = 1 to M do
4: for n = m + 1 to 0 do
5: s[m][n] = u * s[m — l][n — 1];
6: end for
7: s[m] [0] = d * s[m — 1][0];
8: end for
9: for n = 0 to M do

10: v[M][n\=payoff(s[M][n\);
ll: end for
12: for m = M to 0 do
13: for n — 0 to m do
14: hold = (1 — p) * v[m + l][n] + p * v[m + l][n + 1];
15: hold* = discount',
16: u[m][n] — max.(hold, payof f (s[m][n\))',
17: end for
18: end for

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Chapter 5

Experiments * •

In this section, we give some results that came from a simulation ran for the
parallel computational methods illustrated in the previous section. The charac­
teristics of the options are:

• European Options

• Asset Price: 15

• Exercise Price: 10

• Constant Interest Rate: 5%

• Volatility: 20%

• Expiration: After 6 months

• Loops:

— Monte Carlo: 100,000,000

— Partial Differential Equations: 10,000,000

- Binomial: 100,000

This simulation was ran on a pc with the following characteristics:

• Inter Core 2 Duo T8100 2.1 GHz CPU

• 3GB RAM

• OS: openSUSE 10.3 with Kernel 2.6.22.5-31-default

• LAM/MPI for x86-64 architecture

• GNU C++ Compiler

67

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

68 CHAPTER 5. EXPERIMENTS

I

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

69

Figure 5.2: Monte Carlo Method - Memory

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

70 CHAPTER 5. EXPERIMENTS

Figure 5.3: Explicit Finite-Differences Method - Time

00

Tf

ΓΜ

I r-4

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

71

Figure 5.4: Explicit Finite-Differences Method - Memory

<N 00

00

i I I

*o in ^

8 S5 m K m *>

I i I I

m a\ oo r*
oo ^

e‘ ia a a s ' a a a

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

72 CHAPTER 5. EXPERIMENTS

Figure 5.5: Implicit Finite-Differences Method- Time

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

73

Figure 5.6: Implicit Finite-Differences Method - Memory

CM 00

1 rH

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

74 CHAPTER 5. EXPERIMENTS

Figure 5.7: Crank-Nicolson Method - Time

I rH

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

75

Figure 5.8: Crank-Nicolson Method - Memory

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

76 CHAPTER 5. EXPERIMENTS

Figure 5.9: Binomial Method - Time

I rH

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

77

Figure 5.10: Binomial Method - Memory

fN 00

t iH

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

78 CHAPTER 5. EXPERIMENTS

Next we give the figures from the experimental results of simulations run on
Centaurus, a cluster computer cited in Department of Computer and Communi­
cation Engineering of University of Thessaly. The options characteristics are the
same as before. Centaurus consists of four nodes, each one of which consists of

. CPU: 4 x Intel Xeon 2.80 GHz

• RAM: 5GB

• HDD: 80GB ULTRA 360 SCSI

• LAN: 1 GBit

and runs Linux 2.6.16.13-4-smp with gcc version 4.1.0 (SUSE).

In Centaurus, the experimental results were in the same spirit as the previous
ones. So, we decided to move one step with the Partial Differential Equations
part, which in a first glance seem to go slower in a parallel mode. This is a result
of the relatively slow inter-connectivity between the nodes and the LAM daemon.
About the LAM daemon, it worth mentioning that its scheduling policy does not
always take full advantage of the CPU, because it aims to a ’’fair” policy for many
processes. Boosting LAM’s performance was outside the context of this thesis.
A better scheduling policy, though, combined by a better interconnection (since
we have a large number of messages for Partial Differential Equations) would
improve the results.

Because of all these reasons, we tried to ’’fool” LAM by increasing the system’s
overhead to its limits. So, we give the experimental results of the CPU time (and
not the total time as before) needed to reach to the solution if 30 clients wanted
to compute the same option price in the same way at the same time.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

79

The results showed us an improvement of about 8% for the Explicit Finite-
Differences scheme, 10% for the Implicit Finite-Differences scheme and 15% for
the Crank Nicolson scheme when going from 2 to 4 processes. So, for a real
time application, where more than 30 requests -or even more complicated ones-
are expected, the program is expected to scale satisfactorily. For the other two
methods, the results are more straight-forward since we have a clear boost of
performance as shown in the respective figures.

For the Monte Carlo method, we have an improvement of 54.5% when going
from 1 to 2 processes, 72.3% when going from 1 to 4 processes, 84.8% when going
from 1 to 8 processes and 90.9% when going from 1 to 16 processes.

For the Binomial method, we have an improvement of 50.9% when going from
2 to 4 processes, 84.6% when going from 2 to 8 processes and 88.8% when going
from 2 to 16 processes.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

80 CHAPTER 5. EXPERIMENTS

Figure 5.11: Monte Carlo - Time (Centaurus)

I

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

gUre 5'12: Elicit FiEinite-Djfferi
81

ences - Time Jn Lari
ge °''erhead (Centauru!SJ

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

82 CHAPTER 5. EXPERIMENTS

Figure 5.13: Implicit Finite-Differences - Time in Large Overhead (Centaurus)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

83

Figure 5.14: Crank-Nicolson
Time in Large Overhead (Centaurus)

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

84 CHAPTER 5. EXPERIMENTS

Figure 5.15: Binomial - Time (Centaurus)

<N

Γ

i I

in

I

Ti­ ro <N

I

O

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Chapter 6

Conclusions - Future Work

The goal of this Thesis was to introduce the three most common methods
for pricing financial derivatives and to extend them to run in a parallel way.
Throughout Chapters 2, 3 and 4 we illustrated these methods and gave exam­
ples of their applications on European and American options. Especially for the
European options, we gave algorithms for parallelizing these methods.

The study on these parallel algorithms, all along with the experiments ran
on the two systems mentioned in Chapter 5, led us to the conclusion that the
parallelization of these methods can give us results faster; either methods may
have a better parallel performance than others but they can all take advantage of
the benefits of parallel computations (faster execution, better CPU load balance,
better time scheduling for many requests).

Of course, this is not all. Further work can and needs to be done. First of
all, these algorithms could be tested in other parallel systems so that we could
have a better picture of what happens and how the parallelization influences their
efficiency under different environments.

Then, one could try to parallelize these methods for American options and
check their performance. And then, move on to exotic and more complex options.
As the computations complexity becomes bigger, the need for faster computations
becomes even more essential and parallelism is our response to the demands of
this problem.

85

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Bibliography

[1] M. Bertocchi. Option evaluation techniques by parallel processing: A review,
1991. [cited at p. 12]

[2] F. Black and M.Scholes. The pricing of options and corporate liabilities.
Journal of Political Economy, 1973. [cited at p. 28]

[3] Credit Suisse First Boston Corporation. Get real - using real options in
security analysis, [cited at p. 94]

[4] Aswath Damodaran. The promise and peril of real options, [cited at p. 94]

[5] Alexandros V. Gerbessiotis. Architecture independent parallel binomial tree
option price valuations, 2003. [cited at p. 66]

[6] Ilkay Boduroglu Halis Sak, Suleyman Ozekici. Parallel computing in asian
option pricing, 2007. [cited at p. 22]

[7] http://www.wikipedia.org. [cited at p. 3, 93]

[8] Gary L. Mullen Jenny X. Li. Parallel computing of a quasi-monte carlo
algorithm for valuing derivatives, 2000. [cited at p. 22]

[9] Didier Martineau Jerome Barraquand. Numerical valuation of high dimen­
sional multivariate american securities, April 1994. [cited at p. 22, 24, 25]

[10] Suk Joon BYUN Jin Suk KIM. A parallel monte carlo simulation on cluster
systems for financial derivatives pricing, 2005. [cited at p. 22]

[11] Mark Rubinstein John C. Cox, Stephen A. Ross. Option pricing: A simplified
approach. Journal of Financial Economics, 1979. [cited at p. 55]

[12] Paul Glasserman Mark Broadie. Pricing american-style securities using
simulation. Journal of Economic Dynamics and Control, Elsevier, 1997.
[cited at p. 22, 25]

87

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

http://www.wikipedia.org

88 BIBLIOGRAPHY

[13] Don L. McLeish. Monte carlo simulation and finance, September 2004.
[cited at p. 19]

[14] Rebecca Carter Micheal B. Giles. Convergence analysis of crank-nicolson
and rannacher time-marching, 2005. [cited at p. 51]

[15] Jeff Dewynne Paul Wilmott, Sam Howison. The Mathematics of Financial
Derivatives. Cambridge University Press, 1995. [cited at p. 51, 53, 66]

[16] Giorgio Pauletto. Parallel monte carlo methods for derivative security pric-
ing. [cited at p. 10]

[17] Paul Glasserman Phelim Boyle, Mark Broadie. Monte carlo methods
for security pricing. Journal of Economic Dynamics and Control, 1997.
[cited at p. 12, 22]

[18] CleaxSpeed Technology pic. Computational finance technical example, July
2007. [cited at p. 19]

[19] Eleftherios Syrrakos. Xrimatistiriaka kai Epitokiaka Paragoga - Apotimisi
kai Efarmoges. Conceptum, 2000. [cited at p. 6]

[20] James A. Tilley. Valuing american options in a path simulation model,
[cited at p. 22, 24]

[21] Jerome Spanier Yongzeng Lai. Applications of monte carlo/quasi-monte
carlo methods in finance: Option pricing, [cited at p. 19]

[22] Tony Lelievre Yves Achdou, Olivier Bokanowsky. Partial differential equa­
tions in finance, 2007. [cited at p. 35]

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Appendices

89

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Appendix A

Risk Neutrality

Let’s consider the Black-Scholes equation:

dV
dt

dV
os2 + rS'ds ~rV = 0 (A.l)

As we can see, the growth rate μ does not appear in A.l. Therefore, the value of
an option only depends on the standard deviation of the asset price and not on
its rate of growth. If we could construct a portfolio with a derivative product and
the underlying asset in such a way that the random component can be eliminated,
then the derivative product may be valued as if all the random walks involved
were risk-neutral. This is why, we can replace the drift term in the stochastic
differential equation for the asset return (in this case μ) with the interest rate r
whenever it appears. This way, we can price the option by calculating the present
value of its expected return at expiry with this modification to the random walk.

In order to value the option using these data, we work as follows. First of all,
we know that the present value of any asset at time T is that value discounted
by e~r(T~t'). Then we do as we described above: We consider that the random
walk for the return on S has a drift r and not μ. Moreover, since we know that
S has a lognormal distribution, meaning that the probability density function of
S is

__l__e-(/-/o-(M-5<r2)t)2/2o-2t (A.2)
aS\/2πϊ

we can replace μ with r and then get a new probability density function. Finally,
we calculate the expected value of the payoff A (S) using this probability density
function. We do so by multiplying A(S) by the risk-neutral probability density
function and integrate over all possible future values of the asset, from zero to

91

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

92 APPENDIX A. RISK NEUTRALITY

infinity. Then, we discount to get the present value of the option:

T/(c*)~ e~r{T~t] /°°β-(1ο*(*75)-(Γ-^)(τ-0)2/2-a(r-t)A(5/)^ (A.3)
ay/2π(Τ - t) Jo S

The main drawback of this method is that it requires us to know the probabil­
ity density function of the future asset values. This may be easy for a constant
coefficient random, but in a more complicated model, we must first the distribu­
tion before integrating to calculate the expected return. Often, the calculation
of a probability density function involves solving a partial differential equation
equivalent to that satisfied by the option and the subsequent integration must be
in general carried out numerically, as well. It is usually quicker to solve the op­
tion pricing equation directly. Moreover, when we come to American options, it
is much more difficult to see how to implement the risk-neutral approach, while
the direct approach via the partial differential equation for the option can be
extended in a clear-cut way.

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Appendix B

Real Options * •

A real option is the right, but not the obligation, to undertake some busi­
ness decision, typically the option to make a capital investment [7]. Real options
are particularly important for businesses with a few key characteristics. The
first is smart and reputable management with access to capital. Managers must
understand options, identify and create them, and appropriately exercise them.
This contrasts with businesses which business leaders focused on maintaining the
status quo or maximising near-term accounting earnings. Businesses that are
market leaders are also attractive, as they often have the best information flow
and richest opportunities -often linked to economies of scale and scope. Finally,
real options are most applicable precisely where change is most evident.
The binomial model, illustrated in Chapter 4, is currently the most widely used
method to value real options.

Although real options exist in many businesses, they are not always easy to
identify. Real options can be classified into three main groups:

• Invest/Grow Options

• Defer/Learn Options

• Disinvest/Shrink Options

Invest/Grow Options

1. Scale up. These options are used by companies that expect their market
to grow in the future, such as high technologies companies. In this case,
these companies need to do some initial investments that are expected to
bring profit in the future

93

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

94 APPENDIX B. REAL OPTIONS

2. Switch up. This option values the opportunity to switch products, pro­
cess or plants given a shift in the underlying price or demand of inputs or
outputs. In more detail, this means that a company can make a mixed
deal about a product that is about to buy and use, so that there is the
possibility to change in a range of similar products.

3. Scope up. This option values the opportunity to leverage an investment
made in one industry into another, related industry. Practically this option
can give the opportunity to a leading business in one field of a production
chain to enter another field with an advantage.

Defer/Learn Options

1. Study/Start. This option gives its holder the opportunity to invest in a
particular project in some time in the future. The holder can wait for some
period before investing, which reduces uncertainty but, of course, costs some
more. Practically, an investor would use such an option if he had seen that
the field he wanted to invest in, would have grown adequately.

Disinvest/Shrink Options

1. Scale Down. This option gives a company the opportunity to shrink
or downsize a project anytime while it is running. This means that if a
project does not go well and does not bring the expected profit, it can be
abandoned.

2. Switch Down. This option values the holder’s ability to change to most
profitable assets and investments as he receives more information.

3. Scope Down. This option values the opportunity of the holding company
to abandon operations in a related field that do not bring the expected
profit. This way, some money can be saved.

Real options can play an important role in the valuation of a company’s
stock price, especially for companies that compete in rapidly growing and
highly uncertain markets. According to Credit Suisse [3], stocks of these
companies axe best viewed as a combination of the discounted cash flow
value of the current, known business, plus a portfolio of real options. This
real option can be estimated by taking the difference between the current
equity value and the discounted cash flow value for the established busi­
nesses. Although there are analysts who disagree with that opinion, it
seems to be rather accurate.

For a more detailed approach you could also refer to [4].

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Appendix C

Implementation

Here, we will give some information about the implementation of this Thesis.
First of all, the source code for the option evaluation application is written in
C++. The application web interface is written in JSP and the network applica­
tion used to establish communication between the JSP part and the C++ part
is written in C.

In more details, there is a daemon (written in C) running on the host that also
keeps the main computations program. This daemon listens for connections of two
kinds: either for a new computations request or a request for results of completed
computations. When a new request comes, then the daemon creates a separate
process to serve the new client. The client enters the option characteristics in the
proper JSP page and submits them. Then, the daemon receives this information,
stores them in an xml file, associates a unique ID with the user and the data,
sends the ID back to the user and calls the main computing program to execute
the computations for the characteristics received by the client. The main program
reads data from the xml file and writes output to another xml file. When the
client wants to see the results, he opens the proper link and enters his code.
Then, the daemon communicates again with the web interface and sends back
any results available. Then, the JSP part prints these results on screen.

Next, we give some screen shots of the web interface of this financial toolbox.
For any further information, you may refer to ac.anadiotis@gmail.com.

95

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

mailto:ac.anadiotis@gmail.com

96 APPENDIX C. IMPLEMENTATION

Hcex

Vxcvtx. Cmtoi

ΛϊϋΟΗίϋ

Rtiiil

ΪΧ'.ΓϋΜ'χκκ'β

Abcu Is

Figure C.l: Home Page

Computers A Communfcathwi* Engineering Dept.

| FINANCIAL TOOLBOX

HOME

Tits is a financial tootwi prcwded tor evaluaong option prices In
ns final form n ml be aMc to tompiee prices tor European and
Asian Opticus using the B»ee most common ccmpoUbonai
methods Morte Carlo Partial CMfeteutiaiEquaions and Trees

The compuabons ate done paiaaei on a d/stor sysiem hosted m
<0 Ursvefstv of

IftgssaSr

C04dt*-C1 W

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

97

Κοκ

Eur.TifcCtoiT.··

ΑμπΟλ»

R«4s

Dttustntocn

Abca Is

Figure C.2: European Options in General

Computers t Communications Enoineerinq Dept.

FINANCIAL TOOLBOX

EUROPEAN OPTIONS

seweitii inkhuutiow

One of the most popuar category cf options are the European
Options The*' ma n *%ence from tne other npes of options s
that the date that they e<pre is specified at first There two knds
of E jopean Options the European cal and the European put A
European cal option on a specified asset lets say a slock pves
the opfion hotter the right to buy the stock at the speeded date
payog a specified amount of money the exercise pnce which ts
also defined a peon The hotter wi use the option only it the
exercise pnce « smate than the stock pnce at ire feme of
exp ’aDon So tie European cal payoff is MaxiO S-K| where S
is the asset pnce and K is the exerose pnce S*nfc% a put
option or a stock jyes the opcon holder the ngft to selfre stock
to the option writer at the specled 'dale tor a specified pnce
teierose pneej The European put payoff rs Ma«lO K S)

1 you world ike to equate a European Option pease select one
of the methods supported

MorteCano

Ratal Dife'ertial Eouatorts

BmomaJ Tiees

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

98 APPENDIX C. IMPLEMENTATION

Figure C.3: Binomial Model Form

Computers & Communication» Enniwrinq Put

FINANCIAL TOOLBOX

Home

AiUfiOctrtti

Scsi*

Dciuaautitt

Ate* Us

EUROPEAN OPTIONS EVALUATION

ftlttONUL METHOD

Constant Interest Rate

|όϋ

VotaflKy

(δϊ

Asset Prce

[Ϊ5

EierosePrce

|io
Option E»p<res m

|i mortfs

Processes to Use tor Computations (default 4|

P
ComDUWions Carte* KJefaJl 200001

Capwi eestftfcig
l»crsreor|)rap*»c

Submit Reset

20000

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

99

H«m

EncwatOrtsii

AsittOcatte

Rfsis

Doemxmftx

Ak« Us

Figure C.4: Code Page

Computers & Communiotkms Eaafcftrina Pact

FINANCIAL TOOLBOX

COMPUTATIONS CODE

ΙΜΜΟΤΑΝΤΗ

This is the ComputaloTS Code You wl feed ttis to get the
resub of Be computaboos Please Keep r mnd Bat you must
Keep tr*s code it you wan to have access to you restfs

We do wt Keep any oetsonai mtoriaoon oi the people asong
tnefiianaalTocboc so ft you lose ns code re ore wrt oe abe
to he<> you 9« your ?esuis

Computation* Cod*.

663227

TO COMT ACTUS.

AngetosChnssos AnacM»

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

100 APPENDIX C. IMPLEMENTATION

Hcc*

IticcxsOaiu

ASUfiGcttGS

Xtafo

Ikeucaesiibst

Aieat's

Figure C.5: Request for Results

Commuters & Coramifcitions Ennln—ring Dtot

FINANCIAL TOOLBOX

REQUEST FOR RESULTS

HUERT CODE

Pieise insert the code that you were assigned to see heresuts
if they are m at«e

|66322/

Submit

TO CONTACT US

Angetos-Ctfs&s Aradcts

E-mari at yaQttsgyna com

", AsiatiOplioTif· Results Dociarieatititc ARhe Us

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

101

Compute» & Communications Engineering Dept

FINANCIAL TOOLBOX

Figure C.6: Results for Partial Differential Equations

Hot* RESULTS
Enxi£ Ocoxi

AasoOMxcs

pmitial oirrEeewTUt equations

DcocfttCrti

Akou Us

ASSET PARTITION OPTION PRia

0 ooooooooooo

1 0.0000000000

2 0.0000000001

3 00000000182

4 00000010642

5 0.0000331315

6 00005998464

7 00066571504

8 00467976404

9 02133718145

10 0.6487128602

11 13860417199

12 2.2896637019

13 32590174312

14 42499112346

15 5 2466229046

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

102 APPENDIX C. IMPLEMENTATION

Figure C.7: About Page

Computers & Communications Engineering Dept

FINANCIAL TOOLBOX

K<ck ABOUT US

Ejowjo Omti

AsaofcOKS
I

Rada
|------------

D-.vuatajsct

Abculs

Ths loctiox has been developed by Argesos-Chnsios Aradoes in
(he cortexl of te diploma iess PaiaW Compdationai Models m
Finance

^pewsors of ths Thesis

-I Prof EiasHousts

Assistant Rof Panaoota Tsomoanooojoc

TO CONT ACT US.

Angebs-Onstos Aradots
E-mai at swMi&vn* to<r

Hoot I Europem Qptoocs Asia Owioas I Results i DotwKctiliM 1 About I's

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

103

Computers & Communications Engineering Dept.

FINANCIAL TOOLBOX

Figure C.8: Documentation

DOCUMENTATION

EuwtxOmrc

AsaaOroocs

I--------------
Rettii

DfCjeeuKC

I--------------
Atatl's

FAMIIEI OONEUTATIONAI MODELS in finance

Al the dree methods used in this wetale for options enaiuaton
are ilustrated in the fotovrng document For the source code
please contact via e-ma i

Paratei COTpJationat Motets in f .naxe

TO CONTACT US:

AngelcsChnstos AnadoDs

E-maa acjradsfiiiia^jt.ia1'

Home iEroeiBOEriooF Asia Qwiccsj Re Docwneotitioo AboetUs

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

List of Symbols
and Abbreviations

Abbreviation Description Definition

MPI Message Passing Interface page 61
LAM Local Area Multicomputer page 67

105

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

• λ
^ν

6λ

ΠΑΝΕΠΙΣΤΗΜΙΟ
ΘΕΣΣΑΛΙΑΣ

004000091650

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 09:47:18 EET - 137.108.70.7

