
University (jadT
of Thessaly

e-Contract Representation for
Defeasible Temporal Reasoning and
Conflict Management

Georgios K. Giannikis and Aspassia Daskalopulu

Department of Computer and Communications Engineering,
University of Thessaly,
38221 Volos, Greece
{ggiannik,aspassia}@inf.uth.gr

Abstract. In this report a formal representation and a defeasible reasoning approach for
multi-party contractual agreements is presented. Starting from a representation of elec
tronic contracts in Event Calculus, we propose a mapping to a representation in Default
Logic. The proposed contract language allows us to reason defeasibly with e-contracts,
which is useful in order to determine or explain the normative state of a business ex
change in the presence of incomplete or inaccurate knowledge.

Keywords. E-contracts,
Conflict management

Non-monotonic reasoning. Event Calculus, Default Logic,

September 2006

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

Πανεπιστήμιο Θεσσαλίας

ΥΠΗΡΕΣΙΑ ΒΙΒΛΙΟΘΗΚΗΣ & ΠΛΗΡΟΦΟΡΗΣΗΣ
Ειδική Συλλογή «Γκρίζα Βιβλιογραφία»

Αριθ. Εισ.: 4936/1
Ημερ. Εισ.: 26/09/2006________________

Δωρεά: Συγγραφέα________________
Ταξιθετικός Κωδικός: A_____________________

004.678

ΓΪΑ

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

Table of Contents

1 Introduction...3
2 Example Scenario.. 4
3 A Representation in Event Calculus.. 5

3.1 The effects of Actions in Norm-governed Settings.. 7
3.2 Contrary to Duty Structures.. 9
3.4 Contract Representation Language... 10
3.5 Comments..13

4 Defeasible Reasoning with e-Contracts... 13
4.1 Translation Schema...14
4.2 Deductive Reasoning..16
4.3 Abductive Reasoning..18
4.4 Conflict Detection...18
4.5 Conflict Management: Prevention and Resolution.......................................20

5 Related Work..22
6 Conclusions and Future Work...23
Acknowledgments.. 24
References... 24

2

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

1 Introduction

Extensive research, during the last decade, has focused on the establishment and
subsequent monitoring of contractual agreements in electronic marketplaces (or so
called e-markets) (for example, cf. [13, 1, 12, 19] among many others). Generally, e-
contracting is viewed by many researchers as conducted within an e-market, which
offers a variety of services, such as: brokering to identify and match prospective
business partners; negotiation facilitation; lodging of electronic documents; arbitra
tion and dispute resolution; contract performance monitoring and enforcement. In
this report we are concerned with the latter that is with the development of appropri
ate e-market services for contract performance monitoring and enforcement.

During a business transaction that is regulated by some agreement, the main issues
of interest for contract performance monitoring seem to be:
(i) To establish what each party is obliged (or permitted, or prohibited, or empow

ered and so on) to do at a given point in time;
(ii) To determine whether each party complies with the behaviour stipulated for it

by the agreement; where a party deviates from prescribed behaviour—
intentionally or due to force majeure—to determine what, if any, remedial
mechanisms are applicable that might return the business exchange to a normal
course; and

(iii) To detect potential conflicts among parties’ obligations (or permissions, prohibi
tions or powers and so on); when a conflict is detected, to provide a way out
through some conflict resolution mechanism

Many researchers adopt a process view of electronic contracts, that is, they regard
them as sets of norms that map out the possible states, in which the actual correspond
ing business exchanges that are regulated by them may find themselves (for an exam
ple, cf. [8]), and some researchers (for example, [18, 3, 9, 15], among others) have
adopted Event Calculus [16] to represent and reason with e-contracts. Such represen
tations allow us to address issues (i) and (ii) and partly (iii). However, a representa
tion in Event Calculus does not facilitate reasoning with partial or incomplete knowl
edge, hypothetical reasoning, and, finally, it does not help towards conflict resolution.

Recently, to address these issues, attention has turned to the deployment of defea
sible reasoning (e.g. [12, 11, 22]), using mainly Defeasible Logic [21], We investi
gate an alternative approach, in which we use Reiter’s Default Logic [25], and pro
pose a mapping from the Event Calculus representation of an e-contract to default
rules, extended with priorities [5, 6], The resulting representation enables us to per
form both defeasible deductive reasoning (prediction) and abductive reasoning (ex
planation). The former allows us to establish what norms are active at a given point in
time, based on assumptions and/or knowledge of actions that have already taken
place. The latter allows us to explain and justify the norms that are active at a given
state of the business exchange. Furthermore, dynamic conflict management, based on
a preferential default theory, is also possible. Apart from this, reasoning about the
violation of normative propositions and their potential reparations is also facilitated.

3

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

The rest of the report is organized as follows: section 2 introduces an example
scenario, which we use for illustration purposes; section 3 discusses briefly the repre
sentation of an e-contract in Event Calculus; section 4 shows how the Event Calculus
representation may be mapped to default rules and how conflict detection and resolu
tion may be performed; finally, sections 5 and 6 present related work, conclusions
and directions for future research.

2 Example Scenario

For the purposes of illustration consider a 3-party business transaction that takes
place in an e-market. A retailer requires some goods and for that reason its agent (RA)
communicates with a wholesaler’s agent (WA) and establishes an agreement for the
provision of such goods. Consequently, the wholesaler’s agent (WA) communicates
with a carrier’s agent (CA) and establishes an agreement for the timely and safe deliv
ery of the goods from the wholesaler to the retailer. There are two interdependent
agreements here, one between RA and WA, and another between WA and CA.

The first agreement is to be conducted on the following terms: The WA should see
to it that the goods be delivered to the RA within 10 days from commencement (e.g.,
the date RA's order takes place). The RA, in turn, should see to it that payment be
made within 21 days from the date it receives the goods. If the WA does not deliver
on time, then a fixed amount is to be deducted from the original price of the goods for
each day of delay and it should see to it that delivery be made by a new deadline, say
within the next 3 days. If the RA does not perform payment on time, then a fixed
amount is to be added to the original price of the goods for each day of delay and it
should see to it that payment be made by a new deadline, say within the next 5 days.
In the same spirit, the second agreement between WA and CA defines obligations,
their deadlines and possible reparations in case of violations. Following [8], we may
take an informal, process view of the business transaction that is regulated by the
agreements. Each state offers a (possibly partial) description of the factual and nor
mative propositions that hold true in it. A transition between states corresponds to an
event that takes place, i.e. an action that one of the parties performs or omits to per
form. Part of such a description of the business exchange is shown in figure 1.

State SO (time point TO) is the initial state, no events have occurred yet. Let us as
sume that the RA places an order at some time after TO. The transaction is now at state
SI, where the WA is obliged, towards the RA to see to it that goods be delivered to the
RA within 10 days. The C4’s obligation towards the WA to deliver goods within 10
days is, also, active at state SI (time point 77). If the CA delivers within the specified
time bounds, then the business exchange moves to state S2, where its obligation (and
the dependent WA’s obligation towards the RA) is successfully discharged, and the
RA’s obligation towards the WA to pay becomes active (as does the WA’s obligation
to pay the CA). If the CA does not deliver on time, then the transaction is in state S3
(time point T3), where the WA must make amends to the RA as specified by their
agreement (and the CA must make amends to the WA as specified by their agree
ment). Similarly, when the business exchange finds itself at state S2 (time point T2),
the RA’s obligation towards the WA to perform payment within 21 days holds. Com

4

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

pliance with this obligation will lead the exchange to state S4, whereas violation will
take it to state S5. In the same manner we may discuss other states of the business
exchange.

Fig. 1. Possibly partial contract state diagram

3 A Representation in Event Calculus

The Event Calculus (EC) [16] allows the representation of actions and reasoning
about their effects. The basic elements of the language are time points, fluents and
actions (or else events).

Each state of a business exchange may be associated with a time point and expres
sions of the form timei<timel+ / indicate the temporal ordering of time points.

Fluents are factual and normative propositions whose truth value alters over time.
For our example scenario we use propositions, such as Order (agent l,agent2). Deliv
ery (agentl,agent2) and Payment(agentl,agent2), to denote that events/actions of
ordering (AOrder(agent 1 ,agent2)), delivering (ADelivery(agentl,agent2)) and pay
ment (.APayment(agentl,agent2')) from agent 1 to agent2 have successfully been per
formed.

We use expressions of the form Op(agentl,agent2, action, time) to denote norma
tive propositions that describe that agentl is in legal relation Op towards agent2, to
perform action by time. The legal relation Op may be obligation, prohibition or per

5

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

mission. We use these notions as they are understood in Standard Deontic Logic
(SDL) [7, 27],

We adopt the simple EC formalism presented in [26], which uses six basic predi
cates (Table 1) defined in a domain-independent manner.

Table 1. Event Calculus Predicates

Initiates(action fluent,time) fluent starts to hold after action occurs at
time.

Terminates (action fluent, time) fluent stops to hold after action occurs at
time.

HoldsAt(fluent, time) fluent holds at time.
Happens (action, time) (instantaneous) action occurs at time.

Clipped(timel fluent,time2) fluent is terminated between timel and
time2.

Declipped(time 1,fluent, time2) fluent is activated between timel and time2.

In [20] six domain independent axioms were introduced. We present here only the
positive expressions of the Clipped and HoldAt predicates and later on we purpose an
extension for the e-contracting normative domain. In particular. Clipped and HoldsAt
predicates were defined as follows:

Clipped(time 1,fluent, time 2)=3action, time [Happens (action, time)
Atimel£ time<time2ATerminates(agentfluent, time2)],

HoldsAt(fluent,time2)*—[Happens(action, timel) Alnitiates(action,fluent,timel)
Atimel<time2 A^Clippedflme l fluent,time2)]

and

HoldsAtfluent, time2)*—[Holds A t (fluent, time!)
Atime l<time2A^Clipped(time I fluent,time2)]

The agreement between the RA and the WA may be represented as follows:

Initiates(AOrder(RA, WA), Obligation (WA JRAA De livery (WA,RA), time+10), time)
*—Happens(AOrder(RA, WA), time).

Initiates(ADelivery(WA,RA),Obligation(RA,WA,APayment(RA,WA),time+21),time)
*—Happens(ADelivery(WA,RA), time).

Termnates(ADelivery(WA,RA),Obligation(WA,RA,ADelivery(WA,RA),time+10),time)
Happens (ADe livery(WA ,RA), time).

Termnates(APayment(RA,WA),Obligation(RA,WA,APayment(RA,WA),time+21),time)
*-Happens(APayment(RA, WA), time).

6

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

Marin et al, [18] distinguish between the so called internal time of norms (e.g. the
deadline for an obligation to be met), which in our representation is the time that
appears in the normative propositions of the form Opiagentl, agent2, action, time) and
the so called external time of norms, i.e. the time at which a normative proposition
comes into force or ceases to hold.

In our example, initially, the following is true:

-,HoldsAt(Order(RA,WA), TO).

Then, suppose that the RA places an order by time T<T1. Using the representation
above and the definition of the HoldsAt predicate we may infer that:

HoldsAt(Order (RA, WA), Tl)
HoldsAt(ObligationflVA ,RA,ADelivery(WA,RA), T+10),T1)

which corresponds to state SI. In similar spirit, suppose that WA delivers goods by
time T'<T2, so

HoldsAt(Delivery(WA,RA), T2)
HoldsAt(Obligation(RA, WA,APayment(RA, WA), T+21), T2)

which corresponds to state S2. Finally, suppose that RA pays WA on time, that is

HoldsAt(Payment(RA, WA),T4)

is true in state S4.

3.1 The effects of Actions in Norm-governed Settings

In [17] it is noted that the effects of an action apply only when the action is consid
ered valid. Whether an action is considered valid depends on whether its actor has:
(i) the legal ability (power, [14]) to perform it,
(ii) permission to exercise this power, and
(iii) practical ability to perform the action.

We consider legal ability as introduced in [14] that is institutionalized power to
perform an action. The term permission refers to the normative notion of permission
as defined by SDL. As argued in [17, 14], although the notion of institutionalized
power is close to the deontic notion of permission, it is imperative to consider them as
two distinct notions. This argument can be easily substantiated with a simple example
in relation with our case study scenario. Assume a retailer’s agent that is legally em
powered with the ability to perform payment on behalf of the contractual party it
represents. But, the same agent is not permitted to perform payment if the transferred
amount of money overcomes a specific value (i.e. 10.000 euros). Based on this exam
ple, we consider that the agent has the institutionalized power to perform an action as
a general rule. Exceptions to this rule are also applicable by defining permissions that

7

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

probably apply only at specific time points, time periods or occasions. We should
note that an exception is not practically able to block an agent to perform an action,
i.e., the action’s outcome will count as valid. As Artikis argued in [3] an action is
considered as valid, or in other words effective, if the agent had the institutionalized
power to perform it. Later on, we enhance this definition by concluding one more
prerequisite for valid actions.

We use expressions of the form IPower(agent, action) to denote that agent is insti
tutionally empowered to perform action. We also use expressions of the form PAb-
lity(agent,action) to denote that agent is physically/practically capable of performing
action.

We have slightly modified the original definition of the Happens predicate to take
these points into account and formulate rules that characterize actions as performable
(or not), valid (or not), and legal (or not). In our representation the Happens predi
cate includes the actor of the action that occurs, i.e. it takes the form Hap-
pensiagent, action, time).

Action is performable/possible by its performer at a given time, if agent has the
practical ability to perform it at that time:

Possible (agent, action, time) = HoldsAt(Possible (agent, action), time)=
Sagent, action, time [HoldsAt(PAbility (agent, action), time)]

For example, if an agent is practically capable of accepting the delivery of some prod
ucts we may conclude that the action of delivery is possible to happen. But what is
the case, in the e-marketplace, if the receiver was not authorized for that action. Shall
we count the action of delivery as possible to occur or as occurred?

Therefore, action is only considered valid, in the sense of being effec
tive/countable in the overall framework, if agent is legally empowered and physically
able to perform it:

Valid(agent,action, time) = HoldsAt(Valid(agent,action), time)=
Hagent, action, time[HoldsAt(lPower (agent, action), time)

/\HoldsAt(Pability(agent, action), time)

Back to our example, if the agent that receives products is, capable and authorized,
then we may conclude that the obligation of delivery has been successfully met.

Additionally, action is considered legal, if it is valid and no specific forbiddance
for its performer is explicitly stated:

Legal (agent, action, time) = HoldsAt(Legal(agent, action), time)=
3agent,action,time[HoldsAt(Valid(agent,action),time)

λ-' (IIoldsAtHPermission(agent,action),time)) \/
HoldsAt(Forbiddance(agent, action), time))]

For example, the doorman of a company is empowered to receive all packages except
those that are explicitly sent to the company director. This is the case where an excep
tion, in the form of a forbiddance, is in force. If the doorman receives a package

8

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

while he is not permitted to do so, then this will count as a valid action, but the door
man will have violated the company’s internal rule.

Consequently, we have modified Shanahan’s definitional axioms (for Clipped and
Declipped predicates) and principles (for HoldsAt and ‘Ho Ids At predicates) by in
cluding the performing party as an input parameter and the notions of institutional
ized power, permission and practical ability. For instance, the Clipped and HoldsAt
predicates are now defined as follows (the other two axioms change accordingly):

Clipped(timel,fluent, time 2)=3agent, action, time [Happens(agent,action, time)
Atimel<time<time2/\Terminates(agentfluent,time2)

AHoldsAt(Valid(agent, action), time)]

and

HoldsAt(fluent,time2)<—[Happens (agent,action, time l)/\Initiates(actionfluent, time 1)
Atime l<time2 A'Clipped(lime 1 fluent,time2)

AHoldsAt(Valid (agent, action), time)]

Now, the HoldsAt predicate means that fluent is true at time2 if action occurred by a
legally empowered and practically able agent at an earlier time point time l, this ac
tion initiated fluent and the fluent has not been set to false during the interval between
time1 and time2.

During this work, we consider that initially all partiers are practically empowered
to perform actions in order to fulfil their obligations. We follow this approach be
cause practical inability mainly concerns exogenous parameters, such as the absence
of the product receiver or the lack of network/bank account or others in a similar
sense that cannot be predicted. In the same way, we treat permissions. According to
the common sense law of inertia, an agent is not permitted or is forbidden to perform
an action, only if there is an explicit predicate that supports it. Regardless of whether
this is the case or not, continuous checking of what is permitted or not cannot block
the effects of actions that have occurred, but it can only point out illegal actions.

On the other hand, the continuous verification procedure of what is valid and re
spectively what is legal is imperative. This is due to the fact that invalid actions can
not affect the state of a transaction. As a result, we are only concerned with actions
that can affect the current state of the electronic institution, and those actions are the
ones that are valid irrespectively of whether they are legal or illegal.

3.2 Contrary to Duty Structures

Another point worth mentioning concerns the so called Contrary-To-Duty structures
(CTDs) [24], CTDs arise when a primary obligation is defined for a party, along with
a rule that determines a secondary obligation for it, should the primary one be vio
lated. For instance, in our example, the WA is obliged to deliver within 10 days from
the date the RA’s order is placed. If it does not do so, then it is obliged to deliver
within the next 3 days and to claim a reduced price.

9

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

HoldsAt(Obligation(agentl, agent2, raction, time 3), time 2)
A'HoldsAt(Obligation(agent],agent2,action, time 1), time 2)

*—[HoldsAt(Obligation(agentl,agent2,action,time 1),time 1)
/\ -^Happens (agent 1, action, time)

Atime<timel<time2<time3
/\HoldsAt (Valid(agent 1, action), time)]

The CTD axiom states that, if agent 1 had an obligation to perform action up to a
specific time point and, furthermore, this action was valid in the sense that the agent
had the legal and practical ability to perform it, in order to meet its obligation, but it
was not performed till the deadline, then this obligation ceases to hold and a new
obligation, holds.

We should note, that during this work it is not our purpose to analyse all possible
cases of CTD structures as presented in [24]. We do not address matters relating to
the persistence of norms or indeed periodicity. We assume that when primary obliga
tions are violated, some reparation action (raction) may be specified, for instance
reparation delivery (RADelivery) and reparation payment (RAPayment).

Another point worth mentioning is that the notions of legal and practical power to
perform an action have a key role in CTD structures. For instance, during the case of
a contract violation from an agent that was not empowered to perform the obligatory
action the contract representation formalism should provide an alternative reparation
taking into account the fact that the agent was not able to meet its obligations. Similar
to the previous case, we consider all possible cases under the term of reparation ac
tion (raction% so the derived axiom follows the form shown below:

HoldsAt(Obligation(agentl, agent2, raction [time 3), time 2)
λ AIoldsAt(Obligation(agentl,agent2,action,timel),time2)

*-[HoldsAt(Obligation(agentl,agent2, action, time 1), timel)
λ -'Happens (agent 1, action, time)

Atime<timel<time2<time3
A~^HoldsAt(Valid(agentl, action), time)]

As can be observed, we may reformulate the two CTD axioms in one that is
shorter and more general than the initial ones. We do not use such a shorthand, be
cause by using two separate axioms we may distinguish explicitly between repara
tions that arise due to deviations from prescribed behaviour as a result of the lack of
practical or institutional ability, and reparations that arise as a result of violations that
occur due to other reasons.

3.4 Contract Representation Language

Based on what were mentioned so far, we are able to derive an EC-based contract
representation first order language LA (FOL) that consists of well-formed formulae
(wff) over an alphabet A. The alphabet A consists of variables denoted by lowercase

10

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

letters such as action,fluent,time,agent,..., primitive predicates denoted with initial
capital letters as the ones shown in the following list:
• Initiates(action fluent, time), denoting that fluent starts to hold after action occurs at

timet.
• Term 'mates(actionfluent, time), denoting that fluent stops to hold after action oc

curs at time.
• HoldsAt(fluent,time), denoting that fluent holds at time.
• Happens (agent, action, time), denoting that instantaneous action action is being

occurred by agent at time.
• Clipped(timel fluent, time2), denoting that fluent is terminated between time points

time1 and time2.
• Declipped(time 1 fluent, time2), denoting that fluent is activated between time points

time I and time2.
• AOrder(agentl,agent2), denoting that agentl orders form agent2.
• ADelivery(agentl,agent2), denoting that agentl delivers to agent2.
• APayment(agentl,agent2), denoting that agentl pays agent2.
• Order(agentl,agent2), denoting that agentl ordered form agent2.
• Delivery (agent l,agent2), denoting that agentl delivered to agent2.
• Payment(agentl,agent2), denoting that agentl paid agent2.
• Obligation(agentl,agent2,action,time), denoting that agentl is obliged against

agent2 to perform action until time.
• Permission(agent,action), denoting that agent is permitted to perform action.
• Forbiddance(agent,action), denoting that agent is prohibited to perform action.
• PAbility (agent,action), denoting that agent is practically empowered/has the physi

cal power to perform action.
• IPower(agent,action), denoting that agent is institutionalized empowered/has the

institutionalized power to perform action.
• Possible (agent, action), denoting that action is performable by agent.
• Valid(agent,action), denoting that action is concerned as valid when performed by

agent.
• Legal(agent,action), denoting that action is concerned as legal when performed by

agent.
and constants such as RA, WA,... for agents and T,T1,T2,... for time points. Moreover,
it consists of logical constants such as -> for classical negation, λ for conjunction, v
for disjunction and <— for implication.

A variation of the simple EC, enhanced with new predicates that specify new do
main dependent defmitions/axioms and new domain independent axioms, is finally
adjusted as follows:

Clipped(timel,fluent, time 2)=Paction, time [Happens (agent, action, time) ^
Atime I <time<time2 ATerminates(agent,fluent,time 2)

/\HoldsAt(Valid(agent, action), time)]

Declipped(time 1,fluent, time2)=Paction, time [Happens(action, time) ^
Atime 1< time<time2Alnitiates(agent,fluent, time 2)

11

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

AHoldsAt(Valid(agent, action), time)]

Possible(agent, action, time)=
HoldsAt(Possible (agent, action), time)=

Ehgent, action, time[HoldsAt(PAbility (agent, action), time)]

Valid(agent, action, time)=
HoldsA t(Valid(agent, action), time)=

Eiagent, action, time[HoldsAt(IPower(agent, action), time)
aHο Ids A t(P ability (agent, action), time)

Legal(agent,action,time)=
HoldsAt(Legal(agent, action), time)=

Eiagent,action,time[HoldsAt(Valid(agent,action),time)
λ~· (HoldsAt(~Permission(agent,action),time)) v

HoldsAt(Forbiddance(agent, action), time))]

timel<time2

HoldsAtfluent, time 2)
[Happens (agent, action, time 1) Alnitiates(actionfluent, time 1)

Atimel<time2A-^Clipped(timel,fluent,time 2)
AHoldsAt(Valid(agent, action), time 1)]

HoldsAtfluent, time 2)
<—[Happens(agent, action, time l)ATerminates(action,fluent, time 1)

Atimel <time2A^Declipped(time 1 fluent, time2)
AHoldsAt(Valid(agent, action), time 1)]

HoldsAt(Obligation(agentl,agent2,raction,time3),time2)
A^HoldsAt(Obligation(agenti,agent2,action, time 1), time 2)

<—[HoldsAt(Obligation(agentl,agent2,action, time 1), time 1)
aHIappens(agent I, action, time)

Atime<timel <time2<time3
AHoldsAt(Valid (agent 1, action), time)]

HoldsAt fluent,time2)*—[HoldsAtfluent, time 1)
Atime I <time2A^Clipped(time I fluent, time 2)]

HoldsAt fluent,time2)*—[HoldsAt fluent, time 1)
Mime 1 <time2A~^Declipped(time 1,fluent, time2)J

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

Axioms (1) - (5) are definitional ones, which determine the effects of actions on
fluents or on the overall institutionalized framework. Axioms (7) and (8) correspond
to direct effects of occurring events and thus the shifting from one state to the other.
Axiom (9) is a contrary to duty structure that reassigns obligations to contractual
parties. Axioms (10) and (11) express the common sense law of inertia, expressing
the persistence of fluents during the absence of events that influence their values.

3.5 Comments

A representation in Event Calculus, allows us to establish what each party is obliged
(or permitted, forbidden, empowered) to do at a given time point. It also allows us to
determine whether each party complies with the agreement, and what, if any, repara-
tory mechanisms are stipulated, should violations arise. This may be achieved
through appropriate queries on the HoldsAt predicate. We may, also, spot potential
conflicts, for example if such a query returns that a particular agent is both obliged
and forbidden to perform a specific action at the same time.

What we cannot do is reason based on incomplete and partial knowledge, or based
on assumptions and, moreover to retract previous conclusions in the presence of new
knowledge. For example, in the absence of explicit knowledge about legal or practi
cal ability, permission or prohibition to perform actions or even changes in the world,
parties may assume that the optimal (for them) conditions hold, during the contract
performance phase, and plan their actions accordingly. But later in the presence of
new information, parties should be able to update their beliefs and retract previous
conclusions. For instance, suppose we are the RA agent. In the absence of knowledge
to the contrary, at a given time point, we may assume that CA is able to deliver goods
on time, and based on this, we may infer the exact time point our obligation to pay
will be in force. Suppose that later on, we find out that CA cannot deliver because
nobody (on our part) was present to take the delivery. This new fact should change
our view of the world, and any inferences we made so far. Also, although we may
spot potential conflicts, by examining what normative propositions hold at a given
state, we have no way to resolve them dynamically. We now turn our attention to
these issues.

4 Defeasible Reasoning with e-Contracts

Defeasible reasoning allows for non-monotonic, inference with incomplete/uncertain
knowledge based on assumptions and, when enhanced with priorities, conflict man
agement. In this section, we describe a mapping from the EC representation to default
rules, where we adopt Reiter’s Default Logic (DfL) [25] and Brewka’s priority set
tlement between default rules [5, 6].

A default rule has the form:

13

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

where P is the prerequisite, J~{JhJ2,·· J„) is a set of justifications and C is the de
rived consequent. The semantics of this inference rule is: If P holds and the assump
tion J is consistent with our current knowledge, then C may be inferred. Defaults of
the form P:C/C are called normal. A Default Theory (DfT) is a pair of the form
(D,W), where W is a set of closed wffs that hold, and are called as background
knowledge, while D is a set of defaults. A rule is applicable to a set of formulae EczW
if and only if P eE and -1I„gE [25]. In this case, the set E is called extension of
the default theory. Extensions are the most complicated concept of Reiter’s default
theory because it is hard to determine an accurate belief set for which justifications
should be consistent. In Reiter’s initial paper for DfL [25] three important properties
of extensions were referred. In particular, an extension A of a default theory (D, W):
(i) should contain W,
(ii) should be deductively closed and
(iii) for a default rule of the form P: JhJ2,... Jn / C, if P eE and -\Jh..., -J„ 0E then

C eE.
In this work we consider a grounded DfT, that is a theory where defaults contain no
free variables and we derive extensions in the manner presented in [2],

4.1 Translation Schema

We may map our EC representation onto default rules. The specific mapping depends
on what information is available in the knowledge base about a particular domain.
For example, the definition of the HoldsAt/2 predicate may correspond to the follow
ing default:

Initiates (action,fluent, timel),

time1 < time2,
Happensfa&nt,action,time!) i

—Clipped(timel, fluent, time2),
HoldsAt(Valid(agent,action), timel)

HoldsAt(fiient,time2)

It may also be seen as the following default rule:

timel < time2.
Happens (agent, action, tim el)

I —iClipped(timel, fluent, time2),
f\lnitiates(action, fluent,timel)

HoldsAt(Valid(agent,action),timel),
HoldsAtffluent, time 2)

or even as :

14

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

Happens (aypnt, action,tim el)

λ Initiates(action,fluent,timel) :
λ —Clipped(tmel, fluent,time2)

timel<time2,
IloldsAt(Valid(agent,action),time I)

HoldsAt(flient,time2)

A fourth possibility is to view it as a normal default, that is:

Happens (dgnt,actionfim el) a timel< time2
λ Ini dates faction Jlu entpmel)

a —Clipped(tmel,fluentJ;ime2)

/\HoldsAt(Valid(agentflction)}imel)

: HoldsAt(fluent,time2)

HoldsAt(fluent,time2)

Knowledge that we want to be proved from the knowledge base is mapped to the
prerequisites part of the default rule, while knowledge that is absent from the knowl
edge base and may be assumed is mapped to the justifications part of the default rule.
The mapping to normal defaults is, of course, stricter. We are currently investigating
ways in which the mapping from the EC representation to defaults may be
(semi)automated.

Before mentioning the reasoning approaches and their applications, we should de
fine a DfT for the contract domain in respect with the LA language presented in sec
tion 3. Thus, a default contract theory is a pair of (D,W) where W is a set of FOL facts
and strict if-then rules and D is a set of default rules. We consider three classes of
default rules in respect with their use. The first one is default rules as presented in
Reiter’s initial work and above. The second class are again strict rules that do not
belong in the belief set W, but m the D set. Default strict rules can be represented as
justification-free defaults of the form P: /C. Finally the third class is the so called
priority rules. Priority rule comes to enhance the default theory with priorities that
stand among classical defaults. Brewka in [5, 6] first introduced Prioritised Default
Logic and we follow some of those early ideas in order to provide dynamic priori
tized conflict management to our contractual domain as shown below.

To sum up, the proposed default contract theory contains:
• Facts as presented in the EC formalism. For example: Holds(Order(RA, WA),T)
• Strict rules, also in respect with the EC language and represented either as predi

cate logic implication rules or as DfL justification-free defaults. It is worth noting
that retractable reasoning is not possible in the first case.

• Default rules as presented above.
• Priority rules whose conclusion is a priority relation that stands among defaults as

noted below. Priority rules can be formulated either as strict rules or as defaults.
We should also note down that exceptions, as they were described in section 3, can

be easily and expressively represented as default rules with justifications. For exam
ple, we can enhance axiom (7) with a justification to represent the agent’s permission
(or forbiddance) to perform an action.

15

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

Initiates (action, fluent, time 1),

timel < time2,

Happens(agent,action,timel) l -,Clipped(timel, fluent, time2),

HoldsA t(Vdid (agent, action), timel),

HoldsAt(Permission(agent,action),timel)
HoldsA t (fluent, time 2)

4.2 Deductive Reasoning

DfL enables us to reason with incomplete knowledge, by deriving conclusions that
are based on consistent assumptions, which may be retracted later, in the presence of
new information. There are two approaches to perform such inference. In the first
one, the sceptical reasoning, a formula is entailed by a default theory, if it is derived
by all its extensions. This is a strict approach and requires the computation of all
possible extensions and subsequent check to determine if a formula belongs in all of
them. We may adopt this approach to implement a planning and advisory tool that
could be used during the contract formation phase. In the second approach, the credu
lous reasoning, a formula is entailed by a default theory, if it is derived by at least one
extension. Such an approach might be useful to implement a ‘what-to-do-next’ tool,
which could be used during the contract enforcement phase, to support decision
making when violations or conflicting obligations arise. We adopt the operational
definition of extensions of [2], as explained below, which uses Reiter’s original defi
nition of extensions and derives them by maintaining sets of formulae.

Given a closed DfT (W,D) and considering a finite or infinite set of defaults
DS=(DR1, DR2,...) from D extensions are easily derived by formulating two sets.
The first one, denoted as In(DS), is populated by what was initially believed and
everything that is concluded when adding a new default in the DS set. We should
note that a default can only be applied once. The second set, denoted as Out(DS), is
populated with formulae that were assumed to be false (the negation of justifications
formulae) and that finally should not turn out to be true. According to this approach
the set In(DS) is an extension of the default theory iff DS is successfotl and closed.
The two properties of the DS set are defined as follows: DS is successful iff In(DS)
and Out(DS) have no formula in common (In(DS)C\Out(DS) =0), while DS is closed
iff every applicable default of the default theory already occurs in DS.

For example, consider the default theory (W,D) with:

W= {-HoldsAt(Order(RA, WA), TO), Happens(RA,AOrder(RA, WA),T), T0<T}

and D includes the following closed defaults (DR1, DR2, DR3 respectively):

16

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

Happens (RA, AOrder(RA, WA), T)

T0<T<T1<TX

Initiates(AOrder(RA,WA),Obligation(WA,RA,ADelivery(WA,RA),T3),T),

—Clipped(T, Obligation(WA,RA, ADelivery(WA,RA), T3),

HoldsAt(Valid(RA,AOrder(RA,WA)),T)_______________
HoldsAt(Obligation(WA, RA, ADelivery(WA, RA),T1)

Happens (RA,AOrder(RA, WA),T)

•

Initates(AOrder(RA, WA), Causes(AOrder(RA, WA), AOrder(WA,CA)), T),
_______________HoldsAt(Valid(RA, AOrder(RA, WA)),T)_______________

HoldsA t(Ca uses(AOrder(RA, WA), A Order(WA, CA)), T)

Happens (RA, AOrder(RA, WA), T)

λ HoldsAt(Causes(AOrder(RA, WA),AOrder(WA,CA)), T)

HoldsAt(Valid(RA, AOrder(RA, WA)), T),

HoldsAt(Valid(WA, AOrder(WA, CA)), T)
Happens (WA,AOrder(WA,CA),T)

For the purposes of illustration we use a special predicate called Causes/2. The for
mulae Causes(actionl,action2) denotes that the occurrence of action1 causes action2
to occur or in other words that action2 is being caused by action1.

DS {DR1}, DS={DR2}, DS={DR1, DR2} or DS={DR2, DR3} are successful but
not closed because (DR2, DR3), (DR3, DR1), (DR3) and (DR1), respectively, are also
applicable. DS={DR1, DR2, DR3} is closed and successful and therefore it may be
considered as an extension. Moreover, consider that the above default theory is en
hanced with the normal default DR4:

true : -,HoldsAt(Valid(WA,AOrder(WA,CA)),T)
—iHoldsAt(Valid(WA,AOrder(WA,CA)),T)

In this case if DR4 applies before DR2 or DR3 then its consequent
^HoldsAt(Valid(WA,AOrder(WA,CA)),T) will block the firing of DR3. Although a
causal relation holds and consequently an indirect event should fire this specific ex
ception blocks its occurrence.

17

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

4.3 Abductive Reasoning

DfL can also be used for abductive reasoning and serve as the basis for a tool that
explains the factual and normative propositions that hold at various contractual states.
The problem takes the form: given a formula F and a default theory (W,D), can we
prove that F can be explained? Reiter proposed an algorithm for this kind of (back
ward) reasoning, based on linear resolution [25], which is also discussed in detail in
Poole [23],

Consequently, we only point out the outlines of abduction using closed normal de
faults. What we really search for is a set DS c:D such that from Wucons(D) we may
imply F, where cons(DS) is the set of consequents of all rules that are present in DS.
The algorithm, in short, for proving that formula F is valid is:

• put ~'F in a form where only disjunction relations exists and derive a finite set
of literals representing those disjunctions (for example, from the AaB formula
by applying De Morgan’s law comes up Αν~Έ that is equal to the set {A, ^B})

• take a set of clauses C in conjunction normal form (CNF) which results form
the W^com(D) set and apply linear resolution

• repeat the same procedure trying to explain the preconditions of each default
that were used in the proof

• if eventually we get ± (refutation) and Wucons(D) is consistent that means that
is not satisfied, or in other words that F is valid; otherwise F is not valid

Consider, now the example shown in the previous section on deductive reasoning
and reformulate all defaults to turn out as normal defaults. Can we explain Hap-
pens(WA,AOrder(WA,CA),T) from the default theory (W,D), where
W= {-Ho Ids At (Order (RA, WA), TO), IIappens(RA,AOrder(RA, WA). T), T0<T, ...all
other formulae related with, validness and value’s initiation/persistence...) and
D={DR1,DR2,DR3} in their normal form? In this case
FHIappens(WA,AOrder(WA,CA), T) and C={-HoldsAt(Order(RA,WA), TO), Hap-

pens(RA,AOrder(RA,WA),T), T0<T, ...all other formulae related with, validness and
value’s initiation/per si stence..., {HoldsAt(Obligation(WA,RA,ADelivery(WA,RA),
T3),T1),DR1}, {Holds(Causes(AOrder(RA,WA),AOrder(WA,CA)),T),DR2}, {Hap-
pens(WA,AOrder(WA,CA),T),DR3}}. By applying linear resolution in order to prove F
we have that Wucons(DRl,DR2,DR3) and WLA?ons(DR2,DR3) are two possible sets
that are consistent and proofs for Happens(WA,AOrder(li'A,CA), T).

4.4 Conflict Detection

We are interested in developing a mechanism that may facilitate agents to deal with
conflicts that may arise during a business transaction, i.e. to detect them and, if possi
ble, to resolve them.

An agent faces a potential conflict if the transaction is in a state, where contradic
tory normative propositions hold. For instance consider a state, where two proposi
tions of the following form hold:

HoldsAt(Obligation(agentl, agent2,action,time2),time 1)

18

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

HoldsAt(~Obligation(agentl, agent2,action, time3), time 1)

During the interval AT=[timel ,mm(time2,time3)\, the agent cannot decide whether
to satisfy the norm stipulated by the first proposition and do the action that is obli
gated or to behave in accordance with the second norm, which essentially permits it
either to do action or not to do action (and do something else) or to remain idle.

Another case where an agent faces a potential conflict is where the transaction is in
a state where two propositions of the following form hold:

HoldsAt(Obligation(agentl, agent2, action, time2), time 1)

HoldsAt(Obligation(agentl, agent2, ^action,time3),time 1)

During the interval AT, the agent faces the dilemma whether to do action or to do
action; we do not make, at present, any attempt to characterize formally what is

meant by “negative action”, and treat informally such an expression as meaning “not
doing action but doing something else instead, or doing nothing”.

A third possibility for an agent to face a conflict is where two propositions of the
following are true in a state:

HoldsAt(Obligation(agentl, agent2,action,time2),time 1)

HoldsAt(Obligation(agentl, agent3,action',time3),time 1)

Here agentl bears two obligations (possibly for two distinct actions) towards two
distinct agents. Assuming that no parallel action is allowed, during the interval AT the
agent cannot decide which to fulfill.

There are, of course, other ways in which conflicts may arise, but we do not dis
cuss this issue here any further. What we want to focus on, instead, is how such con
flicts may be detected.

A DfL representation of contracts, such as the one we propose, allows us to detect
conflicts by examining extensions, which are essentially set of propositions. In gen
eral, a potential conflict arises when there are multiple extensions of a default theory
that represents a contract, and one of them contains a proposition that conflicts with a
proposition contained in another; let us call these inter-extension conflicts. Conflicts
may also arise even when there is a single extension of the default theory, if it con
tains conflicting propositions; let us call these intra-extension conflicts.

The detection of inter-extension conflicts is useful for an agent, which finds itself
in a state that is not, yet, problematic, and has alternative courses of action to con
sider. The agent must decide upon a specific course of action - some way of prevent
ing the potential conflicts from ever arising is required. The detection of intra
extension conflicts, on the other hand, essentially informs the agent that it is, already,
in a problematic state. Again the agent needs a way to resolve the conflict and decide
which norm to satisfy in a way that minimizes the damage done - since, unavoidably,
some norm will be violated.

19

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

In the next section we propose a unified way for conflict prevention and conflict
resolution.

4.5 Conflict Management: Prevention and Resolution

In [5, 6], Brewka proposes a Prioritised Default Theory (PDfT) that enables us to
define and apply priorities on default rules dynamically. A PDfT is a triple
(W,D,name), where name is a function that assigns names to default rules D. The
extension of a PDfT is derived in the same way as in a DfT.

What makes PDfTs really useful is that we may reconsider the priorities of the de
fault mles, when new conclusions are derived as a result of a rule firing. Using dy
namic priorities, we generate preferred extensions, where each extension indicates a
transaction plan. Priorities amongst ground defaults may be defined dynamically by
specifying domain-dependent conditions of interest.

The general pattern for ascribing priorities dynamically takes the form of a default
rule:

prule(d" ,[d,d'J,v) =
rule(d, v) λ rule(d' ,v)
λ HoldsAt(co ndition(v), time)

HoldsAt(d < d' ,time)

HoldsAt(d <d', time)

Here d, d\ d" are variables that denote names of ground defaults; prule(d",[d,d],v)
is a label denoting a priority-assignment default rale d", which is applied on the de
faults d, d' and prioritizes them based on some condition that is checked for some set
of entities of interest v, rule(d,v) denotes a ground default d and its set of entities of
interest v. The intended interpretation of this rale is: if two defaults d and d' apply and
some criterion is satisfied at time then d takes priority over d' from that time onwards,
if this may be consistently assumed.

In this manner, we may manage conflicts in a variety of ways, by specifying dif
ferent criteria (e g. obligations should be satisfied in the order in which they arise; or
obligations towards specific agents should be satisfied first etc). We should note that,
we treat priorities between defaults as fluents, because priority assignment is driven
by criteria and these may themselves be event-driven. Where some criterion is event-
independent (e.g. ordering of time points) it need not be treated as a fluent. The fol
lowing examples illustrate these points.

In the first example, assume that we have two retailers RA and RA' that order
goods from the same wholesaler WA, but at different time points (T<T'<T1). Conse
quently, from the WA’s perspective, at state SI (time point 77) two obligations for
delivery hold. Suppose that only one action may be performed at any given time. In
this case, the CA agent (who is commissioned by the WA) has two conflicting obliga
tions to satisfy and two default extensions are derived (E and E' respectively). An
inter-extension conflict arises:

20

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

rule(DRlT) =

Happens(RA,AOrder(RAWA),T)λT <T1 <T3
λ Initiates(iOrder(RAJVA),

Obi igation(CA, WA, ADe livery (CA,RA),T3), T)
λ —iClipped(T,Obligation(CA,WA,ADelivery(CA,RA),T3),T1)

λ HoldsAt(Valid(RA,AOrder(RAfVA)),T)

HoldsAt(Obligation(CA,WA,ADelivery(CA,RA),T3),Tl)
HoldsAt(Obligation(CA,WA,ADelivery(CA,RA),T3),Tl)

and

rule(DR2,T) =

Happens(RA', AOrderfRA',WA),T')/\T'< ΤΙ < T3
λ Initiates(AOrder(RA', WA),

Obligation(CA,WA, ADe livery (CA,RA'),T3), T)
λ —Clipped(TPbligation(CA,WA,ADelivery(CA,RA'),T3),T1)

λ HoldsAt(Valid(RA' ,AOrder(RAWA)),T')

HoldsAt(Obligation(CA,WA,ADelivery(CA,RA'),T3),T1)
HoldsAt(Obligation(CA,WA,ADelivery(CA,RA'),T3),T1)

Now, suppose that we use the following normal default rule (PR1) to assign time-
based priorities:

rule(dr, time) λ rule(dr' ,time')
λ time < time'

HoldsAt(dr < dr', time')

HoldsAt(dr < dr',time')

This rule gives priority to DR I over DR2 and consequently E is the preferred exten
sion. The effect is that obligations are met in the order in which they arise.

In the second example, assume that the carrier agent did not deliver goods to any
of the two ordering agents for some reason. In this case two rules apply. The two
potential extensions contain conflicting obligations. According to (PR1), E is again
the preferred extension. But, what would happen, if we had in our initial knowledge
base a strict rale (PR2) such as the following:

HoldsAt(dr'<dr,time') <— HoldsAt (PC (agent'), time')

λ rule (dr, agent) λ rule (dr', agent')

21

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

This rule defines a priority between defaults based on specific information, in this
case, that some specific agent is a privileged customer (PC(agent)). In this case, the
previous default rule (PR 1) that led to extension E is not applicable, because inconsis
tency with the consequent of the new rule arises. So, according to (PR2) the preferred
extension is E', and the business transaction will follow an alternative course than the
one chosen before.

5 Related Work

There are many research attempts that were based on Event Calculus as a tempo
ral formalism to represent and reason about actions and states of contractual agree
ments and normative systems. In [18] an analysis of certain temporal aspects of law
was presented. This work was mainly concerned with the distinction of the so called
internal and external time of legal norms. Also an extension of the EC was proposed
in order to overcome some of its limitations. Artikis et al in [3] introduce a represen
tation in EC of open computational agent societies. This work is concerned with no
tions of computational systems, such as social constraints, roles and states, and of
normative social systems, such as institutionalized power, obligation and permission.
Also a society visualiser was presented that executes a variation of the Contract Net
Protocol (CNP). Farrell et al in [9] proposed an EC representation of contracts to
support automatic state tracking of normative states. Obligation, permission and insti
tutionalized power are the main normative concepts this works concerns with. In
order to describe the effects, on normative states, of the events that occur during the
transaction, an ecXML representation based on the XML version of the EC was also
introduced. In [15] a simple EC representation of contracts was presented. The repre
sentation was considered in the Belief-Desire-Intention (BDI) architecture and deals
with two types of contract’s, short and long contracts, monitoring and execution.
Contracts violations are being overcome by associating meta-information with them.
This fact enabled agents to solve potential violations and met their goals by outsourc
ing. Furthermore an agent architecture in the style of AgentSpeak(L) was also de
scribed. Those approaches do not, however, address defeasible reasoning.

There are three approaches to defeasible reasoning with e-contracts, besides ours:
Grosofs [12], Govematori’s [11] and Paschke’s [22], Grosofs SweetDeal is based
on the SweetRules prototype. This work represents contract’s rules via Situated Cour
teous Logic Programs (SCLP) that is an extension of Ordinary Logic Programs (OLP)
with prioritized conflict handling and procedures to perform actions and queries on
contractual states. Mutual exclusion statements that were added in the knowledge
base support conflict detection while priorities statements appoint the resolving
mechanism. Govematori’s and Hoang’s DR-Contract architecture extends DR-Device
architecture [4] by using defeasible deontic logic of violations (DDLV). DDLV was
presented in [10] and combines deontic notions with defeasibility and violations.
Based on Nute’s Defeasible Logic theory [21], four kinds of knowledge are adopted:
facts; strict rules; defeasible rules, i.e., rules that can be defeated by other mles; supe
riority relation that defines priority among mles. A special kind of operator was also

22

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

introduced in order to represent CTD structures. ContractLog, introduced by Paschke
et al, addresses a special kind of contracts called Service Level Agreements (SLAs).
Those are agreements that mainly contain provisions for maintaining service quality.
This approach combines various theoretical approaches and finally proposes a formal
representation for contractual agreements together with monitoring and enforcement
tools. Specifically, an SLA is represented by Event-Condition-Action (ECA) rules
that were enhanced with predicates from EC, for reasoning about actions and their
effects, and other predicates for deontic notions. A special kind of ECA rule was also
introduced in order to represent CTD structures. Moreover, three types of conflicts
were defined: authorization, obligation and application specific conflicts. Conflict
resolution was addressed i) with the adoption of the four basic types of knowledge as
were proposed in Nute’s Defeasible Logic theory and by defining static priorities
among rules and furthermore ii) by considering conditional mutexes as were proposed
in Grosof s Generalized Courteous Logic Programs (GCLP). ContractLog were im
plemented based on Mandarax rule engine and the Prova language extension and
supports both deductive and abductive reasoning. All three approaches propose a
mapping of their normative rules formalism on RuleML (XML) in order to integrate
their frameworks with Semantic Web Technology.

Of the three approaches, only ContractLog allows for temporal reasoning. More
over, in all three, the priorities used to resolve conflicts are statically defined. Finally
it is not clear, in all three, whether and how abductive inference may be supported.

6 Conclusions and Future Work

In this report an EC contract representation and a defeasible reasoning approach for
multi-party contractual agreements were presented. The proposed EC formalism gives
us the ability to reason about actions and their effects and about normative proposi
tions that may get activated on potential states of the transaction as the outcome of the
occurring events. DfL, the logic formulation for defeasible reasoning, gives us the
ability to make retractable decisions based on assumptions and also helps us to ex
plain normative relations that are observed on different contractual states. EC and
DfL were related by the proposed mapping schema from the initial form of rules into
default rules. Defaults were also enhanced with priorities that modulate a dynamic
decision taking mechanism. Moreover, our approach considers conflicts between
contractual normative propositions and proposes a conflict management framework
that is based on priority settlement and the above mentioned dynamic and defeasible
decision making mechanism.

We are currently investigating (i) how conflicts may be more precisely character
ized; and (ii) how the translation from EC to DfL may be (semi)automated. We also
want to examine in detail how our approach, which uses Reiter’s Default Logic, com
pares with those that are based on Nute’s Defeasible Logic. Finally, we plan the de
velopment of a tool, which may be integrated with Semantic Web technologies.

23

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

Acknowledgments

This work was supported by the European Social Fund (75%) and the Greek Secre
tariat for Research and Technology (25%) through the 3rd Community Support Pro
gramme - Measure 8.3 (ΡΕΝΕ02003-03ΕΔ466).

References

[1] Tom Allen and Robin Widdison. Can computers make contracts? Harvard Jour
nal of Law and Technology, 9(1), 1996.

[2] Grigoris Antoniou. A tutorial on default logics. ACM Computer Surveys,
31(4):337-359, 1999.

[3] Alexander Artikis, Jeremy Pitt, and Marek J. Sergot. Animated specifications of
computational societies. InAAMAS, pages 1053-1061. ACM, 2002.

[4] Nick Bassiliades, Grigoris Antoniou, and Ioannis P. Vlahavas. DR-Device: A
defeasible logic system for the semantic web. In Hans Jorgen Ohlbach and
Sebastian Schaffert, editors, PPSWR, volume 3208 of Lecture Notes in Com
puter Science, pages 134-148. Springer, 2004.

[5] Gerhard Brewka. Reasoning about priorities in default logic. In AAAI, pages
940-945, 1994.

[6] Gerhard Brewka and Thomas Eiter. Prioritizing default logic. In InteHectics and
Computational Logic, Papers in Honor of Wolfgang Bibel, Applied Logic Series
19, pages 27-45. Kluwer Academic, 2000.

[7] Brian F. Chellas. Modal Logic: An Introduction. Cambridge University Press,
1980.

[8] Aspassia Daskalopulu. Modeling legal contracts as processes. In Legal Informa
tion Systems Applications, 11th International Workshop on Database and Ex
pert Systems Applications (DEXA'00), pages 1074-1079. IEEE Computer Soci
ety, 2000.

[9] Andrew D. H. Farrell, Marek J. Sergot, Mathias Salle, and Claudio Bartolini.
Using the event calculus for tracking the normative state of contracts. Int. J. Co
operative Inf. Syst., 14(2-3):99-129, 2005.

[10] Guido Govematori. Representing business contracts in RuleML. Int. J. Coop
erative Inf. Syst., 14(2-3): 181—216, 2005.

[11] Guido Govematori and Duy Hoang. A semantic web based architecture for e-
contracts in defeasible logic. In RuleML, pages 145-159, 2005.

[12] Benjamin N. Grosof. Representing e-commerce rules via situated courteous
logic programs in RuleML. Electronic Commerce Research and Applications,
3(l):2-20, 2004.

[13] Johnlbbotson and Marty Sachs. Electronic trading partner agreement for e-
commerce. Technical report, IBM Corporation, 1999.

24

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

[14] Andrew J.I. Jones and Marek J. Sergot. A formal characterisation of institution
alised power. Journal of the IGPL, 4(3):427—443,1996.

[15] John Knottenbelt and Keith Clark. Contract-related agents. In Francesca Toni
and Paolo Torroni, editors, CUMA VI, volume 3900 of Lecture Notes in Com
puter Science, pages 226-242. Springer, 2005.

[16] Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events. New
Generation Comput., 4(l):67-95, 1986.

[17] David Makinson. On the formal representation of rights relations. Journal of
Philosophical Logic, 15(4):403-425, 1986.

[18] Rafael Hernandez Marin and Giovanni Sartor. Time and norms: a formalisation
in the event-calculus. In ICAIL, pages 90-99, 1999.

[19] Michael Merz, Frank Griffel, M. Tuan Tu, Stefan Moller-Wilken, Harald Wein-
reich, Marko Boger, and Winfried Lamersdorf. Supporting electronic commerce
transactions with contracting services. Int. J. Cooperative Inf Syst., 7(4):249-
274, 1998.

[20] Rob Miller and Murray Shanahan. The event calculus in classical logic - alterna
tive axiomatisations. Electron. Trans. Artif. Intell, 3(A):77-105, 1999.

[21] Donald Nute. Defeasible logic. In Dov Gabbay, Christopher J. Hogger, and J. A.
Robinson, editors. Handbook of Logic in Artificial Intelligence and Logic Pro
gramming, Nonmonotonic Reasoning and Uncertain Reasoning, volume 3,
pages 353-395. Oxford University Press, 1994.

[22] Adrian Paschke, Martin Bichler, and Jens Dietrich. ContractLog: An approach
to rule based monitoring and execution of service level agreements. In RuleML,
pages 209-217,2005.

[23] David Poole. Default logic. In Dov Gabbay, Christopher J. Hogger, and J. A.
Robinson, editors. Handbook of Logic in Artificial Intelligence and Logic Pro
gramming, Nonmonotonic Reasoning and Uncertain Reasoning, volume 3,
pages 189-215. Oxford University Press, Oxford, 1994.

[24] Henry Prakken and Marek J. Sergot. Contrary-to-duty obligations. Studia
Logica, 57(1):91—115, 1996.

[25] Raymond Reiter. A logic for default reasoning. Artif. IntelI, 13(1-2):81—132,
1980.

[26] Murray Shanahan. The event calculus explained. In Artificial Intelligence To
day, pages 409-430. 1999.

[27] Georg H. von Wright. Deontic logic. Mind, Oxford University Press, 60:1-15,
1951.

25

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

ΠΑΝΕΠΙΣΤΗΜΙΟ
ΘΕΣΣΑΛΙΑΣ

004000074973

Institutional Repository - Library & Information Centre - University of Thessaly
08/12/2017 04:35:43 EET - 137.108.70.7

