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Essays in Econometrics

Vitaliy Oryshchenko

Summary

This dissertation contributes to the theoretical understanding and practical applica-

tion of non- and semi-parametric methods in econometrics. It consists of three chapters.

The first chapter advocates the use of unsupervised statistical learning (clustering)

techniques to group observations from a series of repeated cross-sections to create a

pseudo-panel of group averages. This clustering method is based on features of the

data space and does not require external grouping variables unlike many other methods.

Using a model of enterprise training as an example, fixed effects panel data model is

estimated using a pseudo-panel of cluster centers.

Chapters 2 and 3 extend univariate kernel methods to the estimation of time-varying

distributions and densities subject to moment constraints.

Chapter 2 proposes a weighted kernel density estimator for a time-varying probability

density function and the corresponding cumulative distribution function. Time-varying

quantiles are estimated by inverting an estimate of the cumulative distribution function.

Weighting schemes are derived from those used in time series modelling. Parameters,

including the bandwidth, may be estimated by maximum likelihood or cross-validation.

Diagnostic checks are constructed based on residuals given by the predictive cumulative

distribution function.

Chapter 3 considers a set-up where additional information concerning the distribution

of random variables is available in the form of moment conditions. A weighted kernel

density estimate reflecting the extra information is constructed by replacing the uniform

weights associated with standard kernel density estimator by generalised empirical like-

lihood implied probabilities. This chapter shows that the resulting density estimator

provides an improved approximation to the moment conditions. Moreover, a reduction

in variance is achieved due to the systematic use of the extra moment information.

Journal of Economic Literature Codes: C14, C22, C23, C45, F21.
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Chapter 1

Effect of foreign direct investment

on training: Empirical evidence

from transition countries

This chapter discusses estimation of panel data models and inference with

pseudo-panels of group averages when the data is a series of repeated cross-

sections. Under certain conditions valid inference is possible with pseudo-panels

constructed by averaging individual observations in available cross-sections over

members of prespecified groups and treating the resulting data as a genuine panel.

In particular, consideration is given to methods of cluster analysis (unsupervised

learning) that can be used to group observations based on the features of the data

space and do not require external grouping variables.

The methods are applied to a model of enterprise training estimated using data

from two rounds of the Business Environment and Enterprise Performance Sur-

vey.
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1.1. Introduction

1.1 Introduction

The modern global economy transcends regional boundaries with the distinction between

national and global matters becoming increasingly fluid. The activities of multinational

enterprises (MNE)—a central characteristic of the new order—have changed the pattern

of international production and trade. These broad patterns of integration contrast with

the less fluid traits of national labour markets, in which labour mobility still remains

largely restricted. Analysts do not agree whether foreign firms create or deprive host

economies of their skilled labour (Teitel, 2005; Dore, 2001; Barba Navaretti and Venables,

2004). In particular, there is an intense debate about whether positive externalities em-

anating from foreign firms can spill over to indigenous businesses via learning, imitation

and other routes, with empirical results on spillovers being quite mixed (Blomström and

Kokko, 1998; Görg and Greenaway, 2001; Moran, Graham, and Blomström, 2005; Hu,

2004; Singh, 2004).

The possibility of knowledge spillovers from multinationals to indigenous enterprises

is tightly linked to the type of training offered to employees of those firms. Local enter-

prises may benefit from knowledge spillovers as trained employees move from foreign to

local firms or establish their own businesses. Both theoretical and empirical studies have

examined whether it is possible for a firm to extract a part of an increased marginal prod-

uct of trained workers which drives personnel training (Acemoglu and Pischke, 1998).

Several theoretical models have been proposed to explain why multinational enterprises

might have higher training incidence as compared with domestic companies (Campbell

and Vousden, 2003; Gersbach and Schmutzler, 2003; Fosfuri, Motta, and Ronde, 2001).

Relevant hypotheses derive from the idea that multinationals possess an advantageous

technology1 and, in the process of reallocating their production facilities into (predomi-

nantly low-wage) host countries, have to train local workers. The bulk of evidence from

empirical studies often documents higher training intensity in foreign-owned firms2.

This chapter offers a model of enterprise training based on both theoretical predictions

and results of earlier empirical studies. Section 1.2 discusses the choice of variables

included in the model. We hypothesize that there is a positive relationship between

foreign ownership and the amount of training provided by the firm.

The model is estimated using the Business Environment and Enterprise Performance

1This should be understood to include also managerial practices and ‘business culture’ which increases
general labour productivity.

2For instance, such evidence has been documented by Yadapadithaya (2001) for Indian firms, Walsh
(2001) for Australian and Parker and Coleman (1999) for the United Kingdom; Bangert and Poor (1993)
provide related evidence for Hungarian economy. See also Blomström and Kokko (2003) for an overview
of the relevant literature.
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Survey data which come as two independent cross-sections. Results of cross-sectional

analysis are presented in Appendix 1.A. However, it is likely that there are many firm

characteristics which influence both a firm’s decision to train and to attract foreign direct

investment (FDI) thus rendering cross-sectional estimates inconsistent.

Ideally, we would like to have access to a genuine panel dataset to be able to control

for the unobserved time-invariant heterogeneity by estimating a ‘fixed effects’ model. As

panel data in unavailable, we estimate the model with a pseudo-panel of group averages

constructed from the available series of repeated cross-sections (RCS). Section 1.3 reviews

existing methods of estimation with pseudo-panels of repeated cross-sections and section

1.4 presents estimation results with grouping variables constructed from available firm

characteristics.

Using RCS to identify parameters of a genuine panel data model does not come

without costs the most important of which is the need to find a grouping variable valid

in a sense to be discussed further. In many empirical papers studies concerned with

household survey data, the age of the head of household is typically chosen to serve as

such a variable. Whilst the age of an individual could be thought of as a reasonable proxy

to use as grouping variable, it is far harder to find such variables for models concerned

with firm survey data.

Group design is a critical issue for estimation with RCS; some of the problems are

discussed in section 1.4.1. However, if a grouping variable is not readily available, it may

be possible to identify groups based on features of the data space itself using unsuper-

vised statistical learning (clustering) techniques, nonparametric in nature. For example,

Cottrell and Gaubert (2007) applies Kohonen’s self-organising map (SOM) algorithm to

construct a pseudo-panel from several cross-sectional survey datasets.

The benefit of using clustering techniques is that no external grouping variable is

necessary. However, if there exist groups such that firms belonging to a same group

behave similarly, whereas firms belonging to different groups differ in their behaviour,

this should be reflected in observable firm characteristics. It may then be possible to

uncover the grouping based on those characteristics only.

Section 1.5 illustrates the use of k-means and SOM clustering techniques to construct

a pseudo-panel; a brief general overview of clustering methods is given in Appendix 1.B.

Pseudo-panel estimates are contrasted with those obtained using cross-sectional analysis.

The drawback of using clustering algorithms to construct pseudo-panels is that the

algorithms are often ‘black boxes’ in that little is known about their theoretical proper-

ties. This is particularly true about the SOM algorithm. Other limitations of classical

clustering algorithms are discussed in section 1.6 which concludes.
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1.2. The model of enterprise training

1.2 The model of enterprise training

The basic premise which drives studies of the relationship between training incidence

and firm ownership is the idea that multinational enterprises possess a certain advanta-

geous technology or other relevant information and use it to produce goods and services.

Thinking in terms of a formal model, multinationals want to sell their products in the

foreign market and, therefore, have to decide whether to export or to establish affiliates

in the foreign country via foreign direct investment. If chosen, FDI requires multinational

enterprises (MNEs) to transfer their technology to subsidiaries, being achieved in several

ways including oral communication and on-the-job training. Thus foreign-owned com-

panies should provide more training to their employees. A number of empirical studies

have verified this conjecture, documenting some evidence of a positive correlation be-

tween foreign ownership and training; see e.g. Blomström and Kokko (2003).

Along with empirical studies, several theoretical models have tried to explain firm

behavior regarding personnel training. These models normally emphasise the low quality

of the labour force in the target country and the competitive environment both at the

intra- and interstate levels. Drawing from numerous empirical studies, Fosfuri et al.

(2001) present a theoretical framework which rationalises the importance of spillovers

from MNE personnel training. In particular, they argue that competition and the costs

of transferring technology are the factors which influence MNE decisions to establish

affiliates in the foreign country. They identify values for these two variables where FDI

will lead to personnel training and, possibly, to knowledge spillovers (e.g., if competition

is low and technology could be easily transferred, then knowledge spillovers are likely to

occur).

Perhaps the most obvious factor determining the need for training is the low quality

of the workforce in the host countries. That is, the lower the quality of workers in the

country, the more training should be provided by a foreign firm to raise the skills of its

employees to meet the requirements of the existing advance technology. At the same

time, Blomström and Kokko (2003), stressing the importance of labour-force quality in

the host country as a determinant of training, note that if local workers are already highly

qualified, it is less costly to train them further, so an employer would benefit more from

training these workers than if his employees were unskilled. However, Frazis, Gittleman,

and Joyce (2000) provide empirical support for education being positively related to

the receipt and intensity of formal training. Therefore, there needs to be a distinction

between the general quality of the workforce in the country and the quality of employees

at a particular enterprise. While national education levels should be negatively related

to training, the effect of training at the enterprise level is likely to be positive (Harris,

5
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1999).

Competition is one of the most important factors driving enterprise training. Firms

in competitive markets must maintain their positions by advancing the production pro-

cess through developing the productive skills of their personnel. But firms protected

from competition are less likely to engage in costly training. Both domestic and in-

ternational competition are also likely to affect firm decisions via different channels,

suggesting another determinant of training—whether a firm is oriented toward export or

domestic markets. Export-oriented firms are more likely to be affected by international

competition,3 while non-export-oriented ones are more sensitive to domestic competi-

tors. Training is linked to firm performance, because non-profitable companies might

tighten their budgets by reducing their training expenditures. At the same time, perfor-

mance should naturally depend on training, otherwise there would have been no point

to spend resources on training. Several empirical studies have already documented the

positive correlation between firm performance and personnel training (Aragon-Sanchez,

Barba-Aragon, and Sanz-Valle, 2003).

The empirical literature on enterprise training has identified a number of other ‘con-

ventional’ factors used to specify a model, factors which are often determined by the

variables available to researchers from a particular survey dataset. Using workplace

characteristics as determinants of training, Sutherland (2004) found that, inter alia, age,

educational qualifications, occupation and the size of the workplace are important deter-

minants of the probability that an individual receives training. Based on case studies of

42 individual enterprises in five industry sectors, Smith and Hayton (1999) define a set

of factors perceived as important for firms when making decisions on personnel train-

ing. They found, for example, that the size of the organisation and industry sector have

strong positive relationships with training, that investments in new products or technol-

ogy influence training positively but to a smaller extent and that enterprise ownership

(Australian versus multinational) turns out to have no significant effect.

In this literature, firm size is usually positively associated with training. One possible

explanation is that training implies economies of scale: early empirical studies had found

relatively little training in small firms with less than 50 employees (Frazis et al., 2000).

Also, as Harris (1999) notes, ‘Large employers actually take a different approach to small

employers with regard to the riskiness of investing in their employees’, thus large firms

tend to provide more training. Finally, it is natural to suggest that general labour market

conditions should influence enterprise training arrangements (Acemoglu and Pischke,

3As the survey by Yadapadithaya (2001) reveals, 100% of respondents in the MNE group consider
global competition and pressure for increased quality, innovation, and productivity as driving forces for
providing personnel training.

6



1.2. The model of enterprise training

1997). As Blomström and Kokko (2003) summarise, the amount of training provided to

MNE employees ‘var[ies] depending on industry, mode of entry, size and time horizon of

investment, type of operations and local conditions’.

The data used here come from the Business Environment and Enterprise Perfor-

mance Survey (BEEPS) jointly conducted by the European Bank for Reconstruction

and Development and the World Bank in 2002 (BEEPS–II) and 2005 (BEEPS–III). The

project surveys managers and firm owners in the countries of Eastern Europe, the for-

mer Soviet Union and Turkey (27 countries in total). For comparability reasons we have

discarded the data on those firms surveyed in 2005 that began their operations after

1999 and were not covered by the survey round conducted in 2002. Firms established in

2000–2002 were not surveyed in the 2002 round due to survey design, and in the 2005

survey round only firms that had begun operations before 2002 were surveyed. Thus,

1708 observations from the BEEPS–III dataset were dropped. The resulting dataset

has 14606 observations: 6667 observations from BEEPS–II and 7939 observations from

BEEPS–III.

Previous studies have argued that enterprise training can be endogenously deter-

mined together with foreign ownership, in the sense that there may be some factors

simultaneously influencing both variables. It is problematic, if possible, to find any valid

instruments from the available choice set. Hence, the results of cross-sectional analysis4

are likely to be highly biased. However, it may be possible to identify the parameters of

interest under the assumption of a fixed effects model, that seems to be appropriate for

this setting with fixed effects given an interpretation as unobserved factors influencing

both a firm’s decision to train and to attract foreign investment (or to locate produc-

tion in a particular host country, in terms of decisions made by multinational parent

companies).

Formally, we seek to estimate a linear fixed effect model

yit = α + xT
itβ + ψi + εit, i = 1, . . . , N, t = 1, 2, (1.1)

where the dependent variable yit is a measure of training intensity, xit is a vector of

explanatory variables including driving and mediating factors and controls as detailed

in Table 1.1; α is an intercept term, ψi’s are the fixed effects, and εit is the idiosyncratic

error term uncorrelated with explanatory variables.

As the data comes as two independent cross-sections, this model cannot be estimated

4Results of cross-sectional analysis are presented in Appendix 1.A for completeness. Table 1.5 sum-
marises the set of variables, and estimation results are presented in Tables 1.6–1.8. The main message of
the cross-sectional analysis is that there is positive correlation between foreign ownership and training.
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Table 1.1: Summary of variables used in the model

Name Question numbersa Short description
BEEPS–II BEEPS–III

Dependent variable

Training q96a3-q96a5,
q96b3-q96b5,
q92c-q92e

q71a1-q71a3,
q71b1-q71b3,
q68a3-q68a5

A weighted index for training intensity. Three
categories of employees are included in cal-
culation of the index: skilled, unskilled, and
support workers.

Driving factors

Innovativeness q85a1-q85a4,
q85a7-q85a11,
q85b1-q85b4,
q85b7-q85b11

q60a1-q60a8,
q60b1-q60b8,
q61a

Proxy for innovativeness (weighted index)

Exports q14a1-q14a3 q7b, q7c Share of firm’s sales that are exported.
Competition
from imports

q19 q10 Dummy for subjective importance of compe-
tition from imports (takes value of 1 if the
competition from imports in the market for
main product/services is very or extremely
important).

Skills of avail-
able workers

q80l q54m Characteristics of skills and education of
available workforce (categorical: ranges from
‘major obstacle’ to ‘no obstacle’ for business).

Education of
firm workforce

q94a-q94f q69a1-q69a4 Weighted index characterising education of
firms’ workforce.

Mediating factors/controls

Foreign owner-
ship

s4c s5b Share of firm assets owned by private foreign
company/organisation.

Performance q81a1, q81a2,
q81b1

q55a1, q55b1 Relative change in firm’s sales since 1998, in
real terms.

Monopolisation q18a q12ba, q13ba Dummy for monopolistic/oligopolistic posi-
tion of a firm.

Legal organi-
sation

s2a s2a Dummy for privately owned company.

Full-time em-
ployment

q91a1cat q66acat Number of full-time employees, hundreds
(categorical; treated as continuous with mid-
points substituted for appropriate range cat-
egories).

Labour regula-
tions

q80k q54l Subjective measure of the effects of labour
regulations (categorical: ranges from ‘major
obstacle’ to ‘no obstacle’).

Regional dum-
mies

country country Dummies for country.

Industry q2a-q2h q2a-q2h The shares of firms’ sales coming from speci-
fied sectors of the economy where it operates.

aOriginal codes as used in survey questionnaires.
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1.3. Estimation with RCS: An overview

by conventional panel data methods. Instead, we estimate the model with a pseudo-panel

of group averages constructed from the available RCS. Relevant estimators are reviewed

in the next section. Group design and estimation results are presented in section 1.4.

1.3 Estimation with RCS: An overview

One advantage of panel data perhaps the most attractive is the possibility of controlling

for ‘fixed effects’ (FE): any unobserved time-invariant heterogeneity that is possibly

correlated with explanatory variables. However, in many cases where one would like to

exploit panel data they may not be available. In such cases estimation methods based on

pseudo-panels (sometimes also referred to as ‘synthetic panels’) of group averages have

proved to be useful.

Moreover, even when genuine panel data is available, they may be inferior to series

of repeated cross-sections due to problems of attrition or insufficient sample size, etc.

Attrition is not a concern with RCS data as a new sample is drawn every time a sur-

vey is conducted. For instance, the US Current Population Survey, which is a rotating

cross-section survey, is used to create short panels by matching individuals across con-

secutive cross-sections. Peracchi and Welch (1995) investigate attrition problems in the

longitudinal data created from the Current Population Survey and show that matching

failures are often related to some important household characteristics, and that labour

market outcomes are often related to the process that determines attrition. Although

explicitly controlling for a number of household characteristics may soften the nega-

tive consequences of attrition, it is still questionable whether behavioural relationships

estimated with such datasets are representative of population relationships.

Another apparent advantage of RCS data lies in the possibility of explicitly controlling

for measurement error: as micro data are available, measurement error variances can

be consistently estimated and used to obtain error-corrected estimates (Deaton, 1985;

Carraro, Peracchi, and Weber, 1993).

Since the pioneering paper Deaton (1985), a number of studies have been completed

dealing with issues of inference using RCS data. These cover both static and dynamic

linear FE models and extend to nonlinear models with binary dependent variables.

This section reviews existing methods of estimation with pseudo-panels of repeated

cross-sections and discusses relevant identification assumptions. A brief summary of the

relevant literature can also be found in Verbeek (2006) and Ridder and Moffitt (2007).
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Chapter 1. Effect of FDI on training: Empirical evidence from transition countries

Consider the linear fixed effects model

yit = α + xT
itβ + ψi + εit, t = 1, . . . , T, i = 1, . . . , N, (1.2)

where t indexes cross-sections over time and i indexes individuals, α is an intercept term.

It is assumed that regressors, xit, are uncorrelated with the idiosyncratic error term, εit,

but can be correlated with fixed effects, ψi, i.e. E {εit|ψi,xi1, . . . ,xiT} = 0 for all t.

When RCS data are available, (1.2) may be written as

yi(t)t = α + xT
i(t)tβ + ψi(t) + εi(t)t, t = 1, . . . , T, i(t) = 1, . . . , N(t), (1.3)

where conventionally the notation i(t) rather than i is used to emphasise that individuals

are (possibly) different in each cross-section. Even when data for the same individuals

is available in more than one cross-section, their identities remain unknown and entries

cannot be matched by i. Therefore, conventional panel data methods such as within

estimation or first-differencing cannot be applied.

If the unobserved fixed effects are uncorrelated with regressors, one could simply pool

all available cross-sections and apply either a least squares estimator on a pooled sample

or a random-effects estimator (the latter being efficient in this case). However, ψi(t)

is often likely to be correlated with right-hand side variables, in which case the vector

of coefficients, β, in (1.3) cannot be consistently estimated by these methods due to

omitted variables bias. A transformation which removes ψi(t)’s, such as first differencing

or within transformation, could be applied if genuine panel data were available, but not

with RCS. This motivates the quest for a robust estimator of β in (1.3).

Wald estimator

Suppose there is a single regressor and two RCS. (1.3) then becomes

yi(t)t = α + βxi(t)t + ψi(t) + εi(t)t, t = 1, 2, i(t) = 1, . . . , N(t). (1.4)

Assume there exists a grouping variable, g, which takes G different values, 1, . . . , G,

such that every individual can be unambiguously identified as a member of a certain

group. Assume further that the population belonging to each group is fixed through

time. Upon taking expectations conditional on g we obtain

ygt = α + βxgt + ψg, t = 1, 2, g = 1, . . . , G, (1.5)
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1.3. Estimation with RCS: An overview

where zgt = E
{
zi(t)t|object i(t) belongs to group g

}
.

To identify β it is sufficient to set g = t, i.e. to ignore the cross-section dimension.

Then (1.5) becomes y·t = α + βx·t + ψ·, t = 1, 2, where z·t = E
{
zi(t)t|t

}
. Taking first

differences yields a natural analogue estimator of β,

β̂W =

1
N(2)

∑N(2)
i(2)=1 yi(2)2 − 1

N(1)

∑N(1)
i(1)=1 yi(1)1

1
N(2)

∑N(2)
i(2)=1 xi(2)2 − 1

N(1)

∑N(1)
i(1)=1 xi(1)1

, (1.6)

where division by N(t) is necessary as the number of observations may differ across cross-

sections. This estimator was first proposed by Wald (1940). It is immediately apparent

that if the population is not fixed through time, then in general ψg will vary with t and

the above estimator will not be consistent due to so-called ‘survival bias’.

It is useful to note that the above estimator is equivalent to an instrumental vari-

ables (IV) estimator with group dummies used as instruments5; see Pakes (1982) for the

asymptotic properties of these Wald-type estimators.

If more than two time periods are available, several estimators of β can be computed

by taking differences in time means between first and second time periods, second and

third, and so on. Differences in estimates obtained in this manner can be tested for sig-

nificance and, if found to be insignificant, alternative Wald estimators can be combined

to give an efficient estimator for β. It turns out that a minimum-variance linear combi-

nation of any full set of linearly independent pairwise Wald estimates is the Prais and

Aitchison (1954) Generalised Least Squares (GLS) estimate for grouped data (Angrist,

1991, Proposition 1); for a proof see Angrist (1988). Asymptotic properties of estimators

for RCS data based on the IV approach of Angrist (1991) have been explored in Verbeek

and Vella (2005) and Moffitt (1993).

Clearly, in a model with more than one regressor, one would require more time periods

than the number of included regressors. When this is not the case, one might seek some

other categorical variable that can serve as a valid instrument and base grouping on this

variable interacted with time dummies. It will often be the case that a researcher will

have certain flexibility in how to choose a grouping variable, thus producing different

numbers of groups, and hence, different numbers of simple Wald estimators as above.

An overidentification test can then be constructed; see Angrist (1991).

5Bartlett (1949) suggested dropping the middle third of observations when estimating the slope co-
efficient; see also Reiersøl (1950), Mallios (1969), and Neyman and Scott (1951) for relevant discussions,
and Madansky (1959) for an early overview of the relevant literature.
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Errors-in-Variables Estimators

The literature on pseudo-panels originated in Deaton (1985). The idea is that if one can

group individuals into cohorts, it would be possible to track cohorts over time and, ‘if

there are additive individual fixed effects, there will be corresponding additive cohort

fixed effects for the cohort population’. His errors-in-variables (EVE) estimator is moti-

vated by viewing sample cohort averages as consistent estimates of the population cohort

means but observed with error. The availability of individual level data allows estimates

of variances and covariances of cohort means to be computed and then used to correct

the estimator for measurement error.

Averaging observations for each t over those i(t) in group g observed in the survey

taken at t, we can write (1.3) in terms of the observed sample group averages as

ȳgt = α + x̄T
gtβ + ψ̄gt + ε̄gt, t = 1, . . . , T, g = 1, . . . , G, (1.7)

where the average of the fixed effects for every group g is now not constant over time.

Deaton (1985) proposes to consider a version of equation (1.7) in population group

means, viz.

y?gt = α + x?Tgt β + ψ?g + εgt, t = 1, . . . , T, g = 1, . . . , G. (1.8)

If the population belonging to each group is fixed through time, ψ?g is time-invariant and

can be replaced with group dummies in the above equation. However, unless the cohort

size is very large, ψ̄gt cannot be employed as a good approximation for ψ?g .

Extending the above idea, Verbeek and Nijman (1993) propose indexing the class of

errors-in-variables estimators by the proportion γ ∈ [0, 1] of error variance to be elimi-

nated. In particular, sample group averages ȳgt and x̄gt are considered as error-ridden

measurements of corresponding population group means y?gt and x?gt where measurement

errors are assumed to be normally distributed, viz.(
ȳgt − y?gt
x̄gt − x?gt

)
∼ N

((
0

0

)
;

(
σy σT

σ Σ

))
.

The errors-in-variables estimator for β indexed by the values of γ ∈ [0, 1] takes the

following form:

β̂(γ) = (Mxx − γΣ)−1 (mxy − γσ), (1.9)

where Mxx = (GT )−1XTX, mxy = (GT )−1XTy, X and y are vertically stacked and

demeaned data; see equations (5)–(7) in Verbeek and Nijman (1993). With γ = 1,
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1.3. Estimation with RCS: An overview

estimator (1.9), β̂(1), is Deaton’s EVE, whereby all error variance is eliminated; whereas

with γ = 0, β̂(0) is the within estimator applied to the pseudo-panel of group averages

whilst ignoring measurement errors.

Under the assumption that the number of cohorts tends to infinity, Verbeek and

Nijman (1993) show that

plim
G→∞

β̂(γ) = (Σ? + (τ − γ)Σ)−1 (Σ?β + (τ − γ)σ) ,

where Σ? is the asymptotic within variation in the true group means of x’s, and τ =

(T − 1)/T .

It is then easily verifiable that if unobserved fixed effects are correlated with x’s,

this estimator is consistent for finite T only if γ = τ , and hence, Deaton’s estimator

is inconsistent unless T → ∞, in which case τ → 1. Furthermore, they show that in

finite samples the minimum mean squared error (MMSE) estimator is characterised by

γoptimal < τ . Numerical values of MSEs of competing estimators suggest it is never

optimal to choose γ = 1. The performance of estimators with γ = γoptimal and γ = τ

is very close and the differences become negligible as group size gets large enough6, say,

greater than 50. Ultimately, the best choice in most practical applications is to set

γ = (T − 1)/T .

Finally, Devereux (2003) shows that Deaton’s EVE is exactly equivalent to the Jack-

knife Instrumental Variables Estimator (JIVE) with the set of group dummies as in-

struments; see inter alia Phillips and Hale (1977), Angrist, Imbens, and Krueger (1995),

Angrist, Imbens, and Krueger (1999), and Blomquist and Dahlberg (1999).

To conclude which particular estimator for RCS data is chosen depends largely on

which of the possible assumptions about data dimension is most relevant. With data

being aggregated over members of predefined groups, new asymptotic considerations

emerge: apart from conventional arguments in terms of the number of time periods or

the number of individuals in each time period approaching infinity, asymptotics in terms

of the number of groups or the number of individuals per group, or some combinations of

these can be considered (see McKenzie (2006) for an example of sequential and diagonal

path asymptotic arguments).

It is often the case that the number of time periods is usually too small to rely on

T → ∞ asymptotics. Even when one has access to a long panel, it is questionable

6Although the bias of the within estimator applied to a synthetic panel is likely to be small if the
number of observations per group is sufficiently large, the higher the number of observations per group,
the smaller the number of observations in the synthetic panel and, hence, the higher the variance of
the within estimator. The cell size—group number trade-off is an important aspect of any applied work
using RCS data; see also Verbeek and Nijman (1992).
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whether the assumption of a fixed population can be sensibly maintained. Assuming

G → ∞ is quite problematic too, as there is often a physical limit beyond which the

number of groups cannot be increased; see e.g. Hsiao (2003). Ultimately, in short panels,

the only realistic assumption may be that N →∞ such that the number of groups stays

constant. In this case, if the number of observations per group is large, correcting for

measurement error is unnecessary for consistency, but may still be made for efficiency

reasons.

Empirical applications

An initial application using RCS is Browning, Deaton, and Irish (1985) which uses

the Deaton (1985) estimator in the context of an empirical analysis of family labour

supply and consumption based on household expenditures data from British Family

Expenditure Surveys conducted in 1970-77. The age of the head of household is used

to identify cohorts creating a pseudo-panel of cohort averages grouping over five-year

age bands subdivided as to whether the head of household is a manual or non-manual

worker (resulting in 16 groups: 8 age bands interacted with two categories, tracked

over seven years). Sample cohort averages are treated as population cohort means.

Blundell, Meghir, and Neves (1993) studies an intertemporal model for labour supply

and consumption using the same survey data over a longer period (up to the mid-80s)

and constructs an exactly aggregated pseudo-panel of year-of-birth cohorts following

Browning et al. (1985). Later, Moffitt (1993) applies the Browning et al. (1985) linear

fixed effects model to the US Current Population Survey.

The empirical literature originated by these studies has a long tradition of using

year-of-birth cohorts to create pseudo-panels of cohort averages which are then usually

treated as a genuine panel; correction for measurement error is rarely made. An inten-

sively used RCS dataset is the UK Family Expenditure Survey, being used to create

a pseudo-panel identifying groups by the year-of-birth of the head of household with

five- (Alessie, Devereux, and Weber, 1997; Banks, Blundell, and Preston, 1994; Blundell,

Browning, and Meghir, 1994; Dargay, 2001), four- (Banks, Blundell, and Tanner, 1995),

and two-year age bands (Gassner, 1998); age bands interacted with education level (Blun-

dell, Duncan, and Meghir, 1998) and residential location (Dargay, 2002; Propper, Rees,

and Green, 2001). A number of studies using US datasets employ year-of-birth grouping

to construct pseudo-panels based on the US Consumer Expenditure Survey (Attanasio,

1993) and the Current Population Survey (Card and Lemieux, 1996; Chay and Lee,

2000). Other studies employ year-of-birth groupings using German Income and Expen-

diture Survey (Börsch-Supan, Reil-Held, Rodepeter, Schnabel, and Winter, 2001) and
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Taiwanese Survey of Personal Income Distribution (Levenson, 1996; McKenzie, 2006).

Gardes, Langlois, and Richaudeau (1996) group over interactions of five income classes,

three groups for the age of the head of household, and two classes for education using the

Canadian Households Expenditures Survey, whereas Robertson (2003) identifies groups

with four education levels, four age groupings, and five industries based on the Mexican

National Urban Employment Survey.

Few studies use population surveys identifying groups of individuals based on crite-

ria other than the year-of-birth. For instance, Beine, Bismans, Docquier, and Laurent

(2001) using the US Consumer Expenditure Survey identifies cohorts by interactions of

the highest education level in the household, the race of the head of household (white

and non-white), and geographical location; DiNardo (1993) combines two surveys; Drug

Enforcement Administration’s STRIDE (System to Retrieve Information from Drug Evi-

dence) and MTF (Monitoring the Future), and defines state interacted with year groups.

To the best of our knowledge, the only empirical study that uses firm-level RCS data

is that by Morrison Paul and Nehring (2005) which investigates the US Department of

Agriculture farm survey and defines 130 groups as interactions of 13 ‘cohorts’ with 10

states included in the dataset, the 13 ‘cohorts’ being defined using the farm typology

developed by the US Department of Agriculture Economic Research Service (annual sales

and other factors e.g. family and non-family farms).

Most empirical papers group the data into a small number of cohorts with a fairly

large number of observations per cohort so that measurement error can arguably be

ignored and the pseudo-panel treated as a genuine panel. The cell size conventionally

adopted is about 100 observations per cell, which it is argued is large enough to serve as

a good approximation to the population group mean. Some researchers use unequally

spaced bands to obtain approximately equal cell sizes for construction of a pseudo-panel.

Others exclude those cells with too few observations available as it is problematic to

treat averages for those cells as population group means. It is questionable, however,

whether such a practice leads to consistent estimation of model parameters as the sample

remaining after these small cells are deleted may not then be random even if the original

sample was.

Asymptotic results used in applied work are usually determined by the dimensions

of the available dataset or the estimator applied. Most empirical papers reviewed above

assume either the number of groups or the number of observations per group to be large.

Few studies use long pseudo-panels with large T asymptotics.
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1.4 Pseudo-panel analysis

1.4.1 Group design

A critical issue for estimation with RCS is the design of the groups used to construct a

pseudo-panel of group averages. First, there is always a trade-off between the number

of groups (and hence the number of observations in the resulting pseudo-panel) and

the size of a group. While more groups give more reliable estimates, reducing the size

of a group affects the reliability of sample group averages as consistent estimates of the

corresponding population group means. Furthermore, often a problem arises with groups

very different in size or discovering empty group-time cells for some variables (i.e., missing

data points in the constructed pseudo-panel). Combining such groups does not seem to

be good practice, as it is likely to introduce a further distortion. Obviously, different

weighting schemes may be employed, but how many observations any given group should

contain for a reliable approximation of the corresponding population quantity remains

an open question. Second, and more important, defined grouping variables should be

exogenous in the model (just as valid instrumental variables are); otherwise computed

statistics will be inconsistent. This problem is endemic. A credible group design valid

for consistent estimation of the parameters requires considerable judgment on the part

of the researcher.

Based on the available data, we use the following variables as a basis for grouping;

(apart from country, all variables have been redefined to result in approximately equally

sized categories):

• Year firm began operations in a particular country (15 dates, five unequally spaced

bands covering 1800–1989 inclusive, then ten one-year categories covering 1990–

1999, both dates inclusive).

• Country (27 countries).

• Sector of the economy in which firm operates (four categories: mining and quar-

rying, construction, and transport, storage and communication; manufacturing;

wholesale, retail, and repairs; and real estate, renting and business services, hotels

and restaurants, and other sectors).

• Legal status of firm (four categories: single proprietorship; partnership or cooper-

ative; corporation or other private sector; and state or municipal-owned, corpora-

tised state-owned or other state-owned).
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We compare three alternative group designs based on the above four variables, that

result in a significantly larger number of observations in the constructed pseudo-panel;

see Table 1.2.

Table 1.2: Characteristics of alternative group designs

No. Description
No. of groups Group-time cell sizea

By con-
struction

Effectiveb Min Max Average

1 Interactions of country
and sector

108 108 12 476 65.7

2 Interactions of year, sec-
tor, and legal status

240 238 1 126 29.8

3 Interactions of country
and legal status

108 107 1 451 66.2

aOnly nonempty cells are taken into account.
bAfter excluding groups for which at least one group-time cell has no observations.

1.4.2 Estimation results

The model is estimated using the EVE (1.9) with Σ and σ replaced by the sample

estimates. Table 1.3 reports estimated coefficients and their respective t-ratios for the

enterprise-training model where the dependent variable is the index of training intensity.

Since all proposed group designs result in groups of very different sizes, we report only

those estimates which were obtained by weighting observations by the square root of

the corresponding group size. Four sets of estimates are reported for each group design:

conventional within estimates which ignore the measurement error problem and three

sets of errors-in-variables estimates which subtract different proportions of the estimated

measurement error variance (this proportion is given by the parameter γ in eq. (1.9)).

All four estimators yield reasonably close estimates within each of the three sets

defined by the alternative group designs. However, there are major differences across

alternative group designs: for some variables coefficient estimates switch signs and their

significance moves above/below the threshold (kept at the conventional 5% level). For

instance, competition from imports has a significant effect on training if we consider

group designs 3 and 1 (marginally significant), but appears insignificant with group

design 2. Similar patterns can be found for other coefficient estimates.

The most striking difference, however, is between the estimates reported for the FE

model and those obtained for linear regressions estimated with cross-sectional datasets

(see Table 1.8 in Appendix 1.A). Innovativeness, highly significant in the model estimated
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with cross-sections, appears insignificant in the FE model estimated with pseudo-panels.

Furthermore, the previously positive and significant effect of foreign ownership now turns

negative wherever it is significant.

Being a monopoly appears to be significantly positive with a rather high magnitude

(also positive and significant in cross-section regressions, although of a smaller mag-

nitude). At the same time, competition from imports has a positive and significant

effect on training, suggesting that it is global rather than local competition that drives

training. Finally, the effect of formal qualifications (education) of firm employees, that

proxy cognitive skills and ability, is negative, meaning that if firm employees have bet-

ter education, less training will be provided. This contradicts the hypothesis that firms

train highly educated employees more because in this way training yields a higher return

at lower costs. Other variables, with some occasional exceptions, appear to have no

significant effect on enterprise training.

It should be kept in mind that these estimates are quite sensitive to group design,

especially if some group designs result in grouping variables which are endogenous to the

model. There is no way, as yet, to discriminate between the alternative group designs,

and this is an issue deserving further attention.

1.5 Estimation with ‘self-organised’ pseudo-panels

Pseudo-panel estimation relies heavily on the availability of an external grouping variable

used to combine RCS into a pseudo-panel of group averages. Such grouping variables may

be of dubious quality or may not be readily available. However, if is it hypothesized that

there exist groups such that firms belonging to a same group behave similarly, whereas

firms belonging to different groups differ in their behaviour, this should be reflected in

observable firm characteristics. It may then be possible to uncover the grouping based

on those characteristics only using clustering techniques.

A brief review of clustering techniques is given in Appendix 1.B. For the purposes

of this chapter we will concentrate on two algorithms: the k-means and SOM. The

attraction of the latter algorithm is the ability to provide a two-dimensional visualisation

of the data. Alternatives are discussed in section 1.6.

1.5.1 k-means clustering of the BEEPS dataset

The k-means algorithm can be used to find the optimal number of clusters by setting up

what is essentially a double optimisation program. At the first stage, the k-means is run

on a dataset for all possible values of k, the number of clusters. In practice, however,
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Chapter 1. Effect of FDI on training: Empirical evidence from transition countries

with large datasets there will be a need to stop the search at some chosen number of

clusters although, in principle, one can run k-means for all values from two to the number

of observations. Each such run consists of several replicas from which the ‘best’ is chosen

based on the adopted criterion.

The k-means algorithm seeks to minimise the sum-of-squares criterion. To be specific,

let x1, . . . ,xN be the data set and let C = (C1, . . . , Ck) be its clustering into k clusters.

Let d (xj,xl) be the distance between xj and xl. The objective function is

J =
k∑
j=1

∑
i∈Cj

d (xi, cj) ,

where cj is the geometric centroid of the data point in cluster Cj. The distance measure

used in the classical k-means algorithm is the Euclidean distance.

A criterion is then computed to characterise the ‘goodness’ of the resulting clustering.

Several such criteria are proposed in the literature; we use the Davies-Bouldin index7

(Davies and Bouldin, 1979) defined as

DB(C ) =
1

k

k∑
j=1

max
l 6=j

[
Sk(Cj) + Sk(Cl)

d (cj, cl)

]
,

where Sk(Cj) is the average distance of all objects from cluster j to their cluster centre

and d (cj, cl) is the distance between cluster centers.

At the second stage, clustering is chosen which minimises the Davies-Bouldin index

over all possible clusterings. This is then treated as the optimal clustering.

Figure 1.1 shows the Davies-Bouldin index for k-means clusterings of the BEEPS

dataset8 where the algorithm was searching over clusterings with 2 to 200 groups. The

Davies-Bouldin index has its minimum of ≈ 1.52 corresponding to clustering with 44

groups. The associated sum of squared errors is shown in the lower panel. It is unclear

why the Davies-Bouldin index jumps at a number of points. The optimal clustering

has group sizes ranging from 23 to 649 objects with median size 257.5; 25-th and 75-th

percentiles are, respectively, 129.5 and 379 observations.

7The index measures the average similarity of each cluster with its most similar cluster. It does
not depend on the clustering algorithm employed and requires the distance function and the dispersion
measure to be specified along with the rule to choose the representative vector from each cluster.
Comparing several popular cluster validity indices, Kim and Ramakrishna (2005) conclude in favour of
the Davies-Bouldin index as having the best performance in their experiments.

8The variables used in clustering are the regressors in (1.1).
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Figure 1.1: Davies-Bouldin index for k-means clustering of the data

1.5.2 Cluster analysis with the SOM algorithm

The Kohonen self-organising feature map algorithm, primarily designed for the prepro-

cessing of patterns for their recognition and for visualisation of high-dimensional object

spaces on a two-dimensional display, can be used to perform unsupervised classification

of the data space. See Kohonen (1997) for details of the SOM method; Deboeck and

Kohonen (1998) present a collection of recent applications of the SOM method in finance.

The SOM is a type of artificial neural network that is used to produce a (typically)

two-dimensional discretized representation of the input space. In Euclidean space, the

SOM defines a mapping from the input space onto a two-dimensional array of nodes,

each having an associated reference vector in the input space. The nodes are connected

to adjacent nodes by a neighbourhood relation which dictates the topology of the map.

The resulting ‘elastic net’ adjusts during the learning process to best cover the ‘data

cloud’. In each training step, one vector x from the input space is chosen randomly and

a node is found whose reference vector in the input space is closest to x. This node is

called a best matching unit (BMU). The weight vectors of SOM are then updated in such

a way that BMU is moved closer to x in the input space. As the nodes are connected

by a neighbourhood relation, the adjacent nodes are updated as well. The updating is
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illustrated in Figure 1.2.

Figure 1.2: Updating the BMU and its neighbours towards the input vector

Source: Vesanto, Himberg, Alhoniemi, and Parhankangas (2000, Fig. 3).
The input vector is marked with X. The solid and dashed lines correspond to situation before and

after updating, respectively.

After the learning stage, the SOM net can be used to visualise the data. Figure 1.3

shows the U-matrix representation of the SOM9 which captures the relative distances

between the map units. The U-matrix value of a particular node is the average distance

between the node and its closest neighbors. In Figure 1.3 darker colours correspond to

the weight vectors (nodes) that are farther away from each other, and hence give cluster

borders; lighter colours represent clusters themselves. It is clear from this map that the

data space is clustered into a number of unequally-sized groups.

The SOM map can further be analysed by the k-means method to obtain the optimal

number of clusters (see section 1.5.1 for a description of the k-means algorithm). The

Davies-Bouldin index for SOM clustering with the k-means algorithm is minimised at

35 clusters, and the resulting clustered U-matrix representation of the SOM is shown in

Figure 1.4.

As can be seen from the clustered map, some clusters appear to be rather small;

and indeed, when asked to classify the dataset with 35 groups, SOM results in 11 empty

clusters. The 24 non-empty clusters have sizes ranging from 90 to 2706 observations with

25-th, 50-th, and 75-th percentiles being 253, 387, and 754.5 observations respectively.

9The SOM learning algorithm has been initialised on the variance-normalised dataset to perform
a sequential learning process. Computations were performed using the SOM toolbox for Matlab; see
Vesanto et al. (2000).
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Figure 1.3: U-matrix representation of SOM
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Figure 1.4: Clustered SOM net
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1.5.3 Estimation with a pseudo-panel of ‘self-clustered’ data

The clustering produced in sections 1.5.1 and 1.5.2 can be used to construct a pseudo-

panel of cluster averages and, hence, to estimate the model considered in this chapter

following the same steps as in section 1.4.

Before considering the estimation results, it is interesting to compare two clusterings.

Figure 1.5 visualises a cross-tabulation of the clusterings produced by k-means and SOM

algorithms. The columns of the matrix correspond to the 44 groups resulting from k-

means clustering, whilst the rows represent the 23 clusters from SOM. One cluster of

the SOM is not included in the matrix and contains observations with missing data cells

which were not used in the k-means classification. It is a somewhat alarming drawback

of the SOM algorithm that all these observations were mapped into one group which,

moreover, contains no complete observations and, hence, has no observations in common

with groups produced by complete-case k-means classification. The colour codings should

be read as follows: white areas represent cells with no observations, whilst grey areas

show cells with some observations in them; the darkest, black, cells correspond to the

maximum value of the cross-tabulation matrix. The few points to note about this picture

is that the majority of cells are empty and that there is a rather significant number of dark

cells which shows that the two algorithms, unsurprisingly, resulted in similar clusterings.

Table 1.4 reports estimates for the model of enterprise training examined in section

1.2. For ease of comparison, selected results from section 1.4.2 are reproduced in the last

panel together with the column of cross-sectional (CS) estimates.

It is not surprising that only a few coefficients turn out to be significant as the number

of observations in the resulting pseudo-panel is relatively small. However, there is a high

degree of concordance between the various pseudo-panel estimates based on different

groupings and different regressors included. Hence, most of the comments in section

1.4.2 apply.

What is worth emphasising though, is the effect of foreign ownership which, similarly

to earlier pseudo-panel estimates but in drastic contrast to the results of cross-sectional

analysis, appears negative and significant with its magnitude going as high as 0.93.

Whether this result is reassuring or not depends on one’s belief in the consistency of

pseudo-panel estimates.

1.6 Conclusions

As estimation of a fixed effects model gives researchers the possibility of identifying

causal relationships with observational data, the importance of the availability of genuine
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Figure 1.5: Comparison of SOM and k-means clustering

Based on 11900 observations used in k-means clustering. 2706 observations with missing data cells
were used in SOM clustering and resulted in a single cluster of their own.

panel data cannot be understated. Yet in some cases when the true panel data is not

available, RCS can be used to identify the parameters of interest by averaging individual

observations and creating a pseudo-panel of sample group averages. This approach

can produce consistent estimators with either the number of groups or the number of

individual observations per group asymptotics (the latter assumption is arguably more

realistic in empirical applications).

In this paper we have estimated a model of enterprise training and contrasted pseudo-

panel estimates with conventional cross-sectional estimates. As the results suggest, the

effect of foreign ownership—the main factor of interest in many related studies—turns

out to be negative. This contradicts earlier studies that documented a positive correlation

between foreign ownership and training. However, it should be emphasised that whilst

cross-sectional analysis can at best measure correlation (as it is very hard to find a

valid set of instrumental variables), the estimates reported for the fixed effects model

are capable of revealing causal relationships; and it may be the case that the effect of

unobserved factors is strong enough to change the signs of coefficients obtained in cross-

sectional analysis as compared to (pseudo) panel analysis. It should be kept in mind

that estimates are quite sensitive to group design, a problem that is expected to arise if

some group designs result in grouping variables being endogenous to the model.
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Despite being intuitively appealing, the pseudo-panel approach suffers from a num-

ber of complications which may invalidate the results, and the conditions under which

estimators are consistent may be too strong or unreasonable. Furthermore, as with

the validity of instruments in an exactly identified model, the validity of the grouping

approach is untestable and is thus part of the maintained hypothesis.

There are many issues remaining. In particular, identification and efficiency ques-

tions, and the relaxation of the assumption of a closed population are important topics

that merit further research. The relative efficiency of estimators using genuine panel

data versus RCS data as well as the question of whether the identification conditions for

RCS data hold can only be investigated with true panel data that include information on

potential grouping variables. One attempt to investigate the effect of treating the true

panel data as RCS is made in Verbeek and Nijman (1992) that considers an empirical

example using Dutch data on household expenditures (a true panel). A within estimator

for a synthetic panel created by grouping individuals based on the date-of-birth of the

head of household is used. The results suggest that with large enough cohort sizes (say,

more than 100 or 200 observations per cohort) the model parameters are identified and

the bias of the within estimator may be ignored.

One common problem with survey data is that variables often assume categorical

values which may or may not have a natural ordering. Even if a natural ordering of

values exists, it may not always be possible to recover the original metric associated with

those values, for instance, attitude questions usually recorded with values like ‘disagree’,

‘agree’, ‘strongly agree’, etc., which can have arbitrary distances between them. Even for

genuinely continuous variables some kind of rounding and clustering almost always takes

place. Despite it being common in the social science literature to assume any variable

taking a sufficiently large number (say, more than ten) of distinct values to be continuous,

such practice may result in certain complications when one tries to cluster the data. In

particular, a clustering algorithm can be misled to group the observations around points

corresponding to typical values that such variables take, and hence a spurious structure

is effectively imposed on the data. Increasing the dimension of the feature space should,

in principle, reduce the risk of false classification, but will often be infeasible as there

is usually only a limited number of variables recorded in any given survey. Increasing

the precision with which data is recorded is again desirable for statistical analysis but

exacerbates problems of limited recall and nonresponse; see e.g. Tourangeau, Rips, and

Rasinski (2000) for a detailed account of survey analysis in relation to factors affecting

response.

A limitation of many classical clustering algorithms is the assumption that the data
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space is Euclidean. As this is almost never true with survey data, it would be more

realistic to use some general (dis)similarity coefficient instead of Euclidean distance. For

instance, a similarity coefficient proposed by Gower (1971) accommodates features of

different nature as long as an appropriate (dis)similarity measure is defined for each

feature. The use of this coefficient transformed to measure dissimilarities rather than

similarities is advocated by Kaufman and Rousseeuw (2005). The resulting dissimilarity

matrix can be clustered using relational clustering methods such as those described in

Runkler (2007) and Weber (2007).
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Appendix 1.A Cross-sectional analysis of the model

of enterprise training

This appendix presents results of cross-sectional analysis of the model of enterprise train-

ing discussed in section 1.2. A brief summary of the variables included into the model

is given in Table 1.5.

Information on the dependent variable is available in two forms, i.e. a binary variable

stating whether a firm offers training for a particular type of employees and a contin-

uous variable recording the percentage of employees actually offered training in each

category. Two sets of estimates are correspondingly presented using probit and ordi-

nary least squares (OLS) estimation. Standard errors are estimated using an empirical

distribution function (EDF) bootstrap (often called a nonparametric bootstrap); 1,800

bootstrap replications were performed in each case as estimated using the method of

Andrews and Buchinsky (2000).

Finally, estimates obtained from the complete-case analysis (CC-analysis), where

missing observations are deleted case-wise, are presented alongside estimates obtained

using the complete data set with missing observations imputed using the method of

multiple imputations by chained equations (‘MICE data’). The latter method does not

require a multivariate joint distribution assumption and may be used for simultaneous

imputation of different types of variables; see e.g. Cameron and Trivedi (2005) and Little

(1992).

Table 1.6 reports estimated coefficients, t-ratios and marginal effects for probit esti-

mation of the model describing firms’ incidence of training managerial personnel. With

two exceptions where coefficients are insignificant, all four regressions give the same

directal effect for all reported regressors. This is unsurprising, as it involves the same re-

lationship using different information on the measure of training incidence. It is nonethe-

less reassuring, showing some robustness for the model. Second, the coefficient estimates

change in significance when we move from CC-analysis to regressions with multiply-

imputed data; most of the coefficients become more significant with MICE data.

Table 1.7 reports OLS estimates for the five regressions corresponding to five groups of

employees as defined above (the column for managers is repeated here for convenience).

These estimates were obtained from MICE data and reflect the best information on

training available in the dataset.

This study seeks to estimate whether foreign ownership matters for the incidence of

enterprise training. As expected, the effect of foreign ownership is significant for training

in each of the five regressions considered. Importantly foreign ownership has the biggest
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1.A. Cross-sectional analysis of the model of enterprise training

Table 1.5: Summary of variables used in the model

Name Description

Dependent variable
Training A binary variable (training offered or not) and a continuous

variable representing the share (%) of employees in each category
who received training.

Factors
Foreign ownership Percentage of firm assets owned by private foreign com-

pany/organisation
Performance Percentage change in firm’s sales since 1998, in real terms
Monopolisation Dummy for monopolistic/oligopolistic position of a firm
Advanced technol-
ogy

Dummy subjective characterisation of firm’s technology being
more advanced than that of the main competitor

Competition from
imports

Dummy for subjective importance of competition from imports

Innovativeness Proxy for innovativeness (weighted index)
Skills of available
workers

Characteristics of skills and education of available workforce (‘-
3’ ‘major obstacle’, ‘0’ ‘no obstacle’ for the operation and growth
of a firm)

Education of firm
workforce

Index characterising education of firm’s workforce (values be-
tween zero and one with a larger value meaning better educa-
tion)

Exports Share of firm’s sales that are exported (lies between zero and
one)

Full-time employ-
ment

Number of full-time employees

Part-time employ-
ment

Number of part-time employees

Labour regulations Subjective measure of effects of labour regulations (‘-3’ ‘major
obstacle’, ‘0’ ‘no obstacle’ for the operation and growth of a firm)

Controls
Structure of per-
manent full-time
workforce

Percentage of full-time workers in corresponding group

Legal organisation
of the firm

Dummy for privately owned company

Regional dummies Dummies for country
Industry dummies Dummies for industry
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Chapter 1. Effect of FDI on training: Empirical evidence from transition countries

Table 1.6: Estimation results for the model of training managers

Variablesa LS estimates Probit estimates
CC-analysis MICE data CC-analysis MICE data

Foreign ownership 0.1469 (7.17) 0.1396 (8.07) 0.0052 (7.06)
[0.0017]

0.0051 (8.04)
[0.0016]

Performance 0.0101 (1.49) 0.0132 (2.19) 0.0008 (2.70)
[0.0002]

0.0007 (2.98)
[0.0002]

Monopolisation 2.4690 (1.75) 3.4140 (2.78) 0.1530 (2.70)
[0.0512]†

0.1642 (3.22)
[0.0544]†

Advanced technology 5.0726 (4.23) 4.1816 (3.97) 0.1867 (3.82)
[0.0621]†

0.1709 (3.91)
[0.0561]†

Competition from im-
ports

1.1571 (1.06) 2.0845 (2.18) 0.0741 (1.55)
[0.0243]†

0.0916 (2.15)
[0.0297]†

Innovativeness 29.0202 (9.18) 31.0863 (11.36) 1.4056 (11.00)
[0.4566]

1.4799 (13.12)
[0.4748]

Skills of available
workers

-0.5443 (-1.02) -0.9803 (-2.08) -0.0329 (-1.40)
[-0.0107]

-0.0521 (-2.57)
[-0.0167]

Education of firms’
workforce

35.1526 (8.18) 31.4749 (8.34) 1.7730 (8.21)
[0.5759]

1.6916 (8.92)
[0.5427]

Exports -2.9887 (-1.20) -4.5116 (-2.43) 0.0609 (0.60)
[0.0198]

-0.0390 (-0.48)
[-0.0125]

Full-time employment 0.0151 (5.44) 0.0159 (6.60) 0.0010 (9.34)
[0.0003]

0.0010 (11.22)
[0.0003]

Part-time employment 0.0032 (0.64) -0.0019 (-0.49) 0.0003 (1.40)
[0.0001]

0.0001 (0.45)
[0.0000]

Labour regulations -0.8488 (-1.42) -0.8154 (-1.53) -0.0551 (-2.14)
[-0.0179]

-0.0574 (-2.50)
[-0.0184]

‘Private’ (dummy) -1.0047 (-0.68) -1.6724 (-1.23) -0.0719 (-1.11)
[-0.024]†

-0.1148 (-1.98)
[-0.038]†

[Pseudo-]R2 0.19 0.19 0.18 0.19

Adjusted R2 0.18 0.18

χ2-statistics 956.5 1290.3 863.8 1431.9

Prob(χ2 > χ2
crit.) (0.0000) (0.0000) (0.0000) (0.0000)

t-ratios (t = β̂j/ŝeβ̂j ,B
) are given in brackets and marginal effects are given in square brackets. †

stands for change for dummy variable from 0 to 1.
aCoefficient estimates for country dummies, industry dummies, and a variable controlling for the

structure of permanent full-time workforce are omitted.
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1.A. Cross-sectional analysis of the model of enterprise training

Table 1.7: LS estimates for MICE data
Variablesa Employee group

Managers Profes-
sionals

Skilled
workers

Unskilled
workers

Support
workers

Foreign ownership 0.1396
(8.07)

0.1081
(6.47)

0.0682
(4.24)

0.0384
(3.07)

0.0611
(4.44)

Performance 0.0132
(2.19)

0.0183
(2.90)

0.0102
(1.76)

0.0058
(1.35)

0.0075
(1.65)

Monopolisation 3.4140
(2.78)

2.7648
(2.25)

2.0977
(1.86)

-0.2607
(-0.33)

-0.1380
(-0.16)

Advanced technol-
ogy

4.1816
(3.97)

3.0600
(3.07)

4.9981
(5.15)

0.8157
(1.20)

2.3858
(3.04)

Competition from
imports

2.0845
(2.18)

2.0951
(2.21)

1.2449
(1.34)

0.9106
(1.37)

0.6819
(0.93)

Innovativeness 31.0863
(11.36)

27.4601
(10.35)

27.6085
(10.57)

12.4374
(6.29)

13.0514
(6.17)

Skills of available
workers

-0.9803
(-2.08)

-0.5745
(-1.26)

-0.8931
(-1.95)

0.0007
(0.00)

0.3828
(1.09)

Education of firms’
workforce

31.4749
(8.34)

22.8733
(5.95)

12.6752
(3.53)

1.5240
(0.52)

8.1968
(2.93)

Exports -4.5116
(-2.43)

-1.0618
(-0.56)

-2.1105
(-1.12)

-1.4512
(-1.10)

-1.9850
(-1.41)

Full-time employ-
ment

0.0159
(6.60)

0.0129
(5.57)

0.0073
(3.33)

0.0087
(4.82)

0.0088
(4.75)

Part-time employ-
ment

-0.0019
(-0.49)

0.0006
(0.17)

0.0017
(0.47)

-0.0000
(-0.00)

0.0047
(1.42)

Labour regulations -0.8154
(-1.53)

-1.0385
(-2.00)

-0.6863
(-1.34)

-0.0897
(-0.25)

-0.4864
(-1.24)

‘Private’ (dummy) -1.6724
(-1.23)

-1.4575
(-1.13)

-1.5521
(-1.24)

-0.5216
(-0.57)

0.1623
(0.17)

Adjusted R2 0.18 0.20 0.17 0.10 0.12

χ2-statistics
(Prob(χ2 > χ2

crit.))
956.5

(0.0000)
1338.1

(0.0000)
1184.2

(0.0000)
563.0

(0.0000)
702.2

(0.0000)

t-ratios (t = β̂j/ŝeβ̂j ,B
) are given in brackets.

aCoefficient estimates for country dummies, industry dummies, and a variable controlling for the
structure of permanent full-time workforce are omitted.
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Chapter 1. Effect of FDI on training: Empirical evidence from transition countries

effect on how managers are trained. The estimated coefficient implies that a 1% increase

in the foreign ownership of a firm generates 0.14% more managers receiving training.

The effect on professional workers’ training is lower but still substantial—about 0.11%,

while for other groups of employees the effects of foreign ownership are much smaller.

Apart from the effect of foreign ownership, the model captures several other inter-

esting dependencies. For example, two highly significant factors are innovativeness and

firm size, measured by the number of full-time workers, while the number of part-time

workers appears to have no effect on training. If the index of innovativeness changes by

one unit (i.e., moving from absolutely non-innovative to highly innovative), the share of

managers who receive training increases by 31.1%. This effect is significant and main-

tains a high amplitude for all other groups of workers as well. This result is in line with

the hypothesis of innovation-driven training.

Competition from imports is important only for training managers and professional

workers, but the magnitude of the effect is quite low—about 2.1%. At the same time,

monopolies are more likely to provide training to their managers and professional workers

(and, with marginal significance, to skilled workers), contrary to the expected compe-

tition effect. One possible explanation may be that in transition economies firms with

only a few competitors are much stronger and thus can actually engage in personnel

training, while firms operating in emerging competitive markets remain very fragile and

simply unable to develop long-run training strategies.

Another interesting feature of the model is that it is able to capture the effect of

labour-force quality proxied by education of the existing personnel and by the subjective

measure of skills of workers available in the labour market. There are two different

effects of labour-force quality. First, the general skills of the country’s labour force are

negatively related to training. Secondly, as expected, the quality of existing personnel

relates positively to the amount of training (the effect is significant for all categories of

employees except unskilled workers). Finally, three factors appear to have generally no

effect on training: a firm’s trade orientation, labour regulations and—surprisingly—the

legal organization of a firm.

To provide a benchmark, Table 1.8 reports estimation results using the two cross-

section survey datasets (BEEPS–II and BEEPS–III). Estimates are given for each dataset

taken separately and for the pooled dataset. The four sets of OLS estimates correspond

to the four dependent variables: three measuring the share of employees in the respective

category who received training and one variable measuring an overall training intensity

(a weighted index of the previous three variables).
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1.A. Cross-sectional analysis of the model of enterprise training
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Chapter 1. Effect of FDI on training: Empirical evidence from transition countries

Appendix 1.B Overview of clustering techniques

Cluster analysis10 has been applied in many disparate areas including astronomy, tax-

onomy, biology, psychology, linguistics, cryptology and archeology. Originally motivated

by the need to summarise large and possibly multivariate datasets, it has since been

applied in other areas including pattern recognition and market research. The basic idea

is as follows: having a (large) set of objects each being described by a number of char-

acteristics, we ask whether there exists a certain (smaller than the number of objects)

number of groups, often called classes or clusters, such that objects within each group

exhibit ‘similarity’ whilst objects belonging to different groups are ‘dissimilar’ or, (Gor-

don, 1981), the two possible desiderata for a cluster are internal cohesion and external

isolation.

It is important to note the distinction between clustering and assignment or identi-

fication (Gordon, 1981), the latter referring to a procedure whereby an object has to be

assigned to one from a known number of existing classes. In clustering the number of

classes is unknown a priori. Hence, the aim is to uncover the structure of the data.

From a statistical point of view, classification can be regarded as methods for the

exploratory analysis of multivariate data. Classification methods can broadly be di-

vided into partitioning, hierarchical, and clumping (allowing overlapping groups) meth-

ods which together constitute a group of clustering methods, and geometrical methods.

The latter are mostly suitable for visualisation of complex datasets and preliminary anal-

ysis; Chambers and Kleiner (1982) discuss several techniques for graphical analysis of

multivariate data. Development of most ‘classical’ clustering methods dates back to the

early fifties; Hartigan (1975) describes a number of clustering techniques developed by

early seventies and gives precise algorithms for all the methods considered; Breiman,

Friedman, Olshen, and Stone (1984) discusses the tree methodology. A neat account

of hierarchical clustering methods—of which perhaps the most widely known one is the

single linkage or nearest neighbour method—can be found in Everitt et al. (2001); see

also Banks, House, McMorris, Arabie, and Gaul (2004) for a recent account of the new

methods in clustering.

At its basic level, classification may be seen as simply a method to describe a large set

of objects by means of allocating them to a smaller set of homogeneous groups; however,

one can often be interested in classification as a tool for revealing more fundamental

10Classification or cluster analysis is known under different names in different fields of science: it is
referred to as numerical taxonomy in biology, Q-analysis in psychology, unsupervised pattern recognition
in artificial intelligence (on the contrary, discrimination and assignment methods are known under the
term supervised learning), or segmentation in market research; see e.g. Everitt, Landau, and Leese
(2001).
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1.B. Overview of clustering techniques

properties of the data, understanding causalities and dependencies amongst variables.

For a univariate data set, it is natural to argue that if the data have a distribution which

is unimodal, then they correspond to a homogeneous unclustered population; multimodal

distributions, on the contrary, are thought of as characterising a clustered population

with the number of modes representing the number of clusters. In a one- or two-variate

case it is then possible to use graphical methods to reveal potential clusters in the data.

A significant improvement upon hierarchical clustering methods is optimisation clus-

tering techniques. These produce a partition of the set of objects by optimising some

prespecified criterion, and hence, result in an ‘optimal’ partition. The criterion is nor-

mally chosen to measure the ‘adequacy’ of a partition with a given number of groups, and

the optimal number of groups is then delivered by the optimisation procedure; typically

this either minimises the lack of homogeneity or maximises the separation of groups. A

number of different such criteria are available. One popular criterion uses the decomposi-

tion of the dispersion matrix into the sum of within-group and between-group dispersions

and minimises the trace of the within-group dispersion matrix. Other suggested proce-

dures are the minimisation of the determinant of the within-group dispersion matrix and

maximisation of the trace of the product of the between-group dispersion matrix and

the inverse of the within-group dispersion matrix; several modifications drawing on these

ideas have also been proposed.

In principle, optimisation of any chosen criterion should be taken over all possible

partitions of a given set of objects into any possible number of clusters. However, this

is extremely computationally intensive, and various algorithms exist that search for the

optimum value over a small subset of all such partitions; hill-climbing algorithms provide

one example. One of the earliest but still very popular hill-climbing algorithm is the so-

called k-means algorithm11 which is widely available in classification software. k-means

algorithm defines a partition of the feature space by the Dirichlet tessellation of the

cluster representatives (also known as Voronoi tessellation, especially if the space in

question is R2).

More recent methods for cluster analysis include parametric models based on finite

mixture densities, the application of which involves estimating parameters of the assumed

mixture and implied probabilities of cluster membership, density search methods based

on identifying the most ‘dense’ regions in the input space, and a number of methods

that allow for overlapping clusters; see e.g. Everitt et al. (2001) for an overview of these

methods.

11k-means is an L2 method; an L1 sibling of k-means, the k-medoid method, is more robust to outliers
as is usual with L1 methods.
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Chapter 1. Effect of FDI on training: Empirical evidence from transition countries

Fuzzy clustering algorithms and artificial neural networks methods deserve a special

mention. Fuzzy clustering can be thought of as a generalisation of partitioning which

allows for some ambiguity in the data. In particular, for each object the degree of

belonging to each group is estimated by membership coefficients ranging from zero to

one, so that, for instance, an object can belong 70% to one group and 30% to some other

group, etc. Fuzzy clustering thus provides much more detailed information about the

structure of the data set than crisp clustering does, and can be particularly suitable for

estimation with RCS where the vectors of group membership coefficients can be used

as instruments instead of a set of zero-one membership indicators. However, at their

present level of development, fuzzy clustering algorithms require the number of groups

to be known a priori, and an external procedure is required to determine this number.

Despite the bulk of applications of neural networks being for supervised learning

tasks, a number of unsupervised methods exists; see Ripley (1996) for a comprehensive

account of neural methods. One successful example is the Kohonen Self-Organising Fea-

ture Map (SOM) algorithm, which is a special type of clustering algorithm that assigns

objects to clusters arranged on a regular one- or two-dimensional grid; see Kohonen

(1997). The SOM algorithm can be regarded as ‘a spatially smooth version of k-means’,

and a batch version of SOM is an adaptation of the latter (Ripley, 1996). Little is known,

however, about theoretical properties of the SOM algorithm: although simulation stud-

ies report organisation and convergence of the SOM, a proof exists only for the simplest

one-dimensional case; see Cottrell, Fort, and Pagès (1998) for a recent review.
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Chapter 2

Kernel density estimation for time

series data

A time-varying probability density function, or the corresponding cumulative

distribution function, may be estimated nonparametrically using a kernel func-

tion and weighting the observations using schemes derived from time series mod-

elling. The parameters, including the bandwidth, may be estimated by maximum

likelihood or cross-validation. Diagnostic checks may be carried out directly on

residuals given by the predictive cumulative distribution function. Since tracking

the distribution is only viable if it changes relatively slowly, the technique may

need to be combined with a filter for scale and/or location. The methods are

applied to data on the NASDAQ index.
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2.1. Introduction

2.1 Introduction

A probability density function (pdf), or the corresponding cumulative distribution func-

tion (cdf), may be estimated nonparametrically by using kernel function methods. Stan-

dard kernel density estimators (KDE) have been concerned with estimation of the sta-

tionary marginal distribution. The focus of this chapter is to allow the density to change

over time.

If it is assumed that the density is ‘gradually’ changing with time, but the change is

‘slow’, then for a certain (small) period of time the observations can be thought of as

having a common distribution. The changing density can then be analysed by passing

a window of an appropriate size over which the density is assumed to be the same; see

Hall and Patil (1994, p. 1509).

Analysing evolving densities by moving blocks of data is of course equivalent to

weighting observations over time using rectangular weighting function. By weighting we

entertain the possibility of a density potentially changing over time. Beside rectangular,

many other weighing schemes can be contemplated; for example, triangular (linear) or

quadratic weights are very simple to construct and may have their own appeal. The

crucial question, however, is whether there exists a weighting scheme which is optimal

in some way and, if it exists, whether there is a way to find it. This remains an open

question for future research.

For the purposes of this chapter, we are going to concentrate on one of the simplest

time series weighting schemes, viz. the exponentially weighted moving average (EWMA).

EWMA is widely used to estimate the level of a series and hence future observations. A

similar scheme may be used to estimate the conditional variance, e.g. ‘Riskmetrics’, but a

firmer theoretical underpinning is the integrated generalised autoregressive heteroscedas-

ticity (GARCH) model. Other models imply other weighting schemes and hence other

recursions for updating parameter estimates that evolve over time. For example, chang-

ing growth rates and seasonal patterns can easily be accommodated. Recursions are

usually combined with an assumption about the form of the one-step ahead predictive

distribution. As a result a likelihood function can be constructed and then maximized

with respect to the unknown parameters in the model. Once a model has been fitted,

the one-step ahead predictions may be subjected to diagnostic checking by reference to

the predictive distribution. Most commonly the predictive distribution is Gaussian and

tests are carried out on standardised residuals.

This chapter demonstrates that similar ideas carry over to the nonparametric estima-

tion of a time-varying density or distribution function. Not only can updating be carried

out recursively, but a likelihood function can be constructed from predictive distributions.
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Chapter 2. Kernel density estimation for time series data

Hence dynamic parameters, such as the discount parameter in the EWMA, may be esti-

mated by maximum predictive likelihood (MPL). Furthermore the dynamic specification

may be checked by using the residuals given by the predictive cumulative distribution

function. Diagnostics are those appropriate for the probability integral transform, as

described in Diebold, Gunther, and Tay (1998).

Time varying quantiles may be extracted from the cumulative distribution function.

In the time-invariant case there are efficiency gains for estimating quantiles this way as

compared with simply using the sample quantiles calculated from the order statistics,

but the gains may be small; see Sheather and Marron (1990). There has been consid-

erable interest in the last few years in estimating changing quantiles. The conditional

autoregressive value at risk (CAViaR) approach of Engle and Manganelli (2004) models

quantiles in terms of functions of past observations. De Rossi and Harvey (2009) adopt

a different method, based on ideas from signal extraction and using only indicator vari-

ables. One drawback of the CAViaR approach is that, as pointed out by Gourieroux and

Jasiak (2008), the quantiles may cross. This problem is circumvented if the cumulative

distribution function is used.

Section 2.2 discusses linear filters and in section 2.3 filters for estimating time-varying

densities are developed. Attention is focussed on EWMA and a stable filter with an

extra parameter. We also explain how to estimate densities using a two-sided filter that

is the equivalent of smoothing, or signal extraction, in time series and how to construct

algorithms for weighting schemes associated with more general time series models. Ways

in which bandwidth selection methods designed for time-invariant distributions may be

adapted to deal with changing distributions are explored and estimation by maximum

predictive likelihood and cross-validation is discussed. Section 2.4 describes diagnostic

checking with probability integral transforms of the predictions. Section 2.5 discusses

time-varying quantiles. Section 2.6 applies the methods to the NASDAQ index, while

section 2.6.3 compares the results using EWMA with rectangular weighting scheme. The

last section concludes.

2.2 Filters

A linear filter is a scheme for weighting current and past observations in order to estimate

an unobserved component or a future value of the series. Thus an estimator of the level

at time t could be written as

mt =
t−1∑
i=0

wt,iyt−i, t = 1, . . . , T,
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2.2. Filters

where wt,i are weights. One way of putting more weight on the most recent observations

is to let the weights decline exponentially. If t is large then exponential weighting (EW)

sets wt,i = (1 − ω)ωi, i = 0, 1, 2, . . ., where ω is a discount parameter in the range

0 ≤ ω < 1. (The weights sum to unity in the limit as t→∞). The attraction of EW is

that estimates can be updated by the recursion

mt = ωmt−1 + (1− ω)yt, t = 1, . . . , T

with m0 = 0 or m1 = y1. This filter can also be expressed in terms of the one step ahead

prediction, with mt replaced by mt+1|t, that is ŷt+1|t = mt+1|t. Thus the recursion can be

written

mt+1|t = mt|t−1 + (1− ω)νt, t = 1, . . . , T, (2.1)

where νt = yt − ŷt|t−1 is the one-step ahead prediction error or innovation.

The EW filter may be rationalised as the steady-state solution to an unobserved

components model consisting of a random walk plus noise. The model, known as the

local level model, is defined by

yt = µt + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , T, (2.2)

µt = µt−1 + ηt, ηt ∼ NID(0, σ2
η).

where the disturbances εt and ηt are mutually independent and the notation NID (0, σ2)

denotes normally and independently distributed with mean zero and variance σ2. The

Kalman filter for the optimal estimator of µt based on information at time t is

mt+1|t = (1− kt)mt|t−1 + ktyt, t = 1, . . . , T, (2.3)

where kt = pt|t−1/
(
pt|t−1 + 1

)
is the gain, and

pt+1|t = pt|t−1 −
[
p2
t|t−1/

(
1 + pt|t−1

)]
+ q, t = 1, . . . , T,

where q = σ2
η/σ

2
ε is the signal-to-noise ratio; see Harvey (2006, 1989, p.175). The MSE of

mt+1|t is σ2
εpt+1|t. The filter can be initialised using a diffuse prior, i.e. setting m1|0 = 0.

Then as p1|0 → ∞, k1 → 1 and hence m2|1 = y1 and p2|1 = 1 + q. The steady-state

solution for kt is 1 − ω, where the parameter ω is a monotonic function of q = σ2
η/σ

2
ε .

The likelihood function may be constructed from the one-step ahead prediction errors

and maximised with respect to ω.

Smoothed estimates for the Gaussian local level model (2.2) can be computed by
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Chapter 2. Kernel density estimation for time series data

saving the innovations and Kalman gains from the filter (2.3) and using them in the

backward recursions

rt−1 = (1− kt)rt + (1− kt)νt, t = T, . . . , 2,

where νt = yt −mt|t−1 and rT = 0, and

mt|T = mt|t−1 + pt|t−1rt−1, t = 1, . . . , T,

= mt|t−1 + kt(rt + νt)

Since r0 = (1−k1)r1+(1−k1)ν1, initializing with a diffuse prior gives m1|T = (p1|0/(p1|0+

1))(r1 + y1) which tends to r1 + y1 as p1|0 approaches to infinity. The following forward

recursion can also be used

mt+1|T = mt|T + qrt, t = 1, . . . , T − 1,

with m1|T = r1 + y1; see Koopman (1993).

The weights implicitly used in the smoother, that is, the weights in

mt|T =
T∑
t=1

wt,iyi, t = 1, . . . , T,

may be computed using the algorithm of Koopman and Harvey (2003).

In the middle of a semi-infinite sample, the weights decline symmetrically and expo-

nentially (Harvey and De Rossi, 2006, eq. 2.13), viz.

wt,i ≈
1− ω
1 + ω

ω|t−i|, i = 1, . . . , T. (2.4)

The weights in (2.4) do not sum to one in finite samples (cf. equation (2.15)) but provide

a good approximation if both t and T are large. Although these formulae are not used

in our computations, they are useful in showing the nature of the weighting patterns.

The random walk in (2.2) may be replaced by a stationary first-order autoregressive

process. More complex models, perhaps with slopes and seasonals, may be set up and

the appropriate filters derived by putting the model in state space form. Again the

likelihood function may be constructed from the one-step ahead prediction errors given

by the Kalman filter and the implicit weights for filtering and smoothing obtained from

the algorithm of Koopman and Harvey (2003).

A nonlinear class of models may be constructed by applying the linear filters obtained
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2.3. Dynamic kernel density estimation

from unobserved component models to transformations of the observations that reflect

quantities of interest. For example, if the mean is fixed at zero, but the variance changes

we might consider the filter

σ2
t+1|t = (1− ω)y2

t + ωσ2
t|t−1 = σ2

t|t−1 + (1− ω)(y2
t − σ2

t|t−1), t = 1, . . . , T,

where the notation σ2
t+1|t accords with that used by Andersen, Bollerslev, Christoffersen,

and Diebold (2006) for the variance in a GARCH model. This scheme is an EWMA in

squares, with y2
t − σ2

t|t−1 playing a similar role to the innovation in (2.1). It corresponds

to integrated GARCH, where the predictive distribution in the Gaussian case is yt |
Yt−1 ∼ N(0, σ2

t|t−1). The more general filter

σ2
t+1|t = (1− ω∗ − ω)σ2 + ω∗y2

t + ωσ2
t|t−1, t = 1, . . . , T,

is stable when ω∗ + ω < 1 and hence is able to generate a stationary series. Estimation

may be simplified by setting σ2 equal to the (unconditional) variance in the sample; this

is known as ‘variance targeting’, as in Laurent (2007, p. 25).

If the above filtering schemes are viewed as approximations to an unobserved variance,

the smoother that would correspond to the filter in a linear unobserved components

model may be useful as a descriptive device.

The next section shows how filters may be applied to the whole distribution, rather

than to selected moments.

2.3 Dynamic kernel density estimation

Using a sample of T observations drawn from a distribution with cdf F (y) with a corre-

sponding pdf f(y), a kernel estimator of f(y) at point y is given by

f̂T (y) =
1

Th

T∑
i=1

K

(
y − yi
h

)
, (2.5)

where K(·) is the kernel and h the bandwidth. The kernel, K(·), is a bounded pdf which

is symmetric about the origin; see also discussion in Chapter 3.

The kernel estimator of the cumulative distribution function is given by

F̂T (y) =
1

T

T∑
i=1

H

(
y − yi
h

)
,
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Chapter 2. Kernel density estimation for time series data

where H(·) is a kernel which now takes the form of a cdf. A kernel of this form may be

obtained by integrating the kernel in (2.5).

2.3.1 Filtering and smoothing

In order to estimate a time varying density, a weighting scheme may be introduced into

the kernel estimator (2.5), that is,

f̂t(y) =
1

h

t∑
i=1

K

(
y − yi
h

)
wt,i, t = 1, . . . , T, (2.6)

while, for the distribution function,

F̂t(y) =
t∑
i=1

H

(
y − yi
h

)
wt,i. (2.7)

In both cases,
∑t

i=1wt,i = 1, t = 1, . . . , T . The weights, wt,i, i = 1, . . . , t, t = 1, . . . , T ,

may change over time, although in the steady-state, wt,i = wt−i.

Similarly for smoothing

f̂t|T (y) =
1

h

T∑
i=1

K

(
y − yi
h

)
wt,i, t = 1, . . . , T,

and

F̂t|T (y) =
T∑
i=1

H

(
y − yi
h

)
wt,i, (2.8)

with
∑T

i=1wt,i = 1, t = 1, . . . , T .

2.3.2 Recursions

Simple exponential weighting gives recursions similar to those of section 2.2. Thus for

the cdf

F̂t(y) = ωF̂t−1(y) + (1− ω)H

(
y − yt
h

)
, t = 1, . . . , T.

Schemes of this kind are not new; see, for example, Wegman and Davies (1979).

The above recursion can be re-written with F̂t+1|t(y) and F̂t|t−1(y) replacing F̂t(y)

and F̂t−1(y) respectively. A simple re-arrangement then gives

F̂t+1|t(y) = F̂t|t−1(y) + (1− ω)Vt(y), 0 ≤ ω < 1, t = 1, . . . , T,
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2.3. Dynamic kernel density estimation

where

Vt(y) = H

(
y − yt
h

)
− F̂t|t−1(y) (2.9)

plays a similar role to the innovation1 in (2.1). However, Vt(y) < 0 when yt > y. Note

also that −F̂t|t−1(y) ≤ Vt(y) ≤ 1− F̂t|t−1(y).

An analogous recursion can be written down for the pdf. To be specific

f̂t+1|t(y) = f̂t|t−1(y) + (1− ω)νt(y), 0 ≤ ω < 1, t = 1, . . . , T,

where the innovation is

νt(y) =
1

h
K

(
y − yt
h

)
− f̂t|t−1(y), (2.10)

with −f̂t|t−1(y) ≤ νt(y) ≤ h−1K(0).

The filter can be initialized with f̂1|0(y) = 0 and, in order to ensure that the weights

discounting past observations sum to unity, ω may be set to 1− kt, where kt is defined

in (2.3), until such time, t = m, as the filter is deemed to have converged. Alternatively

f̂m+1|m(y) may be computed directly from (2.6). The cdf recursion for F̂t+1|t(y) may be

similarly initialized from the first m observations.

The stable filter is

F̂t+1|t(y) = (1− ω∗ − ω)F (y) + ω∗H

(
y − yt
h

)
+ ωF̂t|t−1(y), t = 1, . . . , T, (2.11)

where F (y) is the unconditional kernel density for the whole sample. Setting the initial

condition as F̂1|0(y) = F (y) means that the weight attached to F (y) at time t is (1−ω∗),
and it gradually tends to (1− ω∗ − ω). We can also write

F̂t+1|t(y) = (1− ω∗ − ω)F (y) + (ω∗ + ω)F̂t|t−1(y) + ω∗Vt, t = 1, . . . , T.

More complex weighting schemes, derived from unobserved components models, may

also be adopted. For example an integrated random walk plus trend yields a cubic spline

with the Kalman filter reduced to a single equation recursion which for the cdf is

F̂t+1|t(y) = 2F̂t|t−1(y)− F̂t−1|t−2(y) + k1ω
∗H

(
y − yt
h

)
+ k2ω

∗H

(
y − yt−1

h

)
,

where k1 and k2 are parameters that depend on a signal-to-noise ratio in the original

1In a Gaussian model, H(yt) = yt and F̂t|t−1(y) = ŷt|t−1. The only impact is on location and νt is a
scalar.
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unobserved components model.

Finally, other weighting schemes can be used that are not necessarily motivated in

terms of an underlying model. The simplest scheme, perhaps, is the one using rectangular

weights (i.e. analysing moving blocks of data); this is illustrated in section 2.6.3.

2.3.3 Estimation

The recursive nature of the filter leads naturally to maximum predictive likelihood (MPL)

estimation of the bandwidth, h, and any parameters governing the dynamics, such as

the discount factor, ω, in exponential weighting. The predictive log-likelihood function,

normalized by the sample size, is

`(ω, h) =
1

T −m

T−1∑
t=m

ln f̂t+1|t(yt+1)

=
1

T −m

T−1∑
t=m

ln

[
1

h

t∑
i=1

K

(
yt+1 − yi

h

)
wt,i(ω)

]
,

(2.12)

where wt,i(ω) are the weights, which may be obtained as described in section 2.2, and m

is some preset number of observations used to initialise the procedure. The value of m

will depend on the sample at hand, but it may not be unreasonable to suggest setting

m = 50 or 100 if the sample size is large. The main consideration is that the predictions

should be meaningful.

The predictive log-likelihood (2.12) can be maximized subject to ω ∈ (0, 1] and

h > 0 using constrained maximization with numerical derivatives obtained via finite

differencing. Using a non-negative kernel with unbounded support, such as a Gaussian

kernel, theoretically guarantees that f̂t+1|t(yt+1) > 0 for all t = m, . . . , T − 1. A problem

arises when the density is evaluated at outlier points for which the estimate is numerically

zero. In these cases f̂t+1|t(·) can be set equal to a very small positive number.

From a theoretical point of view, it is interesting to note that as in a linear Gaussian

model, such as (2.2), the predictive likelihood can be written in terms of the innovations

since, from (2.10), f̂t+1|t(yt+1) = f̂t|t−1(yt+1)+(1−ω)νt(yt+1) for t = m, . . . , T −1. Thus,

instead of re-computing the density estimate at each t using the data up to t−1 inclusive,

the recursive formulae given in section 2.3 can, in principle, be used. However, in order

to evaluate the log-likelihood (2.12), the grid for the recursion will need to include all

the sample values, y1, . . . , yT .

For smoothing, the parameters can be estimated by maximizing the likelihood cross-
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2.3. Dynamic kernel density estimation

validation (CV) criterion

CV (ω, h) =
1

T

T∑
t=1

ln f̂(−t)|T (yt) =
1

T

T∑
t=1

ln

1

h

T∑
i=1
i 6=t

K

(
yt − yi
h

)
wt,T,i(ω)

 , (2.13)

where wt,T,i(ω) is given by a two-sided smoothing filter such as (2.4).

Alternatively, one can simply use the same parameters as for filtering.

The number of parameters to be estimated can be reduced by setting the bandwidth

according to a rule of thumb, h = cT−1/5, where the constant c depends on the spread

of the data2 and T is set equal to the effective sample size3, T (ω), a function of ω

only. In this case the likelihood and CV criterion are maximized only with respect to

ω. In the steady-state of the local level model, the mean square error (MSE) of the

contemporaneous filtered estimator, mt, of the level is σ2
ε(1− ω). If the level were fixed,

the MSE of the sample mean would be σ2
ε/T . This suggests an effective sample size for

filtering of T (ω) = 1/(1 − ω). For smoothing the suggestion is T (ω) = (1 + ω)/(1 −
ω) ≈ 2/(1 − ω), provided that t is not too close to the beginning or end of the sample.

Thus when the bandwidth selection criterion is proportional to T−1/5, the bandwidth for

filtering will be larger by a factor of approximately 21/5 = 1.15.

In our examples, the values of the bandwidth chosen by maximising the predictive

likelihood or the CV criterion were usually close to the normal reference rule bandwidth

with the effective sample size, T (ω) = 1 /(1− ω) , in place of T .

2The constant in the asymptotically optimal bandwidth, h = cT−1/5, depends on the kernel and
the curvature of the true density; see equation (3.4) and discussion in section 3.2. As the true density
is unknown, the idea behind the rule of thumb (or plug-in) bandwidth is to construct a simple rule
for choosing c which performs well in practice. For instance, if the kernel is the Gaussian density,
and the underlying distribution is normal with variance σ2, the constant in the asymptotically optimal
bandwidth is c = 1.06σ, which gives the normal reference rule bandwidth h = 1.06σT−1/5. If the
density is close to normal, this bandwidth usually perform well, but often results in oversmoothing;
see e.g. Jones, Marron, and Sheather (1996). In the presence of outliers, a bandwidth choice based

on robust measures of spread may perform better. One popular choice is c = 1.06 min
(
σ̂, ÎQR/1.34

)
,

where ÎQR is the sample interquartile range; see Silverman (1986). See inter alia Wand and Jones
(1995), Silverman (1986), Pagan and Ullah (1999), Li and Racine (2007) and Sheather (2004) for a
general discussion of bandwidth selection.

3Effective sample size is a measure of the ‘weighting effect’. It is obtained by comparing the variances
of the weighted and unweighted estimates. To illustrate this with a simple example, let x̄w =

∑T
t=1 wtxt

be a weighted average of T independent observations, x1, . . . , xT , drawn from a population with the
variance σ2, and wt’s are the weights which are non-negative and normalised to sum to 1. The variance

of x̄w is Var {x̄w} = σ2
∑T
t=1 w

2
t = σ2/b, where b = 1

/∑T
t=1 w

2
t . When there is no weighting, i.e. all

wt’s are 1, the variance is Var {x̄w} = σ2/T . Hence, b measures the effective sample size; it is less than
the actual sample size, T . (A related notion is that of ‘weighting efficiency’ which measures how much
data has been retained.)
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Chapter 2. Kernel density estimation for time series data

Although the idea of choosing bandwidth by likelihood cross validation (also known

as Kullback-Leibler cross validation) is not new (see e.g Pagan and Ullah, 1999, sec. 2.7),

in the present contents the properties of the estimators for h obtained by maximising

the MPL or CV criterion are as yet unknown and are subject to future research.

The estimation procedure thus involves first maximizing the likelihood function (2.12)

or the CV criterion (2.13) to obtain estimates of the smoothing parameter ω and the

bandwidth h. The estimates are then used to compute the estimates of the pdf, cdf

and quantiles. cdf (filtered or smoothed) can be computed by applying formulae (2.7)

and (2.8) directly. Quantile functions can be obtained by inverting estimated cdfs as

described in section 2.5.1 below.

In our computations, simple EWMA weights are used. To be precise, the weights for

filtering are given by

wt,i =

 1−ω
1−ωtω

(t−i) if ω ∈ (0, 1)

1/t if ω = 1,
i = 1, . . . , t, t = m, . . . , T, (2.14)

where ω ∈ (0; 1] is a smoothing parameter. These weights are positive and sum to unity

over i by construction. Two-sided EWMA weights take the form

wt,T,i =

 1−ω
1+ω−ωt−ωT−t+1ω

|t−i| if ω ∈ (0, 1)

1/T if ω = 1,
i, t = 1, . . . , T, (2.15)

where, as before, ω ∈ (0; 1] is a smoothing constant. The weights for cross-validation are

given by

wCV

t,T,i =

 1−ω
2ω−ωt−ωT−t+1ω

|t−i| if ω ∈ (0, 1)

1/(T − 1) if ω = 1.
i, t = 1, . . . , T, i 6= t. (2.16)

2.3.4 Sequential estimation

In section 2.3.3 only one set of parameters is estimated per series, as is common in

the time series literature. However, if the purpose lies in forecasting, issuing a filtered

density at time t as a forecast at time t + 1 will result in over-optimism4 as in practice

only observations up to time t will be available. This is due to the fact that in (2.12)

the same data is used to fit the model and assess its error.

4Optimism is the expected difference between the in-sample prediction error and the training error,
which is typically positive. Formally, let Y be a target variable, X a vector of predictors, and ĝ(X)
be a prediction model estimated on a training sample (yi, xi), i = 1, . . . , n. Let L (Y, ĝ(X)) be the loss
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Hence, at time t, instead of (2.12), the predictive log-likelihood should be given by

`(ωt, ht) =
1

t−m0

t−1∑
s=m0

ln f̂s+1|s(ys+1)

=
1

t−m0

t−1∑
s=m0

ln

[
1

h

s∑
i=1

K

(
ys+1 − yi

h

)
ws,i(ω)

]
, T ≥ t ≥ m1 > m0, (2.17)

where m1 is the number observations which are used for initialization and m0 is the

number of observations which allows a sensible density estimate to be computed; m1−m0

observations will be used to obtain the first estimates of the parameters. If the sample is

large, we suggest setting m0 = 50 and m1 = 100 or more. Maximizing `(ωt, ht) subject

to ωt ∈ (0, 1] and ht > 0 for each t gives a sequence of estimates {ω̂t, ĥt}Tt=m1
which are

then used to obtain filtered estimates of the pdf, cdf and quantiles.

Note that (2.17) is the prequential likelihood of Dawid (1984, p. 287). It avoids the

over-optimism of (2.12) in which future values of y are used to estimate the parameters

entering the forecast at time t. Maximizing (2.17) is also equivalent to minimizing the

‘ignorance’ of a forecaster, which is a strictly proper scoring rule in that the expected

ignorance has a single minimum when the forecast density is the same as the true density;

see Roulston and Smith (2002, sec. 2).

2.4 Specification and diagnostic checking

The probability integral transform (PIT) of an observation from a given distribution has a

uniform distribution on the range [0, 1]. Hence the hypothesis that a set of observations

follow a particular parametric distribution can be tested. One possibility is to use a

Kolmogorov-Smirnov test.

PITs are often used to assess forecasting schemes; see Dawid (1984) or Diebold et al.

(1998). Here the PIT is given directly by the predictive kernel cdf, that is the PIT of

the t-th observation is F̂t|t−1(yt), t = m + 1, . . . , T . As with the evaluation of f̂t|t−1(yt)

in the likelihood function, the calculation at each point in time need only be done for

y = yt.

function. The test (or generalisation) error is the expected prediction error over an independent test
sample, i.e. Err = E {L (Y, ĝ(X))}. Training error is the average loss over the training sample, i.e. err =
1
n

∑n
i=1 L (yi, ĝ(xi)). Finally, the in-sample error is defined as Errin = 1

n

∑
i=1EY new {L (Y newi , ĝ(xi))},

where Y new denotes n new responses observed at the values xi, i = 1, . . . , n. Optimism is then defined
as Errin−Ey {err}; see e.g. Hastie, Tibshirani, and Friedman (2001, Sec. 7.4).
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Chapter 2. Kernel density estimation for time series data

PITs may be expressed in terms of innovations. Specifically,

F̂t|t−1(yt) = H(0)− Vt|t−1(yt) = 0.5− Vt|t−1(yt).

Hence E(Vt|t−1(yt)) = 0 as E(Ft(yt)) = 0.5.

If PITs are not uniformly distributed, their shape can still be informative. For

example, a humped distribution indicates that forecasts are too narrow and that tails

are not adequately accounted for; see Laurent (2007, p. 98). Plots of the autocorrelation

functions (ACFs) of the PITs, and of absolute values5 and powers of demeaned PITs, may

indicate the source of serial dependence. Tests statistics for detecting serial correlation,

such as Box-Ljung and stationarity test statistics may be used, but it should be noted

that their asymptotic distribution is unknown. There may sometimes be advantages in

transforming to normality as in Berkowitz (2001).

2.5 Time-varying quantiles

Visualising a time-varying density requires either a three-dimensional plot or a movie

depicting the changes. One way to create a two-dimensional static display is to focus on

selected quantiles: a plot showing how quantiles have evolved over time provides a good

visual impression of the changing distribution.

Selected quantiles are also of independent interest and considerable practical impor-

tance. For example, value at risk (VaR)—the standard measure of market risk used in

finance—is a particular quantile of future portfolio values (Engle and Manganelli, 2004).

Also, predicting wind power by issuing forecasts on a number of quantiles is an important

tool in the daily management of wind generation (Pinson, Nielsen, Møller, Madsen, and

Kariniotakis, 2007).

Quantiles can be obtained by inverting an estimate of the cumulative distribution

function as described in the first sub-section below.

The second sub-section reviews some of the procedures for direct estimation of time-

varying quantiles by formulating a model for a particular quantile and contrasts them

with the nonparametric approach proposed in this chapter.

2.5.1 Kernel-based estimation

When the distribution is constant, the τ -quantile, ξ(τ), 0 < τ < 1, can be estimated

from the distribution function by solving F̂ (y) = τ , i.e. F̂−1(τ) = ξ̂(τ). Nadaraya

5The absolute value of a demeaned PIT is also uniformly distributed, unlike its square.
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2.5. Time-varying quantiles

(1964) shows that ξ̂(τ) is consistent and asymptotically normal with the same asymptotic

distribution as the sample quantile. Azzalini (1981) proposes the use of a Newton-

Raphson procedure for obtaining ξ̂(τ).

Filtered and smoothed estimators of changing quantiles can be similarly computed

from time-varying cdf’s. Thus, for filtering, ξ̂t|t−1(τ) = F̂−1
t|t−1(τ), for t = m, . . . , T . The

iterative procedure to calculate ξ̂t|t−1(τ) is based on the direct evaluation of F̂t|t−1(y) in

the vicinity of the quantile. To reduce computational time, a good starting value can be

obtained from a preliminary estimate of a cdf by (linear) interpolation6. Alternatively,

for t = m+ 1, . . . , T , the estimate in the previous time period may be used as a starting

value.

The estimates of bandwidth obtained by MPL or CV suffer from the drawback that

the asymptotically optimal choice of bandwidth for a kernel estimator of a cdf is propor-

tional to T−
1
3 , whilst the optimal bandwidth for a pdf is proportional to T−

1
5 ; see, for

example, Azzalini (1981). A bandwidth for a kernel estimator of a cdf can be found by

CV, as in Bowman, Hall, and Prvan (1998), or by a rule of thumb approach, as in Alt-

man and Léger (1995). It may be worth experimenting with these bandwidth selection

criteria for quantile estimation. Similar considerations may apply to the computation of

the PITs.

2.5.2 Direct estimation of individual quantiles

Yu and Jones (1998) adopt a nonparametric approach. Their (smoothed) estimate, ξ̂t(τ),

of the τ -quantile is obtained by (iteratively) solving

h∑
j=−h

K(
j

h
)IQ(yt+j − ξ̂t) = 0,

where ξ̂t = ξ̂t(τ), K(·) is a weighting kernel (applied over time), h is a bandwidth and

IQ(·) is the quantile indicator function

IQ(yt − ξt) =

{
τ − 1, if yt < ξt,

τ, if yt > ξt,
t = 1, . . . , T.

6To be precise, in our code, the cdf is first estimated on a grid of K points ξ1, . . . , ξK , and the initial

estimate of ξt is obtained by finding ξlo = maxj

(
ξj : F̂t(ξj) ≤ τ

)
and ξup = minj

(
ξj : F̂t(ξj) ≥ τ

)
, and

linearly interpolating between them. This is then used as a starting value in solving F̂t(ξt) = τ for ξt.
The final solution can usually be found in just a few iterations (we used the Matlab routine fzero). In
fact, with large K, the precision of the initial estimate of ξt will be sufficient for all practical purposes.
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Chapter 2. Kernel density estimation for time series data

IQ(0) is not determined, but in the present context we can set IQ(0) = 0. Adding and

subtracting ξ̂t to each of the IQ(yt+j − ξ̂t) terms in the sum leads to the alternative

expression

ξ̂t =
1∑h

j=−hK(j/h)

h∑
j=−h

K(
j

h
)[ξ̂t + IQ(yt+j − ξ̂t)]. (2.18)

De Rossi and Harvey (2006, 2009) estimate time-varying quantiles by smoothing with

weighting patterns derived from linear models for signal extraction. These quantiles have

no more than Tτ observations below and no more than T (1− τ) above. The weighting

scheme derived from the local level model gives

ξ̃t =
1− ω
1 + ω

∞∑
j=−∞

ω|j|[ξ̃t + IQ(yt+j − ξ̃t+j)],

in a doubly infinite sample; cf. (2.4). The nonparametric kernel K(j/h) in (2.18) is

replaced by ω|j| so giving an exponential decay. Note that the smoothed estimate, ξ̂t+j,

is used instead of ξ̂t when j is not zero. The time series model determines the shape of

the kernel while the signal-to-noise ratio plays a role similar to that of the bandwidth.

The smoothed estimate of a quantile at the end of the sample is the filtered estimate.

The model-based approach automatically determines a weighting pattern at the end of

the sample. For the EWMA scheme derived from the local level model, the filtered

estimator must satisfy

ξ̃t|t = (1− ω)
∞∑
j=0

ωj[ξ̃t−j|t + IQ(yt−j − ξ̃t−j|t)].

Thus ξ̃t|t is an EWMA of the synthetic observations, ξ̃t−j|t + IQ(yt−j − ξ̃t−j|t). As new

observations become available, the smoothed estimates need to be revised. However,

filtered estimates could be used instead, so

ξ̂t+1|t(τ) = ξ̂t|t−1(τ) + (1− ω)νt(τ), (2.19)

where νt(τ) = IQ(yt − ξ̂t|t−1(τ)) is an indicator that plays an analogous role to that of

the innovation in the Kalman filter. Such a scheme would belong to the class of CAViaR

models proposed by Engle and Manganelli (2004) in the context of tracking value at risk.

In CAViaR, the conditional quantile is

ξ̂t+1|t(τ) = α0 +

q∑
i=1

βiξ̂t+1−i|t−i(τ) +
r∑
j=1

αjg(yt−j),
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2.6. Empirical application: NASDAQ index

where g(yt) is a function of yt. Suggested forms include the adaptive model

ξt(τ) = ξt−1(τ) + γ{[1 + exp(δ[yt−1 − ξt−1(τ)])]−1 − τ}, (2.20)

where δ is a positive parameter. The recursion in (2.19) has the same form as the limiting

case (δ →∞) of (2.20). Other CAViaR specifications, which are based on actual values,

rather than indicators, may suffer from a lack of robustness to additive outliers. That

this is the case is clear from an examination of Fig. 1 in Engle and Manganelli (2004,

p. 373). More generally, recent evidence on predictive performance in Kuester, Mittnik,

and Paolella (2006, pp. 80–81) indicates a preference for the adaptive specification.

The advantage of fitting individual quantiles is that different parameters may be

estimated for different quantiles. The disadvantage of having different parameters is

that the quantiles may cross; see Gourieroux and Jasiak (2008). If the parameters across

quantiles are restricted to be the same to prevent quantiles crossing, the ability to have

different models for different quantiles loses much of its appeal.

2.6 Empirical application: NASDAQ index

Data on the NASDAQ index was obtained from Yahoo-Finance (http://uk.finance.

yahoo.com). The sample starts on 5th February 1971 and ends on 20th February 2009,

thus covering 13,896 days. Once weekends and holidays are excluded, there are 9,597

observations. As is usually the case with financial series, there is clear volatility clustering

and the correlograms of the absolute values and squares of demeaned returns are large

and slowly decaying; see Fig. 2.1. Some of the sample autocorrelations for the actual

returns and their cubes also lie outside ±2 standard deviations from the horizontal axis.

The distribution of returns is heavy-tailed and asymmetric.

2.6.1 Time-varying kernel

Fig. 2.2 shows filtered (upper panel) and smoothed (lower panel) time-varying quantiles

of NASDAQ returns for τ = 0.05, 0.25, 0.50, 0.75, 0.95. Exponential weights and an

Epanechnikov kernel are used throughout. The discount parameters for filtering and

smoothing are estimated by maximizing the log-likelihood and likelihood CV criterion

respectively. MPL estimates of the discount parameter and bandwidth are, respectively,

ω̃ = 0.9928 and h̃ = 0.4286. CV estimates (for smoothing) are ω̂ = 0.9928 and ĥ =

0.2555.

The quantiles, plotted in Fig. 2.2, seem to track the changing distribution well.
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Figure 2.1: ACFs of NASDAQ returns.

Panel A: ACF of returns yt. Panels B, C and D: ACFs of (yt− ȳ)3, |yt− ȳ| and (yt− ȳ)2 respectively.
Lines parallel to the horizontal axis are ±2 standard deviations (i.e. 2/

√
T ).

However, as Fig. 2.3 shows, there is still some residual serial correlation in absolute

values and squares of the PITs. With raw data, changing volatility tends to show up

more in absolute values than in squares, as in Fig. 2.1. One reason for this is that

sample autocorrelations are less sensitive to outliers when constructed from absolute

values rather squares. However, the PITs do not have heavy tails, and the absolute

value sample autocorrelations are, in most cases, slightly less than the corresponding

sample autocorrelations computed from squares.

The first-order sample autocorrelation in the raw returns is rather high. It is even

higher in the PITs. This may be partly a consequence of the transformation, though the

higher order autocorrelations are, if anything, smaller than the corresponding autocor-

relations for the raw returns.

The sample autocorrelations of the third and fourth powers of the demeaned PITs

(not shown here) are, like those of the absolute values, small but persistent.

The histogram of PITs, shown in Fig. 2.3 panel D, is too high in the middle and

too low at the ends, showing departures from uniformity and hence imperfections in

the forecasting scheme. The hump-shaped distribution of the PITs indicates that tail

behaviour is not adequately captured. The problem could be caused by the bandwidth

being too wide, resulting in a degree of oversmoothing. Forecasting performance might
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Figure 2.2: Filtered (upper panel) and smoothed (lower panel) time-varying quantiles of
NASDAQ returns.
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Figure 2.3: ACFs and histogram of PITs.

Panels A, B and C: ACFs of PITs, zt, absolute values, |zt − z̄|, and squares of the demeaned PITs,
(zt − z̄)2, respectively; lines parallel to the horizontal axis are ±2 standard deviations (i.e. 2/

√
T ).

Panel D: histogram of PITs; dashed lines are ±2 standard deviations (i.e. 2
√

(k − 1)/T , where k is the
number of bins).
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2.6. Empirical application: NASDAQ index

be improved by using different bandwidths for the tails and middle of the distribution.

Changing the basis for bandwidth selection is unlikely to correct the failure to pick

up short term serial correlation (at lag one) or to remove all the movements in volatility.

The reason is that a time-varying kernel can really only pick up long-term changes.

Hence there may be a case for pre-filtering.

2.6.2 ARMA-GARCH residuals

To pick up trending and/or seasonal movements the level can be modelled separately,

for example by formulating a state space model. Short term serial correlation may be

similarly handled by fitting an autoregressive–moving average (ARMA) model. The

most straightforward method for dealing with short-term movements in variance is to fit

a GARCH model for the conditional variance. Dynamic kernel estimation can then be

applied to the innovations. As the following example shows, such analysis can pick up

time variation in the features of the distribution not captured by the parametric model

used to pre-filter the data.

First order serial correlation and conditional volatility on NASDAQ returns can be

modelled parametrically by an MA(1) model with a GARCH(1,1)-t conditional variance

equation. The model was fitted using the G@RCH 5 program of Laurent (2007). GARCH

parameters are estimated to be 0.0979 (the coefficient of the lagged squared observation)

and 0.9010, so the sum is close to the IGARCH boundary. The estimated MA(1) pa-

rameter is 0.2102, while the degrees of freedom of the t-distribution is estimated to be

7.04.

Fitting a time-varying kernel to the GARCH residuals gives MPL estimates of ω̃ =

0.9996 and h̃ = 0.3595, and CV estimates ω̂ = 0.9991 and ĥ = 0.3339. The discount

parameters are bigger than those estimated for the raw data and since they are closer to

one there is less scope for picking up time variation, as can be seen from the quantiles

in Fig. 2.4 (quantiles are shown for τ = 0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99). As

might be anticipated, pre-filtering effectively renders the median and inter-quartile range

constant. Any remaining time variation is to be found in the high and low quantiles.

Some notion of the way in which tail dispersion changes can be obtained by plotting

the ratio of the τ to 1− τ range, for small τ , to the interquartile range, that is

α̃t(τ) =
ξ̃t(1− τ)− ξ̃t(τ)

ξ̃t(0.75)− ξ̃t(0.25)
, τ < 0.25,

where ξ̃t(τ) is an estimator obtained by filtering or smoothing. Fig. 2.5 plots α̃t(τ) for
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Figure 2.4: Smoothed time-varying quantiles of GARCH residuals.

τ = 0.01 and 0.05 computed using smoothed quantiles. Note that α(0.05) is 2.44 for a

normal distribution and 2.66 for t7; the corresponding figures for α(0.01) are 3.45 and

4.22 respectively.

For a symmetric distribution ξ(τ) + ξ(1 − τ) − 2ξ(0.5) is zero for all t = 1, . . . , T .

Hence a plot of the skewness measure

β̃t(τ) =
ξ̃t(1− τ) + ξ̃t(τ)− 2ξ̃t(0.5)

ξ̃t(1− τ)− ξ̃t(τ)
, τ < 0.5,

shows how asymmetry captured by the complementary quantiles, ξt(τ) and ξt(1 − τ),

changes over time. The statistic β(0.25) was originally proposed by Bowley in 1920; see

Groeneveld and Meeden (1984) for a detailed discussion. The maximum value of β̃t(τ)

is one, representing extreme right (positive) skewness and the minimum value is minus

one, representing extreme left skewness. Fig. 2.5 plots β̃t(τ) for τ = 0.01, 0.05 and 0.25

using the smoothed quantiles. There is substantial time variation in skewness: it is high

in the late 70s, whereas around 2002–2005, the distribution is almost symmetric. It is

unclear why this is occurring and these features may be worthy of further investigation.

The ACFs of the PITs, their squares and absolute values are shown in Fig. 2.6.

There is far less serial correlation than in the corresponding correlograms in Fig. 2.3.

The histogram of PITs from a time-varying kernel fitted to ARMA-GARCH residuals,

shown in Fig. 2.6, displays the same hump-shaped pattern as was evident in the PITs

from the raw data, but arguably to a lesser extent.
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Figure 2.6: ACFs and histogram of PITs of GARCH residuals.

Panels A, B and C: ACFs of PITs, zt, absolute values, |zt − z̄|, and squares of the demeaned PITs,
(zt − z̄)2, respectively; lines parallel to the horizontal axis are ±2 standard deviations (i.e. 2/

√
T ).

Panel D: histogram of PITs; dashed lines are ±2 standard deviations (i.e. 2
√

(k − 1)/T , where k is the
number of bins).

61



Chapter 2. Kernel density estimation for time series data

Pre-filtering the data with a GARCH model thus moves the focus away from the

dynamics of conditional volatility (well captured by GARCH) and towards a finer features

of the distribution discernible by analysing high quantiles. Such analysis may also be

used as a part of a model building procedure; for example, if a parametric model is

sought for NASDAQ returns, it should at least accommodate changes in skewness.

The disadvantage of pre-filtering is that the treatment of location and scale becomes

decoupled from the estimation of the distribution as a whole.

2.6.3 Alternative weighting schemes

As has been pointed out before, although EWMA weights arise naturally in a class of

models (section 2.2), it is not known whether they possess any optimality properties in

the present context. It is thus of interest to compare the results employing alternative

weighting schemes.

The simplest way to analyse evolving densities is by passing a window of a certain

size, m, through the series; that is, using rectangular weights. This suggestion appears

in, inter alia, Hall and Patil (1994), but finding the optimal size of the window is left to

the subjective judgement of the user. We propose estimating m in the same way as the

discount parameter in the EWMA weighting scheme, viz. by maximising the predictive

likelihood and the likelihood CV criterion for one- and two-sided filtering, respectively.

For example, for NASDAQ returns, maximising the CV criterion gives the optimal

window size m̂ = 633 (that is, 316 observations are used on either side of t) with the

optimal bandwidth estimated as ĥ = 0.3631. The resulting smoothed quantiles are shown

as solid lines in Fig. 2.7; quantiles obtained using exponential weights are replicated for

ease of comparison (dashed lines). Qualitatively, both weighting schemes deliver similar

results, with the rectangular weighting resulting in a somewhat more rugged pattern.

Finally, other simple weighting patterns—such as linear (triangular) or quadratic—

can be used. Estimation results (not reported) using these weighting schemes, however,

appear to be inferior to EWMA and rectangular weighting.

2.7 Conclusions

We have proposed a modification of kernel density estimation that allows changes in the

density, and hence quantiles, to be captured by weighting observations using schemes

derived from time series models. The paper shows how the implied recursive procedures

are of a similar form to those used for filtering time series observations to extract evolving

means or variances. Associated smoothing schemes are obtained in the same way.
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Figure 2.7: Smoothed time-varying quantiles of NASDAQ returns.

As is the case for many time series models, the likelihood function may be obtained

from the predictive distribution. Hence the parameters governing the dynamics of the

kernel can be estimated, together with the bandwidth, by MPL. Estimates for smoothing

may be obtained by CV. The innovations produced by the predictive cdf are PITs and

can be used for diagnostic checking. If there is time variation in medians, asymmetry

and the tails of distributions, tracking the changes in the whole distribution, or in a

limited number of quantiles or quantile contrasts, may be informative.

Attention has been focussed on discounting past observations using EW. Exponential

weighting is very simple to apply. However, generalizations to other weighting schemes

are not difficult because the filters can be obtained from the state space forms of appro-

priate time series models. One scheme that certainly warrants future investigation is the

stable filter corresponding to the standard stationary GARCH model.

The techniques are illustrated on NASDAQ stock market index. These applications

show the advantages of the proposed methods, but also expose their limitations. In

particular the methods are only appropriate for monitoring distributions that change

relatively slowly over time, since otherwise the effective sample size is too small. Short

bursts of volatility may have to be accommodated by fitting a GARCH model.

A second limitation is that the bandwidth chosen by maximising the likelihood func-

tion or the likelihood CV criterion appears to result in a degree of oversmoothing, which
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manifests itself in the hump-shaped histogram of the PITs. It may be possible to miti-

gate this effect by letting the bandwidth vary over the support of the distribution, but

the fundamental problem is that there is not enough information to provide an accurate

description of tail behaviour. Modifications, such as combining kernel estimators with

extreme value distributions for the tails, as in Markovich (2007, pp. 101–111), may be

worth exploring.

Further research is required to assess the relative merits of choosing the bandwidth

by maximising MPL and CV criterion or by a rule of thumb or other methods.
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Generalised empirical

likelihood–based kernel density

estimation

If additional information about the distribution of a random variable is available

in the form of moment conditions, a weighted kernel density estimate reflect-

ing the extra information can be constructed by replacing the uniform weights

with the generalised empirical likelihood probabilities. It is shown that the re-

sultant density estimator provides an improved approximation to the moment

constraints. Moreover, a reduction in variance is achieved due to the systematic

use of the extra moment information.
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3.1. Introduction

3.1 Introduction

Nonparametric density estimation is an important tool in applied econometrics, finance,

and many other areas, where it is often used for exploratory data analysis or as a part of

another estimator; see e.g. Pagan and Ullah (1999), Wand and Jones (1995), Silverman

(1986) and Li and Racine (2007).

The simplest case of nonparametric density estimation can be stated as follows. Let

X be a univariate random variable which has a continuous probability density function

f , and let {X1, . . . , Xn} denote a random sample of size n. The goal is then to estimate

f based on the observed sample.

The kernel density estimator (KDE) of f at an arbitrary point x is given by

f̂(x;hn) =
1

n

n∑
i=1

Khn(Xi − x), (3.1)

where Khn(z) = K(z/hn)/hn, K(·) is the kernel function, and hn > 0 is the smoothing

parameter known as bandwidth. This estimator was proposed by Rosenblatt (1956) and

Parzen (1962) and can be motivated as a smoothed version of a histogram. We will write

f̂(x) for f̂(x;hn) and h for hn; the dependence of f̂ on bandwidth and of h on sample

size being implicit.

In some applications it may be necessary to construct an estimator of a probability

density function (pdf) which obeys certain constraints. For instance, the mean of X

may be known or there may be a known relationship between the moments, perhaps

implied by estimating equations. Extra distributional information may be due to a

certain physical law as in the example considered in Chen (1997) where according to the

line transect theory the distribution of the perpendicular sighting distances in an aerial

line transect survey should have mean zero.

Assumptions about the relationship between the mean and variance of the obser-

vations underlies the standard quasi-likelihood estimation; see Wedderburn (1974) and

Godambe and Thompson (1989). If the variance of X is a known function of the (un-

known) mean, µ, the information about f can be expressed in the form of two moment

conditions, viz. E {X} = µ and E
{

(X − µ)2} = g(µ), where g(·) is a known function.

The method presented in this chapter allows such information to be incorporated into

an estimate of f .

Incorporating auxiliary population information is also of interested when using survey

data; see e.g. Qin and Lawless (1994, p. 301) and Chen and Qin (1993). For example,

one may be interested in estimating the density of household income based on a survey
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data. If the average income is known from, say, census data, it can be treated as a known

population mean and incorporated into the estimate.

In principle, representing (3.1) as a maximum smoothed likelihood estimator, pro-

vides a way to incorporate extra information by solving a constrained optimisation prob-

lem instead, but the latter may be difficult or even impossible; see Eggermont and LaR-

iccia (2001).

This chapter considers the case when the extra information can be formulated in the

form of moment conditions on X. This case has been examined by Chen (1997) who

proposes re-weighting the Rosenblatt-Parzen KDE (RPKDE) using empirical likelihood

weights instead of equal probability weights, n−1, placed at every data point. A similar

approach has been applied by Hall and Presnell (1999).

Specifically, suppose that additional information about f is available in the form

Ef {ψ (X;β0)} = 0, (3.2)

where ψ (x;β) = [ψ1(x;β), . . . , ψq(x;β)]T is a known real vector-valued function repre-

senting q moment conditions, β ∈ B ⊆ R
p is a p × 1 vector of unknown parameters,

p ≤ q, and expectation is taken with respect to the distribution of X.

In this paper, we seek an estimator of f , f̃(·), which satisfies constraints (3.2) in the

sense that
∫
ψl(u;β0)f̃(u)du = 0, l = 1, . . . , q. As shown in section 3.2 RPKDE will not

in general possess this property. The reweighted KDE defined in section 3.4 will better

satisfy conditions (3.2).

This work extends the previous analysis by allowing parameters in the moment condi-

tions to be estimated using generalised empirical likelihood (GEL) estimation, described

in section 3.3.

Prior to computing an estimate with the constraints imposed, one should test whether

the constraints are consistent with the data. For example, in a simple case when the

mean is hypothesized to be known a standard t-test can be employed. GEL-based tests

can be used as described in section 3.3. As GEL estimation is part of the proposed

procedure, such test statistics can be computed at no extra cost.

Properties of the GEL-based estimator are presented in section 3.4. In particular, it

is shown that, provided moment conditions contain some overidentifying information, a

reweighted estimate will have smaller variance than the standard kernel estimate. We

show that the reduction in the variance occurs in the second order term and is the same

for all members of the GEL family.

Section 3.5 analyses the performance of the proposed density estimator in small and

medium samples via a Monte-Carlo study. The final section concludes.
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3.2 Rosenblatt–Parzen kernel density estimator

The Rozenblatt-Parzen KDE has been studied extensively and its properties are well-

documented. Thus its mean and variance are E
{
f̂(x)

}
= (Kh ∗ f) (x), and

Var

{
f̂(x)

}
= n−1

[(
K2
h ∗ f

)
(x)− (Kh ∗ f)2 (x)

]
respectively, where ∗ denotes convolution, i.e. (f ∗ g)(x) =

∫
f(x− y)g(y)dy.

The kernel K(·) is assumed to be a bounded probability density function symmetric

about the origin, i.e. K(−z) = K(z) and
∫
K(z)dz = 1. Let µj(K) =

∫
R
zjK(z)dz be

the j-th moment of K(·). Then K(·) is said to be a k-th order kernel if µ0(K) = 1,

µj(K) = 0 for j = 1, . . . , k − 1, and µk(K) 6= 0. Due to symmetry, only even orders

need to be considered, and the choice is usually restricted to second order kernels as

kernels of order higher than two take negative values, which implies that the resulting

density estimate can take negative values and hence is not a density itself. The optimal1

second-order kernel is the truncated quadratic kernel of Epanechnikov (1969), but as the

efficiency loss from using suboptimal kernels is small, the Gaussian kernel is commonly

used in practice.

Asymptotic approximations to the mean integrated squared error (MISE) of f̂ can

be obtained under additional assumptions. In particular, we assume

Assumption 1

(a) K(·) is a symmetric second order kernel and µ4(K) <∞.

(b) The bandwidth h = hn is a non-random sequence such that limn→∞ h = 0 and

limn→∞ hn =∞.

(c) f possesses a fourth derivative which is continuous and square integrable.

Let f (j)(x) = ∂jf(x)/ ∂xj denote the j-th derivative of f(x). Then the following

asymptotic expansion for the expectation obtains (see e.g. Wasserman, 2006, Theorem

6.28):

E

{
f̂(x)

}
= f(x) +

1

2
h2µ2(K)f (2)(x) +

1

24
h4µ4(K)f (4)(x) + o

(
h4
)
,

where the terms involving odd powers of h vanish due to the symmetry of the kernel.

1The truncated quadratic (Epanechnikov) kernel is optimal if the choice is restricted to nonnegative
symmetric density functions and the optimality criterion is asymptotic mean integrated squared error;
cf. Tsybakov (2009, Ch. 1).
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The asymptotic variance of f̂(x) is

Var

{
f̂(x)

}
=

1

nh
R(K)f(x) + O

(
n−1
)
,

where R(g) =
∫
R
g2(x)dx for any square-integrable function g. Thus the mean squared

error (MSE) is

MSE

{
f̂(x)

}
=

1

nh
R(K)f(x) +

1

4
h4µ2

2(K)
(
f (2)(x)

)2
+ O

(
n−1
)

+ O
(
h6
)
,

where the first term is the variance and the second is the squared bias. Integrating over

the range of X gives the mean integrated squared error (MISE) of f̂ , viz.

MISE

{
f̂(·)

}
=

1

nh
R(K) +

1

4
h4µ2

2(K)R
(
f (2)
)

+ O
(
n−1
)

+ O
(
h6
)
. (3.3)

The first two terms in (3.3) give the asymptotic MISE (AMISE) of f̂ . AMISE pro-

vides a useful large-sample approximation to MISE. Note that the bias term is of order

h4, whereas the variance term is of order (nh)−1. Hence the bandwidth is to be cho-

sen to balance the bias-variance trade-off: smaller values of h reduce bias but increase

variance. Differentiating (3.3) with respect to h and setting the result to zero gives the

asymptotically optimal (AMISE-minimising) bandwidth,

hAMISE =

[
R(K)

µ2
2(K)R (f (2))

]1/5

n−1/5. (3.4)

With the optimal bandwidth both terms in AMISE become of the same order, n−4/5.

In practice, the choice of bandwidth is very important; see Sheather (2004) for a recent

review and the references given above.

In general, the RPKDE will not satisfy conditions (3.2).

Example 1 Note that Ef̂ {Xj} = n−1
∑n

i=1

∫
(xi+zh)jK(z)dz. Since K(·) is a symmet-

ric density function, Ef̂ {X} = n−1
∑n

i=1 xi, the sample average. Hence the constraint
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that the mean is µ, say, will not generally be satisfied in finite samples. Also

Ef̂

{
X2
}

= n−1

n∑
i=1

x2
i + h2µ2(K),

Ef̂

{
X3
}

= n−1

n∑
i=1

x3
i + 3h2µ2(K)n−1

n∑
i=1

xi and

Ef̂

{
X4
}

= n−1

n∑
i=1

x4
i + 6h2µ2(K)n−1

n∑
i=1

x2
i + h4µ4(K).

�

Let ψ
(j)
l = ∂jψl(x;β)/∂xj denote the j-th derivative of ψl(x;β) with respect to x,

l = 1, . . . , q. Suppose that ψ (·) satisfies the following conditions:

Assumption 2

(a) ψl(x;β) is four times continuously differentiable in x with a square integrable fourth

derivative for all β ∈ Br (β0), an open ball around β0, l = 1, . . . , q.

(b) ψ (x;β) is twice continuously differentiable with respect to β in a neigbourhood

Br (β0) of β0, with a square integrable second derivative.

Then for general ψl(xi;β) and β ∈ Br (β0), for l = 1, . . . , q,

Ef̂ {ψl(X;β)} =
1

n

n∑
i=1

ψl(xi;β) +
1

2
h2µ2(K)

1

n

n∑
i=1

ψ
(2)
l (xi;β) + Op

(
h4
)
. (3.5)

See Appendix 3.A.1 for a proof.

As shown in section 3.4, the reweighted estimator provides an improved approxima-

tion to the moment conditions; in particular, the first term in (3.5) is zero.

3.3 Generalised empirical likelihood

Implied probabilities, obtained as a by-product of the GEL estimation, can be used

to reweight the RPKDE so that the resultant density estimator better approximates

conditions (3.2).

GEL is an estimation method for models based on moment conditions of the form

(3.2); see inter alia Smith (1997), Imbens (2002) and Newey and Smith (2004), NS. To

give a brief overview of GEL, introduce the carrier function ρ (·) : V → R, a concave

real-valued scalar function defined on an open interval V ⊆ R containing zero. Let
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ρ(k) (v) = ∂kρ (v) /∂vk denote the k-th derivative of ρ (·), k = 0, 1, 2, . . .. It will be

convenient to impose the innocuous normalisation ρ(1) (0) = ρ(2) (0) = −1.

Special cases of GEL include empirical likelihood (EL), exponentially tilting (ET)

and continuously updating estimators (CUE). These correspond to ρ (v) = ln(1− v) for

v < 1, ρ (v) = − exp(v) and ρ (v) = −v2/2− v respectively, all of which are members of

the Cressie and Read (1984) family, ρ (v) = −1
γ+1

(1 + γv)
γ+1
γ ; see also NS.

Assume further that

Assumption 3

(a) β0 ∈ B is the unique solution to Ef {ψ (Xi;β)} = 0, B is compact and β0 is in the

interior of B.

(b) Matrix Vψ = Ef

{
ψ (Xi;β0)ψ (Xi;β0)T

}
is positive definite.

(c) Matrix Ef

{
∂ψ (Xi;β0)/ ∂βT

}
has rank p.

(d) ρ (v) is four times continuously differentiable in a neighbourhood of zero.

The class of GEL criteria considered here is defined as

Pn(λ,β) =
1

n

n∑
i=1

[
ρ
(
λTψ (xi;β)

)
− ρ(0)

]
(3.6)

The estimator of β, β̂, solves the saddle point problem

β̂ = argmin
β∈B

sup
λ∈Λn(β)

Pn(λ,β), (3.7)

where Λn(β) =
{
λ : λTψi ∈ V , i = 1, . . . , n

}
. For given β, the vector of auxiliary pa-

rameters (Lagrange multipliers), λ̂ = λ̂(β), solves the first-order conditions

Qλ,n(λ̂(β)) =
1

n

n∑
i=1

ρ(1)
(
λ̂

T
ψ (xi;β)

)
ψ (xi;β) = 0. (3.8)

The implied probabilities are then defined as

π̂i = ρ(1)
(
λ̂

T
ψ
(
xi, β̂

))/ n∑
j=1

ρ(1)
(
λ̂

T
ψ
(
xi, β̂

))
. (3.9)

By construction, the π̂i’s sum to unity over i = 1, . . . , n. Furthermore, the first order

conditions imply that
∑n

i=1 π̂iψ̂i = 0, where ψ̂i = ψ
(
xi; β̂

)
. It is this latter property
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that eliminates the first term in (3.5) when the expectation is taken over the reweighted

density estimator.

As shown in NS, β̂ is a consistent and asymptotically normal estimator of β0, the

solution to the inner optimisation in (3.7) when β = β̂ exists with probability approach-

ing one, and λ̂ = Op
(
n−1/2

)
. The latter result of course holds when β0 is known; a proof

is given in Appendix 3.A.2.

If β0 is known, then only the inner optimisation in (3.7) has to be carried out, and

the implied probabilities are defined by (3.9) with β0 replacing β̂.

As with the maximum likelihood estimation, GEL allows the construction of the

tests for overidentifying restrictions that are similar to the classical likelihood ratio,

Wald, and Lagrange multiplier tests. As the focus of this chapter is not on testing, we

will only note that the normalised GEL criterion evaluated at the estimated parameters

β̂ and λ̂, 2nP̂n

(
λ̂, β̂

)
, possesses a chi-square limiting distribution with q − p degrees

of freedom, χ2
q−p. From the computational point of view, this statistic is the easiest as

it is automatically produced by the optimisation routine. Other test statistics can be

constructed as described in inter alia Smith (1997, pp. 510–514), Kitamura and Stutzer

(1997, pp. 867–868) and Ramalho and Smith (2005).

Asymptotic expansions

Let v̂i denote λ̂
T
ψ
(
xi, β̂

)
. As shown in Appendix 3.A.3, expanding the implied proba-

bilities (3.9) around λ̂ = 0 gives

π̂i =
1

n
+

1

n

[
v̂i −

ρ(3) (0)

2
v̂2
i

]
+

1

n

[
−λ̂

T 1

n

n∑
i=1

ψ
(
xi; β̂

)
+
ρ(3) (0)

2
λ̂

T
Vψλ̂

]
+R[π]

n , (3.10)

where the remainder term is

R[π]
n =

[
v̂i −

ρ(3) (0)

2
v̂2
i

]
Op
(
n−2
)
− ρ(4) (0)

6
v̂3
i (1 + op (1))

[
n−1 + Op

(
n−2
)]

+ Op
(
n−5/2

)
.

If β0 is known, expansion (3.10) is valid with β0 replacing β̂ throughout, so that vi =

λ̂
T
ψ (xi,β0) replaces v̂i.

To obtain an expansion for λ̂ it will be convenient to introduce the transformation

wi = V
−1/2
ψ ψ (xi;β0), so that E

{
wiw

T
i

}
= Iq, a q × q identity matrix. Further, let
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Chapter 3. Generalised empirical likelihood–based kernel density estimation

θT = λ̂
T
V

1/2
ψ , and define

αj1...jk = E
{
wj1
i . . .w

jk
i

}
and Aj1...jk =

1

n

n∑
i=1

wj1
i . . .w

jk
i − αj1...jk ,

where superscripts denote elements of the respective vector, e.g. zj denotes the j-th

element of vector z, and the convention is used that if a superscript is repeated, a

summation over that superscript is understood2. Note that αj = 0 and αjk = δjk, where

δ is the Kronecker delta.

In this notation, vi = θTwi = θjwj
i , λ̂

T 1
n

∑n
i=1ψ (xi;β0) = θjAj and λ̂

T
Vψλ̂ =

θjθj. An expansion for θ is given in Propositions 1 and 2 for the cases where β0 is

known and estimated, respectively; see also equation 3.1 in NS.

Proposition 1 Under Assumptions 2 and 3, if β0 is known, the vector of auxiliary

parameters, θ, admits the following expansion

θj = −Aj + AjkAk +
ρ(3) (0)

2
αjklAkAl − AjkAklAl +

ρ(3) (0)

2
AjklAkAl

− ρ(3) (0)

2
AjkαklmAlAm − ρ(3) (0)αjklAlmAkAm

−
(
ρ(3) (0)

)2

2
αjklαlmnAkAmAn − ρ(4) (0)

6
αjklmAkAlAm + Op

(
n−2
)
,

(3.11)

where j, k, l,m, n ∈ {1, . . . , q}. Proof is given in Appendix 3.A.4.

Note that for EL, with ρ (v) = ln(1− v), ρ(j) (v) = −(j − 1)!(1− v)−j and ρ(j) (0) =

−(j − 1)!, (3.11) becomes

θj = −Aj + AjkAk − αjklAkAl − AjkAklAl − AjklAkAl + AjkαklmAlAm

+ 2αjklAlmAkAm − 2αjklαlmpAkAmAp + αjklmAkAlAm + Op
(
n−2
)
.

A similar expansion was obtained by DiCiccio, Hall, and Romano (1991) for EL for the

mean; see also DiCiccio, Hall, and Romano (1988, sec. 3). Chen and Cui (2007) give

analogous expansions for EL for generalised moment restrictions.

2For example, let z and w be p-dimensional vectors, then for j, k ∈ {1, . . . , p} zjwk is simply a
product of the j-th element of z and k-th element of w, whereas in expression zjwj superscript j is
repeated, hence a summation over j is understood: zjwj = z1w1 + z2w2 + · · · + zpwp. Two- and
higher-dimensional arrays are indexed by an appropriate number of superscripts. For example, if A is
a q × p matrix, expression Alkzk, l ∈ {1, . . . , q}, represents the l-th element of the q × 1 vector Az, etc.
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3.3. Generalised empirical likelihood

To obtain an expansion for θ when β is estimated, let

γj,k1...kl = E

{
∂lwj

i

∂βk1 · · · ∂βkl

}
, and Γj,k1...kl =

1

n

n∑
i=1

∂lwj
i

∂βk1 · · · ∂βkl
− γj,k1...kl .

Let [γj,r] denote a q × p matrix with elements γj,r and Ω =
(

[γj,r]
T

[γj,r]
)−1

be a p × p
matrix with elements ωrs.

As will be seen later, a contribution from the terms of order Op
(
n−3/2

)
in the expan-

sion for θ will be of smaller order than is of interest. Thus, Proposition 2 does not list

the Op
(
n−3/2

)
terms in the expansion for θ when β0 is estimated.

Proposition 2 Under Assumptions 2 and 3, if β0 is estimated, the vector of auxiliary

parameters, θ, admits the following expansion

θj = −Aj + γj,rγk,sωrsAk

+ AjkAk − γk,rγl,sωrsAjkAl − γj,rγk,sωrsAklAl + γj,rγk,tγl,uγm,sωtuωrsAmkAl

+
ρ(3) (0)

2
αjklAkAl − ρ(3) (0)

2
αmklγj,rγm,sωrsAkAl

+
ρ(3) (0)

2
αjklγk,rγm,tγl,sγn,uωsuωrtAmAn

− ρ(3) (0)

2
αoklγj,rγk,sγm,uγl,wγn,vγo,tωwvωrtωsuAmAn

+ ρ(3) (0)αnklγj,rγl,sγm,vγn,tωsvωrtAkAm − ρ(3) (0)αjklγl,rγm,sωrsAkAm

+
1

2
γm,svγj,rγk,uγl,wγm,tωvwωrtωsuAkAl − 1

2
γj,rsγk,tγl,uωsuωrtAkAl

− γl,tvγj,rγk,uωrtωvuAkAl + γm,tvγj,rγm,sγk,uγl,wωvwωrtωsuAkAl

+ γk,sωrsΓj,rAk + γj,rωrsΓk,sAk

− γj,rγk,uγl,tωrtωsuΓl,sAk − γj,rγl,sγk,uωrtωsuΓl,tAk + Op
(
n−3/2

)
,

(3.12)

where j, k, l,m, n, o ∈ {1, . . . , q} and r, s, t, u, v, w ∈ {1, . . . , p}. See Appendix 3.A.5 for

a proof.

Computational aspects

It should be noted that the solution to (3.8) does not always exist. In particular,

there is no solution when zero is not in CH (Ψn (β)), the convex hull of Ψn (β) =

{ψ (x1;β) , . . . ,ψ (xn;β)}; see e.g. Kitamura (2006, sec. 8.1). When β0 is known,

75



Chapter 3. Generalised empirical likelihood–based kernel density estimation

it is only required that 0 ∈ CH (Ψn (β0)), but when β is estimated, zero must be in the

convex hull of Ψn (β) for all β at which the GEL criterion is evaluated.

Example 2 Let Xi
iid∼ N(0, 1) and ψ(xi) = xi; i.e. we impose the constraint that the

mean is zero. Then with probability 2−n+1 in a sample of size n, the xi’s will be either all

positive or all negative, and there will be no solution to (3.8); see also Qin and Lawless

(1994, example 2).

It is interesting to note that when all the sample values are positive, Pn(λ) is a

decreasing function of λ for both EL and ET, and the maximum is achieved at λ̂ = −∞.

(A similar argument applies to the case when all sample values are negative). The EL

probabilities then become

lim
λ→−∞
λ∈Λn

πi =
1

xi
∑n

j=1
1
xj

,

and
∑n

i=1 πixi = n
/∑n

j=1
1
xj

= Hx, the harmonic average of xi’s. The harmonic average

is greater than zero but smaller than the arithmetic average; i.e. Hx ≤ x̄, with equality

if all xi’s are the same. (The harmonic average is also less than the geometric average).

ET in this case assigns weight one to the smallest observation (assuming no ties in

the data) and zero to all other data points. CUE avoids this problem, but at a cost that

some of the implied probabilities are negative.

�

One possibility then is to use adjusted GEL, whereby an artificial observation, ψn+1,

is added to the data such that zero is in the convex hull of Ψn (β) ∪ ψn+1 (β). In

particular, adding ψn+1 = −anψn, where ψn = n−1
∑n

i=1ψ (xi;β) and an > 0 ensures

that 0q ∈ CH
(
Ψn (β) ∪ψn+1

)
; see Chen, Variyath, and Abraham (2008) and Liu and

Chen (2010, sec. 3). Their suggestion is to set an = max(1, ln(n)/2) and to use a

trimmed mean of the ψ (xi;β)’s in place of ψn if desired.

The approach employed in our computations can be summarised as follows.

1. β0 known.

IF 0q ∈ CH (Ψn (β0)) use unadjusted GEL;

ELSE use adjusted GEL.

2. β0 unknown.

◦ Obtain a preliminary estimate of β, β̂init, by GMM or another appropriate

method;
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3.4. GEL-based KDE

IF 0q /∈ CH
(

Ψn(β̂init)
)

use adjusted GEL.

ELSE try estimation using unadjusted GEL;

IF unadjusted GEL fails, use adjusted GEL.

Finally, the outer optimisation can also be challenging as several local minima may

exist; see e.g. Guggenberger (2008). Whilst in low dimensions, a grid search over β may

be feasible, as the dimension of β becomes large, stochastic optimisation methods such

as simulated annealing can be used, perhaps combined with a direct search near the final

value.

3.4 GEL-based KDE

The GEL-based KDE (GELKDE) is obtained by replacing the empirical probabilities

n−1 by the implied probabilities (3.9), i.e.

f̃ρ(x) =
n∑
i=1

π̂iKh(x− xi). (3.13)

Because the GEL weights, π̂i, are not always non-negative, f̃ρ(x) may also take

negative values (typically, in the tails of the distribution). In this case, one can ‘shrink’

the implied probabilities, for example, by transforming to

π̂?i =
1

1 + εn
π̂i +

εn
1 + εn

· 1

n
,

=
π̂i + εn/n∑n

i=1 (π̂i + εn/n)
, where εn = −nmin

[
min

1≤i≤n
π̂i , 0

]
;

see Smith (2010) and Antoine, Bonnal, and Renault (2007). Consequently, π̂?i ≥ 0 and

sum to one by construction, thus ensuring that f̃ρ(·) is a proper density.

Alternatively, one can simply take a positive part of f̃ρ(x), f̃+
ρ (x) = max

(
f̃ρ(x), 0

)
,

to be the final estimate. In this case f̃+
ρ (·) should be renormalized to ensure it integrates

to one. However, as the latter is computationally difficult, we prefer to shrink the implied

probabilities as detailed above if any are negative.

Because
∑n

i=1 π̂iψ̂i = 0, we will see that GELKDE approximates the constraints

(3.2) better than RPKDE. Since Ef̃ρ
{ψl(X;β)} =

∑n
i=1 π̂i

∫
ψl(xi + zh)K(z)dz, when

the mean is known to be µ, ψl(xi) = xi − µ, Ef̃ρ
{X} =

∑n
i=1 π̂ixi = µ, i.e. the

constraint is satisfied exactly (provided the solution to (3.8) exists). Note also that

Ef̃ρ
{X2} =

∑n
i=1 π̂ix

2
i +h2µ2(K). Hence if the constraint is E {X2} = m2, say, although
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Chapter 3. Generalised empirical likelihood–based kernel density estimation

it will not be met exactly, Ef̃ρ
{X2} = m2 + h2µ2(K), the GELKDE approximates this

constraint better than RPKDE; cf. Example 1.

For general ψl(xi;β), l = 1, . . . , q, β ∈ Br (β0), we obtain

Ef̃ρ
{ψl(X;β)} =

(
1

2
h2µ2(K)

1

n

n∑
i=1

ψ
(2)
l (xi;β)

)
(1 + op (1)) + Op

(
h4
)
. (3.14)

See Appendix 3.A.1 for a proof. Note that the first term in (3.14) is the same as the

second term in (3.5), whereas the first term in (3.5) vanishes. Hence in general GELKDE

provides a better approximation to moment conditions than RPKDE.

Bias and variance

Since the GEL estimator is defined implicitly, the exact expectation of GELKDE cannot

be obtained3. Hence, an asymptotic analysis is required.

As shown in Appendix 3.A.6, using expansions for the implied probabilities and

auxiliary parameters, an asymptotic approximation to the expectation of GELKDE up

to an order O (n−1h2) is given by

E

{
f̃ρ(x)

}
= E

{
f̂(x)

}
+ n−1kρ

[
−wj(x)wj(x) + αjklδklwj(x) + q

]
f(x)

+ n−1h2 1

2
µ2(K)kρ

[
−C1 + αjklδklCj

2 + qf (2)(x)
]

+ O
(
n−1h4

)
, (3.15a)

where kρ = 1 + ρ(3) (0)
/

2, C1 = d2

dv2
[w(v)jwj(v)f(v)]

∣∣∣
v=x

, Cj
2 = d2

dv2
[wj(v)f(v)]

∣∣∣
v=x

and

w(x) = w(x;β0).

Note that for any carrier function with ρ(3) (0) = −2, e.g. EL, kρ = 0 and thus the

n−1 bias term in (3.15a) vanishes. Note that for ET kρ = 1/2, whereas for CUE kρ

is unity. The derivations indicate that under sufficient smoothness EL-based KDE will

have the same expectation as f̂ , asymptotically, to a higher order than O (n−1h2).

It is useful to note that in terms of the original ψ (x) = ψ (x;β0) = V
1/2
ψ w(x), the

n−1 bias terms can be written as wj(x)wj(x) = ψT (x) V−1
ψ ψ (x) and αjklδklwj(x) =

ψT (x) V−1
ψ E

{
ψiψ

T
i V−1

ψ ψi

}
. These expressions may be easier to implement computa-

tionally as they avoid taking a square root of the variance matrix Vψ.

3Even in the simplest case with only one constraint and quadratic carrier function expression for
implied probabilities involves a ratio; see Appendix 3.B.
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The asymptotic variance of GELKDE is given by

Var

{
f̃ρ(x)

}
= Var

{
f̂(x)

}
− n−1wj(x)wj(x)f 2(x)

− n−1h2µ2(K)wj(x)Cj
2f(x) + O

(
n−1h4

)
. (3.15b)

As wj(x)wj(x)f 2(x) is non-negative, there is always an 1/n reduction in variance, which

does not depend on the GEL carrier function.

From (3.15a) and (3.15b), we obtain the expressions for the integrated squared bias

(ISB) and integrated variance (IVar):

ISB

{
f̃ρ(·)

}
= ISB

{
f̂(·)

}
+ n−1h2µ2(K)kρI1 + O

(
n−1h4

)
,

where I1 =

∫
R

[
−wj(x)wj(x) + αjklδklwj(x) + q

]
f (2)(x)f(x)dx,

(3.15c)

and IVar

{
f̃ρ(·)

}
= IVar

{
f̂(·)

}
− n−1

∫
R

wj(x)wj(x)f 2(x)dx

− n−1h2µ2(K)I2 + O
(
n−1h4

)
, (3.15d)

where I2 =
∫
R

wj(x)Cj
2f(x)dx. Thus, asymptotically the effect entering via variance

dominates and GELKDE enjoys a 1/n reduction in mean integrated squared error, viz.

MISE

{
f̃ρ(·)

}
= MISE

{
f̂(·)

}
− n−1

∫
R

wj(x)wj(x)f 2(x)dx

+ n−1h2µ2(K) [kρI1 − I2] + O
(
n−1h4

)
. (3.15e)

Formally, the following proposition can be stated.

Proposition 3 If β0 is known, the mean, variance, integrated squared bias, integrated

variance, and mean integrated squared error of GELKDE are given by equations (3.15a)–

(3.15e).

See Appendix 3.A.6 for a proof.

Example 3 Suppose Xi
iid∼ N(0, 1). Let φ(x) denote the standard normal density. Since

d2φ(x)/ dx2 = (x2−1)φ(x), it is straightforward to compute the leading constants in the

integrated squared bias and integrated variance directly. For the variance, the 1/n term

does not depend on the kernel or the carrier function. The n−1h2 term in the integrated

squared bias is µ2(K)kρI1. Assuming that a Gaussian kernel is used, µ2(K) = 1. Also, kρ
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is known for a given choice of carrier function. The following table presents the leading

constants for three examples.

Moment constraints ψ (x) =

Leading constants in

ISB

{
f̃ρ(·)

}
, IVar

{
f̃ρ(·)

}
,

I1 -
∫
R

wj(x)wj(x)f 2(x)dx

1. Known mean x − 3
8
√
π
≈ −0.2116 − 1

4
√
π
≈ −0.1410

2. Known mean and vari-

ance

[x, x2 − 1]
T

+ 15
32
√
π
≈ +0.2645 − 7

16
√
π
≈ −0.2468

3. Known mean and third

moment

[x, x3]
T − 23

64
√
π
≈ −0.2028 − 13

32
√
π
≈ −0.2292

Note that in case 2 ISB
{
f̃ρ(·)

}
≥ ISB

{
f̂(·)

}
.

The expectation of the difference between GELKDE and RPKDE in these cases is of

the form n−1kρPm(x)φ(x), where Pm(x) is a polynomial in x. In case 1, the polynomial

is −x2 + 1. Figure 3.1 shows the simulated difference between E

{
f̃cue

}
for case 1,

incorporating the know mean constraint, and E
{
f̂
}

scaled up by the sample size, n =

1, 000, (solid line) and the curve (−x2 + 1)φ(x) (dashed line) to which this difference

should converge as n approaches infinity. The two curves are quite close agreeing with

our theoretical results.

�

An immediate consequence of Proposition 3 is that the asymptotically optimal band-

width, hAMISE, given in (3.4), remains unchanged. Recall that hAMISE minimises the

two leading terms in (3.3), which are also the leading terms in (3.15e). Thus setting

h = cn−1/5 the first two terms in MISE
{
f̂(·)

}
are of the same order, n−4/5, with the

next term of order 1/n, which is only moderately faster than n−4/5. In fact, the O (n−1)

term in (3.3) is n−1R (f), where R (f) =
∫
R
f 2(x)dx. Hence, in small and moderate

samples, the reduction in variance can be substantial; however, this may be offset by the

effect on ISB, which is of order n−1h2. Simulation evidence presented in the next section

suggests that for moderate and large sample sizes the reduction in variance dominates,

but in very small samples MISE may increase.
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Figure 3.1: 1/n bias term of the CUE-based KDE with ψ (x) = x

E

{
f̃cue(x)

}
is simulated using one million replications and the optimal bandwidth, hMISE =

0.2723; E
{
f̂(x)

}
is exact.

Estimated parameters

If the vector of parameters, β0, is estimated, the MSE of GELKDE can be obtained

following the same steps as above, the only difference being that extra terms related to

the estimation of β0 enter.

Thus, the expectation of GELKDE is given by

E

{
f̃ρ(x)

}
= E

{
f̂(x)

}
+ n−1B1(x)f(x) + n−1h2 1

2
µ2(K)B2(x) + O

(
n−3/2

)
, (3.16a)

where the expressions for B1(x) and B2(x) are given in equations (3.29) and (3.30) in

Appendix 3.A.7. B1(x) and B2(x) contain all of the terms as those in (3.15a) plus extra

terms due to estimation of the unknown β0. However, unlike the known β0 case, in

general it is no longer true that the n−1 term may be set to zero for a particular choice

of carrier function.

The variance of GELKDE is

Var

{
f̃ρ(x)

}
= Var

{
f̂(x)

}
− n−1wj(x)wj(x)f 2(x) + n−1γj,sγk,rωrswj(x)wk(x)f 2(x)

− n−1h2µ2(K)wj(x)Cj
2(x)f(x) + n−1h2µ2(K)γj,sγk,rωrswj(x)Ck

2 (x)f(x) + O
(
n−3/2

)
.

(3.16b)
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It immediately follows that

ISB

{
f̃ρ(·)

}
= ISB

{
f̂(·)

}
+ n−1h2µ2(K)

∫
R

B1(x)f (2)(x)f(x)dx+ O
(
n−3/2

)
, (3.16c)

and

IVar

{
f̃ρ(·)

}
= IVar

{
f̂(·)

}
− n−1

∫
R

wj(x)wj(x)f 2(x)dx

+ n−1γj,sγk,rωrs
∫
R

wj(x)wk(x)f 2(x)dx− n−1h2µ2(K)

∫
R

wj(x)Cj
2(x)f(x)dx

+ n−1h2µ2(K)γj,sγk,rωrs
∫
R

wj(x)Ck
2 (x)f(x)dx+ O

(
n−3/2

)
. (3.16d)

Therefore,

MISE

{
f̃ρ(·)

}
= MISE

{
f̂(·)

}
− n−1

∫
R

wj(x)wj(x)f 2(x)dx

+ n−1γj,sγk,rωrs
∫
R

wj(x)wk(x)f 2(x)dx− n−1h2µ2(K)

∫
R

wj(x)Cj
2(x)f(x)dx

+ n−1h2µ2(K)γj,sγk,rωrs
∫
R

wj(x)Ck
2 (x)f(x)dx+ n−1h2µ2(K)

∫
R

B1(x)f (2)(x)f(x)dx

+ O
(
n−3/2

)
. (3.16e)

Proposition 4 If β0 is unknown, the mean, variance, integrated squared bias, inte-

grated variance, and mean integrated squared error of GELKDE are given by equations

(3.16a)–(3.16e).

The proof follows the same steps as the proof of Proposition 3 and is given in Appendix

3.A.7.

Bias correction

Although the contribution from the 1/n bias terms in (3.15a) and (3.16a) to the MISE of

GELKDE is of order O (n−1h2), of a lower order than the contribution from the variance,

in small samples the bias effect can be substantial. As the direction of the bias is not

known a priori, unless the true density is known, it may be advisable to bias-correct

GELKDE by estimating and subtracting the 1/n bias term. To be specific, the bias-

corrected GELKDE is defined as

f̃ bcρ (x) = f̃ρ(x)− n−1B̃1(x)f̃ρ(x), (3.17)

82



3.5. Monte-Carlo study

where B̃1(x) is a suitable estimate of B1(x). In the case when β0 is known, the bias

correction is an estimate of kρ
[
−wj(x)wj(x) + αjklδklwj(x) + q

]
. We suggest using

implied probabilities to obtain weighted estimators for Vψ and other moments entering

B1(x); see e.g. Smith (2010, sec. 3). In particular, a plug-in estimator of wj(x)wj(x)

is ψT (x) Ṽ−1
ψ ψ (x), where Ṽψ is a weighted sample covariance matrix; and a plug-in

estimate of αjklδklwj(x) can be computed as ψT (x) Ṽ−1
ψ

(
1
n

∑n
i=1 π̂iψiψ

T
i Ṽ−1

ψ ψi

)
. To

ensure that the bias-corrected estimate is a density, any negative values can be set to

zero and renormalised as necessary.

3.5 Monte-Carlo study

3.5.1 Known parameters

Consider first the case where Xi
iid∼ N(0, 1), i = 1, . . . , n, and a Gaussian kernel, K(z) =

φ(z), is used, where φ(·) denotes the standard normal density. Although very simple,

this setup is appealing because the integrated mean squared error of the unweighted

KDE can be evaluated analytically and is given by

MISE

{
f̂(x)

}
=

1

2
√
π

[
1√

1 + h2
− 2

√
2√

2 + h2
+ 1

]
+

1

2
√
π

1

n

[
1

h
− 1√

1 + h2

]

=
1

2
√
π

[
1

nh
+

n− 1

n
√

1 + h2
− 2

√
2√

2 + h2
+ 1

]
,

(3.18)

where the first summand is the ISB and the second the IVar; see Fryer (1976).

The asymptotically optimal bandwidth in this case is hAMISE = (4/3)1/5 n−1/5, and

the optimal AMISE is 3(4/3)4/5

32
√
π
n−4/5+ (4/3)−1/5

2
√
π

n−4/5, where the first term is the asymptotic

ISB and the second the IVar. The exact MISE-minimising bandwidth hMISE is obtained

by minimising (3.18) with respect to h for a given sample size, n. The setup is thus the

most favourable for PRKDE.

It is interesting to note that the MISE-minimising bandwidth approaches its asymp-

totic value from above. Even when n = 1, 000, 000 the exact MISE-minimising band-

width is still approximately 0.16% greater than the asymptotically optimal value. The

top panel of Figure 3.2 shows hMISE inflated by n1/5; the horisontal dashed line is drawn

at the level of the constant in hAMISE, (4/3)1/5 ≈ 1.0592. The bottom panel depicts the

behaviour of the optimal MISE and its components4.

4Recall that the second term in the asymptotic IVar is of order n−1, in this case n−1/(2
√
π)

and when n = 1, 000, 000 equals 0.0178, approximately the discrepancy between n−4/5 × IVar and
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Figure 3.2: Exact MISE-minimising bandwidth, ISB, IVar and MISE

The moment conditions studied here are those considered in Example 3, viz.

1. Known mean. E {X} = 0.

2. Known mean and variance. E {X} = 0, Var {X} = 1.

3. Known mean and third moment. E {X} = 0, E {X3} = 0.

For each case, the performance of the unweighted estimator is compared to the GEL-

based estimators (3.13) using three popular carrier functions: ρ(v) = ln(1 − v) (EL),

ρ(v) = − exp(v) (ET) and ρ(v) = −1
2
v2 − v (CUE). Unless stated otherwise, all the

results presented below are based on 100, 000 replications; multiple-segment trapezoidal

rule numerical integration is used to obtain the ISB, IVar and MISE of GELKDE.

Figure 3.3 shows the relative performance of GELKDE for small and moderate sam-

ples. In this and the subsequent figures red lines correspond to the quadratic carrier

function (CUE), blue lines—exponential (ET) and green—logarithmic carrier functions

(EL). Solid lines show the performance of the original GELKDE5, whereas dashed lines

represent bias-corrected estimates, see (3.17). Since there is no 1/n term for EL, these

two lines coincide.

(4/3)
−1/5

/
(2
√
π) ≈ 0.2663. The second term in the asymptotic ISB is (−7/ (128

√
π))h6. Hence

n−4/5 × ISB is approximately −0.0436n−2/5 away from the asymptotic value, 3 (4/3)
4/5
/

(32
√
π) ≈

0.0666.
5In all cases, implied probabilities are shrunk where necessary to ensure f̃ is nonnegative.
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Chapter 3. Generalised empirical likelihood–based kernel density estimation

Horizontal axes (sample size) are shown on a common logarithm scale. The columns

show the difference between the integrated squared bias, variance and mean squared

error of GELKDE and RPKDE scaled by sample size in the case of IVar and MISE,

and by nh−2 in the case of ISB. Thus, the lines should tend to the respective constants

computed in Example 3 as sample size increases. It should be noted that the remainder

term in all graphs is of order h2 asy∼ n−1/5, which may be substantial relative to main

constants for small sample sizes.

The results confirm the conclusions of the previous section. For small sample sizes

the reduction in MISE is smaller than the asymptotic value. In this example, an increase

in bias for case 2 is not big enough to offset the reduction in variance even when only 25

observations are available, but as shown below, this is not always the case.

The jagged appearance of the lines showing the difference between ISBs of GELKDE

and RPKDE is largely due to simulation error. As the differences in ISBs are being

inflated by nh−2, which for n = 1, 000 is about 13, 500, and the quantities themselves are

small, they need to be estimated with a very high precision, which is costly in terms of

computing time. The results presented for case 1 are obtained with 300, 000 replications,

and it can be seen that the lines are almost perfectly smooth.

Some departures from normality

We also examine the performance of GELKDE when the distribution of the data is non-

normal. The only additional information used by GEL-based estimators is that the mean

is known.

Figure 3.4 shows simulation results when Xi, i = 1, . . . , n, are drawn from a Stu-

dent’s t-distribution with degrees of freedom ν = 16, 8, 4, and 2 (from top to bottom,

respectively). The asymptotically optimal bandwidth is used as—to the best of our

knowledge—the exact MISE cannot be obtained analytically in this case. Qualitatively,

the performance of GELKDE is similar to the case when the data is Gaussian. However,

as the tails become heavier, the reduction in variance is smaller.

To examine other departures from normality, we consider mixtures of normal densities

which provide a powerful tool to study the performance of kernel estimators as they can

approximate many interesting densities. An additional attraction is that if the kernel

function is the standard normal pdf, the exact MISE of the unweighted KDE can be

computed analytically. Marron and Wand (1992) derive an expression for the exact

MISE and construct fifteen examples of mixture densities which have since been widely

used in the literature. The three densities selected here are the skewed unimodal density

(#2), the strongly skewed density (#3) and the outlier density (#5). The mixtures are
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Chapter 3. Generalised empirical likelihood–based kernel density estimation

constructed as 1
5
N (0, 1)+ 1

5
N
(

1
2
,
(

2
3

)2
)

+ 3
5
N
(

13
12
,
(

5
9

)2
)

,
∑7

k=0
1
8
N
(

3
[(

2
3

)k − 1
]
,
(

2
3

)2k
)

and 1
10
N (0, 1)+ 9

10
N
(

0,
(

1
10

)2
)

respectively. The upper three subplots of Figure 3.5 show

these densities alongside the normal density with the same mean and variance (dashed

line) plotted for reference. Densities #2 and #3 are constructed to resemble the extreme

value and the lognormal densities respectively. The outlier density is similar to the

normal but with 10% of observations being strong outliers. The exact MISE-minimising

bandwidth and the resulting optimal ISB, IVar and MISE are shown in the middle and

bottom subplots respectively.
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Figure 3.5: Selected normal mixture densities.

Figure 3.6 shows the MISE of GELKDE incorporating the extra information of a

88



3.5. Monte-Carlo study

25
50

10
0

25
0

50
0

10
00

−
0.

5

−
0.

4

−
0.

3

−
0.

2

−
0.

10

0.
1

nh
−

2  [ 
IS

B
(f

ge
l) 

−
 IS

B
(f

rp
) 

]

Skewed unimodal density (#2)

25
50

10
0

25
0

50
0

10
00

−
0.

15

−
0.

12
5

−
0.

1

−
0.

07
5

−
0.

05

−
0.

02
50

n 
[ I

V
ar

(f ge
l) 

−
 IV

ar
(f rp

) 
]

25
50

10
0

25
0

50
0

10
00

−
0.

15

−
0.

12
5

−
0.

1

−
0.

07
5

−
0.

05

−
0.

02
50

n 
[ M

IS
E

(f
ge

l) 
−

 M
IS

E
(f

rp
) 

]

25
50

10
0

25
0

50
0

10
00

−
10−

505101520

Strongly skewed density (#3)

25
50

10
0

25
0

50
0

10
00

−
0.

3

−
0.

25

−
0.

2

−
0.

15

−
0.

1

−
0.

050

0.
05

25
50

10
0

25
0

50
0

10
00

−
0.

35

−
0.

3

−
0.

25

−
0.

2

−
0.

15

−
0.

1

−
0.

050

0.
05

25
50

10
0

25
0

50
0

10
00

−
12

0

−
10

0

−
80

−
60

−
40

−
20020

S
am

pl
e 

si
ze

, n
 (

lo
g 10

 s
ca

le
)

Outlier density (#5)

25
50

10
0

25
0

50
0

10
00

−
0.

2

−
0.

15

−
0.

1

−
0.

050

0.
050.

1

0.
150.

2

0.
25

S
am

pl
e 

si
ze

, n
 (

lo
g 10

 s
ca

le
)

25
50

10
0

25
0

50
0

10
00

−
0.

5

−
0.

4

−
0.

3

−
0.

2

−
0.

10

0.
1

0.
2

S
am

pl
e 

si
ze

, n
 (

lo
g 10

 s
ca

le
)

F
ig

u
re

3.
6:

G
E

L
K

D
E

w
it

h
sk

ew
ed

an
d

co
n
ta

m
in

at
ed

d
at

a.

89



Chapter 3. Generalised empirical likelihood–based kernel density estimation

known mean. For the mildly skewed density (#2) the results are qualitatively similar to

case 1 in Figure 3.3. For the strongly skewed density, the MISE of GELDKE overshoots

the MISE of RPKDE for small sample sizes if CUE is used. Otherwise, the results are

consistent with those suggested by the asymptotic analysis.

The most interesting results are for the outlier density. Relative to RPKDE, the

EL-based estimator has a significantly larger variance and MISE for small and moderate

sample sizes. CUE and ET estimators, however, perform remarkably well in reducing

both bias and variance.

3.5.2 Estimated parameters

Finally, we consider the case when parameters are estimated. The two examples of

moment conditions are:

4. Unknown mean and known variance, Var {X} = 1.

ψ1(xi) = xi − β, ψ2(xi) = (xi − β)2 − 1.

5. Unknown mean and known third central moment, E
{

(X −E {X})3} = 0.

ψ1(xi) = xi − β, ψ2(xi) = (xi − β)3.

These examples extend cases 2 and 3 of the previous subsection. Here the mean is

estimated rather than set to zero; otherwise, the setup is the same. Bias-corrected ET

and CUE estimators are not considered. Results are presented in Figure 3.7.

The reduction in variance is now smaller than in cases 2 and 3 above as the extra

information used is less and, additionally, estimation error now contributes to the vari-

ance term. In case 5, for small sample sizes, the variance of GELKDE exceeds that of

PRKDE. In moderate and large samples, however, there is a 1/n reduction in MISE. In

case 4, as in case 2, bias increases, but now the increase is great enough to outweigh the

reduction in variance for sample sizes below about 100. EL performs better as its bias

goes to zero faster than the bias of the other two estimators.

3.6 Conclusions

Additional information concerning the distribution of a random variable formulated in

terms of moment conditions depending on a finite-dimensional parameter vector, which

may or may not be known, can be incorporated by reweighting a kernel density estimate

using implied GEL probabilities.
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The resultant density estimator better approximates the moment conditions than

the unweighted, Rosenblatt-Parzen, estimator. Furthermore, a reduction in variance is

achieved due to the use of the extra moment information, provided that, if the parameter

vector is unknown, it is overidentified. The effect on variance does not depend on the

GEL carrier function and dominates the bias effect asymptotically. Simulation evidence

suggests that the above conclusions hold in moderate and large samples, whereas in small

samples bias can increase and dominate the reduction in variance. The bias of GELKDE

depends on the carrier function; however, bias-corrected estimators may be formulated

to eliminate the bias.

Extending the above results to the multivariate case is a straightforward exercise, but

as performance of kernel density estimators deteriorates in higher dimensions, such an

extension may not be of much practical use. However, an extension of these methods for

dependent processes may be of interest in economics and finance. Preliminary simulation

evidence presented in Appendix 3.C suggests that incorporating information about the

dependence structure gives a reduction in variance and mean integrated squared error

as compared with RPKDE.

GEL methods need to be modified appropriately to deal with dependent data. One

possibility is to use a version of GEL defined via smoothed moment indicators, devel-

oped in Smith (2010), which extends this class of estimators to weakly dependent data.

Extensions to long-range dependence may be possible using frequency domain empirical

likelihood; see e.g. Nordman and Lahiri (2006).

Furthermore, GEL methods can be coupled with penalisation methods thus combin-

ing model selection and estimation steps; see inter alia Otsu (2007) and Shahidi (2009).

This may be of particular relevance for dependent data when the dependence structure

is unknown.

Other possible extensions include the estimation of conditional densities and nonpara-

metric regression with extra moment conditions. De Gooijer and Zerom (2003) propose

an ad hoc reweighting of a Nadaraya-Watson estimator of a conditional density which

is an improvement over the unweighted case and enjoys superior bias properties of the

local linear smoother. In particular, EL is used to make the Nadaraya-Watson weights

more resemble local linear weights. The encouraging results of this paper suggest that

further extensions may be developed for the estimation of conditional densities.

92



3.A. Proofs

Appendices

Appendix 3.A Proofs

3.A.1 Equations (3.5) and (3.14)

Changing variables such that z = (xi − x)/h, and using the Young’s form of Taylor’s Theorem to
expand ψl(xi + hz;β) around xi for given β ∈ Br (β0) gives∫

R

ψl(x;β)f̂(x)dx =
1

n

n∑
i=1

∫
R

ψl(xi + hz;β)K(z)dz

=
1

n

n∑
i=1

[
ψl(xi;β)

∫
R

K(z)dz + ψ
(1)
l (xi;β)h

∫
R

zK(z)dz

+
1

2
ψ

(2)
l (xi;β)h2

∫
R

z2K(z)dz +
1

6
ψ

(3)
l (xi;β)h3

∫
R

z3K(z)dz

+
1

24

(
ψ

(4)
l (xi;β)h4 + op

(
h4
)) ∫

R

z4K(z)dz

]
=

1

n

n∑
i=1

ψl(xi;β) +
1

2
h2µ2(K)

1

n

n∑
i=1

ψ
(2)
l (xi;β) + Op

(
h4
)
.

By Assumption 1(a), µ0(K) = 1, µ1(K) = µ3(K) = 0 and µ4(K) <∞. Hence the terms involving odd
powers of h are zero, and the remainder term is of order Op

(
h4
)

by the Weak Law of Large Numbers

(WLLN) applied to averages of ψ
(j)
l (xi;β) in view of Assumption 2(a).

Equation (3.14) obtains since
∑n
i=1 π̂i = 1 and

∑n
i=1 π̂iψl(xi;β) = 0. We have that for a GEL-based

estimator,

∫
ψl(x;β)f̃ρ(x)dx =

∫
ψl(x;β)

n∑
i=1

π̂iK

(
x− xi
h

)
dx

h
=

n∑
i=1

π̂i

∫
ψl(xi + hz;β)K (z) dz

=

n∑
i=1

π̂iψl(xi;β) +
1

2
h2µ2(K)

n∑
i=1

π̂iψ
(2)
l (xi;β) +

n∑
i=1

π̂i

[
1

24
h4ψ

(4)
l (xi;β) + op

(
h4
)]
µ4(K)

=
1

2
h2µ2(K)

n∑
i=1

π̂iψ
(2)
l (xi;β) + Op

(
h4
)
.

By writing π̂i = 1
n (1 + op (1)), uniformly i, we can write

1

2
h2µ2(K)

n∑
i=1

π̂iψ
(2)
l (xi;β) =

(
1

2
h2µ2(K)

1

n

n∑
i=1

ψ
(2)
l (xi;β)

)
(1 + op (1)) ,

where the first term is now the same as the second term in (3.5).

3.A.2 Lagrange multipliers when parameters are known

Consider a population version of the GEL criterion (3.6), P (λ) = Ef

{
ρ
(
λTψ (X)

)}
−ρ(0). Since ρ (·)

is globally concave, it follows by Jensen’s inequality that Ef

{
ρ
(
λTψ (X)

)}
≤ ρ

(
Ef

{
λTψ (X)

})
,

and that

P (λ) = Ef

{
ρ
(
λTψ(X)

)}
− ρ(0) ≤ ρ

(
Ef

{
λTψ(X)

})
− ρ(0) = ρ

(
λT
Ef {ψ(X)}

)
− ρ(0) = 0,
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where the last equality is implied by the moment conditions Ef {ψ (X)} = 0. Hence the maximum
value of P (λ) is zero, i.e. P (0) = 0. Indeed, λ = 0 is a local maximum of P (λ) as

∇λP (λ)|λ=0 = Ef

{
ρ(1) (0)ψ (X)

}
= −Ef {ψ (X)} = 0

and ∇T
λ∇λP (λ)

∣∣
λ=0

= Ef

{
ρ(2) (0)ψ (X)ψ (X)

T
}

= −Ef
{
ψ (X)ψ (X)

T
}

= −Vψ,

a negative definite matrix.

Moreover, since ρ (·) is concave, its second derivative, ρ(2) (v), is non-positive for all v. Hence, by
the Lemma and the proof of Theorem 1 in Chesher and Smith (1997, p. 643), ∇T

λ∇λP (λ) is negative
definite, and λ = 0 is a unique maximum of P (λ).

Since λ̂ is an M-estimator, λ̂
p−→ 0, the maximum of P (λ). Moreover, by Theorem 5.23 of van der

Vaart (1998), λ̂ = Op
(
n−1/2

)
.

3.A.3 Expansion for implied probabilities

Expanding ρ(1) (v̂i) around zero gives

ρ(1) (v̂i) = −1− v̂i +
1

2
ρ(3) (0) v̂2

i +
1

6
ρ(4) (v̇i) v̂

3
i ,

where v̂i = λ̂ψ
(
xi; β̂

)
and v̇i = λ̇ψ

(
xi; β̂

)
for some λ̇ on the line joining λ̂ and zero. By Lemma A1

of NS,

sup
β∈B, λ∈Λn(β), 1≤i≤n

|λTψ (xi;β)| p−→ 0,

and hence ρ(4) (v̇i) v̂
3
i = ρ(4) (0) v̂3

i (1 + op (1)).

Expanding the denominator gives n∑
j=1

ρ(1) (v̂j)

−1

= − 1

n

[
1− λ̂ 1

n

n∑
i=1

ψ
(
xi; β̂

)
+
ρ(3) (0)

2
λ̂
T
Vψλ̂+ Op

(
n−3/2

)]
,

where we used the fact that, as shown in NS, λ̂ = Op
(
n−1/2

)
and β̂ − β0 = Op

(
n−1/2

)
, thus

1

n

n∑
i=1

v̂2
i = λ̂

T

(
1

n

n∑
i=1

ψ
(
xi; β̂

)
ψ
(
xi; β̂

)T)
λ̂ = λ̂

T
Vψλ̂+ Op

(
n−3/2

)
.

Combing the two expansions gives

π̂i =
1

n

[
1 + v̂i −

1

2
ρ(3) (0) v̂2

i −
1

6
ρ(4) (0) v̂3

i (1 + op (1))

]
× · · ·

· · · ×

[
1− λ̂ 1

n

n∑
i=1

ψ
(
xi; β̂

)
+
ρ(3) (0)

2
λ̂
T
Vψλ̂+ Op

(
n−3/2

)]

=
1

n
+

1

n

[
v̂i −

ρ(3) (0)

2
v̂2
i

]
− 1

n

ρ(4) (0)

6
v̂3
i (1 + op (1)) +

1

n

[
−λ̂ 1

n

n∑
i=1

ψ
(
xi; β̂

)
+
ρ(3) (0)

2
λ̂
T
Vψλ̂

]

+

[
v̂i −

1

2
ρ(3) (0) v̂2

i −
1

6
ρ(4) (0) v̂3

i (1 + op (1))

]
Op
(
n−2

)
+ Op

(
n−5/2

)
.
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3.A.4 Proof of Proposition 1

Using the transformation introduced in section 3.3, the first-order conditions for θ can be written as

Qn(θ) =
1

n

n∑
i=1

ρ(1)
(
θTwi

)
wi = 0.

Provided ρ (·) possesses enough derivatives, expanding ρ(1)
(
θTwi

)
around zero yields

Qn(θ) =
1

n

n∑
i=1

[
−1− vi +

ρ(3) (0)

2
v2
i +

ρ(4) (0)

6
v3
i + Op

(
v4
i

)]
wi, (3.19)

where by normalisation ρ(1) (0) = ρ(2) (0) = −1, and vi = θTwi = θjwj
i .

Given that θ ∼ Op
(
n−1/2

)
, the j-th equation in (3.19) can be rewritten as

Qjn(θ) = −Aj − θj −Ajkθk +
ρ(3) (0)

2
αjklθkθl +

ρ(3) (0)

2
Ajklθkθl +

ρ(4) (0)

6
αjklmθkθlθm + Op

(
n−2

)
.

(3.20)
Solving Qn(θ) = 0 for θ gives (3.11). To be specific, first note from (3.20) that

θj = −Aj −Ajkθk +
ρ(3) (0)

2
αjklθkθl +

ρ(3) (0)

2
Ajklθkθl +

ρ(4) (0)

6
αjklmθkθlθm + Op

(
n−2

)
.

Considering each term on the right-hand side in turn gives:

Ajkθk = −AjkAk −AjkAklθl +
ρ(3) (0)

2
Ajkαklmθlθm + Op

(
n−2

)
= −AjkAk +AjkAklAl +

ρ(3) (0)

2
AjkαklmAlAm + Op

(
n−2

)
;

αjklθkθl = αjklAkAl + 2αjklAkAlmθm − ρ(3) (0)αjklαlmpAkθmθp + Op
(
n−2

)
= αjklAkAl − 2αjklAkAlmAm − ρ(3) (0)αjklαlmpAkAmAp + Op

(
n−2

)
;

Ajklθkθl = AjklAkAl + Op
(
n−2

)
;

αjklmθkθlθm = −αjklmAkAlAm + Op
(
n−2

)
.

Thus,

θj = −Aj +AjkAk +
ρ(3) (0)

2
αjklAkAl −AjkAklAl +

ρ(3) (0)

2
AjklAkAl − ρ(3) (0)

2
AjkαklmAlAm

− ρ(3) (0)αjklAlmAkAm −
(
ρ(3) (0)

)2
2

αjklαlmpAkAmAp − ρ(4) (0)

6
αjklmAkAlAm + Op

(
n−2

)
.

3.A.5 Proof of Proposition 2

Let ŵi = V
−1/2
ψ ψ

(
xi; β̂

)
; then the first order conditions for θ are

Qjθ,n(θ, β̂) = − 1

n

n∑
i=1

ŵj
i −

1

n

n∑
i=1

viŵ
j
i +

ρ(3) (0)

2

1

n

n∑
i=1

v2
i ŵ

j
i +

1

n

n∑
i=1

Op
(
|v̂i|3

)
ŵj
i , j ∈ {1, . . . , q}.

Let

Γj,j1...jli =
∂lwj

i

∂βj1 · · · ∂βjl
− γj,j1...jl .
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Taking a second order expansion of ŵj
i around β0 gives

ŵj
i = wj

i + γj,rβ̃r + Γj,ri β̃r +
1

2
γj,rsβ̃rβ̃s +

1

2
Γj,rsi β̃rβ̃s +Rn, (3.21)

where Rn is the remainder term. Thus,

1

n

n∑
i=1

ŵj
i = Aj + γj,rβ̃r + Γj,rβ̃r +

1

2
γj,rsβ̃rβ̃s + Op

(
n−3/2

)
.

Furthermore,

1

n

n∑
i=1

viŵ
j
i = Ajkθk + αjkθk + Op

(
n−3/2

)
, and

1

n

n∑
i=1

v2
i ŵ

j
i = αjklθkθl + Op

(
n−3/2

)
.

Combining terms and noting that αjk = δjk gives

Qjθ,n(θ, β̂) = −θj−Aj−Ajkθk +
ρ(3) (0)

2
αjklθkθl−γj,rβ̃r−Γj,rβ̃r− 1

2
γj,rsβ̃rβ̃s+ Op

(
n−3/2

)
, (3.22)

where β̃ = β̂ − β0.

Solving Qjθ,n(θ, β̂) = 0 for θ(β̂) gives

θj = −Aj −Ajkθk +
ρ(3) (0)

2
αjklθkθl − γj,rβ̃r − Γj,rβ̃r − 1

2
γj,rsβ̃rβ̃s + Op

(
n−3/2

)
.

Substituting for θ gives

Ajkθk = −AjkAk −Ajkγk,rβ̃r + Op
(
n−3/2

)
,

αjklθkθl = αjklAkAl + 2αjklAkγl,rβ̃r + αjklγk,rβ̃rγl,sβ̃s + Op
(
n−3/2

)
.

Hence,

θj = −Aj +AjkAk +
ρ(3) (0)

2
αjklAkAl − γj,rβ̃r +Ajkγk,rβ̃r

+ ρ(3) (0)αjklAkγl,rβ̃r +
ρ(3) (0)

2
αjklγk,rβ̃rγl,sβ̃s − Γj,rβ̃r − 1

2
γj,rsβ̃rβ̃s + Op

(
n−3/2

)
.

(3.23)

β̂ solves the first-order conditions

Qrβ,n(θ, β̂) =
1

n

n∑
i=1

ρ(1)
(
λ̂
T
ψ
(
xi; β̂

)) ∂ψ̂ji
∂β̂

r λ̂
j

=
1

n

n∑
i=1

ρ(1)
(
θTŵi

) ∂ŵj
i

∂β̂
r θ

j

= −θjγj,r − θjΓj,r − θjγj,rsβ̃s + Op
(
n−3/2

)
, j ∈ {1, . . . , q}, r, s ∈ {1, . . . , p};

(3.24)

where the third equality is obtained by expanding ρ(1) (·) around zero and ∂ŵj
i

/
∂β̂

r
around β0.
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Substituting for θ from (3.23) into (3.24) gives

θjγj,t = −Ajγj,t +AjkAkγj,t +
ρ(3) (0)

2
αjklAkAlγj,t − γj,rβ̃rγj,t +Ajkγk,rβ̃rγj,t − Γj,rβ̃rγj,t

+ ρ(3) (0)αjklAkγl,rβ̃rγj,t +
ρ(3) (0)

2
αjklγk,rβ̃rγl,sβ̃sγj,t − 1

2
γj,rsβ̃rβ̃sγj,t + Op

(
n−3/2

)
,

θjΓj,t = −AjΓj,t − γj,rβ̃rΓj,t + Op
(
n−3/2

)
, and

θjγj,tvβ̃v = −Ajγj,tvβ̃v − γj,rβ̃rγj,tvβ̃v + Op
(
n−3/2

)
.

Combining terms, equating Qrβ,n(θ, β̂) to zero and rearranging gives

γj,rβ̃rγj,t = −Ajγj,t +AjkAkγj,t +
ρ(3) (0)

2
αjklAkAlγj,t +Ajkγk,rβ̃rγj,t − Γj,rβ̃rγj,t

+ ρ(3) (0)αjklAkγl,rβ̃rγj,t +
ρ(3) (0)

2
αjklγk,rβ̃rγl,sβ̃sγj,t − 1

2
γj,rsβ̃rβ̃sγj,t

−AjΓj,t − γj,rβ̃rΓj,t −Ajγj,tvβ̃v − γj,rβ̃rγj,tvβ̃v + Op
(
n−3/2

)
.

By definition, ωstγj,tγj,r = δsr. Premultiplying the above equation by ωst gives

β̃s = −ωstAjγj,t + ωstAjkAkγj,t +
ρ(3) (0)

2
ωstαjklAkAlγj,t + ωstAjkγk,rβ̃rγj,t − ωstΓj,rβ̃rγj,t

+ ρ(3) (0)ωstαjklAkγl,rβ̃rγj,t +
ρ(3) (0)

2
ωstαjklγk,rβ̃rγl,sβ̃sγj,t − 1

2
ωstγj,rsβ̃rβ̃sγj,t

− ωstAjΓj,t − ωstγj,rβ̃rΓj,t − ωstAjγj,tvβ̃v − ωstγj,rβ̃rγj,tvβ̃v + Op
(
n−3/2

)
.

Solving for β̃ yields

β̃s = −ωstAjγj,t + ωstAjkAkγj,t +
ρ(3) (0)

2
ωstαjklAkAlγj,t − ωstAjkγk,rωrvAlγl,vγj,t − ωstAjΓj,t

− ρ(3) (0)ωstαjklAkγl,rωrvAmγm,vγj,t +
ρ(3) (0)

2
ωstαjklγk,rωruAmγm,uγl,wωwvAnγn,vγj,t

+ ωstΓj,rωruAkγk,uγj,t − 1

2
ωstγj,rvωruAkγk,uωvwAlγl,wγj,t + ωstγj,rωruAkγk,uΓj,t

+ ωstAjγj,tvωvuAkγk,u − ωstγj,rωruAkγk,uγj,tvωvwAlγl,w + Op
(
n−3/2

)
.

(3.25)

Finally, substituting this back into (3.23) reproduces equation (3.12) in Proposition 2.

3.A.6 Proof of Proposition 3

Using (3.10) with vi = θjwj
i write

f̃ρ(x) = f̂(x) + T1 −
ρ(3) (0)

2
T2 + T3 +

n∑
i=1

R[π]
n Kh (Xi − x) ,
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where T1 = n−1
n∑
i=1

viKh (Xi − x) , T2 = n−1
n∑
i=1

v2
iKh (Xi − x) ,

T3 = −n−1θjAj
n∑
i=1

Kh (Xi − x) + n−1 ρ
(3) (0)

2
θjθj

n∑
i=1

Kh (Xi − x) ,

and the reminder term R
[π]
n is defined below (3.10).

As shown in Appendix 3.A.6.1, provided n−1h−4 goes to zero as n→∞,

E {T1} = −n−1wj(x)wj(x)f(x) + n−1kρα
jklδklwj(x)f(x)

+
1

2
µ2(K)n−1h2

[
−C1 + kρα

jklδklCj2

]
+ O

(
n−1h4

)
,

and E {T2} = n−1wj(x)wj(x)f(x) +
1

2
C1µ2(K)n−1h2 + O

(
n−1h4

)
,

where kρ = 1 + ρ(3) (0)
/

2, C1 = d2

dv2

[
wj(v)wj(v)f(v)

]∣∣∣
v=x

and Cj2 = d2

dv2

[
wj(v)f(v)

]∣∣∣
v=x

. It is then

easy to see that

E {T3} = n−1kρqf(x) + n−1h2kρ
µ2(K)

2
qf (2)(x) + O

(
n−1h4

)
,

and the contribution from the remainder term, R
[π]
n , is of order O

(
n−2

)
. Combining the terms gives

equation (3.15a).

The expression for the integrated squared bias, (3.15c), is obtained immediately from (3.15a) noting

that E
{
f̂(x)

}
= f(x) + 1

2h
2f (2)(x)µ2(K) + O

(
h4
)
, and the leading term in the integrated squared bias

of f̂ is of order h4.

To obtain the variance, first note that from (3.15a),[
E

{
f̃ρ(x)

}]2
=
[
E

{
f̂(x)

}]2
+ 2n−1kρ

[
−wj(x)wj(x) + αjklδklwj(x) + q

]
f2(x)

+ n−1h2µ2(K)kρ
[
−wj(x)wj(x) + αjklδklwj(x) + q

]
f (2)(x)f(x)

+ n−1h2µ2(K)kρ

[
−C1 + αjklδklCj2 + qf (2)(x)

]
f(x) + O

(
n−1h4

)
.

As shown in Appendix 3.A.6.2,

E

{
f̃2
ρ (x)

}
= E

{
f̂2(x)

}
− n−1wj(x)wj(x)f2(x)

+ 2n−1kρ
[
−wj(x)wj(x) + αjklδklwj(x) + q

]
f2(x)

+ n−1h2µ2(K)kρ
[
−wj(x)wj(x) + αjklδklwj(x) + q

]
f (2)(x)f(x)

+ n−1h2µ2(K)kρ

[
−C1 + αjklδklCj2 + qf (2)(x)

]
f(x)

− n−1h2µ2(K)wj(x)Cj2f(x) + O
(
n−1h4

)
.

Subtracting
[
E

{
f̃ρ(x)

}]2
from E

{
f̃2
ρ (x)

}
gives the variance expression (3.15b). Equations (3.15d)

and (3.15e) then follow immediately.
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3.A.6.1 Expectation of GELKDE

Recall that vi = λ̂
T
ψi = θjwj

i . Thus from (3.11) we obtain

vi = −Ajwj
i +AjkAkwj

i +
ρ(3) (0)

2
αjklAkAlwj

i −A
jkAklAlwj

i +
ρ(3) (0)

2
AjklAkAlwj

i

− ρ(3) (0)

2
AjkαklmAlAmwj

i − ρ
(3) (0)αjklAlmAkAmwj

i −
(
ρ(3) (0)

)2
2

αjklαlmpAkAmApwj
i

− ρ(4) (0)

6
αjklmAkAlAmwj

i + Op
(
n−2

)
wj
i .

(3.26)

Substituting from (3.26) into T1 and taking expectations we obtain (T1m stands for T1 with the
m-th term from (3.26) substituted for vi).

nE {T11} = −E

{
n∑
i=1

Ajwj
iKh (Xi − x)

}
= −n−1

E

{
n∑
i=1

n∑
s=1

wj
sw

j
iKh (Xi − x)

}

= −E
{

wj
1w

j
1Kh (X1 − x)

}
= −wj(x)wj(x)f(x)− 1

2
C1µ2(K)h2 + O

(
h4
)
,

where w(x) = w(x;β0); wj(x)wj(x) = w(x)Tw(x) and

E
{
w(Xi)

Tw(Xi)Kh (Xi − x)
}

=

∫
R

w(u)Tw(u)Kh (u− x) f(u)du

=

∫
R

w(x+ hz)Tw(x+ hz)K (z) f(x+ hz)dz (by change of variables: u = x+ hz)

= wj(x)wj(x)f(x) +
1

2
C1µ2(K)h2 + O

(
h4
)

(expanding around x and integrating).

Here C1 = d2

dv2

[
w(v)Tw(v)f(v)

]∣∣∣
v=x

, and the O
(
h4
)

term is 1
24D1µ4(K)h4 with

D1 = d4

dv4

[
w(v)Tw(v)f(v)

]
evaluated at a point between x and x+ hz.

Writing

AjkAkwj
i =

[
n−1

n∑
h=1

wj
hw

k
h − αjk

][
n−1

n∑
s=1

wk
s

]
wj
i = n−2

n∑
h=1

n∑
s=1

wj
hw

k
hw

k
sw

j
i − n

−1
n∑
s=1

wj
sw

j
i ,

and assuming n−1h−4 → 0 as n→∞, we obtain

nE {T12} = E

{
n∑
i=1

AjkAkwj
iKh (Xi − x)

}

= n−2
E

{
n∑
i=1

n∑
h=1

n∑
s=1

wj
hw

k
hw

k
sw

j
iKh (Xi − x)

}
− n−1

E

{
n∑
i=1

n∑
s=1

wj
sw

j
iKh (Xi − x)

}
= E

{
wj

2w
k
2wk

1wj
1Kh (X1 − x)

}
+E

{
wj

2w
k
2wk

2wj
1Kh (X1 − x)

}
−E

{
wj

1w
j
1Kh (X1 − x)

}
+ O

(
n−1

)
= E

{
δjkwk

1wj
1Kh (X1 − x)

}
+E

{
αjklδklwj

1Kh (X1 − x)
}

−E
{

wj
1w

j
1Kh (X1 − x)

}
+ O

(
n−1

)
(?)

= αjklδklwj(x)f(x) +
1

2
αjklδklCj2µ2(K)h2 + O

(
h4
)
.
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Note that the first and third terms in line (?) cancel, and

E
{
wj(Xi)Kh (Xi − x)

}
=

∫
R

wj(u)Kh (u− x) f(u)du

=

∫
R

wj(x+ hz)K (z) f(x+ hz)dz (by change of variables: u = x+ hz)

= wj(x)f(x) +
1

2
Cj2µ2(K)h2 + O

(
h4
)

(expanding around x and integrating),

where Cj2 = d2

dv2

[
wj(v)f(v)

]∣∣∣
v=x

, and the O
(
h4
)

term is 1
24D

j
2µ4(K)h4 with Dj

2 = d4

dv4

[
wj(v)f(v)

]
evaluated at a point between x and x+ hz.

nE {T13} =
ρ(3) (0)

2
E

{
n∑
i=1

αjklAkAlwj
iKh (Xi − x)

}

=
ρ(3) (0)

2
n−2

E

{
n∑
i=1

n∑
h=1

n∑
s=1

αjklwk
hw

l
sw

j
iKh (Xi − x)

}

=
ρ(3) (0)

2
E

{
αjklwk

2wl
2w

j
1Kh (X1 − x)

}
+ O

(
n−1

)
=
ρ(3) (0)

2
αjklδklwj(x)f(x) +

ρ(3) (0)

4
αjklδklCj2µ2(K)h2 + O

(
h4
)
.

Noting that

AjkAklAlwj
i =

[
n−1

n∑
h=1

wj
hw

k
h − δjk

][
n−1

n∑
s=1

wk
sw

l
s − δkl

][
n−1

n∑
t=1

wl
t

]
wj
i

= n−3
n∑
h=1

n∑
s=1

n∑
t=1

wj
hw

k
hw

k
sw

l
sw

l
tw

j
i − n

−2
n∑
h=1

n∑
t=1

δklwj
hw

k
hw

l
tw

j
i

− n−2
n∑
s=1

n∑
t=1

δjkwk
sw

l
sw

l
tw

j
i + n−1

n∑
t=1

δjkδklwl
tw

j
i

we obtain
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nE {T14} = −E

{
n∑
i=1

AjkAklAlwj
iKh (Xi − x)

}

= −n−3
E

{
n∑
i=1

n∑
h=1

n∑
s=1

n∑
t=1

wj
hw

k
hw

k
sw

l
sw

l
tw

j
iKh (Xi − x)

}

+ n−2
E

{
n∑
i=1

n∑
h=1

n∑
t=1

δklwj
hw

k
hw

l
tw

j
iKh (Xi − x)

}

+ n−2
E

{
n∑
i=1

n∑
s=1

n∑
t=1

δjkwk
sw

l
sw

l
tw

j
iKh (Xi − x)

}

− n−1
E

{
n∑
i=1

n∑
t=1

δjkδklwl
tw

j
iKh (Xi − x)

}
= −E

{
wj

3w
k
3wk

2wl
2w

l
1w

j
1Kh (X1 − x)

}
−E

{
wj

3w
k
3wk

2wl
2w

l
2w

j
1Kh (X1 − x)

}
−E

{
wj

3w
k
3wk

2wl
2w

l
3w

j
1Kh (X1 − x)

}
+E

{
δklwj

2w
k
2wl

1w
j
1Kh (X1 − x)

}
+E

{
δklwj

2w
k
2wl

2w
j
1Kh (X1 − x)

}
+E

{
δjkwk

2wl
2w

l
1w

j
1Kh (X1 − x)

}
+E

{
δjkwk

2wl
2w

l
2w

j
1Kh (X1 − x)

}
−E

{
δjkδklwl

1w
j
1Kh (X1 − x)

}
+ O

(
n−1

)
= −E

{
δjkδklwl

1w
j
1Kh (X1 − x)

}
−E

{
δjkαklmδlmwj

1Kh (X1 − x)
}

−E
{
αjklδklwj

1Kh (X1 − x)
}

+E

{
δklδjkwl

1w
j
1Kh (X1 − x)

}
+E

{
δklαjklwj

1Kh (X1 − x)
}

+E

{
δjkδklwl

1w
j
1Kh (X1 − x)

}
+E

{
δjkαklmδlmwj

1Kh (X1 − x)
}
−E

{
δjkδklwl

1w
j
1Kh (X1 − x)

}
+ O

(
n−1

)
= O

(
n−1

)
.

We proceed in a similar fashion to verify each subsequent term.

AjklAkAlwj
i =

[
n−1

n∑
h=1

wj
hw

k
hw

l
h − αjkl

][
n−1

n∑
s=1

wk
s

][
n−1

n∑
t=1

wl
t

]
wj
i

= n−3
n∑
h=1

n∑
s=1

n∑
t=1

wj
hw

k
hw

l
hw

k
sw

l
tw

j
i − n

−2
n∑
s=1

n∑
t=1

αjklwk
sw

l
tw

j
i .
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nE {T15} =
ρ(3) (0)

2
E

{
n∑
i=1

AjklAkAlwj
iKh (Xi − x)

}

=
ρ(3) (0)

2

[
n−3

E

{
n∑
i=1

n∑
h=1

n∑
s=1

n∑
t=1

wj
hw

k
hw

l
hw

k
sw

l
tw

j
iKh (Xi − x)

}

−n−2
E

{
n∑
i=1

n∑
s=1

n∑
t=1

αjklwk
sw

l
tw

j
iKh (Xi − x)

}]

=
ρ(3) (0)

2

[
E

{
wj

3w
k
3wl

3w
k
2wl

2w
j
1Kh (X1 − x)

}
−E

{
αjklwk

2wl
2w

j
1Kh (X1 − x)

}]
+ O

(
n−1

)
=
ρ(3) (0)

2

[
E

{
αjklδklwj

1Kh (X1 − x)
}
−E

{
αjklδklwj

1Kh (X1 − x)
}]

+ O
(
n−1

)
= O

(
n−1

)
.

AjkαklmAlAmwj
i =

[
n−1

n∑
h=1

wj
hw

k
h − δjk

]
αklm

[
n−1

n∑
s=1

wl
s

][
n−1

n∑
t=1

wm
t

]
wj
i

= n−3
n∑
h=1

n∑
s=1

n∑
t=1

αklmwj
hw

k
hw

l
sw

m
t wj

i − n
−2

n∑
s=1

n∑
t=1

αklmδjkwl
sw

m
t wj

i ;

nE {T16} = −ρ
(3) (0)

2
E

{
n∑
i=1

AjkαklmAlAmwj
iKh (Xi − x)

}
= O

(
n−1

)
.

αjklAlmAkAmwj
i = αjkl

[
n−1

n∑
h=1

wl
hw

m
h − δlm

][
n−1

n∑
s=1

wk
s

][
n−1

n∑
t=1

wm
t

]
wj
i

= n−3
n∑
h=1

n∑
s=1

n∑
t=1

αjklwl
hw

m
h wk

sw
m
t wj

i − n
−2

n∑
s=1

n∑
t=1

αjklδlmwk
sw

m
t wj

i ;

nE {T17} = −ρ(3) (0)E

{
n∑
i=1

αjklAlmAkAmwj
iKh (Xi − x)

}
= O

(
n−1

)
.

αjklαlmpAkAmApwj
i = αjklαlmp

[
n−1

n∑
h=1

wk
h

][
n−1

n∑
s=1

wm
s

][
n−1

n∑
t=1

wp
t

]
wj
i

= n−3
n∑
h=1

n∑
s=1

n∑
t=1

αjklαlmpwk
hw

m
s wp

tw
j
i ;

nE {T18} = −
(
ρ(3) (0)

)2
2

E

{
n∑
i=1

αjklαlmpAkAmApwj
iKh (Xi − x)

}
= O

(
n−1

)
.

αjklmAkAlAmwj
i = n−3

n∑
h=1

n∑
s=1

n∑
t=1

αjklmwk
hw

l
sw

m
t wj

i ;

nE {T19} = −ρ
(4) (0)

6
E

{
n∑
i=1

αjklmAkAlAmwj
iKh (Xi − x)

}
= O

(
n−1

)
.
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Therefore

nE {T1} = −wj(x)wj(x)f(x) +

(
1 +

ρ(3) (0)

2

)
αjklδklwj(x)f(x)

+
1

2
µ2(K)h2

[
−C1 +

(
1 +

ρ(3) (0)

2

)
αjklδklCj2

]
+ O

(
h4
)
.

Note that the contribution from terms of order Op
(
n−3/2

)
in expansion (3.11) for θ is of order less

than 1/n.

To obtain E {T2}, square (3.26) and keep the three leading terms only:(
θjwj

i

)2

=
(
Ajwj

i

)2

− 2AjAjkAkwj
iw

j
i − ρ

(3) (0)αjklAjAkAlwj
iw

j
i +Rn. (3.27)

Proceeding in a fashion similar to that above yields

nE {T21} = E

{
n∑
i=1

(
Ajwj

i

)2

Kh (Xi − x)

}
= n−2

E

{
n∑
i=1

n∑
h=1

n∑
s=1

wj
hw

j
sw

j
iw

j
iKh (Xi − x)

}

= E

{
wj

2w
j
2w

j
1w

j
1Kh (X1 − x)

}
+ O

(
n−1

)
= wj(x)wj(x)f(x) +

1

2
C1µ2(K)h2 + O

(
h4
)
.

AjAjkAkwj
iw

j
i =

[
n−1

n∑
h=1

wj
h

][
n−1

n∑
s=1

wj
sw

k
s − δjk

][
n−1

n∑
t=1

wk
t

]
wj
iw

j
i

= n−3
n∑
h=1

n∑
s=1

n∑
t=1

wj
hw

j
sw

k
sw

k
tw

j
iw

j
i − n

−2
n∑
h=1

n∑
t=1

δjkwj
hw

k
tw

j
iw

j
i ;

nE {T22} = −2E

{
n∑
i=1

AjAjkAkwj
iw

j
iKh (Xi − x)

}

= −2n−3
E

{
n∑
i=1

n∑
h=1

n∑
s=1

n∑
t=1

wj
hw

j
sw

k
sw

k
tw

j
iw

j
iKh (Xi − x)

}

+ 2n−2
E

{
n∑
i=1

n∑
h=1

n∑
t=1

δjkwj
hw

k
tw

j
iw

j
iKh (Xi − x)

}
= O

(
n−1

)
.

αjklAjAkAlwj
iw

j
i = αjkl

[
n−1

n∑
h=1

wj
h

][
n−1

n∑
s=1

wk
s

][
n−1

n∑
t=1

wl
t

]
wj
iw

j
i

= n−3
n∑
h=1

n∑
s=1

n∑
t=1

αjklwj
hw

k
sw

l
tw

j
iw

j
i ;

nE {T23} = −ρ(3) (0)E

{
n∑
i=1

αjklAjAkAlwj
iw

j
iKh (Xi − x)

}
= O

(
n−1

)
.

Thus,

nE {T2} = wj(x)wj(x)f(x) +
1

2
C1µ2(K)h2 + O

(
h4
)
.

3.A.6.2 Variance of GELKDE

First write
f̃2
ρ (x) = f̂2(x) + 2f̂(x)T1 − ρ(3) (0) f̂(x)T2 + 2f̂(x)T3 + T 2

1 +Rn,

103



Chapter 3. Generalised empirical likelihood–based kernel density estimation

where the remainder term contains T 2
2 , T 2

3 and cross-products, each of which gives a contribution of
order O

(
n−2

)
or smaller. Using the results of previous subsection, we obtain

nE
{
f̂(x)T1

}
= −2n−2

E

{
n∑
i=1

n∑
s=1

n∑
t=1

wj
sw

j
tKh (Xi − x)Kh (Xt − x)

}

+ n−3
E

{
n∑
i=1

n∑
r=1

n∑
s=1

n∑
t=1

wj
sw

k
sw

k
tw

j
rKh (Xr − x)Kh (Xi − x)

}

+ n−3 ρ
(3) (0)

2
E

{
n∑
i=1

n∑
r=1

n∑
s=1

n∑
t=1

αjklwk
sw

l
tw

j
rKh (Xr − x)Kh (Xi − x)

}
+Rn

= −2E
{

wj
2w

j
2Kh (X1 − x)Kh (X2 − x)

}
− 2E

{
wj

2w
j
1Kh (X2 − x)Kh (X1 − x)

}
+E

{
wj

1w
k
1wk

1wj
2Kh (X2 − x)Kh (X3 − x)

}
+E

{
wj

1w
k
1wk

2wj
2Kh (X2 − x)Kh (X3 − x)

}
+E

{
wj

1w
k
1wk

2wj
3Kh (X3 − x)Kh (X2 − x)

}
+
ρ(3) (0)

2
αjklE

{
wk

3wl
3w

j
2Kh (X2 − x)Kh (X1 − x)

}
+ O

(
n−1

)
= −E

{
wj

2w
j
2Kh (X1 − x)Kh (X2 − x)

}
−E

{
wj

2w
j
1Kh (X2 − x)Kh (X1 − x)

}
+

(
1 +

ρ(3) (0)

2

)
E

{
αjklδklwj

2Kh (X2 − x)Kh (X1 − x)
}

+ O
(
n−1

)
= −

[
wj(x)wj(x)f(x) +

1

2
C1µ2(K)h2 + O

(
h4
)] [

f(x) +
1

2
h2µ2(K)f (2)(x) + O

(
h4
)]

−
[
wj(x)f(x) +

1

2
Cj2µ2(K)h2 + O

(
h4
)] [

wj(x)f(x) +
1

2
Cj2µ2(K)h2 + O

(
h4
)]

+

(
1 +

ρ(3) (0)

2

)
αjklδkl

[
wj(x)f(x) +

1

2
Cj2µ2(K)h2 + O

(
h4
)]
× · · ·

· · · ×
[
f(x) +

1

2
h2µ2(K)f (2)(x) + O

(
h4
)]

+ O
(
n−1

)
= −2wj(x)wj(x)f2(x) +

(
1 +

ρ(3) (0)

2

)
αjklδklwj(x)f2(x)

− 1

2
h2µ2(K)wj(x)wj(x)f (2)(x)f(x)− 1

2
h2µ2(K)C1f(x)− h2µ2(K)wj(x)Cj2f(x)

+ h2µ2(K)
2 + ρ(3) (0)

4
αjklδkl

[
wj(x)f (2)(x)f(x) + Cj2f(x)

]
+ O

(
h4
)
.

104



3.A. Proofs

nE
{
f̂(x)T2

}
= n−3

E

{
n∑
i=1

n∑
m=1

n∑
s=1

n∑
t=1

wj
sw

j
tw

j
iw

j
iKh (Xi − x)Kh (Xm − x)

}

− 2

[
n−4

E

{
n∑
i=1

n∑
m=1

n∑
h=1

n∑
s=1

n∑
t=1

wj
hw

j
sw

k
sw

k
tw

j
iw

j
iKh (Xi − x)Kh (Xm − x)

}

−n−3
E

{
n∑
i=1

n∑
m=1

n∑
h=1

n∑
t=1

δjkwj
hw

k
tw

j
iw

j
iKh (Xi − x)Kh (Xm − x)

}]

− ρ(3) (0)n−4
E

{
n∑
i=1

n∑
m=1

n∑
h=1

n∑
s=1

n∑
t=1

αjklwj
hw

k
sw

l
tw

j
iw

j
iKh (Xi − x)Kh (Xm − x)

}
= E

{
wj

2w
j
2w

j
1w

j
1Kh (X1 − x)Kh (X3 − x)

}
− 2

[
E

{
wj

4w
j
3w

k
3wk

4wj
2w

j
2Kh (X2 − x)Kh (X1 − x)

}
−E

{
δjkwj

3w
k
3wj

2w
j
2Kh (X2 − x)Kh (X1 − x)

}]
+ O

(
n−1

)
= E

{
wj

1w
j
1Kh (X1 − x)Kh (X3 − x)

}
+ O

(
n−1

)
= wj(x)wj(x)f2(x) +

1

2
h2µ2(K)wj(x)wj(x)f (2)(x)f(x) +

1

2
h2µ2(K)C1f(x) + O

(
h4
)
.

nE
{
T 2

1

}
= 4n−3

E

{
n∑
i=1

n∑
k=1

n∑
s=1

n∑
t=1

wj
sw

j
iw

l
tw

l
kKh (Xi − x)Kh (Xk − x)

}

− 4n−4
E

{
n∑
i=1

n∑
k=1

n∑
s=1

n∑
r=1

n∑
t=1

wj
sw

j
iw

l
rw

m
r wm

t wl
kKh (Xi − x)Kh (Xk − x)

}

− 2ρ(3) (0)n−4
E

{
n∑
i=1

n∑
k=1

n∑
s=1

n∑
r=1

n∑
t=1

αmplwj
sw

j
iw

p
rw

l
tw

m
k Kh (Xi − x)Kh (Xk − x)

}

+ n−5
E

{
n∑
i=1

n∑
k=1

n∑
s=1

n∑
t=1

n∑
q=1

n∑
r=1

wj
sw

k
sw

k
tw

j
iw

l
qw

m
q wm

r wl
kKh (Xi − x)Kh (Xk − x)

}

+ ρ(3) (0)n−5
E

{
n∑
i=1

n∑
k=1

n∑
s=1

n∑
t=1

n∑
q=1

n∑
r=1

αmpgwj
sw

l
sw

l
tw

j
iw

p
qw

g
rw

m
k Kh (Xi − x)Kh (Xk − x)

}

+

[
ρ(3) (0)

]2
4

n−5
E

{
n∑
i=1

n∑
k=1

n∑
s=1

n∑
t=1

n∑
q=1

n∑
r=1

αjklαmpgwk
sw

l
tw

j
iw

p
qw

g
rw

m
k Kh (Xi − x)Kh (Xk − x)

}
= 4E

{
wj

3w
j
2w

l
3w

l
1Kh (X2 − x)Kh (X1 − x)

}
− 4E

{
wj

4w
j
2w

l
3w

m
3 wm

4 wl
1Kh (X2 − x)Kh (X1 − x)

}
+E

{
wj

4w
k
4wk

5wj
2w

l
3w

m
3 wm

5 wl
1Kh (X2 − x)Kh (X1 − x)

}
+ O

(
n−1

)
= wj(x)wj(x)f2(x) + h2µ2(K)wj(x)Cj2f(x) + O

(
h4
)
.
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E

{
f̂(x)T3

}
= −n−2

E

{
θjAj

n∑
i=1

n∑
t=1

Kh (Xi − x)Kh (Xt − x)

}

+ n−2 ρ
(3) (0)

2
E

{
θjθj

n∑
i=1

n∑
t=1

Kh (Xi − x)Kh (Xt − x)

}
= n−1kρqf

2(x) + n−1h2µ2(K)kρqf(x)f (2)(x) + O
(
n−1h4

)
.

Combining terms yields

E

{
f̃2
ρ (x)

}
= E

{
f̂2(x)

}
− n−1wj(x)wj(x)f2(x)

+ 2n−1kρ
[
−wj(x)wj(x) + αjklδklwj(x) + q

]
f2(x)

+ n−1h2µ2(K)kρ
[
−wj(x)wj(x) + αjklδklwj(x) + q

]
f (2)(x)f(x)

+ n−1h2µ2(K)kρ

[
−C1 + αjklδklCj2 + qf (2)(x)

]
f(x)

− n−1h2µ2(K)wj(x)Cj2f(x) + O
(
n−1h4

)
.

3.A.7 Proof of Proposition 4

Using (3.10) with v̂i = θjŵj
i write

f̃ρ(x) = f̂(x) + T ′1 −
ρ(3) (0)

2
T ′2 + T ′3 +

n∑
i=1

R[π]
n Kh (Xi − x) ,

where

T ′1 = n−1
n∑
i=1

v̂iKh (Xi − x) , T ′2 = n−1
n∑
i=1

v̂2
iKh (Xi − x) ,

and

T ′3 = −n−1θT
1

n

n∑
i=1

ŵi

n∑
i=1

Kh (Xi − x) + n−1 ρ
(3) (0)

2
θjθj

n∑
i=1

Kh (Xi − x) .

Note that θ is now given by (3.12). Using (3.21) and (3.25) write

v̂i = θjwj
i +Ajγj,rωrsAkγk,s +AjΓj,ri ωrsAkγk,s

− γj,tγl,uωtuAlγj,rωrsAkγk,s − γj,tγl,uωtuAlΓj,ri ωrsAkγk,s +Rn,

Define

τ i,r;k = E

{
∂wj

i

∂βr
wk
i

}
, and gj,r(x) =

∂wj(x;β0)

∂βr
, j, k ∈ {1, . . . , q}, r ∈ {1, . . . , p}.
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From the results derived in Appendix 3.A.6.1, we have

1

n
E

{
n∑
i=1

Ajwk
iKh (Xi − x)

}
=

1

n
wj(x)wk(x)f(x) +

h2

n

1

2
µ2(K)Cjk1 (x) + O

(
h4

n

)
, (3.28a)

1

n
E

{
n∑
i=1

AjkAlwm
i Kh (Xi − x)

}
=

1

n
αjklwm(x)f(x) +

h2

n

1

2
µ2(K)αjklCm2 (x) + O

(
h4

n

)
, (3.28b)

1

n
E

{
n∑
i=1

AjAkwl
iKh (Xi − x)

}
=

1

n
δjkwl(x)f(x) +

h2

n

1

2
µ2(K)δjkCl2(x) + O

(
h4

n

)
, (3.28c)

where Cjk1 (x) = d2

dv2

[
wj(v)wk(v)f(v)

]∣∣∣
v=x

and Cm2 (x) = d2

dv2 [wm(v)f(v)]
∣∣∣
v=x

.

We further obtain that

E

{
n−1

n∑
i=1

Γj,rAkwl
iKh (Xi − x)

}
= n−3

E

{
n∑
i=1

n∑
h=1

n∑
g=1

∂wj
h

∂βr
wk
gw

l
iKh (Xi − x)

}

− n−2γj,rE

{
n∑
i=1

n∑
g=1

wk
gw

l
iKh (Xi − x)

}
= n−1

E

{
∂wj

1

∂βr
wk

1wl
2Kh (X2 − x)

}
+ O

(
n−2

)
= n−1τ j,r;kwl(x)f(x) + n−1h2 1

2
µ2(K)τ j,r;kCl2(x) + O

(
n−1h4

)
. (3.28d)

Finally,

E

{
n−1

n∑
i=1

AjAkKh (Xi − x)

}
= n−1δjkE {Kh (X1 − x)}

= n−1δjkf(x) + n−1h2 1

2
µ2(K)δjkf (2)(x) + O

(
n−1h4

)
;

(3.28e)

E

{
n−1

n∑
i=1

Γj,ri AkAlKh (Xi − x)

}
= n−3

E

{
n∑
i=1

n∑
g=1

n∑
h=1

wk
gw

l
h

∂wj
i

∂βr
Kh (Xi − x)

}

− n−3γj,rE

{
n∑
i=1

n∑
g=1

n∑
h=1

wk
gw

l
hKh (Xi − x)

}

= n−1δklE

{
∂wj

1

∂βr
Kh (X1 − x)

}
− n−1γj,rδklE {Kh (X1 − x)}

= n−1δklgj,r(x)f(x)− n−1γj,rδklf(x) + n−1h2 1

2
µ2(K)δklCj,r3 (x)− n−1h2 1

2
µ2(K)γj,rδklf (2)(x)

+ O
(
n−1h4

)
, (3.28f)

where gj,r(x) = ∂wj(x;β0)
∂βr , Cj,r3 (x) = ∂2

∂v2

[
∂wj(v;β0)

∂βr )f(v)
]∣∣∣
v=x

and

E

{
∂wj

1

∂βr
Kh (X1 − x)

}
=

∫
R

∂wj(x1;β0)

∂βr
Kh (x1 − x) f(x1)dx1

=

∫
R

∂wj(x+ hz;β0)

∂βr
K (z) f(x+ hz)dz =

∂wj(x;β0)

∂βr
f(x) +

1

2
h2µ2(K)Cj,r3 (x) + O

(
h4
)
.

107



Chapter 3. Generalised empirical likelihood–based kernel density estimation

We then have

E {T ′1} = n−1B′1(x)f(x) + n−1h2 1

2
µ2(K)B′2(x) + O

(
n−1h4

)
,

where

B′1(x) = −wj(x)wj(x) + γj,rγk,sωrswj(x)wk(x)

+ αjklδklwj(x)− γk,rγl,sωrsαjklwj(x)− γj,rγk,sωrsαklmδlmwj(x)

+ γj,rγk,tγl,uγm,sωtuωrsαmklwj(x)

+
ρ(3) (0)

2
αjklδklwj(x)− ρ(3) (0)

2
αmklγj,rγm,sωrsδklwj(x)

+
ρ(3) (0)

2
αjklγk,rγm,tγl,sγn,uωsuωrtδmnwj(x)

− ρ(3) (0)

2
αoklγj,rγk,sγm,uγl,wγn,vγo,tωwvωrtωsuδmnwj(x)

+ ρ(3) (0)αnklγj,rγl,sγm,vγn,tωsvωrtδkmwj(x)− ρ(3) (0)αjklγl,rγm,sωrsδkmwj(x)

+
1

2
γm,svγj,rγk,uγl,wγm,tωvwωrtωsuδklwj(x)− 1

2
γj,rsγk,tγl,uωsuωrtδklwj(x)

− γl,tvγj,rγk,uωrtωvuδklwj(x) + γm,tvγj,rγm,sγk,uγl,wωvwωrtωsuδklwj(x)

+ γk,sωrsτ j,r;kwj(x) + γj,rωrsτk,s;kwj(x)

− γj,rγk,uγl,tωrtωsuτ l,s;kwj(x)− γj,rγl,sγk,uωrtωsuτ l,t;kwj(x)

+ ωrsγk,sδjkgj,r(x)− γj,tγl,uωtuωrsγk,sδklgj,r(x)

and

B′2(x) = −Cjj1 (x) + γj,rγk,sωrsCkj1 (x)

+ αjklδklCj2(x)− γk,rγl,sωrsαjklCj2(x)− γj,rγk,sωrsαklmδlmCj2(x)

+ γj,rγk,tγl,uγm,sωtuωrsαmklCj2(x)

+
ρ(3) (0)

2
αjklδklCj2(x)− ρ(3) (0)

2
αmklγj,rγm,sωrsδklCj2(x)

+
ρ(3) (0)

2
αjklγk,rγm,tγl,sγn,uωsuωrtδmnCj2(x)

− ρ(3) (0)

2
αoklγj,rγk,sγm,uγl,wγn,vγo,tωwvωrtωsuδmnCj2(x)

+ ρ(3) (0)αnklγj,rγl,sγm,vγn,tωsvωrtδkmCj2(x)− ρ(3) (0)αjklγl,rγm,sωrsδkmCj2(x)

+
1

2
γm,svγj,rγk,uγl,wγm,tωvwωrtωsuδklCj2(x)− 1

2
γj,rsγk,tγl,uωsuωrtδklCj2(x)

− γl,tvγj,rγk,uωrtωvuδklCj2(x) + γm,tvγj,rγm,sγk,uγl,wωvwωrtωsuδklCj2(x)

+ γk,sωrsτ j,r;kCj2(x) + γj,rωrsτk,s;kCj2(x)

− γj,rγk,uγl,tωrtωsuτ l,s;kCj2(x)− γj,rγl,sγk,uωrtωsuτ l,t;kCj2(x)

+ ωrsγk,sδjkCj,r3 (x)− γj,tγl,uωtuωrsγk,sδklCj,r3 (x).

Note that only three terms in v̂2
i give a contribution of order O

(
n−1

)
, viz.

AjAkwj
iw

k
i , −2γl,rγk,sωrsAjAkwj

iw
l
i and γj,rγk,sγl,tγm,uωrsωtuAkAmwj

iw
l
i. Also

1

n
E

{
n∑
i=1

AjAkwl
iw

m
i Kh (Xi − x)

}
= n−1δjkwl(x)wm(x)f(x) +n−1h2 1

2
µ2(K)δjkClm1 (x) + O

(
n−1h4

)
.
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Hence

E {T ′2} = n−1B′′1 (x)f(x) + n−1h2 1

2
µ2(K)B′′2 (x) + O

(
n−1h4

)
,

where

B′′1 (x) = wj(x)wj(x)− 2γl,rγk,sωrsδjkwj(x)wl(x) + γj,rγk,sγl,tγm,uωrsωtuδkmwj(x)wl(x)

and
B′′2 (x) = Cjj1 (x)− 2γl,rγk,sωrsδjkCjl1 (x) + γj,rγk,sγl,tγm,uωrsωtuδkmCjl1 (x).

Finally, write

θT
1

n

n∑
i=1

ŵi = θjAj − θjγj,rωrsAkγk,s + Op
(
n−3/2

)
= −AjAj + 2Ajγj,rωrsAkγk,s − γj,rωrsAkγk,sγj,tωtuAlγl,u + Op

(
n−3/2

)
,

and
θjθj = AjAj − 2Ajγj,rωrsAkγk,s + γj,rωrsAkγk,sγj,tωtuAlγl,u + Op

(
n−3/2

)
.

Then, as

E
{
AjAj − 2Ajγj,rωrsAkγk,s + γj,rωrsAkγk,sγj,tωtuAlγl,u

}
= n−1

(
q − 2δjkγj,rωrsγk,s + δklγj,rωrsγk,sγj,tωtuγl,u

)
= n−1 (q − 2p+ p) = n−1(q − p),

we have

E {T ′3} = n−1kρ(q − p)
[
f(x) +

1

2
h2µ2(K)f (2)(x)

]
+ Op

(
n−3/2

)
.

Thus,

E

{
f̃ρ(x)

}
= E

{
f̂(x)

}
+ n−1B1(x)f(x) + n−1h2 1

2
µ2(K)B2(x) + O

(
n−3/2

)
,

where

B1(x) = B′1(x)− ρ(3) (0)

2
B′′1 (x) + kρ(q − p)

and

B2(x) = B′2(x)− ρ(3) (0)

2
B′′2 (x) + kρ(q − p)f (2)(x).

Specifically,
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B1(x) = −kρwj(x)wj(x) + γj,rγk,sωrswj(x)wk(x)

+ ρ(3) (0) γl,rγk,sωrsδjkwj(x)wl(x)

− ρ(3) (0)

2
γj,rγk,sγl,tγm,uωrsωtuδkmwj(x)wl(x)

+ kρα
jklδklwj(x)− γk,rγl,sωrsαjklwj(x)− γj,rγk,sωrsαklmδlmwj(x)

+ γj,rγk,tγl,uγm,sωtuωrsαmklwj(x)

− ρ(3) (0)

2
αmklγj,rγm,sωrsδklwj(x)

+
ρ(3) (0)

2
αjklγk,rγm,tγl,sγn,uωsuωrtδmnwj(x)

− ρ(3) (0)

2
αoklγj,rγk,sγm,uγl,wγn,vγo,tωwvωrtωsuδmnwj(x)

+ ρ(3) (0)αnklγj,rγl,sγm,vγn,tωsvωrtδkmwj(x)− ρ(3) (0)αjklγl,rγm,sωrsδkmwj(x)

+
1

2
γm,svγj,rγk,uγl,wγm,tωvwωrtωsuδklwj(x)− 1

2
γj,rsγk,tγl,uωsuωrtδklwj(x)

− γl,tvγj,rγk,uωrtωvuδklwj(x) + γm,tvγj,rγm,sγk,uγl,wωvwωrtωsuδklwj(x)

+ γk,sωrsτ j,r;kwj(x) + γj,rωrsτk,s;kwj(x)

− γj,rγk,uγl,tωrtωsuτ l,s;kwj(x)− γj,rγl,sγk,uωrtωsuτ l,t;kwj(x)

+ ωrsγk,sδjkgj,r(x)− γj,tγl,uωtuωrsγk,sδklgj,r(x) + kρ(q − p),

(3.29)

and

B2(x) = −kρCjj1 (x) + γj,rγk,sωrsCkj1 (x)

+ ρ(3) (0) γl,rγk,sωrsδjkCjl1 (x)− ρ(3) (0)

2
γj,rγk,sγl,tγm,uωrsωtuδkmCjl1 (x)

+ kρα
jklδklCj2(x)− γk,rγl,sωrsαjklCj2(x)− γj,rγk,sωrsαklmδlmCj2(x)

+ γj,rγk,tγl,uγm,sωtuωrsαmklCj2(x)

− ρ(3) (0)

2
αmklγj,rγm,sωrsδklCj2(x)

+
ρ(3) (0)

2
αjklγk,rγm,tγl,sγn,uωsuωrtδmnCj2(x)

− ρ(3) (0)

2
αoklγj,rγk,sγm,uγl,wγn,vγo,tωwvωrtωsuδmnCj2(x)

+ ρ(3) (0)αnklγj,rγl,sγm,vγn,tωsvωrtδkmCj2(x)− ρ(3) (0)αjklγl,rγm,sωrsδkmCj2(x)

+
1

2
γm,svγj,rγk,uγl,wγm,tωvwωrtωsuδklCj2(x)− 1

2
γj,rsγk,tγl,uωsuωrtδklCj2(x)

− γl,tvγj,rγk,uωrtωvuδklCj2(x) + γm,tvγj,rγm,sγk,uγl,wωvwωrtωsuδklCj2(x)

+ γk,sωrsτ j,r;kCj2(x) + γj,rωrsτk,s;kCj2(x)

− γj,rγk,uγl,tωrtωsuτ l,s;kCj2(x)− γj,rγl,sγk,uωrtωsuτ l,t;kCj2(x)

+ ωrsγk,sδjkCj,r3 (x)− γj,tγl,uωtuωrsγk,sδklCj,r3 (x) + kρ(q − p)f (2)(x).

(3.30)

We also immediately obtain that

ISB

{
f̃ρ(x)

}
= ISB

{
f̂(x)

}
+ n−1h2µ2(K)

∫
R

B1(x)f (2)(x)f(x)dx+ O
(
n−3/2

)
.
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To obtain the variance first note that[
E

{
f̃ρ(x)

}]2
=
[
E

{
f̂(x)

}]2
+ n−12B1(x)f2(x) + n−1h2µ2(K)B1(x)f (2)(x)f(x)

+ n−1h2µ2(K)B2(x)f(x) + O
(
n−3/2

)
.

Analogously to the previous section, we obtain the following results.

n−2
E

{
n∑

i1=1

n∑
i2=1

Ajwk
i1Kh (Xi1 − x)Kh (Xi2 − x)

}
= n−12wj(x)wk(x)f2(x)

+ n−1h2 1

2
µ2(K)wj(x)wk(x)f (2)(x)f(x) + n−1h2 1

2
µ2(K)Cjk1 (x)f(x)

+ n−1h2 1

2
µ2(K)wj(x)Ck2 (x)f(x) + n−1h2 1

2
µ2(K)wk(x)Cj2(x)f(x) + O

(
n−1h4

)
. (3.31a)

n−2
E

{
n∑

i1=1

n∑
i2=1

AjkAlwm
i1Kh (Xi1 − x)Kh (Xi2 − x)

}
= n−1αjklwm(x)f2(x)

+ n−1h2 1

2
µ2(K)αjklwm(x)f (2)(x)f(x) + n−1h2 1

2
µ2(K)αjklCm2 (x)f(x) + O

(
n−1h4

)
. (3.31b)

n−2
E

{
n∑

i1=1

n∑
i2=1

AjAkwl
i1Kh (Xi1 − x)Kh (Xi2 − x)

}
= n−1δjkwl(x)f2(x)

+ n−1h2 1

2
µ2(K)δjkwl(x)f (2)(x)f(x) + n−1h2 1

2
µ2(K)δjkCl2(x)f(x) + O

(
n−1h4

)
. (3.31c)

n−2
E

{
n∑

i1=1

n∑
i2=1

Γj,rAkwl
i1Kh (Xi1 − x)Kh (Xi2 − x)

}
= n−1τ j,r;kwl(x)f2(x)

+ n−1h2 1

2
µ2(K)τ j,r;kwl(x)f (2)(x)f(x) + n−1h2 1

2
µ2(K)τ j,r;kCl2(x)f(x) + O

(
n−1h4

)
. (3.31d)

n−2
E

{
n∑

i1=1

n∑
i2=1

AjAkKh (Xi1 − x)Kh (Xi2 − x)

}
= n−1δjkf2(x)

+ n−1h2µ2(K)δjkf (2)(x)f(x) + O
(
n−1h4

)
. (3.31e)

n−2
E

{
n∑

i1=1

n∑
i2=1

Γj,ri1 A
kAlKh (Xi1 − x)Kh (Xi2 − x)

}
= n−1δklgj,r(x)f2(x)− n−1γj,rδklf2(x)

+ n−1h2 1

2
µ2(K)δklgj,r(x)f (2)(x)f(x)− n−1h2 1

2
µ2(K)γj,rδklf (2)(x)f(x)

+ n−1h2 1

2
µ2(K)δklCj,r3 (x)f(x)− n−1h2 1

2
µ2(K)γj,rδklf (2)(x)f(x) + O

(
n−1h4

)
. (3.31f)

Noting that expressions (3.28a)–(3.28f) are of the form n−1ε1jf(x) +n−1h2 1
2µ2(K)ε2j + O

(
n−1h4

)
,

whereas expressions (3.31b)–(3.31f) are of the form n−1ε1jf
2(x) + n−1h2 1

2µ2(K)ε1jf
(2)(x)f(x)

+n−1h2 1
2µ2(K)ε2jf(x) + O

(
n−1h4

)
, and expression (3.31a) is of the same form with three extra terms,
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n−1wj(x)wk(x)f2(x) + n−1h2 1
2µ2(K)wj(x)Ck2 (x)f(x) + n−1h2 1

2µ2(K)wk(x)Cj2(x)f(x), it follows that

E

{
f̂(x)T ′1

}
= n−1B′1(x)f2(x) + n−1h2 1

2
µ2(K)B′1(x)f (2)(x)f(x) + n−1h2 1

2
µ2(K)B′2(x)f(x)

− n−1wj(x)wj(x)f2(x) + n−1γj,rγk,sωrswj(x)wk(x)f2(x)

− n−1h2µ2(K)wj(x)Cj2(x)f(x) + n−1h2 1

2
µ2(K)γj,rγk,sωrswj(x)Ck2 (x)f(x)

+ n−1h2 1

2
µ2(K)γj,rγk,sωrswk(x)Cj2(x)f(x) + O

(
n−1h4

)
.

Similarly, as

n−2
E

{
n∑

i1=1

n∑
i2=1

AjAkwl
i1w

m
i1Kh (Xi1 − x)Kh (Xi2 − x)

}
= n−1δjkwl(x)wm(x)f2(x)

+ n−1h2 1

2
µ2(K)δjkwl(x)wm(x)f (2)(x)f(x) + n−1h2 1

2
µ2(K)δjkClm1 (x)f(x) + O

(
n−1h4

)
,

we have

E

{
f̂(x)T ′2

}
=

1

n
B′′1 (x)f2(x) +

h2

n

1

2
µ2(K)B′′1 (x)f (2)(x)f(x) +

h2

n

1

2
µ2(K)B′′2 (x)f(x) + O

(
h4

n

)
.

To obtain

E

{
(T ′1)

2
}

= n−2
E

{
n∑

i1=1

n∑
i2=1

v̂i1 v̂i2Kh (Xi1 − x)Kh (Xi2 − x)

}
,

note that only the O
(
n−1/2

)
terms in the expansion for θ make a contribution of order 1/n; therefore,

E

{
(T ′1)

2
}

= n−2
E

{
n∑

i1=1

n∑
i2=1

AjAkwj
i1

wk
i2Kh (Xi1 − x)Kh (Xi2 − x)

}

− 2n−2γl,rγk,sωrsE

{
n∑

i1=1

n∑
i2=1

AjAkwj
i1

wl
i2Kh (Xi1 − x)Kh (Xi2 − x)

}

+ n−2γj,tγm,uωtuγl,rγk,sωrsE

{
n∑

i1=1

n∑
i2=1

AkAmwj
i1

wl
i2Kh (Xi1 − x)Kh (Xi2 − x)

}
+ O

(
n−2

)
= n−1wj(x)wj(x)f2(x)− 2n−1γk,rγj,sωrswj(x)wk(x)f2(x)

+ n−1γj,tγk,uωtuγl,rγk,sωrswj(x)wl(x)f2(x) + n−1h2µ2(K)wj(x)Cj2(x)f(x)

− 2n−1h2 1

2
µ2(K)γk,rγj,sωrswj(x)Ck2 (x)f(x)− 2n−1h2 1

2
µ2(K)γk,rγj,sωrswk(x)Cj2(x)f(x)

+ n−1h2 1

2
µ2(K)γj,tγk,uωtuγl,rγk,sωrswj(x)Cl2(x)f(x)

+ n−1h2 1

2
µ2(K)γj,tγk,uωtuγl,rγk,sωrswl(x)Cj2(x)f(x) + O

(
n−1h4

)
,

because

n−2
E

{
n∑

i1=1

n∑
i2=1

AjAkwl
i1w

m
i2Kh (Xi1 − x)Kh (Xi2 − x)

}
= n−1δjkwl(x)wm(x)f2(x)

+ n−1h2 1

2
µ2(K)δjkwl(x)Cm2 (x)f(x) + n−1h2 1

2
µ2(K)δjkwm(x)Cl2(x)f(x) + O

(
n−1h4

)
.
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Finally,

E

{
f̂(x)T ′3

}
= n−1kρ(q − p)

[
f2(x) + h2µ2(K)f (2)(x)f(x)

]
+ O

(
n−3/2

)
.

It can be seen that the contribution from other terms is of order n−2 or smaller. Therefore,

E

{
f̃2
ρ (x)

}
= E

{
f̂2(x)

}
+ n−12B1(x)f2(x) + n−1h2µ2(K)B1(x)f (2)(x)f(x)

+ n−1h2µ2(K)B2(x)f(x)− n−1wj(x)wj(x)f2(x) + n−1γj,tγk,uωtuγl,rγk,sωrswj(x)wl(x)f2(x)

− n−1h2µ2(K)wj(x)Cj2(x)f(x) + n−1h2µ2(K)γj,tγk,uωtuγl,rγk,sωrswj(x)Cl2(x)f(x) + O
(
n−3/2

)
.

Thus, after simplification,

Var

{
f̃ρ(x)

}
= Var

{
f̂(x)

}
− n−1wj(x)wj(x)f2(x) + n−1γj,sγk,rωrswj(x)wk(x)f2(x)

− n−1h2µ2(K)wj(x)Cj2(x)f(x) + n−1h2µ2(K)γj,sγk,rωrswj(x)Ck2 (x)f(x) + O
(
n−3/2

)
.

Expressions for the integrated variance and mean integrated squared error follow immediately.
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Appendix 3.B CUE with constraint that the mean

is zero

Suppose Xi
iid∼ N(0, 1) and ψ(xi) = xi, that is a known zero mean. Let the kernel be the Gaussian

density, i.e. Kh(z) = 1
hφ(z/h) = 1

h
√

2π
e−

1
2

z2

h2 . The CUE criterion in this case becomes Pn(λ) =

− 1
2

(
1
n

∑n
i=1 x

2
i

)
λ2 −

(
1
n

∑n
i=1 xi

)
λ, a quadratic in λ.

The first-order conditions are

∂

∂λ
Pn(λ)

∣∣∣∣
λ=λ̂

= −

(
1

n

n∑
i=1

x2
i

)
λ̂− 1

n

n∑
i=1

xi = 0.

Hence

λ̂ = −
1
n

∑n
i=1 xi

1
n

∑n
i=1 x

2
i

.

Also

ρ(1)(λ̂ψ(xi)) = −λ̂xi − 1 =
1
n

∑n
j=1 xj

1
n

∑n
j=1 x

2
j

xi − 1 =
x

x2
xi − 1 =

xix− x2

x2
,

n∑
i=1

ρ(1)(λ̂ψ(xi)) = n

(
1
n

∑n
j=1 xj

)2

1
n

∑n
j=1 x

2
j

− n = n
x2 − x2

x2
,

where x = 1
n

∑n
i=1 xi and x2 = 1

n

∑n
i=1 x

2
i .

Hence, the implied probabilities are

π̂i =
1

n

x2 − xix
x2 − (x)

2 =
1

n

[
1 +

x2 − xix
x2 − (x)

2 − 1

]
=

1

n
+

1

n

(x)
2 − xix

x2 − (x)
2 .

The density estimate f̂CUE(x) can be written as

f̂CUE(x) =

n∑
i=1

π̂i
1

h
φ(
x− xi
h

) = f̂(x) +
1

n

n∑
i=1

(x)
2 − xix

x2 − (x)
2

1

h
φ(
x− xi
h

),

where the first term is the RPKDE. Let S denote the second term. The expectation of f̂(x) can be
obtained analytically. Specifically, note that

1

h
φ(
x− u
h

)φ(u) =
1√

1 + h2
√

2π
e
− 1

2
x2

1+h2︸ ︷︷ ︸
≡α

× 1

(h/
√

1 + h2)
√

2π
e
− 1

2

(
u− x

1+h2

)2

h2/(1+h2)︸ ︷︷ ︸
≡ξx,h(u)

.

Hence

E

{
f̂(x)

}
=

∫
1

h
φ(
x− u
h

)φ(u)du =
1√

1 + h2
√

2π
e
− 1

2
x2

1+h2 .
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Now,

E {S} =

∫
· · ·
∫
S

n∏
j=1

(φ(xj)dxj)

=

∫
· · ·
∫ (

1

n

n∑
i=1

(x)
2 − xix

x2 − (x)
2

1

h
φ(
x− xi
h

)

)
n∏
j=1

(φ(xj)dxj)

=

∫
· · ·
∫  1

n

n∑
i=1

(x)
2 − xix

x2 − (x)
2

1

h
φ(
x− xi
h

)φ(xi)

n∏
j=1
j 6=i

φ(xj)

 n∏
j=1

dxj

= α ·
∫
· · ·
∫  1

n

n∑
i=1

(x)
2 − xix

x2 − (x)
2 ξx,h(xi)

n∏
j=1
j 6=i

φ(xj)

 n∏
j=1

dxj

= α · 1

n

n∑
i=1

∫
· · ·
∫

(x)
2 − xix

x2 − (x)
2 ξx,h(xi)

n∏
j=1
j 6=i

φ(xj)

n∏
j=1

dxj

= α ·
∫
· · ·
∫

(x)
2 − x1x

x2 − (x)
2 ξx,h(x1)

n∏
j=2

φ(xj)dx1

n∏
j=2

dxj

= α ·
∫
x1

∫ · · · ∫
x2,...,xn

(x)
2 − x1x

x2 − (x)
2

n∏
j=2

φ(xj)

n∏
j=2

dxj


︸ ︷︷ ︸

≡I(x1)

ξx,h(x1)dx1.

However, the ratio in I(x1) prevents the integral from being computed exactly (to the best of our

knowledge). Approximating the denominator as
[
x2 − (x)

2
]−1

=
[
1 + Op

(
n−1/2

)]−1
= 1 + Op

(
n−1/2

)
and writing the numerator as

(x)
2 − x1x =

 1

n

n∑
j=2

xj +
1

n
x1

2

− x1
1

n

n∑
j=2

xj −
1

n
x2

1

= x2
[−1] + 2

1

n
x1x[−1] +

1

n2
x2

1 − x1x[−1] −
1

n
x2

1,

where x[−1] ≡ 1
n

∑n
j=2 xj , gives

I(x1) =
(

1 + Op
(
n−1/2

))
× · · ·

· · · ×
∫
· · ·
∫
x2,...,xn

[
x2

[−1] + 2
1

n
x1x[−1] +

1

n2
x2

1 − x1x[−1] −
1

n
x2

1

] n∏
j=2

φ(xj)

n∏
j=2

dxj

=
(

1 + Op
(
n−1/2

))[
− 1

n
x2

1 +
1

n2
x2

1 +

(
2

1

n
x1 − x1

)
J1 + J2

]
,

where

J1 =

∫
· · ·
∫
x2,...,xn

x[−1]

n∏
j=2

φ(xj)

n∏
j=2

dxj = 0

and
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J2 =

∫
· · ·
∫
x2,...,xn

x2
[−1]

n∏
j=2

φ(xj)

n∏
j=2

dxj

=
1

n2

∫
· · ·
∫
x2,...,xn

 n∑
j=2

xj

2
n∏
j=2

φ(xj)

n∏
j=2

dxj

=
1

n2

∫
· · ·
∫
x2,...,xn

n∑
j=2

x2
j

n∏
j=2

φ(xj)

n∏
j=2

dxj (+ zeros for all cross-products)

=
1

n2
(n− 1)

∫
xj

x2
jφ(xj)dxj =

n− 1

n2
=

1

n
− 1

n2
.

Therefore

I(x1) =
(

1 + Op
(
n−1/2

))[
− 1

n
x2

1 +
1

n2
x2

1 +
1

n
− 1

n2

]
= n−1

[
−x2

1 + 1
]

+ Op
(
n−3/2

)
.

Thus,

E {S} = αn−1 ·
∫
x1

[
−x2

1 + 1
]
ξx,h(x1)dx1 + O

(
n−3/2

)
= αn−1

[
1− h2

1 + h2
− x2

(1 + h2)2

]
+ O

(
n−3/2

)
.

Expanding α and the terms in square brackets we obtain that term of order n−1 as (1 − x2)φ(x),
i.e. the same as given in equation (3.15a).
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Appendix 3.C GELKDE with dependent data

This appendix presents simulation evidence that suggests GELKDE should have similar properties when
applied to dependent data. The example considered here is that of the invertible first order moving
average, MA(1), process

xt = εt + θεt−1, εt
iid∼ N (0, 1) , |θ| < 1, t = 1, . . . , n.

The extra information used by GELKDE is that E {XtXt−1} = θ.
Results are presented for θ = −0.95, −0.50, −0.25, 0.25, 0.50 and 0.95, and sample size n ranging

from 25 to 1, 000. 100, 000 replications are performed in each case. As in section 3.5, red lines correspond
to CUE, blue—ET and green—EL. The difference in ISB is scaled up by sample size n rather than by
nh−2 as before.

In this example, the use of extra information gives a reduction in MISE of GELKDE, but its
magnitude depends on the strength of dependence.
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Reiersøl, O. (1950): “Identifiability of a Linear Relation between Variables Which

Are Subject to Error,” Econometrica, 18, 375–389.

Ridder, G. and R. Moffitt (2007): “The Econometrics of Data Combination,” in

Handbook of Econometrics, ed. by J. J. Heckman and E. E. Leamer, North Holland,

vol. 6B, chap. 75, 5469–5547.

Ripley, B. D. (1996): Pattern Recognition and Neural Networks, Cambridge University

Press.

Robertson, R. (2003): “Exchange Rates and Relative Wages: Evidence from Mexico,”

North American Journal of Economics and Finance, 14, 25–48.

Rosenblatt, M. (1956): “Remarks on Some Nonparametric Estimates of a Density

Function,” The Annals of Mathematical Statistics, 27, 832–837.

Roulston, M. S. and L. A. Smith (2002): “Evaluating Probabilistic Forecasts Using

Information Theory,” Monthly Weather Review, 130, 16531660.

Runkler, T. A. (2007): “Relational Fuzzy Clustering,” in Advances in Fuzzy Cluster-

ing and Its Applications, ed. by J. Valente de Oliveira and W. Pedrycz, John Wiley &

Sons, chap. 2.

Shahidi, A. R. (2009): “Model selection for moment condition models using the penal-

ized empirical likelihood procedure,” in Three essays on model selection, modulation

estimators and herd behavior under asymmetric beliefs, PhD dissertation, University

of Pittsburgh, chap. 1.

Sheather, S. J. (2004): “Density Estimation,” Statistical Science, 19, 588–597.

Sheather, S. J. and J. S. Marron (1990): “Kernel Quantile Estimators,” Journal

of the American Statistical Association, 85, 410–416.

Silverman, B. W. (1986): Density Estimation, Chapman and Hall.

129



Bibliography

Singh, J. (2004): “Multinational firms and knowledge diffusion: evidence using patent

citation data,” in Academy of Management Proceedings: Academy of Management

Best Conference Paper, bPS: D1.

Smith, A. and G. Hayton (1999): “What drives enterprise training? Evidence from

Australia,” The International Journal of Human Resource Management, 10, 251–272.

Smith, R. J. (1997): “Alternative Semi-Parametric Likelihood Approaches to Gener-

alised Method of Moments Estimation,” The Economic Journal, 107, 503–519.

——— (2010): “GEL criteria for moment condition models,” Econometric Theory, forth-

coming.

Sutherland, J. (2004): “The determinants of training,” Economic Issues, 9, 23–39.

Teitel, S. (2005): “Globalization and Its Disconnects,” The Journal of Socio-

Economics, 444–470.

Tourangeau, R., L. J. Rips, and K. Rasinski (2000): The Psychology of Survey

Response, Cambridge University Press.

Tsybakov, A. B. (2009): Introduction to Nonparametric Estimation, (Springer Series

in Statistics), Springer.

van der Vaart, A. W. (1998): Asymptotic Statistics, Cambridge Series in Statistical

and Probabilistic Mathematics, Cambridge University Press.

Verbeek, M. (2006): “Pseudo Panels and Repeated Cross-Sections,” in The Econo-
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