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Abstract

In this paper we revisit the ring of (left) one-sided quaternionic poly-
nomials with special focus on its zero structure. This area of re-
search has attracted the attention of several authors and therefore it
is natural to develop computational tools for working in this setting.
The main contribution of this paper is a Mathematica collection
of functions QPolynomial for solving polynomial problems that we
frequently find in applications.

1 Introduction

In this paper we are going to study polynomials in one formal variable x whose coefficients are quaternions
located on the left side of the powers of x, i.e. polynomials of the form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ak ∈ H. (1)

If Q(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0 is another polynomial of the same kind, then one can define the
operation:

P (x) +Q(x) = (an + bn)xn + (an−1 + bn−1)xn−1 + · · ·+ (a1 + b1)x+ a0 + b0,

so that the polynomials (1) form an additive abelian group. There are several ways of defining the multiplication
such that this group is made a ring. For details on the theory of non-commutative polynomials, we refer the
reader to the well-known work of Ore [23]. In the classical case and in many pratical applications (e.g.
[11, 25, 26]), one assumes that the variable x commutes with the coefficients, i.e. the multiplication of two
polynomials P and Q of degrees n and m, respectively, is defined as

P (x)Q(x) =
m+n∑
k=0

( k∑
j=0

ajbk−j

)
xk, (2)

with the implicit assumption that ak = 0, if k > n and bk = 0, if k > m. In other words, the set of polynomials
of the form (1) endowed with the aforementioned addition and multiplication is a polynomial ring over H and
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is denoted by H[x]. In the literature, H[x] is usually referred to as the ring of (left) one-sided, unilateral,
basic, simple or standard polynomials and the determination and classification of their zeros have attracted
the attention of several authors over the years (see e.g. [1, 2, 6, 12, 13, 14, 17, 18, 22, 27, 29, 30, 31]) due
to the appearance of new interesting algebraic and computational properties.

General polynomials are defined as finite sums of noncommutative monomials of type a0xa1x . . . xan.
General polynomials have been also considered in several works ([7, 14, 28]) specially the cases of two-sided
or quadratic polynomials (e.g. [16, 20, 32]).

In this paper we describe a Mathematica tool for polynomial manipulation in H[x]. The paper is organized
as follows. In Sect. 2 we recall well-known concepts and review important results on quaternionic polynomials.
In Sect. 3 we focus on the zeros of a polynomial and the relation to its factorization(s) in linear terms. Finally,
in Sect. 4 the new Mathematica tools are presented.

2 The Ring of Quaternionic Polynomials

In 1843, Hamilton introduced numbers of the form

x = x0 + ix1 + jx2 + kx3, xi ∈ R , (3)

where i, j and k satisfy the multiplication rules

i2 = j2 = k2 = −1 and ij = −ji = k . (4)

This non-commutative product generates the algebra of real quaternions H (named after Hamilton). For a
quaternion x of the form (3) we can define, in analogy with the complex case, the real part of x, Rex := x0,
the vector part of x, Vecx := ix1 + jx2 + kx3 and the conjugate of x, x̄ := x0 − ix1 − jx2 − kx3. The norm
of x is given by |x| :=

√
xx̄ =

√
x̄x =

√
x2

0 + x2
1 + x2

2 + x2
3. It immediately follows that each non-zero x ∈ H

has an inverse given by x−1 = x̄
|x|2 and therefore H is a non-commutative division ring or a skew field.

Let us review now some well-known facts on quaternionic polynomials and fix some notation. In what
follows, q denotes a quaternion, P is a left one-sided polynomial and ZP denotes the zero-set of P .

Definition 1. (Similarity) Two quaternions q and q′ are called similar, q ∼ q′, if there exists h 6= 0 such
that q′ = hqh−1. Similarity is an equivalence relation and the similarity class of q, denoted by [q], is the
set [q] = {q′ ∈ H : q ∼ q′}.

It can easily be shown (see, e.g. [3]) that

[q] = {q′ ∈ H : Re q = Re q′ and |q| = |q′|} .

Example 1. The similarity class of 1 + i + j + k is the three-dimensional sphere in the hyperplane
{(1, x, y, z) ∈ R4}, with center (1, 0, 0, 0) and radius

√
3, i.e.

[1 + i + j + k] =
{

1 + ix+ jy + kz ∈ H : x2 + y2 + z2 = 3
}
.

Definition 2. (Special polynomials)

1. The conjugate of P is the polynomial

P (x) := anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

2. The characteristic polynomial of q is the polynomial

Ψq(x) := (x− q)(x− q) = x2 − 2 Re(q)x+ |q|2. (5)

3. The companion polynomial of P is the real polynomial

CP (x) := P (x)P (x) = P (x)P (x). (6)
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Remark 1. The characteristic polynomial of q depends only on the real part and norm of q and, if q ∈ H \R,
then Ψq is an irreducible quadratic trinomial from the ring of polynomials R[x].

Remark 2. In [17], Janovská and Opfer had called the polynomial

2n∑
k=0

( min{k,n}∑
j=max{0,k−n}

ājak−j

)
xk

the companion polynomial of the quaternionic polynomial P , without mentioning that this is nothing else than
the usual product of P and P in H[x] (cf. (2)). As pointed out by these authors, the idea of constructing
such a polynomial came from the work of Niven [22], where the construction of the polynomial is described
as follows: By replacing the quaternions ak by their conjugates āk we obtain a polynomial P̄ . We multiply
this on the right by P (x), and allow x to be commutative with the coefficients. Thus we obtain a polynomial
with coefficients in R.

In the literature one can find different designations to the polynomial (6), namely basic polynomial,
semi-norm or symmetrization of a polynomial. We prefer the designation companion polynomial due to its
connection (not recognized explicitly in [17]) to the characteristic polynomial of the companion matrix which
was already apparent from the work of [29] (see also [4]).

Example 2. For P (x) = x2 + (2− i)x+ j + k and q = i + j we have

Ψq(x) =x2 + 2,
CP (x) =

(
x2 + (2− i)x+ j + k

)(
x2 + (2 + i)x− j− k

)
= x4 + 4x3 + 5x2 + 2.

Definition 3. (Evaluation map and zeros)

1. The evaluation of P at q is defined as P (q) := anq
n + an−1q

n−1 + · · ·+ a1q + a0.

2. A quaternion q is a zero (or a root) of P , if P (q) = 0.

3. A zero q is called an isolated zero of P , if [q] contains no other zeros of P .

4. A zero q is called a spherical zero of P , if q is not an isolated zero; [q] is referred to as a sphere of
zeros.1

Remark 3. We recall here the well-known fact that the evaluation map (at a quaternion q) is not an algebra
homomorphism. In fact, if P (x) = L(x)R(x), then (see e.g. [19])

P (q) =
{

0, if R(q) = 0,
L(q̃)R(q), if R(q) 6= 0,

where q̃ = R(q) q (R(q))−1. (7)

In particular, if q is a zero of P which is not a zero of R, then q̃ is a zero of L. Next example illustrates this
remark.

Example 3. Consider the polynomial P and the quaternion q of last example. If Q(x) = x− q, then we
have

P (q) = −1 + 2i + 3j and Q(q) = 0.

On the other hand, since

(QP )(x) = x3 + (2− 2i− j)x2 + (−1− 2i− j)x+ 1− i + j− k,

we remark that
(QP )(q) = −2k 6= 0 = Q(q)P (q).

1In such case, it can be proved that all quaternions in [q] are in fact zeros of P and therefore the choice of the term spherical
to designate this type of zeros is natural.
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3 Zeros and Factor-Terms in H[x]
We list now the main results concerning the zero-structure and the factorization of polynomials in H[x]. For
the proofs and other details we refer the reader to [14, 19, 23].

We recall first that it can be proved (see e.g. [15]) that H[x] is a principal ideal domain and therefore also
left and right division algorithms can be defined.

Theorem 1 (Euclidean division). If A(x) and B(x) are polynomials in H[x] (with degB ≤ degA and B 6= 0),
then there exist unique Q(x), Q′(x), R(x) and R′(x) such that

A(x) = Q(x)B(x) +R(x) (8)

and
A(x) = B(x)Q′(x) +R′(x) (9)

with degR < degB and degR′ < degB.

If R(x) = 0 (resp. R′(x) = 0) in (8) (resp. (9)), then B(x) is called a right (resp. left) divisor of
A(x). The greatest common (right and left) divisor polynomial of two polynomials can be computed using
the Euclidean algorithm, by a basic procedure similar to the one used in the complex setting. In this context
we also refer to [5] where issues of division within H[x] are addressed. In what follows, if nothing is specified,
right divisors are always assumed.

Concerning the zero structure, the theory of quaternionic polynomials is very different from that of complex
polynomials. Nevertheless, in 1941, Niven [22] proved the Fundamental Theorem of Algebra for quaternionic
polynomials, establishing that a non-constant polynomial P in H[x] has a zero in H. As in the classical case,
it is also possible to write P as a product of linear factors; however the link between zeros and factors is not
straightforward.

Theorem 2 (Factorization into linear terms [14, 19]). Any monic polynomial P of degree n ∈ N in H[x]
admits a factorization into linear factors, i.e. there exist x1, . . . , xn ∈ H, such that

P (x) = (x− xn)(x− xn−1) · · · (x− x1). (10)

Definition 4. (Chain) In a factorization of P of the form (10), the quaternions x1,. . . , xn will be called
factor-terms of P and the n-uple (x1, . . . , xn) will be called a factor-terms chain associated with P or simply
a chain of P .

Theorem 3 ([19, 30]). Let (x1, . . . , xn) be a chain of a polynomial P . Then every zero of P is similar to
some factor-term xk in the chain and reciprocally every factor-term xk is similar to some zero of P .

Remark 4. If (y1, . . . , yn) is another chain of P , then there exists a permutation π of (1, . . . , n) and
h1, . . . , hn ∈ H, such that yπ(i) = hixih

−1
i ; i = 1, . . . n, i.e. [yπ(i)] = [xi]. The explicit expression of hi will

be given later on. In such cases we write (x1, . . . , xn) ∼ (y1, . . . , yn) and say that the chains (x1, . . . , xn)
and (y1, . . . , yn) are equivalent or similar.

The explicit relation between factor-terms and zeros of a quaternionic polynomial is addressed in the
following results. The first result is useful if one knows a factorization of the polynomial; for example in [10]
a numerical method for computing a Weierstrass factorization of a quaternionic polynomial is proposed and
the non-spherical zeros are obtained via (11). The second result plays an important role in the construction
of polynomials with prescribed zeros.

Theorem 4 (Zeros from factors [19]). Consider a chain (x1, . . . , xn) of a polynomial P . If the similarity
classes [xk] are distinct, then P has exactly n zeros ζk which are related to the factor-terms xk as follows:

ζk =Pk(xk)xk
(
Pk(xk)

)−1 ; k = 1, . . . , n, (11)

where

Pk(x) :=
{

1, if k = 1,
(x− xk−1) . . . (x− x1), otherwise.

(12)
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Theorem 5 (Factors from zeros [1]). If ζ1, . . . , ζn are quaternions such that the similarity classes [ζk] are
distinct, then there is a unique polynomial P of degree n with zeros ζ1, . . . , ζn, which can be constructed from
the chain (x1, . . . , xn), where

xk =Pk(ζk) ζk (Pk(ζk))−1 ; k = 1, . . . , n (13)

and Pk is the polynomial (12).

In [1, 13] more general forms of Theorems 4 and 5 can be found, where the notion of multiplicity of a zero
plays a fundamental role. The following result motivates the definition of multiplicity we are going to adopt
(in this context we refer also to [1, 2, 9, 24]).

Theorem 6 ([1, 24]). Let P be a quaternionic polynomial with degree n. Then x1 ∈ H \R is the unique zero
of P if and only if P admits a unique chain (x1, . . . , xn) which has the property2

xl ∈ [x1] and xl 6= xl−1, (14)

for all l = 2, . . . , n.

Definition 5. (Multiplicity) The multiplicity of a zero q of P , mP (q), is defined as the maximum degree of
the right factors of P having q as their unique zero. The multiplicity of a sphere of zeros [q] of P , mP ([q]),
is the largest k ∈ N0 for which Ψk

q divides P .

Example 4. The polynomial P (x) = (x − k)(x − j)(x − i) has i as its unique zero of multiplicity 3.
Concerning the polynomial Q(x) = (x+ i)(x− i)(x− i) we observe that mQ(i) = 2 while mQ([i]) = 1. In
[9] such a zero has been called a mixed zero.3

The final results of this section are presented/rewritten by taking into account the purpose of the present
paper.

Theorem 7. Consider a chain (x1, . . . , xl−1, xl, . . . , xn) of a polynomial P .

1. If h := xl − xl−1 6= 0 then

(x1, . . . , h
−1xlh, h

−1xl−1h, . . . , xn) ∼ (x1, . . . , xl−1, xl, . . . , xn). (15)

2. If the chain (x1, . . . , xn) has the property (14) and Q is a polynomial of degree m in H[x] such that
y1 ∈ H \ R is its unique zero and y1 /∈ [x1], then the polynomial of degree n + m, QP , has only two
zeros, namely x1 and P (y1)y1(P (y1))−1.

Proof. The first result follows by simple manipulation (see also [30] for a different, but equivalent result).
By Theorem 6, the polynomial Q can be written as

Q(x) = (x− ym) . . . (x− y2)(x− y1), yl ∈ [y1], yl 6= yl−1, l = 2, . . . ,m.

and therefore

T (x) := Q(x)P (x) = (x− ym) . . . (x− y2)(x− y1)(x− xn) . . . (x− x2)(x− x1).

It is clear that x1 is a zero of T with multiplicity n. Multiplying both sides of last expression by P (x) and
recalling (5) and (14) we obtain

T (x)P (x) =(x− ym) . . . (x− y2)(x− y1)Ψn
x1

(x)
=Ψn

x1
(x)(x− ym) . . . (x− y2)(x− y1).

Since Ψx1(q) 6= 0 if q /∈ [x1], we conclude that y1 is the only zero of T (x)P (x) which is not in [x1]. From
P (y1) 6= 0 and (7), it follows at once that the only zero of T apart from x1 is P (y1)y1(P (y1)−1).

2In [2], such a chain was called a spherical chain.
3More precisely, q is a a mixed zero of P if mP ([q]) > 0 and mP (q) > mP (q′), for all q′ ∈ [q].
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The repeated use of Theorem 7 allows to classify (and identify) the zeros of a polynomial from one of its
factorization.

Example 5. Consider the polynomial P associated with the chain

(5j− 5k, 5j,−7j + k, 1 + i,−3i− 4j, 3j− 4k).

The repeated use of (15) allows to state that this chain is equivalent to the following ones:

(5j− 5k,−5j + 5k, 3j− 4k, 1 + i,−3i− 4j, 3j− 4k).

(5j− 5k,−5j + 5k, 1− 23
27 i− 2

27 j− 14
27k, 50

27 i + 83
27 j− 94

27k,−3i− 4j, 3j− 4k).
Therefore

• 5j− 5k is a spherical zero of P with multiplicity 1;

• 1− 23
27 i− 2

27 j− 14
27k is an isolated zero of P with multiplicity 1;

• 3j− 4k is an isolated zero of P with multiplicity 3.

Finally, one can construct a polynomial with assigned zeros, by the repeated use of the following result.

Theorem 8. A polynomial having ζ1 and ζ2 as its isolated zeros of multiplicity n and m, respectively, and a
sphere of zeros [ζs] with multiplicity k, can be constructed through the chain

(ζ1, . . . , ζ1︸ ︷︷ ︸
n

, ζ̃2, . . . , ζ̃2︸ ︷︷ ︸
m

, ζs, ζs, . . . , ζs, ζs︸ ︷︷ ︸
2k

), (16)

where ζ̃2 = Q(ζ2) ζ2 (Q(ζ2))−1 and Q(x) = (x− ζ1)n.

Proof. The use of Theorem 2.8 in [13], adapted to the case of left one-sided polynomials, allows the con-
struction of a family of polynomials with the assigned zeros, namely P = Ψk

ζs
(x)(x − ym) . . . (x − y1)(x −

xn) . . . (x− x1), where

• x1 = ζ1 and xl are chosen in [x1], so that xl 6= xl−1, l = 2, . . . , n. In particular, one can take
xn = · · · = x1 = ζ1 in line with the classical definition of multiplicity;

• ζ̃2 = y1 = Pn+1(ζ2) ζ2 (Pn+1(ζ2))−1, where Pn+1 is given by (12) (cf. (13));

• yk, k = 2, . . . ,m are chosen in [y1], so that yk 6= yk−1. The particular choice4 ym = ym−1 = · · · =
y1 = ζ̃2 leads to the final result.

Example 6. An example of a polynomial P which has x1 = i as a zero of multiplicity 3, x2 = −1 + j + k
as a zero of multiplicity 2 and [2 + i] as a sphere of zeros with multiplicity 2 is:

P (x) = Ψ2
2+i(x− x̃2)2(x− x1)3,

where x̃2 = P4(x2)x2(P4(x2))−1 and P4(x) = (x− x1)3, i.e.

P (x) = (x− 2− i)2(x− 2 + i)2(x+ 1 + 7
5 i + 1

5 j)2(x− i)3. (17)

It follows immediately from the above considerations that the polynomial

Q(x) = (x− 2− i)2(x− 2 + i)2(x+ 1− j− k)(x+ 1 + 7
5 i + 1

5 j)(x− k)(x− j)(x− i)

solves the same problem.
4In [2] the same problem is also addressed and one can find a particular (different) choice of x̃l (l = 2, . . . , n) and yl

(l = 2, . . . ,m).
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4 QPolynomial

Some years ago, two of the authors of this paper introduced some new tools on the Mathematica stan-
dard package Quaternions for implementing Hamilton’s Quaternion Algebra [8]. Later on, a new add-on
QuaternionAnalysis [21] was developed to provide also tools for manipulating regular quaternion val-
ued functions. This package can be downloaded at the Wolfram Library archive and full description of the
QuaternionAnalysis functions as well as illustrative examples can be found in the tutorial included in [21].

QPolynomial is a collection of Mathematica functions, depending on the package QuaternionAnalysis,
for treating usual problems in H[x]: evaluation, euclidean division, greatest common divisor polynomial, con-
struction of a polynomial with prescribed zeros, etc. In this context, a quaternionic polynomial is an object
of the form Polynomial[an,an−1,...,a1,a0] accordingly to (1). For such objects, rules as Plus, NonCom-
mutativeMultiply, Power and functions as Conjugate, Eval, CharacteristicPolynomial, CompanionPolynomial,
etc., are defined. We summarize in Table 1 the most important functions included in QPolynomial. Auxiliary
functions which come with its own usefulness are also listed in the same table. The use of these functions is
illustrated by several examples.

Example 7. Rules on the object Polynomial

In[1]:= P1 = Polynomial[1,Quaternion[2,-1,0,0]];

In[2]:= P2 = Polynomial[Quaternion[0,0,0,1],Quaternion[0,0,1,1]];

In[3]:= α = Quaternion[0,1,1,0];

In[4]:= P1 + P2

Out[4]= Polynomial[Quaternion[1, 0, 0, 1], Quaternion[2,−1, 1, 1]]

In[5]:= α ** P1

Out[5]= Polynomial[Quaternion[0, 1, 1, 0], Quaternion[1, 2, 2, 1]]

In[6]:= P1 ** P2

Out[6]= Polynomial[Quaternion[0, 0, 0, 1], Quaternion[0, 0, 2, 3], Quaternion[0, 0, 3, 1]]

Example 8. Polynomial Functions (cf. Example 2)

In[1]:= P = Polynomial[1,Quaternion[2,-1,0,0],Quaternion[0,0,1,1]];

In[2]:= q = Quaternion[0,1,1,0];

In[3]:= CharacteristicPolynomial[q]

Out[3]= Polynomial[1, 0, 2]

In[4]:= CompanionPolynomial[P]

Out[4]= Polynomial[1, 4, 5, 0, 2]

In[5]:= P ** Conjugate[P] // PSimplify

Out[5]= Polynomial[1, 4, 5, 0, 2]

Example 9. Evaluation and zeros (cf. Example 3)

In[6]:= Q = Polynomial[1,-q]

Out[6]= Polynomial[1, Quaternion[0,−1,−1, 0]]

In[7]:= Eval[P][q]

Out[7]= Quaternion[−1, 2, 3, 0]

In[8]:= Eval[Q][q]

Out[8]= 0

In[9]:= Eval[Q ** P][q]

Out[9]= Quaternion[0, 0, 0,−2]

Next example addresses issues of division in H[x]. Both left and right Euclidean division are implemented in QPolynomial
(see Theorem 1).
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Example 10. Euclidean division and GCD

In[1]:= P1=Polynomial[1,Quaternion[1,0,2,1],-2,Quaternion[1,1,1,0]];

In[2]:= P2=Polynomial[1,1,Quaternion[1,0,-1,1]];

In[3]:= {quotientR,remainderR} = PolynomialDivisionR[P1,P2]

Out[3]= {Polynomial[1, Quaternion[0, 0, 2, 1]], Polynomial[Quaternion[−3, 0,−1,−2], Quaternion[0,−2,−1,−1]]}

In[4]:= P1 - quotientR ** P2 - remainderR // PSimplify

Out[4]= 0

In[5]:= P1 - P2 ** quotientR - remainderR // PSimplify

Out[5]= Polynomial[Quaternion[0,−6, 0, 0]]

In[6]:= {quotientL,remainderL} = PolynomialDivisionL[P1,P2]

Out[6]= {Polynomial[1, Quaternion[0, 0, 2, 1]], Polynomial[Quaternion[−3, 0,−1,−2], Quaternion[0, 4,−1,−1]]}

In[7]:= P1 - quotientL ** P2 - remainderL // PSimplify

Out[7]= Polynomial[Quaternion[0, 6, 0, 0]]

In[8]:= P1 - P2 ** quotientL - remainderL // PSimplify

Out[8]= 0

In the quaternion case, greatest common left and right divisors are computed by a procedure similar to the classical
Euclidean algorithm via PolynomialGCDL and PolynomialGCDR, respectively.

In[1]:= P=Polynomial[1,Quaternion[1,0,1,0]];

In[2]:= Q=Polynomial[1,Quaternion[2,1,0,1]];

In[3]:= R=Polynomial[1,Quaternion[-1,1,0,1]];

In[4]:= S=Polynomial[1,Quaternion[0,0,1,0]];

In[5]:= PolynomialGCDR[P**Q**R,S**Q**R] // PSimplify

Out[5]= Polynomial[1, Quaternion[1, 2, 0, 2], Quaternion[−4, 1, 0, 1]]

In[6]:= PSimplify[PolynomialGCDL[P**Q**R,S**Q**R]]

Out[6]= 1

In[7]:= PolynomialGCDR[Q**P**R,S**Q**R]

Out[7]= Polynomial[1, Quaternion[−1, 1, 0, 1]]

In[8]:= PolynomialGCDL[Q**P**R,S**Q**R] // PSimplify

Out[8]= 1

For complex arguments, PolynomialDivisionL and PolynomialDivisionR coincide with the PolynomialQuotientRemainder
built-in function and the same is true for PolynomialGCDL, PolynomialGCDR and PolynomialGCD.

In[1]:= P1=Polynomial[1,1]**Polynomial[1,2]**Polynomial[1,3];

In[2]:= P2=Polynomial[1,-1]**Polynomial[1,2];

In[3]:= {quotientR,remainderR}=PolynomialDivisionR[P1,P2]

Out[3]= {Polynomial[1, 5], Polynomial[8, 16]}

In[4]:= {quotientL,remainderL}=PolynomialDivisionL[P1,P2]

Out[4]= {Polynomial[1, 5], Polynomial[8, 16]}

In[5]:= PolynomialQuotientRemainder[(x+1)(x+2)(x+3),(x-1)(x+2),x]

Out[5]= {x+ 5, 8x+ 16}

In[6]:= PolynomialGCDR[P1,P2] // PSimplify

Out[6]= Polynomial[1, 2]

In[7]:= PolynomialGCDL[P1,P2] // PSimplify

Out[7]= Polynomial[1, 2]

In[8]:= PolynomialGCD[(x+1)(x+2)(x+3),(x-1)(x+2)]

Out[8]= x+ 2

The functions ZerosFromChain and ChainFromZeros are based on the use of Theorem 4 and Theorem 5, respectively.
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Example 11. Factors from zeros and zeros from factors

In[1]:= l ={Quaternion[1,1,0,0],Quaternion[2,0,1,0],Quaternion[3,0,0,1]};
In[2]:= r = ZerosFromChain[l]

Out[2]=
{

Quaternion[1, 1, 0, 0], Quaternion[2, 2
3 ,

1
3 ,

2
3 ], Quaternion[3, 9

11 ,
2

11 ,
6

11 ]
}

In[3]:= P=PolynomialFromChain[l]
Out[3]= Polynomial[1, Quaternion[−6,−1,−1,−1], Quaternion[11, 4, 5, 2], Quaternion[−7,−5,−5, 1]]

In[4]:= Table[Eval[P][r[[i]]],{i,1,3}]
Out[4]= {0, 0, 0}

In[5]:= c=ChainFromZeros[RotateLeft[r]]

Out[5]=
{

Quaternion[2, 2
3 ,

1
3 ,

2
3 ], Quaternion[3, 13

21 ,−
4

21 ,
16
21 ], Quaternion[1,− 2

7 ,
6
7 ,−

3
7 ]
}

In[6]:= SimilarChainQ[l,c]
Out[6]= True

Observe that ZerosFromChain/ChainFromZeros can not be used when some of the arguments are similar. This problem can
be overcome in the case of ChainFromZeros by using an alternative argument syntax (see Example 13).

In[1]:= l={Quaternion[1,1,0,1],Quaternion[0,1,0,0],Quaternion[0,1,0,0]};
In[2]:= ZerosFromChain[l]

Out[2]= ZerosFromChain :: arg :arguments in the same similarity class.

In[3]:= ChainFromZeros[l]
Out[3]= ChainFromZeros :: arg :arguments in the same similarity class.

Out[4]= Use an alternative syntax.

Next example shows how to use the function FactorShift for successive applications of (15).

Example 12. Identifying the zeros from a given chain (cf. Example 5)

In[1]:= x1=Quaternion[0,0,5,-5];x2=Quaternion[0,0,5,0];
In[2]:= x3=Quaternion[0,0,-7,1];x4=Quaternion[1,1,0,0];
In[3]:= x5=Quaternion[0,-3,-4,0];x6=Quaternion[0,0,3,-4];
In[4]:= {y2,y3}=FactorShift[{x2,x3}];

In[5]:= TraditionalForm/@
(

c1={x1,y2,y3,x4,x5,x6}
)

Out[5]= {5j− 5k, 5k− 5j, 3j− 4k, i + 1,−3i− 4j, 3j− 4k}
In[6]:= {z3,z4}=FactorShift[{y3,x4}];

In[7]:= TraditionalForm/@
(

c2={x1,y2,z3,z4,x5,x6}
)

Out[7]=
{

5j− 5k, 5k− 5j,− 23i
27 −

2j
27 −

14k
27 + 1, 50i

27 + 83j
27 −

94k
27 ,−3i− 4j, 3j− 4k

}
In[8]:= (P=PolynomialFromChain[c1])==PolynomialFromChain[c2]

Out[8]= True

In[9]:= Eval[P]/@{x1,-x1,z3,y3}
Out[9]= {0, 0, 0, 0}

Our last example illustrates the use of the function ChainFromZeros which allows the construction of a polynomial with
assigned zeros and corresponding multiplicities. It is based on the repeated use of Theorem 8.

Example 13. Polynomial with prescribed zeros (cf. Example 6)

In[1]:= r1=Quaternion[0,1,0,0];m1=3;
In[2]:= r2=Quaternion[-1,0,1,1];m2=2;
In[3]:= s1=Quaternion[2,1,0,0];mS1=3;
In[4]:= c=ChainFromZeros[{{r1, m1},{r2, m2}},{{s1, mS1}}]

Out[4]= {Quaternion[0, 1, 0, 0], Quaternion[0, 1, 0, 0], Quaternion[0, 1, 0, 0], Quaternion[−1,− 7
5 ,−

1
5 , 0],

Out[5]= Quaternion[−1,− 7
5 ,−

1
5 , 0], Quaternion[2, 1, 0, 0], Quaternion[2,−1, 0, 0], Quaternion[2, 1, 0, 0],

Out[6]= Quaternion[2,−1, 0, 0], Quaternion[2, 1, 0, 0], Quaternion[2,−1, 0, 0]}
In[5]:= P=PolynomialFromChain[c];
In[6]:= Eval[P]/@{r1,r2,s1,Conjugate[s1]}

Out[6]= {0, 0, 0, 0}
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