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Abstract

From work contracts and group buying platforms to political coalitions and international cli-

mate and economical summits, often individuals assemble in groups that must collectively

reach decisions that may favor each part unequally. Here we quantify to which extent our

network ties promote the evolution of collective fairness in group interactions, modeled by

means of Multiplayer Ultimatum Games (MUG). We show that a single topological feature of

social networks—which we call structural power—has a profound impact on the tendency of

individuals to take decisions that favor each part equally. Increased fair outcomes are

attained whenever structural power is high, such that the networks that tie individuals allow

them to meet the same partners in different groups, thus providing the opportunity to

strongly influence each other. On the other hand, the absence of such close peer-influence

relationships dismisses any positive effect created by the network. Interestingly, we show

that increasing the structural power of a network leads to the appearance of well-defined

modules—as found in human social networks that often exhibit community structure—pro-

viding an interaction environment that maximizes collective fairness.

Introduction

The human predisposition to be fair shapes decision-making and drives the outcome of social

interactions [1–6]. The influence of fairness is often strong enough to overcome rationality

and selfishness, posing a challenge to mathematical models that aim to incorporate the com-

plexity of human interaction and thus justify fair behavior. Factors such as the cultural setting

[7], community size, engagement in large-scale institutions [8], or even the socio-economic

segment of the individuals [9], may provide clues regarding the propensity to be fair. Concerns

about fairness may even lead individuals to decide, collectively, to give up some of their wealth

to punish unfair behavior of others [10]. For instance, in the collective bargaining of work con-

tracts, recognized in international human rights conventions, one has groups of individuals

with different interests, where the fairness level of the outcome is ultimately shaped by the col-

lective decision of employees and employer(s). Another less formal example is found in the

Chinese concept of tuangou, where a group of people approaches a seller, offering to buy a
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large amount of items and negotiating reduced prices [11]. Today, tuangou provides a meta-

phor of many (collective) group buying platforms that aggregate millions of users in huge

social networks [11–13]. Collective fairness decisions are also part of the process of policymak-

ing by coalitions [14]. Political coalitions constitute decision units prevalent in a myriad of

institutional settings (from parliamentary democracies to authoritarian regimes with power

being divided among entities that legitimate the authority [14]), and their policies are only

effective if the coalition members support or subordinate to the proposals made, which may

favor each part unequally. In fact, from international climate and economic summits down to

routine daily life arguing about the preferred restaurant to schedule a group dinner, many

more examples could be added, all with a common backbone: interactions take place in groups

in which individual assessment of fairness contributes to the overall degree of fairness reflected

in the (collective) group decision process.

While the dynamics of fairness in two-person interactions has been given significant atten-

tion, mostly in the context of Ultimatum Games (UG) [4, 5, 15–21], the challenges posed by

groups and associated fairness of collective decisions have not received corresponding empha-

sis. Furthermore, the fact that individuals often participate in multiple groups makes it impor-

tant to understand to which extent the interplay between individual decision and participation

in multiple groups (where collective action is at stake) influences overall fairness. To address

this issue, we investigate the population dynamics arising from a Multiplayer Ultimatum

Game (MUG), where proposals are made to groups [22] here defined by an underlying net-

work of contacts [23–29]. We conclude that different networks lead to variable degrees of

global fairness. In particular, we define a new network property, that we call Structural Power

(SP, further detailed in Methods), that measures the prevalence of one individual (A) in the

interaction groups of another (B) (normalized as the fraction of interaction groups of B where

A also takes part). We show that this metric is instrumental and sufficient to identify those net-

works that maximize fairness at a global, population-wide level.

While in the 2-player UG a Proposer decides how to divide a given resource with a

Responder and the game only yields payoff to the participants if the Responder accepts the

proposal [3], in the N-player MUG proposals are made by one individual (the Proposer) to the

remaining N-1 Responders, who must individually reject or accept the proposal [22]. Since

individuals may act both as Proposers and Responders, we shall assume that each individual

has a strategy characterized by two real numbers, p and q. The Proposer will try to split the

endowment, offering p to the Responders. Each of the Responders will individually accept the

offer made to the extent that his/her q-value is not larger than the p-value of the Proposer.

Overall group acceptance will depend upon M, the minimum fraction of Responders that

must accept the offer before it is valid. Consequently, if the fraction of individual acceptances

stands below M, the offer will be rejected. Otherwise, the offer will be accepted. In this case,

the Proposer will keep 1-p to himself and the group will share the remainder, that is, each

Responder gets p/(N-1). If the proposal is rejected, no one earns anything [22]. The individual

fitness arising from a specific group stands as the accumulated payoff obtained after individu-

als engage in N instances of the game, where each individual of a group acts once as a Proposer,

and N-1 times as a Responder. In each instance, a fair split will be characterized by p = 1-1/N,

as in this case both Proposer and Responders will get the same fraction of the offer. Empathy

means that p = q, i.e., one offers precisely what one is willing to accept.

As detailed in Methods, we start from a population of size Z, much larger than the group

size N, and equip individuals with values of p and q drawn from a discretized uniform proba-

bility distribution in the interval [0,1] containing 101 values (discretized to the closer multiple

of 0.01). As already mentioned, to model the interplay between different interaction group

assortments, we assume that individuals in the population are arranged in a graph (or
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network). In line with previous studies [25–27], each neighborhood defines a group, whereas

the fitness Fi of an individual i of degree k is determined by the payoffs resulting from the

game instances occurring in k+1 groups: one centered on her neighborhood plus k others cen-

tered on each of her k neighbors. In other words, each node with degree k defines a group with

size N = k+1, including that node (focal) and the neighbors. Fig 1 provides pictorial representa-

tions of this group formation process. In homogeneous populations, every individual partici-

pates in the same number of groups (and MUG instances), all with the same size. Often,

however, individuals face different numbers of collective dilemmas (depending, e.g., on their

social position) that may also have different sizes. Such a dimension of social diversity is intro-

duced here (Fig 4) by considering heterogeneous networks [30].

Social success drives the evolution of strategies in the population, that is, we implement

strategy revision by social learning [26, 31–35], assuming that the behavior of individuals that

perform better (i.e. achieve higher fitness) will spread faster in the population as they will be

imitated with higher probability (see Methods for details).

We assume that individuals do not have direct access to the set of rules that define the

behavior of others—instead, they perceive their actions, and therefore, errors of perception

may be relevant. Consequently, whenever a pair (p,q) is copied, the final value will be per-

turbed by a random shift uniformly drawn from the interval [-ε,ε], reflecting the myopic

nature of the imitation process. This process occurs along the social ties defined by the under-

ling network [25].

Fig 1. Examples of group formation. We represent all the groups where a focal individual, positioned in the blue node, participates. In both (a) and (b),

the focal individual has a connectivity of 3 (blue links) thereby playing in 4 different groups: one centered on herself (represented by a grey circle) and the 3

others centered on her (numbered) neighbors (represented by yellow ellipses). For instance, the groups represented by the ellipses iv contain all

neighbors of individuals with number 4 (including the focal individual). The motifs presented in (a) and (b) differ in the overlap of the groups where the blue

nodes take part, and consequently, the influence that those neighbors exert and are subject to. In (a), none of the 1st neighbors of the focal individual are

1st neighbors of each other; thus, the focal individual only meets each of her/his neighbors in two groups. In (b), all 1st neighbors of the focal individual are

directly connected, which means that individuals 2, 3 and 4 take part in all the groups where the focal individual also takes part. Thus, they influence each-

other more in (b) than in (a). The structural power (SP, defined in Methods and based on the prevalence of one individual in the interaction groups of

another), provides a quantitative measure of the influence capacity of any node onto another (see Methods where we show that the influence extends to

second neighbors). When applied to the entire network, the SP is thus higher in (b) than in (a).

https://doi.org/10.1371/journal.pone.0175687.g001
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Results and discussion

We start by simulating MUG on regular rings (regular) [36], and in homogeneous random

networks (horand) [37] (see Methods for information regarding the construction and charac-

terization of both networks, together with details of the simulation procedures). As Fig 2

shows, regular networks induce higher fairness and empathy, when compared with homoge-

neous random networks. Furthermore, there is an increase with M in both<p> and<q>,

unlike what is observed for the other 2 classes of networks.

Despite the fact that both classes of networks exhibit the same Degree Distribution (DD),

they have quite different Clustering Coefficients (CC) and also Average Path Lengths (APL)

[36, 37]. The regular ring networks warrant a high CC which, in turn, ensures that individuals

appear repeatedly in the interaction groups of others. The prevalence of a given individual in

the interaction groups of another may be understood as a power relation [15, 38, 39], that is, as

a measure of the influence that an individual A has in the goals (here, fitness) of another indi-

vidual B. This influence is enhanced by the fraction of interaction groups of B in which A
appears (see Methods). To further characterize this property, we define an explicit quantity,

that we call the Structural Power (SP). At the individual level, the structural power of an indi-

vidual A over another individual B is given by the fraction of all groups in which B participates

that also include A. This quantity, conveniently normalized between 0 and 1, is further

extended to define the (average) SP of a node in a network, as well as the (average) SP of an

entire network. Full details are provided in Methods. It is important to point out, however,

that SP and CC convey different properties of a network: For instance, whereas CC only

accounts for the triangular motifs present in a network, the computation of SP also reflects

existing square motifs. To isolate the effect of SP from CC—and also from APL and DD—we

calculate the average proposals <p> and average acceptance threshold <q> emerging when

MUG is played in a class of networks in which CC always remains close to 0, but SP is not neg-

ligible (see Fig 3 and Methods).

Fig 2. Average values of proposals and acceptance values that emerge for different topologies. The average values of the (a) proposals, <p> and

(b) acceptance thresholds, <q>, as a function of the threshold M (the fraction of individual acceptances needed to ratify a proposal in MUG), when MUG is

played on unstructured populations (well-mixed), on regular rings (regular) or on random networks with homogeneous degree distribution (homogeneous

random, horand, generated by swapping the edges initially forming a ring [37, 40, 66]). M has a positive effect on the average values of <p> [22].

Notwithstanding, this effect is much more pronounced in the case of regular networks, where we also witness a similar increase in the average values of

<q>. Other parameters: average degree <k> = 6 (meaning that groups have a constant size of N = 7); population size, Z = 1000; mutation rate, μ = 0.001;

imitation error, ε = 0.05 and selection strength, β = 10 (see Methods for definitions of all these parameters).

https://doi.org/10.1371/journal.pone.0175687.g002
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In particular, we interpolate between two low CC networks: i) A triangle-free regular ring

(which can also be interpreted as a regular bipartite graph, with links connecting odd-num-

bered nodes to even-numbered nodes, exhibiting a high SP, Fig 3c) and ii) a homogeneous

random graph (low SP, Fig 3d), obtained by randomly rewiring the links of the triangle-free

network (see Methods). The interpolation is implemented by means of a parameter r defining

the fraction of links to be randomly rewired. The procedure keeps the DD unchanged, as pairs

of links are swapped during the rewire process [37, 40]. As we depict in Fig 3, irrespectively of

CC, APL and DD, the dependence of both <p> and<q> is fully correlated with that of SP

and not with any of the other quantities.

To further analyze the impact of SP on the levels of fairness, we design networks with differ-

ent SP by optimizing the link structure of a random network until a desired pre-defined SP is

achieved (see Methods). Fig 4 shows the average proposal (<p>), and acceptance threshold

(<q>) we obtain, now as a function of the network SP. Clearly, high values of SP lead to

higher values of<p> and <q>, in which case individuals adopt fairer strategies.

Fig 5 illustrates the structural effects induced by maximizing the SP of a network, while

keeping the average degree <k> constant. Additionally, we concentrate our analysis on sparse

structures (<k><< Z), as it is often the case in social networks [41, 42]. When maximizing

the SP under these constraints, one witnesses the emergence of highly modular sub-structures,

with the concomitant appearance of different communities [43]. In fact, each node acquires

high SP by repeatedly appearing in the interaction groups of individuals belonging to the same

community, which leads, as a consequence, to a distinguishing characteristic of modular net-

works: high average SP.

The prevalence of fairness in small communities where members share a large number of

connections fits well with the empirical studies that argue for the trust and confidence pro-

vided by this kind of community structures [44–47]: All the individuals of the community

monitor the interactions occurring within links, referred as strong ties or embedded links. In

fact, it is worth noting how easier is to render punishment effective (where punishment here

Fig 3. Impact of structural power on fair collective action. We interpolate between a regular triangle-free ring (high SP, r = 0, panel c) and a

homogeneous random graph (r = 1, low SP, panel d) by rewiring a fraction r of all edges in the network while keeping the degree distribution unchanged.

Our starting topology (r = 0) differs from the conventional regular rings (illustrated, for comparison, in panel b) as, by construction, it avoids the creation of

triangles, leading to a CC = 0. Panel a) shows how different global network properties change as we change r (note that in this case networks have <k> =

6, corresponding to group size N = 7) and, importantly, how they correlate with properties emerging from playing the MUG on these networks: besides the

average values of offer, <p>, and acceptance threshold, <q>, we also depict the dependence of CC, APL and SP. Whereas the value of CC remains

negligible for all r, (growing from 0 at r = 0 to 0.003 at r = 1) the dependence of <p> and <q> is fully correlated with that of SP and with none of the other

variables plotted. Other parameters (see Methods): M = 0.5, Z = 1000, <k> = 6, μ = 0.001, ε = 0.05 and β = 10.

https://doi.org/10.1371/journal.pone.0175687.g003
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means having a high acceptance threshold, q, thus rejecting low proposals and preventing

unfair Proposers to earn payoff) when networks exhibit high SP and, therefore, many local

communities: In such cases one punisher may be enough to derail all the low proposals of one

unfair neighbor. On the other hand, in structures with low SP, the fact that each unfair indi-

vidual plays in several groups with different opponents requires different punishers to be pres-

ent in those groups, in order for unfairness to be effectively penalized. This way, communities

Fig 4. The effect of network SP on fairness. (a) Average proposals <p>, and (b) average acceptance thresholds <q>, when MUG is played in structured

populations with different values of average SP. M stands for the fraction of individual acceptances needed to ratify a proposal in MUG. M = 0.5 means

that, at least, half of the Responders have to accept the proposal, in order for it to be ratified by the group and have a positive effect on payoffs. When the

game is played in networks with increased SP, the final values of <p> and <q> increase, i.e., strategies evolve to fairer levels. Also, for 0.4<SP<0.58

(covering the regular networks analyzed in Fig 1, with SP = 0.5), an increase in M also leads to an increase in <q>. Other model parameters: average

degree, <k> = 6 (which means that groups have an average size of <N> = 7); population size, Z = 1000; mutation rate, μ = 0.001; imitation error, ε = 0.05

and selection strength, β = 10.

https://doi.org/10.1371/journal.pone.0175687.g004

Fig 5. Intuitive representation of graphs with different average SP. The Fig provides an intuition for the effect of increasing SP in a small network of

100 nodes, while keeping the average degree, <k> = 6, constant. As the SP increases ((a) SP = 0.2, (b) SP = 0.4 and (c) SP = 0.65), different modular

sub-structures increasingly appear. The disposition of nodes follows the Force Atlas algorithm [78] and the color scheme represents the detected

communities by the Louvain method [78, 79].

https://doi.org/10.1371/journal.pone.0175687.g005
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provide the needed lever to trigger fair strategies. Naturally, explicit forms of sanctioning

could be devised, such that its impact, together with its relation with particular network topol-

ogies, can be extended to other social dilemmas and interaction contexts [10, 17, 48–51]. In

particular, we conjecture that networks with high SP should play an increased role when work-

ing as interacting structures for multiplayer games with thresholds [26, 27, 52, 53].

Additionally, networks with high SP, besides providing the right context for preventing

unfair proposals, can also confer a relative advantage to individuals prone to reject low offers

and make fair proposals. Having one individual with high SP and high acceptance threshold

often implies that the only proposal accepted in the neighborhood is precisely her/his own.

Naturally, this can only happen if that individual is able to take part in a large fraction of his/

her peers, which, again, translates into a high SP.

Here we investigate fairness based on group decisions by means of an evolutionary game

theoretical model employing MUG, played along the links of complex social networks. Our

results show that the SP of a network constitutes a key observable indicating the feasibility that

fairness emerges in the population, in both regular (Figs 2 and 3) and heterogeneous networks

(Fig 4) and in situations where resorting to well-established quantities such as CC can be elu-

sive (Fig 3).

Finally, this work can be related with the important concept of governance by means of

polycentric sanctioning institutions [52, 54]. To this end, let us assume that every Responder

conceals a potential punisher and each group where MUG is played constitutes a center of

decision. This perspective re-positions the present model into an interestingly polycentric per-

spective, as now Responders with high SP spawn many overlapping interaction groups which,

in turn, can be related to the problem of interdependence between groups. As mentioned by

V. Ostrom “Polycentric connotes many centers of decision making that are formally independent
of each other. Whether they actually function independently, or instead constitute an interdepen-
dent system of relations, is an empirical question in particular cases” [54, 55]. We find that the

question of the interdependence of groups taking part in collective decisions, here quantified

by means of the SP, may be central in promoting seemingly paradoxical human features such

as fairness.

Methods

Game, payoff and fitness

Following the conventional notation of UG [17], the total amount initially given to the Pro-
poser playing MUG is equal to 1. In a group of N individuals, the proposal made is p ∊ [0,1]

and each of the N-1 Responders has an acceptance threshold q ∊ [0,1]. Once the proposal is

made, each Responder will individually state his acceptance (if q�p) or rejection (if q>p).

Overall, the group acceptance depends upon a minimum fraction of individual acceptances,

M. This can be summarized in a variable ai, assuming the value 1 if the proposal by individual i
is accepted, and 0 otherwise [22]:

ai ¼
1 ; if SN

j¼1;j6¼iYðpi � qjÞ=ðN � 1Þ � M

0 ; otherwise

(

ð1Þ

where Θ(x) is the Heaviside function, assuming the value 0 when x<0 and 1 otherwise. The

payoff Pi earned by an individual i in a group of N individuals, will be given by adding the

result of acting once as the Proposer—PP = (1 − pi)ai—and N-1 times as a Responder—

PR ¼
1

N� 1

XN

k¼1;k6¼i

pkak, where pk is the offer of individual k and ak refers to the proposal of
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individual k. It is worth noting that the maximum payoff of an individual i is obtained when pi
is the smallest possible and all other pk (the offers of opponents) are maximized. Therefore,

there is a high pressure to free-ride, that is, offering less and expecting that others will contrib-

ute. Furthermore, dividing the game in two stages and reasoning in a backward fashion, the

conclusions regarding the sub-game perfect equilibrium of this game anticipate the use of the

smallest possible pi and qi, irrespectively of N and M [56], mimicking the conclusions for the

traditional 2-person UG [57]. The fitness is given by the accumulated payoff earned after play-

ing in all possible groups.

Networks

An underlying network of contacts defines the groups in which individuals play. One node

(focal) and its direct neighbors define a group. An individual placed in a node with connectiv-

ity k will play in k+1 different groups. In Fig 1 we provide intuitive representations for this

group formation process (where the structural power SP is defined next). We use four classes

of networks, namely, i) regular rings [36], ii) regular triangle-free rings, iii) homogeneous ran-

dom networks [37] and iv) networks with pre-defined average SP. Regular rings, with degree

k, are traditionally constructed by i) creating a numbered list of nodes and ii) connecting each

node to the k nearest neighbours in that list [36]. Similarly, we generate regular triangle-free

rings (with degree k) by connecting one node (source) with the closest k nodes, yet only those

at an odd distance (in the list) to the source (in the language of graph theory, this corresponds

to define a (k,k)-biregular graph using the odd-numbered and even-numbered nodes as dis-

joints sets). This allows preventing the occurrence of triangles (i.e., adjacent nodes of a given

node that are, themselves, connected) which would contribute to increase CC. In Fig 3, we

interpolate between a regular triangle-free ring and a homogeneous random graph following

the algorithm proposed in [37]. We introduce a parameter r which gives the fraction of edges

to be randomly rewired: for r = 0 we have a regular triangle-free ring, whereas for r = 1 all

edges are randomly rewired and we obtain a homogeneous random graph. We adopt a rewir-

ing mechanism which does not change the degree distribution [37, 40]. The algorithm resumes

to repeat the following two-step circular procedure until a fraction r of all edges are success-

fully rewired: 1) choose—randomly and independently—two different edges which have not

been used yet in step 2, and 2) swap the ends of the two edges if no duplicate connections arise.

In Fig 4, to generate networks with pre-defined average SP, we apply an optimization algo-

rithm to a random network. The random networks are generated by rewiring all the edges of

regular ring [36]. Let us now assume that we want to build a network with average SP equal to

spmax. We re-organize the link structure of the initial network using a stochastic multi-step

process such that, in each step, an edge of network is rewired at random (with no repeated

edges allowed). The move is accepted if two criteria are met: 1) the resulting network remains

connected and 2) the average SP of the resulting network (spt) increases (compared to the pre-

vious value) or passes the following stochastic criterion: a move in which SP decreases is

accepted with probability λ(spmax-spt), where λ controls the probability of accepting an errone-

ous move. That means that the probability of accepting a rewire that decreases SP is lower as

we get close to the desired SP. This is an optimization feature similar in spirit to the well-

known simulated annealing [58]. We used λ = 0.001.

Structural Power (SP)

The population structure provides the definition of the different groups of interaction, which

may overlap to variable extent [59]. Considering the usual group formation that we address (in

which one node defines, together with his/her direct neighbors, a group), individuals may
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appear repeatedly in the interaction groups of others. As said, this repetition may provide

increased SP to some individuals over others.

We define the SP of A over B as SPA;B ¼
jIðAÞ\IðBÞj
jIðBÞj , where I(X) represents the groups in

which individual X appears and |I(X)| represents the number of groups in I(X). One may

note that, using the Kronecker δA,B to identify edges between A and B (e.g, 1 if an edge con-

nects nodes A and B and 0 otherwise), and denoting by oA,B (overlap) the number of com-

mon neighbors of A and B and by kX the number of neighbors of X, then the SP of A over B

is given by SPA;B ¼
2dA;BþoA;B

kBþ1
¼

2dA;Bþ

X

i2nodes

dA;i�di;B

X

i2nodes

di;Bþ1

.

Intuitively, if one individual is a direct neighbor of other (δA,B = 1), they will meet in at least

two groups, where each one will be the focal in each group. They will meet again if they have a

common neighbor i (δA,i × δi,B = 1), and thus whenever A and B are direct neighbors, oA,B

counts the number of triangular motifs involving both A and B. If B has connectivity kB, then

this node participates in kB+1 groups, providing the proper normalization to SPA,B. Impor-

tantly, even if A and B are not direct neighbors, SPA,B will not be zero, in general (e.g., square

motifs may lead to oA,B6¼0).

The average SP of one node is defined as SPA ¼ jRðAÞj
� 1
X

i2RðAÞ

SPA;i, where R(A) is the set of

individuals reached by individual A, either directly or through a common neighbor, and |R
(A)| is the size of this set. Finally, the average SP of one network is the average SP taken over

all of its nodes. As an example, in Table 1 we show the average structural power (SP) of sev-

eral social networks [60] including a sample of Facebook [61], an email communication net-

work (Enron email network, in which nodes are email addresses and edges represent at least

one email sent between addresses [62, 63]), and several collaboration networks inferred from

the co-authorship of papers on arXiv [64], in topics such as General Relativity (GrQc), High

Energy Physics Phenomenology (HepPh), High Energy Physics Theory (HepTh), Astrophys-

ics (AstroPH) or Condensed Matter (CondMat). Interestingly, all the abovementioned net-

works show a global SP significantly higher that the one obtained from a random network

[36, 65] with the same size (Z) and average degree (<k>) (see SPrand1). A similar result is

obtained if, instead, we compare the SP of empirical networks with randomized networks of

the same Z, <k>, and degree distributions (SPrand2). Following refs. [37, 40, 66], SPrand2

was computed as the SP of the network that results from swapping random pairs of edges for

10Z<k> times.

Table 1. SP of different networks. See Methods for details.

Dataset Z <k> SP SPrand1 SPrand2

Facebook 4039 44 0.14 0.05 0.04

Email 36692 10 0.25 0.10 0.15

AstroPH 18772 21 0.15 0.05 0.05

CondMat 23133 8 0.26 0.12 0.12

GrQc 5242 6 0.41 0.17 0.20

HepPh 12008 20 0.22 0.05 0.08

HepTh 9877 5 0.33 0.24 0.20

https://doi.org/10.1371/journal.pone.0175687.t001
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Evolutionary dynamics in structured populations

Instead of revising their strategies through rational reasoning, humans often resort to the expe-

riences and successes of others to select their next move, as, in fact, has been shown to be the

case in the context of public donations [67–69]. Such an interacting dynamical process,

grounded on peer-influence and imitation, creates a behavioral ecosystem in which strategies

and behaviors evolve in time, whereas the returns of each individual depend on the actual fre-

quency of each strategy present in its neighborhood. Fitness is said to be context-dependent.
Here we adopt such social learning dynamics [17, 23, 25–27, 31–35, 70, 71], which is also well

suited to be used in the framework of evolutionary game theory. The baseline assumption is

that individuals performing better when playing MUG (i.e. those achieving higher accumu-

lated payoffs) will be imitated more often and thus their strategies will spread in the popula-

tion. Social success drives the adoption of strategies in the population. Imitation occurs by

copying behavior through the social ties, statically defined by the underlying network.

Simulations

Numerical results were obtained for structured populations of size Z = 1000. Simulations take

place for 50000 generations, considering that, in each generation, all the individuals have the

opportunity to revise their strategy through imitation. At every (discrete and asynchronous)

time step, two individuals A and B (neighbors) are randomly selected from the population and

their individual fitness is computed as the accumulated payoff in all possible groups, provided

by the underlying structure; subsequently, A copies the strategy of B with a probability χ that is

a monotonic increasing function of the fitness difference fB-fA, following the pairwise compari-

son update rule [72]— w ¼ ð1þ e� bðfB � fAÞÞ
� 1

. The parameter β conveniently specifies the selec-

tion pressure (β = 0 represents neutral drift and β!1 represents a purely deterministic

imitation dynamics). Additionally, imitation is myopic: The copied p and q values will suffer a

perturbation due to errors in perception, such that the new parameters will be given by p’ = p
+ ξp(ε) and q’ = q + ξq(ε), where ξp(ε) and ξq(ε) are uniformly distributed random variables

drawn from the interval [-ε,ε]. This feature not only i) models a slight blur in perception but

also ii) helps to avoid the random extinction of strategies, and iii) ensures a complete explora-

tion of the strategy spectrum, given that the pairwise comparison does not introduce new strat-

egies in the population [73]. To guarantee that p’ and q’ are not lower than 0 or higher than 1,

we implement reflecting boundaries at 0 and 1, e.g., if p’>1 then p’ is set to 2-p’ [73–75]. Fur-

thermore, with probability μ, imitation will not occur and the individual will adopt random

values of p and q, proceeding through a random exploration of behaviors. We use μ = 1/Z

throughout this work. The effect of varying this parameter is similar to the one verified when

changing ε: an overall increase of randomness leads to higher chances of fairer offers [22, 76,

77]. For each combination of parameters, the simulations were repeated 100 times (using 10

different networks from each class studied), whereas each simulation starts from a population

where individuals are assigned random values of p and q drawn uniformly from an evenly dis-

cretized strategy space in the interval [0,1] containing 101 values. The average values of p and q
obtained, denoted by <p> and<q>, are both a time and ensemble average, taken over all the

runs and considering the last 25% of generations, disregarding the initial transient period.
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