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In recent years there has been a significant evolution regarding applications for mobile 
devices that provide location-based services. The mobile devices available on the market 
already provide a set of integrated sensors and it is also possible to acquire data from 
external sensors. This chapter presents the development and results concerning a mobile 
sensing platform applied to cycling which performs data collection using both sensors 
integrated in the smartphone and multiple wireless sensor nodes, which are used to 
acquire relevant performance parameters. The data collected by the developed mobile app 
is stored in a local database and also uploaded to a remote database, where it can be 
accessed later using the mobile app or a web browser. This mobile app allows users to 
share data with friends, join or create events, locate friends, consult graphs and access 
past routes in a map. Based on these functionalities, this system aims to provide detailed 
feedback regarding the user performance and enhance the enjoyment of the cyclists. 

1.   Introduction 
Smartphones are increasingly becoming the central communication and 

processing devices in people's lives, which makes the study and development of 
mobile sensing systems an attractive emerging area of research [1], [2]. 

In order to enhance their performance and enjoyment, cyclists are 
increasingly interested in multiple types of information that can be gathered. The 
use of smartphones in cycling has the advantages of avoiding the costs 
associated with the acquisition of dedicated monitoring devices and, at the same 
time, allowing the provision of several new functionalities. 

Depending on the intended goals, cycling exercises at specific intensity zones 
may be advisable. These zones are usually calculated based on the measurement 
of the power output or the heart rate [3], [4]. The cycling performance is also 
largely affected by the body posture [5]. There are performance tradeoffs 
between the upright posture and the aero posture (where the cyclist adopts a 
lowered position with the trunk almost horizontal), which also depend on the 
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fitness level of the cyclist [6]. The performance of cyclists is also affected by 
the angle of the knee [7]. Taking into account their relevance to the cycling 
performance, the system described in this chapter was designed to monitor 
parameters such as the pedaling cadence, torque, power output, heart rate, trunk 
angle and knee angle.  

Among the research work applied to cycling, the Biketastic platform [8] aims 
to facilitate the exchange of knowledge among cyclists, creating a system where 
participants can share their routes and experiences. Data are collected through 
the sensors integrated into a smartphone. Through GPS, information such as 
speed, latitude and longitude is collected. Using the accelerometer and the 
microphone, it is possible to measure the roughness of the terrain and the level 
of audible noise. Users can also capture geo-tagged images and video clips 
while riding, and insert tags and descriptions. 

BikeNet [9] is a monitoring system to map the experience of the cyclist, 
which uses a number of sensors to collect data on the cyclist routes and provides 
a web portal that allows sharing of information in real time and accessing the 
information stored on a server. This system collects and stores typical data, such 
as current speed, average speed, distance and calories burned, as well as more 
specific data, such as slope, heart rate, cadence, galvanic skin response, 
pollution levels, allergen levels, noise and roughness of the terrain, all 
referenced by time and location. The monitored data are collected by various 
IEEE 802.15.4 [10] sensor nodes, and an IEEE 802.15.4/Bluetooth gateway is 
used to send the data from the sensor nodes to a smartphone. 

This chapter, which provides a revised and extended version of a previous 
paper [16], presents a system that allows the user to monitor several parameters 
during the cycling activities. Some of these parameters are monitored using 
smartphone sensors, whereas others use wireless sensors nodes [11] placed on 
the bicycle and on the user’s body [12]. All information is georeferenced with 
the GPS location. The developed mobile app allows viewing, storing and 
sharing maps of the routes with friends, and the use of color gradients to provide 
visual information associated with changes on the monitored parameters. The 
mobile app also allows the user to be informed and join events where other 
cyclists will participate, and to create events himself. The data collected from all 
the users is stored on a remote database. Access to the monitored data and to the 
associated functionalities is available through the mobile app and through a 
website. 

This chapter is organized as follows: The next section provides a description 
of the components of the developed system, with emphasis on the databases and 
the mobile app. In Section 3, experimental results concerning the measurement 
of specific parameters are presented and discussed. Finally, Section 4 presents 
the conclusions. 
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2.   Developed System 
The architecture of the developed system, presented in Fig. 1, is composed of 

the main following components: a web server, a website, a mobile app and an 
external web service, which provides Google Maps geographic data. 

 

 Fig. 1.  Architecture of the developed system.  
The web server handles requests made by the user, either through the 

smartphone application or a web browser. This web server integrates a database 
(DB) which stores information relevant to the operation of the system. The 
Apache HTTP server was chosen for the implementation of the web server, 
more specifically, the free XAMPP Apache distribution, because it contains 
MySQL and PHP. The databases are described in Section 2.1. 

The mobile app possesses its own local database, which was developed using 
SQLite. It communicates with the web server in order to store collected 
information or to request information stored in the remote database. The mobile 
app, which was developed and tested using the Android mobile operating 
system, is described in more detail in Section 2.2, whereas the developed 
website is described in Section 2.3.  

The communication between the mobile app and the web server is made using 
the HTTP POST method and the JSON (JavaScript Object Notation) format. 
The choice of the JSON format was due to the fact that it requires less 
bandwidth than the XML (Extensible Markup Language) format, contributing to 
the reduction of battery energy and mobile data consumption. 
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2.1.   Databases 
The remote database, located on the web server, stores information collected 

from all the users of the system. This work uses the MySQL relational database 
management system (RDBMS). Fig. 2 presents the entity-relationship (ER) 
diagram that was developed for this database, which is composed of the 
following entities:  

 

 Fig. 2.  Entity–relationship diagram of the remote database.   
• user – stores information related to the user; 
• locates_user – contains information required to obtain the last location of the 

user; 
• route – contains information related to each route performed by the user; 
• sensor_values – contains information collected from a route; 
• user_events – contains information about the events that the user is associated 

to; 
• events – stores information about the event; 
• user_friends – contains information on which friends associated with the user; 
• friends – stores the emails of friends, so that the user can later access 

information related to his friends. 
The local database in the smartphone stores information regarding the routes 

performed by the user. The entities of this database are: the route, which 
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contains the information on route performed by the user; and the sensor_values, 
which contains all the data collected in the course of a route. These entities are 
very similar to the corresponding entities on the ER diagram of the web server; 
the idea is to facilitate the data upload from local database to the remote 
database. 
2.2.   Mobile App 

The top level navigation on the mobile app is based on an Android spinner, 
with different options, as shown in Fig. 3. Each of these options opens another 
window that gives access to the respective sub-options. 
  

 Fig. 3.  Menu options available using the Android spinner.  
The Main window allows the user to: sync the local database with the remote 

database manually (when Wi-Fi is available, the data upload occurs 
automatically); or to start the navigation mode, which is the main part of the 
application. 

The navigation window presents the local map and a start/stop button that 
allows the user to enable/disable the recording of the route information. When 
recording is enabled, the following georeferenced parameters are measured 
periodically, as long as the respective sensors are available: 
• from smartphone sensors – roughness and slope of the terrain,  speed, altitude 

and location; 
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• from wireless body sensors – heart rate, knee angle and trunk angle; 
• from wireless sensors placed on the bicycle – cadence, torque and power 

output. 
This information is stored in the local database, to be later uploaded to the 

remote database.  
As shown in Fig. 4, while on the navigation window, the user has access to 

the following information: elapsed time, current speed, distance traveled, 
altitude, and temperature, as well as the route traced on the map. 

 

 Fig. 4.  Route recording on navigation mode.  
The option Friends presents to the user a swipe view with three tabs: Friends, 

Add and Remove. The tab Friends presents the friends of the user in a dynamic 
listview containing photo, name and email. Selecting a friend, the user has 
access to a listview with the history of routes performed by that friend. Selection 
of a route provides a summary, as well as access to a map where the route can be 
inspected. The tab Add provides two options to the user: give permission to 
another user to become a friend or ask another user to add him as a friend. The 
tab Remove allows the user to remove other users from the list of friends. 

When the option Events is selected, it presents three tabs: All, Mine and 
Create. The tab All presents a list of future events that the user can join and 



 7

respective information: name of the event, place, date, hour, estimated duration 
and distance. The tab Mine allows to consult or remove events that the user 
subscribed, whereas the tab Create allows the user to create a new event. 

The option History presents a dynamic listview with all past routes performed 
by the user. Selecting a route provides more information and gives access to a 
map with the traced route. 

Selecting the option Find Friends, the user has access to a map with markers 
that indicate the last known location of his friends and the respective time.   

The option Graphs gives access to charts. Currently, two graphs are 
implemented: the smartphone battery level along the day, and the monthly 
kilometers travelled during the year. The graphs were implemented using the 
library AChartEngine. 
2.3.   Website 

The website was developed using HTML, JavaScript and CSS, resorting to 
the Bootstrap framework. It was conceived to be suitable to multiple types of 
device, including PCs, tablets and smartphones. The Google Maps JavaScript 
API version 3 was used to incorporate maps on the website, whereas the Google 
Charts API was used to create charts using JavaScript embedded in the web 
page.  

Fig. 5 presents main navigation options of the website. As the figure shows, 
the website allows the access to information from friends, events, past routes 
and charts. 

 

 Fig. 5.  General scheme of the website. 
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3.   Results and Discussion 
This section presents experimental results concerning the measurement of 

several parameters using the developed system, namely the roughness of the 
terrain, cadence, torque, knee angle and trunk angle. 

The roughness of the terrain (as well as the slope) is measured with the 
smartphone attached to the bicycle handlebars, as shown in Fig. 6.  

 

 Fig. 6.  Placement of the smartphone for the roughness test.  
The Android SensorEvent class was used to measure the acceleration on the 

three axes (ax, ay, az), using the accelerometer of the smartphone. Then the 
module of the acceleration was calculated, at 100-ms intervals, using (1). When 
the device is at rest, this equation returns the acceleration of gravity. 
 |ܽ| ൌ ඥܽ௫ଶ ൅ ܽ௬ଶ ൅ ܽ௭ଶ (1) 

Fig. 7 shows the results concerning the measurement of the module of the 
acceleration along the time for two different terrains: asphalt and brick road. 
After subtracting the acceleration of gravity from the module of the acceleration, 
the root mean square (RMS) of the samples was calculated for each terrain, in 
order to obtain a roughness factor for that terrain. The obtained value was 1.79 
m/s2 for the asphalt road and 6.93 m/s2 for the brick road, which is a 
considerable difference.  

The sharing of roughness data, in combination with other information, such as 
changes on the altitude along a route, may be useful for cyclists to choose or 
avoid routes according to the characteristics of the desired terrain.  

In order to provide an easy visualization of changes on selected measured 
parameters along the route, the developed mobile app offers the option to 
display the route using a color gradient. Fig. 8 presents an example where the 
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altitude is used. Darker red colors indicate higher altitudes along the route, 
whereas lighter colors indicate lower altitudes. 

 

 Fig. 7.  Module of the acceleration over time for different terrains.  

 Fig. 8. Example of route using a color gradient for the altitude. 
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In the system described in this work, the cadence, torque and power output 
are measured using a single sensor, which was placed inside of the bicycle 
crankset. This sensor provides an analog signal that is proportional to the torque 
applied by the cyclist, as well as a digital signal that is generated as the pedal is 
rotated (8 pulses per 360° rotation). These signals are acquired by 
microcontroller and sent to the smartphone using Bluetooth. The value of the 
cadence, which is calculated on the mobile app, is inversely proportional to the 
time between two consecutive pulses of the digital signal. Fig. 9 shows an 
example of the measurement of the cadence along the time during a test. 

 

 Fig. 9.  Measured cadence based on the time between pulses generated by the sensor placed inside of 
the bicycle crankset.  

Fig. 10 presents an example of the torque measured during another test. As 
the figure shows, the magnitude of the signal provided by the used sensor 
changes considerably as the cyclist presses and releases the pedal. Therefore, 
before the torque value is stored on the database, it is averaged through the 
application of the EWMA (Exponentially Weighted Moving Average) 
technique. The power output, in W, is readily obtained through the 
multiplication of the torque, in Nm, by the cadence, in rad/s. Its value is also 
averaged before it is stored. In the current prototype, the heart rate is collected 
using a Zephyr HxM Bluetooth monitor. 

The body angles are measured using sensor modules [13] that integrate 3-axis 
accelerometers and magnetometers. One module is used to measure the trunk 
angle and two are required to measure the knee angle [14]. The data generated 
by the modules is sent to the smartphone using Bluetooth Low Energy (BLE) 
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[15]. Fig. 11 presents an example of cycling activity where the cyclist is 
adopting an upright position (trunk angle is near zero) when he starts pedaling. 
At 26 s, the cyclist starts bending forward, adopting a more aerodynamic 
position (trunk angle increases), and also increases the pedaling cadence, which 
is reflected on a faster variation of the knee angle. 

 

 Fig. 10.  Measured torque before and after the application of the EWMA technique.  
 
 

 Fig. 11.  Knee and trunk angles measured during a cycling activity. 
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4.   Conclusions and Future Work 
Besides the typical parameters monitored by available smartphone 

applications, such as speed and distance, the system presented in this chapter 
allows the monitoring of several performance parameters associated to the 
exercise intensity and body posture, as well as data associated to the 
characteristics of the cycling trails. Together with the functionalities of sharing 
the routes with friends, creating and joining events, and accessing routes and 
charts, this system aims to contribute to increase the performance feedback at 
lower costs and to enhance the user’s experience. 

In the current prototype, some sensors nodes send data to the smartphone 
using Bluetooth, while others use BLE. In the future we intend to migrate all 
sensors nodes to BLE, because BLE presents lower energy consumption than 
Bluetooth, in order to use a single wireless interface to the sensors nodes on the 
smartphone. 

The perspectives for future work include also the development and test of 
methods for automatic recognition and classification of the type of surface (e.g., 
asphalt, crushed stone, gravel or grass) based on the acceleration patterns 
measured using the smartphone sensors. 

In the future we also intend to integrate this mobile app with another 
developed Android app, which provides several other personalized 
functionalities for cyclists, such as an interface to public transportation 
information [17].   

When used with electric bicycles (EBs), the system described in this chapter 
may also be enhanced with functionalities such as EB range prediction [17] or 
automatic control of the effort exerted by the cyclist [18], using some of the 
sensors presented in this work. In this case, the controlled effort parameter may 
be selected by the cyclist between three different options: the pedaling resistance 
(based on the measured torque), the power output (based on the torque and 
pedaling cadence) or the heart rate.  
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