
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Fábio André Araújo Gomes

Remote Management of Applications

Deployment of Applications and Configurations
using a Rule system

October 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/132798665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Fábio André Araújo Gomes

Remote Management of Applications

Deployment of Applications and Configurations
using a Rule system

Master Dissertation
Master Degree in Computer Science

Dissertation supervised by
Professor Victor Francisco Fonte, DI, UM
Marco Cunha, Creativesystems

October 2016

i

When you see a good move, look for a
better one.

Emanuel Lasker

A C K N O W L E D G E M E N T S

I would first like to thank my thesis advisor Prof. Vı́ctor Fonte of the Informatics Depart-
ment at University of Minho. He was always available whenever I ran into a problem or
had a question about my research or writing by steering me in the right direction whenever
he thought I needed it.

I would also like to thank the experts at Creativesystems who were involved in the vali-
dation and development for this research project: my co-advisor and Project Leader Marco
Cunha who was the one in charge of evaluating its applicability to the company’s clients.
Nuno Caleira, Project Manager, for the a constant support and for allowing me to join the
company to create this dissertation. And to José Álvaro, my co-worker in the project and
mentor. His expertise and advice during the planning and development phase were crucial
for this project success and without his enthusiastic assistance and input, this dissertation
would not end so well. Thank you all.

Finally, I must express my very profound gratitude to my parents and to my sister for
providing me with unfailing support and continuous encouragement throughout my long
years of study and through the process of researching and writing this thesis. This accom-
plishment would not have been possible without them. Thank you.

ii

A B S T R A C T

Users expect access to programs and business information anywhere in the simplest way
possible using a device. With the diversification of devices, the standard is disappearing
and we are going towards a more heterogeneous world of mobile devices. With this diver-
gence increasing, it gets more difficult to update, support and control applications through
all these new platforms. Therefore it is important to facilitate these tasks.

The solution to these problems lies on the Mobile Device Management (MDM) programs
that can control what devices install and configure, providing remote tasks and access. This
dissertation aims not to compete with the current products on the market, but to propose
a different way to distribute content to the devices registered on the platform using a Rule
system. This system will prioritize the newest rules by the device and its location charac-
teristics. As so, providing a different way of grouping devices and distributing content to
them.

iii

R E S U M O

Os utilizadores esperam acesso aos programas e informações corporativas em qualquer
lugar da forma mais simples possı́vel, utilizando um dispositivo. Com a diversificação de
dispositivos, o standard está a desaparecer e estamos a ir em direção a um mundo mais
heterogéneo de dispositivos móveis. Com esta crescente divergência, torna-se mais difı́cil
de atualizar, dar suporte e controlar aplicações através de todas estas novas plataformas. É
então importante que estas tarefas sejam facilitadas.

A solução para estes problemas reside nos programas de MDM que podem controlar
o que os dispositivos instalam e configuraram, proporcionando acesso e tarefas remotas.
Esta dissertação não pretende competir com os produtos existentes no mercado, mas para
propor uma forma diferente de distribuir conteúdo para os dispositivos registados na
plataforma através de um sistema de Regras. Este sistema vai priorizar as regras mais
recentes por dispositivo e as caracterı́sticas da sua localização. Proporcionando uma forma
diferente de agrupar dispositivos e distribuição de conteúdo para eles.

iv

C O N T E N T S

1 introduction 1

1.1 Main Challenges 2

1.2 Document Structure 3

2 mobile device management (mdm) 4

2.1 State of the Art 5

2.1.1 MDM Alternatives 6

2.1.1.1 Microsoft Intune 6

2.1.1.2 Amtel MDM 7

2.1.1.3 IBM MaaS360 7

2.1.1.4 AirWatch 8

2.1.1.5 MobileIron 9

2.1.1.6 Review 9

2.1.2 Dependencies 9

2.1.2.1 Dependency hell 10

2.1.2.2 Conflicting dependencies 10

2.1.2.3 Private per application versions 10

2.1.2.4 Package Manager 11

2.1.3 Cross-Platform Development 11

2.1.3.1 Xamarin 12

3 architecture 13

3.1 Agent 14

3.1.1 Logs 15

3.1.2 Registration and Device State 16

3.1.3 Installations 19

3.1.3.1 Installation and Restore 20

3.1.3.2 Updater 20

3.1.3.3 Batch Installations and Packages 21

3.1.4 Synchronization 22

3.2 Files 22

3.2.1 File Versions 22

3.2.2 Packages and Dependencies 23

3.3 Configurations 25

3.4 Groups 26

3.5 Sites 29

v

Contents vi

3.6 Rule System 29

3.6.1 Processing Rules 30

3.7 BackOffice 35

3.7.1 Users 35

3.7.2 Authentication and Communication 35

3.7.3 Roles and Permissions 35

3.8 Dashboard 36

4 implementation 38

4.1 Security 38

4.1.1 API-Keys 39

4.2 Database 39

4.2.1 PostgreSQL 40

4.2.2 SQLite 40

4.3 BackOffice 40

4.3.1 AngularJS 41

4.3.2 Dashboard Graphs - D3.js 42

4.3.3 Translations 42

4.4 Web Service 43

4.4.1 REST vs SOAP 43

4.4.1.1 REST 43

4.4.1.2 SOAP 44

4.4.1.3 Conclusion 45

4.4.2 ASP.NET Web API 46

4.4.3 Newtonsoft.Json 46

4.4.4 Npgsql 47

4.4.5 PetaPoco 47

4.4.6 AutoMapper 47

4.4.7 Apache log4net 48

4.4.8 Obfuscation 48

4.5 Agent and Updater 48

4.5.1 Preparing Cross-Platform 48

4.5.2 Android 50

4.6 System Review 51

4.6.1 Cloud Proposal 53

4.6.2 Security Analysis 53

5 conclusion 55

5.1 Ongoing Work 55

5.2 Future Work 56

Contents vii

a backoffice screenshots 61

a.1 Main Menu 61

a.2 Dashboard 62

a.3 Groups Graph Representation 63

a.4 Group Details 63

a.5 Issues Example 64

a.6 Role Details 65

a.7 User Role Details 66

a.8 Device Details 67

a.9 Device Status 68

b agent screenshots 69

b.1 Agent Main Menu 69

b.2 Device Information 70

b.3 Set WS URL 70

b.4 Not Approved Error Popup 71

b.5 Set Site 71

b.6 Checking for Updates 72

b.7 Downloading File Versions 72

L I S T O F F I G U R E S

Figure 1 Xamarin - Share code everywhere 12

Figure 2 Entities Diagram 14

Figure 3 Device States Diagram 16

Figure 4 Example of a Retail Customer’s Hierarchy 27

Figure 5 Representation of Figure 4’s dispersed Group Hierarchy 28

Figure 6 Representation of Figure 5’s Values 28

Figure 7 D3.js usage on Section 3.8’s Wrong Versions Dashboard 42

Figure 8 Cloud Architecture 53

Figure 9 Main Menu 61

Figure 10 Dashboard Tiles 62

Figure 11 Groups graph representation 63

Figure 12 Group Details of Brand 63

Figure 13 Issues example 64

Figure 14 Users only role example 65

Figure 15 User account displaying the available permissions 66

Figure 16 Device Details 67

Figure 17 Device Status showing what it has installed 68

Figure 18 Agent Main Menu 69

Figure 19 Device Information Menu 70

Figure 20 Set Web Service (WS) connection 70

Figure 21 Not Approved error popup message 71

Figure 22 Set Site 71

Figure 23 Requesting the WS for Updates 72

Figure 24 Downloading CS Mobile file version to be installed 72

viii

L I S T O F TA B L E S

Table 1 Example of Packages and Dependencies 24

Table 2 Example of a Configuration 26

Table 3 Example of 2 Configuration Values regarding the Configuration on
Table 2 26

Table 4 Example of File Versions and Configurations 32

Table 5 Example of Groups and Group Values 32

Table 6 Example of Devices and Sites 32

Table 7 Example of Packages 33

Table 8 Example of Rules and File Versions for a Device 33

ix

L I S T O F L I S T I N G S

3.1 CS Agent.conf file . 17

3.2 Installation Checks JSON response . 19

4.1 angular-gettext example in Angular.JS . 42

4.2 Response as XML . 43

4.3 Response as JSON . 44

4.4 SOAP method signature . 44

4.5 SOAP request . 44

4.6 SOAP response . 45

4.7 AutoMapper example . 47

4.8 Container Registry example on Windows CE 48

4.9 Container Registry example on Andoid . 48

4.10 IInstaller interface example . 49

4.11 Implementation of Install method on CabInstaller 49

4.12 Installation Logic example . 50

4.13 Apk Install example . 51

x

List of Listings xi

1

I N T R O D U C T I O N

This thesis was proposed by Creativesystems (CS) to be part and incorporate the retail so-
lutions on its clients. CS has in most of its customers hundreds of PDAs with versions of
applications configured for a given feature such as to take care of store inventory or items
receiving. The maintenance of these devices is done manually when there is a need to
change any settings or carry out a software update. As there can be hundreds or thousands
of devices, the time needed to do a manual task in each device is very high. Whether for
updates or when providing support in case of failure, the normal procedure is to send some
employee to the site (e.g.: Warehouse, Store or Distribution Center) of the specific device
and do the work manually. There is also the initial process of all this, the devices must
be installed/configured at the time of its first installation with all the required software to
operate. In this case it is necessary that for each PDA someone is installing application by
application individually resulting in a waste of precious time. So there are some drawbacks
that can be improved.

These problems are common for companies that have to control a huge number of de-
vices, like CS where this dissertation takes place. The company doesn’t have a software or
mechanism to remotely provide this kind of support to its clients. Software updates and
configurations are common tasks and if there was a way to do them efficiently, it would be
extremely helpful for both the client and CS.

This dissertation aims to research and develop a system capable of remotely manage
applications and settings for each device, along with an error analysis platform that can pro-
actively give information to the user that a problem is or has happened. These problems can
be related to bad installations, configurations or hardware issues. The software must have
a generic approach in order to be easily applied to all kinds of clients and its companies
structures. This project will be applied to a client after its initial version is completed and
used in future solutions of the company.

There are many software management platforms on the market and this dissertation
won’t try to compete with them, only suggest a new type of deployment mode, called
Rule System, and devices’ organization. The developed solution will be called MDM, as its
characteristics are similar to other products that share this device administration features.
The first step is to gather information about the processes and methodologies in solutions

1

1.1. Main Challenges 2

that are currently on the clients. Understand its limitations and find the important features
that this project must have in order to be a valid approach. Then, a research on other MDM
products has to be made and gather their important features and spot its flaws comparing
with the requirements. This project will be focused on the Retail business, due to the CS
market place, but it should not be strictly designed for this area only and be generic enough
to be used on other environments.

1.1 main challenges

As there will certainly be more than hundreds of devices registered, the system will have
to handle that amount of traffic. This can be related to scalability. The diversification of
mobile devices will lead to different Operating Systems (OS’s) and architectures. The project
will need to be agnostic to this kind of variations and proceed to the request handling as
neutral as possible. As there will be applications for specific OS the devices can’t receive
updates related to other OS.

The File Versions and Configurations that each device has to install will be calculated
based on the Rule System. As these rules can be assigned to sites and group values, it is
required to find the devices that are on the sites that match the selected values. Besides the
versions that are grouped on packages and have to be expanded in order to retrieve the full
list of file versions. This computing will be the most demanding operation on the system.
These topics are explained thoroughly on the Chapter 3.

Being Windows CE the main mobile OS the CS customers use, this is clearly the focus
of the first implementation. Released in 1996, Microsoft licenses Windows CE to Original
Equipment Manufacturers (OEMs) so they can modify and create their own user interfaces
and functionalities like RFID and barcode scanners. This OS usage is decreasing and more
modern systems are increasing like Android or iOS. But in order to do a complete shift, the
customer have to remove all those old devices (usually RFID readers) to embrace the newer
platforms and that costs a lot of money. So the support for this OS is important, because
MDM will be used on the devices the customer already have and don’t make them buy new
ones. The main target platform on Windows CE is the .NET Compact Framework which is a
cropped version of the .NET Framework which libraries are scaled down to use less space.
Most methods were removed and the hardware limitations are challenging making the
development for this devices a hard task. Because this has to be a future-aimed solution,
the Windows CE can’t be the only supported mobile OS and for that matter it has to be
implemented with that focus and make the later development faster for those os, as the
logic base will already be defined.

1.2. Document Structure 3

1.2 document structure

The chapter where this section is included introduced the reader to the problem but there
are more chapters on this thesis, such as:

Chapter 2 Explains the concepts behind the MDM and in Section 2.1 some applications
that are already available on the market will be analysed.

Chapter 3 On the research I’ve done on the retail business, the company’s customers
and the MDM solutions, this chapter has the general explanation of all the
project’s components and structure. With the definitions defined here, the
development phase will take them in consideration.

Chapter 4 The implementation and some libraries used to help with the development
are defined in this chapter, as well as a security analysis.

Chapter 5 I make the project’s evaluation and propose some future work that can be
done.

Appendix A Has screenshots to complement the thesis related to the BackOffice (BO).

Appendix B Agent Screenshots are shown here.

2

M O B I L E D E V I C E M A N A G E M E N T (M D M)

MDM is a type of security software used by a company’s IT department to ensure security,
access control, install software remotely, monitor, manage and secure employees’ mobile
devices that are deployed across multiple mobile service providers and OS’s. Optimizing
functionalities and security of mobile devices within enterprise, while simultaneously pro-
tecting the corporate network. In order to facilitate this control, a program is required to
make the connection between the device and the remote service that wants to control it,
typically named Agent.

Bring Your Own Device (BYOD) is a theme that is growing recently due to the popular-
ity of mobile devices and consequently leads to employees to use their devices on the job
rather than the company’s. It is already common in many businesses and in a 2012 Cisco
survey that took place in the United States, 95 percent of the respondents said that ”their
organizations permit employee-owned devices in the workplace.” (Cisco, 2012) This survey
also estimated that the average ”knowledge worker” uses 2.8 connected devices at work.
Usually this is an issue for the IT department in organizations as they have to manage their
employees devices, to ensure information security and access control. The greater the vari-
ety of devices and its quantity, the arduous it is to manage them. So the MDM is a service
that is gaining impact and market presence as it appears to help these situations (Finneran,
2011). According to Hayes and Kotwica (2013) four in ten enterprise level organizations
had a security breach related to BYOD.

The use of a management system as the MDM leads to a reduce of support costs and
allows reports on the state of the device to be obtained, thus preventing problems by re-
ducing the time in which the devices are unusable. During these situations of error, it is
required that someone has to go to the device’s location and proceed with re-installations
or updates. If a program can do these requested operations remotely, the time to fix the
problems would be greatly reduced and cheaper.

The focus of this dissertation project is not to secure company information as it is one of
the topics of the MDM’s implementations but it is focused on the applications installation
and configuration and its deployment to the devices.

As Rhee et al. (2012) explains, there are five steps (which Step 4 and Step 5 are repeated
regularly and as needed) in a device life cycle on a MDM system:

4

2.1. State of the Art 5

Step 1 - Enrollment The mobile device data and user data of the organization are reg-
istered in the MDM system and the policy to be applied to each
mobile device is configured.

Step 2 - Distribution The agent is distributed and installed in the users’ mobile devices.
The agent can be distributed through the application store/market
or in-house.

Step 3 - Authentication When an agent runs after the installation, the mobile device data
(IMEI, IP/MAC address, phone number, etc.) are sent to the MDM
server to verify if they match the data registered in the system.

Step 4 - Instruction The MDM server sends to an agent the mobile device control pol-
icy and commands like ”remote wipe” according to the mobile
device status data and user.

Step 5 - Control/Report The agent controls the functions of the mobile device according to
the mobile device control policy/command and reports the results
to the MDM server.

These steps were taken in consideration during the project development. As this is a
growing theme, there are many MDM solutions available and the next section will analyse
some of them to obtain information and collect procedures and the best methodologies that
they have to include in this project.

2.1 state of the art

The first thing to do before starting to think in a project’s implementation or structure
is to do a research on the subject. It will teach a lot about the research problem and by
reading literature related to it I will learn from other researchers, becoming easier for me
to understand and analyse the problem. It proves that this thesis problem has relevance
and if many people are trying to solve the same problem as me, I hope to prove that this
problem I am trying to solve is important. In this section I will present some of the most
popular MDM solutions with their advantages and drawbacks by relating them to the thesis
requirements to the software I am planning to make.

During the development, some difficulties will arise and before stepping into them in the
later phase, some can be prepared and studied in the research stage. These are the cases of
dependency resolution, distribution and cross-platform support.

2.1. State of the Art 6

2.1.1 MDM Alternatives

There are on the market several MDM solutions, on this section I present the ones that I
consider the most important and popular in the enterprise world. Some requirements are
set as essential so that a solution can be defined as potentially able to be used:

Windows CE support This OS is critical due to the handheld devices on the clients, e.g.
Motorola MC55A or Denso BHT-1281 running on WinCE.

Android or iOS support Have at least one mobile OS supported besides the WinCE.

Easy setup Quick/simple installation of the MDM system configurations. The
steps needed to install the MDM on a clean device have to be easier
and shorter as possible to facilitate a new device registration on
the system.

Device Grouping A method to group devices.

Devices and Locations Link devices to sites/stores so that a device becomes related to
the location that it physically belongs.

App Versions Have multiple release versions per application and don’t over-
write the old ones.

Deploy Apps to groups Distinct devices can receive different applications. Don’t always
deploy a new version to all the devices but have the possibility to
deploy it to a limited list of them.

Organize Locations Define the company’s internal sites/stores organization and relate
devices and its locations to it.

Install and Configure Install apps and apply configurations on the device.

Log the actions Perform logging and report device’s execution steps and status to
a server.

2.1.1.1 Microsoft Intune

Microsoft has a paid management system, data, mobile devices and computers protection
application called Microsoft Intune 1 included in the Enterprise Mobility Suite. It is managed
through a web interface and allows you to control what devices can install and run and
define some system settings through policies. It is focused on companies with multiple
devices for their employees and the notion of BYOD.

1 Web Page: www.microsoft.com/pt-pt/server-cloud/products/microsoft-intune/

www.microsoft.com/pt-pt/server-cloud/products/microsoft-intune/

2.1. State of the Art 7

It doesn’t need an infrastructure to do the management because it is in the cloud and
can also integrate with System Center Configuration Manager in this respect thus extending
the existing policies. Without the need to buy some servers and bandwidth contracts, this
cloud environment is getting popular as it is cheaper to extend the capacity or power than
it is by doing it internally.

Intune resembles with what the company intends as it includes devices registration,
application control, it groups devices, reporting, configures Wi-Fi/VPN, it supports Win-
dows/iOS/OSX/Android and remote application delivery. It also contains the Mobile Ap-
plication Management (MAM) with Office and multi-identity, allowing for example to block
some user to copy enterprise information documents.

The control that you want to have with the devices must be passed to the customer and
the company will have access only to support scenarios. Plus it has a limit of 7,000 users
and 4,000 devices or 25,000 users and 50,000 devices only contemplating the Intune’s MDM
solution. These values seem satisfactory at first glance, but several CS customers have a
higher number of devices and can be a problem in the future as the solution grows. The
partial support for Windows CE makes this a possible option but these usage limits are not
enough in most existing customers.

2.1.1.2 Amtel MDM

Amtel is the only vendor that provides Software as a Service (SaaS) solutions for 3 mobile
devices business management aspects - Security, MAM and Cost Control. A web page
controls all the solution with the same system of rules, settings, dashboards and reporting
simplifying mobile collaboration in companies, leading to better productivity.

The MAM2 product restricts access and actions to mobile devices by keeping a barrier
between the device’s public/personal use and private enterprise applications. It also dis-
tributes applications with access to a private store where users can do installations. You
can send application updates, order to remove applications, block applications access and
usage, distribute recommended applications, configure the device and it is compatible with
App Store for iOS and Play Store for Android.

This solution is only present in iOS and Android, so it is not a valid option to use in the
company’s projects that require Windows CE.

2.1.1.3 IBM MaaS360

Started by Fiberlink and now part of IBM, MaaS360 3 has great tools for MDM by supporting
a great variety of mobile OS’s like Symbian and Blackberry besides Windows and OSX. This

2 Web Page: https://www.amtelnet.com/solutions/mobile-security/mobile-apps-management/
3 Web Page: http://www.maas360.com/products/mobile-device-management/

https://www.amtelnet.com/solutions/mobile-security/mobile-apps-management/
http://www.maas360.com/products/mobile-device-management/

2.1. State of the Art 8

solution includes a document with the BYOD’s ten commandments (Tsang, 2016) where
they explain its focus on MDM.

As expected, it allows the devices registration through their application, contains control
and settings policies, has its infrastructure in the cloud, it allows remote actions on the de-
vice such as deleting data, lock the phone, get its location, hardware and status information,
a catalog of applications and document sharing.

The distribution of single or packed applications for groups of users or devices is one
required feature so that the MDM which the CS will use must contain. MaaS360 has this
important feature, which is lacking or not good enough on the previous solutions. It has a
good list of features and it is very focused on solving the problems of BYOD which makes
it a good choice for companies seeking this type of control. The lack of support for Windows
CE makes this not a viable option for the company’s requirements.

2.1.1.4 AirWatch

As an Enterprise Mobility Management (EMM) software, AirWatch4 is a software and stan-
dalone management system for content, applications and e-mail. The goal of EMM is to
determine if and how available mobile IT should be integrated with work processes and
objectives, and how to support workers when they are using these devices in the workplace
(Kietzmann et al., 2013). This software allows the access to work apps and information di-
rectly from a mobile device in a simple way. The access to those work apps is done without
the need to worry about joining a VPN, manually setting up existing apps, or entering cre-
dentials for the AirWatch apps. The login is done using only the corporate e-mail. AirWatch
has serious concerns about privacy by ensuring each client’s personal information and data
are kept separate from the work apps. With AirWatch, the IT department can securely pro-
vide business resources and apps to their devices while keeping their personal information
private.

Regarding the Agent, it can be used to view the Device details, access up-to-date informa-
tion and make sure you’re following the rules set by the IT, access important messages sent
by the IT department or contact the IT admins via phone or e-mail for additional support,
configure telecom management to ensure the data usage doesn’t exceed limits set by the IT
department and completely separate corporate data from the personal stuff by keeping the
work apps and data in separate containers.

The Catalog has the purpose to browse and install work applications from the company’s
own app store so that the users can access the applications recommended by the IT depart-
ment across all of the enrolled devices. Contains the ability to browse the apps by category
for quick and easy access and rate and review both public and internal apps by making
comments visible to other users.

4 Web Page: http://www.vmware.com/products/enterprise-mobility-management.html

http://www.vmware.com/products/enterprise-mobility-management.html

2.1. State of the Art 9

The enrollment process in AirWatch uses profiles that have been pre-set by the adminis-
trator based on device type, ownership model or organization group and when a device
is registered, the Agent automatically begins downloading the matching profile. Adminis-
trators create profiles from the AirWatch console that push enterprise applications, enable
monitoring and enforce automated compliance through the AirWatch compliance engine.
AirWatch (2016) discusses common enterprise use cases and define the advantages of MDM,
containerization and the security benefits that may be realized when both are deployed to-
gether.

2.1.1.5 MobileIron

Just like the previous products, MobileIron 5 ensures data protection and applications control
on the devices. Started in 2009, they proclaim themselves as the the EMM leaders. The
MDM functionalities are focused on information security and mobile device configuration
of different OS’s supporting safe e-mail, automatic configurations, security via certificates
and corporate data wipe. This is the purpose of their MDM, provide the companies secure
and control insurances over mobile devices, applications and provided content, protecting
the employee’s privacy.

MAM is another set of functionalities which purpose is the deployment of applications to
the employees devices. It includes an application catalogue, authentication access control
and separation of personal and corporate applications.

The glsmdm and MAM solutions provide corporate data protection and applications
availability but there is no support for Windows CE, the most important requirement.

2.1.1.6 Review

Any of the solutions presented in the previous section could not fully meet the essential
requirements, but Microsoft Intune is the one that is closest to the desired features failing
on the usage limits and the AirWatch is the market leader and has the customer success
stories to prove it. Therefore, it will be developed a new MDM. The company is known for
solutions tailored for the customers and it is intended that this solution is generic enough
so that some changes required by the customers become minimal.

2.1.2 Dependencies

In software engineering, dependency is the degree to which each program module relies
on each one of the other modules so when a class A uses another class or interface B, then A

depends on B. A cannot complete it’s work without B. For this reason the class A is called the

5 Web Page: http://www.mobileiron.com/

http://www.mobileiron.com/

2.1. State of the Art 10

dependant and the class or interface B is called the dependency. A dependant depends on its
dependencies and this dependency is directional. Meaning that if A depends on B, it doesn’t
mean that B also depends on A. In the cases that there is a relation between two or more
modules which either directly or indirectly depend on each other to function properly, it is
called Circular Dependency.

Some challenges with shared libraries can happen as it is common for applications to use
external dependencies relying on dynamic library linking, instead of static linking. This
dynamic linking allows the sharing of executable libraries of machine instructions across
applications. In these scenarios, complex links between different applications that require
distinct versions of libraries can result in a situation frequently known as Dependency Hell.

2.1.2.1 Dependency hell

Dependency Hell is a common term for the frustration of some software users who have
installed software packages which have dependencies on specific versions of other software
packages (Jang, 2006). A software usually uses libraries that are already available so that the
programmer doesn’t have to code something that is already made, promoting reusability.
However, in the software world, where components evolve rapidly and depend significantly
on one another, this problem becomes more pronounced (Donald, 2003).

This dependency issue appears around shared libraries on which other applications have
dependencies but they depend on different (and sometimes incompatible) versions of the
shared library. If the shared library can only be installed in a single version (only one
installation in the system), the user may have to address the problem by obtaining newer
or older version of the dependent application. Which may lead to other dependencies
incorrect behaviour and push the problem to another set of applications.

2.1.2.2 Conflicting dependencies

Take the following example, App A depends on libExt 2.5, App B depends on libExt 3.0

and different versions of libExt cannot be simultaneously installed on the system, therefore
App A and App B cannot simultaneously be used because libExt can only have one version
installed. A solution is the libExt to allow simultaneous installations, unlocking the usage
of different versions.

2.1.2.3 Private per application versions

Private DLLs are a solution used on Windows OS to prevent dependency hell. There are
copies of libraries per application in its directory (where it is installed). When the applica-
tion requests the libraries, first it searches on the local installation path so that it is always
prioritized and then it searches on the system directory with the system wide libraries.

2.1. State of the Art 11

Dealing with dependencies is not easy and can lead to problems like malfunctional pro-
grams. To address these problems, the Package Managers appeared.

2.1.2.4 Package Manager

A Package Manager is a collection of software tools that automates the process of installing,
upgrading, configuring, and removing programs. A package manager deals with packages,
distributions of software and data in archive files. Packages contain metadata with informa-
tion about it and the most important is the list of its required dependencies so that it can
run properly. Package Managers maintain a database of software dependencies and version
information to prevent software version disparity and missing prerequisites.

The RPM Package Manager is one of the most popular package managers used in many
Linux distributions.

2.1.3 Cross-Platform Development

A cross-platform software is a computer software that is implemented to execute on multi-
ple computing platforms, typically OS’s. Cross-platform software may be divided into two
types: it requires individual compilation for each platform that it supports or it can be di-
rectly run on any supported platform without special preparation. For instance, a compiled
Java code can run on all platforms that support Java without the need for recompilation.

As this MDM project first OS implementation is targeted to be Windows CE, Java can’t
be considered as it is not supported. Windows CE has .NET Compact Framework as the main
framework for development, suggesting the usage of C# as the desired programming lan-
guage. With the Mono Project software platform6, it is possible to create a cross-platform
C# application. Started in 2002 and currently maintained by Xamarin, It is an open source
implementation of Microsoft’s .NET Framework based on the ECMA standards for C# and
the Common Language Runtime. It brings the .NET capability to other OS’s like Linux
and macOS providing a runtime environment to execute .NET programs, compilers for var-
ious source languages and implementations of the core class libraries specified in ISO/IEC
23271 (ISO, 2012). Several books discuss development with Mono, such as Schönig and
Geschwinde (2004); Kaan (2007); Dumbill and Bornstein (2004); Mamone (2006). Other im-
plementations can be found in King and Easton (2004). But Mono doesn’t directly support
Android and for that scenario Xamarin appeared.

6 Web Page: http://www.mono-project.com/

http://www.mono-project.com/

2.1. State of the Art 12

2.1.3.1 Xamarin

With a C#-shared codebase, developers can use Xamarin7 tools to write native Android, iOS,
and Windows apps with native user interfaces and share code across multiple platforms.
With the Windows CE’s C# requirement and the Xamarin mobile OS support, this platform
is ideal.

The MDM logic will be the same independently of the OS and if it is written only one
time, then the major concern when supporting a new OS will be the Graphical User Interface
(GUI) that will be specific for each one.

Figure 1.: Xamarin - Share code everywhere

7 Web Page: https://www.xamarin.com/platform

https://www.xamarin.com/platform

3

A R C H I T E C T U R E

As this proposal is to be used in the future CS’s client releases, it is obvious that a working
solution has to be implemented. This development will test the Rule System and Group
Hierarchies concepts on real-life scenarios. The majority of devices used by the clients have
Windows CE as their OS, making it the logical choice for the target of the first implementa-
tion. The following decisions will take this decision in consideration.

The installation, configuration and updating of applications on the device should be
handled by an Agent (3.1) that is necessarily installed on each device. Its single point of
communication with the server is done through a Application Programming Interface (API).
This remote service is responsible for informing the Agent which versions of applications
and configurations it must install and provide all the necessary information about them,
like name, version, size and file transferring details. The WS will have to calculate, by the
rules created by the customer, what File Versions and Configurations have to be installed
on each device. These Rules are assigned to a set of Groups Values, values which when
combined create a Site filtering. These Rules may even be as specific as indicating what a
particular device must install or configure. Groups and their Values will be organized by
the client in a generic way thus giving freedom to shape its company’s scheme as it sees fit,
which is an important point as it allows a wider range of customers by reducing the need
to create a solution of MDM specific to each new customer. This management should be
done on a BO, a web application that will connect the user to the system.

Additionally, this solution should also be used to monitor the devices state, comparing
what they have installed with what they should have installed or what errors occurred
during installations. This information will be available in a special part of the BO called
Dashboard. Its purpose is to display the status of the entire system to the user, allowing
the customer to have a vision of what is working and what is failing.

13

3.1. Agent 14

Figure 2.: Entities Diagram

Figure 2 is an UML Entity–Relationship model that links all the entities represented the
system. Each entity has a section in this chapter that explains its function and importance.

A Device can have installed many File Versions, each File Version is related to one File
and can have one Configuration. A Device creates many logs and can have a Site set. This
is an example of some knowledge that can be extracted from this model and it can be used
to implement the Database (DB). The Users are not linked in the diagram because it would
generate arrows connecting all the entities, as the User exists in the BO’s context and it’s
responsible for handling the entities CRUD, I didn’t include it in the main diagram.

3.1 agent

Monitoring application updates imply that there is an entity controlling the search, notifica-
tion and installation of them. It is intended that this entity is configurable and is installed
on multiple devices with different OS’s to manage the versions of the applications and re-

3.1. Agent 15

port the system status. In case of any updates installation, it should be able to safely install
them so that if a problem happens, a roll-back is possible to the previous working state. In
addition to applications, it is also necessary to be able to configure settings, such as chang-
ing system variables/registry and transfer files by placing them in specific folders. This is
the Agent, the entity that will coordinate the updates on the devices.

The Agent is the application that the user will use to manage the device, it will connect
with the WS through an API to synchronize and fetch the necessary data. It has various
menus (Figure 18 on Section B.1) for the user to navigate and view the device information,
check for updates, change the Agent settings, restore installations, change the site and force
the synchronization.

There are some important procedures like Logs (Section 3.1.1), Registration (Section 3.1.2),
Installation (Section 3.1.3), Updater (Section 3.1.3.2) and Synchronization (Section 3.1.4) that
are explained on the respective sections.

3.1.1 Logs

Logging is the act of keeping a log that records events and information about a program’s
execution. A data collection method that automatically captures the type, content, or time of
transactions made by a person from a terminal with that system, as Rice (1983) defined. This
information is generally used by programmers for debugging purposes and by software
monitoring tools to diagnose problems with software.

During any action, the Agent will produce logs reporting the progress and outcome of
those operations. For instance, an installation log has the corresponding File Version or
Configuration identifier for future easier reference and linking. I characterized 2 types of
log storage:

Database The logs stored in the DB will use the identifiers (id’s) that came from the WS to
link all the actions. With this direct information, the Dashboard (Section 3.8) can
use it to perform better data analysis and the server to know for sure what File
Version or Package it is related.

Files File-based logs contain some outputs and errors that the Agent produces during
its execution and will be used for later support to find errors, dumps and stack-
traces. This type of logs will be helpful for the developers to use information
from the devices that are on the client. As there are log levels, the trace log can
have more or less output information. This log level can be changed remotely to
request more detailed logs from a device when necessary.

These logs are sent during synchronizations and erased from the device as soon as they
are uploaded. Therefore, inform the WS what a device has installed and configured and

3.1. Agent 16

what it has been doing as it is important for later support, to know what the Agent was
performing and what was its state. The Database Logs are important for the server statis-
tics and workflow, being the File Logs used only for later support reasons when necessary
because the information on the Database Logs may not be enough to understand the situa-
tion.

Database Logs can be linked to form a tree structure in order to relate a log to a parent log.
This connections are important to understand what originated that action, for instance, to
know if a certain application was installed from a package. This linkage is more important
on Packages (Section 3.2.2) because a package can be marked as not installed if one of its
file versions failed during its installation and with this linking it is possible to understand
the operations that the Agent made. Every File Log is associated with a Database Log and
a File, with it the user can access the corresponding log. Check Section A.5 for an example
of a log with a tree representation.

3.1.2 Registration and Device State

For a device to enroll in the system, it has to go through a registration process. During this
registration, the device will inform the WS about its characteristics such as Serial Number,
OS Version, Manufacturer and Brand. After this request, the agent will have to wait for it
to be approved.

There are 2 boolean states that a device has, Approval and Enable. The Approval state
will focus on the device’s initial phase that will manage the Registration and when it re-
quests a Site change, after it is approved the Enabled state manages the rest of its life until
it is deleted. Figure 3 illustrates the 4 Device States Phases.

Figure 3.: Device States Diagram

3.1. Agent 17

Phase 1

The registration request is the first action the Agent will do to enrol itself. After this request,
it will be marked as Disapproved and Disabled. In this state, a User on the BO will have to
approve the device in order to proceed to the next phase, or reject it and the device will be
deleted.

Phase 2

When the Device is approved the Agent will receive the WS endpoints, the Agent and
Updater id file’s, its API-KEY and the Site that it is in. Because the endpoints are sent from
the WS when the device requests its profile data, the server can change them without the
need of an Agent update as the result of an Uniform Resource Identifier (URI) modification.

In order to facilitate the registration of a Device and taking into consideration that only
approved devices can use the MDM, it is required a quick start mode. A config file can be
set in the MDM’s installation folder that will contain the WS endpoint and some default
configurations:

URL_DefaultHost=www.mdm.uminho.com

URL_DefaultPath=api/v1/mdm/

URL_DefaultProtocol=HTTPS

PORT =443

LANGUAGE=EN

Listing 3.1: CS Agent.conf file

If this file is not present, the Agent will launch with default settings and will prompt
the user to type the WS endpoint as seen on Section B.3. This startup file skips the initial
system configuration that consumes time and can lead to errors or bad configurations. If
a device was previously registered on the system, the Agent will boot up directly to the
Main Menu. When Denso devices battery is drained out, sometimes they lose all their data
because the devices do a hard reset and this file can be a way to ensure the Agent will
install and start properly, recovering its state.

When using a new device, its addition to the system does not need to go through a
manual registration in BO, so whenever a device tries to connect to the WS, the WS must
check whether it is already registered on the system via Device Number (hardware unique
code). If it is not registered, the server makes an entry in the DB with its information. The
User on the BO can complete its information or change it. With this method it is expected
that the deployment on new Devices becomes quicker but the manual installation of the
Agent is still required, which is the only operation required for the system to load properly.

Once a Device is approved and if a User haven’t assigned a Site to it, the Agent will
request the person using the Device to select one from the available list. It is possible to

3.1. Agent 18

filter the list using Group Values (explained on Section 3.4 and represented on Section B.5).
There is a particular situation in this case, once the Agent informs the WS the selected Site
it becomes assigned to it without the need of approval. But in the future, every time the
Agent requests to change the site for its device, the device becomes disapproved until a BO
User approves the change by re-approving the device. In order to proceed to the next Phase,
the Device must have a Site defined and be enabled and approved. This auto-approval case
is to ensure the quick-setup mode to skip a BO action.

So, 2 situations can occur in this phase when a user is going to approve a device registra-
tion request:

User also sets a Site The user approves the device and sets a site to it, then the Agent
doesn’t have to request one and continues.

User doesn’t set a Site It is possible that the User is just accepting new registrations and
not assigning sites to them. In this case, the Agent will understand
that and request the User to choose one from the list.

Phase 3

This Phase contains all the operations a device does, like Synchronizations and Updates,
until it is deleted and goes to Phase 4. In Phase 3 a Device can be disabled and enabled.
A disabled device can’t operate until it is enabled. Once the Agent starts up or do an
operation, it will check the device state and inform the user about it if it is not allowed to
do it. The device can be Disapproved if it requests a Site change, being in that mode until
a User on the BO approves the change or sets a new Site.

Phase 4

A Device can be deleted from the system and won’t show up in the BO and it is the last
Phase a device will be. But it can come back and recover its definitions. If a device that
was deleted registers itself again, it will go to the same process beginning on Phase 1 and
the WS will recover its data because its the same Serial Number and won’t make a new
registry.

3.1. Agent 19

3.1.3 Installations

In a device point of view, it needs to know what files it has to install and what configura-
tions it needs to apply and in order to get that information, it has to request the WS about
that. The Agent just needs to get a list of file versions and configurations and proceed with
its installation. The response looks like the content of Listing 3.2:

[

{

"id":103 ,

"id_InstallationPackage":null ,

"id_FileVersion":12 ,

"id_ConfigurationType":1 ,

"id_Configuration":10 ,

"InstallationOrder":null ,

"DestinationPath":null

},

{

"id":102 ,

"id_InstallationPackage":100 ,

"id_FileVersion":14 ,

"id_ConfigurationType":null ,

"id_Configuration":null ,

"InstallationOrder":1 ,

"DestinationPath":null

},

{

"id":102 ,

"id_InstallationPackage":100 ,

"id_FileVersion":112 ,

"id_ConfigurationType":null ,

"id_Configuration":null ,

"InstallationOrder":2 ,

"DestinationPath":"C:/path/to/copy/"

}

]

Listing 3.2: Installation Checks JSON response

The majority of this content are id’s because it is only required to get the full information
about a File Version or a Configuration if the Agent has to install it or is not in its internal
DB. This feature is intended to reduce traffic to the WS leading to less requests and informa-
tion on payloads. The id’s will be used on Logs and on server requests. From this example,
the Agent understands that it has to install File Version 12 with Configuration 10 and then

3.1. Agent 20

the Package 100 with two File Versions, first the 14th and then the 112 that will be copied
to a specific path.

3.1.3.1 Installation and Restore

Installing a File is quite simple and three installation methods were defined:

Copy Copy a file to a respective folder

Unzip Extract a compressed file to a respective folder (e.g.: .zip)

Install Install a file (e.g.: .cab)

The Agent before proceeding with an installation ensures that it has the installer from
the currently installed version, if it does not then the Agent downloads it. This option is
important if the new installation results in an error, the Agent can re-install the previously
installed version. But if the installation is successful, then the Agent can delete the installer
from the now previous version and retain only the current one. An installation can occur
in an error by various reasons, like when extracting or copying a file to protected folders,
the file is corrupted or by hardware reasons. So the Agent has to be prepared for these
situations and whatever the outcome, a log file is uploaded that can be useful in error
situations.

The Restore is an option that the User can use to re-install the current version of an
application. If there is an online connection and there is an update to that application, the
Agent only shows the update option forcing the application to be updated.

If a new application has been installed or a configuration applied, the Agent informs the
WS about it during the synchronization. Like this, the WS has information regarding what
each Device has installed.

What if the application to install is an update for the Agent? The Agent would have to
shut itself down and call the installing process. If any error occurred there would not be
any logs. The solution is to create other entity, the Updater.

3.1.3.2 Updater

The Updater has only a single purpose, to update the Agent. This is an usual approach
in software engineering, to create a separated program that will handle the update of the
main application.

When the Agent detects the installation is an update for itself, by checking if the File
id is equal to the Agent id that it gathered from the server, it calls the Updater informing
where is the installer and it closes itself. This information is stored on the Registry and the
Updater will read from there. The Updater installs the Agent, logs the activity, marks the

3.1. Agent 21

installation as completed on the Registry and launches the Agent which will collect those
logs and synchronize.

After its update, the Agent will continue with the rest of the installations if that is the
case. With this coordination, the User will update several applications, including the Agent,
and just have to wait for all to finish because he won’t be prompted to any confirmation.
This cycle is explained on the next section.

3.1.3.3 Batch Installations and Packages

The user can choose what he wants to install, it is not required to install all the available
updates but if there is an update for the Agent or the Updater, the Agent marks those
updates as mandatory. This situation is important if an installation can lead to an error and
the newer Agent version fix that problem. It’s a way to ensure that the latest Agent and
Updater are installed. Given a list of updates to install (like Listing 3.2), the Agent executes
some steps to proceed with the installations:

1. Check the list if it has an Agent or Updater

1.1. If it has the Updater then install it

1.2. If it has the Agent then install it

1.3. If a problem has occurred, abort the installation

2. Check the list if it has Packages

2.1. If it does, order the File Versions from each package by Installation Order

3. For each File Version on the list

3.1. Check if the Agent has that Version already installed using the File Version id

3.2. If it does, then skip that version’s installation unless it has a Configuration at-
tached and it has to be applied

3.3. If the Version’s Min and Max OS doesn’t match the current system, ignore it

3.4. For each Version that is not installed, add it to the to install list

4. For each File Version on the to install list

4.1. Download the installers for the current version if they are currently installed and
the Agent doesn’t have it on the backup directory

4.2. If the Agent doesn’t have the installers for the Version, then download them

5. Begin the installation of those and apply the Configuration after each one if the File
Version has a Configuration with it

5.1. If a problem has occurred, abort the installation

3.2. Files 22

Note that aborting the installation won’t revert to the old installation by default, it marks
that installation as failed. Example, if the package’s installation from Listing 3.2 installs File
Version with id 14 and fails while installing File Version with id 112, the Package installation
has failed but the File Version id 14 has been installed successfully. To restore an application
the user has to access the specific menu to do that as it is not an automatic procedure.

3.1.4 Synchronization

Synchronization is the process of establishing consistency among the Agent’s DB and the
server’s data. It will keep the WS to be up-to-date with the state for each device. The sync
is done whenever possible by the Agent and before important tasks that require the device
to be synced, like the check for updates. The Agent sends the Database Logs and the File
Logs to the WS and when it receives a positive response, he deletes them from its DB and
log folder. The Database Logs contains 2 tables besides the logs themselves, the installed
versions and the installed configurations.

3.2 files

A File is a representation of a computer file and has its basic characteristics, such as type
(.cab or .apk to install, .zip to extract or a regular file to copy), OS, name, if it is Enabled or
a Main Application. Multiple versions will be uploaded to the system regarding the same
File as it is the way updates works, so it makes sense that only the changes are submitted
as the information about the File remains the same. Dividing into File and File Version, it
is possible to know that a Version X and Version Y belong to the File F. It will be useful
when launching Rules (Section 3.6).

A Main Application is taken into consideration as an important File and has a special
behavior when creating Packages and treating dependencies. It is considered that a Main
Application may have dependencies on other no main files such as SQLite or .NET CF.

3.2.1 File Versions

When a File is created on the BO, the upload of its File Versions is unlocked and the User
can upload its versions assigning them to that File. The User has to indicate its Version
that has to be unique regarding all the versions for a file. This version identifier follows the
Microsoft’s Major, Minor, Build, and Revision scheme1. This scheme is also used to compare
the maximum/minimum versions of the OS’s that this version will run and should be set
on the Version’s details if it is desired to use this filter. For instance, if a Version is not

1 https://msdn.microsoft.com/en-us/library/system.version.aspx

3.2. Files 23

intended to work on later versions of Windows CE 5.0, then it should not be released to
the Devices that doesn’t meet this criteria. Other attributes can be set, such as the size
required (useful for extraction or installations), the file path to copy if that is the case and
a Configuration to be applied after its installation. The rest of the attributes are calculated
by the WS after the file upload, such as size, hash and file name.

There is no order or sequence on the File Versions upload, meaning that if a File has
two versions uploaded, the third one resulting from the next upload don’t exactly mean
that it is the File’s most recent version just because it was the last one. So the order of
upload/creation is irrelevant.

It is possible to edit a File or a File Version’s details and even upload a replacing file
for that version, but the Agent won’t be notified of that change if it has already installed
that File Version. Meaning that the Agent won’t download that replaced file until the user
requests a restore because the Agent just only for more information (including its Hash)
during the check for updates phase and only gets the full details when it doesn’t have that
version installed (Section 3.1.3.3).

Because the File Versions are used on Rules and they are installed on Devices, it means
that when the User wants to delete one from the system, a search for its usage has to be
made. So, it is only possible to delete a File Version if it is not used in any Rules and
no Device has that version installed. Regarding the database, the entry can’t actually be
deleted because the File Version identifier is also used in Logs and obviously on the History
tables, so it is marked as deleted and won’t appear anywhere on the BO. The same strategy
applies to the File, it can only be deleted if all the File Versions related to it are removed.
This is a usual behaviour when requesting a delete on any entity. There are history tables
to free the tables from the deleted entries, every update or delete on a monitored table will
insert the old row on the corresponding history table. This is done with triggers on the
monitored tables.

The Agent has two methods to ask the WS about a File Version: get its meta info and
request a download. The first one is used to get its information when the Agent gets its
id from an updates check. The second one is to download and internally store the file for
its installation. This download request has an extra step that the Agent must perform after
its download, to check that the Hash from the downloaded file matches the meta info from
the server in order to verify the integrity of the file. If the two hashes are the same, then the
Agent can proceed with the installation.

3.2.2 Packages and Dependencies

Some applications may require other programs or libraries to work properly, called depen-
dencies. These are some requisites that the Main Application must have to work properly

3.2. Files 24

and it may not work at all if any of those is missing. Meaning that when a BO user creates
a rule demanding the installation of App X, he would have to create another one for each
of its dependencies. It would not be a helpful way of doing this because he may forget to
add one dependency and it won’t be reusable to future situations. Because of this need, the
notion of Package is introduced.

A Package is an ordered set of Files Versions which purpose is to indicate that a Main
Application needs other programs or configurations to work properly, called dependencies.
The installation order indicates the Agent the course to take in the installation of all files
because the order may be important in resolving these dependencies. A Package can also
include with each File Version a Configuration (Section 3.3) that will be applied at the end
of the file installation in addition to the configuration that can be attached to the Version
general definition.

There are some guidelines in the Package creation that must be met:

One Main Application There has to be exactly one Main Application in a Package

Ordered The File Versions are ordered

Same OS The Files on the Package must have the same OS as the Package’s
Main Application or have an Undefined OS (e.g. text files)

The Agent will get a package and its content already ”expanded” and won’t have to
query the WS about it because when he requests it for what it has to install, the list will
already contain the files with the respective package and its order. The Agent will have to
detect it and order those to proceed with the installations.

Take in consideration the following example:

Main Applications Regular Files
FA FB
FE FC

FD

Package #1 #2 #3
P1 FAV1 FBV1 FCV2

P2 FDV1 FEV1
P3 FAV2 FCV2

P4 FAV2

Table 1.: Example of Packages and Dependencies

Following the example of Table 1, there are 2 underlined Files marked as Main Applica-
tions: FA and FE and 3 Regular Files, FB, FC and FD. In Package P1, we have Version V1
of the File FA, Version V1 of the File FB and Version 2 of the File FC. This means that File
FA needs those Versions of Files FB and FC. Later was released another Package for the
File FA, Package P3, which indicates that the new Version V2 of the File FA only needs File
FC’s Version V2. This loss of the need of File FB indicates that the FA no longer needs FB to
work. By just creating a new package, it was possible to create new dependencies without
messing up with the older ones.

3.3. Configurations 25

Another situation has to be analysed, there is also the Package P4 that addresses the same
FAV2 as P3 also does. This could mean that some devices may already have FCV2 installed
or it is not necessary for them, like drivers. So, there can be packages regarding the same
Main Application.

The creation of Packages don’t directly affect any device updates or installations unless
it is assigned to them by a Rule. This topic is addressed on Section 3.6 as the Packages have
influence in the Rules assignment and File Versions to install.

3.3 configurations

The main focus of any MAM is to be responsible for installing applications on devices,
however some applications may require additional settings or even the devices themselves.
A Configuration is linked to an OS and have a Configuration Values list. This link with the
OS is important because some configurations may not be valid on other OS’s like Windows
Registry values and Android Shared Preferences.

A Configuration Value contains a Type (string, number, boolean, ...) and a Key-Value
pair. The Value type is linked to a Configuration Type so that the Agent will know how to
set that parameter. These Configuration Types can be Registry Values (Windows) or Shared
Preferences (Android). Assuming Windows CE as the target environment, some Configura-
tion Paths and Configuration Value Types are defined as:

Configuration Value Types for Windows CE:

• String

• Binary

• DWord

• . . .

Configuration Paths for Windows CE:

• Classes Root

• Current User

• Current Config

• Local Machine

• Users

3.4. Groups 26

With these definitions it is possible to simulate a Configuration:

Name App1 Config

Description Configure Language and Server Port for App1

Type Registry

OS Windows CE

Table 2.: Example of a Configuration

Configuration Value 1 Configuration Value 2
Configuration App1 Config App1 Config

Description Language for the App Port for the server host

Key SOFTWARE/CS/APP1/Language SOFTWARE/CS/APP1/APIPort

Value PT 9876

Value Type String DWord

Path Local Machine Local Machine

Table 3.: Example of 2 Configuration Values regarding the Configuration on Table 2

The configuration called ”App1 Config” will create on the Registry two entries defining
the Language and Server Port for App1. Note that only Key, Value and Description are
stored as values on the DB and Configuration, Value Type and Path are stored as foreign
key’s (id’s). The same occurs on Configuration’s Type and OS as these are only keys and
Name and Description as values. As a Configuration can have many values, this is a way
to save storage space and reuse data taking advantage of the DB.

3.4 groups

One of the objectives set to this dissertation was to propose a new approach respecting the
organization of devices. The research done on Section 2.1 was important to collect some
data on how other MDM solutions addressed this topic.

The general method that most of those MDM solutions used to tackle the organization
and grouping is to request the User to choose the devices that he wants to gather and
create a new group. So, every new Device that would come to the system would have to be
assigned to a group. This may work well for a relative small number of devices and offices,
but this could lead to more problematic situations when the Updates become involved and
the number of devices increases. Because the project will be applied to retail customers,
let’s take them as an example in the following generic scheme defining a sample hierarchy
to illustrate how typically they are organized in Figure 4.

3.4. Groups 27

Figure 4.: Example of a Retail Customer’s Hierarchy

Company A has two Brands in their possession that are linked to Countries, the Brand A,
which exists in Portugal and Spain and the Brand B that is located only in Portugal. Following
the Brand A in Portugal the next segment is City and there are two of them, Braga and Faro.
The City is the lowest segment because that is where you assign the Sites (Section 3.5) and
place the Devices. Sites Store B1 and Store B2 in Braga and Store P1 in Faro are highlighted
in blue and have some Devices on them, highlighted in orange, ending the hierarchy.

Regarding this example, whenever you, as an administrator, add a new Brand you will
have to create a hierarchy similar to Brand A replicating that ”branch”. And as it can be
seen, replication of data is one of many problems about this tree style approach. If we want
to describe the segments that the Store B1 belongs, we will have to start in Braga and pass by
Portugal, Brand A and Company A. So, to define one Site it is required to set a value for each
segment that structures the organization’s tree. Because different Brands are on different
sides of the tree, the same Country, Portugal, appears on both of them and can’t be assumed
as to be the same. These are the main problems about this organization scheme. But there
is a simpler solution as an alternative, to break up the tree in order to make a more generic
hierarchy and re-use already created values like Portugal.

I propose that by splitting the tree from Figure 4, it will make the solution more generic
and a more relaxed form of hierarchy. Allowing this implementation to be adaptable to
other contexts beside retail. It is crucial that there is a dynamism in the creation of the
hierarchy so that it is not necessary to create versions of MDM for each CS client because
the structure of their organization is different, while also preventing the client to use a
structure defined by the CS. It is up to each client to define the best hierarchy that reflects
the organization of its company and so that this dissertation can be used outside of retail
environments.

3.4. Groups 28

Using the example in Figure 4, it is simpler if the hierarchy is defined in a dispersed
form:

Figure 5.: Representation of Figure 4’s dispersed Group Hierarchy

There are only two main ”trees” but more can be added without interfering with the
ones that already exist providing more detail on the definitions. In this Figure 5 an extra
segment named Mall can be added after the City to demonstrate the flexibility with this
scheme Country → City → Mall. These segments are called Groups and they will visually
help to define the structure. The top-level groups are called Root Groups and each group
can have one and only one link to another group. This link will make a subgroup have a
parent group, e. g., Country is the parent of the City subgroup. The values like Portugal,
Brand A or Faro presented on the example of Figure 4 are missing on this figure because
they are defined inside each group:

Figure 6.: Representation of Figure 5’s Values

Figure 6 contains the Group Values definition of Figure 4 and just like the Groups, these
Group Values also have a parent value to link them to an upper group value. Each Group
can have multiple Group Values, as Country has Portugal and Spain and City has Braga
and Faro. Because there is a parent relative to each Group Value, the values from the
Root Groups have to be inserted first and as they are in the top, they don’t have a parent
value. If the group called Mall was inserted after the City (being City the parent group
of Mall), the Group Values that already exists don’t have to be changed in any way. To
insert a Mall value it would be Deluxe Shopping with Braga as its parent value, representing
Portugal → Braga → Deluxe Shopping. Because Braga has Portugal as its parent, this
representation is possible.

3.5. Sites 29

3.5 sites

A Site is the place where the Devices are located, such as a store, distribution center or a
warehouse and has special features because it is the anchor between a Device and the MDM
system. Each Site will have only one value per group branch, for instance, according to the
example in Figure 5 a Site will have a City and/or a Brand because you can only choose
the lowest Group Values of each branch. As stated before, each value has a reference to the
Group’s value above him and by pointing only to the lowest Group Value it is possible to
recreate the values list to the root Group Value like Company or Country. It is not necessarily
required to have a value of each Group, only the ones necessary to characterize the Site
because the more Groups an organization has, the more detailed a Site can be.

Depending on the values assigned to it, the devices will receive updates based on those
values. Thus if a device changes its Site, the Versions that it has to install may change as
the new values on the new Site can be different causing different versions to install. This
situation is explained in detail on Rules Section 3.6.

The dynamism created on the Groups will be reflected primarily in Sites because it is
simple to define a Site, comparing to the previous example of Figure 4, it is only needed to
assign a City and a Brand at most and values that can be changed later.

3.6 rule system

The purpose of the MDM is to assign applications to devices remotely and the Rule System
was conceived for that. A rule can be the release of a version of an application to the devices
in Braga’s sites or a language setting for all the devices that are in Portugal regardless of the
brand in question. It states what it is to install on which devices.

I defined a Rule as a pair of a Content and a Target. A Content is something to install,
such as File Version, Package or a Configuration that a number of devices must have in-
stalled. These devices are covered by the area of action from the Target definition such as a
Site or Group Values. The previous definition of Group Values and its relation to Sites will
make the creation of rules an easy task.

The Content has three possible combinations:

• A File Version with or without an extra Configuration

• A Package with or without an extra Configuration

• Only a Configuration

Note that a File Version can have a Configuration and if it is associated to a Package, it can
have a second Configuration and if that package is on a rule with an optional configuration,

3.6. Rule System 30

there will be three levels of configurations. With these options, the client can use it to alter
configuration values without the need to create newer configurations as the the order that
the Agent will apply these configurations is from File Version, then the Package and then
from the Rule.

The Target also has 3 possible combinations:

• A Site with or without a Device

• Group Values with or without a Device

• Only a Device

If it is intended that the rule is to be applied to a specific device wherever it may be
allocated, then the user selects it as the only target. To deploy a rule to more than one
device there are three options as stated before: select a site and all the devices that are in
there will receive the update, select a set of Group Values to filter more than one site or
create different rules with the same content targeting each device.

For the rules that target group values, the MDM system will have to find the sites that
match those values. This situation is explained on 3.6.1. Targeting a site or group values,
both of these options can have a Device specified along with it and only when the device is
on that site or on a site with those values, it will have that rule available. This is important
because a device can change its site and have different file versions when it is located on a
specific site.

The launch of a new Rule implies that other rules and respective versions of files may
be no longer considered if they are related to the same File. This is also the purpose of
the Rules, to release newer versions and their dependencies to replace the older ones. The
concept of dependencies on Packages is applied here again because version conflicts must
be avoided. The calculation of versions and configurations to be installed by a device will
be the most computational demanding part, it will have to go through several tables if the
DB is concerned. The latest rule by File will prevail, if it is associated with a package the
Agent must also install its dependencies.

3.6.1 Processing Rules

As explained on the previous section, a rule can have three types of Content and Target,
and depending on each, the effect of the rule is different. In order to calculate what a device
must install, it is required to iterate the rules and process them, filtering out the ones that
doesn’t matter for the specific device, like the ones to a Site that doesn’t belong to that
device or from a different OS.

The rules are prioritized by the creation date in a descending order, so the most recent
rule is chosen over an older one regarding the same file. Because creating a rule for devices

3.6. Rule System 31

on sites in Braga can be a common creation, there should be a reuse in terms of the DB
about the group values when used in rules. If another rule for Braga is created, it can use
the same row id as the one created before without the need to create another DB entry. This
decision is useful to not replicate data and promote reusability.

The following procedure finds what a specific device must install:

1. If the device has a site, then go to 1.1.

1.1. Get the Site where the device is located

1.2. Get the list of rules that are assigned to that site

1.3. Get the list of group values from that site and then:

1.3.1. Get the group values assigned to the site and add it to the list

1.3.2. For each one of them, get its parent group value

1.3.3. If that group value also has a parent add it to the list and go to 1.3.2.

1.4. From the rules that target group values, get all those values

1.5. Intersect the values from 1.4. that match the values from the site list of 1.3.

1.6. Exclude the rules that have more values than the ones assigned to the Site

2. Get the rules assigned specifically to that device and add the ones from 1.6.

3. With the rules gathered so far (Target), proceed to find the file versions and configu-
rations to install (Content):

3.1. Filter the rules related to the device’s OS or that have an undefined OS

3.2. Get the Main Application for the ones that have a package

3.3. Sort the rules in order to find the rule for the most recent file version by file,
including the main applications from step 3.2.

3.4. If any file version from the previous filter is related to a package, then expand
the packages by listing all the file versions and linking them to the same rule

4. Get the configurations for the rules that only have it as content and add it to the list

5. Prepare the listing for the device

The step 1.6. will remove the rules that have more group values than the ones matching
the site. For instance, if a Site A has only Brand A as its Group Value and a Rule is created
to Portugal and Brand A this Rule will be accepted on step 1.5. but it is not valid because it
requires the Brand Brand A and that site doesn’t have it, being rejected on step 1.6.

3.6. Rule System 32

Observe the following tables 4, 5, 6 and 7 that have the entities that will be used on the
Table 8 to illustrate how the assigned rules dictate what a device has to install.

File File Version Configuration
FA V1

FA V2 Conf1
FA V3

FB V1

FB V2

FC V1

Configuration
Conf1
Conf2
Conf3

Table 4.: Example of File Versions and Configurations

There are three Files, FA, FB and FC with the respective Versions and three Configurations
Conf1, Conf2 and Conf3. Note that FAV2 has Conf1 so when the Agent install this version it
will apply this configuration. The contents of the configurations are not important for this
exemplification and therefore they were not detailed.

Group Parent Group
Company

Brand Company
Country

City Country

Group Value Group Parent Group Value
Company Inc. Company

Brand A Brand Company Inc.
Brand B Brand Company Inc.
Portugal Country

Spain Country
Braga City Portugal

Madrid City Spain

Table 5.: Example of Groups and Group Values

The Groups and Group Values are reused from the previous sections.

Site Group Values
Site1 Braga, Brand A
Site2 Brand A
Site3 Porto

Device Site
DeviceA Site1

DeviceB Site2

Table 6.: Example of Devices and Sites

Table 6 contains the Sites (with the Group Values for each one) and Devices (with the
assigned site) that will be used on Table 8.

3.6. Rule System 33

Package #1 #2
P1 FAV1 FBV2

P2 FAV2 + C2 FBV2

P3 FCV1 FBV1

Table 7.: Example of Packages

The Packages are listed on Table 7, indicating the File Versions and the respective instal-
lation order, 1 and 2. Package P2 has an extra configuration, C2, that will be applied by the
Agent after the installation of FAV2.

The following table includes rules with a time index, Content and Target. The greater the
time index the most recent the rule is, meaning that the rule 1 is older than 3.

Content Target

File Version Configuration Package Site Device Group Values
1 FAV1 Site2

2 FBV1 Spain
3 FCV1 Site1 DeviceB

4 FCV1 Conf2 Site2 DeviceA

5 FAV1 Site1

6 P1 Portugal
7 Conf3 P2 Site1

8 FAV2 DeviceA Braga
9 FAV3 Site1

10 P3 Brand A, Portugal

Table 8.: Example of Rules and File Versions for a Device

DeviceA is the device used as the specimen in order to analyse the Table 8. This device as
seen from Table 6 is located on Site1 which has Braga and Brand A as its Group Values (Table
5). Let’s assume that the rules are launched one by one and we will evaluate each one and
consider the ones that came before. Consider also that the Files and Configurations from
Table 4 have the same OS as the device from this example.

Rule 1 is set for Site2 which is not where the device is located, so it is ignored.

Rule 2 is set for all the sites in Spain, as Site1 is in Portugal, this rule is also ignored.

Rule 3 is set for Site1 so it may be valid for our target device, but it is specific for DeviceB

and then it is ignored.

3.6. Rule System 34

Rule 4 besides being targeted for our DeviceA it is only when the device is on Site2. As it
is on Site1 right now, it is discarded until it is moved to that location.

Rule 5 is aimed for Site1 only, meaning that this is a valid target. The content is the FAV1

and the only application the agent has to install.

Rule 6 was launched for sites in Portugal and as the site is in Braga, this is a valid rule as
we can see from the group values from Table 5. It requires to install the Package
P1 which contains FAV1 and FBV2. As it has FAV1, it will replace the last rule as it
has a version of FA with a new dependency FBV2. This rule can be interpreted as
the devices in Portugal, another version is required along with FAV1.

Rule 7 is like Rule 5, it is targeted for Site1 and therefore it is a valid rule for this device.
It contains the Package P2 with an extra Configuration Conf3. This package has a
special case because it contains the file FAV2 with an extra configuration, C2, and
other file version, FBV2. The Table 4 shows that FAV2 has configuration C2 and as
the package also has an configuration, the Agent will apply C1 first an then the C2

from the package. But there is another configuration that was added on the rule
definition, so the Agent will apply the C3 in the end completing the installation.
With this rule, the agent will install this package because this version of FA prevails
over the previous rules because they only issued versions of FA.

Rule 8 is destined for DeviceA when it is in Braga and therefore it will be taken in con-
sideration. This rule demands that this device installs FAV2 only, without extra
configurations or dependencies as the previous rules demanded. Two situations
can occur, if the device is clean (or it was cleaned) of installations, the Agent will in-
stall this version, being that the only version installed. But if the device applied all
the rules one after another, as those were timelined, the configurations C2 and C3

and the FBV2 may already be installed, and the FAV2 behavior may be influenced
by that. This can occur because the Agent don’t uninstall applications.

Rule 9 is a valid rule for the device as it is targeted for Site1. It demands the installation
of FAV3, replacing the previous rule.

Rule 10 is the last rule and it is intended for the sites in Portugal and that are a member
of Brand A. As the site belongs to both values, this rule is valid. The package that
this rule issues has FCV1 and FBV1, as FC was never delivered before, it will be
installed as well as the FAV3 from the previous rule.

3.7. BackOffice 35

3.7 backoffice

The client will have a Web portal called BO to perform all system management features.
It’s purpose is to facilitate the administration routines and its interface is not seen by the
store costumers. It must be possible to perform all system administration tasks on the BO,
such as approve and register Devices, create Rules, manage Groups and Values, create new
Versions, etc. . . Like these actions, all the entities described on this chapter are managed in
the BO as this is the only way to do system management.

3.7.1 Users

To access the BO, user accounts are used via login with username and password. The ac-
counts are typically attributed to the administration but it is possible by using a permissions
scheme to create accounts with view-only permissions to other employees which blocks the
insertion and modification of data. Each Permission will be linked to an action in BO and
only users who have this permission can access the respective menus or perform those ac-
tions. This permission scheme is explained on Section 3.7.3. Modifications on the data/DB
are stored with the timestamp and the User who did it for history/monitoring purposes.
The accounts are created by a User with user creation permissions.

3.7.2 Authentication and Communication

There are two entities that communicate with the WS: Devices and Users through the API.
The server will have to interact with them in the most generic way possible and indepen-
dently of OS that the requests come from. The Users authentication with username/password
is related to this topic as its the way to link a person to a system account and all the follow-
ing requests have to be linked to that account. The same with the Devices that won’t have a
username/password combination as that would be inconvenient and against the quick setup
procedure that is required and they will authenticate themselves with its Device Code as it
is a unique feature that can be used to differentiate devices.

3.7.3 Roles and Permissions

The API requests contain the identification of who is requesting the service and the server
has to know if the one requesting is allowed to use that feature. As mentioned on section
3.7.1, each operation on the BO will be linked with a Permission. To create a Device,
view a File details, update a User or delete a Configuration requires different permissions.
Instead of creating a Permission for every possible operation, a Unix-like permission mode

3.8. Dashboard 36

(Srirengan, 1998) was chosen to help with these scenarios. On these systems, basically there
are three permissions Read/Write/Execute (ignoring the classes User/Group/Others), on MDM
it was changed to a CRUD style (Create/Read/Update/Delete). So, if a User has Read and
Update on the Permission Devices, he can only view and update its info, but not delete it or
create new devices.

A Role is a collection of Permissions. These Permissions have some operations blocked
or allowed. A User can have multiple Roles and the merge of all its Permissions results
in the operations that it can do. If two (or more) Roles have the same Permission, the
result of this is the union of the state of its operations. For instance, if Role A has Read
of Devices and Role B doesn’t allow it, the result will be Read of Devices because if an
operation is allowed in at least one Permission in a Role it will be possible to execute. As a
User can have multiple Roles and those can be summed up, the Roles can be easily divided
in smaller functionalities like Users Roles or Devices Roles. If an administrator grants the
Devices Delete permission to an already existing role that had that operation blocked, and
that permission isn’t granted by any Devices’ permission related roles, all the Users that
have that role will now be allowed to delete devices. By removing and setting roles to users,
the administration can easily change menus accesses without the need to change each user
individually. The API endpoints are protected by setting the required permission that the
user requesting must have in order to be able to do that WS action.

The endpoints that the Device connects to are also protected by a similar scheme fo-
cusing on the Device’s State (Registered/Not Registered, Approved/Not Approved and
Enabled/Disabled). The Registered state is always required except for the first registration
step when the device sends its information to be enrolled. All the following requests de-
mand Registered state and therefore it is omitted on the API endpoint permission definition.
Take the following scenarios as example: to allow a device to check for updates, it has to
be Approved and Enabled, but to set the Site after the device’s registration, the device can
be Not Approved but it has to be Enabled. If a device is Disabled, it will be blocked on any
WS requests. The same occurs when a Device or a User is disabled or deleted.

3.8 dashboard

The Dashboard is an easy to read module with a real-time user interface showing a graph-
ical presentation of the current MDM system status. It is integrated on the BO serving the
purpose to report some statistics gathered from the Agent’s logs and the data on the system
in order to help the administrators to take informed decisions. If it has a good information
design, the dashboard will clearly communicate key information to users and makes sup-
porting information easily accessible (Barr, 2010). With this feature the administrators can

3.8. Dashboard 37

quickly spot negative situations by saving time, compared to go through all the reports one
by one.

There are four reports and each one will have a moving tile on the BO’s main menu
showing a statistic for the last week:

Devices Distribution Lists the devices and the version that each one has installed. In-
cludes the date of installation. It is possible to filter the devices by
site/values. It has a moving tile on the main menu that will display
the Top 3 Sites with more devices by OS.

Wrong Versions Matches the required versions demanded by the rules with the File
Versions installed on the devices and shows only the versions that
are missing. The purpose of this Dashboard is to report the devices
with wrong versions. The tile will show by OS the devices that have
at least one wrong version against the total of devices for that OS.

Installation Issues If the Agent couldn’t perform an installation or Configuration it re-
ports, in the logs, the cause. This dashboard helps to figure out prob-
lems and complete the previous dashboard with possible causes for
a device not have a File Versions installed. The tile shows the Top 3

Files that have more installation errors by OS.

Log Errors All the logs sent by the Agents are stored and can be accessed in
this dashboard. For more detailed logs the admin should check the
log files that include the full trace. The Installation Issues dashboard
is a filtered version of this one in order to provide a more specific
filtering. The tile displays the Top 3 types of errors collected by the
Agent grouped by OS.

4

I M P L E M E N TAT I O N

The development of a software application involves the use of technology according to the
context and objectives of the project. Therefore, it is sometimes necessary to make some
choices concerning the technologies to be used. In this section the main technologies are
explained and the reasons why certain choices were made. All technological choices were
made to ensure the interconnection between the entities.

Regarding the project characteristics, various alternatives and were taking into consid-
eration about the technologies to be used. Comparative analyses on certain technologies
were made in order to find the best solutions for certain aspects for the development. The
decisions and conclusions are presented after.

The MDM project will manage all applications and their respective versions installed on
all devices that use CS applications. Ideally, all future developed solutions will integrate
with MDM, which allow them to be installed, configured and updated with newer versions
as needed. It should have support for Windows CE due to the type of existing devices
in customers, group devices by local or stores and through these groups assign versions
of applications or special settings (such as language settings or application if a store or a
warehouse). Group applications to be distributed in sets, typically due to dependencies. In
terms of scalability, it must withstand tens of thousands of devices also facilitate registration
of new devices in the system. These are the minimum requirements that a product MDM
must have to be able to use.

4.1 security

The security is one of the most important part of a system that will be released to com-
mercial use. As there are many attacks in the internet communications such as Man-in-the-
middle. In this mater Cryptography takes a huge part in order to increase the security.

Regarding confidentiality on the communications, a certificate will be used on the WS to
allow the usage of the HTTPS/TLS protocols.

38

4.2. Database 39

Secure Sockets Layer (SSL) is a cryptographic protocol that enables secure communications
over the Internet. SSL was developed by Netscape and released as SSL 2.0 in 1995 (Elgamal,
1995) and an improved SSL 3.0 was released in 1996 (Freier et al., 2011).

Transport Layer Security (TLS), defined in Dierks and Allen (1999), is the successor to SSL.
The differences between TLS 1.0 and SSL 3.0 were significant enough that they did not work
with each other. TLS 1.1 (Rescorla, 2006) and TLS 1.2 (Dierks, 2008) were later proposed.
Modern browsers support TLS 1.2 1

Hypertext Transfer Protocol Secure (HTTPS) is an application-specific implementation that
is a combination of the Hypertext Transfer Protocol (HTTP) with the SSL/TLS and is used to
provide encrypted communication with a server. It is also important to ensure the server
identification, a secured and bidirectional tunnel for data exchange between two hosts.

4.1.1 API-Keys

API-keys are a popular way of authenticating requests between web services. These are sim-
ple persistent access tokens generated once and appended to each HTTP request headers,
which uniquely authenticates and authorises a user for that request. Their implementation
can be insecure if the requests made over standard HTTP (and not SSL-encrypted HTTPS)
are sent as clear text and the token is susceptible to snooping (Farrell, 2009). But it is a
simple way to promote authentication between the WS and the devices/users and as the
connection is secured by using HTTPS, this implementation can be used.

The Users and Devices are associated with an API-KEY when they are registered, that
will represent them on all future WS operations. This key is generated on the User/Device
creation and is used on the Authentication field on the HTTP request’s header in a technique
called Basic Access Authentication.

4.2 database

There are 2 Databases (DB) on the system, the Server’s and the Device’s. The Server DB is
not a major concern in terms of choice, because there are not hardware reasons to choose
one over another. But in terms of the device, that is a different scenario. Windows CE is a
very limited OS and the simpler the DB engine is, the better. The choice has to be the SQlite,
a file-based DB that supports multiple OS’s.

1 Webpage: https://en.wikipedia.org/wiki/Template:TLS/SSL_support_history_of_web_browsers

https://en.wikipedia.org/wiki/Template:TLS/SSL_support_history_of_web_browsers

4.3. BackOffice 40

4.2.1 PostgreSQL

PostgreSQL is a powerful, open source object-relational database system. It has more than
fifteen years of active development and a proven architecture that has earned it a strong
reputation for reliability, data integrity, and correctness. It runs on all major OS’s, including
Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64), and Windows. It is
fully ACID compliant, has full support for foreign keys, joins, views, triggers, and stored
procedures (in multiple languages). It has several data types, like INTEGER, NUMERIC,
BOOLEAN, CHAR, VARCHAR, DATE, INTERVAL, and TIMESTAMP. It also supports stor-
age of binary large objects, including images or video. It has native programming interfaces
for C/C++, Java, .Net, among others 2.

Like the majority of the Databases (DB), PostgreSQL has Transactions, Indexes, Triggers
and Replication. One important feature is the Schema. In PostgreSQL, a schema act like
a namespace, allowing objects of the same name to co-exist in the same database. Which
means that there is no need to create a new DB just to have separated tables, a schema can
do it.

4.2.2 SQLite

SQLite is an in-process library that implements a self-contained, serverless, zero-configuration,
transactional SQL database engine. It is an embedded SQL database engine and unlike
most other SQL databases, SQLite does not have a separate server process. SQLite reads
and writes directly to ordinary disk files. A complete SQL database with multiple tables,
indices, triggers, and views, is contained in a single disk file. The database file format is
cross-platform - you can freely copy a database between 32-bit and 64-bit systems or be-
tween big-endian and little-endian architectures. These features make SQLite a popular
choice as an Application File Format. 3

As this is also a cross-platform it will be used on the devices’ DB implementation which
is an important feature besides the nonexistent impact on the system that a usual DB service
have.

4.3 backoffice

The BO will be a Web Page for administration purposes. It will also have a Dashboard to
display information about the current system status. In order to help doing this module,
some technologies had to be used and are explained in the following sections.

2 Web Page: https://www.postgresql.org/about/
3 Web Page: http://www.sqlite.org/about.html

https://www.postgresql.org/about/
http://www.sqlite.org/about.html

4.3. BackOffice 41

It is a Single-Page Application (SPA) so it can be accessed on computers, cellphones or tablet
browsers, being in that way easily accessible. All the necessary code (HTML, JavaScript,
CSS and images) is fetched with a single page load and then the user can use it without
the need of further downloads as the site page does not reload at any point in the process.
Even the URI anchors change while navigating through the page, it is only for navigability
purposes. The dynamic part is the data which is inquired to the WS which requires an
internet connection. Therefore, new pages are capable of being generated without any
interaction with a server. To create this SPA, I used AngularJS.

4.3.1 AngularJS

AngularJS4 is a dynamic Web App Framework written in JavaScript focused on creating
a single-page application and compatible with both desktop and mobile browsers. It is
open-source and created by Google. It helps with the development of such applications
by providing a framework for client-side Model-View-Controller (MVC) and Model-View-
ViewModel (MVVM) architectures. It is distributed as a JavaScript file and can be added to
a web page with a script tag. This framework works by first reading the HTML page which
includes custom tag attributes and interpret them as directives to bind input or output
parts of the page to a model that is represented by JavaScript variables. The values of
those JavaScript variables can be manually set within the code, or retrieved from static or
dynamic JSON resources. The data binding and dependency injection eliminate much of
the code that would have to be written.

AngularJS extends HTML with ng-directives. For instance, the ng-app defines an AngularJS
application and is obligatory. The ng-model directive binds the value of HTML controls like
an input to the application data and the ng-bind directive binds the application data to the
HTML view allowing that when the user types on the input field the value is written on the
data without the need of extra code. it’s called Data-binding, an automatic way of updating
the view whenever the model changes, as well as updating the model whenever the view
changes.

HTML was invented as a declarative language for static documents, it is not focused on
creating applications and these kind of frameworks are used as a workaround. To help with
the design and the UI, Angular Material was used. Angular Material implements Google’s
Material Design Guidelines5. It provides a collection of UI components based on Material
Design.

4 Web Page: https://angularjs.org/
5 Web Page: https://www.google.com/design/spec/material-design/introduction.html

https://angularjs.org/
https://www.google.com/design/spec/material-design/introduction.html

4.3. BackOffice 42

4.3.2 Dashboard Graphs - D3.js

D3.js6 is a JavaScript library to manipulate Data-Driven Documents and turning them into
charts by using HTML, SVG, and CSS. It will be used on the Dashboard to generate graphs
and charts based on the values returned from the WS.

Figure 7.: D3.js usage on Section 3.8’s Wrong Versions Dashboard

The final version can be seen on Figure 10 at Section A.2.

4.3.3 Translations

Writing multilingual programs is important when dealing with users that don’t share the
same language as the developers and it provide a better support for globalization. The
angular-gettext7 helped with the translation support as it has a tiny footprint on the integra-
tion with Angular.JS.

<h1 translate >Hello {{name}}, it’s nice to meet you!</h1>

Listing 4.1: angular-gettext example in Angular.JS

The general programs that provide gettext functionalities follow some guidelines, Poedit8

is a .po file editor that I used to help with the translation of texts provided from the texts
extracted from the angular-gettext.

6 Web Page: https://d3js.org/
7 Web Page: https://angular-gettext.rocketeer.be/
8 Web Page: http://poedit.net/

https://d3js.org/
https://angular-gettext.rocketeer.be/
http://poedit.net/

4.4. Web Service 43

4.4 web service

A WS is a method of communication between devices via the World Wide Web. Through
this technology, two devices with Internet access can communicate and exchange informa-
tion between them. This solution allows the interaction between different applications with
different languages to communicate via a universal format such as JSON or XML. Were con-
sidered two methods of communication for the architecture, REST and SOAP, and analysed
their advantages and disadvantages in this context, in order to sustain the decision.

4.4.1 REST vs SOAP

REST and SOAP are two protocols of exchanging information between two entities. This
chapter will focus on explaining both of them and then a comparison is made to choose
one for the data communication.

4.4.1.1 REST

In 2000, Roy Fielding defined Representational State Transfer (REST) in his doctoral disser-
tation Fielding (2000) as an architectural style for designing distributed systems focusing
on a system’s resources rather than implementation details. REST is not strictly related to
HTTP, but it is most commonly associated with it (Booth et al., 2004). If a system conforms
to the constraints of REST, it can be called RESTful. The communication over HTTP with
the same HTTP request methods (GET, POST, PUT, DELETE, etc.) that web browsers use
to retrieve web pages and to send data to remote servers (Rodriguez, 2008). REST has this
principles:

• Use HTTP methods.

• Be stateless.

• eXtensible Markup Language (XML) or JavaScript Object Notation (JSON) as data repre-
sentation.

• Expose an URI structure as a uniform interface.

REST systems interface with external systems as web resources identified by URIs, for
example /devices/1, which has the information regarding device number 1 can be fetched
with GET /devices/1. The response would be a XML message:

<code>BB8F8CA112 </code>

Listing 4.2: Response as XML

4.4. Web Service 44

Or a JSON message:

{ code : "BB8F8CA112" }

Listing 4.3: Response as JSON

4.4.1.2 SOAP

Simple Object Access Protocol (SOAP) is an XML-based messaging protocol for exchanging
structured information that can be used for simple one-way messaging but is particularly
useful for the implementation of WS. Every operation the service provides is explicitly
defined, along with the XML structure of the request and response for that operation. Each
parameter is defined and bound to a type (e.g. integer or string). All of this is codified in
the Web Service Definition Language (WSDL) and can is like a contract between the provider
and the consumer of the service, a method signature for the WS.

It doesn’t have a fixed transport protocol, HTTP is usually used but SMTP or FTP are
also an alternative. Nor is it tied to any particular OS or programming language so the
clients and servers in these dialogues can be running on any platform and written in any
language as long as they can create and read SOAP messages.

Example of a method signature:

string getDevice (int identifier);

Listing 4.4: SOAP method signature

The request that can be sent:

<?xml version="1.0"

encoding="UTF -8"

standalone="no" ?>

<SOAP -ENV:Envelope

SOAP -ENV:encodingStyle="http: // schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP -ENV="http:// schemas.xmlsoap.org/soap/envelope/"

xmlns:SOAP -ENC="http:// schemas.xmlsoap.org/soap/encoding/"

xmlns:xsi="http://www.w3.org /1999/ XMLSchema -instance"

xmlns:xsd="http://www.w3.org /1999/ XMLSchema">

<SOAP -ENV:Body >

<ns1:getDevice

xmlns:ns1="urn:MDMService">

<param1 xsi:type="xsd:int">1</param1 >

</ns1:getDevice >

</SOAP -ENV:Body >

</SOAP -ENV:Envelope >

Listing 4.5: SOAP request

4.4. Web Service 45

And a response from the WS:

<?xml version="1.0"

encoding="UTF -8" ?>

<SOAP -ENV:Envelope

xmlns:SOAP -ENV="http:// schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org /1999/ XMLSchema -instance"

xmlns:xsd="http://www.w3.org /1999/ XMLSchema">

<SOAP -ENV:Body >

<xsd:getDeviceResponse

xmlns:ns1="urn:MDMService"

SOAP -ENV:encodingStyle="http: // schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:string">BB8F8CA112 </return >

</xsd:getDeviceResponse >

</SOAP -ENV:Body >

</SOAP -ENV:Envelope >

Listing 4.6: SOAP response

4.4.1.3 Conclusion

The focus of this decision centres on which WS best meets the project needs, rather than
which protocol to use. The decision has to focus on the multi-OS support and compatibility
with Windows CE. REST has had such a large impact on the Web that it has mostly displaced
SOAP- and WSDL -based interface design because it is easier to use. SOAP is definitely
the heavyweight choice for Web service access, it provides the following advantages when
compared to REST:

• Language, platform, and transport independent (REST requires use of HTTP)

• Works well in distributed enterprise environments (REST assumes direct point-to-
point communication)

• Standardized

• Provides significant pre-build extensibility in the form of the WS* standards

• Built-in error handling

• Automation when used with certain language products

• Security is defined by using WS-Security extensions, RESTful WS inherits security
measures from the underlying transport layer used

4.4. Web Service 46

REST is easier to use for the most part and is more flexible. It has the following advan-
tages when compared to SOAP:

• No expensive tools require to interact with the Web service

• Efficient (SOAP uses XML for all messages, REST can use smaller message formats
like JSON)

• Fast (no extensive processing required), SOAP defines much standards that need to
strictly be followed for communication.

• Closer to other Web technologies in design philosophy

• JSON is more lightweight compared to XML, resulting on lesser bandwidth and re-
source usage

In the principles of RESTful interface design, JSON over HTTP is a powerful combina-
tion that allows different applications to easily connect, address, and consume resources.
Exposing a system’s resources through a RESTful API is a flexible way to provide different
kinds of applications with data formatted in a standard way. As the project will deal with
different OS’s, it seems a good choice. It helps to meet integration requirements that are
critical to building systems where data can be easily combined and to extend or build on a
set of base, RESTful services into something much bigger.

As in this architecture is highly valued the efficiency due to high demand and the inter-
operability with the BO, REST is the most suitable solution for this project. The server will
be a RESTful WS.

4.4.2 ASP.NET Web API

To build the RESTful WS I used the ASP.NET Web API framework using the .NET Frame-
work 9. It will ease the build of the HTTP services that will reach the mobile devices and
the BO.

4.4.3 Newtonsoft.Json

As defined on the previous section, the communication data between the WS and the other
entities will be formatted in JSON. To parse and create JSON data, the extension Json.NET
10 was used. It is a popular high-performance JSON framework for .NET and will parse the
incoming requests body data and produce the responses directly from the objects.

9 Web Page: http://www.asp.net/web-api
10 Web Page: http://www.newtonsoft.com/json

http://www.asp.net/web-api
http://www.newtonsoft.com/json

4.4. Web Service 47

4.4.4 Npgsql

Npgsql is the .NET data provider for PostgreSQL and will do the connections to the DB 11.

4.4.5 PetaPoco

With Npgsql the connection to the DB is made but to transform de data that came from there
to usable objects with defined classes is a priority. This is called Object-Relational Mapping
(ORM) and it was used the PetaPoco project 12.

4.4.6 AutoMapper

As the objects come from the DB and are easily mapped to the POCOs, it is required
their mapping to other classes. For instance, following a request and response path, first
a request comes through which has some properties and it should be mapped to a middle
class. That middle class will be between the classes with the outside interactions (requests
and results) and the ones regarding the DB.

As the logic layer deals with the request and is time to do some DB operations, it is
mapped to a POCO class to use with the data provider. When the operation is done, the
result can be fetched (if that’s the case) and the POCO class is mapped to the middle class
and if some data is required in the response, it is mapped to a result class. This process will
facilitate with the DB tables because the POCO classes will have properties/fields with the
same name as the columns, the request/response classes will have the properties with the
desired fields. Like this, if a table’s columns vary it is only required to change the POCO
classes. The same for the requests and responses. It can limit the alterations on the logic
layer so that changes on a layer affects only types in that layer.

Because mapping code is dull, the chosen library is the AutoMapper 13. An object-object
mapper that works by transforming an input object of one type into an output object of a
different type.

Mapper.CreateMap <Site , SiteResult >().ForMember(m => m.id, r => r.Id)

.ForMember(m => m.Name , r => r.SiteName);

Site s = SiteLogic.GetSite(site_id);

SiteResult result = s.MapTo <SiteResult >();

Listing 4.7: AutoMapper example

11 Web Page: http://www.npgsql.org/
12 Web Page: http://www.toptensoftware.com/petapoco/
13 Web Page: http://automapper.org/

http://www.npgsql.org/
http://www.toptensoftware.com/petapoco/
http://automapper.org/

4.5. Agent and Updater 48

4.4.7 Apache log4net

On Section 3.1.1 I explained why logging is important for later support and the Apache
log4net 14 is a library that fits this job. It is a tool to output log statements to a variety of
output targets that will focus on exporting errors and the history of requests.

4.4.8 Obfuscation

In software development, manual obfuscation is the deliberate act of creating obfuscated
code so that is difficult for humans to understand. A defense against reverse engineering
is obfuscation, a process that renders software unintelligible but still functional (Collberg
and Thomborson, 2002). Obfuscate code is used to conceal its purpose as security through
obscurity or its logic, in order to prevent tampering and prevent reverse engineering. I used
.NET Reactor15.

4.5 agent and updater

The advantages of Cross-Platform development were explained on Section 2.1.3 and Xam-
arin was chosen for the mobile implementation due to its characteristics. The agent and
updater logics were all coded in C#.

4.5.1 Preparing Cross-Platform

The development didn’t need the Xamarin platform for the Windows CE version, it was
chosen as the desired platform for the future Android or iOS releases. The interfaces and
the Inversion of Control (IOC) helped to ignore the OS specifics that the Agent will run
because the logic should not behave differently depending on which OS it is currently on.

First, the containers are registered like this during the app start:

container.Register <IInstaller >(new CabInstaller (), Scope.Singleton);

Listing 4.8: Container Registry example on Windows CE

And on Android the IInstaller class will be different:

container.Register <IInstaller >(new ApkInstaller (), Scope.Singleton);

Listing 4.9: Container Registry example on Andoid

14 Web Page: https://logging.apache.org/log4net/
15 WebPage: http://www.eziriz.com/dotnet_reactor.htm

https://logging.apache.org/log4net/
http://www.eziriz.com/dotnet_reactor.htm

4.5. Agent and Updater 49

The logic just uses the interfaces to ignore the definitions and the Windows CE project will
register the containers for each module (Listing 4.8). File manipulation, Navigator, Installers
and PopupDialogs are examples of interfaces that have to be implemented accordingly to
each OS. IInstaller interface is like the following listing:

public interface IInstaller {

InstallerType TypeInstaller { get; }

Task <ResultErrorPair > Install(string filePath);

Task <ResultErrorPair > Uninstall(string filePath);

Task <ResultErrorPair > Repair(string filePath);

Task <ResultErrorPair > Execute(string filePath ,

string arguments ,

bool waitForExit);

}

public enum InstallerType {

ApkInstaller ,

CabInstaller

}

Listing 4.10: IInstaller interface example

The CabInstaller implementation of Install is shortly represented in Listing 4.11:

public class CabInstaller : ICabInstaller {

public Task <ResultErrorPair > Install(string filePath) {

string errorMessage = null;

var process = new Process ();

process.StartInfo.FileName = "wceload.exe";

process.StartInfo.Arguments = System.String.Format(

"/noaskdest /delete 0 /noui \"{0}\"",

filePath.Trim());

process.Start();

process.WaitForExit ();

bool result = process.ExitCode == 0;

if (! result)

errorMessage = string.Format("Installation {0} error! ExitCode :{1}",

filePath , process.ExitCode);

return new ResultErrorPair () { result = result ,

errorMessage = errorMessage

}.Task();

}

}

Listing 4.11: Implementation of Install method on CabInstaller

4.5. Agent and Updater 50

The missing link of all this is how the logic uses this modularity, take the following
example:

IInstaller installer = Container.Resolve <IInstaller >();

IInstaller popup = Container.Resolve <IPopupDialog >();

IInstaller log = Container.Resolve <ILogger >();

foreach(var fv in fileversionlist){

if(! installer.Install(fv.FilePath)){

popup.ShowAlert("Installation failed");

log.Error(fv.toErrorString ());

error = true;

break;

}

}

Listing 4.12: Installation Logic example

The three containers are resolved and if they were properly registered on the application
launch they are ready to be called. For each file version to install in the list, call the Install

method from the unknown installer (the logic does not need to know its definition) and if
it returned true then proceed to the next item on the list. If an error ocurred, use a Popup
Dialog message to alert the user via GUI and log the error.

4.5.2 Android

The Windows CE development phase, including the server and BO, finished with a working
version that fulfilled the requirements and was ready for a CS client PoC. But the project
went with so much detail for the future support of other mobile OS’s that with the current
state, somehow I felt that it was uncompleted. And what better way to prove that the
planing of that multi-platform solution than actually implement it in other OS. The Android
version was completed in a shorter amount of time, comparing to the Windows CE, as it was
expected.

There was not much to change, the major implementations were: create the ApkInstaller,
use the Java IO File handling, create the new views for all the controls and forms and
implement the new Navigator. The Navigator was difficult to port, because the way An-
droid manages the views involves using Context and Activities which is different from the
form.Show(). The other tough section was the installer because the interface of Listing 4.10

demands it to be synchronous. The way Android does installations is with Intents that are
launched and the Activity that requested it has to wait for the result of it. But the con-
troller/logic is not an Activity, so the ApkInstaller has to be one and then it can launch the
Intent for installation like Listing 4.13.

4.6. System Review 51

Intent intent = new Intent(Intent.ActionInstallPackage);

intent.SetDataAndType(Uri.FromFile(apkfilepath),

"application/vnd.android.package -archive");

intent.SetFlags(ActivityFlags.NewTask);

intent.PutExtra(Intent.ExtraReturnResult , true); // Return result code

_Activity.StartActivityForResult(intent , INSTALL_REQUEST_CODE);

Listing 4.13: Apk Install example

But the problem is back again, it is required to wait for the Activity to close and for that
you have to be an Activity too. The solution for this was to use C#’s TaskCompletionSource
and delegate to catch the OnActivityResult and wait for that to return the result of the
installation. Other situation with the Android is that to request an installation, the user has
to accept it unlike the Windows CE installations of .cab. It means that the flow of updating
will have to be accepted by the device’s user and the auto-installations are not possible,
unless the device has root and that should not be a valid restriction to request the client to
have.

Besides these issues with the port, the result was a stable version for Android but with
a major feature lacking, Configurations. As there are no Registry values it wasn’t imple-
mented. Some similarities can be found with Shared Preferences that work like the Registry
and can be private or public for each application. No logic was changed to support this
new version, proving that the work done before to support this new OS was a success.

4.6 system review

In this chapter some libraries and frameworks for this architecture were presented as how
I used them for the implementation. By the set of listed characteristics, it’s possible to
conclude that this architecture corresponds to a Service-Oriented Architecture (SOA). This
type of architectures consists in providing features in the form of services to its users.

Relating to the WS and the BO, this cloud part of the system will be hosted on the Amazon
Web Services (AWS):

EC2 Elastic Compute Cloud hosts the WS as it is AWS offering of the most funda-
mental piece of cloud computing: A virtual private server. These ’instances’
and can run most Linux, BSD, and Windows operating systems. A Windows
Server 2012 R2 instance is the host for the server with a load balancer. The
load balancer will divide the server requests for different instances to split
the workload providing scalability.

4.6. System Review 52

S3 Simple Storage Service is the AWS’ standard cloud storage service, offering
file storage of arbitrary numbers of files of almost any size, from 0 to 5 TB.
Items, or objects, are placed into named buckets stored with names which
are usually called keys. The main content is the value. This storage service
will be used to save the devices logs, file versions and the BO.

Cloudfront is a Content Delivery Network (CDN). It gives web application developers
an easy way to distribute content with low latency and high data transfer
speeds. In this service, the BO will be hosted as it is a SPA and it doesn’t
need a server to run, this is a viable solution as it is only downloaded.

RDS Relational Dabase Service is a managed relational database service to deploy
and scale databases more easily. It supports Amazon Aurora, Oracle, Microsoft
SQL Server, PostgreSQL, MySQL and MariaDB. The PostgreSQL DB runs on a
RDS instance.

Amazon VPC Amazon Virtual Private Cloud provides an isolated section of the AWS cloud
where is possible to launch services in a defined virtual network with a com-
plete control over the virtual networking environment, including a selection
of IP address range. By creating this security groups, the RDS DB is only
accessible by the server’s EC2 instance (Windows Server 2012 R2, Intel Xeon
E5-2670 v2 @ 2.50 GHz, 1GB RAM; 29.6 GB); the BO and the WS can access
the S3 file storage. The file transfer is made through the server and not
directly to the S3.

4.6. System Review 53

4.6.1 Cloud Proposal

Based on the previous definitions of Agent/Updater, BO and WS, the system’s architecture
will be cloud-based as the following figure illustrates:

Figure 8.: Cloud Architecture

4.6.2 Security Analysis

Software security is an idea implemented to protect software against malicious attack and
other hacker risks so that the software continues to function correctly under such potential
dangers (McGraw, 2004). Security is necessary to provide authentication, integrity and
availability. Any compromise to it makes a software insecure, susceptible to be attacked to
steal information, monitor content, introduce vulnerabilities and damage the behaviour of
software.

4.6. System Review 54

In the scope of the Device, the connection to the WS is the main concern. The server uses
HTTPS/TLS and the device connects to it to ensure privacy and server authentication. To
help to identify the device that made the request, an API-KEY is given to each Device during
its registration (Section 3.1.2). As the API-KEY is unique by device code, if a malicious
device somehow can change its device code, it can get other API-KEY and make itself
logged in as that device. The same can happen if that key is stolen. For this last issue, the
key should have a short expiration date to ensure a new device registration/login. So it is
possible to disguise as other device in terms of communication but that may not be major
risk at all. The device only receives updates and sends its state to the ws, the only changes
it can make are not a security risk unless receiving an update that shouldn’t be available to
a certain set of devices.

The BO interacts with the API the same way as the devices but its API-KEY is retrieved
using the login credentials for the user. Each module has its permissions and only the users
with the allowed roles can access them.

On server-side there are more variables to take in consideration. The DB can only con-
nect to the EC2 instances and therefore is not publicly available. The S3 bucket where the
BO is hosted is made public read-only by the Cloudfront and the bucket for the device logs
and file versions is like the DB, it’s private to the server. The access to the server instance,
where the server program is obfuscated, is only allowed for certain ranges of IPs restricted
to internal computers as the access to it would allow connection to the other entities. These
restrictions are configured with the AWS VPC security groups. The server instance is pub-
licly available through the balancer to the server port. With coordination with the CS client,
the IP distribution for the devices would be important to increase security by configuring
the IP range in AWS. But this configurations are external to the MDM product itself and
should be discussed with the network responsible on each customer. The WS components
(.dll’s) are obfuscated to help protect the program content contained within software by
making reverse-engineering difficult.

5

C O N C L U S I O N

The problem that CS had with remote application management was not a new one, it is
a global thing and there are a lot of software solutions that tackle it but they didn’t fit
the company’s requirements. An internal MDM project was proposed for this dissertation
and it consisted mainly on providing the capability to remotely update applications on the
client’s PDAs as for this tasks, some employee had to do it on the site. Because it has to
execute on the client’s PDAs, this software was developed for them, namely Windows CE
but with support for the later implementation on other OS.

The requirements and planing phase were the first and took more time than I expected,
but it was worth it, because the specification became more robust. The logic layer was
complicated because it had to be developed with a focus on the generic approach and leave
the OS specifics to other modules. After the Windows CE release, there was time for the
Android version to start and apply all the effort made before to ensure a rapid development,
which turned out to be true. This Android version is visually similar to the first release and
behaves equal, but it was developed in a shorter amount of time. The cross-platform proved
essential as well for this objective that was not set as a priority but as an extra feature for
the duration of this dissertation.

This dissertation concluded with a stable version and currently on a client helping mainly
the CS retail solution to be updated for now.

5.1 ongoing work

By the date this dissertation concluded there was some work in progress, specifically moni-
toring the performance as the MDM is being used in an increasing number of devices when
new stores are being added to the CS RFID solutions. Data is being recorded in terms of
usage, like the peak hours of updates, maximum and average load the system reaches and
study when new nodes are required to be added to the balancer.

55

5.2. Future Work 56

5.2 future work

This project can be expanded with more features as it is not a complete MDM system by
comparing it with any product on Section 2.1. Besides it is not intended to compete with
any of those, it should be more robust to face the future problems that haven’t occurred
today. I will detail some improvements that would make it a more complete MDM solution.

The updating process of an application requires that it must be terminated before starting
that process. As the Agent will update other applications that are not in its control, there
has to be coordination between the Agent and the application to be updated so that it is not
closed when it should not. For instance, to terminate an inventory or a disk defragmenta-
tion application when it is running, because there is an update and the Agent has decided
to install it. Only the application knows when it is the best time to do so, when it is in idle
mode for example. So it should be created a module to be included by the applications that
want to be updated, for them to communicate with the Agent indicating that they can be
updated if there is the need (update) for it. This integration would also be used for another
purpose, who have this module knows how to communicate with the Agent and if it does
not find this application in its installation logs, the Agent can conclude that it was a manual
installation. Right now it can only detect if the Agent was a manual installation if it was
initiated with clean DB and registries. Not all programs should include this module, only
the Main Applications (Section 3.2). On Android version, Content Providers could be used as
this is the main purpose of them.

Another functionality that should be implemented is the possibility to uninstall applica-
tions. As the usual operations a device does are installations of newer versions and as these
ones (installers) take care of the update phase, this MDM version did not have the need
to contemplate this feature. Because the notion of File Version is not just about installers,
the system will perform deletion of files as well. Regarding a cab or msi, it is possible to
uninstall them if the cab/msi is still present. On Android the uninstall process is way easier
for instance. A new file type or similar, should come up so that after the installation, the
Agent could copy the installer to a designated path and execute a task list.

Operations like uninstallation can be added and grouped in Remote Tasks, a set of tasks
that a device must execute. Besides uninstallation, a task list can have file deletion and ma-
nipulation (move, copy), zip/unzip files that are not on the MDM scope, request an Agent
DB dump to be sent to the WS, remote wipe and app disable (Android). This task list could
even execute periodically or just once. Push Notifications on mobile Agent implementa-
tions that can trigger the auto-update or inform the device status has changed. They could
be used to trigger devices tasks without the need to wait for the next sync request.

The Groups hierarchy is being locked until all the groups that are on a node are deleted
and that node can only be deleted if it doesn’t have a sub-node. Only then it is possible

5.2. Future Work 57

to remove a node. This can be a problem if there is an already created structure and it is
required to move a node to other position because this is not supported. Some consideration
has to be made to allow this kind of operation because if a node changes its position on the
graph, the values would need to be changed provoking alterations on the already created
rules and sites. Data may become inconsistent and wrong. Besides that, it could have a
”migration” mode to proceed with these changes and ask the user what the system should
do in cases of conflicts, like decide what parent value should a group value now have.

Configurations can be improved as the only support they have are Windows Registry
Values. VPN or Wi-Fi networks setup would be extremely helpful as the stores usually
have private networks and the devices have to connect to them. These networks may need
to use certificates and the Agent could provide it to them. During the initial Agent setup
process where it reads from the config file and tries to connect to the WS, the Agent would
configure the network if its definitions were defined there.

The Dashboard should be able to export the displayed data to a .csv file, so that the ad-
ministrators can use it for other purposes like integrations and history. More reports are
expected to be added and related to server performances or agents installations duration.
The logs contain so much data the Dashboard can easily be expanded. The number of days
that the moving tiles from the Dashboard collects to display, the OS available, enable or dis-
able the auto-approval of devices when they set the first site in the registration phase, allow
or disallow the re-registration of devices that were deleted back to the system, file types or
BO visual settings like colors, those settings should be configurable on the BO and without
the need to do that directly on the DB or in the source code. So that the administrator has
more configurations at his control and leave the platform more personalizable.

An intensive stress test has to be performed to analyse the system performance, both
on the server and on the DB. With the results, some changes would occur like adding
some indexes, remove or add new relations on the tables and study replication just on
the DB. About the server-side, provide an asynchronous module to free some computation
on the webserver and facilitate scalability. For this matter, it could be used the AWS SQS
for message queues and Lambda functions for chrono events to trigger jobs that would be
executed by the workers. These workers execute independently and the more are added to
the system, the system capacity to handle asynchronous jobs may increase until a certain
point. Regarding performance, a cache is an optional choice to increase data retrieval
performance on requests. Redis or ElastiCache are examples of these services. This stress
test should have been executed during the development phase but it was not an obligatory
requirement and the MDM usage on the client that has currently the solution allows for
it to be done later because the performance is not an issue right now and the system is
comfortable with the current status.

5.2. Future Work 58

In this section I explained some features that this solution is missing or lacks improve-
ment, resulting in work that can be done to make it more complete.

B I B L I O G R A P H Y

AirWatch. Enterprise Mobility Best Practices: MDM, Containerization or Both?
AirWatch, 2016. URL http://triangle.ie/wp-content/uploads/2016/09/

airwatch-whitepaper-mdm-containerization-or-both.pdf.

Stacey Barr. 7 Small Business Dashboard Design Dos and Dont́s. Stacey Barr Pty Ltd, 2010.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris Fer-
ris, and David Orchard. Web services architecture. 2004.

Cisco. Cisco Study: IT Saying Yes to BYOD. PhD thesis, 2012. URL http://newsroom.cisco.

com/release/854754/Cisco-Study-IT-Saying-YesTo-BYOD.

Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing, and
obfuscation-tools for software protection. IEEE Transactions on software engineering, 28

(8):735–746, 2002.

Tim Dierks. The transport layer security (tls) protocol version 1.2. 2008.

Tim Dierks and Christopher Allen. The tls protocol version 1.0. 1999.

James Donald. Improved portability of shared libraries, 2003.

Edd Dumbill and Niel M Bornstein. MONO: A developer’s notebook. ” O’Reilly Media, Inc.”,
2004.

Taher Elgamal. The secure sockets layer protocol (ssl). In agenda for the Danvers IETF meeting,
pages 1–5, 1995.

Stephen Farrell. Api keys to the kingdom. IEEE Internet Computing, 13(undefined):91–93,
2009. ISSN 1089-7801. doi: doi.ieeecomputersociety.org/10.1109/MIC.2009.100.

Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine, 2000. URL http:

//www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Michael Finneran. BYOD Requires Mobile Device Management - To keep ”BYOD” from translat-
ing to ”bring your own disaster,” IT needs MDM. 2011. URL http://www.informationweek.

com/mobile/byod-requires-mobile-device-management/d/d-id/1097576.

59

http://triangle.ie/wp-content/uploads/2016/09/airwatch-whitepaper-mdm-containerization-or-both.pdf
http://triangle.ie/wp-content/uploads/2016/09/airwatch-whitepaper-mdm-containerization-or-both.pdf
http://newsroom.cisco.com/release/854754/Cisco-Study-IT-Saying-YesTo-BYOD
http://newsroom.cisco.com/release/854754/Cisco-Study-IT-Saying-YesTo-BYOD
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.informationweek.com/mobile/byod-requires-mobile-device-management/d/d-id/1097576
http://www.informationweek.com/mobile/byod-requires-mobile-device-management/d/d-id/1097576

Bibliography 60

Alan Freier, Philip Karlton, and Paul Kocher. The secure sockets layer (ssl) protocol version
3.0. 2011.

Bob Hayes and Kathleen Kotwica. Bring your own device (BYOD) to work: Trend report.
Newnes, 2013.

ISO. Iec 23271: 2012: Information technology–common language infrastructure (cli). Inter-
national Organization for Standardization, Geneva, Switzerland, 3, 2012.

Michael Jang. Linux annoyances for geeks. O’Reilly, Beijing Sebastopol, CA, 2006. ISBN
9780596552244.

Candar Kaan. Mono. net goes linux. 2007.

Jan Kietzmann, Kirk Plangger, Ben Eaton, Kerstin Heilgenberg, Leyland Pitt, and Pierre
Berthon. Mobility at work: A typology of mobile communities of practice and con-
textual ambidexterity. The Journal of Strategic Information Systems, 22(4):282 – 297, 2013.
ISSN 0963-8687. doi: http://dx.doi.org/10.1016/j.jsis.2013.03.003. URL http://www.

sciencedirect.com/science/article/pii/S0963868713000395.

Jason King and Mark Easton. Cross-platform. NET Development: Using Mono, Portable. NET,
and Microsoft. NET. Apress, 2004.

Mark Mamone. Practical Mono. Apress, 2006.

Gary McGraw. Software security. IEEE Security & Privacy, 2(2):80–83, 2004.

Eric Rescorla. The transport layer security (tls) protocol version 1.1. Transport, 2006.

Keunwoo Rhee, Woongryul Jeon, and Dongho Won. Security requirements of a mobile
device management system. International Journal of Security and Its Applications, 6(2):353–
358, 2012.

Borgman & Rice. The use of computer-monitored data in information science. Journal of the
American Society for Information Science, 1983. ISBN 0-201-85469-4.

Alex Rodriguez. Restful web services: The basics. IBM developerWorks, 2008.

Hans-Jürgen Schönig and Ewald Geschwinde. Mono kick start. Sams Publishing, 2004.

K Srirengan. Understanding unix. page 58, 1998.

J. Tsang. The Ten Commandments of Bring Your Own Device (BYOD). IBM Corporation, 2016.
URL https://www.maas360.com/lp/eb-ten-commandments/.

http://www.sciencedirect.com/science/article/pii/S0963868713000395
http://www.sciencedirect.com/science/article/pii/S0963868713000395
https://www.maas360.com/lp/eb-ten-commandments/

A
B A C K O F F I C E S C R E E N S H O T S

a.1 main menu

The Main Menu is divided in 4 sections: Dashboard, Organization, Deployment and Ad-
ministration. Each one contains tiles that will access the menus. The Dashboard tiles are
dynamic, cycling the OS’s every 6 seconds and updating its info every minute.

Figure 9.: Main Menu

61

A.2. Dashboard 62

a.2 dashboard

The four Dashboard tiles.

Figure 10.: Dashboard Tiles

A.3. Groups Graph Representation 63

a.3 groups graph representation

In Figure 11 there is the representation on the BO of the example of Groups used in Section
3.4. The root node will link all root groups, the purpose of this is to visually have a better
perception of the graph and to facilitate the addition of new root groups. The grey content
and yellow borders are the root groups and the white with blue borders are the sub-groups
that will continue to the right.

Figure 11.: Groups graph representation

a.4 group details

If the Brand node was selected on the previous image, its details page would be like Figure
12. You can see its name and parent group, a timestamp of the last modification and who
did it and the group values that this group has. The values also indicate its parent group
value. It’s possible to modify its values and name but not change the parent group as
changing the hierarchy is not possible.

Figure 12.: Group Details of Brand

A.5. Issues Example 64

a.5 issues example

Figure 13 is an issue tree example with an error occurring during a package installation.
On the top there is the information about the device that produced this log and below
there is the issue tree with the relation of logs (explained on Section 3.1.1). The logs with
a successful operation are in green and in red the ones with errors. The name on the tree
is composed by its log id, file and file version. The first item says App1 because that is the
package’s main application. The icon is to show that it is about a file, the other case is a
configuration icon. If clicked, the log’s full details are shown.

Figure 13.: Issues example

A.6. Role Details 65

a.6 role details

This is a role details page of a role called ’Users’ that only has permissions regarding user’s
accounts actions. It has a name, a description and an enabled state. Below there is a list
of all the available permissions using the rules described on Section 3.7.3. Note that the
permission Users Roles and Permissions isn’t selected, only with that permission it is possible
to edit other users permissions to override the roles.

Figure 14.: Users only role example

A.7. User Role Details 66

a.7 user role details

The permissions that a user has with the example role from the previous section A.6. He
only has that role selected and therefore only its permissions are available. If the admin-
istrator adds the devices role, this user would be granted with those too and the available
permissions below would include them. By default the user permission edition is locked,
to unlock it and proceed with changes the user has to click on Edit Permissions button on
the bottom of the options side menu.

Figure 15.: User account displaying the available permissions

A.8. Device Details 67

a.8 device details

A details page of a device with WindowsCE OS. It includes its name, manufacturer, model,
device code, OS and version, OS full name, enabled and approved states, timestamps about
its last synchronization and modification. It is only possible to disable this device, besides
the deletion because the only way for it to become disapproved is to request a site change
on the Agent.

Figure 16.: Device Details

A.9. Device Status 68

a.9 device status

The following image shows that the device has correctly installed the TrueVue and TrueVue-
Update1 applications, CSAgent is not demanded by any rule but it was installed manually
and the MDM detected it as so, and the CSUpdater is on version 1.0.0.0 and should have the
version 1.1.0.0. Along with the versions installed, it is displayed the installation date. This
device haven’t configured anything as it was not demanded to do any.

Figure 17.: Device Status showing what it has installed

B
A G E N T S C R E E N S H O T S

This chapter contains screenshots of the Agent Windows CE version.

b.1 agent main menu

The Main Menu contains 5 menus, Device Information, Configurations, Update Applica-
tions, Restore Applications and Synchronize. It has on the top left an exit button to close
the program.

Figure 18.: Agent Main Menu

69

B.2. Device Information 70

b.2 device information

Is a scrollable menu showing the device’s information similar to the details page on BO
(Figure 16).

Figure 19.: Device Information Menu

b.3 set ws url

This menu appears if the settings on the default config file lead to an connection error or if
that file is not present. This menu can also be later accessed in the Configuration menu.

Figure 20.: Set WS connection

B.4. Not Approved Error Popup 71

b.4 not approved error popup

When the device is not approved and is requesting an API action, this popup message is
displayed. The user can retry or cancel the action.

Figure 21.: Not Approved error popup message

b.5 set site

The user can select the site for the device in this menu and use the filters by clicking the
button on the top right corner to filter the sites by its values.

Figure 22.: Set Site

B.6. Checking for Updates 72

b.6 checking for updates

This is the loading screen when the user requests the Agent to check for updates.

Figure 23.: Requesting the WS for Updates

b.7 downloading file versions

When downloading, this form shows the percentage of download completed for the cor-
responding file next to its name and the overall percentage on the center of the loading
animation.

Figure 24.: Downloading CS Mobile file version to be installed

	1 Introduction
	1.1 Main Challenges
	1.2 Document Structure

	2 Mobile Device Management (MDM)
	2.1 State of the Art
	2.1.1 MDM Alternatives
	2.1.1.1 Microsoft Intune
	2.1.1.2 Amtel MDM
	2.1.1.3 IBM MaaS360
	2.1.1.4 AirWatch
	2.1.1.5 MobileIron
	2.1.1.6 Review

	2.1.2 Dependencies
	2.1.2.1 Dependency hell
	2.1.2.2 Conflicting dependencies
	2.1.2.3 Private per application versions
	2.1.2.4 Package Manager

	2.1.3 Cross-Platform Development
	2.1.3.1 Xamarin

	3 Architecture
	3.1 Agent
	3.1.1 Logs
	3.1.2 Registration and Device State
	3.1.3 Installations
	3.1.3.1 Installation and Restore
	3.1.3.2 Updater
	3.1.3.3 Batch Installations and Packages

	3.1.4 Synchronization

	3.2 Files
	3.2.1 File Versions
	3.2.2 Packages and Dependencies

	3.3 Configurations
	3.4 Groups
	3.5 Sites
	3.6 Rule System
	3.6.1 Processing Rules

	3.7 BackOffice
	3.7.1 Users
	3.7.2 Authentication and Communication
	3.7.3 Roles and Permissions

	3.8 Dashboard

	4 Implementation
	4.1 Security
	4.1.1 API-Keys

	4.2 Database
	4.2.1 PostgreSQL
	4.2.2 SQLite

	4.3 BackOffice
	4.3.1 AngularJS
	4.3.2 Dashboard Graphs - D3.js
	4.3.3 Translations

	4.4 Web Service
	4.4.1 REST vs SOAP
	4.4.1.1 REST
	4.4.1.2 SOAP
	4.4.1.3 Conclusion

	4.4.2 ASP.NET Web API
	4.4.3 Newtonsoft.Json
	4.4.4 Npgsql
	4.4.5 PetaPoco
	4.4.6 AutoMapper
	4.4.7 Apache log4net
	4.4.8 Obfuscation

	4.5 Agent and Updater
	4.5.1 Preparing Cross-Platform
	4.5.2 Android

	4.6 System Review
	4.6.1 Cloud Proposal
	4.6.2 Security Analysis

	5 Conclusion
	5.1 Ongoing Work
	5.2 Future Work

	A BackOffice screenshots
	A.1 Main Menu
	A.2 Dashboard
	A.3 Groups Graph Representation
	A.4 Group Details
	A.5 Issues Example
	A.6 Role Details
	A.7 User Role Details
	A.8 Device Details
	A.9 Device Status

	B Agent screenshots
	B.1 Agent Main Menu
	B.2 Device Information
	B.3 Set WS URL
	B.4 Not Approved Error Popup
	B.5 Set Site
	B.6 Checking for Updates
	B.7 Downloading File Versions

