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A B S T R A C T

The increasing pervasiveness and lower cost of electronic devices equipped with sensors
is leading to a greater and cheaper availability of localized information. The advent of
the internet has brought phenomena such as crowd-sourced maps and related data. The
combination of the availability of mobile information, community built maps, with the
added convenience of retrieving information over the internet creates the opportunity to
contextualize data in new ways.

This work takes that opportunity and attempts to generalize the detection of driving
events which are deemed problematic as a function of contextual factors, such as neigh-
bouring buildings, areas, amenities, the weather, and the time of day, week or month.

In order to research the problem at hand, the issue is first contextualized properly, pro-
viding an overview of important factors, namely Smart Cities, Data Fusion, and Machine
Learning.

That is followed by a chapter concerning the state of the art, that showcases related
projects and how the various facets of road traffic expression are being approached.

The focus is then turned to creating a solution. At first this consists in aggregating data
so as to create a richer context than would be present otherwise, this includes the retrieval
from different services, as well as the composition of a unique view of the same driving
situation with new dimensions added to it. And then Models were created using different
Machine Learning methods, and a comparison of results according to selected and justified
evaluation metrics was made. The compared Methods are Decision Tree, Naive Bayes, and
Support Vector Machine.

The different types of information were evaluated on their own as potential classifiers and
then were evaluated together, leading to the conclusion that the various types combined
allow for the creation of better models capable of finding problems with more confidence
in such results.

According to the tests performed the chosen approach can improve the performance
over a baseline approach and point out problematic situations with a precision of over 90%.
As expected by not using factors concerning the driver state or acceleration the scope of
problems which are detected is limited in domain.
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R E S U M O

A expansão e menor custo de dispositivos eletrónicos equipados com sensores está a levar
a uma maior e mais barata disponibilidade de informação localizada. O advento da in-
ternet criou fenómenos como a criação de mapas e dados relacionados gerados por co-
munidades. A combinação da disponibilidade de informação móvel e mapas construídos
pela comunidade, em conjunto com uma obtenção de informação através da internet mais
conveniente, criou a oportunidade de contextualizar os dados de novas maneiras.

Este trabalho faz uso dessa oportunidade e tenta generalizar eventos de condução que
são considerados problemáticos em função de factores contextuais, tais como a presença de
edifícios, áreas, e comodidades na vizinhança, o clima, e a hora do dia, a semana, ou o mês.

De modo a investigar esta questão, o problema é contextualizado como emergente no
tópico de Cidades Inteligentes, e explorado com recurso a Fusão de Dados e a Aprendiza-
gem Máquina.

O estado da arte é exposto, através de projectos relacionados à expressão do tráfego
rodoviário, dando relevo às várias facetas até então investigadas por outros autores de
modo a enquadrar o trabalho presente.

Dado o enquadramento e concretização do problema, é proposta uma solução. Esta
solução passa por inicialmente agregar dados de modo a enriquecer o contexto, incluindo
a recolha destes de vários serviços, e uma composição dos dados recolhidos numa perspec-
tiva única referente a uma situação de condução. Após este enriquecimento dos dados, são
criados modelos com base em diferentes técnicas de Aprendizagem Máquina. Os métodos
utilizados são Decision Tree, Naive Bayes, e Support Vector Machine.

Os resultados conseguidos com estes modelos são depois comparados de acordo com as
métricas de avaliação seleccionadas.

Uma comparação foi feita também com diferentes tipos de informação separadamente e
também em conjunto, levando à conclusão de que os vários tipos combinados permitem
a criação de melhores modelos capazes de encontrar problemas com mais confiança nos
resultados produzidos.

De acordo com os testes executados a abordagem escolhida consegue melhorar resultados
de um modelo base e descobrir situações problemáticas de condução com uma precisão
acima dos 90%. No entanto, como seria de esperar, o âmbito dos problemas detectados tem
um domínio limitado aos aspectos seleccionados.
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1

I N T R O D U C T I O N

This document was produced in the context of a Master’s Thesis in Computer Engineering
at Universidade do Minho in Portugal.

The theme is that of Creating Intelligible Metrics when performing Road Traffic Analysis.
For the purpose of this thesis metrics are measurements of some kind, namely related to the
context of Road Traffic. These measurements do not need to be numeric in nature and can
in fact be obtained simply by measuring the presence or absence of a categorical feature.

Metrics will be deemed intelligible when their appearance and comprehensibility are
reasonably accessible to an observer, giving as such, importance to visualization and read-
ability of the methods chosen. While human understandability is important, allowing an
artificial agent to reason upon those metrics is also part of the vision behind this work.

The analysis performed concerns Road Traffic. This context is aggregated from several
sources into a unique view for analysis. These sources add to the description of each object,
thus a more complete view is created than it would be otherwise by providing a perspective
over different aspects, adding up to a significant improvement in how each moment and
place during a trip on the road can be described.

1.1 motivation

According to the Portuguese Ministry of Internal Administration, in a report published by
the ANSR, which stands for Autoridade Nacional Segurança Rodoviária, concerning the
period from the 1st of January to the 31st of December in 2015, there were 122,800 accidents
on the road in Portugal. While the majority of accidents resulted in property damage alone,
there were 37,958 minor injuries, 2,206 serious injuries, and 478 deaths.(ANSR, 2016) Given
that these numbers have all increased, with the exception of deaths, in comparison to the
same period in 2014, it seems clear that looking for solutions to improve road traffic is still
a pressing matter.

In what concerns local planning, the Portuguese guide to the Planos Municipais de Se-
gurança Rodoviária(PMSR) which refers to municipal planning, was released in 2009 by
the ANSR(ANSR, 2009). This guide exposes a Haddon Matrix about when the municipal-
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1.1. Motivation

Figure 1.: Haddon Matrix presented in PMSR.
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1.2. Objectives

ities should intervene, in this matrix there’s only advice regarding driver behaviour in the
post-accident stage by advising the evaluation of the behaviour of the drivers involved. The
work being presented relates to this very concept, it takes into account drivers’ behaviour
throughout whole trips, and since it does not do so live, it receives information post-event.
Coupling such information with environmental factors, it then attempts to judge whether it
is likely for there to be an issue of behaviour based on context. This may allow some insight
into what leads to dangerous behaviour in the environment surrounding said behaviour.

1.2 objectives

Transportation of goods and people using vehicles on roads is prevalent in today’s soci-
ety, it provides convenience and independence, but this is not without trade-offs. Some
of those trade-offs that are of special interest to this dissertation, namely, the safety and
comfort of people. This dissertation aims to study fusion of the smartphone gathered data
together with outside sources such as geo referenced information like points of interest on
the map, weather informations, and determining factors of sustainability. It is expected that
the added structured information to the context will allow for new ways to automate the
assessment of road traffic expression. The goal of this dissertation is therefore to experi-
ment with aggregating external data with trip data gathered on a smartphone in order to
generate meaningful and intelligible information. The hope is that such information can
then be used to create mappings with metrics that can be justified. There will be an attempt
to explore factors like neighbouring locations such as proximity to a bank or school. As
well as when the driver is less prone to aggressive driver behaviour, depending on weather
conditions and time of the day, week, or year.

The main goal of this work is to create richer information about road traffic, namely con-
cerning locality and what sort of features can be learned and extracted regarding a position.
This consists of obtaining intelligible metrics and fusing data from different sources into a
single representation, as well as the use of proper machine learning techniques. To achieve
this goal the following sub-objectives are of importance:

1. Study and application of Data Fusion.

2. Finding the appropriate Machine Learning Techniques.

3. Designing and studying a system capable of providing enriched information.

4. Creation of the designed system.

Data Fusion will be a crucial part of enriching information by fusing data and information
from different sources and creating a more complete picture.
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1.3. Structure

Machine Learning plays a very important role in automatically generating an analysis of
the enriched data, finding the appropriate technique and properly delineating the problem
are as such something this work will look into. This will be done taking into account the
requirements that it needs to model the data with satisfiable accuracy, as well as, the need
to provide intelligible information as a result.

A prototype system will be developed taking data from PHESS and demonstrating the
added benefit of the system. The system will be created with the goal of making the
automated analysis and enrichment of data, providing intelligible feedback as a service. An
analysis of the system’s capability will be included through testing for both performance
and accuracy.

1.3 structure

Structurally this document consists of seven main chapters each with several sections.
On the introductory chapter the topic of this dissertation is introduced, the document

structure is described, followed by a section expanding on the motivation behind the theme
of Road Traffic expression. This chapter is concluded with a section where objectives are
detailed and the document structure.

The second chapter introduces the context where this work can be applied, namely smart
cities, and then provides an overview of important items to the system that was developed.
This consists of exploring Machine Learning methods and evaluation metrics.

The third chapter aims to explore the state of the art going over different studies that
approach the subject of this dissertation from different perspectives both in terms of focus,
as well as, the data types and methods used.

The fourth chapter explains the problems this works attempts to address and, then, ex-
plores some of its challenges and proposes a solution in the form of a system.

The fifth chapter documents a system created, what was created and how it was cre-
ated. This chapter is divided in a few relevant sections, one that introduces decisions,
these regard the data its sources and particularities as well as technologies used and some
exploration that helped decisions, and then two more sections exists explaining the imple-
mentation of the two parts of software created, detailing structure, and the outcome of the
implementation namely the endpoints and functionality that resulted.

The sixth chapter is dedicated to the experiments made. These experiments include a
comparison between data features and the models that describe the data, and a simple
performance experiment. The experimental setup is exposed in the due section, namely
the working environment, physical hardware, and considerations as well as explanations
of what was being tested. It also has a results and a discussion section where the results
are exposed and discussed respectively.
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1.3. Structure

There is one last chapter, the conclusion, with two sections, in the first section conclusions
are made based on results obtained with the created system, as well as a summary of what
objectives were fulfilled along with a general overview of what was achieved and what
value was added. And the last section will discuss future work, namely optimizations and
features that could be made, and that for one reason or another were not practical to make
happen.
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2

C O N T E X T

This chapter will cover the context in which this work is framed, that of a Smart Cities, data
fusion, and machine learning. The various aspects in providing support for urban life and
development through technological means.

2.1 smart cities

The Smart City is a concept that is defined differently throughout the literature. There are
mainly two trends in how it is defined, a focus on a single urban aspect such as technology
or ecology and definitions relating to the integration of the various urban aspects. Adopt-
ing the second trend, Smart City can therefore be described as a concept that refers to a
technology based integration of both social and economic aspects of a city so as to maintain
a sustainable and resilient development. (Monzon, 2015)

In Spain there are interesting Smart City projects occurring, an initiative headed by En-
desa (Endesa.com, 2015a) a subsidiary of Enel showcases one of the two trends in Smart
Cities. Enel has several Smart City projects with the goal of energy savings, this is a case
of a one dimensional approach to Smart Cities, in Spain there are two testbed cities namely
Málaga(Enel, 2013) and Barcelona(Endesa.com, 2015b). Málaga was able to reach its targets
of 20% energy savings, and a reduction of CO2 emissions of 6,000-tonne per year (Endesa,
2014).

In the European Santander and Genova cities along with the Japanese cities of Mitaka and
Fujisawa, the ClouT (Cloud of Things for empowering the citizen clout in smart cities) (Galache
et al., 2014; Tei and Gurgen, 2014) project is an example of a citizen-centric multi aspect
approach to a Smart City. It attempts to classify use cases of one of the three types they’ve
found to be relevant after discussing with stakeholders, those types being: Smart city re-
source management, Safety and emergency management, and Citizen health and pleasant
management (Yonezawa et al., 2015); an illustration of such can be found in Figure 2.

A concept related to the Smart City is the Internet of Things (IoT), the International
Telecommunications Union (ITU) defines the Internet of Things as the infrastructure that
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2.1. Smart Cities

Figure 2.: Smart City needs as identified in a survey presented in Yonezawa et al. (2015).

enables advanced services by interconnecting physical and virtual things based on existing
and evolving interoperable information and communication technologies. (itu, 2012)

The IoT plays an important role in shaping Smart Cities, it serves as a means to collect
data to help integrate physical aspects of the world to information technologies that can
leverage this into analysis, as well as, communication services.

As a consequence of the pervasiveness of networked devices and sensors, a lot of data
may be collected making it an issue of dealing with Big Data. Big Data refers to data sets
that are so large or complex that they demand an ability of data processing and analysis
that goes beyond the typical database tools (Manyika et al., 2011). These tools are usually
parallelizable and distributable over a myriad of machines to deal with the sheer volume
of entities or their complexity. The theme of Big Data, while not the central issue of this
thesis will accompany the work done throughout some of its stages where data volume and
variety must be considerations.

A relevant case study of a Smart City, is one of the largest smart city experimental
testbeds in the city of Santander in Spain. The project, named SmartSantander (Smart-
Santander.eu), deployed over 15000 sensors around the area of Santander so as to monitor
the real-time state of the city. These sensors measure many environmental parameters such
as light, temperature, and noise, as well as parameters like the occupancy of some parking
slots.

Using data from sensor values can demand analytics to be performed over big data sets,
to perform this, a platform named City Data and Analytics Platform(CiDAP) (Cheng et al.,
2015) was created. This platform stores, processes, and analyzes the data generated by the
SmartSantander project, focusing on dealing both with historical data and real time data.
The choice of the NoSQL database was made due to the volume of Big Data that was needed
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2.1. Smart Cities

Figure 3.: System architecture of the CiDAP platform.

to store, as well as the incremental update views supported by CouchDB (CouchDB). Data
analysis of a more complex nature, such as using machine learning methods, is made using
Apache Spark (Spark). The system architecture of this platform can be seen in Figure 3.

Another interesting project that makes use of the Santander testbed is a project (Treboux
et al., 2015) that attempts to answer the question: "Are the data from the Smart Santander
consistent enough to predict a traffic jam and build a project to improve traffic management
in the city?" the KNIME (Berthold et al., 2007) data-mining platform is used to explore this
issue. The authors are able to point out traffic jams with a staggering 99.95% accuracy using
multiple algorithms combining 3 prediction methods, namely Tree Ensemble, Fuzzy Rule,
and Probabilistic Neural Network. In that solution the most important historical feature of
data necessary to predict the traffic status is the rain.

Smart city plans are becoming more and more pervasive, in Portugal according to Voda-
fone (2016), using technological solutions the Sabugueiro village has managed energy sav-
ings of close to 20% in the domestic environment and 9% in the public network. Other
relevant aspects mentioned are water savings of 12% and remote monitoring of life signs.

It is visible that several cities in different countries are starting to implement or design
their own smart city plans and initiatives, that fact coupled with the results of such ap-
proaches show the increasing importance of this concept. Smart Cities were, therefore,
considered to present an interesting context in which to fit this work, and some aspects of
the created system were inspired by some of the aforementioned Smart City projects.
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2.2. Data Fusion

2.2 data fusion

According to Hall and Llinas (1997), it can be said that "Data fusion techniques combine data
from multiple sensors, and related information from associated databases, to achieve improved accura-
cies and more specific inferences than could be achieved by the use of a single sensor alone.". While
Lahat et al. (2015) frames data fusion as "the analysis of several datasets such that different
datasets can interact and inform each other".

Data fusion, therefore, plays an important role in this work, that of enriching the data.
The foundational model of data fusion seems to originate from the JDL (Joint Directors of
Laboratories). Their work divided the task of Data Fusion into five numbered levels and
another pre-processing one as is visible in 4 as depicted in Hall and McMullen (2004). The
authors also review the concepts and levels taken into account.

Figure 4.: JDL Data Fusion Model

The DFIG (Data Fusion Information Group) later proposed an updated model as can be
seen in figure 5.

For this dissertation the most relevant levels are zero through three, from Blasch et al.
(2012) they can be summarized as levels:

LEVEL ZERO - Data assessment, estimation and prediction of signal/object observable states
on the basis of pixel/signal level data association.

9



2.2. Data Fusion

Figure 5.: DFIG Data Fusion Model

LEVEL ONE - Object assessment, estimation and prediction of entity states on the basis of
data association, continuous state estimation, and discrete state estimation.

LEVEL TWO - Situation assessment, estimation and prediction of relations among entities,
to include force structure and force relations, communications, and so forth.

LEVEL THREE - Impact assessment, estimation and prediction of effects on situations planned
or estimated actions by the participants; to include interactions between action plans
of multiple players.

In this thesis both low level and high level fusion will take place, the first will be present
in the initial stage of aggregating all data inputs consistently. It corresponds to the first two
levels of the DFIG model presented in figure 5. While high level fusion concerns levels two
and three of the DFIG model, and it describes the later stages of this project.

In Blasch et al. (2012) an intuitive way of looking at this division is presented, by making
a comparison between human situation awareness (SAW) and machine information fusion
(MIF). This can be seen in figure 6.

Data fusion is used in several fields and should become increasingly apparent there are
several different ways of understanding it,Castanedo (2013) the Input/Output (I/O) based
characterization presented in Dasarathy (1997) is a popular means of understanding it.
This classification takes into account five categories, these are: data in-data out (DAI-DAO),
data in-feature out (DAI-FEO), feature in-feature out (FEI-FEO), feature in-decision out

10



2.3. Machine Learning

Figure 6.: Comparison between SAW and MIF.

(FEI-DEO), and decision in-decision out (DEI-DEO). Where data refers to raw data from
sensors and other sources, feature refers to characteristics of the entity being observed, and
decision refers to results such as a class in classification or prediction in a prediction.

This last understanding was found to be intuitive and making for an easy way to interpret
the created solution. Where GPS data leads to features such as date time from the system
time of a record, and roads on a road network from the GPS points are extracted. It’s also
easy to understand that the analysis server is capable of making the decision whether a
situation is expected to be problematic or otherwise. The various categories of I/O are
as such intuitively discernible throughout the work done, and which will be presented in
Chapters 4 and 5.

2.3 machine learning

Machine learning is a vast field within computer science, it is deeply connected with statis-
tics, and dependent on data to serve as experience. Its usage ranges from prediction of
future values, to classification of entries, to clustering of common features, or even the
discovery of the underlying relations in the data.

“The field of machine learning is concerned with the question of how to
construct computer programs that automatically improve with experience.” -
Mitchell (1997)

Norvig and Russell say that learning occurs if the performance of future tasks are im-
proved after making observations about the world (Russell and Norvig, 2010). In their
book they go on to distinguish four major factors on which a component of an agent de-
pends on to improve. These factors are: the component, prior knowledge, representation of
data, and available feedback.
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2.3. Machine Learning

Representation and prior knowledge comes down to a factored representation, that is a
vector with attribute values both numerical and discrete, so as to enable the use of methods
implemented in external libraries. Prior knowledge will be applied directly as filters over
the dataset, but it is not otherwise represented in some form of logic within the system.

The goal of our system is to be able to learn how in road traffic a driver’s behaviour
varies with external factors, and present such in a human comprehensible form. This can
be summarized as an instance of inductive learning since there is no prior knowledge that
allows for the system to deduce the rules governing this behaviour.

We are therefore left with one last factor, one which may be considered the main fac-
tor used to distinguish machine learning methods, this is the matter of what feedback is
available to learn from.

In accordance to this factor Machine Learning is commonly divided into three categories,
Supervised Learning, Reinforcement Learning, and Unsupervised Learning.(Duda et al.,
2001; Russell and Norvig, 2010) The term Semi-Supervised Learning is also in use and it
characterizes a middle ground between supervised and unsupervised learning(Zhu and
Goldberg, 2009; Russell and Norvig, 2010; Søgaard, 2013).

UNSUPERVISED LEARNING In Unsupervised Learning there is no explicit feedback or teacher,
the goal is to learn patterns on the input data without such supervision. According
to Zhu and Goldberg (2009) common Unsupervised Learning tasks include:

• Clustering, the task of dividing data into groups.

• Novelty detection, the task of identifying instances that are very different from
most.

• Dimensionality Reduction, the task of representing each entry in a feature vec-
tor with less dimensions while maintaining the key characteristics.

REINFORCEMENT LEARNING Reinforcement Learning happens when rewards or punishments
are the available feedback. This feedback only informs as to whether a result is right
or wrong, it is then up to the learner to discern how or what actions prior to the
feedback are right or wrong.

SUPERVISED LEARNING In Supervised Learning each data entry is composed of two aspects,
the inputs and the outputs(Friedman et al., 2001). The inputs concern the information
that is measured and fed to the machine learning method, and the outputs are what
one is attempting to predict or classify based on the inputs. In the literature inputs
can also have other names such as predictors, independent variables, and features.
Analogously the outputs can be called responses, dependent variables, and labels.

Supervised Learning is a form of Inductive Learning, where the goal is to pick up an
example data set, sometimes referred to as the training data, and create a model that
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is capable of making a generalization of the function that maps features into labels.
In this manner new data can be labelled according to the same patterns that were
present in the example data labelling.

This is the type employed in the execution of this work, where a vector of features
is created from the aggregated context and the values of driving behaviour score
retrieved are used as classifications.

There are many methods and tasks concerning machine learning, in this section we’ll talk
about some of the explored ones so as to create a context of what can be done and why
some methods were more or less proper to this work’s use case, and lastly justifying why
Decision Trees were the model of choice to the developed system.

In order to properly contextualize this choice, it is relevant to showcase some of the
decisions that had been made up to that point regarding the requirements of the learning
method:

1. A binary classification will be used to discern between problematic or normal entries.

2. What contributes to a classification must be human comprehensible.

3. Features are bound to include attributes both of a quantitative nature as well as qual-
itative nature.

2.3.1 Linear and Logistic Regression Analysis

According to Seber and Lee (2012) the aim of regression analysis is to construct mathemat-
ical models which describe or explain relationships that may exist between variables.

The simple Linear Regression model is composed by the mean and variance functions(Weisberg,
2005):

E(Y|X = x) = β0 + β1x

Var(Y|X = x) = σ2

Constructing the model therefore consists of finding out the β0, β1, and σ parameters.
The σ is often called the standard error of regression(Weisberg, 2005), and β0 + β1x is a line
of mean values(Montgomery et al., 2012). A representation of a Linear Regression Model
can be seen in Figure 7.

Still concerning regression analysis there’s another method that was looked into, Logistic
Regression.

This is a mathematical modelling approach that can describe the relationship between
several inputs and a dichotomous output. This seems to fit properly with the requirements
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Figure 7.: Scatter plot and a line representing a linear regression model without the error from
Montgomery et al. (2012).

at 1. The model is designed to describe a probability, i.e. a number between 0 and 1(Klein-
baum and Klein, 2010), and can be represented as:

P(D = 1|X1, X2, ..., Xk) =
1

1 + e−(α+∑ βiXi)

Where α and βi are the unknown parameters to be estimated in this model.
And while both Linear and Logistic Regression can handle the necessary forms of inputs

and outputs, even if done through the use of some coding system, like dummy coding,
it does not however provide a good way for a human to comprehend the causes of such
classification since the classification is reached as a result of the respective functions alone,
thus failing to meet the criteria in 2.

2.3.2 Artificial Neural Networks (ANN)

Artificial Neural Networks(ANN) are biologically inspired(Yegnanarayana, 2009), specifi-
cally by neuroscience(Hassoun, 1995), they are an attempt to model the information pro-
cessing capabilities of the nervous system(Rojas and Feldman, 2013).

This popular machine learning approach is viable for a number of problems like pattern
classification, speech synthesis and recognition, adaptive interfaces between humans and
complex physical systems, function approximation, image compression, associative mem-
ory, clustering, forecasting and prediction, combinatorial optimization, nonlinear system
modelling, and control(Hassoun, 1995).

The basic building block unit of an artificial neural network is the "artificial neuron"
(Hassoun, 1995), this is named differently throughout the literature, because neurons are
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Figure 8.: Abstract representation of a neuron.

not fully understood and because each biological neuron is much more complex than their
artificial counter parts, these building blocks are referred to as the "computing units" of arti-
ficial neural networks by some (Rojas and Feldman, 2013), while others name it Processing
Units (Yegnanarayana, 2009) or Processing Elements (Rabuñal, 2005).

According to Rojas and Feldman (2013) in abstract terms, a neuron is structured as shown
in Figure 8. The figure shows an abstract neuron with n inputs, where each i input channel
transmits a real value xi. The input channels usually have a weight associated, illustrated by
wi for each i input channel, these weights correspond to a multiplier applied to the xi input.
The information transmitted to the neuron through the input channels is then integrated,
usually by summation, and the function f is evaluated accordingly.

The usefulness of an artificial neural network depends on the processing units being
organised in a suitable manner to accomplish a given pattern recognition task, this organi-
zation is known in the literature as topology.(Yegnanarayana, 2009)

According to Costa and Simões (2008) in an artificial neural network, when a set of
neurons is unconnected between its members, and has both a set of input and a set of
output such nodes, this is known as a layer. There are three common types of layers, input
layers which receive information from outside the network, output layers which transmit
information to outside the network, and hidden layers which are not directly connected to
the outside of the network.

Some authors like Yegnanarayana (2009) define layers as a set of processing units which
have the same activation dynamics and output function, but that there can be interlayer
and intralayer connections, i.e. connections between processing units in the same layer or
different layers.
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Figure 9.: Example of an ANN with a feedforward topology according to Priddy and Keller (2005).

In a neural networks adjusting the weights of connections between processing units, and
in some cases the topology, can be considered the machine learning part of the process.

While technically Neural Networks can compute discrete inputs, this requires processes
like dummy coding (Pham, 2006), fortunately the shape of our data makes it so that cate-
gorical features are by and large binary flags representing the presence of certain locations
in the surrounding areas, dummy coding requires an amount of numerical features that is
exactly the number of categories minus one in order to represent the original categorical
feature (Hardy and Bryman, 2009) which ends up being the exact same number of features
since they are composed of only two categories. The why and how of these binary flags are
discussed ahead in the Chapter 4.3.

Normalizing data values beforehand is also an important step when dealing with differ-
ently ranged attributes and neural networks, so as to properly convey the contribution of
an input in relation to others (Priddy and Keller, 2005). Furthermore normalizing data in
a neural network tends to improve performance (Yu et al., 2010). Normalization was not
deemed prohibitive, since it is an operation that can easily take advantage of the distributed
environment provided by the Apache Spark engine. Similarly scaling may be necessary so
that the range of the data is neither too small nor too large which may lead to issues with
the precision limits (Yu et al., 2010).

Ultimately the issue with Neural Networks in the context of this work is that they work
in a black box manner and, just like with linear and logistic regression, makes it hard for
one to comprehend the specific why of a result other than understanding how the training
or model itself works. This ends up being in conflict with 2, and was therefore not the
method of choice.
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Nevertheless Artificial Neural Networks are worth of consideration for future work,
while tree-based methods are readily interpretable, ANNs commonly outperform them
(Pham, 2006). In this instance this was a necessary trade-off for intelligibility.

2.3.3 Support Vector Machine (SVM)

The Support Vector Machine method was introduced by Vapnik and co-workers (Vapnik
et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1995), according to Vapnik (2013), the 2013

edition of Vapnik (1995), the support vector machine maps the input vectors to a high-
dimensional feature space through some non-linear mapping chosen a priori. In this space
an optimal separating hyperplane is constructed. A simple example of this is represented
in Figure 10.

Figure 10.: An example of a separable problem in a 2 dimensional space. The grey squares
are the support vectors that define the margin of largest separation between the two
classes.(Cortes and Vapnik, 1995)

According to Suykens and Vandewalle (1999), given a training set of N data points
{yk, xk}N

k=1 with xk ∈ Rn as the k-th input pattern and yk ∈ R as the k-th output pat-
tern, then the support vector method approach aims at constructing a classifier of the form
given in Equation 1:
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y(x) = sign

[
N

∑
k=1

αk ∗ yk ∗ ψ(x, xk) + b

]
(1)

Where αk are positive constants in R and b is a real constant. The ψ is a formula that
typically characterizes either a linear SVM as described in Equation 2, a polinomial SVM of
degree d as found in Equation 3, a RBF SVM shown in Equation 4 where σ is a constant, or
a two layer neural SVM described in Equation 5 where κ and θ are constants.(Suykens and
Vandewalle, 1999)

ψ(x, xk) = xT
k ∗ x (2)

ψ(x, xk) = (xT
k ∗ x + 1)d (3)

ψ(x, xk) = exp
(
−‖x− xk‖2

2
σ2

)
(4)

ψ(x, xk) = tanh[κ ∗ xT
k ∗ x + θ] (5)

Similar to the aforementioned methods, this too doesn’t appear to have a very intuitive
way of ascertaining what are the issues causing a problematic classification, so it ended up
not being the method of choice. Nevertheless its performance was tested for comparison
reasons. The results are available in Chapter 5.

2.3.4 Decision Trees (DT)

According to Barros et al. (2015) Decision Trees have been studied in the context of many
disciplines, from engineering, statistics, and decision theory to machine learning more re-
cently. The latter is the context for the application of Decision Tree Models in this work.
Grabczewski (2013) states that DTs are often regarded as attractive approaches. One of the
most important causes for such is their comprehensibility, and that they can be expressed
in the form of a set of logical rules describing the decision functions. These aspects played
an important role in the choice of this method for this work.

A decision tree is a considered a method which is both nonparametric and efficient, and
this method allows for both regression and classification.(Chikalov, 2011) If the output of
the Decision Tree is continuous, then it is a regression tree, if the output is discrete then it
is considered a classification tree.(Suthaharan, 2015)

A Decision Tree is composed of nodes that form a Rooted Tree, i.e. a Directed Tree which
has a root node with no incoming edges. Every node but the root has exactly a single
incoming edge. Besides the root node there are two more node types, these are the test
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Figure 11.: Illustration of a Classification Tree determining whether someone has ever played bas-
ketball.

nodes and leaves, and can be distinguished by whether or not they have outgoing edges. If
they have such outgoing edges then they are a test or internal node, and otherwise they are
leaves or terminal nodes.(Rokach and Maimon, 2014) An illustration of a Decision Tree and
this distinction of nodes can be seen in Figure 11.

As a classifier a decision tree works by recursively partitioning the domain, each test
node splits the domain of a feature or set of features into a set of sub-domains that is
both complete and whose members are mutually exclusive. These two properties are very
important to ensure that every new instance can be classified, and that it is classified at
exactly one node alone. Thus avoiding ambiguous results or lack of results when running
an instance through the classifier.(Rokach and Maimon, 2014)

After explaining the form of a Decision Tree model and some of its properties it is of
relevance to further explore how such model is learned from data, Hyafil and Rivest (1976)
demonstrated that constructing an optimal binary tree is an NP-complete problem.

Consequently because the search space for the optimal tree is large, in practice Decision
Trees are constructed with heuristic search methods.(Grabczewski, 2013)

As can be seen in Figure 12 the steps to growing a decision tree can be summarized as:
Decision trees are hierarchical and as can be seen from Figure 11 easily interpretable.

They also allow for one to trace back any prediction to a set of rules or conditions corre-

19



2.3. Machine Learning

Figure 12.: Decision Tree growth sub processes according to De Ville (2006).

sponding to the splits of the tree up to the leaf where the prediction value can be found. An
example would be in Figure 11, imagining that John Doe is 8 years old a male and is 1.3m
high, that we can predict he has played basketball and explain the reasons for this conclu-
sion in a very approachable way by naming the two conditions that lead to this prediction,
that his age is 6 or higher and he is a male.

This ended up being the method of choice during this work because it fits all of the
criteria, and was readily available in the tool chain being used. The performance and results
of this method both on its own as well as compared to some of the others are presented in
the Tests and Results section.

2.3.5 Naive Bayes

According to Amor et al. (2004), Naive Bayes are very simple Bayes Networks, which means
they are composed of a directed acyclic graph. The Naive Bayes classifier is considered to
be fast and easy to implement(Rennie et al., 2003). Zhang (2004) states that the Naive Bayes
classifier for two classes can be formulated as 9. Where E is an example tuple of attribute
values of the form E = (x1, x2, ..., xn), and C = + is the positive class and C = − is the
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negative class. And is obtained from the Bayesian Rule showcased in 6, while assuming that
E is only classified as C = + given that 7 is the case, and assuming the attribute variables
are independent so that equation 8 is the case.

p(c|E) = p(E|c) ∗ p(c)
p(E)

(6)

fb(E) =
p(C = +|E)
p(C = −|E) ≥ 1 (7)

p(E|c) = p(x1, x2, ..., xn|c) =
n

∏
i=1

p(xi|c) (8)

fnb(E) =
p(C = +)

p(C = −)
n

∏
i=1

p(xi|C = +)

p(xi|C = −) (9)

In Amor et al. (2004) the authors compare the performance of Naive Bayes and Deci-
sion Tree, concluding that Decision Trees perform generally better, but that Naive Bayes is
generally 7 times faster at learning and classifying then Decision Trees.

This method can be represented in a fairly intuitive manner by showcasing how much
each attribute contributes to the probability, but it wasn’t chosen because it performed
worse than Decision Trees and the presentation of the Decision Tree was still deemed a
more intuitive representation, and therefore a better fit to the project being developed. Nev-
ertheless, because it did fit all the criteria and because it was feasible, a comparison of
performance was made and will be presented in the results section.

2.3.6 Evaluation Metrics

After choosing a method, acquiring some form of result is trivial, but in order to obtain
some guarantee of usefulness one has to explore how to evaluate the model generated by
the chosen machine learning method.

A model can be evaluated from many perspectives, some forms of evaluation are more
objective and others are more subjective, in choosing a method so far the aspects taken into
account throughout this document are of a subjective evaluation nature, the focus being on
their intelligibility. This was a requirement of the work being done and prioritized over
other aspects or results.

In this section the focus will be on evaluation metrics that describe how well the model
predicts, there are also other objective aspects like, for example, the training and the predic-
tion performance in both time and memory space.

Error is a relevant metric for evaluation and can be calculated in many forms. Two
error metrics used to estimated the deviation from expected values are the Mean Absolute
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Percentage Error(MAPE) and Root Mean Squared Error(RMSE), they can be formulated as
equations 10 and 11. (Saiprasert and Pattara-Atikom, 2013)

eMAPE =
1
n

n

∑
t=1

∣∣∣∣ so − sp

so

∣∣∣∣ (10)

eRMSE =

√
1
n

n

∑
t=1

(so − sp)2 (11)

There are other means of evaluating the results, within our scope it is relevant to speak
of those that target a binary classifier. The data is processed into two classes in this work,
this process is mentioned in Chapter 4.3.

Since the data is now classified as problematic or normal, the evaluation can be made
by comparing percentages of key statistics. For this there are some key concepts, when
evaluating a binary classifier one can designate one of the output categories to be positive
and the other to be negative, in this work the most important task is to find issues, therefore
the problematic category is considered a positive or a hit, the normal category is considered
a negative or a miss. Given this, there are four possibilities for any classified entry, it is a
true positive(TP) if it was classified as positive and it is also positive in actuality, it is a
true negative(TN) if it was classified as negative and it is also a negative in actuality, it is
a false positive(FP) if it was classified as positive but in actuality it is not positive, it is a
false negative(FN) if it was classified as negative but in actuality it is not negative. These
are illustrated in Table 1.

Table 1.: Confusion matrix.(Davis and Goadrich, 2006)
Actual Positive Actual Negative

Predicted Positive TP FP
Predicted Negative TN FN

There a few key metrics under this concept, in Powers (2011) an overview of these met-
rics as well as some of the common names for them is made. One such metric which was
considered as having a pivotal role in this work is Precision, this is also known as Confi-
dence in Data Mining, can be described as the True Positive Accuracy(Powers, 2011; Davis
and Goadrich, 2006) and is referred in Jiao et al. (2014) as Selectivity. Precision assesses the
predictive power of the algorithm.(Sokolova et al., 2006)

Another commonly used metric is Recall, in the literature this can be named as True
Positive Rate or as Sensitivity(Jiao et al., 2014; Powers, 2011; Davis and Goadrich, 2006).
Recall approximates the probability of the positive prediction being correct.(Sokolova et al.,
2006)
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Thirdly is the notion of Accuracy(Sokolova et al., 2006) or Agreement(Jiao et al., 2014)
which is the probability of a prediction being correct(Sokolova et al., 2006).

Specificity, also referred in literature as Inverse Recall or True Negative Rate is the pro-
portion of actual negative instances that are correctly predicted as negative.(Powers, 2011)

Inverse Precision or True Negative Accuracy, is the proportion of predicted negative
instances that are actual negative instances.(Powers, 2011)

The F-score or F-measure is a value that benefits algorithms with higher Recall and chal-
lenges algorithms with higher Specificity.(Sokolova et al., 2006)

These values can be formulated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + FP + FN + TN

Speci f icity =
TN

FP + TN

InversePrecision =
TN

FN + TN

F−measure =
(β2 + 1) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall

The Receiver Operator Characteristic(ROC) is considered a way of obtaining comprehen-
sive evaluation classifier performance, it is a curve that shows the relation between Recall
and Specificity.(Sokolova et al., 2006) The Area Under the Curve(AUC) is a single scalar
which can be calculated using the trapezoidal areas created between each ROC point(Davis
and Goadrich, 2006).

According to Sokolova et al. (2006) Balanced Accuracy can be formulated as shown in 12.

BalancedAccuracy =
Recall + Speci f icity

2
(12)

Another metric is the Youden’s index, introduced by Youden (1950), according to Sokolova
et al. (2006) it attempts to evaluate the algorithm’s ability to avoid failure and is given by
either the equation 13 or 14.

γ = Recall − (1− Speci f icity) (13)

γ = 2 ∗ (BalancedAccuracy)− 1 (14)
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Another way to evaluate the classifier is by using Likelihoods which can be positive or
negative. A higher positive likelihood means a better performance on the positive class
while a lower negative likelihood means a better performance on the negative class. The
positive and negative Likelihoods can respectively be described as the equations 15 and
16.(Sokolova et al., 2006)

ρ+ =
Recall

1− Speci f icity
(15)

ρ− =
1− Recall
Speci f icity

(16)

Lastly is the Discriminant Power, this measure summarizes Recall and Specificity, it at-
tempts to evaluate how well an algorithm distinguishes between positive and negative
examples. The formula is given in Equation 17.(Sokolova et al., 2006)

DP =

√
3

Π
∗ (log

(
Recall

Recall − 1

)
+ log

(
Speci f icity

1− Speci f icity

)
) (17)

A classifying algorithm is considered a poor discriminant if the value of the Discriminant
Power(DP) can be characterized as DP < 1, limited if DP < 2, fair if DP < 3, and good
otherwise.(Sokolova et al., 2006)
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S TAT E O F T H E A RT

One of the central topics for this work is Driving and Road Traffic Expression, this section
will go over several approaches focusing in the context of information technologies includ-
ing an overview of the PHESS Driving platform which is one of the most important sources
used in the system created.

3.1 driver state

There are many ways in which to judge driving performance, it can be related to how a
specific resource is consumed like money or time, or other aspects like what characteristics
belong to the trip in question like pleasantness or safety of the passengers.

In this area there are several studies that focus on the state of the driver, one such study is
Tango and Botta (2013) which focuses on driver visual distraction and its real time detection
using machine learning techniques.

Figure 13.: Surrogate Visual Research Task on the right part of the driving simulator cockpit in
Tango and Botta (2013).

This study, Tango and Botta (2013), presents the notion that driver distraction even if
not always consistently defined throughout the literature, has been found to be a leading
cause of vehicle crashes and incidents in different studies. Given that notion it attempts to
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model driver distraction based on the following features: speed, time to collision, steering
angle, lateral position, position of the accelerator pedal, and position of the brake pedal.
Using SVM, the same method explained in Section2.3.3, both feed forward and layer re-
current Neural Networks, the method presented in Section2.3.2, and adaptive neurofuzzy
inference systems (ANFIS) introduced by Jang (1993). Visual data was used solely for la-
belling purposes by the experimenter, i.e. it was not used as a feature on any of the machine
learning models and the setup can be seen in Figure 13. The SVM model using a radial
basis function (RBF) as a kernel, explained in Equation 4, was found to produce results
with better performance on the evaluation metrics considered which were the Correct Rate
which is the percentage of correct classifications, Sensitivity as discussed previously in this
document, and Specificity which is the percentage of correctly classified negative instances,
scoring over 90% in each of those metrics in average.

Human error was also the object of the study presented in Jiao et al. (2014), more specifi-
cally the target issue in this study is Driver Fatigue recognition through Slow Eye Movement
(SEM). The study starts by recognizing that SEM has been proved to be a reliable indicator
of sleep in a number of other studies using data obtained from an electro-oculogram in a
driving simulator for over two hours. Using the test environment shown on Figure 14 the
authors collected data and compared three machine learning techniques, more specifically,
SVM, GELM (discriminative graph regularized Extreme Learning Machine), and KNN (K-
Nearest Neighbours). The different techniques had for various sets of features and differing
samplings (over and under sampling) varying relative performances among themselves on
the evaluation metrics of Agreement, Sensitivity, and Selectivity.

Figure 14.: Driving Simulation Environment in Jiao et al. (2014).
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In a similar vein Yoshida et al. (2014) attempts to characterize a driver’s cognitive state in
real driving situations. The prediction of the cognitive condition, is made using a grouping
of parameters deemed the driver’s action and state of the car:

• longitudinal and lateral control information, i.e. changes in acceleration, braking, or
turning

• gear selection information, referring to changes e.g. 1 up, or stationary

• The person’s gaze target information, like the duration of the gaze and what is being
gazed, e.g. rearview mirror

• The car’s state, which is comprised of items like speed, acceleration rate, steering
angle, and gear number.

Vehicle information was gathered using a Controlled Area Network(CAN), which is an
in-vehicle LAN used to gather driving data.

This study also used eye movement tracking for classification purposes, this includes the
variance of eye position, the target of the gaze concerning road elements such as traffic
lights or other vehicles or pedestrians, and the attribute of the target for gazing, such as
average x and y coordinates and continuation time of a gaze. This was done using an eye
tracking device, and labelling the gazing targets was done manually.

Steering Entropy and Task Cognition are the two measurements that the study attempts
to predict as indicative of cognitive state, their explanation is beyond the scope of this
document but can be found in Yoshida et al. (2014).

The used techniques are the Support Vector Machine(SVM) with a RBF kernel and the
Random Forest(RF). The chosen evaluation metrics were the accuracy and recall which were
defined previously in this document. Both techniques were able to outperform in most
cases a default evaluation based on classifying all instances equally. There was no obvious
best technique among those two since their relative performances varied depending on the
interval being evaluated as well as with the cost parameter of the SVM.

Jabon et al. (2010) presents a study made using a driving simulator and video feed from
two cameras as shown on the right picture of Figure 15. The goal was to analyse facial
expression and predict unsafe driving behaviour, and image was the chosen source of in-
formation because it does not require special markers or users intervention.

In this study each frame of video was analysed in order to determine the coordinates
of 22 different facial points, the openness of the mouth and eyes, and the movement of
the head, these points are illustrated in the left picture of Figure 15. This information was
then synchronized with the simulator data which concerns the road conditions, steering
wheel angle, lane tracking information, car speed, longitudinal acceleration due to pedal
presses and braking, braking information, number of accidents, and type of accident. After
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dividing the data in intervals and filtering out results where the confidence in the face
tracking was lower than 60%, the authors found that the facial features which are most
predictive of major and minor accidents differed greatly.

Figure 15.: Facial tracking points(left) and simulation environment(right) in Jabon et al. (2010).

In order to predict minor accidents different classifiers were experimented with, namely
Bayesian Nets, Decision Tables, Decision Trees, Support Vector Machines, Regressions, and
LogitBoost simple decision stump classifiers. These classifiers were evaluated according to
Cohen’s kappa coefficient. The LogitBoost classifier provided the best performance of those
classifiers concerning minor accidents. The results presented a trend where car features
were more useful predicting minor accidents close to the accident, and face features were
more predictive longer before a minor accident.

Similar work was done for major accidents, this time using the classifiers: SVM with a
poly-kernel, LogitBoost with the weak classifier to be a simple decision stump, a Multilayer
Perceptron Neural Net, a simple Decision Table, and Logistic Regression. Once more Log-
itBoost had the best performance according to the same evaluation metrics. But with major
accidents the trend of higher facial predictive power with longer distance from the accident
could no longer be found. In all types of accident integrating the environment, car, and
facial features tended to provide better results.

3.2 smartphone as a sensor platform

A trend with the advent of the smartphone is its use as a sensing, relaying, and/or com-
puting mobile platform, this observation is supported by the researched studies presented
next. The smartphone presents many advantages over other means, including cost, being
easily used in multiple vehicles, embedded battery, and a wide range of sensors.
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3.2.1 Driver Behaviour

Some studies approach the matter of Road Traffic analysis from a personal perspective by
relating their assessment to the Driver’s behaviour, in this section some of those studies
will be explored.

One such study was performed in Johnson et al. (2011), this study presents a mobile
sensor platform for intelligent recognition of aggressive driving. The authors separate
driver style as being either typical or aggressive.

Figure 16.: Position of mounted mobile device in Johnson et al. (2011).

The system created, the MIROAD, focuses on a rear-facing camera, accelerometer, gyro-
scope, and GPS as data sources, these are part of an iPhone 4 device which is mounted in
the center of the vehicle wind-shield as seen in Figure 16. The system detects the following
types of events:

• Right and Left turns (90
o)

• U-turns (180
o)

• Aggressive right and left turns (90
o)

• Aggressive U-turns (180
o)

• Aggressive braking

• Right and left aggressive lane changes(swerving)

• Device removal
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• Excessive speed

In order to detect when events begin the MIROAD uses the Simple Moving Average
(SMA) described as:

SMA =
gx(i)2 + gx(i− 1)2 + ... + gx(i− k− 1)2

k

If SMA is greater than an upper threshold tu then gx(i − k − 1) is the beginning of the
event and the event lasts until SMA is less than a lower threshold tL, with an upper bound
of 15 seconds per event before it is discarded.

Manoeuvre classification was then made using a Dynamic Time Warping(DTW) algo-
rithm. The DTW algorithm finds the closest match between the captured event and the
style of the pre-recorded template signals.

The study goes on to conclude that combining the accelerometer and gyroscope sensors
allows for a better detection of events, the DTW algorithm was able to detect 97% of aggres-
sive events using the combined sensor set described above.

Castignani et al. (2013) approaches this topic by providing a single score concerning driv-
ing inefficiency and aggressiveness. This study uses mobile sensors from an android to
collect information that leads to this evaluation. The sensors used were the GPS, accelerom-
eter, magnetometer, and gravity sensor.

The data was then transformed into input variables to be used in a classifier. The magni-
tude of acceleration vector was obtained from the accelerometer after removal of the gravity
component, this acceleration was then used to define two variables, the number of moder-
ate acceleration events per kilometre and the number of aggressive acceleration events per
kilometre. An acceleration event would be considered moderate when the magnitude of
acceleration was larger than 1.5m/s2 and aggressive when it was larger than 3m/s2. Accel-
eration was also the focus of the transformations on the GPS signal, calculating the linear
acceleration, i.e. the speed variation rate between GPS samples. This resulted in four vari-
ables, the first two were the maximum positive and maximum negative linear accelerations,
and the second two were analogous to the values extracted from the accelerometer magni-
tude, the number of moderate and aggressive events per kilometre. The thresholds of the
GPS based linear acceleration are for the absolute value and are hit at 1m/s2 and 2.5m/s2

for moderate and aggressive events respectively. Speed played the role to determine over-
speeding, this corresponds to the difference between the vehicle speed at each location and
the speed limit in that specific location. Three variables came from this notion, the first
is the normalized amount of time the driver incurs in overspeed between 1 and 0 where
1 is the whole trip and 0 indicates no overspeed in the trip. The other two variables are
the average overspeed and the maximum overspeed per driver. The last property taken
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into consideration was the steering, measure through the bearing angle provided by the
GPS. This is a relative angle to the north. The gyroscope and magnetometer were not used
because the authors found them to have a high level of noise. The steering rate is the vari-
ation of the bearing angle for two consecutive GPS updates in degrees per second. This
originated three input variables, the number of moderate events per kilometre, the number
of aggressive events per kilometre, with 10o/s and 40o/s respectively as thresholds, and
the last variable was the maximum steering rate for each driver.

Figure 17.: View of the system in Castignani et al. (2013).

Using a Fuzzy Inference Engine and inference rules, with a COG(Centre of Gravity)
algorithm in the defuzzification an output score is obtained. The score is a combination of
three other scores relating to urban areas, suburban areas, and extra-urban areas, in which
the highest weight is given to the urban areas due to aggressive driver behaviour being
more risky in those environments. The results of tests made in a real environment using
an Android smartphone show that in urban areas drivers tend to drive aggressively with
higher overspeed and acceleration events.

Dange et al. (2015) presents a study about building a social gaming platform which
awards virtual coins for favourable driving behaviour, the authors approached the matter of
assessing said behaviour in a multi-faceted manner. This approach consisted of a score, this
score had 5 sources equally contributing to its value(20% each), these sources are described
in Table 2.

The approach can be summarized as follows, the Kohonen Neural Networks are used to
derive a measure of harshness based on the brake or acceleration signals. The K-Nearest
Neighbours serves to map the relativity between the speed and break signals, penalizing
when there’s a larger conflict between them, for example applying a high pressure brake
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Table 2.: Evaluators and Signals Evaluated in Dange et al. (2015).
Evaluator Signals Evaluated

Linear Distances Acceleration and RPM
Linear Distances Speed and Fuel Consumption

Kohonen Neural Networks Acceleration and brake
K-Nearest Neighbours Speed and brake

Dynamic Sliding Window Speed

when in high speed should be penalized. Linear Distances evaluates harshness with a
linear equation connecting the threshold boundaries for penalty and award regions of given
metrics, this is illustrated in Figure 18.

Figure 18.: Evaluation criterion for Linear Distances with representation of sements involving varia-
tion of speed signal values in Dange et al. (2015).

Lastly the Dynamic Sliding Window is event-based and scores differently depending
on the size of the window and deviation from optimal parameters of the metrics being
evaluated, namely the Speed. Penalizing speeds above the optimal window.

In Silva et al. (2014) and Silva et al. (2015) the authors introduce the PHESS Driving
platform, this system uses smartphone sensors to collect data. This data is then relayed to
a web service and processed for analysis.

Based on the limitation of the smartphone sensors the authors chose the following indi-
cators to gather information about driving patterns:

• Average velocity(Silva et al., 2014)

• Average fuel consumption(Silva et al., 2014)

• Intensity of acceleration and braking(Silva et al., 2014, 2015)

• Number of braking and accelerating events per time unit(Silva et al., 2014, 2015)

• Standard deviation of velocity, intensity of braking and acceleration and accelera-
tions(Silva et al., 2014)
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• Number of turn events based on curvature detection(Silva et al., 2014)

• Intensity of force exerted in the vehicle during turns(Silva et al., 2014, 2015)

The value of some of those indicators were calculated through simple statistical pro-
cedures on the recorded data such as the average speed, number of brakes, or standard
deviations.

The numbers of braking and accelerating events are measured in time windows, allow-
ing for a comparison between different time windows. The average fuel consumption is
based on user input data describing the vehicle average consumption and the smartphone
recorded data which allows to obtain the distance travelled.

Curve and turn detection is made by tracking the angle difference in the direction be-
tween two points using the formula:

Dir = tanh(sin(δ2 − δ1) ∗ cos(ϕ2), cos(ϕ1) ∗ sin(ϕ2))− sin(ϕ1) ∗ cos(ϕ2) ∗ cos(−(ϕ2 − ϕ1))

The intensity of an acceleration in this study is given by the magnitude of the acceleration
vector in all three dimensions, the following formula applies:

Intensity =
√

Acc2
x + Acc2

y + Acc2
z

The classification on of each metric is done based on thresholds obtained from the quan-
tiles of the data when ordered, namely the top 5%(>95%) were considered Red events, the
following 15%(80-95%) were considered Yellow events, and the rest Green events. Green
being the most desirable type of event followed by Yellow and then Red, respectively.

More than the above a macro scenario was also taken into consideration, in which the
platform tries to assess external conditions of traffic. The main indicators regarding this
aspect are Road Congestion and Road high speed(Silva et al., 2015). To accomplish this, the
map is divided into a grid of squared regions, the results in each squared cell of the grid
are then aggregated and averaged the ensuing result is illustrated in Figure 19. The data
is then attributed one of two classifications, high speed squares, and low speed, congested,
squares. This classification is based on whether the average speed is that which is above
the 80% quantile and the inverse is a low speed square, an approach similar in nature to
that of individual assessment.

The trip data and scoring used for contextualization and training respectively, in the sys-
tem developed along this dissertation originate in the PHESS Driving platform introduced
by the authors in Silva et al. (2014) and Silva et al. (2015).
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Figure 19.: Aggregated User Data on Community Map in Silva et al. (2015).

3.2.2 Traffic Flow and Road Conditions

Evaluation through regions is also adopted by Dolui et al. (2013) creating bounding rect-
angles as illustrated in Figure 20, in this case the authors attempt to determine the status
of traffic of a particular region using real time data. This work uses the GPS coordinates
and respective time stamps to calculate the speed of the vehicle at the instant of each such
record.

Data is aggregated in a server and stored in a database, requiring therefore internet
connectivity. The area covered by the smartphone networks, is then divided into rectangular
regions, these are defined by a set of four boundary points each with two coordinates. Just
like in Silva et al. (2015), Dolui et al. (2013) does not account for altitude when defining
regions.

Dolui et al. (2013) defines instantaneous speed as:

Sins(i) =
√
(Xi+1 − Xi)2 + (Yi+1 −Yi)2

ti+1 − ti

This was deemed sufficient to detect the traffic scenario, but not accurate enough to
describe the vehicle’s actual speed since such a formulation has unnecessary spikes of
both positive and negative acceleration. The cumulative speed was calculated through the
formula:
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Figure 20.: A sample region in Dolui et al. (2013).

Scum(i) =
∑

k=i−j
k=i vins(i)

j + 1

Where the window j = 3 was in this case deemed to produce the smoother line describing
speed.

The instant acceleration between two instants was defined by the instant speed in:

Ains(i) =
vi+1 − vi

ti+1 − ti

Direction was formulated qualitatively and depends on a series of rules comparing the
coordinates of two consecutive points. The caveat of the rules applied is that they fail near
the International Date Line.

Accelerometer values are used to determine braking due to potholes or speed breakers,
and is estimated based on the change of accelerometer values compared to a frame of
reference.

Just like with instant acceleration there are two methods of estimating this deviation
in accelerometer value, the initial value method and the cumulative method. The first is
described by:

∆Accl =
√
(xi − ax)2 + (yi − by)2 + (zi − cz)2

Where the vector(ax, by, cz) is a calibrated initial value that serves as frame of reference.
And the second, the cumulative method, is described by:
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∆Accl(i) =
√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

Traffic congestion can be calculated from the actual speed of the vehicles, as defined by
the cumulative speed formula. For a region Ri the average speed of n vehicles in the time
span of m instances is calculated using:

Sav(Ri) =
∑k=n

k=1
∑

j=m
j=1 (Scum(j))

m
n

Which is considered a measure of congestion, another measure of congestion presented
in Dolui et al. (2013) is the number of halts, considered to be when Scum < 1km/hr, defined
by the halting frequency H f req and halting time Ht, the parameter taken into consideration
is then the average halting time of a car over a time span defined by:

Hav(Ri) =
Ht

H f req

Given the above described parameters, then the authors regard retardation of the vehicle
in two ways, either it is due to a pothole or speed breaker, or it is due to growing congestion
in a road. This distinction is made based on the aforementioned accelerometer values,
where the deviation of acceleration previously described as δAccl is substantial then it can
be interpreted as there being a pothole or speed breaker.

Based on a sequence of rules comparing the parameters among themselves or with simple
statistics such as estimated average and deviation, the authors classify both traffic(Open,
Normal, Slow, Congested, or Impending) and road status(NULL, or Pothole). Combining
both to explain slow traffic as being due to a pothole when they are detected simultaneously.

In Akhtar et al. (2014) the authors opted for fuzzy inference for evaluation of data, this
data has as a source a smartphone. In this work accelerometer reads are considered mean-
ingful based on the axes according to the following Table 3.

Table 3.: Type of motion based on the axis used by Akhtar et al. (2014).
Axis Direction Type of Motion

X Left/Right Lane Change
Y Front/Rear Acceleration/Deceleration
Z Up/Down Road Anomalies

Combining GPS and accelerometer data in a fuzzy system, the presented work produces
a safety value.

In Saiprasert and Pattara-Atikom (2013) a GPS based approach is made to detect speeding.
The elements retrieved from the recorded GPS data are a measure of instantaneous speed
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of the vehicle at each data sample, the position composed by the latitude and longitude
of each data sample and the heading which is the direction in degrees East of True North.
The authors take a simplistic approach to detecting speed by checking when a consecutive
instantaneous speed values exceed the speed limit during a specified amount of time. This
study also focused in comparing the GPS receivers of different smartphones as well as the
speed of recorded in the car’s speedometer(Figure 21), their findings suggest a fluctuation
in instantaneous speed of approximately 4km/h. The study concludes that due to such a
constant speed offset on data from smartphone GPS, that it is as accurate as the values from
a car’s speedometer.

Figure 21.: Speed recorded in a journey presented in Saiprasert and Pattara-Atikom (2013).

In Kovacheva et al. (2013) the authors present the Luxembourg based project LuxTraffic
with the goal of providing real time traffic information using smartphone sensor data. This
approach segments roads and then aggregates data by segment. Using the GPS and smart-
phone location services on a static map, the project uses several mapped checkpoints and
is able to determine the segment of the map the vehicle is in. The average speed is calcu-
lated with distance over time, and the attribution of a traffic flow state is dependent on the
average speed of the segment it characterizes. The validity of data is decided based on an
algorithm that depends on the day of the week, the hour of the day, as well as the speed
captured, elements like whether it happened on rush hour or on a Sunday or Saturday are
considered. For segments with absent data, since the platform works in real time, the au-
thors use a the CITA(Cita.lu, 2016) service which has traffic reports based on the amount of
vehicles detected, to complement the information of the platform. This allows the authors
to create a platform that uses both mobile and stationary sources of data to map traffic flow
status.

Goncalves et al. (2014) presents a system that assesses both traffic conditions and driving
performance. Traffic was measured using speed calculated with distance over time using
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the GPS as a data source. If in a time window the average of the vehicles is equal or above
the speed limit then it signifies that traffic congestion is low, and the lower the vehicle
velocity meant the higher the traffic congestion. Driver performance presented was solely
in terms of whether or not the driver went over the speed limit.

While driver-centric approaches are the topic of plenty of studies found in the literature
as was showcased above, there are also studies where road conditions are the focus. Astarita
et al. (2014) was one such study where the smartphone accelerometer z-axis, sound sensor,
and GPS were used to detect road anomalies using a simple formula(found in 18) based
on difference of vertical acceleration(m/s2), difference in sound level(dB) and difference in
time(s) with thresholds obtained in the experimental results. When only acceleration or
sound are out of the provided thresholds it is considered a state of probable road anomaly.

d∆AccZ

dt
> 3∨ d∆AccZ

dt
< 10∨ ddB

dt
> 2 (18)

In Douangphachanh and Oneyama (2013) the authors attempt to estimate the Interna-
tional Roughness Index(IRI) using a smartphone in a more natural scenario, that is, with-
out affixing its position on the vehicle, in locations where drivers would be more likely to
put their smartphone while driving. For this they use the Vehicular Intelligent Monitoring
System(VIMS) to establish what the actual IRI is. The study compares sampling data at
different frequencies and concludes that data gathered with a frequency in the range of
40-50Hz is better at expressing road roughness condition.

3.3 summary

From analysing the state of the art one can conclude that there is an abundance of different
approaches, both in terms of techniques used, which range from simple methods to more
complex machine learning methods, as well as in terms of what data is worth analysing.

The approaches are also varied in perspective, with some works depending on stationary
sensing points, while others depend on smartphones or other mobile devices.

Even the testing context does not appear to be overwhelmingly biased towards one spe-
cific setting, where some studies prefer a controlled environment, others gave preference
for a more realistic approach. And while some were tested in a physical context others
were tested in a virtual context using simulations.

Because the perspectives of each of the approaches was so different, it’s not possible to
make a fair performance comparison between them.
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4

D E S I G N A N D I M P L E M E N TAT I O N

Contemplating the State of the Art and research done in this area, it became apparent
that the current focus of research is on the driver or the vehicle motion when making an
assessment of issues occurring on the road. Visual observation of the PHESS Driving results
on the website seems to suggest some relation between problematic driving behaviour and
neighbouring road objects such as roundabouts and road junctions.

These observations lead to a research into whether contextual factors play a role in road
traffic issues.

With that as a motivation some research was made into that matter, it was found that
according to Khattak et al. (1998) weather plays a significant role in driving accidents, and
that according to Lin et al. (1994) time is also a significant factor. This presented both a
problem and an opportunity, the problem being to find out whether contextual information
can be used to identify situations that lead to problematic driving, and the opportunity
to try to model contexts which are prone to leading to issues without depending on prior
knowledge concerning the vehicle or driver’s state.

While, that by itself is a worthy problem to solve and an opportunity to explore, the
initial purpose of creating an intelligible result was still a concern, it is the author’s belief
that there is inherent value in having some comprehension of the contributing factors that
lead to problematic behaviour.

This work was developed as an add-on module to the PHESS Driving platform, making
use of the platform developed by Silva et al. (2014) and Silva et al. (2015). This meant access
to both the datasets collected using the mobile application, and the results of the analysis
performed, namely the dangerous driving events detected during each trip.

With access granted to the data processed by the PHESS Driving platform, two main
points of interest were identified, the first was that of enriching the platform with contextual
data, and the second was to find out whether the ensuing contextual information can stand
useful and lead to intelligible results on its own.

The development plan was then to divide the solution into two stages, the first was to
be an aggregation platform that created a fuller picture of a trip, and the second was to
be a means to analyse the data and create a means to model problematic driving based on
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contextual aspects, furthermore it should be capable of delivering an intelligible report of
the results obtained.

4.1 proposed approach

Instead of creating a single monolithic piece of software that encompassed the whole solu-
tion it was decided that two components would be created, each one dealing with a different
concern, that of enriching the data and that of creating an analysis and subsequent reports.

This proposed two part system would as such enable each part to be used independently
of the other.

Next it was necessary to define how to enrich the present data, weather and time were
two obvious candidates, to those it was added the notion of neighbouring locations. These
correspond to points of interest such as a neighbouring Coffee Shop or ATM, as well as
areas of interest such as a neighbouring University Campus or Park.

Because it is a widely adopted means of communication and since it offers very interest-
ing possibilities, it was decided the two platforms that made the system were to communi-
cate any results to the outside over http. Furthermore JSON was chosen as the format of
delivering the results, the three candidates contemplated for such were JSON(4.1), XML(4.2),
and YAML(4.3).

{
"trip": {

"tripId": 1,
"averageSpeed": 50,
"entries": [1,2]

}
}

Listing 4.1: Example of JSON.

<trip >
<tripId >1</tripId >
<averageSpeed >50</ averageSpeed >
<entries >

<id >1</id>
<id >2</id>

</entries >
<trip >

Listing 4.2: Example of XML.

trip:
tripId :1
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averageSpeed :50
entries:

- 1
- 2

Listing 4.3: Example of YAML.

A format was chosen by taking different aspects into consideration, firstly every format
contemplated had the capability of correctly representing the information. This meant there
was a need for a hierarchical structure which all three allow, and an ability to portray lists
of entries also present in all three. Secondly the relative size among formats, it’s apparent
just by looking at the examples that the overhead incurred in using XML is larger, and
it appears to be specially noticeable in list elements, some of the results, namely on the
enriched data side, were bound to contain large lists of elements that could easily number
up to the thousands, for this reason XML was deemed to have too large an overhead for
the solution intended. This left YAML and JSON, on one hand the first appears to have less
overhead, even if only slightly so. On the other hand JSON appears to be very pervasive on
the web and can be easily used with standard Javascript, which would later become useful
while building a demo web page in the final stages of the project. More than that JSON
was also the data format used by the existing PHESS Driving API endpoints, thus choosing
JSON allowed for an uniform format of communication.

ENRICHING DATA Data enrichment was chosen to be implemented in a reactive way, this
element is to be a web server waiting for a http request to enrich a trip with contextual
data, after consulting with the maintainers of the PHESS Driving platform it was
decided that this result is then to be posted to the PHESS Driving platform using a
http endpoint specifically created for this purpose.

ANALYSING DATA Data analysis was also planned to work in a reactive way, answering
requests for a model or a predictive report on a specific situation. Later on a demo
page was added for the purpose of demonstrating the system at work with a web
client.

In conformity with the theme of this work the project was given the handle IDM which
stands for Intelligible Data Metrics.The IDM system was planned to encompass the two
logic components above described, as well as a database, and a cache of files with results
of some of the raw requests to diminish the total amount of requests as much as possible
since third party services usually have limits on the amount of requests over a period of
time or even, as a whole, caching the responses helps to avoid duplicate requests.
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4.2 system architecture

The architecture of the IDM system consists of two main components, the aggregator and
the analyst, these serve the functions their naming implies, the first aggregates data from
various sources and paints a fuller picture of trip entries, the second performs data analysis
in order to create the desired model, as well as, produce a few choice evaluation metrics
regarding the model. These two components are connected in the sense that they expect
and operate on a similarly structured database. The overview of the system can be found
in Figure 22.

Figure 22.: The IDM system architecture.

As can be seen the architecture does not demand a direct dependence between logical
components, in the development chapter(Chapter 4.3) each component will be further ex-
plored and detailed. The map matching addition as a data source while not directly a
contextual feature used in the end analysis, is an important data fusion step and an integral
part of enriching the information. Map matching was explored early on, and its purpose
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is to connect the GPS entries to a point in a given road path, thus providing a context of
where in the road network each entry occurred including information such as street name,
points of interest, and areas of interest surrounding the path the vehicle was travelling in.
The map matching happening in an outside system was decided during development and
only later added to the system architecture.

It is observable in the scheme shown in Figure 22 that the component responsible for
enriching the data, in that scheme labelled as Aggregator, demands little interaction with a
system user, which in this case can refer to any client capable of submitting the appropriate
http GET request. The decision to have a manual lever, so to speak, capable of triggering
the enrichment of data from a batch of trips was made with the PHESS Driving maintainer,
allowing him to choose an opportune schedule for the PHESS Driving platform to receive
the enriched data resulting from the request and aggregation as well as picking which trips
are to be enriched and then further analysed.

The enriched data goes to two different components from the Aggregator, as previously
discussed it is sent back to the PHESS Driving platform, but it is also stored in a database
belonging to the IDM system, this is the information that will then serve as a source for the
features analysed in the Analyst component.

4.3 decisions

This section will go over the major decisions related to the development of the solution
proposed. It will encompass technologies, data sources, the models, and evaluation metrics.

4.3.1 Technologies and Models

The development of the system described in the proposed solution required a varied array
of technologies and tools with different scopes and purposes. One of the earlier decisions
was that of the programming language of the logic components, the choice was to use
the Scala language which like Java runs on the JVM and can seamlessly make use of Java
libraries, thus carrying the advantages of using its large ecosystem. Ultimately the choice
came down to personal preference of the developer.

The database of choice was MongoDB, it stores information in collections of documents
and it is NoSQL. There are many interesting features about it regarding the intended use
case, it allows for complex documents instead of rows, it can be distributed, and it works
well with JSON formats. But it was the geo-indexing feature that made this not only viable
but also the chosen database for the project at hand. The geo-indexing feature allows for the
creation of collection’s index based on a given document’s field which contains a GeoJson
object. When this type of index is present complex geometric queries can be made over
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a collection. The discovery of neighbouring locations was implemented using this feature.
MongoDB only guarantees ACID properties at the document level though, not at collection
or database level. This issue was not problematic to the specific use case of this work since
the data analysis is fault tolerant and will simply discard any entry that does not have all
the expected values.

Data analysis and processing was performed using the Apache Spark engine, the choice
came down to the distributed nature of Apache Spark which can allow future scaling. The
reason for focus on the scaling nature of the data processing engine was that after collecting
all data and creating the enriched dataset, the amount of features numbered in several
hundreds and the amount of entries was over fifty thousand, this encompassed only a
few dozen trips and as such a limited area where trips happened. Having the capability to
distribute workload may therefore prove vital to continued operation. Furthermore, Apache
Spark has a machine learning library with some common methods including Decision Trees.
An extension to plug MongoDB data into Spark was also found and used.

The HTTP server is made using Scala’s Spray and using the actor model to dispatch
requests in an asynchronous manner. The choice was mostly made due to simplicity of
implementation and how the actor paradigm abstracts some issues of concurrency. Further-
more the Akka actor library that was used in implementing the server was also in use for
purposes of request scheduling in the project so making use of it was convenient.

One of the important decisions to be made was how to model the data so that predictions
could be made concerning problematic road traffic situations. As mentioned before, not
only that, but the factors of a problematic situation were also an important aspect to be
taken into consideration, with the intent of helping the user comprehend the prediction.

Of those tested, the chosen method to model the data was the Decision Tree, otherwise
known as Classification Tree, this method is capable of performing a qualitative classifica-
tion which was a requirement, it also allows a description of the factors that had a role in
the prediction, those can be obtained by finding the branches that lead to said result. The
overview of these methods can be found in Section 2.3.4.

Another attractive aspect is the depiction of the model itself, the tree is easy to compre-
hend and visualize, it can also provide a fuller picture by detailing what happens with the
variation of the factors that lead to one of its leafs, which represent classifications.

So as to establish how well models work at predicting a baseline was needed to be
established, for this three models were created. The coin toss model is a simple 50% chance
model implemented manually to serve as one of three naive approaches that establish a
baseline, the other two are the all-in and all-out approaches, these consist of assuming all
classifications to be problematic or all classifications to be not problematic. This is obviously
an ultimately unrealistic and useless approach, but does provide points of reference from
which to improve on various evaluation metrics.
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Choosing other models for comparison came down to availability and variety, both cho-
sen were readily available in the machine learning library being used, Apache Spark ML,
and were of varying nature one being the Support Vector Machine and the other being
Naive Bayes, an overview of these methods is made in Sections 2.3.3 and 2.3.5 respectively.

In the end six models were measured against each other, the three baseline models, along
with the Decision Tree, the Naive Bayes, and the SVM models. Chapter 5 exposes the details
of the tests run with these models along with the results obtained.

4.3.2 Data Sources

This section will present the data sources used in this work. These sources are external
to the work used, and connected to via http requests. Some of these sources required
the creation of accounts and the use of keys to access the API, and some of the APIs
impose limits on the amount and magnitude of requests depending on the used license, for
the purpose of this work all licenses obtained were non-commercial and free. Depending
on how the workload evolves and how the nature of the PHESS Driving platform grows,
different licenses may be required in the future. The software was created with this in mind
and allows for the use of different access keys by manipulating its configuration file.

PHESS Driving

People Help Energy Savings and Sustainability, or PHESS, is a platform developed with the
intent of being useful to people concerning the matter of energy saving and sustainability.
PHESS Driving is the component that deals with creating driver profiles and providing
feedback to the user in order to help them perform better. As presented in Silva et al. (2014)
and Silva et al. (2015) this platform creates a score for various types of events, the web server
also allows for the retrieval of trip information containing records of GPS, Accelerometer,
Sound, and Luminosity given the appropriate credentials. All data is retrieved in JSON
format, and the IDM system makes use of acceleration, and GPS information, as well as the
time stamps and scoring attributed to events happening at the time of those records.

Location information using OpenStreetMap

OpenStreetMap, henceforth referred to as OSM, is a project aiming to create a map of the
world distributed as Open Data. This map is collaboratively created and maintained by
a volunteer community of mappers with an emphasis on local knowledge. This includes
information such as roads, trails, cafés, railway stations, and more.

This service was chosen over alternatives such as Bing Maps, or Google Maps, precisely
for being an open data project, having little in the way of service and data usage limitations
other than fair use and physical constraints.
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This service is used both directly and indirectly by the Aggregation Server, the indirect
usage is done by the map matching service.

The direct use of this service was done as calls to three endpoints on the api, using GET
methods and coordinates or way identifiers as parameters. The responses retrieved were
structured as XML documents.

OSM served as a means to gather data regarding streets, such as their name and geometry,
as well as data concerning points of interest (PoI) and areas of interest (AoI) surrounding
the streets. This is some of the contextual information to be added to the raw information
collected from mobile sensors.

Weather Underground

The Weather Underground service has existed since 1995, it was chosen due to the ease of
access to historical weather information.

The data retrieved consists of Humidity, Temperature, Wind Speed, Wind Direction, and
Precipitation. It comes structured in a JSON document that describes the weather through-
out the day.

Track Matching

Track Matching is a service that performs map-matching of location data on the Open-
StreetMap road network. This service is used to match the coordinates of a trip retrieved
from the PHESS Driving server to the road network. The data retrieved consists of geome-
tries as GeoJSON, a format of JSON documents for the description of geometric features, as
well as projections of the raw GPS data into points on the road itself.

While the matching does appear to be accurate to the route taken, the projections them-
selves seem to be done in naive manner to the closest point in the route detected.

Google Timezone API

The Google Maps Timezone API is part of Google Maps and allows for the retrieval of
the timezone of coordinates, together with the Joda Time library this information permits
an accurate estimate of what was the local time of the day of some entry, accounting for
daylight savings time and position on the globe.

4.3.3 Initial developments

The map matching method required some exploration, it was found that there weren’t many
readily available tools for the job, with the top contenders being GraphHopper, running an
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Figure 23.: Visual analysis of GPS points(blue) in comparison to the calculated road path(red).

Open Source Routing Machine(OSRM) server, use the Track Matching service, or use some
of the services that offer access to the OSRM capabilities like Mapbox.

GraphHopper can be used through Scala, and so made for a compelling alternative, but
upon visual analysis it turned out that its matched paths were not coinciding with the trip’s
path.

Between using the Track Matching service and running an instance of an OSRM server,
the choice came down to implementation where the Track Matching service only demanded
the implementation of a client to the necessary API endpoints and the OSRM demanded
setting up a server to have running. The Mapbox service has a matching API as well, but is
very limited in the amount of entries allowed and demands that the Mapbox map be used
in the same project. In the end the chosen method of obtaining a match of the GPS entries
on the road network was to use the Track Matching API.

Of course that once chosen its adequacy still had to be evaluated, this consisted mostly of
visual comparison and interpretation. To analyse visually the leaflet.js 1 Javascript library
was used, this allowed the drawing of the path and GPS points on a real map in order to
ascertain whether the GPS entries belong to the calculated paths.

The most important characteristic, that of matching a path, seemed to be visually consis-
tent as can be seen in Figure 23. In this analysis there is a comparison of calculated speed
based on GPS distance over time. This comparison was made to showcase the differences
in speed between the original GPS entry and the projected GPS point on the road path.

1 The leaflet.js library can be found at http://leafletjs.com/
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Figure 24.: Case where the map matching inferred incorrectly the path.

The projections are showcased through green lines connecting the point on the path to the
original GPS point which is represented by a marker in blue.

In Figure 24 a situation where the matching algorithm failed to correctly predict the path
is illustrated. The GPS points are colored according to the magnitude of speed error be-
tween the raw GPS and the matched projections from less error which is green to gradually
more error from yellow to orange to red. So while most of the visual analysis showed that
the algorithm was accurate in calculating the travelled path, there are limits to it’s matching
capabilities. In the presented Figure the raw GPS was shifted to the left of the road it took
place in, and so when there was a path parallel at that same distance it incorrectly assumed
the driver changed to that path. In this case it was a path that went into a gas station
parallel to the main road. This analysis suggests there may be some correlation between
speed error and incorrect matching.

Further analysis shows that the speed error between the matched projections and the raw
GPS can also point to other issues, namely that of incorrect point projections as can be seen
in Figure 25, in this case it appears the projections are simply being made to the nearest
point in the path and as such in some situations such as the illustrated one, several points
will cluster into a single corner leading to a speed of 0 within the clustered sequence of
points. Even when a more complex path is correctly inferred the algorithm tended to make

48



4.3. Decisions

Figure 25.: Projection of several GPS points to the same point in a curve leading to speed error using
the map matched points.

some problematic projections of the GPS points into that path as can be seen in Figure 26,
where it is visible that speed error can also correlate to incorrect point projections.

Figure 26.: Complex path correctly map matched, but incorrect point projection.

In the end this solution was considered good enough since obtaining the path itself is the
fulcrum of finding the street name and other contextual information regarding said street
and nearby locations of interest.
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4.4 implementation

This section will expose the Implementation of the IDM System, from the system’s logic
composed of the two components of aggregation and analysis of data and information, to
the database and other storage concerns.

4.4.1 Storage scheme

Information was stored both in a DB and in files. Files were used to save a cache of requests,
this was done to deal with limitations on the amount of requests or resources in each of
the services used. Any request to the PHESS Driving platform or to the TrackMatching is
cached in files. This caching was implemented at the get go in order to limit the requests
made to both services. Because it was implemented so early it does not use the database,
the responses are saved directly into JSON files.

Weather requests are not cached because there is no advantage due to the uniqueness
of the requests, depending on specific coordinates and place. For those same reasons the
Google Timzeone API responses are not cached in file.

All information that will be relevant to the analysis performed, is maintained in the
MongoDB Database.

The data is divided into different collections, according to use and content. Each collec-
tion is composed of documents and indexes. The documents contain structured data easily
accessible as JSON objects. The indexes indicate fields or more complex keys to search
through. These are not inherently necessary, but they were observed to increase the per-
formance of queries greatly. Besides performance, certain types of indexes provide logical
advantages, this is the case of one of the used indexes, the geoIndex which indexes GeoJ-
SON in a geo-spatial manner, allowing for queries such as geometrical intersections, which
are used in this work.

The various collections will now be described, as well as a brief explanation for why they
were chosen in this manner. Since MongoDB does not have foreign keys like SQL Databases
each collection will be presented on its own in pseudo-json format.

{
"_id" : Long ,
"tripId" : Long ,
"timeStamp" : Long ,
"rawGPS" : {

"lat" : Double ,
"lon" : Double

},
"rawSpd" : Double ,
"matchedGPS" : {
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"lat" : Double ,
"lon" : Double

},
"matchedSpd" : Double ,
"matchId" : Long ,
"osmId" : Long ,
"weatherSampleTime" : Long ,
"minute" : Int ,
"hour" : Int ,
"dayOfWeek" : Int ,
"dayOfMonth" : Int ,
"monthOfYear" : Int ,
"year" : Int

}

Listing 4.4: The tripEntries collection

The tripEntries collection, described in 4.4 contains information relating to a few different
aspects, these are grounded on a GPS record from the PHESS Driving platform. The _id,
tripID, timeStamp, and rawGPS are all values retrieved from the PHESS system, and are
respectively, the id of the GPS record, the epoch time in milliseconds when the record was
saved, the GPS values retrieved. The matchedGPS are the coordinates of the map matching
projection of the original record, matchedSpd and rawSpd were calculated using a sliding
window of size two, based on the time between records and the distance of the GPS points,
respectively for matched GPS and the original values obtained from the PHESS server. The
matchID is an id attributed by the TrackMatching platform and has an equivalent value
in the matchEntries collection in the field _id. The osmId is the id of the way in the Open-
StreetMap platform where the matched GPS point rests. The weatherSampleTime is the epoch
time in milliseconds of when the weather information was sampled. The minute, hour, day-
OfWeek, dayOfMonth, monthOfYear, and year are the corresponding values in the calendar
taking into account the timezone of the GPS.

{
"_id" : Long ,
"tripId" : Long ,
"entryIds" : [Long , ...],
"path" : {

"type" : "LineString",
"coordinates": [[Double , Double], ...]

},
"wayName" : String ,
"wayInfo" : {

String : String ,
...

},
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"pois" : [Long , ...],
"aois" : [Long , ...]

}

Listing 4.5: The matchEntries collection

A matched entry contains the map matched version of a path in the road network, those
are store in the matchEntries collection, see 4.5, the _id is the id attributed to such path
on the TrackMatching server, the entryIds is the list of ids of GPS records on the PHESS
Driving platform that constitute the current path, the tripId is the id attributed by the
PHESS platform to the trip of the GPS records in question. The path is a GeoJSON string of
lines described by a list of GPS coordinate pairs(Latitude and Longitude), the wayName is
the name of the way this path is in retrieved using the OpenStreetMap API. The wayInfo is
the tags associated with said way in the OpenStreetMap platform, each tag is a pair of two
strings. The pois and aois fields refer to the ids of Points of Interest and Areas of Interest
which are within a perimeter surrounding the path, this process will be described bellow
in this document.

{
"_id" : ObjectId ,
"id" : Long ,
"tripId" : Long ,
"evType" : Long ,
"evValue" : Int

}

Listing 4.6: The tripEvents collection

The tripEvents collection, represented in 4.6 stores all events found in the PHESS Driving
server, _id is an automatic field done by MongoDB for indexing purposes, the id field is the
id of a trip entry where the event occurred, the tripId is the id of the trip where the event
occurred, evType and evValue are respectively the event type and event value as defined by
the PHESS Driving API.

{
"_id" : Long ,
"validGPSPercent" : Double ,
"avgFrequency" : Double ,
"stdevFrequency" : Double ,
"avgDistance" : Double ,
"stdevDistance" : Double ,
"avgMatchingError" : Double ,
"stdevMatchingError" : Double

}
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Listing 4.7: The trips collection

The trips collection, see 4.7 has statistics and information regarding each whole trip, the
_id field is the id attributed to the trip by the PHESS Driving platform. The field validG-
PSPercent describes the percentage of GPS records that had map matched coordinates. Due
to the map matching algorithm used by the TrackMatching system always finding a match,
this was observed to be 100% of the time in the available trips. Since the algorithm itself is
blackboxed, this remains only a candidate explanation for that fact. The values of avgFre-
quency and stdevFrequency refer, respectively, to the average and standard deviation of the
frequency of entries during a trip. Analogously the avgDistance and stdevDistance refer to
the average and standard deviation of distance between the original GPS entries. The values
of avgMatchingError and sdevMatchingError respectively describe the average and standard
deviation of the Euclidean distance between the map matched projection of each entry and
its original GPS reading on the PHESS Driving platform.

{
"_id" : ObjectId ,
"id" : Long ,
"tripId" : Long ,
"timeInMillisUTC" : Long ,
"entryIds" : [Long , ...],
"temperature" : Double ,
"windSpd" : Double ,
"windDir" : Double ,
"humidity" : Double ,
"precipitation" : Double

}

Listing 4.8: The weatherEntries collection

The weatherEntries collection, described in 4.8, stores data related to the weather, its _id is
automatically added by MongoDB for indexing purposes, but is not used. At the moment
the id field corresponds to a time stamp in milliseconds when the weather was recorded, the
tripId corresponds to the trip where that record takes place. The field entryIds corresponds
to a list of ids of trip entries where the current weather information was deemed valid. The
temperature field is the temperature in Celsius, the windSpd is the wind speed in km/h and
windDir is the wind direction in degrees. The humidity is represented as a percentage and
precipitation is in mm.

{
"_id" : ObjectId ,
"label" : Double ,
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"nFeatures" : Int ,
"indexOfFeatures" : [Int , ...],
"valueOfFeatures" : [Double , ...]

}

Listing 4.9: The aggregated collection

The aggregated collection, see 4.9, is a collection of aggregated data used as a direct feed
to the Spark framework for analysis and distributed operations. As in other collections the
_id field is automatically created by MongoDB. The label field is a number that corresponds
to the classification of an entry, the entry is composed by that label and a feature vector.
Since it is a sparse vector three fields of information are relevant, the list of values, the total
number of features in the vector, and a list of indices whose positions map directly to the
list of values. In these lists the order is therefore important. Together those lists indicate the
index of a feature and its value, and are on average much smaller than the total number of
features (1-2%). Using sparse vectors when sparsity is so common among features allows
for large savings of storage space, it may in some cases even be possible for algorithms to
take advantage of this sparsity for performance purposes.

{
"_id" : ObjectId ,
"nodeId" : Long ,
"tags" : [[String , String], ...],
"loc" : {

"type" : "Point",
"coordinates" : [Double ,Double]

}
}

{
"_id" : ObjectId ,
"wayId" : Long ,
"tags" : [[String , String], ...],
"loc" : {

"type" : "Polygon",
"coordinates" : [[[Double , Double ] ,...]...]

}
}

Listing 4.10: pointsOfInterest and areasOfInterest collections

The collections osm_pointsOfInterest and osm_areasOfInterest, described in 4.10, are anal-
ogous, they have a MongoDB attributed _id field. An element id field, nodeId and wayId
which corresponds to the ids provided for the same elements in the OpenStreetMap plat-
form. A list of tags, each of which is a key-value pair, these are the characterizing labels

54



4.4. Implementation

found in the OpenStreetMap system for these elements, and a geoJson in the field loc, be-
ing that areas of interest are polygons while points of interest correspond to points. These
collections are geoIndexed to allow for complex geometric queries such as intersection be-
tween polygons and other polygons or points.

{
"_id" : Long

}

Listing 4.11: The regionsCached collection

The osm_regionsCached collection, described in 4.11, is a collection of simple documents
containing only the id of a region that has been cached. These are virtual regions calcu-
lated by the Analysis software for caching purposes, the process is more detailed in this
document in the Analysis Software section.

{
"_id" : Long ,
"tag" : [ String , String ]

}

Listing 4.12: The tags collection

The osm_tags collection, described in 4.12, maps each tag to an index number, this is later
used for the purposes of indexing values in the sparse vectors, as well as part of encoding
the textual labels into the feature vector. The _id field represents the index number, and the
tag field is a pair of strings.

4.4.2 The System Logic

Aggregation

The aggregation module works as a web service capable of servicing batches of requests
concurrently, making use of scala Futures, as well as, using Promises and Actors to control
request throttling and asynchronous requests.

The API endpoint of the aggregation component of the IDM system receives a batch of
ids from trips to be processed, each trip then goes through the illustrated process numbered
from 1 to 6 in Figure 27.

These ids are handed to an Akka Actor, this actor receives a message for each request,
parses it and starts the process of enriching the trip data, this is identified as step 1.

Using each identifier, information about trip entries is retrieved from the PHESS Driving
platform as can be seen on step 2. Of this information the timestamp of an entry, its GPS
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Figure 27.: Data flow in the aggregation component.

coordinates, and its driving behaviour score as determined by the PHESS Driving platform,
are used.

Next in the pipeline is the retrieval of date time information, represented by step 3, using
the Google Maps Time Zone API data is collected concerning the time zone code of the
trip, for each trip only the initial timezone code is considered. While this is something that
can be made to update with some frequency along the trip, it was deemed unnecessary,
since it is not very likely that a trip will significantly change its timezone. Nevertheless, if
the system were to be taken into a production setting then this is a detail that should be
pondered.

Following this process, in step number 4, using the joda time library for java, which has
compatibility with the Scala language, the day, month, and year are computed from the
time zone code retrieved earlier and the timestamp from the PHESS Driving entries. This
information together with the GPS location allows for the retrieval of a weather context
from the Weather Underground service.

Having the raw GPS and the date time context, the time stamped GPS is passed through
a map matching algorithm using the TrackMatching service, this results in a projection of
the raw points gathered from a smartphone’s GPS into the OpenStreetMap road network,
this is the 5th step in the illustrated scheme.

Using the map matched information and the OSM API, in step 6, all the map information
is retrieved within a bounding box surrounding a route. This information is then filtered
both in type, as well as in value so as to create a set of meaningful locations of interest,
without elements such as roads, or values like information about an address. This way
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Figure 28.: Example polygon surrounding a path.

only elements which are points or areas of interest like an ATM or a shopping mall, will be
used.

With the map matched elements and the locations of interest gathered, a process of
calculating a neighbouring area is initiated. This area is a polygon or multiple polygons,
this geometry is calculated and is then used to query against the database for locations
of interest intersecting that geometry using database functionality with geoIndexes. An
illustration of what would such a polygon look like can be found in Figure 28.

For each GPS entry, a driver’s behavioural score is retrieved from the PHESS Driving
platform, reducing the various aspects of this score to a single value containing only the
highest danger indicator among all possible indicators, and an indicator of zero if there’s
no value or event attributed to the entry. This score is only used internally for analysis and
isn’t returned as part of the enriched data.

Once all information is collected and saved, a small statistics report is generated regard-
ing the trip, with elements like the average error of map matching among others.

All the results are saved to the database, and then sent to the PHESS Driving platform
so as to enrich the data available. The local database serves for the purposes of further
analysis and processing of the data.

Analysis

The analysis component picks up where the aggregation software left, it connects Spark
to MongoDB and uses Spark to manipulate data through its distributed operations such
as map, reduce, filter, count, etc. as well as to leverage the presence of machine learning
algorithms in the Spark engine to model the data.

The software runs as a server with a simple API as well as a web page for illustrative
purposes where the decision tree model can be visualized.

There are several manners of approaching analysis, the most direct manner is merely to
try to check whether there’s a correlation between a location and specific conditions and
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Figure 29.: View of the web page’s structure.

a given driving behaviour, the chosen manner however was to frame this as a problem of
problematic location and conditions to a driver’s behaviour.

Driver behaviour comes coded into three classes green, yellow, and red respectively in
order of crescent danger or unwelcome behaviour as established by the PHESS Driving
platform. The PHESS platform classifies it as such based on the amount and intensity of
accelerations.

In the IDM project the goal was to delve beyond that and understand whether based on
such we can find relations to other aspects, namely proximity to locations and facilities, and
conditions such as the weather or time of day.

The data was reduced into two classes that describe a complete domain of possibilities,
namely whether an entry refers to a problematic behaviour, or whether it does not.

The created analysis prototype uses data gathered by the Aggregation Software, the strat-
egy starts by parsing all location tags. These tags are recovered from OSM data as pairs of
strings, for example a Sports Centre may be described as (“leisure”, “sports_centre”) as can
be found in 31. Using Spark operations such as distinct and map a list of all such unique
existing pairs is created. This list is then filtered leaving out some of the information that is
not of relevance to the Analysis, such as a building’s address. This effectively reduces the
noise of the data and modelling concerning such specifics would be regarded as overfitting
for our purposes of generalizing the characteristics of a location to classify other locations
whose navigation data is not yet available.

With a list of what are considered the interesting tags a map is created from index to tag
and vice-versa. In the current state of the database as of this writing this accounts for 920

such pairings.
These pairs are put together in a feature vector, using Spark’s sparse vector to take ad-

vantage of the sparsity of these tags throughout the datasets, this allows for much smaller
vectors to contain the required information by assuming that omission equates to the tag
not being present in the entry.
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The feature vector treats each tag pair as a binary value where one means the presence
of the tag, and zero means the absence of the tag.

Entries are then also filled with other data, namely weather data, which comes in a
continuous numeric form properly conveying the values of each of the weather attributes.
And date time data, which are integers on the due range for each of the characteristics, for
example a month is an integer between one and twelve.

While conceptually the features differ in type as described above, due to the spark imple-
mentation of the decision tree classification model they are represented as doubles in the
coded Sparse Vector.

Figure 30.: Form of input features on the web page.

A report page was created for demonstration purposes, the web page structure can be
seen in Figure 29. This page makes use of the API endpoint that returns a classification and
report about it given a set of features. It also makes use of the API endpoint that returns
the tree model currently in use and presents it to the user.
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Figure 31.: Report presented on the web page.

The page presents an easy to use form to fill with information regarding a single feature
vector, this input is then enriched with other data on the server side and ran through
the model, a list of a combination of factors is then presented as the justification for the
classification, as seen in 31. This form can be seen in Figure 30 and the model representation
can be seen in Figure 32.

Figure 32.: Model and its evaluation metrics presented on the web page.

There’s also the possibility of directly downloading a model, as well as information about
some evaluation parameters of this model, namely precision, accuracy, and recall.
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4.5 outcomes

The resulting system offers various services, the first is the batch processing of trips in order
to enrich their data, the results are then sent to the PHESS Driving server instead of the
request source.

The request for data enrichment demands a trip identifier, this is a number, and it serves
to retrieve the whole trip GPS from the PHESS Driving platform, the shape of such GPS
data is showcased in 4.13.

{
"tripID": Long ,
"GPSRecords": [

{
"id": Long ,
"timestamp": Long ,
"latitude": Double ,
"longitude": Double ,
"altitude": Double ,
"velocity": Double

}, ...
]

}

Listing 4.13: Raw GPS data from PHESS Driving platform

That data is then enriched for each trip, and is returned as a JSON document with the
structure described in 4.14. This returned document’s fields are analogous in meaning to
those stored in the IDM database and described in Section 4.4.1.

{
{
"statistics" : {

"id" : Long ,
"validGPSPercent" : Double ,
"avgFrequency" : Double ,
"stdDevFrequency" : Double ,
"avgDistance" : Double ,
"stdDevDistance" : Double ,
"avgMatchingError" : Double ,
"stdDevMatchingError" : Double

},
"entries" : [

{
"id" : Long ,
"tripId" : Long ,
"timeStamp" : Long ,
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"rawGPS" : {
"lat" : Double ,
"lon" : Double

},
"rawSpd" : Double ,
"matchedGPS" : {

"lat" : Double ,
"lon" : Double

},
"matchId" : Long ,
"osmId" : Long ,
"weatherSampleTime" : Long ,
"minute" : Int ,
"hour" : Int ,
"dayOfWeek" : Int ,
"dayOfMonth" : Int ,
"monthOfYear" : Int ,
"year" : Int

}
],
"matches" : [

{
"id" : Long ,
"tripId" : Long ,
"entryIds" : [ Long ],
"path" : [

{
"lat" : Double ,
"lon" : Double

}
],
"wayName" : String ,
"wayInfo" : {

String : String ,
...
String : String

},
"nearbyPOI" : [ Long ],
"nearbyAOI" : [ Long ]

}
],
"weathers" : [

{
"id" : Long ,
"tripId" : Long ,
"timeInMillisUTC" : Long ,
"entryIds" : [ Long ],
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"temperature" : Double ,
"windSpd" : Double ,
"windDir" : Double ,
"humidity" : Double ,
"precipitation" : Double

}
],

"pointsOfInterest" : [
{

"nodeId" : Long ,
"node" : {

"lat" : Double ,
"lon" : Double

},
"tags" : {

String : String ,
...
String : String

}
}

],
"areasOfInterest" : [

{
"wayId" : Long ,
"nodes" : [

{
"lat" : Double ,
"lon" : Double

}
],
"tags" : {

String : String ,
...
String : String

}
}

]
}

Listing 4.14: Enriched Trip Data

As can be seen there is a considerable amount of context added to each data point as well
as trip statistics concerning the map matching, and the original GPS data.

On the analysis component there are a four endpoints to speak of, one of them is the
benchmark endpoint that does not produce a result to the client, but is instead a trigger call
for the server to train the several different models and evaluate them using various metrics,
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the result is output to the server logger which is currently printing to the standard output.
In production this can be configured to other settings.

Another important part of the server is the tree model endpoint, this creates a JSON doc-
ument that describes the current Decision Tree model used by the server, a demonstration
of its use is done in the web page where this endpoint is used to generate the tree model
representation.

There are two more endpoints in the analysis server API, the demo web page itself which
has already been exposed in the Section 4.4.2, and the report endpoint which creates a
classification and a report on the reasons for said classification based on a set of provided
features. These features are the weather, time and date, and GPS position. Information
concerning the neighbouring locations is then automatically retrieved by the server and
processed in order to make use of the Decision Tree classifier. This last endpoint is also
used by the demo web page for the purposes of retrieving and presenting a report. As was
its purpose, the demo web page ends up serving as a proof of concept use of some of the
API.

4.6 summary

This section explains the challenges, how they were reached from an initial exploration to a
more mature view of the problem based on prior research. It then goes on to explain what
was proposed as an approach to solve the identified challenges. The result is a system,
denominated IDM for Intelligible Data Metrics, the architecture is presented in Section 4.2.

As was identified, decisions were made regarding the data sources, namely the services
which served as data sources for the system, and the storage of information related to the
various features as well as some of the caching options. Decisions also encompassed the
technologies to be used, this meant the system’s logic and the storage technologies, and the
tools to perform data analysis.

The following section, Section 4.4, explains the implementation, how the aggregation of
data occurs, as well as how the analysis is performed. Lastly an overview of the outcomes
of such a system was made, including which services it provides, the resulting enriched
data, and how the results of the analysis are offered. This included the responses to data
enrichment requests and the analysis requests.
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C A S E S T U D Y A N D E X P E R I M E N T S

In this chapter the case study will be presented, this case study regards trips belonging to
the PHESS Driving platform. An overview of the setup for any experimentation will be
done, including software and hardware details. Two sets of tests will be presented, the first
regarding the temporal performance of training the chosen model of a Decision Tree, and
the second set of tests will concern the evaluation of the model in comparison to others
with different sets of features.

5.1 experiment setup

The tests were ran using data captured by the PHESS Driving platform obtained between
July 2014 and March 2015. This entailed several drivers and devices used for capture,
and an average GPS recording rate of roughly a record per second with no restrictions
imposed on the drivers. Roughly 23.7% of recorded driving happened before midday and
the remaining 76.3% after midday. Trips were heterogeneous in time with the average trip
lasting 16 minutes and 47 seconds, and a standard deviation of 20 minutes and 14 seconds.
The shortest trip taking 1 minute and 16 seconds, and the longest trip taking 54 minutes
and 10 seconds.

Another important aspect to mention is the specifications of the machine and environ-
ment where experimentation was performed. All experiments were ran on Windows 10

64-bit Operating System, using Java Runtime Environment (JRE) 1.8 for 64-bit. The hard-
ware was an Asus N550JV laptop, with 8GB DDR3 ram and a Samsung SSD 850 EVO with
500GB as the sole hard drive, the CPU was an intel core i7-4700HQ at 2.4GHz.

Two sets of tests were made, the first performed were the training performance tests. The
goal is to help discern how the training of the Decision Tree model scales with more or
less entries, hopefully giving a reasonable snapshot of how it may perform in the future.
It is important to note though that this does not account for distribution over different
machines using spark, which should create significant overhead, so the reader is advised
to take the test results at face value and not extrapolate too far about the performance. It
should remain on the same trend so long as it is done under a single machine and within
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the memory limits, while spark is made to be able to use disk space as well as memory, it
is expected that having to resort to disk space during the training will lead to slower run
times.

The second set of tests consisted in creating different classification models using different
methods in order to contextualize the solution created with the Decision Tree.

A baseline was established with naive classifiers. Two of these classifiers simply consider
every entry to be problematic or every entry to be non-problematic, it bears no practical
usefulness on its own, but will serve to establish a sort of baseline over which to improve
upon. Another classifier used was the coin toss, this represents a random choice of tossing
a coin in order to determine whether a situation should be classified as problematic or
otherwise. Results will be compared to these naive approaches, so as to provide some
measure of how useful they are.

As reviewed in the contextual Chapter 2 in Section 2.3.6 there are many ways to evalu-
ate the classifier performance, ultimately no single metric appears to fit all scenarios and
therefore a choice must be made according to the demands of the problem. To enable do-
ing such, the problem was formulated in a simple manner, the system needs to be able to
find problematic combinations of features in such way that it could be useful in a real life
scenario.

The envisioned scenario was that of allocating resources to avoid contexts that are prone
to problematic driving behaviour. From the point of view of the driver, avoiding a single
point in the road is often fairly inexpensive, yet going through such a point can have sig-
nificant consequences. But from the city’s point of view, planning for and fixing possible
issues demands significant resources in terms of planning the road network or even which
sorts of buildings and spaces are allowed and where. Since this work is done in the context
of smart cities, as referenced in Section 2.1, the point of view of the city was given priority,
and therefore importance was given to lessen the waste of resources.

Identifying the combination of factors that lead to a problematic driving event, has been
addressed by the choice of the Decision Tree as the means to model the data patterns
leading to such events. The Decision Tree allows for the creation of a list of conditions
that lead to a problem when a problem is found. With that in mind it comes down to
finding an evaluation metric that would make it useful in a real life scenario, such as was
proposed above. The information used to discern issues is of three types, weather, time,
and neighbouring locations.

One of the things that is important to take into account on this matter is that the system
proposed is not supposed to find every single possible issue on the road, in fact it has a
specific scope. Firstly because it can not be assumed that the score attribution given by
the PHESS Driving, takes into account all types of issues, and secondly location, time, and
weather conditions should not account for all that is bound to cause an issue. As was
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5.1. Experiment setup

Figure 33.: Scope of problems the IDM System attempts to predict.

presented in Chapter 3 some of the problems may be caused by the driver’s own condition
(e.g. fatigue). This sort of physiological cause is not accounted in the model, and issues
deriving from that and other unaccounted for sources are not expected to be able to be
modelled using external factors alone. In fact Lin et al. (1994) found that the amount of
time one has been driving is a significant factor in accidents, and that 10 or more years of
driver experience consistently meant lower accident risk. None of which is generalizable to
the external factors proposed by this work.

Another thing that is of importance regarding the matter of choice of evaluation metrics,
is that not all categories are equal in importance. The negative category of the performed
binary classification, which is the non problematic situation, isn’t very informative itself.
This is clear, once we acknowledge, that it is not an indication of there being no problems
in actuality. This is because it only indicates that there are no predicted yellow or red events
as designated by the PHESS Driving platform. Consequently a situation that is marked as
non-problematic is only predicted to not have certain types of problems. The scope of
problems the IDM systems deals with is illustrated in Figure 33.

The choice then comes down to identifying whichever problems are identifiable with the
types of information taken into account, even if those problems end up being of a limited
sort. The primary metric of evaluation chosen was precision, this metric represents the
percentage of correct predictions made of there being a problem, this presents a great ad-
vantage to a real life scenario, the better the precision the more one is justified in spending
resources to investigate and consequently alleviate the problem found. Accuracy isn’t a
very useful metric by itself, specially in a case such as this where the categories are unbal-
anced and, naturally, a higher volume of instances of normal entries and a lower volume
of problematic entries is the case. Accuracy can lead to bad results since a naive classifier
that predicts all entries as normal would have a relatively large accuracy of roughly 83%.
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5.2. Results

Nevertheless accuracy is an indication of how relevant the classifier is on the whole, a small
accuracy means that a lot of the time the classifier can not be trusted to provide an accurate
estimate, as such Accuracy was considered a secondary element of evaluation to contextu-
alize the whole dataset in relation to the classifier. The other chosen secondary metric was
recall, this choice was based on providing context for the precision metric itself, a smaller
recall means that less problems are found. It is important to note that this metric serves as
context, for it is expected that the recall will be low seeing as the classifier is not intended to
find all sorts of issues but only a subset of them which relate to weather, time, and location.

5.2 results

The data set resulting from enriching the data of the trips recorded by the PHESS Driving
platform contained 64 trips and 144 weather entries, with 54,915 trip entries pivoted on the
GPS, 7,446 points of interest, 14,280 areas of interest, with 942 different tags for both points
and areas. The total amount of scored event entries retrieved from the PHESS Driving
platform was 121,653.

Temporal Performance of Training a Decision Tree Model

The results of the performance tests, concerning the training of the Decision Tree model,
can be seen in Figure 34.

Figure 34.: Evolution of time spent training the model with increasing numbers of input entries.
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5.2. Results

This shows an apparently linear evolution of time spent training with the amount of en-
tities provided, this result was expected as it is claimed in Spark.apache.org (2015) that the
training time should evolve linearly with the number of entries, features, and maximum
bins into which a feature is split, the last two remained constant during the tests. Unfortu-
nately while the data provided is sparse, the algorithm is not at the moment optimized for
such.

Comparison of the various Models and Features

Tests were made comparing the following algorithms, Coin Toss, Decision Tree using Gini,
Decision Tree using Entropy, Naive Bayes, and SVM. All implementations were from the
Apache Spark Machine Learning package except the Coin Toss which was created over
Spark but which was implemented by mapping each actual label to a random classification,
0 or 1. Other metrics were calculated besides the ones chosen and those metrics are logged
by the server to the standard output, but not saved into memory nor are they provided in
response to requests. Some of those results will be in an appendix to this document but
will not be discussed in this section.

While under sampling the training data, precision behaved differently from the usage of
the whole training set. Using 10,000 training entries the precision tended to vary, with the
lowest being a 77% precision and the highest 96% precision.

Method Precision Recall Accuracy
All Positive 0.169 1 0.169
All Negative 0 0 0.831
Coin Toss 0.166 0.511 0.484
DT(gini) 0.977 0.182 0.861
DT(entropy) 0.991 0.133 0.853
Naive Bayes 0.222 0.519 0.612
SVM 0.275 0.168 0.785

Table 4.: Results of models obtained with different methods.

In Table 4 the results using location, weather, and time are showcased. It is important to
note that due to random split of the data some fluctuation was observed from run to run.
In most runs there was no noticeable difference between the Decision Tree created using
Gini or Entropy as impurity measures. There appears to be a clear trade-off where some
methods were stronger in the recall and worse in precision. The decision trees were able
to obtain a very high precision at a cost of a low recall, whether this lower number is due
to there not being a relation between the used factors and a large part of the problematic
situations or not is unknown. The difference in performance may also be related to the size
of the feature vector and sparsity found.
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5.2. Results

For comparison of different aspects there was a test run using only weather elements.
The results can be found in Table 5, the major difference was in the outcome of the Decision
Trees, some slight variations in the rest can be accounted by the use of random splits for
a training and test set. Nevertheless it is important to point out that the Decision Tree
performance was worse.

Method Precision Recall Accuracy
Coin Toss 0.162 0.5 0.488
Decision Tree(Gini) 0.7 0.2 0.854
Decision Tree(Entropy) 0.97 0.116 0.853
Naive Bayes 0.229 0.535 0.624
SVM 0.3 0.189 0.793

Table 5.: Results of models obtained with different methods using only weather data.

Another test was run using only time features, the results can be found in Table 6. As
can be seen the results are in general significantly worse, with recall taking the highest loss
by comparison in most of the methods employed. As was the case in the rest, Coin Toss
remains fairly neutral to the data itself since it is a naive approach. It is worth noting that
the Decision Tree built using Entropy as impurity was able to reach a 100% precision, but
that such is accounted for by a significant loss of recall. Similarly the SVM method was
able to increase the precision in comparison to other runs, but it has a drop in recall. In this
case the SVM recall is so low that it makes the model be of little use, it predicted only 27

problems in a total of 15451 entries with 2661 problematic instances, and even so it missed
that estimate for almost half, that is, 12 of those 27 predictions.

Method Precision Recall Accuracy
Coin Toss 0.173 0.507 0.491
Decision Tree(Gini) 0.788 0.186 0.851
Decision Tree(Entropy) 1 0.099 0.845
Naive Bayes 0.231 0.239 0.732
SVM 0.556 0.006 0.828

Table 6.: Results of models obtained with different methods using only temporal data.

Lastly a test using only the neighbouring locations’ features was performed, the results
of this test are in Table 7. These results are in general inferior to the rest with the exception
of the Coin Toss model. The only model that has some, even if limited, predictive power
using the neighbouring locations’ features is the Naive Bayes Model. This may indicate
that the neighbouring locations are not very indicative of problematic driving situations on
their own, or it may be due to the limited amount of locations being taken into account.

From the above it is visible that the aggregation of all aspects provides a better perfor-
mance, especially in the case of Decision Trees, which are the target model in this work.
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5.3. Summary

Method Precision Recall Accuracy
Coin Toss 0.173 0.503 0.502
Decision Tree(Gini) 0.615 0.009 0.83
Decision Tree(Entropy) 0.615 0.009 0.83
Naive Bayes 0.265 0.073 0.807
SVM 0 0 0.829

Table 7.: Results of models obtained with different methods using only neighbouring location data.

The tests and evaluation show that this approach has some usefulness in discerning
problematic cases, but they also show that this approach has a limited scope of problems
it can detect, the latter was expected since the literature seems to point out factors of other
nature as also being significant towards risk and safety measures.

The results seem to indicate clearly that on their own, both weather and time can be used
to make predictions with some adequacy, as measured by precision. On the other hand
locations seem to perform very poorly on their own.

Curiously most methods seem to not perform as well as the Decision Tree method, this
result may warrant future study paying special attention to the sparsity of the data and
whether there is a correlation.

5.3 summary

In this chapter the experiments and results were described, firstly was an exposition of the
experimental setup, this included a description of the machine, operating system and other
relevant details concerning the context of the experiments.

After explaining the setup two experiments were described, that of training algorithm
performance with varying numbers of cardinality of the training set, and that of model per-
formance when predicting problematic events in driving as defined by the PHESS Driving
platform.

The results of the first experiment were the expected thus confirming the performance
asserted for the used implementation of the Decision Tree training algorithm.

The second experiment brought about some unexpected results, namely the better per-
formance of the Decision Tree over the Support Vector Machine in terms of Accuracy and
Precision, but depending on the feature vectors mixed results in relation to the Recall mea-
sure.
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6

C O N C L U S I O N

In this final chapter a summary and some conclusions regarding the work and research
performed will be made, there will be some suggestions for future work, both in the sense
of expanding the created platform as well as performance and production concerns. Related
work developed parallel to this thesis will also be presented.

6.1 work synthesis

This work had several stages, in this section a brief synthesis will be made from the begin-
ning and describing how it evolved into its current state.

At the start the work performed was mostly that of exploration, a study of what infor-
mation was accessible, how to collect it, and what to do with it was the first stage. Several
services were compared, and not all aspects made the final version, for example holidays
were left out, as the amount of trips collected were not sufficient to make a proper analysis
of the holidays.

The limitations and demands of several services were taken into account and the resulting
decisions were the five data sources currently in use. After some research a more defined
vision of the system began to form, at this point there was an exploration of map matching
and its relation to the raw GPS, this information later served to enrich the data and provide
extra analysis and information to the PHESS Driving server.

The next stage was the choice of tools to perform analysis, with distributivity in mind
the Apache Spark engine was chosen. Afterwards, since most of the research was done and
there was a concrete vision of what was to be implemented, was linking enriched data to
the PHESS Driving server in a feedback loop.

After the data retrieval prototype was implemented work began on creating the analysis
server. The initial phase of this stage was concerned in determining what methods to
use and what exactly was to be evaluated and which information should be used for that
assessment. The decision to not focus on specific particulars of each vehicle and driver was
made.
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6.1. Work Synthesis

Once the prototype of the analysis server was implemented retrieving statistics and cre-
ating several models for comparison was the next stage, this allowed for the evaluation and
validation of results as presented in Chapter 5. The writing of the dissertation occurred
in parallel to the implementation of the analysis server prototype and the tests and result
gathering.

Because the server was providing only machine-ready responses in json, it was decided
that a web page would be implemented to demonstrate the work done. This required
learning some part of a few technologies such as bootstrap1 and jQuery2 the first was to
organize the web page and the second to handle page elements and http requests.

Lastly the intuitiveness of the model was decided to be showcased in the demo page,
leading to learning of the d3.js3 framework and implementation of the tree visualization us-
ing that library. The last step was to finish this document by adding information concerning
all of the aforementioned.

Objectives

As was presented in Section 1.2, the main goal of this work was to create richer information
about road traffic expression.

This objective was accomplished as presented in Section 5.2, where the results of the
process explained in 4.3 were exposed, thus demonstrating that contextual data was fused
with the mobile data to achieve richer perspective of the driving situations found in the
recorded trips.

The achievement of the sub-objectives mentioned in the objectives section (1.2) was also
shown and expounded upon throughout this document. The study of data fusion can
be found in this document in Section 2.2, and so can an exploratory analysis of several
Machine Learning techniques be found in Section 2.3. The system was inspired by several
elements of the study that lead to it, these can be found in Chapter 3 and the Smart Cities
contextual Section 2.1.

The design of the system, application of data fusion, and creation of the system are
explained throughout Chapter 4.3, and the study of the system and its results can be found
in Chapter 5.

It is the author’s opinion that the objectives proposed were achieved, and that while there
is still a lot that can be explored, that the current results satisfy the scope of this work.

1 More information on Bootstrap can be found in https://getbootstrap.com/
2 The homepage of the jQuery library is https://jquery.com/
3 More details concerning the d3.js library can be found in https://d3js.org/
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6.2. Relevant Work

6.2 relevant work

During this dissertation other relevant work was performed in parallel to the study and
development of the IDM system. A scientific contribution was made to a published article
that was presented in the 9th edition of the IDC: International Symposium on Intelligent
Distributed Computing in 2015 Guimarães. The article was published as:

• Artur Quintas, Jorge Martins, Marcos Magalhães, Fábio Silva, and Cesar Analide. In-
telligible data metrics for ambient sensorization and gamification. In Intelligent Distributed
Computing IX, pages 333–342. Springer, 2016.

Besides participating in Quintas et al. (2016), the author also worked on acquiring certi-
fication on two online edx courses offered by UC Berkeley 4, which were relevant to this
work:

• "Introduction to Big Data with Apache Spark"5

• "Scalable Machine Learning"6.

These played an important role in being able to perform the analysis component of the
IDM system using Apache Spark. The first introduced the Apache Spark platform, its basic
elements such as the Resilient Distributed Dataset, and how to operate over this type of
dataset using distributed operations such as map and reduce, as well as the benefits of
some operations over others in terms of performance and when data should be cached or
variables broadcast. The second course focused on data analysis, going over the manual
implementation of linear and logistic regression, as well as principal component analysis
(PCA), and how to use and evaluate the machine learning methods provided by Apache
Spark.

6.3 prospect for future work

Future work could include some optimizations in the aggregation process, and an analysis
of time versus storage so as to know whether advantage can be taken of larger storage
space in order to save time in some computations.

As the platform grows and a variety of trips in different days of the year increases, fea-
tures such as flagging holidays could be introduced, it’s also expected that time of day and
day of week will play a bigger role as more and more trips at different times of the day
and different days of the week are recorded into the PHESS Driving server. This work may

4 More information at https://www.edx.org/school/uc-berkeleyx
5 Course page: https://www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs190-1x
6 Course page: https://www.edx.org/course/introduction-big-data-apache-spark-uc-berkeleyx-cs100-1x
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6.3. Prospect for future work

be evolved in several ways, one is to fully integrate with the PHESS Driving platform and
improve upon their mobile application to take into account many of the aspects discussed
in the state of the art chapter, namely mapping potholes and rough road conditions.

Another way is to create a mobile application from the ground up to collect the required
data, since this is the type of analysis that works better with more samples, it should be a
priority to spread the mobile application use as well as to have minimal energy consump-
tion which was a point mentioned in many of the works reviewed that used smartphones.

A proper mapping of speed limits would also be interesting to explore, although this
may imply a limited boundary for testing only where speed limits are known, and may
also incur in generalization problems since this information is not available everywhere.

In terms of data, the addition of several sources per type of data may present an interest-
ing scenario for future study as well.

Lastly, a separation of concerns may be beneficial, attempting to predict different types
of problems, namely on the three big sustainability aspects, economic, social, and environ-
mental. This can range from energy and fuel savings, to accident prevention, to more fluid
traffic flows. There’s also the possibility of approaching other types of conditions such as
pleasantness for the passengers.
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A
S U P P O RT M AT E R I A L

The full results of the comparison between models using all features:

Method Accuracy Precision Recall Specificity Inverse Precision
All Positive 0.169 0.169 1 0 N/A
All Negative 0.831 0 0 1 0.831
Coin Toss 0.484 0.166 0.511 0.479 0.828
DT(gini) 0.861 0.977 0.182 0.999 0.857
DT(entropy) 0.853 0.991 0.133 1 0.850
Naive Bayes 0.612 0.222 0.519 0.63 0.866
SVM 0.785 0.275 0.168 0.91 0.843

Method Balanced Accuracy F-Measure + Likelihood - Likelihood
All Positive 0.5 0.4 1 N/A
All Negative 0.5 0 N/A 1
Coin Toss 0.495 0.289 0.989 1.022
DT(gini) 0.591 0.174 211.153 0.819
DT(entropy) 0.567 0.129 567.549 0.867
Naive Bayes 0.575 0.328 1.405 0.762
SVM 0.539 0.146 1.865 0.915

Method Youden’s Index Discriminant Power AUC ROC AUC PR
All Positive 0 N/A 0.5 0.584
All Negative 0 N/A 0.5 0.584
Coin Toss −0.011 −0.062 0.495 0.38
DT(gini) 0.181 6.227 0.591 0.649
DT(entropy) 0.133 7.323 0.567 0.636
Naive Bayes 0.15 0.577 0.575 0.411
SVM 0.078 1.431 0.539 0.292
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Full results of the Decision Tree performance tests for different amounts of entries:

Entities Training Time Entities Training Time Entities Training Time
958 7,739 ms 9883 7,625 ms 20023 8,685 ms

1019 4,704 ms 10111 6,168 ms 20047 7,330 ms
987 4,781 ms 10057 6,355 ms 20207 7,170 ms
988 4,867 ms 9993 5,880 ms 20372 6,594 ms

1013 5,083 ms 10075 6,182 ms 19991 6,922 ms
1042 6,146 ms 10023 6,117 ms 19991 6,850 ms
1030 5,845 ms 10294 6,351 ms 20163 7,075 ms
1046 4,599 ms 9965 6,310 ms 20115 7,034 ms

977 4,927 ms 9954 6,250 ms 19990 6,992 ms
1031 4,523 ms 10067 6,196 ms 19938 6,624 ms

977 5,321 ms 10083 6,197 ms 19899 6,637 ms
1032 5,153 ms 10039 6,129 ms 20090 6,783 ms
1008 5,307 ms 10045 6,313 ms 20069 7,058 ms

Entities Training Time Entities Training Time Entities Training Time
30029 8,748 ms 40062 9,368 ms 50176 9,396 ms
29903 7,368 ms 40050 8,386 ms 49973 9,080 ms
30005 7,280 ms 40069 7,748 ms 49986 9,546 ms
29998 7,505 ms 39996 7,905 ms 49810 8,368 ms
29758 7,181 ms 39964 7,765 ms 49993 8,237 ms
30129 7,371 ms 40007 7,868 ms 50061 8,296 ms
29866 7,211 ms 40096 7,635 ms 50003 8,293 ms
29862 7,243 ms 40023 7,921 ms 50040 8,320 ms
30038 7,099 ms 39996 7,708 ms 49989 8,495 ms
29996 7,193 ms 40075 7,916 ms 50030 8,577 ms
29930 7,162 ms 39983 7,536 ms 50165 8,147 ms
30067 6,974 ms 40058 7,812 ms 49972 7,939 ms
29965 7,361 ms 40032 7,964 ms 50017 8,558 ms
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