
Submitted to: jopt

Scattering of graphene plasmons at abrupt

interfaces: an analytic and numeric study

A. J. Chaves

1

, B. Amorim

2

, Yu. V. Bludov

1

,

P. A. D. Gonçalves

3,4

, N. M. R. Peres

1

1Center and Departament of Physics, and QuantaLab, University of Minho, Campus
of Gualtar, 4710-057 Braga, Portugal
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Abstract. We discuss the scattering of graphene surface plasmon-polaritons (SPPs)
at an interface between two semi-infinite graphene sheets with di↵erent doping levels
and/or di↵erent underlying dielectric substrates. We take into account retardation
e↵ects and the emission of free radiation in the scattering process. We derive
approximate analytic expressions for the reflection and the transmission coe�cients
of the SPPs as well as the same quantities for the emitted free radiation. We show
that the scattering problem can be recast as a Fredholm equation of the second
kind. Such equation can then be solved by a series expansion, with the first term
of the series correspond to our approximated analytical solution for the reflection and
transmission amplitudes. We have found that almost no free radiation is emitted in the
scattering process and that under typical experimental conditions the back-scattered
SPP transports very little energy. This work provides a theoretical description of
graphene plasmon scattering at an interface between distinct Fermi levels which could
be relevant for the realization of plasmonic circuitry elements such as plasmonic lenses
or reflectors, and for controlling plasmon propagation by modulating the potential
landscape of graphene.
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1. Introduction

Controlling the propagation of graphene surface plasmon-polaritons (SPPs) [1, 2, 3]

is an important technological problem for applications in SPP circuitry [4, 5]. It is

well known from elementary wave mechanics that any wave will be both reflected and

transmitted at an interface where the properties of the propagating medium change.

The situation is no di↵erent with graphene SPP in the presence of a spatial change of

graphene’s conductivity and/or dielectric properties of the surrounding media.

The possibility of generating interfaces for the reflection of graphene SPP by

changing graphene’s conductivity is particularly attractive for the construction of

tunable graphene SPP-based circuitry elements, such as reflectors and beam-splitters,

due to the possibility of controlling graphene’s doping level. In a graphene field e↵ect

transistor, the doping of the system is controlled by the gate voltage and by the dielectric

between graphene and the gate electrode [6, 7]. Therefore, a possible way to create

a conductivity interface is to use a graphene field e↵ect transistor with two di↵erent

dielectric substrates below the graphene layer, as depicted in figure 1. Due to the

di↵erent local capacitances, di↵erent electronic densities will be induced in the two

graphene regions, which in turn implies a di↵erent optical conductivity for the two

regions. Other possibility is to consider a single dielectric as the graphene substrate,

but using a split gate geometry, such that the applied gate voltage can be independently

controlled in two di↵erent regions [8]. A spatial modulation of graphene’s doping level

could also be achieved via non-uniform chemical doping. In general, a graphene SPP

incident in a conductivity/dielectric interface will be partially transmitted and partially

reflected. Once the problem of plasmon scattering at a single interface is solved, it poses

no di�culty to create a SPP filter by combining three di↵erent dielectrics in sequence,

thereby generalizing the scheme of the device depicted in figure 1. It should be noted

the scattering of a SPP at an interface involves not only the transmission and reflection

of the field as SPP, but also the emission of free radiation[9, 10]. Ideally, one would

want this emission of radiation to be as small as possible in order to keep the energy

within the SPP wave. As we shall see ahead, under typical experimental conditions, we

predict that the losses in the scattering event via emission of free propagating radiation

are minute.

In this work we study the scattering of a graphene SPP at normal incidence

by a conductivity and/or dielectric interface. The scattering problem is treated by

expanding the electromagnetic field in terms of a set of local eigenmodes and then

using wave matching at the conductivity/dielectric interface. This method takes into

account both retardation e↵ects and emission of free radiation. Analytic, approximate

expressions are obtained for the graphene SPP reflection and transmission coe�cients.

The approximate solution is compared to a numerical solution of the wavemathcing

problem. It is worthwhile pointing out that the problem of reflection of graphene

SPPs at a conductivity step was previously studied in Ref. [11] employing a fully

numerical method, but in the electrostatic limit, which does not take into account
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radiation losses. The problem of reflection at a conductivity interface for non-normal

incidence was studied in Ref. [12], also in the electrostatic limit. The scattering of

graphene SPPs by a conductivity barrier/well has been considered in Ref. [13], taking

into account retardation e↵ects in a fully numerical approach. In addition, the reflection

of SPP at a graphene edge was studied in Ref. [14]. Research on graphene plasmonics

is a relatively recent topic [1] and research on graphene plasmonic circuitry is still

in its infancy. We note, however, that imaging of graphene plasmon scattering on

lattice defects [15, 16] and corrugations [17] has already been reported. It is also

worthwhile noticing that the experimental study of scattering of SPP in metals has

also been reported in Refs. [9, 18, 19, 20] and the generation of unidirection SPP beams

was reported in Ref. [21]. On the theoretical side, the problem of scattering of SPP

in metals by one dimensional defects, such as wires or grooves, has been studied in

Refs. [4, 10, 22, 23, 24, 25]. Finally, the scattering of phonon-polaritons at dielectric

interfaces has been studied in Ref. [26].

This paper is organized as follows: in section 2 we define the problem and

lay down the general approach to tackle it based on a local eingenmode expansion

of the electromagnetic field and wave matching. We describe the electromagnetic

mode structure and dispersion relations, considering graphene SPP, waveguide and free

radiation modes. Section 3 is devoted to the problem of graphene SPP scattering.

In section 3.1, we solve the scattering problem analytically in the approximation of

weak coupling of SPPs to radiation modes; in section 3.2 we show that the scattering

problem can be recast as a Fredholm equation of the second kind. We show that the

approximate results can be recovered from the zeroth order solution of the Fredholm

Figure 1. Illustration of the geometry considered for the SPP scattering problem.
The yellow and red lines stands for graphene at two di↵erent electronic densities. For
simplicity we assume that the electronic density changes abruptly at z = 0, in a step-
like manner. We allow for di↵erent dielectric substrates in the regions z 7 0. The
presence of a metallic gate allows the tunning of the doping level of the graphene
layer. A typical SPP scattering event is represented: a SPP impinging from the left
at the interface can both be reflected and transmitted as a SPP, or scattered into free
radiation.
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equation in section 3.2.1. We compare the analytical results with a numeric solution of

the Fredholm equation and discuss the obtained results in section 4. Conclusions are

drawn in section 5.

2. Geometry and electromagnetic modes

The scattering problem and the geometry we discuss in this work is represented in figure

1. An identical geometry has been considered in the case of scattering of surface phonon-

polaritons [26]. We assume a plasmon propagating from the left at normal incidence,

that is, along the z�axis. When impinging at the interface between the dielectrics

✏

1

and ✏

2

, part of the plasmon will be reflected, part will be transmitted, and some

of the energy will be radiated to the far field. We assume a time dependence of the

electromagnetic fields of the form e

i!t.

We obtain the electromagnetic modes of the fields in the geometry depicted in figure

1 by solving Maxwell’s equations (see Appendix A). The resulting modes are labeled

by an index n. The properties of these modes are analysed in detail in this section.

We make a piecewise decomposition of the fields in terms of the eigenmodes, using the

superscript <(>) for the z < 0(z > 0) region:

B

7
y

(x, z) =
X

n,�

↵

7
n,�

e

�iq

7
n z

h

7
n

(x), (1)

E

7
x

(x, z) = �
X

n,�

�↵

7
n,�

e

�iq

7
n z

e

7
n

(x), (2)

where q

7
n

is the wavenumber of mode n along the z direction, � = ±1 indicates a

left/right propagating wave and ↵

7
n,�

are mode amplitudes. We clarify that the sum over

n actually denotes a summation over discrete modes and an integration over continuum

modes. From Appendix A the eigenmodes of the y component of the magnetic field

read:

h

7
n

(x) =

(
B

7
n

e

p

7
3||nx + C

7
n

e

�p

7
3||nx if x > 0,

A

7
n

cosh
⇥
p

j|n (x+ d)
⇤

if 0 > x > �d.
(3)

where A

7
n

, B7
n

and C

7
n

are constants to the later defined, the graphene layer is located

at x = 0 and the metallic gate at x = �d, we have written j = 1, 2 for the z < 0, z > 0

regions, respectively, and for each region, the wavenumber along the x direction is given

by
�
p

1|n
�
2

= (q<
n

)2 � ✏

1

k

0

2

,

�
p

2|n
�
2

= (q>
n

)2 � ✏

2

k

2

0

,

⇣
p

7
3|n

⌘
2

=
�
q

7
n

�
2 � ✏

3

k

2

0

, (4)

with k

0

= !/c denoting the wavenumber in vacuum. The relation between the

wavenumber q

7
n

and the frequency ! needs to be calculated for each mode, usually

by solving a transcendental equation. In each region z 7 0, the magnetic h7
n

modes can
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be chosen to satisfiy the orthonormality condition (provided there are no losses, i.e. or

purely real dielectric functions and a purely imaginary graphene conductivity)

hh7
n

, e

7
m

i =
ˆ 1

�d

dx h

7
n

(x)e7
m

(x) = �

n,m

, (5)

where e

7
m

(x) gives the x component of the electric field for mode m (see Appendix A).

From the boundary conditions on the graphene layer, x = 0, we obtain the following

equations for A7
n

, B7
n

and C

7
n

B

7
n

� C

7
n

=
p

j|n✏3

p

7
3|n✏j

A

7
n

sinh
�
p

j|nd
�
, (6)

B

7
n

+ C

7
n

� A

7
n

cosh
�
p

j|nd
�
=

�7
i!✏

0

p

j|n

✏

j

A

7
n

sinh
�
p

j|nd
�
. (7)

The solution of the above equations determines the spectrum and the structure of the

electromagnetic modes of the system. The wavenumbers p

j|n and p

?
3|n can be real or

purely imaginary. From these possibilities we can classify the modes as: graphene SPP

(both p

j|n and p

?
3|n are real), waveguide modes (p

j|n is imaginary and p

?
3|n is real) and free

radiation modes (both p

j|n and p

?
3|n are imaginary). As we do not want to discuss the

decay of the modes as they propagate, but only the scattering event at the interface, we

will neglect losses. In particular, we neglect the real part of the graphene conductivity,

which we model within a Drude model, by approximating �

7 ' i�

7
I

where

�

7
I

' � e

2

⇡~
E

7
F

~! , (8)

and assume the dielectric constants to be real valued.

2.1. Graphene SPP

The graphene SPP is a mode localized in the graphene layer. Further in the paper we

will denote the graphene SPP mode by index n = 0. It is characterized by real p
j|0 and

p

7
3|0. The fact that p

7
3|0 is real, forces us to set B7

0

to zero in equations 6 and 7, in order

to avoid the unphysical situation of the field growing exponentially when x ! +1.

This leads to the following implicit condition for the graphene SPP dispersion relation

✏

3

p

7
3|0

+
✏

j

p

j|0
coth

�
p

j|0d
�
� i

�

7

✏

0

!

= 0. (9)

Clearly, when d ! 1 we recover the dispersion relation of plasmons in a graphene layer

clad between two semi-infinite dielectrics [1]. We fixe A
0

by imposing the normalization

condition
⌦
h

7
0

, e

7
0

↵
=

ˆ 1

�d

dx h

7
0

(x)e7
0

(x) = 1, (10)

leading to

�
A

7
0

�
2

=
!✏

j

4q7
0

c

2

0

B@2d+
sinh

�
2p

j|0d
�

p

j|0
� ✏

j

✏

3

2✏2
0

✏

2

3

!

2 cosh2

�
p

j|0d
�

p

7
3|0

⇣
p

7
3|0�

?
I

+ ✏

0

✏

3

!

⌘
2

1

CA

�1

. (11)



Scattering of graphene plasmons at abrupt interfaces: an analytic and numeric study 6

Approximate solution for graphene SPP dispersion relation In the electrostatic limit

(c ! 1), we approximate p

j|0 ' p

?
3|0 ' q

?
0

. With this approximation equation 9

becomes

✏

3

q

+
✏

j

q

coth (qd)� i

�

7

✏

0

!

= 0. (12)

Using 8, we can solve the previous equation for ! obtaining

~! =
r

4↵E
F

~c q

✏

3

+ ✏

j

coth (qd)
, (13)

where we have introduced the fine-structure constant ↵ = e

2

/(4⇡✏
0

c~). In the limit

of a thick substrate qd � 1, we approximate coth(qd) ' 1, recoverying the dispersion

relation for a surface plasmon-polariton in graphene supported by an infinite dieletric

~! '
r

4↵E
F

~c q

✏

3

+ ✏

j

, (14)

with the characteristic / p
q dependence. In the opposite limit, qd ⌧ 1, we approximate

coth(qd) ' 1/(qd) and obtain

~! '

s

4↵E
F

~c d
✏

j

q, (15)

and we obtain a linear dispersion relation for small wavenumbers.

In figure 2 we show the dispersion relation of the SPP for two di↵erent Fermi

energies. It is clear that for typical substrate tickness and wavenumbers, the dispersion

relation is closer to linear than to the square root dependence.

EF=0.3 eV

EF=0.6 eV

EF=0.3 eV, qd 1

EF=0.6 eV, qd 1

0.0 0.5 1.0 1.5 2.0

0.00

0.05

0.10

0.15

q [ m-1]

/c
[

m
-

1
]

Figure 2. Dispersion relation of graphene surface plasmon-polariton 13 for two
di↵erent Fermi energies: EF = 0.3 eV (solid blue line) and EF = 0.6 eV (solid yellow
line). Also represented are the small wavenumber approximations 15 for the plasmon
dispersion relation (dashed lines). The values used in the plot are d = 300 nm, ✏j = 3.9
and ✏3 = 1.
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waveguide mode
approx

SPP
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]

0.0 0.5 1.0 1.5 2.0
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=cjq

=c3q

Figure 3. Dispersion relation, ! (q<n ), (solid yellow lines) for the first five waveguide
modes for a structure with d = 300 nm, ✏j = 3.9, ✏3 = 1, and EF = 0.3
eV. The dispersion relation for the waveguide modes in the absence of graphene is
indistinguishable from the dispersion shown on the scale used The light-lines ! = cnq,
with cn = c/

p
✏n are shown for ✏n = ✏3 (blue dashed line) and ✏n = ✏j (red dashed

line). Inset: Zoom in the region with q from 0 to 2 µm�1. The dispersion relation
of the graphene surface plasmon polarion is shown by the dotted purple line, and the
approximated dispersion relation for the n = 1 waveguide mode 18 is represented by
the dot-dashed green line.

2.2. Waveguide modes

In the case where ✏

j

> ✏

3

, the structure supports modes which are localized in the

region 0 > x > �d, dubbed waveguide modes. Waveguide modes are oscillating in the

0 > x > �d region, but decay exponentially for x ! 1. As in the case for graphene

SPP, p?
3|n is real and thus we set B

7
n

= 0. However, due to the oscillating nature of

the field for 0 > x > �d, p

j|n = ik

j|n = i

q
✏

j

k

2

0

�
�
q

7
n

�
2

is now purely imaginary.

The dispersion relation of the waveguide modes is still given by equation 9, but with

imaginary p

j|n = ik

j|n. Namely, we obtain the condition

✏

3

p

7
3|n

� ✏

j

k

j|n
cot

�
k

j|nd
�
� i

�

7

✏

0

!

= 0. (16)

The solutions for this equation are organized as a series of bands with discrete spectrum,

!(q?
n

), restricted to the region cq

?
n

/

p
✏

j

< !(q?
n

) < cq

?
n

/

p
✏

3

, as it is shown in

figure 3 for a typical setup. As it can be seen from the figure, the lowest, n = 1,

waveguide mode bifurcates from the origin and exists for all positive ! and q

<

1

, while the

remaining modes waveguide modes, n > 1, bifurcate from the points with frequencies

!

j|n = c(⇡/d)(n � 1)/
p

✏

j

/✏

3

� 1, lying on the light-line in vacuum ! = cq/

p
✏

3

and

existing in the spectral range above those frequencies, ! � !

j|n. The presence of the

graphene has a negligible influence on the spectrum of the waveguide modes for the

parameters considered.



Scattering of graphene plasmons at abrupt interfaces: an analytic and numeric study 8

Approximate dispersion relation for the lowest waveguide mode In the limit of small

frequency and momentum, and neglecting the e↵ect of the graphene layer, it is

possible to obtain an approximate expression for the lowest, n = 1, waveguide mode

dispersion. Neglecting the graphene conductivity term in equation 16 and approximating

tan
�
k

j|1d
�
' k

j|1d, we obtain the following condition

1 =
✏

3

k

2

j|1d

✏

j

p

7
3|1

. (17)

Recalling the definitions of k
j|1 =

q
✏

j

k

2

0

� q

72

1

and p

7
3|1 =

q
q

72

1

� ✏

3

k

2

0

, the previous

equation can be solved to lowest order in q

7
1

, leading to the approximate dispersion

relation for the n = 1 waveguide mode

!(q7
1

) ' cq

7
1p
✏

3

s

1�
�
q

7
1

d

�
2

✓
✏

j

� ✏

3

✏

j

◆
2

. (18)

This approximate expression for the dispersion relation of the lowest waveguide mode is

shown in figure 3. It is clearly seen that for the parameters of figure 3 this approximation

is valid for q7
1

> 1.5µm�1 and fails for larger wavenumbers.

2.3. Radiative modes

Besides localized modes (SPP and waveguide), there is a continuum of radiative modes.

Radiative modes are characterized by ✏

3

k

2

0

, ✏

j

k

2

0

>

�
q

7
n

�
2

. We chose to label these modes

by their frequency, !, and momentum along the x direction in the region x > 0, k,

which we can choose to be positive, such that p?
3|k = ik. In this situation, we obtain

q

7
k

=
q
✏

3

k

2

0

� k

2

, (19)

and substituing in 4:

p

j|k =
q

(✏
3

� ✏

j

) k2

0

� k

2

, (20)

where we have substituted the index n by k. Equation 19 corresponds to the dispersion

relation of the radiative modes. The aforementioned positiveness of k results in the

fact that the dispersion relation of these modes lies above the light-line for a dielectric

with ✏

3

(see figure 3). Notice that for k2

> k

2

c

= ✏

3

k

2

0

the radiative modes are actually

evanescent waves along the z direction with imaginary q

7
k

. Therefore, it is with some

abuse of language that we refer to them as radiation modes. On the other hand, for

k

2

< k

2

c

, q7
k

is real and we wave a true radiation mode corresponding to a propagating

wave in both the x and z directions. Both kinds of modes are necessary when making the

mode matching at the interface z = 0. We also have that p
j|k is real for k2

< (✏
3

� ✏

j

) k2

0

(see equation 20), thus describing evanescent waves along x direction, in the substrate

with dielectric constant ✏
j

; and is imaginary in the opposite situation k

2

> (✏
3

� ✏

j

) k2

0

,

which corresponds to the propagating wave along the x�direction in the substrate (when

✏

j

> ✏

3

waves for any k are of that type). For radiation modes all the coe�cients A7
k

,
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B

7
k

and C

7
k

in equation 3 are non-zero. Imposing the boundary conditions at the x = 0

interface (see Appendix A) we can write B

7
k

and C

7
k

, as

B

7
k

=
A

7
k

2

�
F7

k

� iG7
k

�
, (21)

C

7
k

=
A

7
k

2

�
F7

k

+ iG7
k

�
, (22)

where we have defined

F7
k

= cosh
�
p

j|kd
�
+

�

7
I

!✏

0

p

j|k

✏

j

sinh
�
p

j|kd
�
, (23)

G7
k

=
p

j|k✏3

k✏

j

sinh
�
p

j|kd
�
. (24)

The electric and magnetic field modes, can thus be written as

h

7
k

(x) = A

7
k

(
F7

k

cos (kx) + G7
k

sin (kx) if x > 0

cosh
⇥
p

j|k (x+ d)
⇤
, if 0 > x > �d

, (25)

and the corresponding x component of the eletric field reads

e

7
k

(x) = A

7
k

q

7
k

c

2

!✏

3

(
F7

k

cos (kx) + G7
k

sin (kx) ,x > 0
✏3
✏j
cosh

⇥
p

j|k (x+ d)
⇤

,0 > x > �d

. (26)

The modes can be normalized through the condition:ˆ 1

�d

dx h

7
k

(x)e7
k

0(x) = �(k � k

0), (27)

which fixes A7
k

to have the value
�
A

7
k

�
2

=
!✏

3

q

7
k

c

2

2

⇡

1
��F7

k

��2 +
��G7

k

��2
. (28)

Notice that A7
k

will be imaginary when q

7
k

is imaginary.

3. SPP scattering

We now consider the problem of scattering of a graphene SPP which is illustrated in

figure 1. A plasmon coming from the left and impinging at the dielectric/conductivity

interface at z = 0 is scattered into both a back-scattered (reflected) and forward-

scattered (transmitted) plasmon, and also into free propagating radiation. For

simplicity, we will consider a situation where no waveguide modes are supported

(✏
j

< ✏

3

). In order to determine the total field in the regions z 7 0, we must consider

both the discrete plasmon mode and the radiative modes. Therefore the expansion of

the electric and magnetic fields in terms of local eigenmodes, equations 1 and 2, reads

for z < 0 (note the phase of ⇡ introduced in the reflection coe�cients of the electric

field)

E

<

x

(x, z) = e

<

0

(x)e�iq

<
0 z � e

<

0

(x)r
0

e

iq

<
0 z �

ˆ 1

0

dk r

k

e

<

k

(x)eiq
<
k z

, (29)

B

<

y

(x, z) = h

<

0

(x)e�iq

<
0 z + h

<

0

(x)r
0

e

iq

<
0 z +

ˆ 1

0

dk r

k

h

<

k

(x)eiq
<
k z

, (30)
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while for z > 0 we write

E

>

x

(x, z) = e

>

0

(x)⌧
0

e

�iq

>
0 z +

ˆ 1

0

dk⌧

k

e

>

k

(x)e�iq

>
k z

, (31)

B

>

y

(x, z) = h

>

0

(x)⌧
0

e

�iq

>
0 z +

ˆ 1

0

dk⌧

k

h

>

k

(x)e�iq

>
k z

. (32)

In these expressions, r

0

/⌧

0

and r

k

/⌧

k

are, respectively, the reflection/transmission

amplitudes for the SPP and radiative modes with wavenumber k along the x�direction,

for x > 0. The relation between the frequency ! and the in-plane graphene SPP

momentum, q7
0

, is determined by equation 13.

Performing mode matching by enforcing the continuity of E
x

(x, z) and B

y

(x, z) at

z = 0, we obtain the set of equations

e

<

0

(x)(1� r

0

)�
ˆ 1

0

dk r

k

e

<

k

(x) = ⌧

0

e

>

0

(x) +

ˆ 1

0

dk ⌧

k

e

>

k

(x) , (33)

h

<

0

(x)(1 + r

0

) +

ˆ 1

0

dk r

k

h

<

k

(x) = ⌧

0

h

>

0

(x) +

ˆ 1

0

dk ⌧

k

h

<

k

(x). (34)

Note that in order to satisfy the matching conditions at z = 0, we need both propagating

and evanescent radiative modes along the z direction. To determine the reflection and

transmission amplitudes, we take the inner product (as defined in 5) of 33 with h

>

0

(x)

and h

>

k

(x), and the inner procuct of 34 with e

>

0

(x) and e

>

k

(x). Using the orthonormality

of the modes, we obtain the following system of equations

⌧

0

= (1� r

0

) hh>

0

, e

<

0

i �
ˆ 1

0

dk r

k

hh>

0

, e

<

k

i , (35)

⌧

0

= (1 + r

0

) he>
0

, h

<

0

i+
ˆ 1

0

dk r

k

he>
0

, h

<

k

i , (36)

and

⌧

k

= (1� r

0

) hh>

k

, e

<

0

i �
ˆ 1

0

dk

0
r

k

0 hh>

k

, e

<

k

0i , (37)

⌧

k

= (1 + r

0

) he>
k

, h

<

0

i+
ˆ 1

0

dk

0
r

k

0 he>
k

, h

<

k

0i . (38)

The solution of this system of coupled integral equations yields the reflection and

transmission amplitudes. In the following, we will provide both an approximate analytic

solution and a full numerical solution for this system of equations.

3.1. Approximate analytical solution

In order to proceed analytically, we will introduce some approximations. We assume

that the following relations hold [26]

hh>

0

, e

<

k

i ' he>
0

, h

<

k

i ' hh>

k

, e

<

0

i ' he>
k

, h

<

0

i ' 0, (39)

hh>

k

, e

<

k

0i ' � (k � k

0) . (40)

Mathematically these relations mean that the modes of the di↵erent regions are almost

orthogonal. Physically, we can understand this as a statement that the SPP modes are
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weakly coupled to the radiation modes. The previous relations are approximately true

as long as ✏

1

' ✏

2

and E

<

F

' E

>

F

. This regime implies small reflection amplitudes, as

can be seen in figure 4. However, as we will see below, the approximation performs well

even beyond this regime. With the aforementioned approximations, equations 35 and

36 become

⌧

approx

0

= (1� r

approx

0

) hh>

0

, e

<

0

i , (41)

⌧

approx

0

= (1 + r

approx

0

) he>
0

, h

<

0

i . (42)

We have thus obtained a closed set of two equations for the SPP reflection and

transmission coe�cients. Solving these, we obtain

r

approx

0

=
hh>

0

, e

<

0

i � he>
0

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i , (43)

⌧

approx

0

= 2
hh>

0

, e

<

0

i he>
0

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i . (44)

The transmission and reflection coe�cients for the radiative modes can be obtained

from equations 37 and 38 if we use the approximation 40, while keeping hh>

k

, e

<

0

i and

he>
k

, h

<

0

i (in order to obtain a non-zero result). We obtain the following equations

⌧

approx

k

= (1� r

approx

0

) hh>

k

, e

<

0

i � r

approx

k

, (45)

⌧

approx

k

= (1 + r

approx

0

) he>
k

, h

<

0

i+ r

approx

k

. (46)

Using the previously obtained value for r
0

, we can solve for r
k

and ⌧

k

, yielding

r

approx

k

=
he>

0

, h

<

0

i hh>

k

, e

<

0

i � hh>

0

, e

<

0

i he>
k

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i , (47)

⌧

approx

k

=
he>

0

, h

<

0

i hh>

k

, e

<

0

i+ hh>

0

, e

<

0

i he>
k

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i . (48)

The inner products in the above equations can be computed analytically and explicit

expressions are given in Appendix C.

One comment regarding the validity of the employed approximations is in order.

Notice that instead of contracting equations 33 and 34 with h

>

0

(x) and e

>

0

(x), as done

to obtain equations 35 and 36, we could have contracted them with h

<

0

(x) and e

<

0

(x).

Such a procedure would lead to the following equations

1� r

0

= ⌧

0

hh<

0

, e

>

0

i+
ˆ 1

0

dk ⌧

k

hh<

0

, e

>

k

i , (49)

1 + r

0

= ⌧

0

he<
0

, h

>

0

i+
ˆ 1

0

dk ⌧

k

he<
0

, h

<

k

i . (50)

Using the approximations 39 and 40, we obtain

1� r

approx

0

0

= ⌧

approx

0

0

hh<

0

, e

>

0

i , (51)

1 + r

approx

0

0

= ⌧

approx

0

0

he<
0

, h

>

0

i . (52)

Solving these equations, gives us the alternative expressions for the reflection and

transmission coe�cients

r

approx

0

0

=
he<

0

, h

>

0

i � hh<

0

, e

>

0

i
he<

0

, h

>

0

i+ hh<

0

, e

>

0

i , (53)
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⌧

approx

0

0

=
2

he<
0

, h

>

0

i+ hh<

0

, e

>

0

i . (54)

Since e

7
0

and h

7
0

can be chosen as real, we conclude that equations 43 and 53 for r

0

coincide. However, we see that equations 44 and 54 di↵er by a factor of hh>

0

, e

<

0

i he>
0

, h

<

0

i.
This gives us an internal consistency check for the employed approximations: they

remain valid as long as

hh>

0

, e

<

0

i he>
0

, h

<

0

i ' 1, (55)

which implies a strong coupling between the SPP modes from z < 0 and for z > 0.

Note that the value for r

0

obtained with these approximations is purely real.

Therefore there is no phase-shift in the back-scattering amplitude of the plasmon, except

for the already included phase-shift of ⇡. This is a consequence of the approximation

introduced above and contrasts with the results of [11, 14], obtained within the

electrostatic limit, thus ignoring retardation e↵ects.

It should also be noted that the formalism is capable of describing the reflection

of a graphene plasmon at the edge of a semi-infinite graphene sheet. We have verified

numerically that in this case the transmittance is numerically very small (due to the

approximations is not exactly zero) and the reflectance is essential equal to unity (results

not shown; numerically we take the Fermi energy at the right of z = 0 a very small

number, typically E

>

F

⇠ 10�3

E

<

F

, as the numerical procedure does not allow a zero

Fermi energy).

In Ref. [11], an electrostatic calculation predicts that the reflection coe�cient for

graphene in vacuum and subject to a conductivity step at z = 0 is given by

|r
0

|2 =
✓
q

<

0

� q

>

0

q

<

0

+ q

>

0

◆
2

. (56)

If we use the numbers of figure 4 for the Fermi energies and plug-in the corresponding

wavevectors in formula 56 we obtain the value |r
0

|2 ⇡ 0.049, whereas our calculation

in the same conditions predicts a value in the range |r
0

|2 ⇡ 0.049 � 0.016, as the

frequency of the incoming SPP ranges from zero to ⇠16 meV. Note that a consequence

of the electrostatic approximation is that the reflection coe�cient becomes frequency

independent. When taking the electrostatic limit, we can study two possible cases: (i)

thin substrate limit, d ! 0, and (ii) thick substrate limit, d ! 1.

In the electrostatic and thin substrate limits (!/c, d ! 0) the reflectance amplitude

43 reads

r

0

=
✏

2

q

<

0

� ✏

1

q

>

0

✏

2

q

<

0

+ ✏

1

q

>

0

, (57)

in agreement with the result of Ref. [11] for ✏
1

= ✏

2

. For the transmittance amplitude

44, and in the same limit as before, we obtain

⌧

0

=
2
p

q

>

0

q

<

0

✏

1

✏

2

✏

2

q

<

0

+ ✏

1

q

>

0

. (58)

Physically, the limit d ! 0 means that the plasmon fields are finite only in the dielectric

✏

3

, as the field is screened by the metallic gate. We also note that equations 57 and 58
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contain the limit of total reflection when q

<

0

! 0. As anticipated, it is possible to have

SPP reflection even if if E<

F

= E

>

F

, provided that ✏
1

and ✏

2

di↵er.

Conversely, in the electrostatic and thick substrate limits (!/c ! 0, d ! 1), we

obtain for r
0

43 and ⌧

0

44

r

0

=
(✏

2

+ ✏

3

) q<
0

� (✏
1

+ ✏

3

) q>
0

(✏
2

+ ✏

3

) q<
0

+ (✏
1

+ ✏

3

) q>
0

, (59)

⌧

0

=
4q<

0

q

>

0

p
(✏

1

+ ✏

3

) (✏
2

+ ✏

3

)

(q<
0

+ q

>

0

) [(✏
2

+ ✏

3

) q<
0

+ (✏
1

+ ✏

3

) q>
0

]
. (60)

3.2. Formulation as a Fredholm equation

We will now recast the scattering problem in a form ameable to a numerical solution.

While doing that, we will see how the approximate analytic result corresponds to a

lowest order approximation to the solution of the complete problem.

Recalling equations 35-38 and subtracting equation 36 from equation 35, we obtain

r

0

=
hh>

0

, e

<

0

i � he>
0

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i �
ˆ 1

0

dk

hh>

0

, e

<

k

i+ he>
0

, h

<

k

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

irk. (61)

Furthermore, subtracting equation 38 from equation 37, we obtain

r

0

=
hh>

k

, e

<

0

i � he>
k

, h

<

0

i
hh>

k

, e

<

0

i+ he>
k

, h

<

0

i �
ˆ 1

0

dk

0 hh>

k

, e

<

k

0i+ he>
k

, h

<

k

0i
hh>

k

, e

<

0

i+ he>
k

, h

<

0

i rk
0 (62)

Combining equations 61 and 62 we eliminate r

0

and obtain a closed equation for the

reflection coe�cients r
k

z

1

(k) +

ˆ 1

0

dk

0
z

2

(k, k0)r
k

0 = 0, (63)

where we have introduced the quantities

z

1

(k) =
hh>

0

, e

<

0

i � he>
0

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i �
hh>

k

, e

<

0

i � he>
k

, h

<

0

i
hh>

k

, e

<

0

i+ he>
k

, h

<

0

i , (64)

z

2

(k, k0) =
hh>

k

, e

<

k

0i+ he>
k

, h

<

k

0i
hh>

k

, e

<

0

i+ he>
k

, h

<

0

i � hh>

0

, e

<

k

0i+ he>
0

, h

<

k

0i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i . (65)

Equation 63 is in the form of a Fredholm integral equation of the first kind. However,

as shown in the Appendix C, the integration kernel z
2

(k, k0) contains a term that is

proportional to a �-function (see equations C.12 and C.13). Therefore, we can split

z

2

(k, k0) as

z

2

(k, k0) = v(k)�(k � k

0) + v(k)z
3

(k, k0), (66)

where v(k) is the diagonal part of z
2

(k, k0), with its explicit form given in equation C.25,

and we have written the remaining part as v(k)z
3

(k, k0). Inserting this equation into

equation 63 and using the �-function to perform the integration over k0, we can transform

the problem into a Fredholm integral equation of the second kind, as

r

k

= �z

1

(k)

v(k)
�
ˆ 1

0

dk

0
z

3

(k, k0)r
k

0
. (67)
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This equation can be solved numerically, by discretizing the integral over k

0 using a

Gaussian quadrature method, and evaluating the equation for values of k on that

same discretized grid, reduzing the integral equation to a problem of linear algebra

as described in greater detail in Appendix D.

Having obtained the reflection coe�cient r

k

, the reflection coe�cient for hte the

SPP mode, r

0

, can be computed from equation 61. With the knowledge of all the

reflection coe�cients, the transmission coe�cient ⌧
0

can be calculated from equation 35

as

⌧

0

= 2
hh>

0

, e

<

0

i he>
0

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i + (68)

+

ˆ 1

0

dk

hh>

0

, e

<

0

i he>
0

, h

<

k

i � hh>

0

, e

<

k

i he>
0

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i r

k

, (69)

and the transmission coe�cients ⌧
k

can be determined from equations 61 and 38 as

⌧

k

=
hh>

0

, e

<

0

i he>
k

, h

<

0

i+ he>
0

, h

<

0

i hh>

k

, e

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i + (70)

+

ˆ 1

0

dk

0

he>

k

, h

<

k

0i �
hh>

0

, e

<

k

0i+ he>
0

, h

<

k

0i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i he
>

k

, h

<

0

i
�
r

k

0 (71)

�he>
0

, h

<

0

i hh>

k

, e

<

0

i � hh>

0

, e

<

0

i he>
k

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i (72)

This provides a general scheme to fully solve the scattering problem.

Notice that equations 61, 69, and 72 can be rewritten as

r

0

= r

approx

0

�
ˆ 1

0

dk

hh>

0

, e

<

k

i+ he>
0

, h

<

k

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

irk, (73)

⌧

0

= ⌧

approx

0

+

ˆ 1

0

dk

hh>

0

, e

<

0

i he>
0

, h

<

k

i � hh>

0

, e

<

k

i he>
0

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i r

k

, (74)

⌧

k

= ⌧

approx

k

� r

approx

k

+

+

ˆ 1

0

dk

0

he>

k

, h

<

k

0i �
hh>

0

, e

<

k

0i+ he>
0

, h

<

k

0i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i he
>

k

, h

<

0

i
�
r

k

0
. (75)

with r

approx

0

, ⌧

approx

0

, r

approx

k

, and ⌧

approx

k

the analytical approximate results given,

respectively, by equations 43, 44, 47, and 48. In the following, we will see how the

approximate analytic result from Sec. 3.1 can be recovered from a lowest order solution

to the Fredholm equation.

3.2.1. Recovery of the approximate analytical solution We will now see how to recover

the analytic result of equation 47 from the lowest order approximate solution of the

Fredholm equation 67. A possible strategy to solve the Fredholm equation, is to employ

an iterative method. Within this solution scheme, the zeroth order solution is given by

(see equation 67)

r

(0)

k

= �z

1

(k)

v(k)
. (76)
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Figure 4. Left panel: Transmittance and reflectance of the radiative modes as
function of k/kc, in the interval k 2 [0, 20kc], for ! = 15 meV. The inset zooms
in the interval k 2 [0, 1.25kc]. Right panel: Transmittance (top right) and reflectance
(bottom left) of graphene SPP as a function of the plasmon frequency. Both the results
obtained with the analytic approximation (dashed purple) and the full numerical
solution (solid blue) are represented. The di↵erence between the numeric solution of
Fredholm equation and the approximated solution for the reflection and transmission
coe�cients is smaller than 1%. In both panels the used parameters are: meV, d = 300
nm, ✏1 = 1.5, ✏2 = 2.5, ✏3 = 4, E<

F = 0.37 eV, E>
F = 0.47.

Now we notice that for "
1

' "

2

and E

<

F

' E

>

F

, the quantity v(k) can be approximated

as (see Appendix C)

v(k) ' � 2

hh>

k

, e

<

0

i+ he>
k

, h

<

0

i . (77)

Therefore, we can write the reflection coe�cient as

r

(0)

k

' 1

2
z

1

(k) (hh>

k

, e

<

0

i+ he>
k

, h

<

0

i) . (78)

Using equation 64 for z
1

(k), we recover equation 47, that is, the analytical solution as

the zeroth order term of the Fredholm equation:

r

(0)

k

' he>
0

, h

<

0

i hh>

k

, e

<

0

i � hh>

0

, e

<

0

i he>
k

, h

<

0

i
hh>

0

, e

<

0

i+ he>
0

, h

<

0

i . (79)

We have verified numerically that the approximation given by equation 77 holds with

great accuracy even if the conditions for its derivation are violated. This explains

the good results given by the analytic approximated solution, even for relatively large

contrast between the dielectric constants and the Fermi energies.

4. Results and discussion

We shown the reflection and transmission coe�cients for the SPP, r
0

and ⌧

0

, as a function

of the plasmon frequency, computed both with the analytic approximation (43 and 44)

and with the numerical solution of the Fredholm equation 67 on the right panel of figure
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Figure 5. Real (left panel) and imaginary (right panels) parts of the reflection
coe�cient rk (devided by

p
d) obtained from the numerical solution of the Fredholm

equation (solid blue line) as a function of k/kc over the interval k 2 [0, 2kc]. Also
shown is the lowest order approximation to the reflection coe�cient r(0)k 76 (dashed
purple line). The parameters used are: ! = 15.6 meV, d = 300 nm, ✏1 = 1.5, ✏2 = 2.5,
✏3 = 4, E<

F = 0.37 eV, E>
F = 0.47 eV.

4. As can be seen the, di↵erence between both results is very small, not exceeding 1%.

Notice however, that the approximated results overestimate the transmittance of the

SPP, which is nevertheless very close to 1. This implies that very little energy is either

reflected as a SPP or lost due to emission of radiation. This last statement is further

confirmed by the smallness of the reflection and transmission coe�cients for radiation

modes as shown as a function of k/k
c

(with k

c

=
p
✏

3

k

0

) on the left panel of figure 4.

Notice that the reflectance |r
k

|2 displays a significant dome for k/k
c

> 1, highlight the

importance of radiation modes evanescent along the z direction in the field matching

at the interface at z = 0. In figure 5, we shown the real and imaginary parts of the

reflection coe�cients r
k

obtained from the numerical solution of the Fredholm equation

and compare it to the lowest order solution as a function of k/k
c

. The agreement is

reasonable for the real part, indicating that the approximate analytic expressions indeed

provide good results. However, in the imaginary part of the reflection coe�cients there

is a significant discrepancy close to k = k

c

, with the numerical result displaying there a

peak that is absent on the approximate result.

The validity of both the analytic results and the numerical solution can be accessed

by studying the total scattered, including the energy carried by the transmitted and

reflected SPP and the energy radiated in the scattering process. As a matter of fact,

energy conservation implies that S = 1 (see Appendix B), where

S = |r
0

|2 + |⌧
0

|2 +R
R

+ T
R

, (80)

with

R
R

=

ˆ
kc

0

|r
k

|2dk, (81)
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T
R

=

ˆ
kc

0

|⌧
k

|2dk, (82)

respectively, the energy radiated fraction of energy in reflection and transmission. Notice

that the integration only goes up to k
c

, since modes with k > k

c

are evanescent along the

z direction, not carrying energy away for z ! ±1. The statement S = 1 simply means

that the energy of the incident SPP is redistributed into the reflected and transmitted

SPP modes and into radiation modes

Notice that the approximate analytic results in the limits of !/c ! 0 and d ! 0,

57 and 58, imply that that |r
0

|2 + |⌧
0

|2 = 1. This means that in this is limit all the

energy is carried by the transmitted and reflected SPP, with no radiation emission. This

is expected as in the electrostatic limit no radiation can be emitted. However, in the

limit of !/c ! 0 and d ! 1, equations 59 and 60, imply that

|r
0

|2 + |⌧
0

|2 = 1� ⌧

0

r

2

0

. (83)

Therefore, there is a deviation from the ideal case, |r
0

|2 + |⌧
0

|2 = 1. However, this

deviation is small as long as r

0

⌧ 1 (⌧
0

. 1). We must point out, however, that the

term ⌧

0

r

2

0

cannot be identified with energy losses due to the emission of free radiation,

since in the electrostatic limit (!/c ! 0) the propagation of free radiation is forbidden.

This deviation, is therefore attributed to a limitation of the approximate analytical

result.

To check the conservation of energy as function of frequency, of both the

approximate analytic and in the numerical results, we plot in figure 6 the energy

sum, S, as a function of the incident plasmon frequency in a range spanning 7.25

THz. We see that the analytical results can violate the energy sum rule, leading to

S > 1. The analytical result can also lead to |rapprox
0

|2 + |⌧ approx
0

|2 > 1, which is clearly

unphysical, as it would correspond to a generation of energy. This indicates a limitation

of the analytic approximation which has also been reported in the scattering of surface

phonon-polaritons at the interface between two dielectrics [26]. Notice, however, that

the violation of the sum rule is actually very small, never exceeding 0.25% (for E<

F

= 0.37

eV and E

>

F

= 0.47eV ). The numerical solution of the Fredholm equation corrects the

unphysical result and we recover |rapprox
0

|2+ |⌧ approx
0

|2 6 1. There is still a small violation

of the sum rule which now lies bellow 1, due to errors induced by the discretization of

the integral in the Fredholm equation 67. However, the numerical solution significantly

improves the sum rule with the error being less than 0.02% (for E

<

F

= 0.37 eV and

E

>

F

= 0.47eV ). Notice that as we go to ! ! 0 the sum rule, in both the approximate

analytic (which completely neglects radiation modes) and in the full numerical solutions

(where the contribution from the radiative modes is still subjected to errors due to the

discretization of the integral), is satisfied to a better degree. This is due to the fact that

in the electrostatic limit the contribution due to radiative modes becomes less important.

The errors in both methods increase when the graphene conductivity contrast is larger

as can be seen on the right panel of figure 6 (results obtained for E

<

F

= 0.3 eV and

E

>

F

= 0.6eV ). Since the sum rule is not exactly one, the fraction of energy emitted
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as radiation can be obtained from R + T = S � |r
0

|2 � |⌧
0

|2, and can be seen to be

extremely small, but increases as the energy of the incident SPP increases and the

graphene conductivity contrast is larger.

Figure 6. Sum rule in a large frequency window. The dashed lines refer to |r0|2+|⌧0|2

for the approximation (blue) and the numerical solution (orange). The green solid
line refers to the approximated sum rule, S0, while the red dotted line refers to the
numerical solution, SF . The parameters used are: d = 300 nm, ✏1 = 1.5, ✏2 = 2.5,
✏3 = 4, E<

F = 0.37 eV, E>
F = 0.47 eV. The right panel depicts the same quantities

but for E<
F = 0.3 eV, E>

F = 0.6 eV. The radiative correction is the di↵erence between
the orange dashed line and the red dotted one. We can see the increasing of radiative
emission for larger frequencies and higher Fermi energy mismatch.

5. Conclusions

We have analyzed in detail the scattering of graphene surface plasmon-polaritons at a

sharp graphene conductivity step and/or change of the dielectric substrate. One of the

merits of our calculation is the ability to provide analytic expressions for the reflectance

and transmittance amplitudes for arbitrary values of the graphene sheet conductivity

and of the surrounding dielectric constants, in a realistic geometric configuration.

Although the analytical approach is not exact, it is good enough to estimate the values

of r
0

and ⌧

0

, which can be corrected either by an iterative solution or a fully numerical

solution (see Appendix D) of the Fredholm equation. The corrections are, however,

small. The calculation also predicts that the emission of free radiation in the scattering

event is small. This situation is rather favorable for plasmon scattering, as most of the

energy remains in the plasmon field and is not lost to the radiation continuum.

Note that our calculations are realistic in what concerns the geometry of the system,

since the metallic gate is taken into account as is the existence of two di↵erent dielectrics

underneath graphene. However, we assumed that the induced change of the graphene

conductivity is abrupt at the interface. A more realistic situation would be to consider

a smooth transition of the electronic density across the interface. In this case, the

reflection coe�cients are no-longer well defined, except faraway from the region where
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the conductivity changes; this renders the calculation much more di�cult. Nevertheless,

our results should remain valid provided the incident plasmon wavelength is much larger

than the length scale over which the graphene conductivity changes.

The method employed in this paper can be extended to take into account the

coupling of the SPP to the substrate’s surface optical phonons, as for example in

SiO
2

, by taking into account the frequency dependence of the dielectric function of

the substrate. It is also possible to generalize the present method to a geometry where a

finite dielectric is sandwiched between two semi-infinite ones. In this setup, by adjusting

the length of the central dielectric it is possible to achieve either total transmission or

total reflection via Fabry-Pérot oscillations, thus allowing the construction of a Bragg

reflector. Alternatively, we can change the value of the gate potential, thus tuning

the frequency for which there is total reflection or total transmittance. This give us

a real time and on-demand control on the scattering of the plasmon. We point out

that we have only focused on the case of scattering at normal incidence. However, the

method of eigenmode field expansion and matching employed in this work can also be

generalized and applied to the case of oblique incidence. That extension will be the goal

of a forthcoming publication.
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Appendix A. Eigenmodes of Maxwell’s equations

In this apendix we determine the eigenmodes of the system represented in figure 1 for

each to the regions z 7 0, by solving Maxwell’s equations in this geometry. The electric,

E, and the magnetic B, fields are governed by the inhomogeneous Maxwell equations

r⇥ E = �@B

@t

, (A.1)

r⇥B =
" (x, z)

c

2

@E

@t

+ µ

0

j, (A.2)

where j is the current density due to the graphene layer at x = 0 and ✏(x, z) is takes into

account the inhomogeneous dieletric environment that surrounds the graphene layer.
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✏(x, z) is piecewise homogeneous and we write it as ✏(x, z) = ✏

<(x) for z < 0 and

✏(x, z) = ✏

>(x) for z > 0, with

"

< (x) =

(
✏

3

, x > 0

✏

1

, �d < x < 0
, (A.3)

"

> (x) =

(
✏

3

, x > 0

✏

2

, �d < x < 0
. (A.4)

The graphene current density is related to the eletric field by j = �(z)E?, where E?

represents the components of E that are perpendicular to the x direction. We also allow

for di↵erent graphene conductivities (due to di↵erent local doping levels) for z < 0

and z > 0, respectively, �
<

and �

>

. We will use the Drude model for the graphene

conductivity, namely

�

7 =
e

2

⇡~
E

7
F

�

7 + i~! (A.5)

with E

7
F

the local Fermi level and �

7 the local decay rate.

We will consider that all fields have a harmonic time dependence of the form e

i!t

and also assume that the system is translationally invariant along the y direction. We

want to describe scattering at normal incident and therefore we can drop all depence

of the problem on the y coordinate (i.e. @/@y = 0). The total electromagnetic field

can, in general, be split in two polarisations: s/TE (transverse electric) polarization

and p/TM (transverse magnetic) polarization. Since the SPPs are TM-polarized waves,

further in the appendix we restrict our consideration to that particular polarization. For

this polarization and at normal incidence, the electric field will have non-zero x� and

z�components, E = (E
x

, 0, E
z

), while the only nonzero component of the magnetic

field is the y�component, B = (0, B
y

, 0). Under these conditions we rewrite Maxwell’s

equations (A.1) and (A.2) as

@E

z

@x

� @E

x

@z

= i!B

y

, (A.6)

�@B

y

@z

= i

!" (x, z)

c

2

E

x

, (A.7)

@B

y

@x

= i

!" (x, z)

c

2

E

z

+ µ

0

� (x) � (z)E
z

. (A.8)

Due to the piecewise homogenity of the system along the z�direction, we can study

separately the electromagnetic fields in the regions z < 0 and z > 0. In general, there

is a series of solutions, which we will refer to as eigenmodes, indexed by some label n

for each of the regions z 7 0. A general solution for each region can be represented as

a superposition of these eigenmodes. In particular, the expression for the y-component

of the magnetic field at z 7 0 have the form

B

7
y

(x, z) =
X

n

↵

n,�

e

�iq

7
n z

h

7
n

(x), (A.9)
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while the nonzero components of the electric field are

E

7
x

(x, z) = �
X

n,

±↵

n,�

e

�iq

7
n z

e

7
n

(x), (A.10)

E

7
z

(x, z) =
X

n

↵

n,�

e

�iq

7
n zE7

n

(x). (A.11)

↵

n,�

are the eigenmode amplitudes and the summation is taken with respect to the

eigenmode index n. The � = ±1 sign stands for the left/right propagating waves in z

direction with wavenumber q7
n

. With some abuse of notation, the summation symbol in

equations A.9–A.11 actually represents a summation, an integral or both, depending if

the basis is discrete and/or continuous.

From equations A.6-A.8, for each mode the functions h7
n

, e7
n

, and E7
n

are solutions

of the equations

@E7
n

@x

+ iq

7
n

e

7
n

(x) = i!h

7
n

(x), (A.12)

iq

7
n

h

7
n

(x) = i

!"

? (x)

c

2

e

7
n

(x), (A.13)

@h

7
n

@x

=


i

!"

? (x)

c

2

+ µ

0

� (x) �?
�
E7
n

(x). (A.14)

As before, the piecewise-homogenity of equations A.12–A.14 along the x direction

allows us to solve them separately in regions �d < x < 0 and x > 0 and then

apply the boundary conditions. Thus, in the region x > 0, occupied by the dielectric

✏

3

substitution of equations A.13 and A.14 into equation A.12 results into the wave

equation

d

2

h

7
n

(x)

dx

2

=
⇣
p

7
3||n

⌘
2

h

?
n

(x), (A.15)

In the same way, for region �d < x < 0, we obtain the wave equations

d

2

h

<

n

(x)

dx

2

=
�
p

1|n
�
2

h

<

n

(x), (A.16)

d

2

h

>

n

(x)

dx

2

=
�
p

2|n
�
2

h

>

n

(x), (A.17)

which are valid for the domains z < 0 and z > 0, respectively. In equations A.15–A.17
�
p

1|n
�
2

= (q<
n

)2�✏

1

k

0

2,
⇣
p

>

2|n

⌘
2

= (q>
n

)2�✏

2

k

2

0

, and
⇣
p

7
3|n

⌘
2

=
�
q

7
n

�
2�✏

3

k

2

0

, with k

0

= !/c

the wavenumber in vacuum. Notice that q7
n

is the same in both x > 0 and 0 > x > �d

regions. The fact that we have a perfect metal at x = �d forces the z�component of

the electric field to become null there. Therefore, the magnetic field mode along the y

component must have the following form

h

7
n

(x) =

(
B

7
n

e

p

7
3||nx + C

7
n

e

�p

7
3||nx

, x > 0

A

7
n

cosh
⇥
p

j|n (x+ d)
⇤

if 0 > x > �d,
(A.18)

with the x�component of the electric field given by

e

7
n

(x) =
q

7
n

c

2

!✏

3

(
B

7
n

e

p

7
3||nx + C

7
n

e

�p

7
3||nx if x > 0

✏3
✏j
A

7
n

cosh
⇥
p

j|n (x+ d)
⇤

if 0 > x > �d,
(A.19)
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and the z�component being given by

E7
n

(x) =
p

7
3|nc

2

i!✏

3

8
<

:
B

7
n

e

p

7
3||nx � C

7
e

�p

7
3||nx if x > 0

pj|n✏3

p

7
3|n✏j

A

7
n

sinh
⇥
p

j||n (x+ d)
⇤

if 0 > x > �d,
. (A.20)

Notice, that in equations A.18–A.20 the subscript j = 2 is for z > 0 (and is combined

with the superscript >), while the subscript j = 1 is for z < 0 (combined with the

superscript <). Also A

7
n

, B

7
n

and C

7
n

are coe�cients to be determined such that

boundary conditions at x = 0 are satisfied and the mode is normalized. Integration

of equations A.12-A.14 in the limits from x = 0� to x = 0+ imposes the following

boundary conditions at x = 0

E7
n

(0+)� E7
n

(0�) = 0, (A.21)

b

7
n

(0+)� b

7
n

(0�) = µ

0

�7E7
n

(0), (A.22)

which translate into the following equations for A7
n

, B7
n

and C

7
n

B

7
n

� C

7
n

=
p

j|n✏3

p

7
3|n✏j

A

7
n

sinh
�
p

j|nd
�
, (A.23)

B

7
n

+ C

7
n

� A

7
n

cosh
�
p

j|nd
�
=

�7
i!✏

0

p

j|n

✏

j

A

7 sinh
�
p

j|nd
�
. (A.24)

By solving these equations for B7
n

and C

7
n

we obtain equations 21 and 22 of the main

text.

The normalization condition 27 allows to fix the value of A7
n

. By using the following

results

2

⇡

ˆ
+1

0

dx cos (kx) cos (k0
x) = � (k � k

0) , (A.25)

2

⇡

ˆ
+1

0

dx sin (kx) sin (k0
x) = � (k � k

0) , (A.26)

ˆ
+1

0

dx cos (kx) sin (k0
x) =

k

0

(k0)2 � k

2

, (A.27)

we obtain equation 28 of the main text.

Appendix B. Energy sum rule

Energy propagation is intimately related to the time average of the Poynting vector S,

defined as

S =
1

2µ
0

E⇥B

⇤
. (B.1)

For a TM-polarized electromagnetic field propagating along the z�direction, the

Poynting vector has the explicit form

S =
1

2µ
0

�
E

x

B

⇤
y

u

z

� E

z

B

⇤
y

u

x

�
. (B.2)
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In the presence of an imaginary-only conductivity energy is conserved and Poynting’s

theorem establishes that

Re

ˆ
@V

S · dA = 0, (B.3)

where @V is the closed surface enclosing the volume V and dA is an infinitesimal areal

vector lying on the surface of @V and pointing from the inside to the outside of the

volume V . We are interested in the fields in the far-field, therefore we draw a cube

passing through z = ±1, x = �d, x = +1, and y = ±1. As the fields do not

depend on y the integral over @V can be reduced to a one-dimensional integral along

the rectangle defined by z = ±1, x = �d, and x = +1. We now use equations 29-32

to compute the Poynting vector. The energy flow along the z direction is related to

2µ
0

S

<

z

(x, z) which reads

2µ
0

S

<

z

(x, z) = E

<

x

(x, z)B<⇤
y

(x, z) =

= e

<

0

(x)
⇣
e

�iq

<
0 z � r

0

e

iq

<
0 z

⌘
h

<⇤
0

(x)
⇣
e

iq

<
0 z + r

⇤
0

e

�iq

<
0 z

⌘

�
ˆ 1

0

dk

ˆ 1

0

dk

0
r

k

r

⇤
k

0e
<

k

(x)h<⇤
k

0 (x)ei(q
<
k �q

<⇤
k0 )z

�
ˆ 1

0

dk r

k

e

<

k

(x)eiq
<
k z

h

<⇤
0

(x)
⇣
e

iq

<
0 z + r

⇤
0

e

�iq

<
0 z

⌘

+

ˆ 1

0

dk r

⇤
k

h

<⇤
k

(x)e�iq

<⇤
k z

e

<

0

(x)
⇣
e

�iq

<
0 z � r

0

e

iq

<
0 z

⌘
. (B.4)

Integrating 2µ
0

S

<

z

(x, z) along the x�axis from x = �d to x = 1 and using the

orthonormality of the modes it follows that

2µ
0

Re

ˆ 1

�d

dx [S<

z

(x, z ! �1)] = (1� |r
0

|2)

�
ˆ

kc

0

dk|r
k

|2 �
ˆ 1

kc

dk|r
k

|2e2|q<R |z
. (B.5)

In the far field z ! �1 the last term of the previous equation is zero. In the same way

the contribution from the surface located at z = +1 provides the result:

2µ
0

Re

ˆ 1

�d

dxS

>

z

(x, z ! 1) = |⌧
0

|2 +
ˆ

kc

0

dk|⌧
k

|2. (B.6)

Finally, we still need the contribution from the line at x = +1. The last term we need

to compute is:

Re

ˆ 1

�1
dzS

x

(x, z) = Re

ˆ
0

�1
dzS

<

x

(x, z) + Re

ˆ 1

0

dzS

>

x

(x, z), (B.7)

which corresponds to radiation emitted orthogonal to the graphene plane. The

plasmonic fields e

0

and h

0

go to zero when x ! 1 and thus do not transport energy.

Therefore we are left with the term that depends on the radiative modes. It can be
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shown that the integral is purely imaginary and therefore its real part is zero and does

not contributes to energy conservation. Putting all together in equation (B.3) we find

1 = |⌧
0

|2 + |r
0

|2 +
ˆ

kc

0

dk |r
k

|2 +
ˆ

kc

0

dk |⌧
k

|2 , (B.8)

which is the statement of energy conservation.

Appendix C. Explicit form of the inner products

In this Appendix we list the explicit results for the inner products. First we provide

results for some useful integrals:ˆ
0

�d

dx cosh(p
j

(x+ d)) cosh(p
j

0(x+ d)) =

=
1

2

"
sinh(p

j

+ p

j

0)d

p

j

+ p

0
j

+
sinh

⇥
(p

j

� p

0
j

)d
⇤

p

j

� p

j

0

#
, (C.1)

ˆ 1

0

dxe

�2p3x =
1

2p
3

, (C.2)
ˆ 1

0

dxe

�p3x sin(kx) =
k

k

2 + p

2

3

, (C.3)
ˆ 1

0

dxe

�p3x cos(kx) =
p

3

k

2 + p

2

3

, (C.4)

and ˆ 1

0

dx cos(kx) sin(k0
x)e�0

+
x =

1

2

✓
1

k + k

0 +
1

k

0 � k

◆
. (C.5)

Using the previous integrals we can compute the di↵erent inner products, which, after

tedious calculations, read:

he<
0

, h

>

0

i = q

<

Ã

1

Ã

2


1

"

1

S(p
1

, p

2

) +
"

3

p̃

<

3

+ p̃

>

3

a

1

a

2

�
, (C.6)
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where in the last two equations, i = 1 (i = 2) for the superscript < (>).

From equations C.12 and C.13 and from equation 64 and function v(k), as defined

by equation 66, is given by
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such that we obtain
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Appendix D. Numerical solution of Fredholm Problem

To solve the Fredholm equation 67, first we introduce a cuto↵ k

max

= c

F

k

c

in the integral,

where c

F

is large and is choosen as the value needed for the solution to converge. The

kernel of the Fredholm equation, z
3

(k, k0), has a divergence of the kind:

1

k � k

0 , (D.1)

that comes from the term proportional to Q

2

(k, k0) in the inner products C.12 and C.13.

To regularize this divergence, we make the substitution:

1

k � k

0 !
k � k

0

(k � k

0)2 + ⌘

2

, (D.2)

where ⌘ is a parameter choosen as small as necessary to achieve convergence of the

calculation. In the numerical results shown in the main text, we used c

F

= 30 and

⌘ = 10�3

k

c

.

In the integral of equation 67 we make the variable change u = k

c

k, and separate

the integration limit in two parts:ˆ
cF

0

du =

ˆ
1

0

du+

ˆ
cF

1

du. (D.3)

Next, we divide each of those integrals in N

1

and N

2

equally spaced regions. For each

of those regions, we apply a Gauss-Legendre quadrature with N

Gauss1

(when u < 1)

and N

Gauss2

(u > 1) points. The Fredholm problem now is transformed into a matrix

equation:

r = r
0

�Z
3

· r, (D.4)

where Z
3

is a (N
1

N

Gauss1

+N

2

N

Gauss2

)⇥ (N
1

N

Gauss1

+N

2

N

Gauss2

) matrix obtained from

the discretization of the kernel z
3

(k, k0), r is the solution we seek, being a vector obtained

by descritizing the reflection coe�cient, and r
0

is vector obtained from the discritization

of the zeroth order solution of the Fredholm equation 76. The solution of D.4 is obtained

trivially as r = (1+Z
3

)�1·r
0

. For the results shown in this paper we usedN

1

= N

2

= 80,

N

Gauss1

= 2, N
Gauss2

= 3.

This numerical procedure works for the spectral range shown in this paper

(frequencies up to 7.25 THz). For higher frequencies, the integration of the resulting ⌧

k

function, to calculate the sum rule 80, diverges due to the singularity at the k

c

point

(see figure 4). To go to higher frequencies, a more sophisticated integration algorithm

is necessary.
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