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Curcumin is a plant secondary metabolite with outstanding therapeutic effects.

Therefore, there is a great interest in developing new strategies to produce this

high-value compound in a cheaper and environmentally friendly way. Curcu-

min heterologous production in Escherichia coli using artificial biosynthetic

pathways was previously demonstrated using synthetic biology approaches.

However, the culturing conditions to produce this compound were not opti-

mized and so far only a two-step fermentation process involving the exchange

of culture medium allowed high concentrations of curcumin to be obtained,

which limits its production at an industrial scale. In this study, the culturing con-

ditions to produce curcumin were evaluated and optimized. In addition, it was

concluded that E. coli BL21 allows higher concentrations of curcumin to be pro-

duced than E. coli K-12 strains. Different isopropyl b-D-thiogalactopyranoside

concentrations, time of protein expression induction and substrate type and con-

centration were also evaluated. The highest curcumin production obtained was

959.3 mM (95.93% of per cent yield), which was 3.1-fold higher than the highest

concentration previously reported. This concentration was obtained using a

two-stage fermentation with lysogeny broth (LB) and M9. Moreover, terrific

broth was also demonstrated to be a very interesting alternative medium to pro-

duce curcumin because it also led to high concentrations (817.7 mM). The use of

this single fermentation medium represents an advantage at industrial scale

and, although the final production is lower than that obtained with the LB–

M9 combination, it leads to a significantly higher production of curcumin in

the first 24 h of fermentation. This study allowed obtaining the highest concen-

trations of curcumin reported so far in a heterologous organism and is of interest

for all of those working with the heterologous production of curcuminoids,

other complex polyphenolic compounds or plant secondary metabolites.

1. Introduction
Curcumin is a polyphenol found in the plant Curcuma longa and is well known

for its several therapeutic benefits. It exhibits excellent anti-cancer potential [1,2]

and has also been shown to have anti-inflammatory [3], antidiabetic [4] and

anti-Alzheimer’s [5] properties, among others. Despite its innumerous thera-

peutic applications curcumin has extremely low aqueous solubility, chemical

stability and poor bioavailability, which has limited its clinical use [1,2]. Curcu-

min is mainly obtained using costly, energy-intensive and environmentally

unfriendly extraction processes [6]. The yields obtained are low because it

accumulates in low amounts over long growth periods in plants. In addition,

its chemical synthesis is complex [7]. All these reasons make its heterologous

biosynthetic production very interesting [6].

Recently, curcumin and other curcuminoids were produced in Escherichia
coli using combinatorial biosynthesis [6,8–13]. Curcumin can be produced by

feeding amino acids or ferulic acid (figure 1). The short pathway from ferulic

acid uses two or three enzymes: 4-coumarate-CoA ligase (4CL) from different

plants, diketide-CoA synthase (DCS) and curcumin synthase (CURS1) from

C. longa [8] or curcuminoid synthase (CUS) from Oryza sativa [10]. CUS

catalyses both steps that are catalysed separately by DCS and CURS1.
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Figure 1. Curcumin biosynthetic pathway in E. coli using ferulic acid as sub-
strate. 4CL, 4-coumarate-CoA ligase; DCS, diketide-CoA synthase; CURS,
curcumin synthase.
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In general, curcumin and other curcuminoids have been

produced by heterologous hosts using two separate cultiva-

tion steps [8,10,12]. Usually the strains are first grown in

lysogeny broth (LB) to produce large amounts of biomass

and reach a suitable protein production level. After reaching

the exponential phase, the cells are harvested and transferred

to M9 modified minimal salt medium, where the substrates

(amino acids or ferulic acid) are added and the curcuminoids

are produced. There are also some reports of other curcumi-

noids produced in LB supplemented with glucose after

protein expression [11,14]. Although the two-step fermenta-

tion strategy is feasible at the laboratory scale, the

separation of biomass is much more difficult, laborious and

expensive in large-scale fermentations. Therefore, it is very

important to optimize the fermentation conditions, including

media and operating parameters. In this study, we describe

the production of curcumin from ferulic acid in different

E. coli strains carrying a biosynthetic pathway previously

described by our group [8]. Several fermentation parameters

were studied and it was possible to obtain for the first time

very high concentrations of curcumin using a single

medium. The curcumin concentrations obtained in this

study are the highest reported so far.
2. Material and methods
2.1. Bacterial strains and plasmids
Escherichia coli NZY5a competent cells were purchased from

NZYTech (Lisbon, Portugal) and were used for molecular
cloning and vector propagation. Escherichia coli K-12 MG1655

(DE3), E. coli K-12 JM109 (DE3) and E. coli BL21 (DE3) were

tested as hosts for the expression of the curcumin biosynthetic

pathway. Table 1 summarizes the characteristics of all strains

and plasmids used. The construction of pCDFDuet_DCS and

pRSFDuet_CURS1 was previously described by our group [8].

The DNA sequences of the codon-optimized genes are provided

in the electronic supplementary material, table S1. pAC-4CL1

plasmid was provided by Claudia Schmidt-Dannert [16] through

Addgene (Cambridge, MA, USA; plasmid 35947). The selected

hosts were transformed with the three plasmids using

electroporation.
2.2. Curcumin production
For the production of curcumin, different strains, culture media,

isopropyl b-D-thiogalactopyranoside (IPTG) concentrations and

times of induction were tested (electronic supplementary

material, figure S1).
2.2.1. Culture media
LB, agar and super optimal broth with catabolite repression

(SOC) were purchased from NZYTech and were used to prepare

pre-inoculums and in the transformations. LB was also used as

the production medium. In addition to LB, M9 modified minimal

salt medium, MOPS (morpholinepropanesulfonic acid) minimal

medium and TB (terrific broth) were used:

— M9 modified minimal salt medium contained (per litre): 40 g

glucose (Acros, Geel, Belgium), 6 g Na2HPO4 (Scharlau,

Sentmenat, Spain), 3 g KH2PO4 (Riel-deHaën, Seelze,

Germany), 1 g NH4Cl, 0.5 g NaCl, 15 mg CaCl2 (Panreac,

Barcelona, Spain), 110 mg MgSO4 (Riel-deHaën), 340 mg

thiamine (Fisher Scientific, Loughborough, UK) and 5 g

CaCO3 (Panreac) (to control the pH). Trace elements

(54 mg FeCl3, 4 mg ZnCl2, 4 mg CoCl2, 2 mg CuCl2
(Riedel-deHaën), 4 mg NaMoO4 and 1 mg H2BO3 (Merck,

Kenilworth, NJ, USA)) and vitamins (0.84 mg riboflavin,

10.8 mg pantothenic acid (Sigma-Aldrich, Steinheim,

Germany), 2.8 mg pyridoxine, 0.084 mg folic acid, 0.12 mg

biotin (Merck) and 12.2 mg nicotinic acid (Riedel-deHaën))

were added to the medium.

— MOPS minimal medium contained (per litre): 40 g glucose,

10 ml of 0.132 M K2HPO4 and 100 ml of 10� MOPS mixture.

The 10� MOPS mixture contained (per litre): 83.72 g MOPS

(Fisher Scientific), 7.17 g tricine (ChemCruz, Dallas, TX,

USA), 0.028 g FeSO4 (Sigma-Aldrich), 50 ml of 1.9 M

NH4Cl, 10 ml of 0.276 M K2SO4 (Panreac), 0.25 ml of 0.02 M

CaCl2.2H2O, 4.2 ml of 1.25 M MgCl2 (VWR, Radnor, PA,

USA), 100 ml of 5 M NaCl, 0.2 ml of micronutrient solution

(containing per 50 ml: 9 mg (NH4)6Mo7O24.4H2O (Fluka,

Buchs, Switzerland), 62 mg H3BO3 (Merck), 18 mg CoCl2,

6 mg CuSO4 (Sigma-Aldrich), 40 mg MnCl2 (Merck) and

7 mg ZnSO4 (Sigma-Aldrich)). Final pH was adjusted to 7.2

with NaOH.

— TB medium contained (per litre): 12 g tryptone (Oxoid,

Basingstoke, UK), 24 g yeast extract (Oxoid), 4 ml of a 10%

(v/v) glycerol solution (HiMedia, Mumbai, India), 9.4 g

K2HPO4 (Panreac) and 2.2 g KH2PO4. In some experiments,

0.4–4% glycerol final concentrations were used (instead of a

0.04% glycerol final concentration) or 40 g l21 glucose was

supplemented to TB.

Spectinomycin (100 mg ml21) (Panreac), chloramphenicol

(30 mg ml21), and kanamycin (50 mg ml21) (NZYTech) were

also added to all media. IPTG (NZYTech) was added at a final

concentration of 1 mM unless otherwise stated. Ferulic acid

http://rsif.royalsocietypublishing.org/


Table 1. Bacterial strains and plasmids used in this study.

strains relevant genotype source

E. coli NZY5a fhuA2D(argF2lacZ)U169 phoA glnV44 F80 D(lacZ)M15 gyrA96 recA1 relA1

endA1 thi-1 hsdR17

NZYTech (MB00401)

E. coli K-12 MG1655(DE3) F2 l2 ilvG2 rfb250 rph21 l(DE3) [15]

E. coli K-12 JM109(DE3) endA1 recA1 gyrA96 thi hsdR17 (rk
2, mk

þ) relA1 supE44 l2 D(lac-proAB)

[F0 traD36 proAB lacIq D(lacZ)M15] l(DE3)

Promega (P9801)

E. coli BL21(DE3) fhuA2 [lon] ompT gal l(DE3) [dcm] DhsdSB NEB (C2527)

plasmids construct source

pCDFDuet_DCS CloDF13 ori, lacI, double T7lac, StrepR; pCDFDuet-1 carrying codon-optimized

DCS from Curcuma longa

[8]

pRSFDuet_CURS1 RSF ori, lacI, double T7lac, KanR; pRSFDuet-1 carrying codon-optimized CURS1 from C. longa

pAC-4CL1 P15A ori, Plac, CmR, pACYC184-derived plasmid carrying 4CL1 from Arabidopsis thaliana Addgene (35947)
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(Acros) was added to the production medium at a final

concentration of 2 mM.

2.2.2. Production conditions
Firstly, curcumin was produced in the three strains (§2.1) using

the combination of LB (for biomass and protein production)

and M9 (for curcumin production) previously tested [8,10]. Cul-

tures were grown at 378C in 50 ml LB in 250 ml flasks to an

optical density at 600 nm (OD600) of 0.4 (for E. coli K-12

MG1655(DE3)) or 0.6–0.7 (for E. coli K-12 JM109(DE3) and E.
coli BL21(DE3)). The protein expression was induced with IPTG

(1 mM) and the culture was then incubated for 5 h at 268C.

Next, the cells were harvested by centrifugation, suspended

and incubated at 268C for 63 h in 50 ml M9 medium in 250 ml

flasks. Ferulic acid (2 mM) and IPTG (1 mM) were added at

time 0 of induction in M9 medium. Both media contained

IPTG at a final concentration of 1 mM.

In the case of E. coli BL21(DE3), the optimal IPTG concen-

tration in LB (0.1 mM, 0.5 mM, 1 mM or 1.5 mM), need for

IPTG in M9 medium (0 mM) and optimal OD600 (0.4–0.9) for

induction of protein expression were also evaluated. Afterwards,

other culture media (§2.2.1) and other combinations of media

were also tested. LB, MOPS and TB were tested for the simul-

taneous biomass/protein and curcumin production. In these

cases, the temperature was also decreased from 378C to 268C
and the substrate was added after 5 h of protein expression. In

parallel, LB or TB were also combined with MOPS. The addition

of the same, but fresh, media 5 h after protein expression/before

adding the substrate was also tested in the case of LB and TB.

Based on the results obtained with TB, different types and con-

centrations of carbon sources at different phases were

evaluated (§2.2.1).

All experiments were conducted in triplicate. Supernatant

samples (1.5 ml) were collected for the analysis of substrate,

while for the analysis of curcumin 500 ml of culture broth with

cells (whole broth) was collected.

2.3. Curcumin extraction
For subsequent curcumin analysis, 500 ml of whole broth was

adjusted to pH 3.0 with 6 M HCl (Fisher Scientific). Then, curcu-

min, which is produced intracellularly, was extracted from the

cells with an equal volume of ethyl acetate (Fisher Scientific).

The extracts were concentrated by solvent evaporation in a

fume hood, suspended with 200 ml of acetonitrile and subjec-

ted to product analysis by ultra-high-performance liquid

chromatography (UHPLC).
2.4. Ultra-high-performance liquid chromatography
analysis

UHPLC analysis was used to quantify ferulic acid and curcumin

using the Shimadzu Nexera-X2 (Shimadzu Corporation, Kyoto,

Japan) (CBM-20A system controller, LC-30AD pump unit,

DGU-20A 5R degasser unit, SPD-M20A detector unit, SIL-30AC

autosampler unit, CTO-20AC column oven) system and a Grace All-

tech Platinum EPS C18 column (3 mm, 150 mm � 4.6 mm) (Grace,

Columbia, MD, USA). Mobile phase A was composed of water

with 0.1% (v/v) of trifluoroacetic acid (Fluka). Mobile phase B was

composed of acetonitrile (Fisher Scientific). For ferulic acid quantifi-

cation, the following gradient was used at a flow rate of 1 ml min21:

10–20% acetonitrile (mobile phase B) for 16 min. Quantification was

based on the peak areas at 310 nm for ferulic acid and the retention

time was 9.7 min. Forcurcumin quantification, a gradient of 40–43%

acetonitrile (mobile phase B) for 15 min and 43% acetonitrile for an

additional 5 min was used. Curcumin was detected at 425 nm of

absorbance and the retention time was 17.6 min. Curcumin used

to prepare standards was purchased from Fisher Scientific.
3. Results and discussion
3.1. Selection of the best host to produce curcumin
The selection of the heterologous host for the production of cur-

cumin is important because, depending on the strain, the

concentrations reached can be very different. Indeed, the pro-

ductions previously obtained in different strains were

significantly different. For example, the highest curcumin con-

centration obtained in our previous work [8] was 187.9 mM

using E. coli K-12 MG1655(DE3), while Katsuyama et al. [10]

were able to obtain�306.7 mM using E. coli BLR(DE3). The fer-

mentation conditions used in both studies were the same but the

enzymes used were different (and/or from different organisms).

Therefore, it was not possible to conclude whether the difference

obtained was due to the strain used or, for example, due to the

possibly higher catalytic efficiency of CUS compared with the

combination of DCS and CURS1. Thus, the production of curcu-

min using the same fermentation conditions and biosynthetic

pathway was tested in this study, varying only the E. coli strains.

The productions obtained in three E. coli strains available in our

laboratory were compared (figure 2). As it is possible to observe,

the production in E. coli BL21 was very high (483.1 mM), 2.72-

fold higher than that produced with E. coli K-12 MG1655

(177.9 mM). E. coli K-12 JM109, a strain widely used for the

http://rsif.royalsocietypublishing.org/
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Figure 2. Curcumin production in E. coli K-12 MG1655 (DE3), E. coli K-12
JM109(DE3) and E. coli BL21(DE3). LB (lysogeny broth) was used for cell
growth and protein expression and M9 medium for the curcumin production
phase. The optical density (600 nm) at the moment of induction was 0.4 for
E. coli K-12 MG1655 and 0.6 for E. coli K-12 JM109 and E. coli BL21. Error
bars are standard deviations from triplicate experiments. Two-way ANOVA was
used to determine statistically significant differences and is denoted as fol-
lows: **** indicates p-value , 0.0001 and ** indicates p-value , 0.01.
See the electronic supplementary material, table S2, for more detailed
information regarding statistical significance.
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Figure 3. Effect of optical density at 600 nm (OD600) at the time of induction
of protein expression in curcumin production in E. coli BL21(DE3). LB (lyso-
geny broth) was used for cell growth and protein expression and M9 medium
for the curcumin production phase. Error bars are standard deviations from
triplicate experiments. Two-way ANOVA was used to determine statistically
significant differences and is denoted as follows: **** indicates p-value ,

0.0001, **indicates p-value , 0.01 and n.s. indicates no significant differ-
ence ( p . 0.05). See the electronic supplementary material, table S3, for
more detailed information regarding statistical significance.
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production of various recombinant proteins due to the deletion

of recA and endA that have a positive effect on plasmid stability

[15], was also tested but the curcumin production was low

(73.2 mM). E. coli BLR is a BL21-related strain, and they are

both derived from B strains. B strains are excellent for protein

expression because they are deficient in Lon and OmpT pro-

teases, which degrade many heterologous proteins [17–19]. In

addition, the parental strain (B834) that gave rise to BL21 has a

mutation in the hsdSB gene which prevents plasmid degradation

[19,20]. Besides these genetic differences, E. coli B strains have a

more efficient central carbon metabolism, thus they tolerate

higher glucose concentrations, produce less acetate and grow

to higher OD than E. coli K-12 [15,21–24], which can be very

advantageous when expressing biosynthetic pathways. Acetate,

which is a growth inhibitor, accumulates less in E. coli BL21

because this strain presents a higher expression of acetyl-CoA

synthetase during the glucose exponential phase [25]. This

enzyme converts acetate to acetyl-CoA, which in turn is con-

verted to malonyl-CoA, whose availability in the cell is very

important for curcumin production [6].

The comparison of these production results also suggests

that our pathway, which consisted of 4CL1 from Arabidopsis
thaliana and DCS and CURS1 from C. longa, is more efficient

than the pathway described by Katsuyama et al. [10], which

consisted of 4CL from Lithospermum erythrorhizon, CUS and

overexpression of acetyl-CoA carboxylase from E. coli.

3.2. Optimization of induction parameters (OD and
IPTG) in Escherichia coli BL21(DE3) when using the
combined LB and M9 medium to produce
curcumin

The OD600 at the time of induction has proved to highly influ-

ence curcumin production when E. coli K-12 MG1655(DE3)
was used as host [8]. Therefore, the optimal OD600 to

induce protein expression and produce curcumin was also

evaluated for E. coli BL21. The curcumin production obtained

at different OD600 values for the induction of protein

expression can be observed in figure 3. The addition of

IPTG at an OD600 of 0.9 yielded the highest production titre

(959.3 mM), thus suggesting that induction should be per-

formed at high OD600 values. An early induction can

probably impose a metabolic burden on the host strain

associated with protein overexpression. When the cells are

induced after the exponential phase there is a higher cell den-

sity for product formation. However, after the exponential

phase the metabolic state of the cells may not be favourable

for protein expression because they may be under stressful

conditions and trigger a response that increases protease

levels, which can reduce the yield of heterologous proteins

[26]. Protein induction using E. coli BL21 could be performed

at a later stage than when E. coli K-12 MG1655(DE3) was used

(OD600 ¼ 0.4), probably because E. coli BL21 lacks some pro-

teases and is less sensitive to growth conditions, usually

growing to a higher OD as stated before [15].

The optimal IPTG concentration for protein induction and

consequently substrate conversion was also investigated. In

previous studies, IPTG was added to a final concentration of

1 mM in LB and then in M9 minimal medium. In figure 4, it is

possible to compare the curcumin production for different

IPTG concentrations tested (0.1, 0.5, 1.0 and 1.5 mM). These

concentrations were tested in both LB and M9 medium. In

addition, in one of the tests 1 mM of IPTG was added to LB

and no IPTG was added to the M9 medium. The study of

the best IPTG concentration is important because protein

expression does not respond predictably to IPTG concen-

tration. IPTG is actively transported across the cell

membrane by permeases or permease-independent pathways

[27] and, therefore, the IPTG that enters each cell is highly

variable. As can be seen in figure 4, the highest curcumin pro-

duction (822.6 mM) was obtained when 0.1 mM of IPTG was

added and the increase in the production is statistically

http://rsif.royalsocietypublishing.org/
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significant ( p , 0.0001). Higher IPTG concentrations did not

lead to titre enhancement, suggesting that metabolic burden

effects may be affecting productivity [28–30]. High expression

of heterologous proteins can have a negative and unpredict-

able effect on the cell growth while expression levels that

are too low might reduce the encounter frequency between

the enzymes and the substrates [28–31]. Owing to this unpre-

dictability it is important to optimize the IPTG concentration.

The need to add IPTG in the phase of production (in M9

medium) was also evaluated (figure 4, white bar). By compar-

ing the result obtained (589.8 mM) with that where 1 mM of

IPTG was added in both steps (LB and M9 medium)

(524.8 mM), it is possible to conclude that the addition of

IPTG in the production phase may not be needed. This pos-

sibly occurred because in this case the metabolic burden is

reduced.

Finally, we evaluated whether the curcumin concen-

tration could be improved by inducing the cells at an OD

of 0.9, which proved to be favourable (figure 3), and by

adding only 0.1 mM of IPTG. As can be observed in

figure 4, the combination of both optimal parameters did

not significantly increase the production (831.9 mM). The

initial conditions tested, OD of 0.9 and IPTG of 1 mM

(figure 3), proved to be the best conditions to produce

curcumin in this culture medium.
3.3. Optimization of culture media to produce curcumin
using Escherichia coli BL21(DE3)

In this study, different cultivation media for the entire pro-

duction bioprocess were evaluated in order to avoid
medium exchange in the middle of the process. This would

make the curcumin production easier, more attractive and

also more economically viable for an industrial scale-up. LB

and M9 medium were previously tested in a one-step cultiva-

tion strategy using E. coli K-12 MG1655(DE3) but it was

concluded that the productions were very low (data not

shown). Therefore, other media such as TB and MOPS were

tested because they were previously used to successfully pro-

duce plant secondary metabolites [32,33]. In addition,

different media combinations (LB-MOPS and TB-MOPS)

and exchange to the same, but fresh, medium (LB–LB and

TB–TB) were also tested with the aim of finding a combi-

nation that allowed higher titres to be obtained. The

productions obtained can be observed in figure 5. TB

medium, from all the new media tested, proved to be the

best one to produce curcumin (535.8 mM at 43 h). In addition,

in this medium it is possible to obtain higher concentrations

of curcumin in the first 24 h than when using the combination

LB–M9, which represents an advantage for industrial-scale

production. The other combinations tested led to low curcu-

min productions. The use of fresh TB medium in the

production phase also allowed significantly higher concen-

trations of curcumin to be obtained but the high content of

the carbon source probably had an inhibitory effect when

compared with the case where the same TB was used in

both phases. TB is a phosphate-buffered rich medium and

has 20% more tryptone and 380% more yeast extract than

LB. In addition, TB also has glycerol as an extra carbon

source. This high nutritive content and the presence of pot-

assium phosphates that prevent a drop in pH of the

medium during bacterial growth allow E. coli to maintain
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an extended growth phase and therefore to obtain greater

yields of recombinant protein and plasmid DNA [34]. M9

modified minimal medium was also buffered (by the

addition of CaCO3), which was essential to obtain the high

concentrations reported (figures 2–4) in this medium [35,36].
3.4. Optimization of carbon source concentration in
terrific broth medium

TB was demonstrated to be an optimal medium for both

stages of curcumin production (figure 5). Therefore, the

effect of induction time in TB medium was evaluated and,

although at an OD600 of 0.8–0.9 the production was higher

than at an OD600 of 0.4 and 0.6 (data not shown), the differ-

ences were not statistically significant ( p . 0.05). In parallel,

different concentrations of glycerol were tested with the goal

of improving the production (figure 6). TB contained 0.04%

(v/v) glycerol at the beginning of the fermentation except in

one case where a 0.4% concentration was tested (figure 6,

TB (glycerol 0.4%)). This concentration was tested as it is the

concentration present in most TB formulations [34]. In this

study, glycerol or glucose were also supplemented when the

substrate was added (5 h after induction with IPTG). As can

be seen in figure 6, the supplementation of glucose had a

negative/inhibitory effect on curcumin production. The pres-

ence of glucose, a preferred carbon source, represses the

synthesis and activity of key proteins for transport and metab-

olism of glycerol [37]. In addition, the supplementation of

glucose is known to enhance acetic acid production, which

reduces the pH of the medium. This acidic shift in a first

phase inhibits protein production and then retards E. coli
growth [38,39]. Glucose accumulation can also promote the

growth of plasmid-free cells [40].

Regarding the different concentrations of glycerol tested,

the best result was obtained when 0.04% glycerol was

added at the beginning of the fermentation and then 1% of
glycerol was added with the substrate (686.7 mM at 43 h).

This experiment was repeated but in the conditions pre-

viously optimized for the LB and M9 combination—the

protein expression was induced at an OD of 0.9 and

0.1 mM or 1.0 mM IPTG was tested. At an OD of 0.9 and

0.1 mM IPTG, it was possible to improve curcumin pro-

duction (817.7 mM at 63 h) by 31% at 63 h. This production

is very high and almost equivalent to the highest one

obtained using the LB and M9 combination (959.3 mM),

which clearly demonstrates that the TB medium should be

considered at industrial scale for the production of curcumin

because it allows the operational process to be simplified and

reduces the operational costs related to the exchange of the

culture medium. In addition, this medium allows a higher

production of curcumin to be obtained in the first 24 h of fer-

mentation than the combination of LB–M9. To further

decrease the costs of the fermentation medium (TB), alterna-

tive low-cost substrates could be considered. For instance,

corn steep liquor could be tested as a nitrogen source because

it is an inexpensive residue compared with the commonly

used sources, namely yeast extract and tryptone. In addition,

crude glycerol arising from biodiesel production could be

evaluated towards the development of a more sustainable

process.
4. Conclusion
The optimization of curcumin fermentation conditions is

essential to increase the production and yields of this impor-

tant therapeutic agent. So far, curcumin has only been

produced with high yields in a two-step fermentation that

involves the exchange of fermentation medium, which is

not ideal at an industrial scale. Herein we study different

parameters including different E. coli strains, IPTG concen-

trations, time of protein expression induction and substrate

type and concentration. Escherichia coli BL21(DE3) enabled
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more curcumin to be produced than the other strains tested.

In the end, we were able not only to increase curcumin pro-

duction from ferulic acid by 3.1-fold, but also to produce it

using a single fermentation medium without any significant

decrease in the production or yield. TB proved to be an opti-

mum culture medium to produce curcumin. The productions

obtained in this study, 817.7 mM (301 mg l21) in TB and

959.3 mM (353 mg l21) in the combined LB and M9

medium, are the highest reported so far, as well as the per

cent yields of 81.8–95.9%. In the future, the potential of

industry by-products and residues could be tested in curcu-

min production aiming at the development of a sustainable

bioprocess based on the circular bioeconomy concept. In

addition, factorial experiment designs can be used to opti-

mize other relevant variables (e.g. duration of protein

expression before substrate addition) before starting the bio-

process scale-up. In bioreactor production, other parameters

will have to be taken into account, such as aeration and agita-

tion rates that may influence cellular growth and,

consequently, curcumin production. Additionally, the avail-

ability of the natural precursor malonyl-CoA can be studied
and further improved by different metabolic engineering

strategies.
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López-Santı́n J. 2012 Evidencing the role of lactose
permease in IPTG uptake by Escherichia coli
in fed-batch high cell density cultures. J. Biotechnol.
157, 391 – 398. (doi:10.1016/j.jbiotec.2011.
12.007)

28. Moon TS, Yoon S-H, Lanza AM, Roy-Mayhew JD,
Prather KLJ. 2009 Production of glucaric acid from a
synthetic pathway in recombinant Escherichia coli.
Appl. Environ. Microbiol. 75, 589 – 595. (doi:10.
1128/AEM.00973-08)

29. Moon TS, Dueber JE, Shiue E, Prather KLJ. 2010 Use
of modular, synthetic scaffolds for improved
production of glucaric acid in engineered E. coli.
Metab. Eng. 12, 298 – 305. (doi:10.1016/j.ymben.
2010.01.003)

30. Jones KL, Kim S-W, Keasling J. 2000 Low-copy
plasmids can perform as well as or better than
high-copy plasmids for metabolic engineering of
bacteria. Metab. Eng. 2, 328 – 338. (doi:10.1006/
mben.2000.0161)

31. Donovan RS, Robinson CW, Glick B. 1996 Review:
optimizing inducer and culture conditions for
expression of foreign proteins under the control of
thelac promoter. J. Ind. Microbiol. 16, 145 – 154.
(doi:10.1007/BF01569997)

32. Wu J, Du G, Zhou J, Chen J. 2013 Metabolic
engineering of Escherichia coli for (2S)-pinocembrin
production from glucose by a modular metabolic
strategy. Metab. Eng. 16, 48 – 55. (doi:10.1016/j.
ymben.2012.11.009)

33. Leonard E, Yan Y, Fowler ZL, Li Z, Lim C-G, Lim K-H,
Koffas MA. 2008 Strain improvement of
recombinant Escherichia coli for efficient production
of plant flavonoids. Mol. Pharm. 5, 257 – 265.
(doi:10.1021/mp7001472)

34. Tartof K, Hobbs C. 1987 Improved media for
growing plasmid and cosmid clones. Focus 9, 12.

35. Niu D, Tian K, Prior BA, Wang M, Wang Z, Lu F,
Singh S. 2014 Highly efficient L-lactate production
using engineered Escherichia coli with dissimilar
temperature optima for L-lactate formation and cell
growth. Microb. Cell Fact. 13, 1 – 11. (doi:10.1186/
1475-2859-13-78)

36. Mazumdar S, Lee J, Oh M-K. 2013 Microbial
production of 2, 3 butanediol from seaweed
hydrolysate using metabolically engineered
Escherichia coli. Bioresour. Technol. 136, 329 – 336.
(doi:10.1016/j.biortech.2013.03.013)

37. Deutscher J, Francke C, Postma PW. 2006 How
phosphotransferase system-related protein
phosphorylation regulates carbohydrate metabolism
in bacteria. Microbiol. Mol. Biol. Rev. 70, 939 – 1031.
(doi:10.1128/MMBR.00024-06)

38. De Mey M, De Maeseneire S, Soetaert W,
Vandamme E. 2007 Minimizing acetate formation in
E. coli fermentations. J. Ind. Microbiol. Biotechnol.
34, 689 – 700. (doi:10.1007/s10295-007-0244-2)

39. Romano D, Molla G, Pollegioni L, Marinelli F. 2009
Optimization of human D-amino acid oxidase
expression in Escherichia coli. Protein Expr. Purif. 68,
72 – 78. (doi:10.1016/j.pep.2009.05.013)

40. Neubauer P, Lin H, Mathiszik B. 2003 Metabolic
load of recombinant protein production: inhibition
of cellular capacities for glucose uptake and
respiration after induction of a heterologous gene in
Escherichia coli. Biotechnol. Bioeng. 83, 53 – 64.
(doi:10.1002/bit.10645)

http://dx.doi.org/10.1186/gb-2012-13-5-r37
http://dx.doi.org/10.1186/gb-2012-13-5-r37
http://dx.doi.org/10.1007/s00253-014-6280-8
http://dx.doi.org/10.1016/j.jbiotec.2012.08.026
http://dx.doi.org/10.1016/j.jbiotec.2011.12.007
http://dx.doi.org/10.1016/j.jbiotec.2011.12.007
http://dx.doi.org/10.1128/AEM.00973-08
http://dx.doi.org/10.1128/AEM.00973-08
http://dx.doi.org/10.1016/j.ymben.2010.01.003
http://dx.doi.org/10.1016/j.ymben.2010.01.003
http://dx.doi.org/10.1006/mben.2000.0161
http://dx.doi.org/10.1006/mben.2000.0161
http://dx.doi.org/10.1007/BF01569997
http://dx.doi.org/10.1016/j.ymben.2012.11.009
http://dx.doi.org/10.1016/j.ymben.2012.11.009
http://dx.doi.org/10.1021/mp7001472
http://dx.doi.org/10.1186/1475-2859-13-78
http://dx.doi.org/10.1186/1475-2859-13-78
http://dx.doi.org/10.1016/j.biortech.2013.03.013
http://dx.doi.org/10.1128/MMBR.00024-06
http://dx.doi.org/10.1007/s10295-007-0244-2
http://dx.doi.org/10.1016/j.pep.2009.05.013
http://dx.doi.org/10.1002/bit.10645
http://rsif.royalsocietypublishing.org/

	Optimization of fermentation conditions for the production of curcumin by engineered Escherichia coli
	Introduction
	Material and methods
	Bacterial strains and plasmids
	Curcumin production
	Culture media
	Production conditions

	Curcumin extraction
	Ultra-high-performance liquid chromatography analysis

	Results and discussion
	Selection of the best host to produce curcumin
	Optimization of induction parameters (OD and IPTG) in Escherichia coli BL21(DE3) when using the combined LB and M9 medium to produce curcumin
	Optimization of culture media to produce curcumin using Escherichia coli BL21(DE3)
	Optimization of carbon source concentration in terrific broth medium

	Conclusion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	References


