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Abstract

For a nonautonomous class of n-dimensional differential system with infinite delays, we give
sufficient conditions for its global exponential stability, without showing the existence of an
equilibrium point, or a periodic solution, or an almost periodic solution. We apply our main
result to several concrete neural network models, studied in the literature, and a comparison of
results is given. Contrary to usual in the literature about neural networks, the assumption of
bounded coefficients is not need to obtain the global exponential stability. Finally, we present
numerical examples to illustrate the effectiveness of our results.
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1 Introduction

In 1983, Cohen and Grossberg [8] presented and studied the well-known neural network model de-
scribed by the following system of ordinary differential equations

x′i(t) = −ai(xi(t))

bi(xi(t))− n∑
j=1

cijfj(xj(t)) + Ii

 , t ≥ 0, i = 1, . . . , n, (1.1)

where ai(u) are the amplification functions, bi(u) are the self-signal functions, fj(u) are the activation
functions, cij represent the connection weights, and Ii denote the inputs from outside of the system.
As particular situation of (1.1), we have the well-known Hopfield neural network model

x′i(t) = −bi(xi(t)) +

n∑
j=1

cijfj(xj(t)) + Ii, t ≥ 0, i = 1, . . . , n, (1.2)

studied by Hopfield [16, 17] in 1982 and 1984 respectively.
Due to the finite switching speed of the amplifiers and the communication time between neurons,

differential equations describing neural networks should incorporate time delays. In 1989, Marcus
and Westervelt [22] introduced for the first time a discrete delay in the Hopfield model (1.2), and they
observed that the delay can destabilize the system. In fact, the delays can affect the dynamic behavior
of neural network models [3, 22] and, for this reason, stability of delayed neural network models has
been investigated extensively (see [1, 2, 4, 6, 7, 9, 11, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30], and
the references therein). Another relevant fact to take into account is that the neuron charging time,
the interconnection weights, and the external inputs often change as time proceeds. Thus, neural
network models with temporal structure of neural activities should be introduced and investigated
(see [7, 25]).

For neural network models with time-varying coefficients, many authors derive sufficient conditions
ensuring that all solutions converge exponentially to zero or to an equilibrium point [9, 19, 30]. Other
authors assume periodic, or almost periodic, coefficient functions and derive sufficient conditions
ensuring the existence of a periodic, or almost periodic, solution and its global exponential stability
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[7, 18, 20, 26, 27]. We should say that, in the significative recent research papers [1, 2], the authors
consider neural network models with weighted pseudo-almost automorphic coefficients and general
conditions are assumed to prove the existence and global exponential stability of a weighted pseudo-
almost automorphic solution. Studies about global exponential stability of nonautonomous neural
network models without an equilibrium point, or a periodic solution, or an almost periodic solution
are few and the authors always assume bounded coefficient functions [28, 29].

In this paper we study a general nonautonomous n-dimensional differential equation with infinite
delays, which includes most of the neural network models as particular situations. In spite of our main
motivation was to apply the obtained result to neural network models, the studied system is general
enough to include, as subclass, models from others research areas such as Lotka-Volterra [5, 10].
Moreover, we should remark that the global exponential stability is obtained without assuming, or
showing, the existence of an equilibrium point, or a periodic solution, or an almost periodic solution,
or even an another solution and, when we apply this stability criterion to neural network models,
the boundedness of coefficients are not required. To the best of our knowledge, a few authors have
studied the stability of neural network models without assuming bounded coefficient functions [21].

After the introduction, the present paper is divided into four sections. Section 2 is a prelim-
inary section, where some notations and definitions are introduced, a generalized nonautonomous
n-dimensional differential equation with infinite delays is formulated, and the hypotheses are given.
In section 3, we prove the main results about global exponential stability of the model. The section
4 is dedicated to apply our results to neural network models. First we obtain a stability criterion for
a generalized Cohen-Grossberg neural network model with infinite distributed and discrete delays,
then we apply it to several examples, showing that the studied model includes, as subclass, Hopfield,
Cohen-Grossberg, and Bidirectional Associative Memory (BAM) models. Also in this section, a brief
comparison of our stability criteria with the literature is given. Finally, in section 5, we present two
numerical simulations to illustrate the effectiveness of our results.

2 Notations and model description

In this paper, we always consider the vectorial space Rn, for n ∈ N, equipped with the maximum
norm, i.e. |x| = max{|xi| : i = 1, . . . , n} for x = (x1, . . . , xn) ∈ Rn, and we say that a vector
x = (x1, . . . , xn) ∈ Rn is positive, denoting by x > 0, if xi > 0 for all i = 1, . . . , n.

We consider the Banach space

UCnε =

{
ϕ ∈ C((−∞, 0];Rn) : sup

s≤0
|ϕ(s)| eεs <∞, ϕ(s) eεs is uniformly continuous on (−∞, 0]

}
,

for a convenient ε > 0, equipped with the norm ||ϕ||ε = sup
s≤0
|ϕ(s)| eεs. In what follows, we fix ε > 0.

In applications, section 4, we will see how to choose the positive constant ε.
We also consider the Banach space BC = BC((−∞, 0];Rn) of bounded and continuous functions,

ϕ : (−∞, 0] −→ Rn, equipped with the norm ||ϕ|| = sup
s≤0
|ϕ(s)|. We note that BC ⊆ UCnε and

‖ϕ‖ε ≤ ‖ϕ‖, for ϕ ∈ BC.
For an open set D ⊆ BC and f : [0,+∞)×D −→ Rn a continuous function, we consider, in the

phase space UCnε , the functional differential equation (FDE) given in general setting by

x′(t) = f(t, xt), t ≥ 0, (2.1)

where, as usual, xt denotes the function xt : (−∞, 0] −→ Rn defined by xt(s) = x(t+ s) for s ≤ 0.
It is known that UCnε is an admissible phase space for (2.1) in the sense of [12, 13] (see [13, Theorem

1.2] and [13, Remark 2.3]), consequently the standard existence, uniqueness, continuous dependence
type results are available (see [15]). Here, we assume that f has enough smooth properties to ensure
the existence and uniqueness of solution for the initial value problem, denoting by x(t, t0, ϕ) the
solution of (2.1) with initial condition xt0 = ϕ, for t0 ≥ 0 and ϕ ∈ UCnε . From [15], if f maps
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closed bounded subsets of its domain into bounded sets of Rn, then the solution x(t, t0, ϕ) of (2.1) is
extensible to (−∞, a], with a > t0, whenever it is bounded.

In the phase space UCnε , we consider the following nonautonomous functional differential system
with infinite delays,

x′i(t) = −ai(t, xi(t))

bi(t, xi(t)) +

K∑
k=1

n∑
j=1

fijk(t, xjt)

 , t ≥ 0, i = 1, . . . , n, (2.2)

where n,K ∈ N and ai : [0,+∞)×R −→ (0,∞), bi : [0,+∞)×R −→ R, and fijk : [0,+∞)×UC1
ε −→

R are continuous functions. We should say that model (2.2) is general enough to include several well
known biological models, such as Lotka-Volterra [5, 10], as well as neural network models, such as
Hopfield, Cohen-Grossberg, and BAM. As, in this paper, we intend to apply the results to neural
network models, we restrict our attention to initial bounded conditions, i.e.,

xt0 = ϕ, with ϕ ∈ BC, (2.3)

for some t0 ≥ 0.
By one hand, taking g(s) = e−εs in [13, Theorem 2.1] (see also [13, Remark 3.2]), we know that

UCnε is an admissible phase space, as we said above. By another hand, the model (2.2) has the form
(2.1) with f : [0,+∞)× UCnε → Rn defined by

f(t, ϕ) = (f1(t, ϕ), . . . , fn(t, ϕ)), t ≥ 0, ϕ = (ϕ1, . . . , ϕn) ∈ UCnε , (2.4)

where

fi(t, ϕ) = −ai(t, ϕi(0))

bi(t, ϕi(0)) +

K∑
k=1

n∑
j=1

fijk(t, ϕj)

 . (2.5)

Consequently, as f is a continuous function, from [15, Theorem 2.1] we conclude that the initial value
problem (2.2)-(2.3) has a solution.

In the sequel, for (2.2) the following hypotheses will be considered:

(A1) for each i ∈ {1, . . . , n}, there exists ai, ai > 0 such that

ai ≤ ai(t, u) ≤ ai, ∀t ≥ 0, ∀u ∈ R;

(A2) for each i ∈ {1, . . . , n}, there exists Di : [0,+∞) −→ R such that

Di(t)a
2
i (t, u) ≤ ∂

∂t
ai(t, u), ∀t > 0, ∀u ∈ R;

(A3) for each i ∈ {1, . . . , n}, there exists βi : [0,+∞) −→ (0,+∞) such that

(bi(t, u)− bi(t, v))/(u− v) ≥ βi(t), ∀t ≥ 0, ∀u, v ∈ R, u 6= v;

(A4) for each i, j ∈ {1, . . . , n} and k ∈ {1, . . . ,K}, fijk : [0,+∞)×UC1
ε −→ R is a Lipschitz function

on the second variable i.e., there exists a continuous function Fijk : [0,+∞) −→ [0,+∞) such
that

|fijk(t, ϕ)− fijk(t, ψ)| ≤ Fijk(t)‖ϕ− ψ‖ε, ∀t ≥ 0, ∀ϕ,ψ ∈ UC1
ε ;

(A5) there exists a continuous function λ : [0,+∞) → (0,+∞) such that, for each i ∈ {1, . . . , n}
and t0 ≥ 0,

ai
(
βi(t) +Di(t)

)
−

K∑
k=1

n∑
j=1

ajFijk(t) e
∫ t
t0
λ(u)−ε du

> λ(t) and

∫ t

t0

[λ(u)− ε] du ≥ 0, (2.6)

for all t ≥ t0.
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First, we remark that, if all functions, ai(t, u), do not depend explicitly on time i.e., ai(t, u) =
ai(u), i = 1, . . . , n, then Di(t) = 0 and assumption (A2) will be relaxed. We also remark that the
hypothesis (A3) is trivially satisfied if bi(t, u) = βi(t)u for all t ≥ 0 and u ∈ R. Finally, as we can
see by the last example in section 5, the hypotheses set (A1)-(A5) does not imply the boundedness
of solutions of (2.2).

Without assuming the existence of an equilibrium point, or a periodic solution, our main purpose
is to establish sufficient conditions for the global exponential stability of (2.2), whose definition we
recall here.

Definition 2.1. The system (2.2) is said to be globally exponentially stable if there are δ > 0 and
C ≥ 1 such that

|x(t, t0, ϕ)− x(t, t0, ψ)| ≤ C e−δ(t−t0) ‖ϕ− ψ‖, ∀t0 ≥ 0, ∀t ≥ t0, ∀ϕ,ψ ∈ BC.

It should be mentioned that the above definition of global exponential stability is the usual in
the literature on neural networks with unbounded delay [25, 28, 29], but it does not even imply the
stability of (2.2) in the phase space UCnε , i.e., relative to the norm ‖ · ‖ε.

3 Global exponential stability

First we show that the solutions of (2.2), with bounded initial conditions, are defined on R.

Lemma 3.1. Assume (A1), (A3), and (A4). For t0 ≥ 0 and ϕ ∈ BC, the solution x(t) = x(t, t0, ϕ)
of (2.2) is defined on R.

Proof. By simplicity, we denote

gi(t, ϕ) :=

K∑
k=1

n∑
j=1

fijk(t, ϕj),

for each i ∈ {1, . . . , n}, t ≥ 0, and ϕ = (ϕ1, . . . , ϕn) ∈ UCnε . As fijk are Lipschitz functions on the
second variable, then gi are also Lipschitz function on the second variable, i.e.,

|gi(t, ϕ)− gi(t, ψ)| ≤ Gi(t)‖ϕ− ψ‖ε, ∀t ≥ 0, ∀ϕ,ψ ∈ UCnε ,

with Gi(t) :=

K∑
k=1

n∑
j=1

Fijk(t).

Let x(t) = (x1(t), . . . , xn(t)) be the maximal solution of initial value problem (2.2)-(2.3), with
t ∈ (−∞, a) for some a ∈ (t0,+∞], and define z(t) = (z1(t), . . . , zn(t)) := (|x1(t)|, . . . , |xn(t)|). For
each i ∈ {1, . . . , n}, from (2.2) and (A1) we have

z′i(t) = sign(xi(t))x
′
i(t)

= −sign(xi(t))ai(t, xi(t)) [bi(t, xi(t)) + gi(t, xt)]

≤ −sign(xi(t))ai(t, xi(t))
[
bi(t, xi(t))− bi(t, 0)

]
+ ai|gi(t, xt)− gi(t, 0)|+ ai|bi(t, 0) + gi(t, 0)|,
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and, from (A3), (A4), and integrating over [t0, t], we obtain

zi(t) ≤ zi(t0)−
∫ t

t0

sign(xi(u))ai(u, xi(u))
[
bi(u, xi(u))− bi(u, 0)

]
du+

∫ t

t0

ai|gi(u, xu)− gi(u, 0)|du+

+

∫ t

t0

ai|bi(u, 0) + gi(u, 0)|du

≤ ‖ϕ‖ −
∫ t

t0

ai(u, xi(u))sign(xi(u))xi(u)βi(u)du+

∫ t

t0

aiGi(u)‖xu‖εdu+

+

∫ t

t0

ai|bi(u, 0) + gi(u, 0)|du

≤ ‖ϕ‖+

∫ t

t0

aiGi(u)‖xu‖du+

∫ t

t0

ai|bi(u, 0) + gi(u, 0)|du

≤ ‖ϕ‖+

∫ t

t0

[b(u, 0) + g(u, 0)]du+

∫ t

t0

G(u)‖zu‖du (3.1)

where G(u) = max
i
|aiGi(u)|, b(u, 0) = max

i
|aibi(u, 0)|, and g(u, 0) = max

i
|aigi(u, 0)|. Defining the

continuous function φ : [t0,+∞) −→ [0,+∞) by φ(t) = ‖ϕ‖ +

∫ t

t0

b(u, 0) + g(u, 0)du, from (3.1) we

obtain, for t ≥ t0,

‖zt‖ ≤ φ(t) +

∫ t

t0

G(u)‖zu‖du

and, by the generalized Gronwall’s inequality (see [14]) we have

‖zt‖ ≤ φ(t) +

∫ t

t0

G(u)φ(u)e
∫ t
u
G(v)dvdu. (3.2)

By one hand, as f , defined by (2.4)-(2.5), takes bounded subsets of [0,+∞)×UCnε into bounded sets
of Rn, from Continuation Theorem [15, Theorem 2.4], we have

lim
t→a
‖xt‖ = lim

t→a
‖zt‖ = +∞. (3.3)

By another hand, the functions Ḡ : R → [0,+∞) and φ : [t0,+∞) → [0,+∞) are continuous and,
from (3.2) and (3.3) we conclude that a = +∞.

Remark 3.1 It is easy to see that Lemma 3.1 is also true if we have

(A4’) for each i, j ∈ {1, . . . , n} and k ∈ {1, . . . ,K}, there exists a continuous function Fijk :
[0,+∞) −→ (0,+∞) such that

|fijk(t, ϕ)− fijk(t, ψ)| ≤ Fijk(t)‖ϕ− ψ‖, ∀t ≥ 0, ∀ϕ,ψ ∈ UC1
ε

instead of (A4).

Now, we state our main result on the global exponential stability of (2.2).

Theorem 3.2. Assume (A1)-(A5). Then the model (2.2) is globally exponentially stable.

Proof. Following the notation in Definition 2.1, fix δ = ε and

C :=
maxj{aj}
minj

{
aj
} =

maxj
{
a−1j

}
minj

{
a−1j

} ≥ 1. (3.4)
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Let t0 > 0, ϕ = (ϕ1, . . . , ϕn) ∈ BC, and ψ = (ψ1, . . . , ψn) ∈ BC, and consider the solutions
x(t) = x(t, t0, ϕ) and y(t) = x(t, t0, ψ) of (2.2) defined on R. Define, for t ≥ t0, V (t) = V (t, t0, ϕ, ψ) =
(V1(t), . . . , Vn(t)) by

Vi(t) := e
∫ t
t0
λ(u)du

sign(xi(t)− yi(t))
∫ xi(t)

yi(t)

1

ai(t, u)
du, i = 1, . . . , n. (3.5)

First we prove that

|V (t)| ≤ max
j

{
a−1j

}
‖ϕ− ψ‖, ∀t ≥ t0. (3.6)

Clearly, from (A1) and (3.5), we have

Vi(t0) ≤ ai−1|xi(t0)− yi(t0)| ≤ max
j

{
a−1j

}
‖ϕ− ψ‖.

Now, to get a contradiction, we assume that the inequality (3.6) is false. Consequently, as V (t)
is a positive continuous vector function, there is t1 > t0 such that

|V (t1)| > max
j

{
a−1j

}
‖ϕ− ψ‖.

Defining

T := min

{
t ∈ [t0, t1] : |V (t)| = max

s∈[t0,t1]
|V (s)|

}
and choosing i ∈ {1, . . . , n} such that Vi(T ) = |V (T )|, we have Vi(T ) > 0, V ′i (T ) ≥ 0 and Vi(T ) >
|V (t)| for all t < T .

On the other hand, from (2.2), (A2), (A3), and (A4) we have

V ′i (T ) = λ(T )Vi(T ) + e
∫ T
t0
λ(u) du

sign(xi(T )− yi(T ))

(
1

ai(T, xi(T ))
x′i(T )− 1

ai(T, yi(T ))
y′i(T )+

+

∫ xi(T )

yi(T )

−∂tai(T, u)

a2i (T, u)
du

)

= λ(T )Vi(T ) + e
∫ T
t0
λ(u) du

sign(xi(T )− yi(T ))

(
bi(T, yi(T ))− bi(T, xi(T )) +

+

K∑
k=1

n∑
j=1

(
fijk(T, yjT )− fijk(T, xjT )

)
+

∫ xi(T )

yi(T )

−∂tai(T, u)

a2i (T, u)
du

)

≤ λ(T )Vi(T ) + e
∫ T
t0
λ(u) du

(
− βi(T )|xi(T )− yi(T )|+

K∑
k=1

n∑
j=1

Fijk(T )‖xjT − yjT ‖ε

−Di(T )|xi(T )− yi(T )|
)

The definition (3.5) and the hypothesis (A1) imply that e
∫ T
t0
λ(u) du |xi(T )− yi(T )| ≥ aiVi(T ) and the
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hypothesis (A5) implies that βi(T ) +Di(T ) > 0. Consequently

V ′i (T ) ≤ λ(T )Vi(T )− ai(βi(T ) +Di(T ))Vi(T ) + e
∫ T
t0
λ(u) du

K∑
k=1

n∑
j=1

Fijk(T ) ·

·max

{
sup

s≤t0−T
|xj(T + s)− yj(T + s)| eεs, sup

t0−T<s≤0
|xj(T + s)− yj(T + s)| eεs

}

≤ λ(T )Vi(T )− ai(βi(T ) +Di(T ))Vi(T ) + e
∫ T
t0
λ(u) du

K∑
k=1

n∑
j=1

Fijk(T ) ·

·max

{
‖ϕj − ψj‖ eε(t0−T ), sup

t0−T<s≤0
|xj(T + s)− yj(T + s)| eεs

}
. (3.7)

Again from (3.5) and (A1), we have

|xi(T + s)− yi(T + s)| ≤ e
−

∫ T+s
t0

λ(u) du
aiVi(T + s)

for all i ∈ {1, . . . , n} and s ∈ [t0 − T, 0], which implies that

V ′i (T ) ≤ λ(T )Vi(T )− ai(βi(T ) +Di(T ))Vi(T ) + e
∫ T
t0
λ(u) du

K∑
k=1

n∑
j=1

Fijk(T ) ·

·max

{
‖ϕj − ψj‖ eε(t0−T ), sup

t0−T<s≤0
e
−

∫ T+s
t0

λ(u) du+εs
ajVj(T + s)

}
.

Since (A5) holds, Vi(T ) > |V (t)| for all t < T , and Vi(T ) > maxj
{
a−1j

}
‖ϕ− ψ‖, we conclude that

V ′i (T ) ≤ λ(T )Vi(T )− ai(βi(T ) +Di(T ))Vi(T ) + e
∫ T
t0
λ(u)−ε du

K∑
k=1

n∑
j=1

Fijk(T ) ·

·aj max

{
‖ϕj − ψj‖

aj
, sup
t0−T<s≤0

e
−

∫ T+s
t0

λ(u) du+εs

eε(t0−T )
Vj(T + s)

}

≤ λ(T )Vi(T )− ai(βi(T ) +Di(T ))Vi(T ) + e
∫ T
t0
λ(u)−ε du

K∑
k=1

n∑
j=1

Fijk(T ) ·

·aj max

{
Vi(T ), sup

t0−T<s≤0
e
−

∫ T+s
t0

λ(u)−ε du
Vj(T + s)

}

≤

λ(T )− ai(βi(T ) +Di(T )) +

K∑
k=1

n∑
j=1

aj e
∫ T
t0
λ(u)−ε du

Fijk(T )

Vi(T ) < 0,

which is a contradiction and (3.6) holds.
From (A1) we obtain, for all t ≥ t0,

|V (t)| ≥ e
∫ t
t0
λ(u) du |xi(t)− yi(t)|min

j

{
a−1j

}
, ∀i ∈ {1, . . . , n},

and from (3.6) we have

|x(t)− y(t)| e
∫ t
t0
λ(u) du

min
j

{
a−1j

}
≤ |V (t)| ≤ max

j

{
a−1j

}
‖ϕ− ψ‖.
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Consequently, by (A5),

|x(t)− y(t)| ≤
maxj

{
a−1j

}
minj

{
a−1j

} e
−

∫ t
t0
λ(u) du ‖ϕ− ψ‖ ≤ C e−ε(t−t0) ‖ϕ− ψ‖, ∀t ≥ t0,

with C defined by (3.4), which means that (2.2) is globally exponentially stable.

The next result shows that the same conclusion can be obtained if we assume

(A5d) there exist a continuous function λ : [0,+∞) −→ (0,+∞) and d = (d1, . . . , dn) > 0 such that,
for each i ∈ {1, . . . , n} and t0 ≥ 0,

ai
(
βi(t) +Di(t)

)
−

K∑
k=1

n∑
j=1

ajd
−1
i djFijk(t) e

∫ t
t0
λ(u)−ε du

> λ(t) and

∫ t

t0

[λ(u)− ε] du ≥ 0,

for all t ≥ t0.

instead of (A5). We remark that (A5d) is slightly weaker than (A5).

Corollary 3.3. Assume (A1)-(A4) and (A5d). Then the model (2.2) is globally exponentially stable.

Proof. With the change yi(t) = d−1i xi(t), the system (2.2) is transformed into

y′i(t) = −ai(t, diyi(t))d−1i

bi(t, diyi(t)) +

K∑
k=1

n∑
j=1

fijk(t, djyjt)

 , t ≥ 0, i = 1, . . . , n. (3.8)

Defining, for each i, j = 1, . . . , n and k = 1, . . . ,K, ãi(t, u) := ai(t, diu), b̃i(t, u) := d−1i bi(t, diu), and

f̃ijk(t, ϕ) := d−1i fijk(t, djϕ), for all t ≥ 0, u ∈ R, ϕ ∈ UC1
ε , the model (3.8) has the form

y′i(t) = −ãi(t, yi(t))

[
b̃i(t, yi(t)) +

K∑
k=1

n∑
i=1

f̃ijk(t, yjt)

]
, t ≥ 0, i = 1, . . . , n (3.9)

and the hypotheses (A1), (A2), and (A3) hold with ãi = ai, ãi = ai, D̃i(t) = Di(t), and β̃i(t) = βi(t).
From (A4), for ϕ,ψ ∈ UC1

ε we have

|f̃ijk(t, ϕ)− f̃ijk(t, ψ)| = d−1i |fijk(t, djϕ)− fijk(djψ)| ≤ dj
di
Fijk(t)‖ϕ− ψ‖ε,

which implies that f̃ijk are Lipschitz function on the second variable with F̃ijk(t) := d−1i djFijk(t),
for all i, j ∈ {1, . . . , n} and k ∈ {1, . . . ,K}, which means that hypothesis (A4) is satisfied. Finally,
from (A5d) the hypothesis (A5) holds for (3.9) and the conclusion follows from Theorem 3.2.

Using the same ideas presented in the proof of Theorem 3.2 and Corollary 3.3, we also obtain the
next result.

Theorem 3.4. Assume (A1), (A2), (A3), (A4’) and

(A5’) there exist a continuous function λ : [0,+∞) −→ (0,+∞) and d = (d1, . . . , dn) > 0 such that,
for each i ∈ {1, . . . , n} and t0 ≥ 0,

ai
(
βi(t) +Di(t)

)
−

K∑
k=1

n∑
j=1

ajd
−1
i djFijk(t) e

∫ t
t0
λ(u) du

> λ(t) and

∫ t

t0

[λ(u)− ε] du ≥ 0,

for all t ≥ t0.

Then the model (2.2) is globally exponentially stable.
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Considering in (2.2) ai(t, u) = 1 for all i = 1, . . . , n, t ≥ 0, and u ∈ R, we get the following
generalized Hopfield neural network model

x′i(t) = −bi(t, xi(t)) +

K∑
k=1

n∑
j=1

fijk(t, xjt), t ≥ 0, i = 1, . . . , n, (3.10)

for which its global exponential stability was studied in [9]. Trivially, hypotheses (A1) and (A2) hold
with ai = ai = 1 and Di(t) = 0 respectively, and we have the next result.

Corollary 3.5. Assume (A3) and (A4’).
If there exist a continuous function λ : [0,+∞) −→ (0,+∞) and d = (d1, . . . , dn) > 0 such that,

for each i ∈ {1, . . . , n} and t0 ≥ 0,

βi(t)−
K∑
k=1

n∑
j=1

d−1i djFijk(t) e
∫ t
t0
λ(u) du

> λ(t) and

∫ t

t0

[λ(u)− ε] du ≥ 0, ∀t ≥ t0,

then the model (3.10) is globally exponentially stable.

Remark 3.2. We note that Corollary 3.5 improves the exponential stability criterion in [9], because
here we have a model with unbounded delays.

4 Neural network models

In this section, we shall apply the stability criteria in section 3 to the following generalized nonau-
tonomous Cohen-Grossberg neural network model with unbounded delays

x′i(t) = −ai(t, xi(t))
[
bi(t, xi(t)) +

K∑
k=1

n∑
j=1

(
pijk(t)hijk(xj(t− τijk(t))

+qijk(t)lijk

(∫ 0

−∞
gijk(xj(t+ s)) dηijk(s)

))
+ Ii(t)

]
, t ≥ 0, i = 1, . . . , n, (4.1)

where ai : [0,+∞) × R → (0,+∞), bi : [0,+∞) × R → R, pijk, qijk, Ii : [0,+∞) → R, τijk :
[0,+∞) → [0,+∞), and hijk, lijk, gijk : R → R are continuous functions, and ηijk : (−∞, 0] → R
are non-decreasing, bounded, and normalized i.e. ηijk(0) − ηijk(−∞) = 1, for all i, j ∈ {1, . . . , n},
k ∈ {1, . . . ,K}. Assume that there exists ξ > 0 such that∫ 0

−∞
e−ξs dηijk(s) <∞, i, j = 1, . . . , n, k = 1, . . . ,K. (4.2)

As we are going to illustrate with some examples in this section, the model (4.1) is general
enough to include several types of neural network models present in the literature. However, we
should remark that the model (4.1) is not a neutral-type model and it does not have leakage delays.
Thus, our following stability criterion can not be applied to the neural network models introduced in
the recent research papers [1, 2].

Theorem 4.1. Consider (4.1), where ai, bi, pijk, qijk, and Ii are continuous functions such that
(A1), (A2), and (A3) hold, hijk, lijk, and gijk are Lipschitz functions with Lipschitz constants Hijk,
Lijk, and Gijk respectively, and ηijk are non-decreasing, bounded, and normalized functions such that
(4.2) holds for some ξ > 0.

If there are d = (d1, . . . , dn) > 0, α > 0 and θijk ≥ 0 such that, for each i ∈ {1, . . . , n} and t0 ≥ 0,

ai
(
βi(t) +Di(t)

)
−

K∑
k=1

n∑
j=1

aj
dj
di

(
|pijk(t)|Hijk eθijkτijk(t) +|qijk(t)|LijkGijk

)
> α, ∀t ≥ t0, (4.3)
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and
θijk > 0 when τijk(t) is an unbounded function,

then the model (4.1) is globally exponentially stable.

Proof. For simplicity, consider t0 = 0 and, as in the proof of Corollary 3.3, after a change of variable,
we may assume that di = 1 for all i ∈ {1, . . . , n}.

From (4.3), it is easy to conclude that there is ν > 0 such that, for all i = 1, . . . , n and t ≥ t0,

ai
(
βi(t) +Di(t)

)
−

K∑
k=1

n∑
j=1

aj (|pijk(t)|Hijkνijk(t) + |qijk(t)|LijkGijk(1 + ν)) > ν, ∀t ≥ 0, (4.4)

where

νijk(t) =


1 + ν, if θijk = 0

eθijkτijk(t), if θijk > 0
. (4.5)

Define the positive numbers

τ := max
i,j,k

(
sup
t≥0

{
τijk(t) : τijk is a bounded function

})
and θ := min

i,j,k
{θijk : θijk > 0}. As in the proof of [11, Theorem 4.3], from (4.2), we conclude that

there is ς ∈ (0, ξ) such that∫ 0

−∞
e−ςsdηijk(s) < 1 + ν, i, j = 1, . . . , n, k = 1, . . . ,K. (4.6)

Let ε := min

{
θ, ν, ς,

log(1 + ν)

τ

}
and consider system (4.1) in the phase space UCnε . We remark

that model (4.1) has the form (2.2) with

fijk(t, ϕ) = pijk(t)hijk(ϕ(−τijk(t))) + qijk(t)lijk

(∫ 0

−∞
gijk(ϕ(s)) dηijk(s)

)
+
Ii(t)

nK
,

for all t ≥ 0, ϕ ∈ UC1
ε , i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,K}.

As we shall see below, ε ≤ ν and ε ≤ ς are needed to deal with the distributed delays, and

ε ≤ θ and ε ≤ log(1+ν)
τ are needed to deal with the discrete delays in the model (4.1). We claim

that eετijk(t) ≤ νijk(t) for all t ≥ 0, i, j = 1, . . . , n, and k = 1, . . . ,K. In fact, if θijk > 0 (τijk(t)
unbounded =⇒ θijk > 0), then we have θijk ≥ θ ≥ ε > 0 and consequently

eετijk(t) ≤ eθijkτijk(t) = νijk(t),

where νijk(t) is defined by (4.5). If θijk = 0, then τijk(t) is a bounded function, thus τijk(t) ≤ τ and

eετijk(t) ≤ eετ ≤ e
log(1+ν)

τ τ = elog(1+ν) = 1 + ν = νijk(t).

For ϕ,ψ ∈ UC1
ε and t ≥ 0, since hijk, lijk, and gijk are Lipschitz functions and ηijk are non-
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decreasing, we have

|fijk(t, ϕ)− fijk(t, ψ)| ≤
∣∣pijk(t)

∣∣ · ∣∣hijk(ϕ(−τijk(t)))− hijk(ψ(−τijk(t)))
∣∣+

+
∣∣qijk(t)

∣∣ · ∣∣∣∣lijk(∫ 0

−∞
gijk(ϕ(s)) dηijk(s)

)
− lijk

(∫ 0

−∞
gijk(ψ(s)) dηijk(s)

)∣∣∣∣
≤
∣∣pijk(t)

∣∣Hijk

∣∣ϕ(−τijk(t))− ψ(−τijk(t))
∣∣+

+
∣∣qijk(t)

∣∣Lijk ∣∣∣∣∫ 0

−∞

[
gijk(ϕ(s))− gijk(ψ(s))

]
dηijk(s)

∣∣∣∣
≤
∣∣pijk(t)

∣∣Hijk

∣∣(ϕ− ψ)(−τijk(t))
∣∣

eετijk(t)
eετijk(t) +

+
∣∣qijk(t)

∣∣LijkGijk ∫ 0

−∞

∣∣(ϕ− ψ)(s)
∣∣

e−εs
e−εs dηijk(s)

≤
∣∣pijk(t)

∣∣Hijk‖ϕ− ψ‖ε eετijk(t) +
∣∣qijk(t)

∣∣LijkGijk ∫ 0

−∞
‖ϕ− ψ‖ε e−εs dηijk(s)

≤
(∣∣pijk(t)

∣∣Hijk eετijk(t) +
∣∣qijk(t)

∣∣LijkGijk ∫ 0

−∞
e−ςs dηijk(s)

)
‖ϕ− ψ‖ε

≤
(∣∣pijk(t)

∣∣Hijkνijk(t) +
∣∣qijk(t)

∣∣LijkGijk(1 + ν)

)
‖ϕ− ψ‖ε.

This means that, for each i, j = 1, . . . , n, and k = 1, . . . ,K,

|fijk(t, ϕ)− fijk(t, ψ)| ≤ Fijk(t)‖ϕ− ψ‖ε, ∀t ≥ 0, ∀ϕ,ψ ∈ UC1
ε ,

with Fijk(t) :=
∣∣pijk(t)

∣∣Hijkνijk(t) +
∣∣qijk(t)

∣∣LijkGijk(1 + ν), and from (4.4) we conclude that (A5)
holds with λ(t) = ε. Now, the conclusion follows from Theorem 3.2.

Example 4.1. If we take K = 2, ai(t, u) = 1, bi(t, u) = bi(t)u, pij1(t) = cij(t), pij2(t) = dij(t),
hij1(u) = hij2(u) = gij1(u) = −fj(u), τij1(t) = 0, τij2(t) = τij(t), qij1(t) = eij(t), qij2(t) = 0,
lij1(u) = u, with bi : [0,+∞) → (0,+∞), cij , dij , eij : [0,+∞) → R, τij : [0,+∞) → [0,+∞),
fj : R→ R continuous functions, and

ηij1(s) =

∫ s

−∞
kij(−v) dv, s ∈ (−∞, 0], i, j = 1, . . . , n,

where kij : [0,+∞) −→ [0,+∞) are piecewise continuous functions, then the model (4.1) becomes
the following Hopfield neural network model

x′i(t) = −bi(t)xi(t) +

n∑
j=1

cij(t)fj(xj(t)) +

n∑
j=1

dij(t)fj(xj(t− τij(t)))

+

n∑
j=1

eij(t)

∫ 0

−∞
kij(−s)fj(xj(t+ s)) ds+ Ii(t), (4.7)

for t ≥ 0 and i = 1, . . . , n. Applying Theorem 4.1 to model (4.7), we have the following result.
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Corollary 4.2. Consider (4.7), where bi : [0,+∞) −→ (0,+∞), cij , dij , eij , Ii : [0,+∞) −→ R, and
τij : [0,+∞)→ [0,+∞) are continuous, fj : R −→ R are Lipschitz functions with Lipschitz constants
Fj, and kij : [0,+∞)→ [0,+∞) are piecewise continuous functions such that∫ +∞

0

kij(t) dt = 1, and

∫ +∞

0

kij(t) eξt dt < +∞, i, j = 1, . . . , n, (4.8)

for some ξ > 0.
If there are d = (d1, . . . , dn) > 0, α > 0, and θij ≥ 0 such that, for each i ∈ {1, . . . , n} and t0 ≥ 0,

bi(t)−
n∑
j=1

dj
di
Fj

(
|cij(t)|+ |dij(t)| eθijτij(t) +|eij(t)|

)
> α, ∀t ≥ t0, (4.9)

and
θij > 0 when τij(t) is an unbounded function,

then the model (4.7) is globally exponentially stable.

Remark 4.1. The exponential stability of (4.7) was recently studied in [28], with the p-norm in Rn,
p ≥ 1. (The case p = ∞ was not treated in [28].) The Corollary 4.2 gives a new stability criterion
with the ∞-norm, which complements the result in [28]. Moreover, it is relevant to observe that Q.
Zhang et al. [28] assumed in addition that, for each i, j = 1, . . . , n, bi(t), cij(t), dij(t), eij(t) Ii(t),
and τij(t) are bounded functions and τij(t) is differentiable satisfying supt≥0 τ

′
ij(t) < 1.

Example 4.2. In [19], the following Cohen-Grossberg neural network model was considered

x′i(t) = −ai(t, xi(t))

bi(t, xi(t)) +

n∑
j=1

cij(t)fj(xj(t− τij(t)))

+

n∑
j=1

dij(t)

∫ 0

−∞
kij(−s)gj(xj(t+ s)) ds+ Ii(t)

 , (4.10)

for t ≥ 0 and i = 1, . . . , n, where ai, bi : [0,+∞) × R −→ (0,+∞), cij , dij , Ii : [0,+∞) −→ R are
continuous functions and fj , gj : R −→ R are Lipschitz functions with Lipschitz constants Fj , Gj ,
respectively, and kij : [0,+∞) −→ [0,+∞) are piecewise continuous functions such that (4.8) holds,
i, j = 1, . . . , n.

Clearly, model (4.10) is also a particular case of (4.1) and from Theorem 4.1 we obtain the next
result.

Corollary 4.3. Consider (4.10) under the hypotheses above and (A1), (A2), and (A3) hold.
If there are d = (d1, . . . , dn) > 0, α > 0, and θij ≥ 0 such that, for each i ∈ {1, . . . , n} and t0 ≥ 0,

ai
(
βi(t) +Di(t)

)
−

n∑
j=1

aj
dj
di

(
|cij(t)|Fj eθijτij(t) +|dij(t)|Gj

)
> α, ∀t ≥ t0, (4.11)

and
θij > 0 when τij(t) is an unbounded function,

then the model (4.10) is globally exponentially stable.

Remark 4.2. In [19], B. Liu assumed a different set of hypotheses to prove that all solutions of
(4.10) converge exponentially to zero. However, we remark that, in [19], the author assumed that
coefficient functions cij(t) and dij(t) are bounded.
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Example 4.3. In [29], the following Cohen-Grossberg neural network model was considered

x′i(t) = −ai(xi(t))

bi(t, xi(t)) +

n∑
j=1

cij(t)fj(xj(t))+

+

n∑
j=1

dij(t)fj(xj(t− τij(t))) + Ii(t)

 , t ≥ 0, (4.12)

i = 1, . . . , n, where ai : R −→ (0,+∞), bi : [0,+∞) × R −→ (0,+∞), cij , dij , Ii : [0,+∞) −→ R
are continuous functions and fj : R −→ R are Lipschitz functions with Lipschitz constants Fj ,
i, j = 1, . . . , n.

Clearly, model (4.12) is still a particular case of (4.1) and from Theorem 4.1 we obtain the
following stability criterion.

Corollary 4.4. Consider (4.12) under the hypotheses above and (A1) and (A3) hold.
If there are d = (d1, . . . , dn) > 0, α > 0, and θij ≥ 0 such that, for each i ∈ {1, . . . , n} and t0 ≥ 0,

aiβi(t)−
n∑
j=1

ajFj
dj
di

(
|cij(t)|+ |dij(t)| eθijτij(t)

)
> α, ∀t ≥ t0, (4.13)

and
θij > 0 when τij(t) is an unbounded function,

then the model (4.12) is globally exponentially stable.

Remark 4.3. For the particular model (4.12), W. Zhao [29] obtained its global exponential stability
assuming the conditions above and the following additional hypotheses:

1. The functions ai(u) are locally Lipschitz;

2. For each i, j = 1, . . . , n, bi(t, 0), cij(t), dij(t), and τij(t) are bounded functions.

Hence, it is clear that our Corollary 4.4 strongly improves the main result in [29].

Example 4.4. Consider the following BAM neural network model



x′i(t) = −c̃i(t)̃bi(xi(t)) +

m∑
j=1

aij(t)fj(yj(t))

+

m∑
j=1

eij(t)

∫ 0

−∞
kij(−s)hj(yj(t− τij + s))ds+ Ĩi(t), i = 1, . . . , k,

y′j(t) = −cj(t)bj(yj(t)) +

k∑
i=1

ãji(t)f̃i(xi(t))

+

k∑
i=1

ẽji(t)

∫ 0

−∞
k̃ji(−s)h̃i(xi(t− σji + s))ds+ Ij(t), j = 1, . . . ,m,

(4.14)

where k,m ∈ N, τij , σji ∈ [0,+∞), aij , ãji, eij , ẽji, Ĩi, Ij : [0,+∞) −→ R, c̃i, cj : [0,+∞) −→ (0,+∞),

and b̃i, bj , fj , f̃i, hj , h̃i : R → R are continuous functions, and kij , k̃ji : [0,+∞) −→ [0,+∞) are
piecewise continuous functions such that∫ +∞

0

kij(t) dt = 1, and

∫ +∞

0

kij(t) eξt dt < +∞, (4.15)

∫ +∞

0

k̃ji(t) dt = 1, and

∫ +∞

0

k̃ji(t) eξt dt < +∞, (4.16)

13



for some ξ > 0, i = 1, . . . , k, j = 1, . . . ,m. The model (4.14) was previously studied in [9, 25] and, as
we can see in [9], it is also a particular case of (4.1). Consequently, from Theorem 4.1, we have the
following result.

Corollary 4.5. Consider (4.14) where fj , f̃i, hj , h̃i are Lipschitz functions with Lipschitz constant,

Fj , F̃i, Hj , H̃i respectively, kij , k̃ji are piecewise continuous functions such that (4.15) and (4.16) hold,

and there exist positive numbers βj , β̃i such that

(̃bi(u)− b̃i(v))/(u− v) ≥ β̃i,

and
(bj(u)− bj(v))/(u− v) ≥ βj ,

for all u, v ∈ R, u 6= v, i = 1, . . . , k, j = 1, . . . ,m.
If there exist d̃ = (d̃1, . . . , d̃k) > 0, d = (d1, . . . , dm) > 0, and α > 0 such that, for all i = 1, . . . , k,

j = 1, . . . ,m, and t ≥ t0,

d̃i

(
β̃ic̃i(t)− α

)
−

m∑
j=1

dj (|aij(t)|Fj + |eij(t)|Hj) > 0, ∀t ≥ t0, (4.17)

dj (βjcj(t)− α)−
k∑
i=1

d̃i

(
|ãji(t)|F̃i + |ẽji(t)|H̃i

)
> 0, ∀t ≥ t0, (4.18)

then system (4.14) is globally exponentially stable.

Remark 4.4. System (4.14) was studied in [25] assuming bounded coefficient functions aij(t), ãji(t),

c̃i(t), cj(t), eij(t), ẽji(t), Ĩi(t), and Ij(t). Here, it is possible to have unbounded coefficient functions
and system (4.14) is only a particular case of (4.1), hence our Theorem 4.1 is more general than the
main stability result in [25].

5 Numerical simulations

In this section, we give numerical examples to illustrate the effectiveness of the new results presented
in this paper. We always use the Matlab software, [24], to plot the numerical simulations of solutions.

Example 5.1. The model



x′1(t) = −min
{√
|x1(t)|+ 1, 2

}[
(2t+ 3)x1(t)− tarctan(x1(t− 2| sin(t)|))

− tanh(x2(t− 1))− 4

]

x′2(t) = − (cos(x2(t)) + 2)

[
7x2(t) +

sin(t)

t+ 1
arctan (x1(t− log(t+ 1)))

+ cos(t) tanh(x2(t− 2| sin(t)|))− 2

]
(5.1)

is a particular situation of the system (4.12). The conditions of Corollary 4.4 are satisfied with
d = (1, 1), a1 = 1, a1 = 2, a2 = 1, a2 = 3, α = 1, θ11 = θ12 = θ22 = 0, and θ21 = 1, hence the system
is globally exponentially stable, which means that all solutions converge to each other exponentially
(see the numerical simulation of three solutions of (5.1) in Figure 1).

14



Remark 5.1. We remark that the amplification function a1(u) = min
{√
|u|+ 1, 2

}
is not lo-

cally Lipschitz and d11(t) = t and τ21 = log(t + 1) are unbounded functions, thus the stabil-
ity result of W. Zhao [29] can not be applied to this example. Moreover, the delay function
τ(t) = τ11(t) = τ21(t) = 2| sin(t)| is not differentiable and it does not satisfy sup

t≥0, t6=kπ
τ ′(t) < 1

as required in [28].
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(a) Solutions (x1(t), x2(t)) of equation (5.1) with initial condition ϕ(s) = (es, cos(s)), ϕ(s) =
(0, 0), and ϕ(s) = (2 sin(s)− 1, 2), for s ≤ 0, respectively.

Figure 1: Behavior of three solutions of (5.1).

With the following last example, we illustrate that there exist models of the form (2.2), satisfying
all hypotheses (A1)-(A5), with unbounded solutions.

Example 5.2. Finally, we consider the following example of a particular situation of model (4.12).



x′1(t) = −
(

cos(x(t)− 1) + 2
) [ 2t+ 1

cos t+ 2
x1(t)− t

(4 + 2 sin t)(cos t+ 2)
sin(x1(t− 1))

+
1

12
x2(t) − 1

cos t+ 2

(
t

sin t+ 2
+ 2t2 +

5

2
t+ 2

)
− 1

12
t

]

x′2(t) = − (sin(x2(t)) + 2)

[
9

sin t+ 2
x2(t)− 1

sin t+ 2
sin(x1(t− 1)) +

1

sin t+ 2
x2(t− 1)

+
sin t− 10t

sin t+ 2

]
(5.2)

The hypotheses of Corollary 4.4 are satisfied with d = (1, 1), a1 = 1, a1 = 3, a2 = 1, a2 = 3,
θ11 = θ21 = θ22 = 0, F1 = F2 = 1, and α = 1

13 , hence the system is globally exponentially stable. It
is easy to verify that (x1(t), x2(t)) = (t+1, t) is a solution of (5.2), thus all solutions of (5.2) converge
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to it exponentially and they are unbounded (see the numerical simulation of three solutions of (5.2)
in Figure 2).
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(a) Solutions (x1(t), x2(t)) of equation (5.2) with initial condition ϕ(s) = (−5 es, 30 cos s),
ϕ(s) = (10,−10), and ϕ(s) = (− cos s, es), for s ≤ 0, respectively.

Figure 2: Behavior of three solutions of (5.2).

6 Conclusion

We have presented a criterion for the global exponential stability of a nonautonomous differential
equation with infinite delays (2.2). We have applied this criterion to a generalized nonautonomous
Cohen-Grossberg neural network model (4.1) to obtain a global exponential stability result, which
is simple to verify and directly applicable to several neural network models such as Hopfield model
(4.7), Cohen-Grossberg models (4.10) and (4.12), and BAM model (4.14). The corollaries 4.2 and
4.3 present different stability criteria for the models studied in [19, 28] and Corollary 4.4 gives a
improvement of the main result in [29].

We should remark that, contrary to the usual in the literature about neural networks, the stability
results in this paper do not require the boundedness of coefficients.

As the model (2.2) is general enough to include biological models also, in a forthcoming work, we
shall exploit our main result, Theorem 3.2, to get new global stability criteria for population models.

Another important research line possible to be followed is to consider the model (4.1) in time-
space scales, as in the relevant papers [1, 2], and to study if a stability criterion like Theorem 4.1 holds.
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