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a  b  s  t  r  a  c  t

Phycotoxins,  compounds  produced  by  some  marine  microalgal  species,  can  reach  high  concentrations
in  the  sea  when  a massive  proliferation  occurs,  the so-called  harmful  algal  bloom.  These  compounds  are
especially  dangerous  to human  health  when  concentrated  in the  digestive  glands  of  seafood.  In  order  to
generate  an  early  warning  system  to alert  for approaching  toxic  outbreaks,  it is  very important  to  improve
monitoring  methods  of  phycotoxins  in  aquatic  ecosystems.  Solid-phase  adsorption  toxin  tracking  devices
reported  thus  far based  on  polymeric  resins  have  not  been  able  to  provide  an  efficient  harmful  algal  bloom
prediction  system  due  to  their low  adsorption  capabilities.

In  this  work,  a water-stable  covalent  organic  framework  (COF)  was  evaluated  as adsorbent  for  the
hydrophobic  toxin  okadaic  acid,  one  of the  most  relevant  marine  toxins  and  the parental  compound  of
the most  common  group  of  toxins  responsible  for  the diarrhetic  shellfish  poisoning.  Adsorption  kinetics

Metadata, citation and similar papers at cor

iversidade do Minho: RepositoriUM
olid-phase adsorption toxin tracking
hycotoxin
armful algal bloom

of  okadaic  acid onto  the  COF  in seawater  showed  that  equilibrium  concentration  was  reached  in  only
60  min,  with  a  maximum  experimental  adsorption  of  61 mg  g−1.  Desorption  of  okadaic  acid  from  the  COF
was  successful  with  both  70%  ethanol  and  acetonitrile  as  solvent,  and  the  COF  material  could  be reused
with  minor  losses  in  adsorption  capacity  for  three  cycles.  The  results  demonstrate  that  COF  materials  are
promising  candidates  for solid-phase  adsorption  in  water  monitoring  devices.

© 2017  Elsevier  B.V.  All  rights  reserved.
. Introduction

Microalgae in marine environment and cyanobacteria in both
arine and freshwater ecosystems can produce harmful effects,

ncluding a broad range of phenomena referred to as harmful algal
looms (HABs). During some HABs high amounts of toxins are pro-
uced, which can accumulate in the flesh of seafood, and more
requently in the digestive glands, implying large economic losses
o seafood aquaculture. The occurrence of HABs is a general threat
o human health worldwide [1], and effective early monitoring

hould be performed to allow the aquaculture industry to overcome
he losses derived thereof, to improve human safety, and to obtain

ore knowledge of HAB dynamics in a climate-change scenario.

∗ Corresponding author.
E-mail address: begona.espina@inl.int (B. Espiña).

1 Current affiliation: Instituto de Química Avanzada de Cataluña, Consejo Superior
e  Investigaciones Científicas (IQAC-CSIC), CIBER de Bioingeniería, Biomateriales y
anomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.

ttps://doi.org/10.1016/j.chroma.2017.10.017
021-9673/© 2017 Elsevier B.V. All rights reserved.
Diarrhetic shellfish poisoning (DSP) is a foodborne intoxication
caused by ingestion of shellfish such as mussels, scallops, oysters,
or clams contaminated with DSP toxins, including the okadaic acid
(OA) group of toxins as the most representative of them. In a toxic
OA outbreak only low concentration of the toxin can be found in
the marine environment due to its limited stability in seawater and
due to the fact that a great part of the toxin is retained inside the
producer microalgae [2]. Thus, seawater sampling methods that
efficiently concentrate OA are required in order to be able to predict
a toxic episode in seafood before the concentration of OA reaches
the maximum concentration allowed in legislation [3].

In the last decade, new adsorption techniques have been
developed and implemented for passive in situ concentration of
contaminants present in water for posterior analysis in the lab-
oratory. Polar organic chemical integrative samplers, consisting
of a sequestration medium enclosed within hydrophilic microp-

orous polyethersulfone membranes, have been successfully used
to sample polar organic chemicals in aquatic environments [4,5].
Other kind of semi-permeable membrane devices have been used

https://core.ac.uk/display/132798127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.chroma.2017.10.017
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or the monitoring of polycyclic aromatic hydrocarbons [6]. For
icroalgae-produced toxins, passive solid-phase adsorption toxin

racking (SPATT) systems have been studied and their usefulness
as been demonstrated in concentrating hydrophobic toxins such
s okadaic acid, pectenotoxins, azaspiracids, dinophysistoxins, and
essotoxins [7]. The SPATT system consists of batches of previ-
usly hydrated adsorbent resins within a polyester mesh, sown
ith polyester thread. The bags are installed in a frame attached

o a weighted line at different locations and depths [2].
The nature, properties, and behavior of the solid-phase adsor-

ent are the major challenges in the development of SPATT devices.
everal polymeric resins have been investigated but the best results
n terms of adsorption and desorption rates have been obtained

ith resins based on a styrene–divinylbenzene matrix, such as
iaion HP-20, Sepabeads SP850, and Sepabeads SP825L [7]. HP-
0, so far the best performing resin for adsorption of the OA group
f toxins, was found to adsorb a maximum of 1639 �g g−1 of OA
8]. A recent study showed that HP-20 SPATT devices allowed the
etection of toxins in a similar time frame than when detected in
hellfish tissues by LC–MS analyses in regulatory centers [9]. How-
ver, in order to provide the aquaculture industry with a sufficiently
fficient tool to remove the seafood from the seawater before con-
amination occurs, a prediction level of weeks is necessary. Thus,
he development of more efficient adsorbents is essential to allow
or the prediction of HABs sufficiently in advance, and to obtain a
ractical early warning system for DSP outbreaks in aquaculture
ites.

Covalent organic frameworks (COFs) are crystalline porous
aterials formed by the self-assembly of purely organic building

locks [10–12]. These materials feature uniform pores in the micro-
nd mesoporous range, ranging from 1 to around 5 nm in diameter,
he form and size of which can be tuned by the choice of building
locks. COFs are thermally stable and, with the appropriate choice
f building blocks, can also show high stability under aqueous con-
itions [13,14]. The versatility of the structures and the high surface
reas make them interesting adsorbents, and in recent reports COFs
ave shown promise for organic dye removal [15–18], as carri-
rs for drug delivery [19–21], and isolation of industrially relevant
ompounds [22].

Herein, we demonstrate the efficiency of COFs in capturing OA
rom seawater. The results show promise for COF materials to be
sed as improved adsorbents in SPATT devices for HAB forecasting
nd monitoring.

. Materials and methods

.1. Materials

TpBD-Me2 COF [14] was prepared according to the literature; for
urther details on the synthesis and characterization, see the Sup-
orting Information (SI). A COF dispersion of 1 mg  mL−1 in synthetic
eawater was used in all experiments with OA.

Okadaic acid from Prorocentrum sp. was purchased from
erck-Calbiochem (Darmstadt, Germany), 6,8-difluoro-4-
ethylumbelliferyl phosphate (DiFMUP) from Molecular Probes

Eugene, USA), protein phosphatase-1 (PP1) catalytic sub-
nit, �-isoform from rabbit, synthetic ASTM seawater, and all
ther reagents for the OA quantification were purchased from
igma-Aldrich (Sintra, Portugal).
.2. The stability of TpBD-Me2 COF in aqueous medium

TpBD-Me2 COF (16 mg)  was suspended in ultrapure water or
ynthetic seawater (2.8 mL)  at room temperature for 7 days. Then,
gr. A 1525 (2017) 17–22

the samples were centrifuged (3000 RCF, 15 min, room tempera-
ture), and the aq. medium was  removed.

The sample suspended in ultrapure water was  soaked in acetone
for 8 h, centrifuged (3000 RCF, 15 min, room temperature), and the
solvent was  decanted. The soaking was repeated 3 times in total.
The sample was  then dried at 120 ◦C at high vacuum for 9 h.

In order to remove salts, the sample suspended in synthetic sea-
water was first soaked in ultrapure water for 8 h, centrifuged (3000
RCF, 15 min, room temperature), and the solvent was decanted. The
soaking was  repeated 3 times in total. Thereafter, the sample was
treated as the sample suspended in ultrapure water.

2.3. Adsorption kinetics

Samples were prepared as follows for each time point: two  repli-
cates of 100 �L of a TpBD-Me2 COF dispersion of 1 mg  mL−1 in
synthetic seawater were spiked with an OA concentration of 10,
15, 50, and 100 �mol  L−1 and incubated at 19 ◦C under constant
shaking at 7 RCF. After 0.5, 60, 240, and 480 min  of incubation, the
sample for the corresponding time point was  centrifuged at 21420
RCF during 15 min  at 19 ◦C. The time used for centrifugation was
added to the time points as time elapsed, resulting in time points
of 15.5, 75, 255, and 495 min, respectively. Supernatants were col-
lected and analyzed for OA quantification.

2.4. Freundlich isotherm

Freundlich equation was used to analyze the equilibrium
adsorption isotherm. Freundlich equation is expressed as

lg qe = lg KF +
(

1
n

)
× lg Ce (1)

where qe is the adsorbate concentration on the adsorbent in equi-
librium (mg  g−1), Ce is the equilibrium concentration of adsorbate
in solution (mg  L−1), and n and KF are characteristic constants. KF
is an indicator of the adsorption capacity in the Freundlich theory.
The adsorption kinetics is defined as favorable if n > 1, implying
that the adsorption rate is fast or controllable, depending on the
requirement of the particular application. The maximum adsorp-
tion capacity (qm) can be calculated from the following equation

qm = KF C
1⁄n
0 (2)

where C0 is the initial concentration of the adsorbate in solution
(mg  L−1).

The Freundlich Eq. (1) showed a good fit to the experimen-
tal data in a moderate solute concentration range, and includes
a constant that describes the heterogeneity of the surface of the
adsorbent, 1/n. Fitting the experimental results using the Lang-
muir model resulted in a very low correlation coefficient (data not
shown).

2.5. Desorption assay

Desorption tests were carried out with pellets obtained after
centrifugation at 21420 RCF during 15 min  from adsorption assays
with an OA concentration of 10 �mol  L−1. The pellets were sus-
pended in 200 �L of 70% ethanol or acetonitrile and incubated
overnight at 4 ◦C under constant shaking at 7 RCF. The samples were
then centrifuged at 21420 RCF for 15 min at 19 ◦C. Supernatants
were recovered and analyzed for OA.
2.6. Recycling tests

First, the adsorption assays were carried out with an OA con-
centration of 10 �mol  L−1 in synthetic seawater during 4 h at 19 ◦C
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Fig. 1. A comparison of the SAXS data and SEM images before (A) and aft

nder constant shaking at 7 RCF. The samples were then cen-
rifuged at 21420 RCF during 15 min  at 19 ◦C. The supernatants
ere collected and OA was quantified (cycle 1). The pellets were re-

uspended in ultrapure water and centrifuged at 21420 RCF during
5 min  at 19 ◦C. The OA was desorbed from the pellets as indicated

n 2.5. The pellets from desorption were re-suspended in synthetic
eawater with an OA concentration of 10 �mol  L−1, initiating the
dsorption cycle 2. The procedure was repeated for cycle 3.

.7. Quantification of okadaic acid

The aqueous reaction buffer consists of 20 mM Tris-HCl, 5 mM
gCl2, 1 mM MnCl2, 1 mg  mL−1 bovine serum albumin (BSA), and

.1% 2-mercaptoethanol at pH = 8.
DiFMUP stock solution was prepared at 40 mM in Tris-HCl

olution. OA stock solution was prepared at 1 mM in absolute
thanol and the one for PP1 at 3900 U mL−1 reconstituted from the
yophilized product with ultrapure water.
A separate calibration curve was used for each experiment of
A quantification, carried out in the same microplate as the rest of

he samples. OA solutions for the calibration curves were prepared
n the corresponding solvent, synthetic seawater for the quantifi-
king the COF for 7 days in ultrapure water (B) and synthetic seawater (C).

cation of OA of the supernatants from the adsorption assays and
acetonitrile or 70% ethanol for the quantification of OA  of the super-
natant from the desorption assays. For the calibration curves, see
the SI Section 6.

PP1 inhibition assays were performed at a final volume of 200 �L
in wells of flat-bottom opaque 96 well microplates. In short, first,
0.1 U of PP1 were added to the reaction wells containing 165 �L of
reaction buffer. Afterwards, 20 �L of the corresponding solution of
the OA calibration curve, solvent (blank), or supernatant samples
from the adsorption/desorption assays were added to the well. The
microplate was incubated during 30 min  under constant shaking
at 1 RCF at 37 ◦C for a maximum enzymatic inhibition. Then, 5 �L
of DiFMUP solution (8 mM)  was  added to a final concentration of
200 �M.  After 2 h under constant shaking at 1 RCF at 37 ◦C, fluo-
rescence intensity was measured (excitation wavelength 315 nm,
emission wavelength 470 nm)  in a BioTek Synergy H1 microplate
reader.
3. Results and discussion

As compared to the traditionally used macroporous resins, the
use of COFs for toxin capture in SPATT devices can be advantageous
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Fig. 3. a) Amount of OA adsorbed in equilibrium, qe (mg g−1), as a function of OA
concentration in equilibrium, Ce (mg L−1); b) linear regression of the Freundlich
isotherm for the experimental adsorption of OA by TpBD-Me2 COF.

Table 1
Freundlich isotherm equation constants and correlation coefficient derived from the
graph in Fig. 3b.

Regression equation lg qe = (0.578 ± 0.089) lg Ce + (1.344 ± 0.049)

KF (mg1–1/n g−1 L1/n) 22.086 ± 1.1198
1/n  0.578 ± 0.082
ig. 2. Adsorption kinetic curves on TpBD-Me2 COF for initial OA concentrations of
0, 15, 50, and 100 �mol  L−1 at 19 ◦C.

ot only due to the uniformity of the pores, but their small size as
ell, preventing the entry of large compounds and photosynthetic

omplexes present in the sea, such as chlorophyll pigments, into
he adsorbent. This would facilitate the detection and quantifica-
ion of the toxin from the samples by the approved analytical and
unctional methods, and result in obtaining cleaner concentrated
xtracts from the eluents of the adsorbent, leading to more accurate
esults. We  chose TpBD-Me2 COF [14] to be tested as an adsorbent
or marine toxins due to its reported high stability in water, even
nder acidic or basic conditions. This stability is the result of the
-keto-enamine linkage [23], introduced to COFs by Banerjee and
o-workers [13], which, due to an irreversible tautomerization step
uring the COF formation, also leads to materials with lower crys-
allinity as compared to boronic-acid-linked COFs. The surface area
f TpBD-Me2 COF is 468 m2 g−1 [14], which is in the range of that
f HP-20 [8], but the COF features a smaller pore diameter with ca.

 nm as compared to the 10 nm reported for HP-20 [8]. Addition-
lly, the hydrophobic nature of the pores with the methyl groups of
he BD-Me2 building block pointing into the cavity was expected to
avor the adsorption of the hydrophobic OA. Interestingly, Banerjee
nd co-workers recently reported a solvent-free continuous syn-
hetic procedure for the Tp-class of COFs [24], highlighting that
hese materials can be produced rapidly and on a large scale.

.1. The stability of TpBD-Me2 COF in aqueous medium

To allow the use of a material for SPATT applications, stability
n seawater is necessary. The stability of TpBD-Me2 COF was stud-
ed by soaking the material in both ultrapure water and synthetic
eawater for seven days (for further details, see the experimental
art). A comparison of the SAXS data before and after the aque-
us treatment shows that the COF is stable under these conditions
Fig. 1), with the crystallinity retained even in the case of seawater.
o noticeable morphological changes upon soaking can be seen in

he scanning electron microscope (SEM) images, and the wire-like
orphology dominates in all samples (Fig. 1, see also SI Section 7).

.2. Adsorption kinetics

The kinetic curves show a fast adsorption phase during the first
0 min  (Fig. 2), which can be explained by the large initial surface
rea available for adsorption [8]. Thereafter, the adsorption reaches
quilibrium between adsorption and desorption due to the process

ynamics, as seen by the flattening of the curve. For a constant
emperature, a higher initial concentration of adsorbate is expected
o imply a higher amount adsorbed [25], which is the case of OA
dsorption onto the COF. The adsorption is almost instantaneous,
n  1.729
R2 0.92408

with ca. half of the equilibrium amount of OA adsorbed within the
first 15 min.

Although the kinetic curves obtained in other studies on the
adsorption of OA using chromatographic resins show the same
profile as we  observe for TpBD-Me2 COF, adsorption equilibrium
was reached at 225 min  using the HP-20 resin [26], showing that
adsorption to TpBD-Me2 COF is very fast.

3.3. Isotherm at 19 ◦C

The adsorption isotherm at 19 ◦C was  obtained by plotting the
amount absorbed in equilibrium, qe, against the concentration of

OA in solution at equilibrium, Ce, as shown in Fig. 3a. The fitting
of the experimental data to the Freundlich equation is shown in
Fig. 3b. The values for KF, 1/n, n, and R2 are listed in Table 1, and
were obtained by linear regression of the experimental values.
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ig. 4. Quantification of the OA desorption efficiency (%) as an average of three cycles
rom TpBD-Me2 COF using 70% ethanol or acetonitrile as solvent after adsorption
ssays with 10 �M of OA and 100 �g of TpBD-Me2 COF.

The Freundlich model is adequate to describe adsorption onto
eterogeneous surfaces and at low initial concentrations of adsor-
ate. The constant n that reflects the degree of heterogeneity of the
urface is higher than 1, indicating favorable adsorption.

KF is an indicator of adsorption capacity, so that the higher the
alue of KF, the higher the maximum adsorption capacity. This
onstant decreases with increasing temperature [25], and is also
elated to the strength of adsorbate–sorbent interaction [27]. We
btained a KF value of 22.086 mg0.422 g−1 L0.578 for TpBD-Me2 COF.
or HP-20, KF of 27.460 �g0.112 g−1 L0.888 was reported [8], with
ifferent n values hindering the comparison between the results
28].

The linear tendency of the isotherm indicates that the adsorbed
mount is proportional to the equilibrium concentration of the
olute in the solution. A linear isotherm is characteristic of homoge-
eous adsorbent surfaces and occurs at a low concentration. It also
uggests that all the pores have the same affinity to OA [8]. Scarcity
nd high cost of the OA toxin standard prevented us from expand-
ng the isotherm to higher concentrations to further confirm the
pplicability of the Freundlich model.

The previously reported maximum capacities for OA adsorp-
ion of 1.639 mg  g−1 and 1.088 mg  g−1 with the resins HP-20 and
P700, respectively, were calculated using equation 2 (see mate-
ials and methods section 2.4) [8]. From the kinetic curve (Fig. 2),
e obtained a value of 60.6 mg  g−1 as the maximum amount of OA

dsorbed when using the highest initial concentration of 100 �M,
howing that TpBD-Me2 COF can adsorb 38 times more OA than
P-20. Using equation 2, a maximum adsorption capacity (qm) of
79 mg  g−1 is obtained for TpBD-Me2 COF, resulting in a 200-fold

ncrease in comparison to previously reported values with styrene-
ased resins [8]. Although comparison between data is difficult
ue to differences in temperature, 19 ◦C in this study vs. 25 ◦C in
he literature [8], with lower temperatures favoring adsorption, a
igher efficiency in the case of the COF material as compared to the
egularly used resins is demonstrated.

.4. Desorption

In order to be able to use TpBD-Me2 COF for OA monitoring,
fficient desorption is of utmost importance. Both 70% ethanol and
cetonitrile were tested as solvents for desorption due to their
hemical compatibility with both OA and TpBD-Me2 COF. As shown

n Fig. 4, approximately 80% of the adsorbed OA can be recovered
fter a single incubation at 4 ◦C overnight in either of the sol-
ents. However, desorption kinetic assays showed that equilibrium
s reached after only 60 min  of incubation with the solvents at 19 ◦C
Fig. 5. Reusability of TpBD-Me2 COF in consecutive cycles of OA adsorp-
tion/desorption with an OA concentration of 10 �M.

(see SI, figure SI8.1), highlighting the suitability of the COF material
as adsorbent in the SPATT application.

3.5. Recycling

Very few reports exist on the regeneration of resins used for
toxin adsorption [29], most probably due to the relatively low cost
of the resins and the difficulties in performing cleaning efficiently.
However, very recently, the need to develop nanocomposites as
sorbents for SPATT and to investigate their regeneration to allow
for their implementation in monitoring programs was  underlined
[30].

To reduce the cost of the material for the SPATT application, it
is of interest to be able to use the adsorbent for various cycles, and
therefore, the reusability of TpBD-Me2 COF in consecutive cycles of
OA adsorption/desorption was  studied with an OA concentration of
10 �M.  As observed in Fig. 5, the amount of OA adsorbed by the COF
remained stable at around 6 mg  g−1 in the first two  cycles and was
reduced to around 5.5 mg  g−1 in the third, indicating a reduction in
efficiency of merely 8%.

4. Conclusions

This study shows for the first time the potential of COFs as
efficient adsorbents for toxins in seawater. TpBD-Me2 COF shows
unprecedented performance in OA adsorption, as evidenced by the
fast OA adsorption kinetics and the values for KF and n constants
obtained from the Freundlich isotherm in seawater. Additionally,
OA was  easily and efficiently desorbed from the COF, allowing the
reuse of the material for at least 3 cycles. Consequently, TpBD-Me2
COF is a promising new adsorbent to be used in SPATT devices for
the in situ concentration of OA dissolved in seawater to predict toxic
outbreaks in seafood.

Further studies with different toxin mixtures, TpBD-Me2 COF
encapsulated in SPATT devices, and on-field tests are currently
underway in our laboratories in order to explore the potential of
this novel material for HAB monitoring.
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