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Abstract

Ruscheweyh and Salinas showed in 2004 the relationship of a cele-
brated theorem of Vietoris (1958) about the positivity of certain sine and
cosine sums with the function theoretic concept of stable holomorphic
functions in the unit disc. The present paper reveals that the coefficient
sequence in Vietoris’ theorem is identical to a number sequence obtained
by a new combinatorial identity which involves generators of quaternions.
In this sense Vietoris’ sequence of rational numbers combines seemingly
disperse subjects in Real, Complex and Hypercomplex Analysis. Thereby
we show that a non-standard application of Clifford algebra tools is able
to reveal new insights in objects of combinatorial nature.
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1 Introduction

In the center of our attention lies the sequence of rational numbers
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16 ,

35
128 ,

35
128 ,
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256 ,

63
256 ,
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1024 ,

231
1024 , . . . . (1)

which by means of the generalized central binomial coefficient
( k

bk2 c

)
can be

written in compact form (cf. [4]) as

S = (ck)k≥0 , where ck =
1

2k

(
k

bk2 c

)
, k ≥ 0. (2)

Seemingly for the first time this sequence appeared in the context of positive
trigonometric sums in a celebrated paper of L. Vietoris [17]. Askey’s version
([2, p. 5]) of Vietoris’ theorem is the following:

Theorem 1 (L. Vietoris)

n∑
k=1

ak sin kθ > 0, 0 < θ < π, and

n∑
k=0

ak cos kθ > 0, 0 ≤ θ < π,
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where

a2k = a2k+1 =
( 1
2 )k

k!
, k = 0, 1, . . . , (3)

with (·)k as the raising factorial in the classical form of the Pochhammer symbol.

We call attention to the fact that because of (3), the coefficients in the sine sum
used in Askey’s as well as in Vietoris’ original version are exactly the elements
of S in (2) or, explicitly, in (1). Obviously, demanding in (3) that a2k and
a2k+1 coincide, the sequence of coefficients in the cosine sum differs from (1)
by the inclusion of a0 = 1 and the shift of the indices by one to the left, i.e.
a0 = 1 and ak+1 = ck, k ≥ 0. Even though this small difference, we call S
in the sequel simply Vietoris’ number sequence. Compared with the traditional
way of defining the coefficient sequence by (3), the use of the properties of the
generalized central binomial coefficient allowed at least a unique representation
(2) with consecutively running index k.

Before continuing with the specific task of the present paper, it seems worth-
while to mention the other areas in which Vietoris’ theorem played an important
role. Using the arsenal of real analysis methods in positivity theory, Askey and
Steinig showed in [3] the embedding of Vietoris’ results in general problems for
Jacobi polynomials, including their relation to other subjects in Harmonic Anal-
ysis. Later on, Ruscheweyh and Salinas showed in [15] an interesting relationship
of Vietoris’ theorem with the function theoretic concept of stable holomorphic
functions in the unit disc. The common origin of the present paper with others
like, for example, [9, 5] where the sequence S was already mentioned in differ-
ent contexts, is the field of Hypercomplex Analysis, particularly the study of
monogenic (or Clifford-holomorphic) Appell polynomials [1, 8, 10]. Recently in
[6], the authors obtained even some number theoretic results for a related to S
integer number sequence (sequence A283208 in The On-Line Encyclopedia of
Integer Sequences, published electronically at https://oeis.org).

The goal of the present paper concerns the surprising appearance of S in
a relation between the generators of Hamilton’s well known non-commutative
algebra H of quaternions (see e.g. [10]), relying only on elementary proper-
ties of a adequately generalized binomial formula for the quaternions. Taking
into account that H can be considered as a Clifford algebra C`0,n, for n = 2,
the generalization of our results for an arbitrary n ≥ 2 will be treated in an
extended version of this paper by applying intrinsic properties of monogenic
Appell polynomials in terms of several hypercomplex variables.

2 Hamilton’s quaternions come into the play

Consider a quaternion q ∈ H written as

q = x0 + x1i + x2j + x3k, where i2 = j2 = k2 = ijk = −1.

Due to non-commutativity the formal expansion of a binomial with two
imaginary units (quaternion generators) (i + j)k, k ≥ 0, will not directly lead

2



to Pascal’s triangle, as the case k = 3 shows:

(i + j)3 = i3 + (iij + iji + jii) + (ijj + jij + jji) + j3. (4)

But that will happen if we try to embed the non-commutative multiplication
into the concept of a k−nary symmetric (or permutative) operation. Therefore
let ai stay for one of the generators i or j and write the quaternionic k-fold
product of k − s generators i and s generators j, respectively, in the general
form of a symmetric “× ” product ([13]), i.e.

ik−s × js :=
1

k!

∑
π(i1,...,in)

ai1ai2 · · · aik (5)

where the sum runs over all permutations of all (i1, . . . , in). Then, by taking
into account the repeated use of i and j on the right hand side of (5), we can
write

ik−s × js =
(k − s)!s!

k!

∑
π(i1,...,in)

ai1ai2 · · · aik =

[(
k

s

)]−1 ∑
π(i1,...,in)

ai1ai2 · · · aik

where now the sum runs only over all distinguished permutations of all (i1, . . . , in).
Applying, for example, the convention (5) to (4) we obtain now, for k = 3 the
expansion written with binomial coefficients in the form

(i + j)3 =

(
3

0

)
i3 +

(
3

1

)
i2 × j +

(
3

2

)
i× j2 +

(
3

3

)
j3. (6)

Analogously, the expansion of (i+ j)k for any k ≥ 0 follows now the rules of the
ordinary binomial expansion in an evident way and leads to1

(i + j)k =

[
k∑
s=0

(
k

s

)
(ik−s × js)

]
, k ≥ 0. (7)

Needless to say that the generalized binomial formula (7) is a key for studying
combinatorial relations with quaternions in the following sections.

We will show now that another step towards our goal is the evaluation of
expressions of the form (ik−s × js) k ≥ 0, s = 0, 1, . . . k.

3 Evaluating symmetric products of quaternion
generators

Notice that for k ≥ 2 the influence of the non-commutativity of the ordinary
quaternionic product is evident. This can be illustrated by the following exam-

1An obvious generalization of (5) to the case of more than two generators used in the
general case of C`0,n for n ≥ 2 leads to a polynomial formula.
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ples:

i× j =
1!1!

2!
(ij + ij) = 0,

i2 × j =

(
3

1

)−1
(iij + iji + jii) = −1

3
j, (8)

i× j2 =

(
3

1

)−1
(ijj + jij + jji) = −1

3
i. (9)

To obtain a general rule for those products we refer to an early version of
the famous Faá di Bruno formula for the derivative of a composed function (see
[11] and [12]) as it was used in [7].

T. Abadie’s formula
If f and g are real functions of λ, with a sufficient number of derivatives, then

(g ◦ f)(s)(λ) =

s∑
l=0

(
s

l

)
g(l)
(
f(λ)

){ ds−l

dhs−l
(
∆hf(λ)

)l}
h=0

,

where ∆hf(λ) := f(λ+h)−f(λ)
h is the difference quotient of f .

Consider now the polynomial Fk(λ) of degree k in the real parameter λ,

Fk(λ) = (i + λj)k =

k∑
s=0

(
k

s

)
λsik−s × js

and note that

ik−s × js =
F

(s)
k (0)

s!
(
k
s

) . (10)

Since

Fk(λ) =

(−1− λ2)
k
2 , if k even;

(−1− λ2)
k−1
2 (i + λj), if k odd,

(11)

it can be composed, for even k, in the form Fk(λ) = (g ◦ f)(λ) with suitably
chosen functions

g(λ) = (−1− λ)
k
2 and f(λ) = λ2.

whereas the case of an odd k can be reduced to the previous case by the relation

Fk(λ) = Fk−1(λ)(i + λj).

Applying T. Abadie’s formula and following the proof of Proposition 1 in [7, p.
1730], about generalized powers of hypercomplex variables, one gets finally the
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values of (10) in the form:

ik−s × js =



(−1)
k
2

(k
2
s
2

)(
k

s

)−1
, k even and s even;

0, k even and s odd;

(−1)
k−1
2

(k−1
2
s
2

)(
k

s

)−1
i, k odd and s even;

(−1)
k−1
2

(k−1
2
s−1
2

)(
k

s

)−1
j, k odd and s odd.

(12)

Remark 1 The examples in the beginning of this section, in particular relations
(8) and (9), confirm very well the last three equalities in (12). It is evident, that
there are, depending on the relative parities of k resp. s only four types of values
of ik−s×js, namely (i) real and different from zero, (ii) equal to zero, (iii) a real
multiple of i and (iv) a real multiple of j. The reason for this, at first glance,
surprising result is based on the following facts. Obviously, an integer power of
the type of a so-called reduced purely imaginary quaternion q = i + j, is either
a real number (if k is even) or again a reduced purely imaginary quaternion (if
k is odd; cf. (11)). Besides this, the symmetric products in which such a power
(7) is additively decomposed avoid the appearance of ordinary mixed products
like, for example, i·j as mutually annihilating summands. This becomes directly
plausible if we look for example to the binomial expansion for even k = 2 or
k = 4 where only entries of type (i) and type (ii) are present. An example for
an odd k with 2× k+1

2 = k+ 1 alternating entries of type (iii) and (iv) is (6). In
both cases we can recognize the symmetric structure of the corresponding lines
in a Pascal triangle with quaternionic entries.

4 A combinatorial identity for Vietoris’ number
sequence

Before coming to our main result, let us still remember a well known combi-
natorial identity (cf. [14, p. 130] or [16, p. 44]) that we need for its proof,
namely

m∑
t=0

(
2t

t

)(
2m− 2t

m− t

)
= 4m, (13)

which in turn can be proved by evaluating the square of the generating function
of the central binomial coefficients and its derivatives at x = 0.

Now we can prove

Theorem 2 Let i and j be two generators of a reduced purely imaginary quater-
nion. Then the following combinatorial identity holds(

k

bk2 c

)[ k∑
s=0

(
k

s

)
(ik−s × js)2

]
= (−2)k. (14)
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Taking into account the form of the elements of Vietoris’ number sequence
(2), formula (14) can be rewritten in order to obtain the representation of Vi-
etoris’ number sequence by symmetric products of the generators i and j.

Corollary [Representation of Vietoris’ number sequence]

ck = (−1)k

[
k∑
s=0

(
k

s

)
(ik−s × js)2

]−1
. (15)

Proof of Theorem 2
As an auxiliary calculation we determine the square of the symmetric products
in (12) multiplied by

(
k
s

)
and distinguish between k = 2m and k = 2m+ 1 resp.

s = 2t and s = 2t+ 1 for the different parities. We get immediately

(
k

s

)
(ik−s × js)2 =



(
m
t

)2(
2m
2t

) , k = 2m and s = 2t;

0, k = 2m and s = 2t+ 1;

−
(
m
t

)2(
2m+1

2t

) , k = 2m+ 1 and s = 2t;

−
(
m
t

)2(
2m+1
2t+1

) , k = 2m+ 1 and s = 2t+ 1.

(16)

Now we consider two cases corresponding to the parity of k.

I. k even
Denote by Ak the left-hand side of (14). The use of (16) (note that the
second case implies that the sum over odd values of s completely vanishes)
together with (13) allows to write

A2m =
(
2m
m

)[ 2m∑
s=0

(
2m
s

)
(i2m−s × js)2

]
=
(
2m
m

)[ m∑
t=0

(
2m
2t

)
(i2m−2t × j2t)2 + 0

]

=
(
2m
m

)[ m∑
t=0

(
m
t

)2(
2m
2t

)] =

m∑
t=0

(2t)!
t!t! ·

(2m−2t)!
(m−t)!(m−t)!

= 4m = (−2)2m

II. k odd
In this case we apply the third and the fourth case of (16) and proceed
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analogously to the former case.

A2m+1 =
(
2m+1
m

)[ 2m+1∑
s=0

(
2m
s

)
(i2m+1−s × js)2

]
=
(
2m+1
m

)[ m∑
t=0

−
(
m
t

)2(
2m+1

2t

) − m∑
t=0

(
m
t

)2(
2m+1
2t+1

)]

=
(
2m+1
m

) m∑
t=0

(
m
t

)2[ (2t)!(2m−2t+1)!
(2m+1)! + (2m−2t)!(2t+1)!

(2m+1)!

]

= −2

m∑
t=0

(2t)!
t!t! ·

(2m−2t)!
(m−t)!(m−t)!

= −2 · 4m = (−2)2m+1.

�

We finish with examples for the first values of ck in (15) resp. (1),

c0 =1

c1 =(−1)1
[
i2 + j2

]−1
=

1

2

c2 =(−1)2
[
(i2)2 +

(
2

1

)
(i× j)2 + (j2)2

]−1
=

1

2

c3 =(−1)3
[
(i3)2 +

(
3

1

)
(i2 × j)2 +

(
3

2

)
(i× j2)2 + (j3)2

]−1
=

3

8

c4 =(−1)4
[
(i4)2 +

(
4

1

)
(i3 × j)2 +

(
4

2

)
(i2 × j2)2 +

(
4

3

)
(i× j3)2 + (j4)2

]−1
=

3

8
.
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ematical Association of America Monthly 109 (3) (2002) 217–234.
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