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Abstract. It is known that every Toeplitz matrix T enjoys a circulant and skew circulant

splitting (denoted by CSCS), see [8, 17], i.e., T = C − S with C a circulant matrix and S a skew

circulant matrix. Based on the variant of such a splitting (also referred to as CSCS), we first

develop classical CSCS iterative methods and then introduce shifted CSCS iterative methods for

solving hermitian positive definite Toeplitz systems in this paper. The convergence of each method

is analyzed. Numerical experiments show that the classical CSCS iterative methods work slightly

better than the Gauss-Seidel (GS) iterative methods if the CSCS is convergent, and that there is

always a constant α such that the shifted CSCS iteration converges much faster than the Gauss-Seidel

iteration, no matter whether the CSCS itself is convergent or not.
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1. Introduction. Concerned with the classical iterative solution to a large linear

system of equations

Tx = b,(1.1)

where b ∈ Cn, T ∈ Cn×n is an hermitian positive definite (HPD) Toeplitz matrix,

which has an extensive applications and has intrigued the researchers for decades [7].

Recall that the representation A = M − N is called a splitting of A, if M is

nonsingular. The classical iterative methods for solving Ax = b can be described as

Mx(k+1) = Nx(k) + b k = 0, 1, · · ·(1.2)

where x(0) is an initial approximation to the solution of Ax = b.

It is well-known that the method (1.2) converges for any initial vector x0 if and

only if the spectral radius ρ(H) < 1, where H = M−1N is the iteration matrix.
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†Centro de Matemática, Universidade do Minho, 4710-057 Braga, Portugal (zhang@math.

uminho.pt).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/132797975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Z. Y. Liu, X. R. Qin , N. C. Wu and Y. L. Zhang

The classical iterative methods for solving large linear system of equations (1.1)

require efficient splittings of the coefficient matrix A. That is to say that M−1 is easy

to obtain and ρ(H) < 1. Now, these techniques are rarely used separately. However,

when combined with the more efficient methods, they can be quite successful, see for

example, [4, 6, 8, 19] and references therein. Moreover, there are a few application

areas where variations of these methods are still quite popular, see for instance [2, 3,

5, 10, 13, 15, 17, 16].

If A is decomposed into the following form

A = D − E − F,(1.3)

where D, −E and −F are the matrices consisting of diagonal entries, strictly lower

triangular part, and strictly upper triangular part of A, respectively. It is always

assumed that D 6= 0. Then one can obtain:

• the Jacobi splitting by taking M = D;

• Gauss-Seidel splitting by taking M = D − E;

• the successive over relaxation(SOR) splitting by taking M = 1
ω (D − ωE),

• the symmetric successive over relaxation(SSOR) splitting by taking M =
1

ω(2−ω) (D − ωE)D−1(D − ωF ).

The matrices M = D and M = 1
ω(2−ω) (D−ωE)D−1(D−ωF ) are usually referred

as to Jacobi and SSOR preconditioners for preconditioned conjugate gradient method

(PCG) and preconditioned generalized minimum residual method (PGMRES).

In this paper we consider T = (tij)n×n in (1.1) being an hermitian Toeplitz matrix

defined by tij = ti−j and tij = t̄ji.

There are two main types of methods for solving Toeplitz systems: direct methods

and iterative methods. The complexity of fast direct Toeplitz solvers is O(n log2 n),

see e.g., [1, 11]. What’s more, the stability of these fast direct algorithms is still

in question. Because of these stability problems, considerable attention has recently

been given to iterative methods for solving Toeplitz systems, for a early review, see

[7].

It is known that a Toeplitz matrix T always possesses a circulant and skew-

circulant splitting (CSCS)

T = Cβ − Sγ ,(1.4)
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where
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is a circulant matrix, and

Sγ = −
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is a skew-circulant matrix, the parameters β, γ satisfy β + γ = t0.

If taking β = γ = t0
2 , then the splitting (1.4) becomes one used by Ng in [17],

which resulted in a so-called CSCS iterative method consisting of two half-step itera-

tions, for nonhermitian positive definite Toeplitz systems, analogously to the classical

alternating direction implicit (ADI) iteration for solving partial differential equations.

Moreover, based on this splitting, Chan and Jin in [8] developed some circulant and

skew-circulant preconditioners for skew hermitian type Toeplitz systems.

In this paper, we propose an classical iterative solvers for hermitian positive define

Toeplitz systems based on the circulant /skew-circulant splitting iteration by always

taking β > γ, and it is as follows.

The Classical CSCS iteration: Given an initial guess x(0), for k = 0, 1, 2, · · ·
until {x(k)} converges, compute

Cβx
(k+1) = Sγx

(k) + b,(1.5)

where Cβ is assumed to be nonsingular.

We remark here that the main operations in (1.5) are matrix-vector products

C−1β u and Sγv. Since circulant matrices can be diagonalized by the discrete Fourier

matrix F and the skew-circulant matrices can be diagonalized by the diagonal times

discrete Fourier matrix F̂ , i.e.,

Cβ = F ∗ΛF and Sγ = F̂ ∗ΣF̂ ,(1.6)

where Λ and Σ are diagonal matrices holding the eigenvalues of Cβ and Sγ respec-

tively, the exact solutions with circulant matrices can be obtained by using 8 fast

Fourier transforms (FFTs) of n-vectors. We emphasize that the use of circulant and
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skew-circulant matrices for solving Toepltiz systems allows the use of FFT through-

out the computations, and FFT is highly parallelizable and has been implemented

on multiprocessors efficiently. The proposed method is well-adapted for parallel com-

puting.

Of course, we can use the Gauss-Seidel iterative method for solving hermitian

positive define Toeplitz systems. If T is split as (D − L)− L∗, then the Gauss-Seidel

iteration is as follows.

The Classical GS iteration: Given an initial guess x(0), for k = 0, 1, 2, · · · until

{x(k)} converges, compute

(D − L)x(k+1) = L∗x(k) + b,(1.7)

where D − L is the lower triangular Toeplitz matrix and L∗ is the strictly upper

triangular Toeplitz matrix.

The main operations in (1.7) is to calculate (D−L)−1, (D−L)−1u and L∗v. A

fast algorithm in [9, 14] for computing (D−L)−1 requires about 10 FFTs of n-vectors.

Furthermore, to compute (D−L)−1u and L∗v needs 6 FFTs of 2n-vectors, see, e.g.,

[7]. That is to say that the exact solutions with lower triangular Toeplitz matrices

can be obtained by using 22 FFTs of n-vectors. This means that our classical CSCS

iteration ensures significant savings, as compared to the classical GS iteration, at each

iterative step.

The organization of this paper is as follows. In next section, we first recall some

preliminaries, then study the convergence of the classical CSCS iteration and finally

propose a new CSCS iteration with a shift. Numerical experiments are presented in

section 3 to show the effectiveness of our methods. A brief conclusion is also drawn

in section 4 and the acknowledgements are followed in last section.

2. The shifted CSCS iteration. In this section, we first review some known

results needed in the remaining parts of this paper, then introduce the shifted CSCS

iterative methods for Toeplitz system (1.1), finally convergence results are given for

each scheme.

2.1. Preliminaries. A matrix A is said to be positive definite if x∗Ax > 0 for

∀x ∈ Cn, x 6= 0.

Regarding splittings of the positive definite matrix A, we need the following def-

inition and theorems which can be found in [12, 15, 16, 18].

Definition 2.1. The splitting A = M −N is called P-regular if T̃ = M∗ +N is

positive definite.
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Theorem 2.2. Let A = M −N be an hermitian positive definite matrix, where

M is a invertible hermitian matrix. Then ρ(M−1N) < 1 if and only if the splitting

A = M −N is P-regular.

Theorem 2.3. Let A be hermitian, and let the splitting A = M−N be P-regular.

Then ρ(M−1N) < 1 if and only if A is positive definite.

Theorem 2.4. (Weyl’s theorem). Let A,B ∈ Cn×n be Hermitian and the eigen-

values λi(A), λi(B), λi(A+B) of A, B and A+B be arranged in an increasing order.

Then, for each i = 1, 2, . . . , n, we have

(i) λi(A) + λ1(B) ≤ λi(A+B) ≤ λi(A) + λn(B)

(ii) λ1(A) + λi(B) ≤ λi(A+B) ≤ λn(A) + λi(B)

2.2. The classical CSCS iteration with a shift. Notice first that if T is

hermitian, then the matrices Cβ and Sγ defined as in (1.4) are also hermitian. In this

case their eigenvalues λi(Cβ) and λi(Sγ) are all real, can be arranged in an increasing

order and obtained easily by using 2 FFTs. As a natural consequence of Theorem

2.2, we have the following results.

Lemma 2.5. Let T be an hermitian positive definite Toeplitz matrix, T = Cβ−Sγ
be the circulant and skew-circulant splitting. If the splitting T = Cβ−Sγ is P-regular,

then ρ(C−1β Sγ) < 1.

Now, we can establish a sufficient condition on the convergence of the classical

CSCS iteration.

Theorem 2.6. Let T be an hermitian positive definite Toeplitz matrix, T =

Cβ−Sγ be the circulant and skew-circulant splitting, λ1(Cβ) and λ1(Sγ) be the smallest

eigenvalues of Cβ and Sγ , respectively. If λ1(Cβ) + λ1(Sγ) > 0, then ρ(C−1β Sγ) < 1

i.e., the iteration (1.5) converges to the exact solution x? of the linear system of

equations (1.1).

Proof. From the hypothesis and by Theorem 2.4, we have that

λi(C
∗
β + Sγ) ≥ λ1(Cβ) + λ1(Sγ) > 0.

This means that T̃ = C∗β + Sγ is hermitian positive definite. Thus the splitting

T = Cβ − Sγ is P-regular. By Lemma 2.5, we have ρ(C−1β Sγ) < 1 immediately.

We observe here that the splitting T = Cβ − Sγ is not always P-regular for given

β and γ, even if β > γ (the assumption λ1(Cβ) + λ1(Sγ) > 0 implies β > γ). In this

case, we introduce a positive parameter α and consider the following splitting

T = Ĉβ − Ŝγ ,(2.1)



6 Z. Y. Liu, X. R. Qin , N. C. Wu and Y. L. Zhang

where Ĉβ = αI + Cβ and Ŝγ = αI + Sγ , which are obtained from Cβ and Sγ by

shifting αI, respectively. We refer to the splitting (2.1) as the shifted CSCS and its

corresponding iteration as the shifted CSCS iteration. It is as follows.

The shifted CSCS iteration: Given an initial guess x(0), for k = 0, 1, 2, · · · ,
until {x(k)} converges, compute

Ĉβx
(k+1) = Ŝγx

(k) + b,(2.2)

where Ĉβ is nonsingular.

Since Ĉβ and Ŝγ in (2.1) are circulant and skew circulant matrices respectively,

we can fast perform the shifted CSCS iteration by employing DFT, similar to the

classical CSCS iteration used.

Theorem 2.7. Let T be an hermitian positive definite Toeplitz matrix, T =

Ĉβ − Ŝγ be the shifted CSCS defined in (2.1). If the splitting T = Cβ − Sγ is not

P-regular, then there exists a positive constant α such that ρ(Ĉ−1β Ŝγ) < 1 i.e., the

iteration (2.2) converges to the exact solution x? of the linear system of equations

(1.1).

Proof. By Theorem 2.2, it suffices to show that there is a constant such that
˜̂
T = Ĉβ

∗
+ Ŝγ is positive definite. Note that

˜̂
T = 2αI + (C∗β + Sγ) =2αI + T̃ and

λi(
˜̂
T ) = 2α + λi(T̃ ) ≥ 2α + λ1(T̃ ) ≥ 2α + λ1(Cβ) + λ1(Sγ). Thus, we can take a α

such that α > −λ1(T̃ )/2, which means that
˜̂
T is positive definite. However, λ1(T̃ ) is

unknown. Note that λ1(Cβ) and λ1(Sγ) can be easily obtained. Instead, we can take

a α such that α > −[λ1(Cβ)+λ1(Sγ)]/2, which also means that
˜̂
T is positive definite.

i.e, T = Ĉβ − Ŝγ is P-regular. By Theorem 2.2, we have ρ(Ĉ−1β Ŝγ) < 1. The proof is

thus complete.

Theorem 2.7 tell us that even if the splitting T = Cβ − Sγ is not P-regular,

there is always a constant α > 0 such that the shifted CSCS iteration converges. At

the same time, we observe that the shifted CSCS iteration reduces to the classical

CSCS iteration when α = 0, which is similar to that the SOR iteration reduces to

GS iteration when ω = 1. That is to say that the parameter α in the shifted CSCS

iteration plays the same role as ω in SOR iteration. Therefore, there does exist an

optimal parameter α∗ such that ρ((α∗I + Cβ)−1(α∗I + Sγ)) ≤ ρ(C−1β Sγ). Hence we

can expect that the shifted CSCS iteration has a better convergence rate than the

classical CSCS iteration when the splitting T = Cβ − Sγ is P-regular. The numerical

experiments in next section verify the our guess.

3. Numerical examples. All the numerical tests were done on a Founder desk-

top PC with Pentium dual-core E6700 CPU 3.20 GHz with Matlab 7.4.0.287 (R2007a).
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To verify the effectiveness of our method, several kinds of generating functions were

tested and they are as follows

Example 3.1. f = 1 + x2, b = (1, 1, · · · , 1)T and x(0) = (1, 1, · · · , 1)T .

Example 3.2. tk = (1 + |k|)−p, b = (1, 1, · · · , 1)T and x(0) = (1, 0, · · · , 0)T .

Example 3.3. f = 0.1 + |x|, b = (1, 1, · · · , 1)T and x(0) = (1, 0, · · · , 0)T .

Example 3.4. f = 1.1 + cosx, b = (1, 1, · · · , 1)T and x(0) = (1, 0, · · · , 0)T .

By Theorem 2.3, we know that the Gauss-Seidel iteration of an hermitian positive

definite matrix is always convergent. For comparison, we therefore test GS iteration.

In all tests, the scalars β = t0 and γ = 0 in the CSCS (1.4), and the stopping criteria is

ε = ||r(k)||2
||r(0)||2

≤ 10−6, where r(k) is the residual vector at the kth iteration. In all tables,

N , n, GS, CS and CS(α) mean the number of iteration, the order of the matrix T , the

Gauss-Seidel iteration, the classical CSCS iteration and the shifted CSCS iteration

with the shift α, respectively.

The CSCS of T in Example 3.1 is P-regular. So the classical CSCS iteration is

convergent. The number of iterations required for convergence is illustrated in Table

3.1 in which we can see our method converges slightly faster than the GS iterative

method.

Table 3.1 CS vs GS for Example 3.1

H
HHHN

n
64 128 256 512 1024

GS 23 23 23 23 23

CS 21 21 21 21 21

For Example 3.2, we compute the smallest eigenvalues of the matrices T̂ = C∗+S

which are listed in Table 3.2. It indicates that all the splittings of T in the cases of

p = 0.8, p = 1.0, p = 1.2 and p = 1.4 are not P-regular.

Table 3.2 The smallest eigenvalues of T̂ for Example 3.2

HH
HHp

n
128 256 512 1024

0.8 -1.2074 -1.6996 -2.2389 -2.8321

1.0 -0.4726 -0.6476 -0.8020 -0.9371

1.2 -0.0117 -0.0659 -0.1023 -0.1256

We select a α being a small perturbation of −[λ1(Cβ) + λ1(Sγ)]/2 (i.e., 0 < −λ1
(T̃ )/2 < α ≤ −[λ1(Cβ) + λ1(Sγ)]/2) such that the shifted CSCS is P-regular. The
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numbers of iterations required for convergence are illustrated in Tables 3.3-3.6. It

is clear that the shifted CSCS iterative methods converge much faster than the GS

iterative methods for larger n.

Table 3.3 CS(α) vs GS for Example 3.2 with p = 0.8

HH
HHN

n
64 128 256 512 1024

GS 34 43 54 66 82

CS(α) 34(0.795) 40(1.03) 46 (1.32) 52 (1.658) 58 (2.05)

Table 3.4 CS(α) vs GS for Example 3.2 with p = 1.0

HHHHN

n
64 128 256 512 1024

GS 26 32 39 45 53

CS(α) 24(0.61) 26(0.730) 28(0.855) 30(0.95) 31(1.03)

Table 3.5 CS(α) vs GS for Example 3.2 with p = 1.2

H
HHHN

n
64 128 256 512 1024

GS 22 25 29 33 37

CS(α) 18(0.46) 19(0.48) 19(0.55) 19 (0.63) 19 (0.65)

Table 3.6 CS(α) vs GS for Example 3.2 with p = 1.4

HH
HHN

n
64 128 256 512 1024

GS 18 21 23 25 27

CS(α) 14(0.34) 14(0.35) 14 (0.4) 15 (0.43) 15 (0.445)

All CSCSs of T in Example 3.3-3.4 are P-regular. So the classical CSCS iterations

are naturally convergent. However, after introducing a parameter α (Here, the α is

taken to be a small perturbation of −[λ1(Cβ) + λ1(Sγ)]/2) ((i.e., −λ1 (T̃ )/2 < α

≤ −[λ1(Cβ) + λ1(Sγ)]/2) such that the shifted CSCSs are also P-regular, we find the

shifted CSCS iterations work better than the classical CSCS iterations. The numbers

of iterations required for convergence are illustrated in Tables 3.7-3.8, respectively.

4. Conclusion. In this paper, we consider the classical iterative solver of the

hermitian positive definite Toeplitz linear system of equations Tx = b. A shifted CSCS

iterative method is proposed and its convergence is also discussed. We have shown

that there always exists a constant α such that the shifted CSCS is P-regular, even

if the classical CSCS is not P-regular. Moreover, if the classical CSCS is P-regular,

we may choose a α such that the sifted CSCS iteration has a better convergence rate
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Table 3.7 CS(α) vs GS for Example 3.3

HHHHN

n
64 128 256 512 1024

GS 83 96 105 109 112

CS(0) 83 96 104 109 112

CS(α) 43(-0.391) 48(-0.418) 52(-0.42) 53(-0.43) 54(-0.435)

Table 3.8 CS(α) vs GS for Example 3.4

H
HHHN

n
64 128 256 512 1024

GS 40 38 36 34 32

CS(0) 37 35 33 33 30

CS(α) 26(-0.155) 25(-0.165) 24(-0.166) 24 (-0.17) 24(-0.176)

than the classical CSCS iteration. Numerical experiments show that the sifted and

unshifted CSCS iterations have better convergence behaviors than the classical GS

iterations.

We remark here that the sifted classical CSCS iterative method considered in this

paper is only for hermitian positive definite Toeplitz linear systems, but this method

can be generalized to general hermitian positive definite linear systems.

It is an important and hard task to find the optimal α which strongly depend on

the concrete structures and properties of the coefficient matrix T and needs further

in-depth study from the viewpoint of both theory and computations.
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