
José Carlos Vale de Mesquita

Hybrid Linux System Modeling
with Mixed-Level Simulation

Jo
sé

 C
ar

lo
s

Va
le

de
 M

es
qu

ita

October, 2016UM
in

ho
 |

 2
01

6
H

yb
ri

d
Li

nu
x

Sy
st

em
 M

od
el

in
g

w
ith

 M
ix

ed
-L

ev
el

 S
im

ul
at

io
n

Universidade do Minho
Escola de Engenharia

October, 2016

Master's Thesis
Master's Degree in Industrial Electronics Engineering
and Computers

Carried out under guidance of
PhD Adriano José da Conceição Tavares

José Carlos Vale de Mesquita

Hybrid Linux System Modeling
with Mixed-Level Simulation

Universidade do Minho
Escola de Engenharia

Acknowledgments

”I would like to thank my supervisor, PhD Adriano Tavares, for all the insight and
solicitude provided throughout the project that helped me reach my objectives for
this dissertation. I would also like to thank Engineer Vítor Silva for the time spent
sharing his knowledge and leading me throughout the project. Someone I could
not forget is Engineer Nelson Naia, who helped me in critical moments during this
work, and also for his friendship. Wish him the best of lucks in his new career.

Another great appreciation goes to Professor Jorge Cabral, for giving me the
chance to learn from him and his sheer presence. A special thank you goes to
Engineers César Monteiro, Marcelo Sousa and Luís Novais, my everyday partners
and workspace companions, who helped me through the toughest days.

To my family, who always gave me all i needed to complete this life goal and always
walked by my side, a much sincere thank you. To my mother, for putting up with
me and never letting go; to my father, for always being there for me when i needed
him. To my brother Mário, for being the one who took me into the fascinating
world of electronics in the first place!

To you Inês, for being the greatest friend i could ask for. Your patience, caring
and courage impress me.

To everyone who contributed to this dissertation, direct or indirectly, and to
everyone who has ever caused an impact on my life, my sincerest gratitude.

Lastly, thank you God, for giving me so much reasons to be thankful for.”

iii

iv

Abstract

Keywords: hardware-software co-design, co-simulation, QEMU, PSIM, Linux.

We live in a world where the need for computer-based systems with better per-
formances is growing fast, and part of these systems are embedded systems. This
kind of systems are everywhere around us, and we use them everyday even without
noticing. Nevertheless, there are issues related to embedded systems in what co-
mes to real-time requirements, because the failure of such systems can be harmful
to the user or its environment.

For this reason, a common technique to meet real-time requirements in difficult
scenarios is accelerating software applications by using parallelization techniques
and dedicated hardware components. This dissertations’ goal is to adopt a metho-
dology of hardware-software co-design aided by co-simulation, making the design
flow more efficient and reliable. An isolated validation does not guarantee inte-
gral system functionality, but the use of an integrated co-simulation environment
allows detecting system problems before moving to the physical implementation.

In this dissertation, an integrated co-simulation environment will be developed,
using the Quick EMUlator (QEMU) as a tool for emulating embedded software
platforms in a Linux-based environment. A SystemVerilog Direct Programming
Interface (DPI) Library was developed in order to allow SystemVerilog simula-
tors that support DPI to perform co-simulation with QEMU. A library for DLL
blocks was also developed in order to allow PSIM R© to communicate with QEMU.
Together with QEMU, these libraries open up the possibility to co-simulate seve-
ral parts of a system that includes power electronics and hardware acceleration
together with an emulated embedded platform.

In order to validate the functionality of the developed co-simulation environment,
a demonstration application scenario was developed following a design flow that
takes advantage of the mentioned simulation environment capabilities.

v

vi

Resumo

Palavras-chave: HW-SW co-design, co-simulação, QEMU, PSIM, Linux.

Vivemos num mundo em que a procura por sistemas computer-based com desem-
penhos cada vez melhores domina o mercado. Estamos rodeados por este tipo de
sistemas, usando-os todos os dias sem nos apercebermos disso, sendo grande parte
deles sistemas embebidos. Ainda assim, existem problemas relacionados com os
sistemas embebidos no que toca aos requisitos de tempo-real, porque uma falha
destes sistemas pode ser perigosa para o utilizador ou o ambiente que o rodeia.

Devido a isto, uma técnica comum para se conseguir cumprir os requisitos de
tempo-real em aplicações críticas é a aceleração de aplicações de software, utili-
zando técnicas de paralelização e o uso de componentes de hardware dedicados.
O objetivo desta dissertação é adotar uma metodologia de co-design de hardware-
software apoiada em co-simulação, tornando o design flow mais eficiente e fiável.
Uma validação isolada não garante a funcionalidade do sistema completo, mas a
utilização de um ambiente de co-simulação permite detetar problemas no sistema
antes deste ser implementado na plataforma alvo.

Nesta dissertação será desenvolvido um ambiente de co-simulação usando o QEMU
como emulador para as plataformas de software "embebido" baseadas em Linux.
Uma biblioteca para SystemVerilog DPI foi desenvolvida, que permite a co-simulação
entre o QEMU e simuladores de Register-Transfer Level (RTL) que suportem Sys-
temVerilog. Foi também desenvolvida uma biblioteca para os blocos Dynamic Link
Library (DLL) do PSIM R©, de modo a permitir a ligação ao QEMU. Em conjunto,
as bibliotecas desenvolvidas permitem a co-simulação de diversas partes do sis-
tema, nomeadamente do hardware de eletrónica de potência e dos aceleradores de
hardware, juntamente com a plataforma embebida emulada no QEMU.

Para validar as funcionalidades do ambiente de co-simulação desenvolvido, foi ex-
plorado um cenário de aplicação que tem por base esse mesmo ambiente.

vii

viii

Contents

List of Figures xiii

List of Tables xvi

1 Introduction 1
1.1 Contextualization . 1
1.2 Motivation and Objectives . 3
1.3 Dissertation Structure . 4

2 Basic Knowledge Background 7
2.1 Embedded Systems . 7

2.1.1 Definition . 8
2.1.2 Hardware . 9
2.1.3 Development . 12
2.1.4 Startup - Bootloaders . 14
2.1.5 Real-Time Embedded Systems 16

2.2 Operating Systems . 17
2.2.1 Concurrency & Scheduling 17
2.2.2 Kernel & User Spaces . 18
2.2.3 Linux . 20
2.2.4 Real-time Operating Systems 24
2.2.5 Buildroot . 25

2.3 Hardware Acceleration . 26
2.3.1 Hardware Description Languages 26
2.3.2 FPGA . 31

2.4 Hardware-Software Co-Design . 38
2.4.1 Hardware-Software Co-Design Flow 38

3 Co-Simulation Models, Mechanisms and Tools Overview 43

ix

3.1 Hybrid Embedded Systems Simulation 43
3.1.1 Full System RTL Simulation 44
3.1.2 RTL Simulation with Host Software 45
3.1.3 RTL-Software Co-Simulation 46
3.1.4 Full System Software Simulation 47

3.2 QEMU . 47
3.2.1 QEMU Plugin Extension . 48
3.2.2 QEMU External Model Extension 50

3.3 (System)Verilog Simulation Interfaces 51
3.3.1 Verilog Programming Language Interface 51
3.3.2 SystemVerilog Direct Programming Interface 52

3.4 PSIM R© . 59
3.4.1 PSIM R© Overview . 60
3.4.2 PSIM R© DLL Blocks . 61

3.5 Functional Mock-up Interface . 63
3.5.1 FMI Overview . 64
3.5.2 FMI for Co-Simulation . 66
3.5.3 FMI Library . 67

3.6 Previous Work vs. Developed Work 68
3.6.1 Design Flow Changes . 69
3.6.2 Verilog PLI vs. SystemVerilog DPI 69
3.6.3 Modelsim vs Vivado Design Suite 70
3.6.4 Power Electronics Domain Simulation 71

4 Co-Simulation Extensions Design 73
4.1 System Co-Design Flow . 74

4.1.1 System Modeling . 74
4.1.2 Software Parallelization . 75
4.1.3 Hardware Behavioral Validation 76
4.1.4 System Co-Simulation . 77

4.2 QEMU Co-Simulation DPI Library 79
4.2.1 Library Overview . 79
4.2.2 Library API . 82
4.2.3 C Layer Transaction Handling 87

4.3 QEMU Co-Simulation PSIM R© Library 92
4.3.1 Library Overview . 94
4.3.2 Library Structure . 96

x

4.3.3 Library Transaction Handling 103

5 Application Scenario 107
5.1 System Modeling . 108

5.1.1 System Overview . 109
5.1.2 Controller Modeling . 110
5.1.3 PSIM R© Simulation . 113

5.2 Software Parallelization . 114
5.3 Hardware Behavioral Validation . 118

5.3.1 Profiling . 119
5.3.2 C/C++ Behavioral Models 119

5.4 System Co-Simulation . 121
5.4.1 Hardware Acceleration . 121

6 Conclusion 123
6.1 Developed Work . 124
6.2 Future Work . 124

Bibliography 127

A Buildroot Support 133
A.1 Real-time Linux Patching and Compilation with Buildroot 133

A.1.1 Buildroot Installation . 133
A.1.2 Real-time Linux Compilation 134

B DPI Co-Simulation Library Support Material 139
B.1 QEMU Monitor HW IP Property Output 139
B.2 Scripts for DPI Library: Compilation and Usage 140

B.2.1 Script to Parse and Elaborate Design files & Compile the
DPI C Layer Library . 140

B.3 Device Driver for Vivado Simulator HW IP External Model 141
B.4 SystemVerilog Top-Level Module Example 147
B.5 SystemVerilog IP Wrapper Example 150
B.6 SystemVerilog Clarke Transformation IP 153
B.7 DPI Library C Layer . 159
B.8 Makefile for the DPI C Layer Library and the PSIM R© Library . . . 162

C PSIM R© Co-Simulation Library Support Material 165

xi

C.1 QEMU Monitor Property Output for PSIM R© Model 165
C.2 Makefile for PSIM R© DLL Creation 166

D p-q Theory 169

E PSIM Simulation Results 171
E.1 Voltage/Current Waveforms . 171
E.2 Measurements . 174

xii

List of Figures

1.1 Co-Simulation Environment overview 3

2.1 Processor types (Naia, 2015) . 9
2.2 Intel� AtomTM x5 and x7 Processor Platform Block Diagram (Tu,

2015) . 12
2.3 Host/Target linked setup (Yaghmour et al., 2008) 13
2.4 Host/Target removable storage setup(Yaghmour et al., 2008) 13
2.5 Host/Target standalone setup(Yaghmour et al., 2008) 14
2.6 Virtual parallelization of two tasks (Naia, 2015) 18
2.7 UNIX OS architecture (Stallings, 2014) 19
2.8 Traditional UNIX Kernel (Stallings, 2014) 21
2.9 Buildroot make menuconfig prompt 25
2.10 HDL design diagram (Naia, 2015) 28
2.11 HDL testbench diagram . 29
2.12 FPGA internal architecture (Maxfield, 2009) 32
2.13 FPGA LookUp Table (Huffmire et al., 2010) 32
2.14 View of a multifaceted LookUp Table (Maxfield, 2009) 33
2.15 Simplified view of a Xilinx LC (Maxfield, 2009) 34
2.16 A Slice with two Logic Cells (Maxfield, 2009) 35
2.17 A Configurable Logic Block containing four slices (Maxfield, 2009) . 35
2.18 Standalone CPU and FPGA integrated into single FPGA SoC (Al-

tera, 2014) . 37
2.19 Zynq R© UltraScale+TM MPSoC Block Diagram (Hansen, 2016) . . . 38

3.1 Full system RTL simulation diagram (Zabołotny, 2012) 45
3.2 RTL simulation with host software diagram(Zabołotny, 2012) . . . 45
3.3 RTL-Software co-simulation diagram(Zabołotny, 2012) 46
3.4 Full system software simulation diagram(Zabołotny, 2012) 47
3.5 Plugin extension overview (Naia, 2015) 49

xiii

3.6 QEMU External Model Extension overview 50
3.7 PSIM circuit structure (Powersim, 2016) 60
3.8 Data flow between the environment and an FMU (MODELISAR

and Modelica Association, 2014). 65
3.9 FMI simulation standards . 66
3.10 FMI for Co-Simulation schemas. 66
3.11 Distributed tool coupling co-simulation infrastructure (MODELISAR

and Modelica Association, 2014) . 67
3.12 Data flow at communication points for Co-Simulation Master FMU

(MODELISAR and Modelica Association, 2014) 67

4.1 Co-designed Linux-based programming model overview 73
4.2 Design Flow Overview . 74
4.3 System Modeling Overview . 75
4.4 Software Parallelization Overview 75
4.5 Hardware Behavioral Validation Overview 76
4.6 System Co-Simulation Overview . 78
4.7 QEMU Co-Simulation DPI library overview 80
4.8 DPI library initialization sequence diagram 81
4.9 DPI library transaction sequence diagram 82
4.10 DPI library interrupt sequence diagram 83
4.11 Sequence diagram showing different DPI contexts 88
4.12 DPI Library transaction handling sequence diagram 89
4.13 DPI Library interrupt handling sequence diagram 93
4.14 QEMU Co-Simulation PSIM R© library overview 95
4.15 PSIM R© DLL initialization sequence diagram 96
4.16 PSIM R© DLL transaction sequence diagram 97
4.17 PSIM R© DLL OPENSIMUSER flowchart 99
4.18 PSIM R© DLL CLOSESIMUSER flowchart 100
4.19 PSIM R© DLL RUNSIMUSER flowchart 102
4.20 PSIM R© Library transaction handling sequence diagram 104

5.1 Design Flow Methodology . 108
5.2 Three-phase, three-wire shunt active power filter overview diagram . 109
5.3 Block diagram for the shunt active power filter controller 112
5.4 Schematic of the PSIM R© circuit used in the simulation 113
5.5 Active power filter controller application task graph 115
5.6 Active power filter controller application UML, part 1 116

xiv

5.7 Active power filter controller application UML, part 2 118
5.8 Clarke Transformation SW Thread Processing Overview 120
5.9 Clarke Transformation HW Delegate Thread Processing Overview . 120

A.1 Linux kernel configuration . 134
A.2 Linux kernel features . 135
A.3 Linux kernel preemption mode selection 135
A.4 Buildroot configuration . 136
A.5 Buildroot configuration of kernel patch 137
A.6 Linux kernel preemption mode selection: real-time preemption . . . 137

E.1 Voltage waveforms for the three phases 171
E.2 Current waveforms for the three phases 172
E.3 Voltage/Current waveforms for phase A 172
E.4 Voltage/Current waveforms for phase A along with the reference

compensation current for phase A 173
E.5 Voltage and ideal compensated current waveforms for phase A . . . 173

xv

xvi

List of Tables

3.1 Data types mapping between SystemVerilog and C 56

4.1 QEMU Co-Simulation DPI library API 84

E.1 Control Algorithm Validation . 174

xvii

xviii

Acronyms List

ACC ACCess

ADC Analog to Digital Converter

AMBA Advanced-Microcontroller Bus Architecture

API Application Program Interface

ARM Advanced RISC Machine

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction Set Processor

AVR32 Advanced Virtual RISC 32

AXI Advanced eXtensible Interface

BDM Background Debug Mode

BSD Berkeley Software Distribution

CLB Configurable Logic Block

CPU Central Proccessing Unit

COTS Commercial Off-The-Shelf

DDR Double Data Rate

DMA Direct Memory Access

DPI Direct Programming Interface

DSP Digital Signal Processor

DLL Dynamic Link Library

xix

DUT Device Under Test

eCos embedded Configurable operating System

EDA Electronic Design Automation

ESRG Embedded Systems Research Group

EEPROM Electrically Erasable Programmable Read-Only Memory

FIFO First In First Out

FMI Functional Mock-up Interface

FMIL Functional Mock-up Interface Library

FMU Functional Mock-up Unit

FPGA Field Programmable Gate Array

FSF Free Software Foundation

GPU Graphics Proccessing Unit

GCC GNU Compiler Collection

GPL General Public License

GPP General Purpose Processor

GUI Graphical User Interface

HDL Hardware Description Language

HLS High Level Synthesis

HVL Hardware Verification Language

HDVL Hardware Description and Verification Language

HTML HyperText Markup Language

IBM International Business Machines

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineers

ISA Instruction Set Architecture

xx

I/O Input/Output

IP Intellectual Property

I2C Inter-Integrated Circuit

IRQ Interrupt ReQuest

ITEA2 Information Technology for European Advancement 2

JTAG Joint Test Action Group

LAB Logic Array Block

LC Logic Cell

LE Logic Elements

LRM Language Reference Manual

LUT LookUp Table

MIPS Microprocessor without Interlocked Pipeline Stages

MPI Message Passing Interface

OEM Original Equipment Manufacturer

OS Operating System

PCIe Peripheral Component Interconnect express

PLB Processor Local Bus

PLI Programming Language Interface

POSIX Portable Operating System Interface

QEMU Quick EMUlator

RAM Random Access Memory

ROM Read-Only Memory

RMS Root Mean Squared

RC Release Candidate

RISC Reduced Instruction Set Computer

xxi

RPU Real-time Proccessing Unit

RTL Register-Transfer Level

RTC Real-Time Clock

RTOS Real-Time Operating System

SDK Software Development Kit

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

SoC System-on-Chip

THD Total Harmonic Distortion

TCP/IP Transmission Control Protocol/Internet Protocol

TF Task/Function

UART Universal Asynchronous Receiver Transmitter

USART Universal Synchronous Asynchronous Receiver Transmitter

UML Unified Modeling Language

USB Universal Serial Bus

UUT Unit Under Test

VPI Verilog Procedural Interface

XML eXtensible Markup Languague

xxii

Chapter 1

Introduction

This chapter, being the first of the dissertation, introduces the context of the
developed work along with defining its motivations and main objectives. The
structure of this document is also presented at the final section of this chapter.

1.1 Contextualization

Most everyday and worldwide used devices are controlled by an embedded software,
ranging from a simple washing machine to an automobile or a train. With the
rapid growth and intrusion of technology in human life, there is also a growing
need for better embedded system solutions. The development of those softwares
is particularly more demanding than other areas of software engineering due to
the functional and non-functional requirements in terms of quality, reliability and
performance.

Embedded systems are computational systems designed for a specific purpose,
and are usually a smaller part of a larger system, performing lower-level tasks and
acting as bridges to the physical world. Embedded systems are everywhere, and
can be thought as every digital system that is not a desktop computational system.

The development process for embedded systems is usually supported by Commercial
Off-The-Shelf (COTS) embedded development boards, which are usually shipped
with a toolchain that comprises tools like compilers, linkers and debuggers. The
software that will run on the target platform is usually developed and debugged
in the host platforms, and only later deployed.

1

The development process when it comes to hard real-time embedded systems is
even more demanding, since they demand deterministic behavior. Hard real-time
embedded systems are systems with strict timing constraints that must be met.
Some systems, such as the control process for a nuclear power plant, have such
real-time requirements that when not met may fail utterly and completely, causing
catastrophic damage.

Therefore, it is clear that embedded software development for real-time systems re-
quires different design flows and a broader set of skills from the developer. Modern
techniques to enhance real-time requirements satisfaction include computational
offloading of software tasks to dedicated hardware co-processors. With the fast
evolution of the Field Programmable Gate Array (FPGA) technologies, the use
of hardware-software co-design flows for the development of real-time embedded
systems is an increasingly used solution. When using these design flows, the sys-
tem can be sped up due to the inherent parallel nature of hardware present in
custom hardware co-processors.

However the development of such systems can be very time consuming due to
the complexity and multi-technology integration, their implementation involves
the development of software modules, hardware modules and interfaces to connect
them. Software application acceleration is often an optimization compromise in
a cost-benefit relationship during the migration of software processes to hardware
dedicated co-processors.

In order to characterize the whole system, an integrated co-simulation environment
where all the metrics are contemplated would be ideal. Such an environment
would not only be useful in order to measure these metrics, but also in the system
modeling process. As an example, a power electronics simulation tool such as
PSIM R© may be used in order to simulate the behavior of the systems’ hardware.
Figure 1.1 presents an overview of a co-simulation environment.

Hardware-software co-design is usually a long and iterative process, and the de-
velopment time can grow exponentially if the different domains of the system are
modeled and simulated separately, and only then implemented and tested. An iso-
lated validation for the different application domains does not guarantee integral
system functionality, while with an integrated co-simulation environment, system
problems can be detected earlier, before moving to the physical implementation
phase.

2

Mixed - Level
Simulation

Hardware Acceleration
Domain Simulator

Domain-Specific Simulator

- Power Electronics
- Analog Hardware

Embedded Software
Domain Simulator

Figure 1.1: Co-Simulation Environment overview

By using a design flow based on co-simulation, the development process becomes
more efficient/reliable since the system can be modeled first, profiled and analyzed
later according to certain metrics, and only then is the target platform selected,
thus reducing the number of iterations needed in order to achieve the final system
design.

1.2 Motivation and Objectives

Since power electronics is a area of great interest to the author of this dissertation,
and those systems usually require fast-responding, deterministic controllers with
real-time constraints, it is a good area to apply the above-mentioned co-design flow
for hardware-software systems. Developing such a system, integrating multiple
domains like power electronics, hardware acceleration and an embedded platform
usually translates into a long iterative process when using conventional design
flows. Also, when simulating such a system, local caches must be used to stimulate
and validate each application domain, implying lengthy development cycles in most
cases.

These demands can be met by using an environment that allows simulating domain
crossing interactions. Currently, there are no tools available on the market to

3

perform this, i.e., supporting a design flow based on co-simulation. Hence, one
of the main objective of this project is to develop a simulation environment that
allows for cross-domain validation.

Co-simulation has being tackled at the Embedded Systems Research Group (ESRG)
of Universidade do Minho through previous dissertations. A co-simulation frame-
work for hardware accelerated embedded systems has been implemented, as it
could greatly improve future project development processes. This dissertation fol-
lows that vision, being framed as the continuation of the work developed by Naia
(2015) towards creating such a framework.

1.3 Dissertation Structure

This document presents the development of libraries and simulation tools exten-
sions that allow creating such an integrated co-simulation environment for real-
time hardware accelerated applications. Its contents are divided in six chapters,
with the current chapter being the first, and the rest being briefly presented next.

The second chapter presents some knowledge background on the project: topics
on embedded systems and real-time systems, along with operating systems are
present. Hardware acceleration and the hardware-software co-design design flow
are also discussed.

After that, in the third chapter, the most common tools and methodologies used
in hardware accelerated application development for embedded systems are pre-
sented, along with the most commonly followed co-simulation models. The QEMU
basics are also presented, along with a brief mention to the simulation exten-
sions developed in the past that will support the development of this dissertation.
Next, the Verilog and SystemVerilog simulation interfaces are approached, with
a small mention to the Verilogs Programming Language Interface (PLI) and a
more extensive analysis to the SystemVerilogs DPI. The PSIM R© basics are also
presented along with its DLL blocks interface. Finally, the Functional Mock-
up Interface (FMI) co-simulation extension standards are mentioned, bringing up
their relevance in the context of this dissertation. The chapter ends with a com-
parison between the previous work, developed by Naia (2015), and the current
work, with the main changes being addressed.

In the fourth chapter, the developed work, having in view the creation of a co-

4

simulation environment, is approached by presenting the developed extensions and
libraries. The content is presented in a functional manner, providing insights on
how development was made, as well as on how to make use of these mechanisms.
The mechanisms used in the implemented work are presented and examples are
given whenever possible, to help the reader understanding how to use the provided
interfaces developer perspective.

The fifth chapter presents an application scenario, providing a practical example
on how the co-simulation environment features can be used and also proving its’
functionality. The chosen case of study targeted power electronics domain, namely
a shunt active power filter, with simulated power hardware components along with
the controller for the system.

The sixth and last chapter of this document discusses the obtained results and con-
clusions concerning the developed work. Some interesting topics regarding future
work are also mentioned, clarifying what can be further done in terms of func-
tionalities and further improve it to create a full hardware accelerated embedded
system validation framework, one that minimizes the design flow iterations.

5

6

Chapter 2

Basic Knowledge Background

This chapter presents some basic background on the technologies and method-
ologies used in this dissertation. Given that this work is mainly focused on co-
simulating Embedded Systems, the first topics are about them, with greater em-
phasis on Real Time Embedded Systems, that sometimes require a supporting
Operating Systems (OSs) due to their complexity. Given that, the main Linux
features are presented, as it was the chosen OSs to back up this dissertation.
Hardware-software co-design will be addressed, and since it is this work’s main
subject and involves programmable hardware acceleration, FPGAs technologies
will then be discussed, along with its’ advantages.

2.1 Embedded Systems

Nowadays, embedded systems are all around us, and they shape the way we live,
even though we don’t realize it. From consumer electronics (toys, cameras, mi-
crowaves) to industrial automation (robotics), automotive components (antilock
brakes), military defense systems, energy generation, medical equipment (cardiac
monitors) and networking components (routers, hubs, gateways), embedded sys-
tems create both huge value and unprecedented risks.

In 2008, there was an average of 30 embedded microprocessors per person, in
developed countries. Embedded microprocessors account for more than 98% of
all produced microprocessors, rather than personal computer purposes. As more
devices become automated and consumers acquire more such devices, the volume

7

of embedded systems is increasing at 10 to 20 percent per year depending on the
domain (Ebert and Jones, 2009).

These numbers may very well have even increased with the smartphone and tablet
business boom of recent years, and subsequent rise of popularity of the ARM
architecture, resulting in ever greater demand in the embedded market (Naia,
2015).

2.1.1 Definition

An embedded system is an applied computer system that distinguishes from other
types of computer systems such as personal computers or supercomputers because
they are specifically designed to perform certain tasks. They are often subsystems
of bigger systems, and the user doesn’t even notice their presence. However, the
definition of "embedded system" is fluid and difficult to pin down, as it constantly
evolves with advances in technology and dramatic decreases in the cost of imple-
menting various hardware and software components (Noergaard, 2013). Still, some
common characteristics can be identified:

• Presence of a processing unit, like a microprocessor or microcontroller, System-
on-Chip (SoC), etc.;

• Usually designed to only contain the strictly necessary hardware to perform
the task or tasks assigned to them;

• Might have restrictions as regards to power, being powered by batteries or
renewable energy sources, like solar or eolic (Silva, 2011).

Current embedded systems can be split into three groups as low-end, middle-end
and high-end embedded systems, regarding their complexity. Their processors can
either be 4/8-bit simple processors or multi-core 32/64 bit processing units. Their
softwares can go from very basic bare-metal applications to complex OSs running
applications in parallel.

Some examples of embedded systems are:

• Low-end:

Soldering iron, electric heaters, digital watches, vending machines, washing
machines, guitar tuners.

8

• Middle-end:

Washing or cooking systems, routers and hubs, printers, scanners and faxes,
digital cameras, TVs.

• High-end:

Biomedical systems, cars and trains, airplanes and space shuttles, smart-TVs,
tablets and smartphones.

2.1.2 Hardware

Processors are the main functional units of an embedded system, as these latter
must contain at least one master processor acting as the central controlling de-
vice. Still, this does not mean that this processing unit must me a programmable
processor. There are several types of processors, and unlike desktop computers, a
processor with lots of instructions and capabilities does not mean that it is best
suited for an embedded system. Figure 2.1 presents a performance/power efficiency
vs. flexibility overview between the different kinds of processors.

Figure 2.1: Processor types (Naia, 2015)

9

Starting from the top of figure 2.1, we have General Purpose Processors (GPPs),
also know as microprocessors, the most flexible of all processors. The Central
Proccessing Units (CPUs) used in our personal computers belong to this family
of processing units, but even though they have high performances, mainly due
to the use of parallelism. They are the least efficient as far as energy consump-
tion/performance ratio is concerned. Nevertheless, the flexibility they bring to
personal computers is useful for that use, but most of the times useless for embed-
ded systems. Given that, along with their unpredictable execution times due to
resource sharing and dynamic decisions, makes these processors usually not suited
for embedded systems applications.

On the opposite side, we have Application-Specific Integrated Circuits (ASICs),
and they somehow are the opposite of GPPs, because they are the least flexible of
all processing units, being built to perform a specific task. These chips are only
used when maximum efficiency and performance is necessary and a large number
of sales are assured, because they have very high time-to-market and development
costs, sometimes reaching six digit values.

Between these two processor "families", we have FPGAs, which are a low-cost so-
lution to the above-mentioned ASICs, although they need more area and consume
more power than their ASIC counterparts. The bigger advantage of these proces-
sors is that they are reprogrammable, being more flexible than ASICs. Studies
from 2008 state that "designs implemented on FPGAs need on average 40 times
as much area, draw 12 times as much dynamic power, and run at one third the
speed of corresponding ASIC implementations", but "most recent FPGAs provide
significantly reduced power, increased speed, lower materials cost, minimal imple-
mentation real-estate, and increased possibilities for re-configuration ’on-the-fly’"
(Hauck and DeHon, 2008). They are frequently used as a low-cost alternative to
prototype and debug ASICs designs during the development process, as the manu-
facturing costs of creating a new ASIC mask design are what make the technology
expensive.

Lastly, Application-Specific Instruction Set Processor (ASIP) are defined as "soft-
ware programmable processing elements tailored for particular applications" (Sato
et al., 1991), which means they are somewhat flexible processors, but not as generic
as microprocessors, being a good compromise between single-purpose processors
and microprocessors. These processors are particularly optimized for a particu-
lar class of applications, namely graphics, video, networking and signal processing

10

(Gries and Keutzer, 2005), and often have hardwired components additional to
the actual processing unit, such as memory blocks or other peripherals. For these
reasons, they are often the ideal choice for embedded systems, and comprise the
most frequent choice in embedded system design. Some examples of ASIPs are
microcontrollers, Digital Signal Processors (DSPs) and SoC, which will be now
discussed.

Microcontrollers are chips that integrate microprocessors, usually 8 to 16 bits
or 32 bits, and memory blocks in the same package. They are generally aimed
towards low-end control-oriented embedded systems with common characteristics,
being packed with little memory and sometimes even additional peripherals, to
provide a complete single chip control solution. They are usually "reactive", which
means their behavior is driven by events. These chips usually have low power
consumptions.

DSPs are a particular set of ASIPs which are optimized for data stream oriented
applications, with high data throughput, often including dedicated instructions
and peripherals that are suited for digital signal processing, such as floating-point
units and specialized memory.

An SoCs integrates all components of a computer system in a single chip, and
is best suited for middle-end/high-end embedded purposes, being one of the most
popular choices in embedded system design nowadays. SoCs may be comprised
of one or more microprocessors, usually 32 or 64 bits, DSPs, microcontrollers,
memory blocks (Read-Only Memory (ROM), Random Access Memory (RAM),
Electrically Erasable Programmable Read-Only Memory (EEPROM) and Flash),
peripherals (like timers and Real-Time Clocks (RTCs)) and external interfaces,
such as Universal Serial Bus (USB), Serial Peripheral Interface (SPI), Inter-
Integrated Circuit (I2C), Universal Synchronous Asynchronous Receiver Transmitter
(USART) or Ethernet, also found in some microcontrollers. Usually, the var-
ious hardware blocks present in SoCs are connected via proprietary or indus-
trial standard buses such as Advanced RISC Machines (ARMs)� Advanced-
Microcontroller Bus Architecture (AMBA)� or Altera� Avalon�, and Direct
Memory Access (DMA) controllers route data directly between external interfaces
and memories, which increases data throughput in SoCs, as mentioned above.

In figure 2.2 we have a real example of an SoC chip (Intel� AtomTM x5/x7) used in
mobile applications (smartphones and tablets), where a lot of the above-mentioned
technologies are present, amongst some others.

11

Figure 2.2: Intel� AtomTM x5 and x7 Processor Platform Block Diagram (Tu,
2015)

2.1.3 Development

Several setups can be used when it comes to embedded systems development, but
only three will be briefly discussed: linked setup, removable storage setup, and
standalone setup.

• Linked Setup

This setup presupposes that the target and the host are permanently linked
together using a physical link, usually serial or Ethernet. Given this, no phys-
ical hardware storage devices are needed, and all data transfers are made via
the physical connection. The host contains the cross-platform development
environment, and the target must contain an appropriate bootloader, func-
tional kernel and a minimal root filesystem. Figure 2.3 illustrates such setup.

This is the most common setup, and the physical link can also be used
for debugging purposes. However, the most common approach is to have a
different link for debugging (Yaghmour et al., 2008).

• Removable Storage Setup

In this setup, there are no direct physical links between the host and the

12

Figure 2.3: Host/Target linked setup (Yaghmour et al., 2008)

target. A storage device is used instead, which is written by the host and
then used to boot the target device. As seen in the previous setup, the
host contains the cross-platform development environment, but this time the
target only contains a minimal bootloader, as the storage device contains the
rest of the components. This setups are alike the one in 2.4.

Using a setup like this, the target may not contain any persistent storage
at all, and a flash storage device is used in this case. This setup is mostly
used in the early stages of embedded system development (Yaghmour et al.,
2008).

Figure 2.4: Host/Target removable storage setup(Yaghmour et al., 2008)

• Standalone Setup

In this case, the target includes all the required software to boot, operate
and develop additional software. This setup is similar to an workstation, ex-
cept for the hardware, and does not require any cross-platform development
environment. Figure 2.5 represents this type of setups.

These setups are most popular between developers building high-end PC-
based embedded-systems, since they can use standard off-the shelf Linux
distros on the system. When the development is done, they then trim down
the distribution, customizing it for their specific needs (Yaghmour et al.,
2008).

13

Figure 2.5: Host/Target standalone setup(Yaghmour et al., 2008)

2.1.4 Startup - Bootloaders

In the previous section, the main hardware components of a complex embedded
system were discussed, along with their development setups, but a description
of an embedded system wouldn’t be complete without discussing its’ startup. A
bootloader is the first software to run upon startup, being highly dependent on the
target’s hardware, performing low-level hardware initialization and then jumping
to the kernel’s startup code. In more complex systems, the bootloader is also
responsible for loading the operating system (Yaghmour et al., 2008).

In the latter case, the steps executed by the bootloader are the following:

• Initialize the critical hardware components, essential to the systems’ startup,
such as RAM controllers, Input/Output (I/O) controllers and graphic con-
trollers;

• Initialize the systems’ memory, in the proper format to transfer the control
to the OS;

• Allocate resources such as memory and interrupts, associated to hardware
peripherals;

• Initialize hardware and software controllers that allow loading the image of
the OS to the systems’ memory;

• Loading the OSs’ image to memory, decompress it and transfer the proces-
sors’ control to the newly created OS (Silva, 2011).

There is a big variety of embedded boards available for Linux in the market, along
with as many bootloaders. Also, there are many possible boot configurations for a
single board! Due to this, choosing the bootloader is up to the embedded developer,

14

taking into the account the architecture of the target system under development.
Some architectures have well-known, established bootloaders providing support for
a range of hardware, while others have few or no standard bootloaders and mainly
use those provided by the hardware manufacturer (with highly varying quality).

Most typical desktop or server Linux systems use a bootloader such as LILO or
GRUB, whose job it is to program various core system components and to provide
various information for use by the OS. Because many embedded systems don’t
come with prewritten firmware, the implementations available must determine
precisely what hardware is installed within the system and supply this to the
Linux kernel. An embedded project’s first task is likely to be porting U-Boot, or
a similar bootloader, to the board (Yaghmour et al., 2008).

There are some open source bootloaders that can be used on embedded applica-
tions:

• U-Boot, the Universal Bootloader by Denx is undoubtedly the most used
bootloader in embedded systems, being the most flexible and active in the
open source comunity. U-Boot supports development platforms based on the
following architectures: ARM, Advanced Virtual RISC 32 (AVR32), Black-
fin, MicroBlaze, NIOS, PowerPC, MIPS, X86 and m68K, amongst others
(DENX Software Engineering, 2016).

• Barebox derives from U-Boot, but is not as flexible and supported as the
Universal Bootloader. It runs on a variety of architectures including x86,
ARM, Microprocessor without Interlocked Pipeline Stages (MIPS), Pow-
erPC and others (Barebox.org, 2016).

• RedBoot is an bootloader based on embedded Configurable operating System
(eCos), written by Cygnus Solutions, and then bought by Red Hat, Inc. eCos
is very popular in very small embedded systems, that won’t run Linux, but
RedBoot has been extended to boot other OSs, including Linux (Red Hat,
Inc., 2016).

Bootloaders are compiled in cross-compiling environments, and loaded into the
non-volatile memory of the system usually using hardware interfaces such as Joint
Test Action Group (JTAG) or Background Debug Mode (BDM). The memory
region of the bootloader usually has mechanisms to prevent data corruption, that
could prevent the system from booting in the future.

15

2.1.5 Real-Time Embedded Systems

"The basic idea behind real-time embedded systems is that we expect them to
respond to its environment in time. Real-time does not means real fast, it simply
means fast enough in the context in which the system is operating. The essence
of real-time computing is not only that the computer responds to its environment
fast enough, but that it responds reliably fast enough" (Abbott, 2003).

"Real-time systems span a wide range of domains including industrial plants con-
trol, automotive, flight control systems, monitoring systems, multimedia systems,
virtual reality, interactive games, consumer electronics, industrial automation,
robotics, space missions and telecommunications. In these systems, a late action
might cause a wrong behavior (e.g., system instability) that could even lead to a
critical system failure. Hence, the main difference between a real-time task and
a non-real-time task is that a real-time task must complete within a given dead-
line, which is the maximum time allowed for a computational process to finish its
execution" (Lee et al., 2007).

Real-time embedded systems can be classified into two categories, regarding the
consequences caused by a missed deadline, as soft or hard real-time systems.

• Hard real-time embedded systems are those where missing a deadline may
have catastrophic consequences on the controlled system. Examples of hard
real-time systems are nuclear reactor control systems or anti-lock brakes on
a vehicle. In both these cases, if the system does not meet its required
deadlines, total system failure occurs with very harmful consequences.

• An embedded system is said to be soft if missing a deadline causes a per-
formance degradation but does not jeopardize the correct system behavior.
Typical soft real-time systems include user command interpretation, key-
board input, message visualization, system status representation and graph-
ical activities. (Lee et al., 2007)

"The most important property of a real-time system is not performance, or high
speed, but its’ predictability. In a predictable system, we should be able to deter-
mine in advance whether all the computational activities can be completed within
their timing constraints. The deterministic behavior of a system typically depends
on several factors ranging from the hardware architecture to the operating sys-
tem up to the programming language used to write the application. Architectural

16

features that have major influence on task execution include interrupts, direct
memory access (DMA), pipelining, cache, and prefetching mechanisms. Although
such features improve the average performance of the processor, they introduce
a non-deterministic behavior in process execution, prolonging the worst-case re-
sponse times" (Lee et al., 2007).

2.2 Operating Systems

Operating systems are "the chief pieces of software" (McHoes and Flynn, 2013),
who manage machine resources, controlling who can use the system, and how.
They are basically programs who perform the interface between applications and
the systems hardware (Stallings, 2014). As embedded technology grew to meet ever
growing system demands, the adoption of OS for system development became very
common, being an integral part for several embedded systems.

2.2.1 Concurrency & Scheduling

Concurrency means that several tasks must be carried out simultaneously, but
single-core microprocessors are capable of executing only one instruction at a time,
and if an external event triggers a processing task, the processor would be unavail-
able to attend that request.

Even though, there are concurrent programming techniques to overcome this lim-
itation, where the illusion of concurrent execution is achieved by interleaving the
execution steps of each task via time-sharing slices, where only one task runs at a
time, and if it does not complete during its time slice, it is paused. Then, another
task begins or resumes, and then later the original task is resumed. In this way,
multiple task are part-way through execution at a single instant, but only one is
being executed at each instant. Figure 2.6 presents an example diagram of two
tasks being executed concurrently.

As above-mentioned, the two tasks are executed by the processor once at a time,
with CPU execution jumping from one task to the other. Task switching can be
implemented using timer interrupts, with scheduling code being ran in the inter-
rupt to decide which task code should the interrupt return to. If the task switches
are frequent enough, it may seem as the system is running the two tasks in par-

17

Execution
time

Figure 2.6: Virtual parallelization of two tasks (Naia, 2015)

allel. This is the basis of the multi-tasking paradigm used in most computational
systems nowadays, and it is one of the most important aspects of an operating
system (Naia, 2015).

At its absolute most basic form, an OS can be a software program that allows
for task code implementation, running a scheduler that decides which task should
be in execution at a given instant. There are many scheduling algorithms and
techniques, but nowadays, the most well known OS, such as Windows, Mac-OS
and Linux use preemptive schedulers.

2.2.2 Kernel & User Spaces

An seen in the last section, OSs can be defined as software programs that allow
for concurrent task execution. However, most OSs are much more complex than
that, taking care of software and hardware resource management and providing a
set of services that are common to most applications. In modern OS, the kernel is
the core component of the OS and can be defined as the resource manager, being
responsible for task scheduling and hardware access management. Most modern
large OSs implement at least two execution spaces: kernel space and user space.
The OS is often called the system kernel, or simply the kernel, to emphasize its
isolation from the user and applications (Stallings, 2014). Figure 2.7 provides a
general description of the classic UNIX architecture.

Kernel space runs code that accesses hardware like memory and I/O, providing
an interface through system calls to upper layers. User space runs OS services
that do not require direct hardware access, like network services and user interface
services such as Graphical User Interfaces (GUIs) and command line shells. User

18

Figure 2.7: UNIX OS architecture (Stallings, 2014)

applications are also ran in user space.

There are two main type of kernels: microkernels and monolithic kernels. Mi-
crokernels contain the minimum amount of services running in kernel space, with
most services being ran in user space, while monolithic kernels run most of their
services in kernel space. Regardless of being implemented in user space or kernel
space, most OSs provide a set of basic services, using a set of concepts that make
possible the modern computing systems that we see today (Naia, 2015).

A closer look at an example of a UNIX-based monolithic kernel is provided in
Figure 2.8:

• User programs can invoke OS services either directly or through library pro-
grams.

• The system call interface is the boundary with the user and allows higher-
level software to gain access to specific kernel functions (Stallings, 2014).

At the other end, the OS contains primitive routines that interact directly with the
hardware. Between these two interfaces, the system is divided into two main parts,
one concerned with process control and the other concerned with file management
and I/O:

19

• The process control subsystem is responsible for memory management, the
scheduling and dispatching of processes and the synchronization and inter-
process communication of processes. The scheduling is perhaps the most
important feature of an OS as was previously covered, because it allows for
multi-tasking, which is essential to the system responsiveness and concurrent
application execution.

• Virtual memory is a technique that greatly improves system performance,
usually tightly coupled with the concept of processes, although it is also used
in single address space OS. With this technique a process assumes that the
whole system’s memory is free, liberating processes from the responsibility of
managing memory addresses. Processes’ memory addresses are interpreted
by the OS as virtual addresses and then translated to actual physical ad-
dresses.

• The file subsystem is an abstraction that is provided to manipulate data in
storage devices. It provides a way of organizing data, usually in a hierarchy
of directories or folders arranged in a directory tree. Each group of data is
called a file, and follows a given structure and logic rules, so data can be
recognized and organized.

• This system exchanges data between memory and external devices either as
a stream of characters or in blocks. To achieve this, a variety of device drivers
are used. Device drivers are software entities that contain implementation of
software that is related to the specificness of the underlying hardware. Mono-
lithic kernels usually implement device drivers in kernel space to prevent user
applications from crashing the whole system with ease. For block-oriented
transfers, a disk cache approach is used: a system buffer in main memory is
interposed between the user address space and the external device (Stallings,
2014).

2.2.3 Linux

Linux started out as a UNIX variant for the International Business Machines
(IBM) PC architecture "Intel i386". Linus Torvalds, a Finnish student of computer
science wrote the initial version of its monolithic kernel as a hobby, and posted
it online in October 1991. Since then, a number of people, collaborating over the
Internet, have contributed to the development of Linux, all under the control of

20

Torvalds. It has evolved rapidly, being widely adapted to most modern systems and
becoming one of the most successful OSs, on par with some famous commercial
others such as Windows and MacOS. One of the keys to the success of Linux
has been the availability of free software packages under the auspices of the Free
Software Foundation (FSF). Its goal is to achieve stable, platform-independent
software that is free, high quality, and embraced by the user community (Stallings,
2014).

The Linux kernel is licensed under FSF’s General Public License (GPL) which

Figure 2.8: Traditional UNIX Kernel (Stallings, 2014)

21

is a license that grants free access to the original software code, as well as the
possibility to change it and redistribute at will. In addition to its use by many
individual programmers, Linux has now made significant penetration into the cor-
porate world. This is not only because of the free software but also because of
the quality of the Linux kernel. Many talented programmers have contributed to
the current version, resulting in a technically impressive product. Moreover, Linux
is highly modular and easily configured. This makes it easy to squeeze optimal
performance from a variety of hardware platforms (Stallings, 2014).

Several OS make use of the Linux kernel, being referred to as Linux distributions.
Although there are not that many desktop Linux users compared to other popular
OSs, it is the preferred OS of choice in supercomputers, servers and most embedded
devices, such as MP3 players, DVD players and HD TVs.

There are a wide range of motivations for choosing Linux over a traditional em-
bedded OS:

• Quality and reliability of the code that comprises the kernel and the
applications that are provided by distributions.

• Availability of code: Linux’s source code and all build tools are available
without any access restrictions.

• Broad hardware support means that Linux supports different types of
hardware platforms and devices. Also, it is expected that the software writen
on one Linux architecture can be easily ported to another architecture Linux
runs on.

• The variety of tools existing for Linux make it very versatile. If one thinks
of an application he needs, chances are others already felt the need for it.
It is also likely that someone took the time to write the tool and make it
available on the Internet.

• Community support is perhaps one of the biggest strengths of Linux. This
is where the spirit of the free software and open source community can be
felt most.

Many of these motivations are shared by those in the desktop, server and enterprise
spaces, while others are more unique to the use of Linux in embedded devices
(Yaghmour et al., 2008).

22

Linux was conceived and built as a general-purpose multiuser operating system in
the model of UNIX. The goals of a multiuser system are generally in conflict with
the goals of real-time operation. General-purpose operating systems are tuned
to maximize average throughput even at the expense of latency, while real-time
operating systems attempt to minimize, and place an upper bound on latency,
sometimes at the expense of average throughput (Stallings, 2014).

There are several reasons why standard Linux is not suitable for real-time use
(Abbott, 2003):

• “Coarse-grained Synchronization” – Kernel system calls are not pre-
emptible: once a process enters the kernel, it can’t be preempted until it’s
ready to exit the kernel. If an event occurs while the kernel is executing,
the process waiting for that event can’t be scheduled until the currently
executing process exits the kernel.

• Paging – The process of swapping pages in and out of virtual memory is,
for all practical purposes, unbounded. There is no way to know how long it
will take to get a page off a disk drive, making a process to be delayed due
to a page fault.

• “Fairness” in Scheduling – Conventional Linux scheduler does its best to
be fair to all processes: the scheduler may give the processor to a low-priority
process that has been waiting a long time even though a higher-priority
process is ready to run.

• Request Reordering – Linux reorders I/O requests from multiple processes
to make more efficient use of hardware. For example, hard disk block reads
from a lower priority process may be given precedence over read requests
from a higher priority process in order to minimize disk head movement or
improve chances of error recovery.

• “Batching” – Linux will batch operations to make more efficient use of
resources. For example, instead of freeing one page at a time when memory
gets tight, Linux will run through the list of pages, clearing out as many as
possible, delaying the execution of all processes.

The consequences of these issues in using Linux or even Windows a PC are known
to us: if we try moving the mouse while executing a compute-intensive task, it
occasionally stops and jumps because the computer or I/O-bound process has the

23

CPU locked up. In a real-time environment this behavior is unacceptable and may
even be catastrophic: by definition this is not real-time (Abbott, 2003).

To help solve some of these limitations, there is a Linux kernel patch for hard
real-time systems, formally known as RT Preempt, that changes several kernel
source files to implement real-time policies on the kernel. However, this patch is
insufficient for some scenarios, and other techniques should be used to meet hard
to meet deadlines, like user space memory mapping to inhibit boundary cross-
ing memory copying latencies, using DMA peripherals or accelerate applications
through programmable hardware (Naia, 2015).

Appendix A.1.2 presents the steps that should be taken in order to apply the RT
Preempt patch and compile the kernel.

2.2.4 Real-time Operating Systems

As seen in the last section related to Linux OS, most general purpose scheduling
algorithms are not greatly suited for real-time scenarios as task’s deadlines are not
taken into account and there is uncertainty on when a context switch is going to
occur.

For all of the above reasons, real-time embedded systems often deploy Real-Time
Operating System (RTOS). These OSs are operating systems that are specifically
designed for real-time application purposes, and its scheduler is designed to provide
a predictable (normally described as deterministic) execution pattern usually under
a system of priorities, with high priority tasks guaranteed to run under a certain
amount of time.

The most common designs for RTOSs are using preemptive schedulers, where tasks
only switch when an event of higher priority needs to be served, also called event-
driven; or using round robin schedulers, where tasks switch on a regular clocked
interrupt, also called time-sharing. Time-sharing designs switch tasks more often
than strictly needed, but give smoother multitasking, giving the illusion that a
process or user has sole use of a machine.

The following RTOSs are among the top 10 operating systems used in the embed-
ded systems market: Wind River VxWorks, Real-Time Executive for Multipro-
cessor Systems (RTEMS), Windows Embedded CE, MontaVista Embedded
Linux and FreeRTOS.

24

2.2.5 Buildroot

"Buildroot is a simple, efficient and easy-to-use tool to generate embedded Linux
systems through cross-compilation" (Free Electrons, 2016). It is an open-source
project, currently developed by Free Electrons, consisting of several makefiles and
patches to allow building for multiple target platforms on a single Linux-based
development system.

This tool automatically downloads, extracts and builds packages, beeing able to
build the required cross-compilation toolchain, create a root file system, compile
a Linux kernel image and generate a boot loader for the targeted embedded sys-
tem, or it can perform any independent combination of these steps. For example,
an already installed cross-compilation toolchain can be used independently, while
Buildroot only creates the root file system.

It is easily configurable through a set of graphical interfaces being triggered as
makefile rules, which allow target package selection, as well kernel fine-tuning,
overall enabling an easy configuration of the provided services.

Buildroot is primarily intended to be used with small or embedded systems based
on various computer architectures and Instruction Set Architectures (ISAs) in-
cluding x86, ARM, MIPS and PowerPC. Buildroot also comes with default config-
urations for several off-the-shelf available embedded boards, such as Cubieboard
and the well-known Raspberry Pi.

Figure 2.9 presents menuconfig, one of the possible graphical interfaces for config-
uration.

Figure 2.9: Buildroot make menuconfig prompt

25

Being actively maintained and frequently updated as well as thoroughly docu-
mented, it is a very popular tool with some notorious adopters such as Google,
Atmel and Analog Devices. Recent hobbyist trends in development boards such
as Raspberry Pi or BeagleBone Black have prompted Buildroot popularity also,
due to the offered simplicity in getting Linux to run on these boards. Appendix
A.1 contains some information on how to use Buildroot, namely downloading and
installing it along with compiling a Linux system with real-time kernel patching
(Naia, 2015).

2.3 Hardware Acceleration

Some real-time controllers require tight deadlines, proving to be very difficult sce-
narios where the software resources are not enough to meet the overall system
constraints.

As mentioned in subsection 2.2.4, the use of an OS introduces unpredictability
and overhead to the computing systems. Sometimes these systems have hard real-
time constraints to a point where even enforcing real-time scheduling policies and
zero-copy boundary crossing techniques isn’t acceptable. In these scenarios, it is a
modern practice to incorporate hardware acceleration, making use of the hardware
true parallel nature and offload critical application kernels to the custom hardware
co-processors, thus freeing up CPU resources (Naia, 2015).

Most of these hardware accelerators are not stand-alone platforms, but are co-
processors to a CPU. In other words, a CPU is needed for initial processing, before
the compute intensive task is off-loaded to the hardware accelerators (Khatri and
Gulati, 2010).

2.3.1 Hardware Description Languages

Hardware Description Languages (HDLs) are programming languages used to
describe the structure and behavior of electronic circuits, most commonly digital
logic circuits. HDLs can be either vendor designed languages or general languages
that are independent of the vendor.

A hardware description language enables a precise and formal description of an
electronic circuit that allows for an automated analysis and simulation of such

26

circuit. It also allows the synthesis for physical deployment.

There are several abstraction levels for these designs, from high-level architectural
models to low-level switch models. These levels, from least amount of detail to
most amount of detail, are as follows (Maxfield, 2009):

• Behavioral models

– Algorithmic

– Architectural

• Structural models

– RTL

– Gate level

– Switch level

Behavioral models consist of code that represents the behavior of the hardware
while abstracting its actual register-level implementation. Behavioral models don’t
include timing numbers, buses don’t need to be broken down into their individual
signals.

Structural models consist of code that represents specific pieces of hardware. RTL
specifies the logic on a register level. In other words, the simplest RTL code
specifies register logic. Actual gates are avoided, although RTL code may use
Boolean functions that can be implemented in gates. This level is the level at
which most digital design is done.

The advantage of HDLs is that they enable all of these different levels of modeling
within the same language. Simulating the design at a behavioral level is easy,
and then various behavioral code modules can be substituted with structural code
modules. For system simulation, this allows analyzing the entire project using the
same set of tools. First, algorithms can be tested and optimized, and then the
behavioral models can be used to partition the hardware into boards, ASIC, and
FPGAs. RTL code may then be developed and substitute in for the behavioral
blocks, one at a time, to easily test the functionality of each block. From that,
the design can be synthesized , creating gate and switch level blocks that can be
again simulated with timing numbers to get actual performance metrics. Finally,
this low-level code can be used to generate netlists for layout and implementation

27

(Maxfield, 2009).

Due to the circuit’s concurrent nature, HDL programming paradigms are radically
different from control-flow programming paradigms used on languages such as
C/C++ (Naia, 2015).

HDL designs are systems that continuously act on a set of inputs and outputs
being composed by a set of modules, each with its own set of inputs and outputs,
that can be thought of as blackbox subsystems interconnected to form the overall
device. Figure 2.10 presents a diagram of an HDL design example, to illustrate
the mentioned hierarchical organization.

Module A Module
D

Module
E

Module C

Top-Level Module

Module F

Figure 2.10: HDL design diagram (Naia, 2015)

Synthesis tools compile the HDL code, and generate the physical implementation of
the design based on parsed code. However, before the design is properly deployed,
it should be validated through the use of HDL simulation tools. The designed
devices requires input stimuli and produce outputs accordingly, so in order to
simulate the design, testbenches are generally used. A testbench is HDL code
that receives a documented and repeatable set of stimuli that is portable across
different simulators. A testbench can be as simple as a file with clock and input
data or a more complicated file that includes error checking, file input and output
and conditional testing. The devices to be tested are usually called Device Under
Tests (DUTs) or Unit Under Tests (UUTs), and must also be included in the
testbench, which is usually the top-level module.

28

Under this concept, non-synthesizable constructs are separated from synthesizable
construct, mimicking a traditional electronic testbench with signal generation to
provide stimuli for the devices under test, subsequently monitor their behavior.
Figure 2.11 presents a possible block diagram of an HDL testbench.

Stimuli Generator

DUT / UUTTestbench
(Top-Level Module)

Control Unit

Memory Block

Sub-ModuleOutput Waveforms

Figure 2.11: HDL testbench diagram

The main HDLs in existence today are Verilog and VHDL. Both are open stan-
dards, maintained by standards groups of the Institute of Electrical and Electronic
Engineers (IEEE). Although some engineers prefer one language over the other,
the differences are minor. As these standard languages progress with new versions,
the differences become even fewer. These system level design languages are still
evolving.

VHDL’s syntax is rich and strongly typed, deterministic and more verbose than
Verilog. As a result, designs written in VHDL are generally extensive, and thus
considered self-documenting. VHDL emphasizes unambiguous semantics making it
well suited for implementing designs under system level abstractions (Naia, 2015).

Verilog’s syntax is very C-like, which is a common language used by engineers in
the field, thus providing a good entry level learn-curve. It is weakly typed and
doesn’t emphasize semantics as rigidly as VHDL, which may cause design problems
that are only later found when being used by inexperienced developers. On the
upside, it is best suited for lower level abstractions and structural implementations
for the same reasons (Naia, 2015).

VHDL is more commonly used in academic contexts and the scientific community,
while corporations usually employ Verilog. There are also regional preferences,
with Europe showing a predominant use of VHDL and Verilog being more adopted

29

in America. These languages are not mutually exclusive, with most modern syn-
thesis and simulation tools allowing for designs that mix VHDL and Verilog.

Hardware Verification Languages

For many years, the behavioral coding features of languages such as Verilog, plus
a few extras such as display statements and file I/O, gave Verilog-based hardware
design engineers all they needed to both model hardware and to define a test bench
to verify the model (Sutherland, 2003).

As design sizes increase, the amount of verification required escalates dramatically.
Writing test benches and verification routines using pure HDLs is still possible, but
the amount of coding far exceeds what can be accomplished in a reasonable amount
of time. Due to this, proprietary Hardware Verification Languages (HVLs) such
as OpenVera were developed, specialized in giving verification engineers powerful
constructs to describe stimulus and verify functionality in a much more concise
manner.

These HVLs typically include features of high-level programming languages such
as C++ or Java, along with easy bit-level manipulation similar to those found in
HDLs. Many of them may also provide random stimulus generation and other
tools to aid complex hardware verification.

Hardware Verification and Design Languages

The proprietary HVLs above-mentioned solve a need, but at the costs of requiring
engineers to learn and work with multiple languages, and often at the expense
of simulation performance. Having different languages for the hardware modeling
and the hardware verification has also become a barrier between those engineers
doing the design work and those doing the verification, as they "don’t speak the
same language" (Sutherland, 2003).

When combining an HDL with an HVL, attempting to merge both design and
validation constructs into a single standard, the result is what’s called an Hardware
Description and Verification Language (HDVL).

The first HDVL was SystemVerilog, which was initially only an extensive set
of enhancements to the Verilog-2001 standard. In fact, since 2009, when IEEE

30

merged the Verilog-2005 standard with the SystemVerilog extensions, the Verilog
name is gone, and was substituted with SystemVerilog. The new IEEE stan-
dard, SystemVerilog-2009, is a complete hardware design and verification language
(Sutherland and Mills, 2013), and there is no longer a current Verilog standard.

These enhancements provide powerful new capabilities for modeling hardware at
the RTL and system level, along with a rich set of new features for verifying model
functionality (Sutherland, 2003). Besides this, SystemVerilog allows convenient
interface to foreign languages (currently only C/C++), via SystemVerilog DPI.

Many companies are including support for HVLs and/or HDVLs in their simulation
and design tools, such as SystemVerilog or SystemC. SystemVerilog is widely used
in the chip-design industry, as the three largest Electronic Design Automation
(EDA) vendors (Cadence, Mentor Graphics and Synopsys) have incorporated it
into their mixed-language HDL Simulators.

2.3.2 FPGA

FPGAs, briefly mentioned in subsection 2.1.2, are integrated circuits containing re-
programmable hardware. The current FPGA market leaders and long-time indus-
try rivals are Xilinx and Altera, controlling over 80 percent of the market. There
are a few other manufacturers, such as Lattice Semiconductor and Microsemi. The
FPGA technology’s uniqueness and bigger advantage derives from the fact that
unlike other processor technologies, the hardware fabric may be reprogrammed,
conceding them a huge flexibility. This allows the implementation of devices that
are usually implemented in chips using ASIC technology, like microprocessors or
other chips hardwired in silicon.

FPGAs contain an array of programmable logic blocks, organized in an array
with reconfigurable interconnections amongst them that may be activated or not,
implementing simple logic circuits, such as AND and XOR gates, or more complex
circuits. These logic blocks are basically composed of two elements: flip-flops and
LookUp Tables (LUTs).

Figure 2.12 presents a diagram the internal architecture of an FPGA.

LUTs implement the behavior of digital gates, by containing a table of gate out-
puts that are to be used according to gate inputs. By combining digital gates
implemented in LUT and flip-flops, any kind of combinatorial or sequential circuit

31

Figure 2.12: FPGA internal architecture (Maxfield, 2009)

may be implemented (Naia, 2015). Figure 2.13 presents a diagram a simplified
view of a 2-input LUT implementing an AND gate.

Figure 2.13: FPGA LookUp Table (Huffmire et al., 2010)

LUTs can be very efficient in terms of resource utilization and input-to-output
delays, in a design where there is a large number of logic gates between the inputs

32

and the outputs. However, there are downsides to this approach: in case the design
to implement is only composed of a 2-input AND gate, for example, an entire LUT
will be used for it. In addition to being wasteful in terms of resources, the resulting
delays are high for such a simple function.

In addition to its primary role as a LUT, some vendors allow the cells forming the
LUT to be used as a small block of RAM (the 16 cells forming a 4-input LUT, for
example, could be cast in the role of a 16 x 1 RAM). Some vendors even allow
the Static Random-Access Memory (SRAM) cells forming a LUT to be used in
the form of a shift register (Maxfield, 2009). Thus, each LUT may be considered
to be multifaceted, as can be seen in 2.14.

Figure 2.14: View of a multifaceted LookUp Table (Maxfield, 2009)

Logic Blocks - CLBs, LABs & Slices

Most modern FPGA introduce larger elements in the interconnected array, with
vendors often adopting their own nomenclature for these elements.

The main blocks in Xilinx’s FPGAs are called Logic Cells (LCs). Along with other
elements, like special fast carry logic for arithmetic operations, an LC contains a
4-input LUT, a multiplexer and a register. This can be seen in Figure 2.15, which
is a simplification, but suitable for the purpose.

33

Figure 2.15: Simplified view of a Xilinx LC (Maxfield, 2009)

The equivalent building blocks in Altera’s FPGAs are called Logic Elementss
(LEs). The overall concepts are very similar for the long-time industry rivals’ core
building blocks, but still there are differences.

Now focusing on Xilinx’s FPGA architecture exclusively, the next step up the
hierarchy is called a slice. Depending on the FPGA family being considered, a
slice can contain different numbers of Logic Cells, but usually, slices are composed
of two logic cells, as can be seen in Figure 2.16.

Moving one more level up the hierarchy, we come to what Xilinx calls Configurable
Logic Blocks (CLBs) and Altera refers to as Logic Array Blocks (LABs). These
larger blocks contain LUTs, flip-flops and multiplexers in a single block, allowing
for faster designs with better resource utilization.

Using Xilinx’s CLBs as an example, 7 series Xilinx FPGAs slices contains four
LUTs and eight flip-flops, only some slices can use their LUTs as distributed
RAMs or Shift Registers, and two slices form a CLB (Xilinx, 2015). In other
FPGA families, each CLB may have four slices, as shown in Figure 2.17: each
CLB contains four slices, and each slice contains two LCs.

As mentioned above, implementing all circuits using only LUT-based logic blocks
may be rather inefficient and costly when compared to their silicon hardwired

34

Figure 2.16: A Slice with two Logic Cells (Maxfield, 2009)

Figure 2.17: A Configurable Logic Block containing four slices (Maxfield, 2009)

35

counterparts, being slower, occupying large silicon areas and consequently dissi-
pating more power. For this reason modern FPGA chips include hardwired el-
ements that implement commonly used functions such as multipliers, memories
and generic DSP blocks. FPGA commonly store their configuration in volatile
memories, needing to be programmed when turned on. The configuration file of
an FPGA chip is called the bitstream. Most modern FPGA development boards
include non-volatile memory chips to store bitstreams, along with circuitry that
may program the FPGA chip upon power-on (Naia, 2015).

FPGA SoC

Traditionally, FPGAs were used to design and prototype chips that would be
later implemented on ASIC fabric. As mentioned in subsection 2.1.2, ASICs have
extremely high development and manufacturing costs, which makes any mistake
very costly. Still, implementing product designs on FPGA chips is not a viable
option, due to significantly higher power dissipation and latency when compared
to hardwired silicon chip designs. Therefore, the chosen flow was to use FPGA as
prototyping platforms, and then implement the designs in ASIC chips.

However, in cases where only a small amount of ASIC-based chips is to be built,
the chip’s mask costs may be unbearable, and with recent advances in FPGA
technology, they are now an available option for final product implementations, as
is already happening in some modern HD TV models. Using FPGA chips for final
products has some other advantages, like allowing hardware architecture updates
and reconfigurations, adding further flexibility to designs and eventual hardware
bug fixes. Typically, when FPGAs were employed this way, softcore processors
were used. Softcore processors are general purpose microprocessors implemented
in FPGA fabric, often being implemented along with other peripherals constituting
SoC architectures (Naia, 2015).

When the FPGA fabric is being used for hardware acceleration purposes, offload-
ing critical algorithms to dedicated hardware co-processors executing in parallel
with the CPU. In these kind of designs, the CPU has better performance if it is
hardwired in silicon. Due to this, modern FPGA devices integrate both CPU and
FPGA fabrics into a single device, along with other commonly used SoC periph-
erals, providing higher integration, lower power, smaller board size, and higher
bandwidth communication between the CPU and the FPGA. They also include a
rich set of peripherals, on-chip memory and high speed transceivers (Altera, 2014).

36

This kind of systems are refered to as Hybrid Systems.

For designs that already use an FPGA and a separate CPU, an FPGA SoC should
definitely be considered. It is likely to provide comparable, even superior func-
tionality and performance, but at a lower board space, power, and system costs.
This kind of architecture is demonstrated in Figure 2.18.

Figure 2.18: Standalone CPU and FPGA integrated into single FPGA SoC (Altera,
2014)

In case both CPU and FPGA use separate external memories, it may also be
possible to consolidate both into one memory device for further savings, as shown
in the above figure. As the signals between the CPU and the FPGA now reside
on the same silicon area, communication between the two consumes substantially
less power compared to using separate chips. The integration of thousands of
internal connections between the CPU and the FPGA leads to substantially higher
bandwidth and lower latency compared to a two-chip solution (Altera, 2014).

Figure 2.19 presents the architecture of the latest Xilinx SoC architecture, the
Zynq R© UltraScale+TM MPSoC. This heterogeneous processing platform contains
a scalable 32 or 64-bit, dual or quad-core ARM R© CortexTM-A53 CPU, a dual-core
ARM R© R© CortexTM-R5 Real-time Proccessing Unit (RPU), an ARM Graphics
Proccessing Unit (GPU) core and other elements such as Double Data Rate
(DDR) controllers, DMAs and many other peripherals hardwired in silicon, as
well as a programmable logic silicon area, all integrated into a single chip (Hansen,
2016).

37

Figure 2.19: Zynq R© UltraScale+TM MPSoC Block Diagram (Hansen, 2016)

2.4 Hardware-Software Co-Design

Hardware-Software Co-Design tries to exploit the synergy of hardware and soft-
ware with the goal of optimizing and/or satisfying design constraints such as cost,
performance and power of the final product, along with reducing the time-to-
market frame considerably. As seen in the previous sections, embedded systems
may depended on co-design, making use of software for flexibility and specialized
hardware for performance increase. When referring to real-time embedded sys-
tems, using Hybrid Systems brings even more advantages, because the real-time
requirements of the system may be more easily achieved.

2.4.1 Hardware-Software Co-Design Flow

When designing hardware accelerated embedded software systems, some patterns
should be followed. The first step should be to develop a software application
representing the behavior of the system being designed, disregarding any metrics,
because in this phase only the algorithms debugging is crucial. The developed
application may be deployed in the host platform initially, only later being cross-

38

compiled for the target platform. After this phase, the applications’ core processing
tasks are to be identified and later parallelized, using multi-threaded programming
models.

Next, profiling tools should be used to characterize the application, so that the
most "processor intensive" tasks within the application are identified. This way,
some of them can be selected as candidates to be offloaded into hardware FPGA
fabric. After identifying the tasks to be converted into HW Intellectual Propertys
(IPs), HDLs should be used to develop RTL models that describe the behavior of
those selected tasks.

At this point, the system should be cross-compiled to the target architecture,
in order to validate the design. At this validation phase, the system should be
implemented, in order to ensure that the system metrics are met. This validation
is an iterative process, so if the desired metrics are not met, the development may
return to the hardware IP development phase, or even the profiling phase. Each
one of these steps will be addressed with more detail next.

System Modeling

As above-mentioned, the first step is to model the behavior of the system using a
more flexible software programming language, like C or C++, the most used for
embedded software. By doing this, the code is more generic and portable, and
also allows for debugging on the host machine and cross-compiling for the target
architecture. In this phase, the whole system may be tested on the host platform,
because only the system’s behavior is under test, to validate the algorithms. This
allows abstracting the application away from the target platform implementation
details, in the early phases of the design.

Software Parallelization

Initially, the system tasks must be identified, dividing the system into smaller
parts. Then, software parallelization will be used, by means of multi-thread pro-
gramming models such as the Portable Operating System Interface (POSIX)
Application Program Interface (API), widely used in Unix-based systems. In
this step, the multiple task algorithms are assigned to different threads. Since
threads usually share data, synchronization mechanisms are mandatory to avoid

39

race conditions, and are usually provided by the multi-threading API. This tech-
nique is not a true nature parallelization, as only one thread is executing at one
CPU core in a certain time, hence being a virtual parallelization.

Profiling

Next in the design flow, the application must be analyzed, so that the different
tasks are characterized. This step is called the profiling, and is performed using
different software profiling tools. Since the differences between the host and tar-
get platform are not relevant enough to justify profiling in the target platform,
profiling the host application is acceptable. However, if the system has real-time
constraints, it is highly recommended that the OS in the host platform runs a real-
time scheduler, so that the application being profiled can enforce a deterministic
behavior. The profiling tools should be used several times, in order to gather more
reliable data from the application. These data allow the developer to identify the
critical tasks of the system, along with its bottlenecks.

Hardware Design

The critical tasks identified in the last step are candidates to be offloaded into
HW IPs. Hardware IPs are developed with the aid of HDL languages, like the
ones described in subsection 2.3.1, namely Verilog or VHDL. The development is
done on a Register Transfer Level (RTL), and is then validated through debug on
RTL simulation tools, like Vivado Simulator (Xsim) from Xilinx, Modelsim from
Mentor Graphics or even Quartus II Simulator (Qsim) from Altera.

After using these simulators to validate the design of the IP, synthesis tools will be
used to synthesize it. Routing tools must also be used in order to map the floorplan,
so the design can be implemented in an ASIC or FPGA. These tools are usually
part of a toolchain, available in Integrated Development Environments (IDEs),
such as Xilinxs’ Vivado Design Suite or Alteras’ Quartus Prime Design Software.

The development process of this kind of accelerators may be long and complex,
and very time consuming even with the current available tools, specially in this
approach, as validation must be performed at the target platform. Besides, FPGA
coding paradigms are inherently different from software programming paradigms
(Naia, 2015).

40

Using High Level Synthesis (HLS) tools, the hardware and software domains are
brought together. High-level synthesis is a design process that interprets an al-
gorithmic description of a desired behavior and creates digital hardware that im-
plements such behavior. Using HLS tools, the algorithms may be developed and
verified in software languages like C/C++/SystemC. The code is then analyzed,
architecturally constrained and scheduled to create a RTL design, which may then
be synthesized. This kind of translation may be less efficient than developing the
HW IPs in HDL, but presents undoubted advantages, being more and more used
in the industry.

There are some HLS tools on the market, like Vivado High-Level Synthesis (Vi-
vado HLS) from Xilinx, which allows C/C++/SystemC as inputs, and as outputs
VHDL/Verilog/SystemC (Xilinx, 2016a). Altera recently announced their new
Spectra-QTM engine, which supports their new A++ compiler for high-level syn-
thesis, allowing the use of C/C++ algorithms to create VHDL/Verilog IP cores,
significantly boosting productivity through faster simulation and IP generation
(Altera, 2015).

Validation

In this phase the developed system must be validated integrally. Using an inte-
grated co-simulation environment, the development process can be accelerated in
a substantial way, anticipating design decisions before committing to the hardware
platform and allowing for full-system testing and debugging along with its devel-
opment. This way, the target platform deployment is done only when full-system
integration and validation is concluded.

Implementation / Metrics Verification

In this last phase, the system must be implemented in the target platform, so
its functionality can be tested, and the design metrics can be verified. Tools like
Xilinx’s ChipScope Pro Analyzer, that create a silicon wrapper in the developed
system, it is possible to analyze the temporal signals of the physical system, in
order to confirm that the temporal requirements are met.

The concept of an integrated co-simulation environment may be expanded, allow-
ing a multitude of metrics to be validated after qualitative validation. Performing

41

a quantitative validation after the qualitative validation greatly expands the tool’s
utility (Naia, 2015).

42

Chapter 3

Co-Simulation Models,
Mechanisms and Tools Overview

This chapter presents an overview on hybrid embedded systems simulation, along
with some commonly used models and mechanisms to perform mixed-level simula-
tion on such systems. Some simulation tools along with their interfaces that allow
for co-simulation are also described.

The Verilog and SystemVerilog simulation interfaces along with PSIM R© and its’
DLL blocks interface are deeply analyzed since they target the most important
domains in the developed work. Finally, the FMI is an important standard for
co-simulation and model interchange widely adopted by the industry, and as an
important reference for this project’s system design, it is also covered.

3.1 Hybrid Embedded Systems Simulation

As mentioned in the last section, simulating an embedded system allows engineers
to test designs and simulate the systems, being almost indispensable in the de-
velopment process. When talking about Hybrid Embedded Systems, comprising
hardware acceleration, development is usually done on multiple application do-
mains, with system complexity often standing in the way of accurate simulations.

These domains usually include specialized hardware, the embedded system soft-
ware used to control hardware, process and retransmit data, and software running
on that embedded computing system. Testing all parts of the system separately

43

is usually difficult, or even impossible, because these systems are usually complex,
making the development process a very expensive and time consuming task.

In classical development cycle we have to design the hardware prototype, basing on
some assumptions regarding possible software solution. The work on software part
may be started when the hardware specifications are ready, but thorough testing
of the interactions between the hardware and software parts must be delayed, until
the hardware prototype is ready. If the results of tests show the need for significant
changes in hardware design, it is necessary to prepare next prototype and subject
it to tests. Sometimes the above step must be repeated a few times, depending on
the design complexity and the skills of the development team (Zabołotny, 2012).

As seen, both software and hardware simulators are required in such an co-simulation
environment:

• Software simulators like QEMU can emulate the target platform and provide
instruction-accurate simulation of the software running on it. The machine’s
hardware is emulated functionally, and the instruction set for the target
machine is emulated, allowing for full software stack simulation for the target
platform. With this kind of simulation, user application software may be
validated, as well as OS components themselves (Naia, 2015).

• Hardware RTL simulators, as already mentioned in section 2.4.1, namely
Vivado Simulator (Xsim) from Xilinx and Modelsim from Mentor Graphics,
simulate the behavior of hardware specified by HDL sources.

Approaches based on co-simulation of software and hardware components of the
designed system are needed to solve the presented problems in hardware-software
co-design flow, and some solutions will now be presented.

3.1.1 Full System RTL Simulation

The simples approach would be to use an hardware simulator and perform RTL
simulation for the whole system. Figure 3.1 presents a diagram of full-system RTL
simulation on a development host.

Although it is possible, the performance of such simulation is usually very poor,
except when the system is centered around systems containing FPGA chips con-
nected to simple microcontrollers. Since RTL simulation analyzes the state of all

44

fi

Figure 3.1: Full system RTL simulation diagram (Zabołotny, 2012)

logic gates and registers in every integration step, it is highly ineffective when
simulating systems containing bigger embedded computers, running under control
of Operating Systems.

An example of the inadequacy of this simulation for software is that a simulation
of an OpenRisc CPU running a simple C program takes 40 seconds of simulation
time for a simple welcoming message display Balducci (2009). The solution to this
problem is to avoid software simulation in RTL simulators altogether, running
software parts externally of RTL simulation (Zabołotny, 2012).

3.1.2 RTL Simulation with Host Software

In this approach, hardware designs that need validation are simulated in RTL,
while software is ran directly on the host development machine. Figure 3.2 presents
a diagram of an RTL simulation being provided with stimuli from software being
executed on the host development machine.

Hardware Simulator

User de ned
Hardware

described in HDL

Interface emulator

HDL part SW part
User Software

Development machine

Figure 3.2: RTL simulation with host software diagram(Zabołotny, 2012)

The software application must be compiled and ran on the host machine, and de-
vice driver system calls must be replaced with API calls to the RTL simulation

45

tool, emulating system bus transactions. In the HDL design, an interface that em-
ulates software accesses to the design must also be implemented. This approach
presentes advantages when compared to full system RTL simulation, as the hard-
ware simulator only simulates what’s relevant. Also, the embedded application
behavior may be debugged and validated, being an effective validation method for
simple software.

However, more complex software often needs further validation, as OS components
are not validated, like device drivers, performance of data transfers, and so forth.
To emulate these elements of an embedded system, software simulation must be
combined with RTL simulation (Naia, 2015).

3.1.3 RTL-Software Co-Simulation

Using this approach, an software simulator such as QEMU is used together with
an hardware simulator. Figure 3.3 presents a diagram of such co-simulation envi-
ronment.

fi

Figure 3.3: RTL-Software co-simulation diagram(Zabołotny, 2012)

This approach is very useful, as the entire software stack may be properly simu-
lated for the target platform and the HDL models being developed can be properly
simulated using RTL tools. Interfaces may be implemented to allow data trans-
fer between the simulation tools, such as hardware access information to emulate
system bus transactions or simulation time to synchronize simulations. This sim-
ulation approach allows the validation of OS elements, such as the device drivers
for custom hardware designed.

The downside to this approach is that due to different simulation granularity in
both simulations, synchronization may be difficult. If approaches are used which

46

involve synchronization with other simulation tools simulating other domains, such
as physical systems or analog electronics, synchronization may be even impossible,
as the RTL simulator will be always delayed in relation to the software simulator
(Naia, 2015).

3.1.4 Full System Software Simulation

In this approach, the full system is emulated in the software simulator, and hard-
ware is only emulated functionally, as represented in Figure 3.4.

fi

Figure 3.4: Full system software simulation diagram(Zabołotny, 2012)

Here, hardware models are implemented functionally and integrated into the soft-
ware simulation. This can only be done when using open-source simulators, using
the simulator’s internal framework and adding them to the list of supported mod-
els, or for simulators that allow loading external models as plugins. When using
this approach, device driver development and validation may start earlier, before
any commitment to an HDL implementation. This allows for a bigger flexibility
in the design and for concurrent development, given that software design teams
may start device driver development concurrently with hardware design teams.

3.2 QEMU

QEMU, which stands for Quick EMUlator, is an open source emulator and virtu-
alizer who uses dynamic translation to achieve good emulation speeds. When used
as an emulator, QEMU is capable of full-system emulation, emulating functionally

47

system components like interrupt controllers and memories, so QEMU will be used
as an emulator during this work, with its virtualization capabilities being ignored.

It is a very useful tool in the context of embedded system development, enabling
development and debug of a target platform system without a physical target
machine. The entire software stack may be developed entirely in QEMU, and
then deployed to the target machine once validated and debugged (Naia, 2015).

When QEMU was first developed by Fabrice Bellard, it was a major breakthrough
due to its dynamic binary translation algorithms. It was widely adopted as an emu-
lator by companies for development purposes, although each company maintained
their internal private versions of QEMU, implementing modifications as suited
and implementing support for their machines and platforms. Nowadays, QEMU
continues to be very popular, as it is part of the Android Software Development
Kit (SDK) and Xilinx’s PetaLinux solution as an emulator. Popular virtualization
products such as VirtualBox or Xen-HVM also draw heavy inspiration on QEMU
(Naia, 2015).

Since QEMU is open source, as already mentioned, many extensions may be devel-
oped to increase its’ features. These extensions are crucial in order to use QEMU
in a co-simulation context, enabling hardware devices to be modeled externally in
other simulation tools. The need for these extensions led to the development of two
extensions in the previous work developed by Naia (2015): firstly, the QEMU Plu-
gin Extension, that allows QEMU to load behavioral hardware models as dynamic
libraries, which is useful for device driver development during a design space explo-
ration phase, earlier in the project. An External Model Extension for QEMU was
also developed, opening up the possibility to use connect QEMU with RTL simu-
lators and/or domain specific simulators, such as PSIM for the power electronics
domain. This extension, along with the fact that QEMU emulates the machine’s
hardware functionally, makes possible the creation of an integrated co-simulation
environment.

3.2.1 QEMU Plugin Extension

This extension, developed by Naia (2015), intends to allow developers to speed-
up device driver development, by abstracting some of the intricacies of QEMU’s
internal API, thus making it easier to extend QEMU with a hardware device ex
nihilo via a simplified API, and secondly by reducing compilation effort by allowing

48

the use of plugins containing device models.

This is specially useful when the project is in an early stage and hardware IPs are
being designed, enabling the designer to try out behavioral hardware models and
their respective device drivers (Naia, 2015).

Figure 3.5 presents an overview of a hardware accelerated embedded Linux case
of study running on a QEMU emulation that makes use of the extended plugin
capabilities.

Other
Emulated
Devices

uClibC

SW Thread

Linux Kernel

QEMU System bus

Emulated
 CPU

HW Delegate Thread HW Delegate Thread

QEMUopen source processor emulator

Emulated
HW IP

.so plugin

Emulated
HW IP

.so plugin

Figure 3.5: Plugin extension overview (Naia, 2015)

Hardware accelerators are accessed whenever device drivers perform hardware
transactions, and are modeled in the emulated machine through device mod-
els contained in .so files. For each shared object that contains a plugin device
model, there is a corresponding plugin interface device object that is instantiated
in QEMU (Naia, 2015)

Plugin interface devices are instantiated per existing plugin device. They are
instantiated according to information loaded from the plugin device, such as its’
base address and hardware transaction behavior. The plugin interface device is
mapped in the emulated machine address space upon instantiation using memory
region information that is loaded from the corresponding plugin device.

Hardware transaction functions are also registered upon plugin interface device

49

instantiation, and are executed whenever a plugin interface hardware transaction
function gets called (Naia, 2015).

3.2.2 QEMU External Model Extension

This extension, developed by Naia (2015), intends to allow QEMU to be used in
a co-simulation context, enabling hardware devices to be modeled externally in
other simulation tools. This is useful in several application domains, namely in
hardware acceleration.

Figure 3.6 presents an overview of a hardware accelerated embedded Linux system
running on QEMU, along with its extended co-simulation capabilities. QEMU
translates and runs the whole software stack, including the Linux kernel, the
C-library and the embedded application that’s running on top of the operating
system.

A hardware accelerated embedded application is usually composed by a collection
of threads, including hardware delegate threads, who delegate processing algo-
rithms to hardware accelerators by interacting with them via device driver system
calls. This extension enables hardware accelerators to be modeled externally, by
incorporating models contained in other simulation tools into the QEMU emula-
tion (Naia, 2015).

Proxy

Tool-Specific Interface

 QEMU External Tool
Library

uClibC

SW Thread

Linux Kernel

HW Delegate
Thread SW Thread

Emulated Hardware Proxy

External Tool
Simulation Models

Figure 3.6: QEMU External Model Extension overview

50

To make QEMU use these features, an ’-ext-tools’ argument must be provided
on the QEMU launch command. The following is a template of a QEMU launch
command with external tools co-simulation active (Naia, 2015):

$ qemu -system -[arch] [flags] -ext -tools [number of tools
],[server port(optional)]

At start-up, a server is started to synchronize with external tools. This server is
temporary and blocks QEMU until the requested number of external tools establish
the connection. Each tool must provide information, such as its name, domain or
number of models. Information on every model must also be provided, like its
name, base address, block size or Interrupt ReQuests (IRQs) (Naia, 2015).

When hardware transactions occur, their information will be issued to the respec-
tive external tool and then, usually through tool-specific interface frameworks or
libraries, to the respective external model.

3.3 (System)Verilog Simulation Interfaces

Most FPGA design flows are heavily conditioned by the vendors’ IDEs and imposed
workflows. Using use open-source tools is only possible to a certain extent, so it is
relevant to adopt standard HDL interfacing mechanisms when implementing HDL
simulation interfaces, as not only to be independent of simulation tools, but also
to be able to use commercial simulation tools that are supported by the the main
vendors HDLs (Naia, 2015).

In the next subsections, Verilog simulation interfaces will be presented, as it is the
HDL of choice in this dissertation, along with SystemVerilogs’ simulation interfaces
with foreign languages, which can be used to perform co-simulation involving hard-
ware accelerators.

3.3.1 Verilog Programming Language Interface

Due to Verilog being a weakly typed language and not having many constructs
that support validation, system verification is not so easy to do, unlike for in-
stance VHDL. One of the major strengths of Verilog HDL is its’ PLI, which allows

51

users and Verilog application developers to infinitely extend the capabilities of the
Verilog language and simulations (Naia, 2015).

Verilogs’ PLI has had several upgrades: the "old" standard, known as PLI 1.0, was
released in 1990 and uses the Task/Function (TF) and ACCess (ACC) routines;
the new standard, known as PLI 2.0 , was released in 1993 and makes use of the
Verilog Procedural Interface (VPI) routines. It is important to note that the
VPI functions provide a nearly 100% duplication of the functionality of the TF
and ACC functions. This redundancy is necessary in order to provide full PLI
capability in the new PLI standard, and yet remain fully backward compatible
with the old standard (Sutherland, 1998).

PLI Overview

A PLI application is a user-defined C language application which can be executed
by a Verilog simulator (Sutherland, 2002). The PLI application can interact with
the simulation in numerous ways, either by reading or modifying simulation logic
values or performing certain actions in a specific simulation moment (Naia, 2015).

The interaction with the simulation is performed via user-defined system tasks/-
functions, who are, in the Verilog language, commands executed by Verilog simu-
lators. Their names must always start with a dollar sign ($) (Sutherland, 2002).

User-defined system tasks/functions are associated with a PLI application. When
a Verilog simulator encounters a system task/function name, it will execute the
PLI application code associated with the name (Sutherland, 2002).

3.3.2 SystemVerilog Direct Programming Interface

As seen in the above subsection, Verilog does not have many constructs for val-
idation, and that problem can be solved using the VPI routines. But as seen in
section 2.3.1, those limitations were most recently suppressed with the coming of
SystemVerilog HDVL.

The PLIs greatest strength is also its greatest weakness, as the learning curve
related to the Verilog PLI is somewhat steep, as it includes understanding the PLI
API and workflow, and knowing how to compile and link a PLI application to a
specific simulator (Spear and Tumbush, 2012).

52

As also seen in section 2.3.1, SystemVerilogs’ DPI allows for simple C/C++ code
invocation without complex system task definitions and other PLI associated im-
plementations (Naia, 2015).

Still, the DPI has some weaknesses when compared to the PLI, as it doesn’t
provide a way to interact with simulation data structures or any other complex
interactions like synchronization with time or value changes.

Even so, SystemVerilog DPI was adopted in this dissertation in order to develop
simulation extensions that support co-simulation approaches with QEMU, as it is
a faster alternative to the PLI when it comes to validating code integration.

DPI Overview

The Direct Programming Interface (DPI) is an easier way brought by SystemVer-
ilog to communicate with C, C++, or any other foreign language. Currently
SystemVerilog only supports an interface to the C language, with C++ code hav-
ing to be wrapped to "look like C". With a little work other languages may also
be used (Spear and Tumbush, 2012).

Once a C routine has been declared or “imported” with the import statement, it
can be called as if it were a standard SystemVerilog routine (task or function), and
C code can also call SystemVerilog routines (Spear and Tumbush, 2012). With
the DPI, the SystemVerilog code is unaware that it is calling C code, and the
C function is unaware that it is being called from SystemVerilog. Also, values
can be directly passed to the C functions and received directly back from them
(Sutherland, 2004).

DPI Import Declaration

The DPI import declaration defines the prototype of the C function name, ar-
guments and function return type. A C function can be imported as either a
SystemVerilog task, or as a SystemVerilog function. A task in SystemVerilog can
input and output arguments, but does not return a value, while functions can
(Sutherland, 2004).

The next example shows the import declaration to allow SystemVerilog code to
call the "sin" funcion in the C math library (Sutherland, 2004). SystemVerilog code

53

can call Unix functions directly by importing them, with no need for a wrapper.

import "DPI" function real sin(real in);

The import statement declares that the SystemVerilog routine sin is implemented
in a foreign language such as C. The modifier DPI specifies that this is a Direct
Programing Interface routine, and the rest of the statement describes the routine
arguments (Spear and Tumbush, 2012).

The next example shows the import declaration to allow SystemVerilog code to
call the user-defined "file_write" function (Sutherland, 2004).

import "DPI" task file_write (string data);

If the name of the imported C function conflicts with a SystemVerilog name, the
function can be imported using a new name. In the following example, the C
function expect is mapped to the SystemVerilog name fexpect, since the name
expect is a reserved keyword in SystemVerilog. The name expect becomes a global
symbol, used to link with the C code, whereas fexpect is a local SystemVerilog
symbol. SystemVerilog does not allow routines overloading (Spear and Tumbush,
2012).

import "DPI -C" task expect = function int fexpect ();

The DPI import declaration can be placed anywhere a native SystemVerilog func-
tion can be defined, like modules, interfaces, program blocks or clocking blocks,
and the imported routine will be local to the declaration space in which it is
declared.

DPI Argument Passing and Return Values

Imported C functions can have any number of formal arguments, including zero.
By default, each formal argument is assumed to be an input into the C function.
The DPI import declaration can override this default by declaring each argument
as an input, output or bidirectional inout argument. In the following example, a
square root function is defined as having two arguments: a double precision input
and an output flag representing an error (Sutherland, 2004).

import "DPI -C" function real sqrt(input real base ,
output bit error);

54

In order to prevent any bugs in the code, any input arguments should be declared
as const in the C code, as the C function should not modify its copy of the argument
value. Declaring the input arguments as const allows the C compiler to warn the
user about any writes to that variable. The example below shows an example of
C code representing the above-mentioned (Spear and Tumbush, 2012).

int factorial (const int i)
{

if(i <= 1) return 1;
else return i* factorial (i - 1);

}

The C function that is imported as a function into SystemVerilog can have any
return value type that is legal in the C language, such as char, int, short, float,
double, void or even a pointer. SystemVerilog extends Verilog by adding a void
data type and a special chandle data type for importing C functions that return a
pointer data type. The C pointer can be saved in a chandle variable, and passed
back to other imported C functions as a function argument (Spear and Tumbush,
2012).

DPI Argument Data Types Restrictions

Each variable that is passed through the DPI has two matching definitions: one
for the SystemVerilog side, and one for the C side. Table 3.1 presents the data
type mapping between SystemVerilog and C (Spear and Tumbush, 2012).

As seen in the table, SystemVerilog vectors of reg, logic and bit data types can be
passed into and out of imported C functions. How these vectors are represented
in C can be complex, and will not be further addressed, as it is explained in the
SystemVerilog standard (IEEE, 2013).

Also, the SystemVerilog Standard (IEEE, 2013) limits imported function return
values to "small values", which include void, byte, shortint, int, longint, real, short-
real, chandle , and string , plus single bit values of type bit and logic . A function
cannot return a vector such as bit [6:0] (Spear and Tumbush, 2012).

It is the users’ responsibility to use compatible types for both languages decla-
rations, as the SystemVerilog simulator cannot compare the types at the import

55

Table 3.1: Data types mapping between SystemVerilog and C

SystemVerilog Data Type C Data Type
byte char

shortint short int
int int (32-bit)

longint long long
real double

shortreal float
chandle void *
string const char *

bit unsigned char
logic/reg unsigned char
bit[N:0] svBitVecVal

reg[N:0], logic[N:0] svLogicVecVal
unsized array[] svOpenArrayHandle

statement and the DPI does not provide a mechanism for the C functions to test
what type of value is on the SystemVerilog side. In the above-mentioned Verilog
PLI, there are mechanisms for the C function to test the data types of system
task/function arguments. But when using DPI, the C function simply reads or
writes to its arguments, unaware that it was actually called from the SystemVerilog
language. If the SystemVerilog prototype does not match the actual C function,
it might read or write erroneous values (Sutherland, 2004).

In order to aid engineers using SystemVerilog DPI meeting these requirements, the
largest EDA vendors are incorporating some features in their design tools and/or
simulators. These tools usually analyze the SystemVerilog code and create a file
with the C headers for any routine that may have imported. This file may be
included in the C code, along with the svdpi.h file (which contains the definitions
for SystemVerilog DPI structures and methods), so the C compiler can warn the
user in case he is not complying with the headers provided by the SystemVerilog
compiler.

As an example, Xilinxs’ Vivado Design Suite ships with an elaborator named xelab.
This HDL "compiler" includes some DPI-related switches that help binding the C
code to SystemVerilog, and amongst them is -dpiheader. When used, this switch
generates a DPI C header file containing C declaration of imported and exported
functions (Xilinx, 2016b).

56

DPI Pure, Context and Generic Imported Methods

The DPI allows classifying C imported functions in order to prevent improper
declarations that can lead to unpredictable simulation behavior or software crashes,
as it does not check for proper declarations.

A call to a C function that was incorrectly declared as pure may return incorrect
or inconsistent results, and can cause unpredictable run-time errors, even crashing
the simulation. Similarly, if a C function accesses the Verilog PLI libraries and is
not declared as a context function, unpredictable simulation results can occur, or
the simulation may crash (Sutherland, 2004).

• Pure functions: the results of the function must depend solely on values
that are passed into the function through formal arguments. The SystemVer-
ilog compiler may optimize calls to a pure function if the result is not needed,
or replace the call with the results from a previous call with the same argu-
ments, improving simulation performance (Spear and Tumbush, 2012).

A pure function cannot use global or static variables, cannot perform any file
I/O operations, cannot access operating system environment variables and
cannot call functions from the Verilog PLI libraries. Only non-void functions
with no output or inout arguments can be specified as pure. Pure functions
cannot be imported as a Verilog task (Sutherland, 2004).

Next is an example of an imported C function declared as pure (Sutherland,
2004).

import "DPI -C" pure function real sin(real in);

• Context functions: context C functions are aware of the SystemVerilog
hierarchy scope in which the function is declared, which is needed when
they must access information relative to that scope. This allows imported
C methods to call functions from the Verilog PLI libraries, allowing DPI
functions to take advantage of PLI features (Sutherland, 2004). On the
other side, overhead is added to the simulation when invoking a context
imported routine as the simulator needs to record the calling context (Spear
and Tumbush, 2012).

Next is an example of a context-dependent imported task (Sutherland, 2004).

import "DPI -C" context task print(input int file_id ,

57

input bit [127:0] data);

• Generic functions: There is no reference in the SystemVerilog Standard
(IEEE, 2013) to this kind of methods, but Sutherland (2004) refers to them
as generic.

In case an imported method needs to acess global storage, it cannot be
declared as pure, as seen above. But if it also does not need to access the
PLI libraries, there is also no need to declare it as context, as it will add
overhead. By default, an imported routine is generic, and can be imported
as either a SystemVerilog function or a SystemVerilog task. The task or
function can have input, output and inout arguments. Functions can have a
return value or be declared as void (Sutherland, 2004).

DPI Export Declaration

In addition to importing functions from C, the DPI allows SystemVerilog tasks
and functions to be exported and subsequently called from C code (or potentially
other foreign languages) (Sutherland, 2004).

Export declarations are similar to DPI import declarations, except that only the
name of the SystemVerilog routine is specified, with the type and arguments of
the routine not being listed as part of the DPI export declaration (Spear and
Tumbush, 2012). Next is an example of one of these declarations.

export "DPI -C" myfunc;

Optionally, a different name can be given to the task or function within the C
language, as seen in the example below (Sutherland, 2004).

export "DPI -C" sv_func = myfunc; // myfunc is now called
"sv_func" within C

Only one DPI export declaration for a task or function is allowed, and the formal
arguments of an exported task or function must adhere to the same data type rules
as with DPI import declarations (Sutherland, 2004).

In SystemVerilog, a task can call other functions or tasks, but a function can only
call other functions. This restriction is also true for exported tasks or functions.
An exported SystemVerilog function can only be called from a C function that has

58

been imported as a context function or context task. An exported SystemVerilog
task can only be called from a C function that is imported as a context task
(Sutherland, 2004).

SystemVerilog tasks can consume simulation time through the use of nonblocking
assignments, event controls, delays, and wait statements. When a C function calls
an exported SystemVerilog task that consumes time, execution of the C function
will halt until the SystemVerilog task completes execution and returns back to the
calling C function.

The ability for C functions to call SystemVerilog tasks and functions is a powerful
capability that is unique to the DPI. There is no equivalent to exporting tasks
and functions in the Verilog PLI standard (Sutherland, 2004).

Connecting DPI to Other Languages

The latest SystemVerilog standard published by the IEEE (2013) only defines the
DPI interface for the C language, although it was designed to be an extensible
interface to support other languages. That standard defines two layers for the
DPI: the SystemVerilog layer and the foreign language layer.

The SystemVerilog layer contains the DPI import and export declarations along
with the rules for calling imported foreign functions from SystemVerilog code. This
layer will look the same regardless of what foreign language is being called.

The foreign language layer is only defined for the C language in the latest DPI stan-
dard for SystemVerilog(IEEE, 2013). Definitions for additional foreign language
layers could be added as part of future versions of the SystemVerilog standard.
Proprietary foreign language layers may also be defined for other languages. Since
the SystemVerilog layer is independent of the foreign language layer, it is transpar-
ent to SystemVerilog as to what foreign language an imported function is defined
in (Sutherland, 2004).

3.4 PSIM R©

In the last two sections QEMU and the SystemVerilog DPI were described, as they
are tools that allow the development of an integrated co-simulation environment,

59

respectively by emulating the target machine’s hardware and allowing mixed-level
simulation with HDL simulators. In a co-simulation environment, other tools
may be used, namely some domain specific simulators. In the case of the power
electronics domain, PSIM R© is a good alternative, as it is a simulation software
specifically designed for power electronics systems.

3.4.1 PSIM R© Overview

The PSIM R© simulation environment includes PSIM R© Schematic and PSIM R© Sim-
ulator along with the waveform processing tool SIMVIEW, that can act as the
co-simulation environment waveform demonstrator (Powersim, 2016).

A circuit in PSIM R© is represented in four blocks: power circuit, control circuit,
sensors and switch controllers (Powersim, 2016). These blocks, along with their
relationships, can be seen in 3.7.

Figure 3.7: PSIM circuit structure (Powersim, 2016)

• The power circuit may be composed of switching devices, RLC branches,
transformers and coupled inductors.

• The control circuit is represented via block diagrams, such as s-domain
and z-domain components, logic components (logic gates and flip flops) and
non-linear components (such as multipliers and dividers).

• Sensors are used to measure power circuit quantities (like current, voltage,
active power, reactive power, etc) and pass them to the control circuit.

• Gating signals are then generated by the control circuit and sent to the
switch controllers in order to control the switching devices present in the

60

the power circuit (Powersim, 2016).

The feature that makes PSIM R© the power systems domain simulator of choice in
this dissertation is its’ Function Blocks, namely its’ external DLL block component,
which allows PSIM R© to interact with other simulators or tools.

These external DLL blocks allow users to write code in C/C++, compile it into a
DLL and then link it with PSIM R©. A DLL block receives values from PSIM R© as
its’ inputs, performs the needed calculation and sends the results back to PSIM R©

(Powersim, 2016).

3.4.2 PSIM R© DLL Blocks

Two types of DLL blocks are provided with PSIM R©:

• Simple DLL Block: fixed number of inputs and outputs, and the DLL file
name is the only parameter that needs to be defined.

• General DLL Block: allows the user to define arbitrary number of input-
s/outputs and additional parameters.

General DLL Blocks Interface

The general DLL block provides more flexibility and capability in interfacing
PSIM R© with custom DLL files. These libraries export four functions to PSIM R©,
being that the simulation engine uses three of them, and the other one is used by
the user interface (Powersim, 2004).

• Simulation Functions

– RUNSIMUSER: This function is the only one in the DLL routine
that is mandatory, and is called by PSIM R© at each time step. The
prototype of this function, along with every variable meaning, is pre-
sented below (Powersim, 2004).

void RUNSIMUSER (
double t, // Time in seconds.
double delt , // Time step in seconds.
double *in , // Array of input values.
double *out , // Array of output values.

61

void ** ptrUserData , // Pointer of the user
-defined data.

int *pnError , // On successful return , set
to 0. On error , set it to 1.

char * szErrorMsg // Error message string.
)

– OPENSIMUSER: This function is optional, and is called only once at
the beginning of the simulation. It receives information from the DLL
routine, and allows memory allocation for its own use. The prototype
of this function, along with every variable meaning, is presented below
(Powersim, 2004).

void OPENSIMUSER (
const char *szId , // String ID of the DLL

block.
const char * szNetlist , // Netlist string

of the DLL block.
void ** ptrUserData , // Pointer to the user

-defined data.
int *pnError , // On successful return , set

pnError to 0. On error , set it to 1.
LPSTR szErrorMsg , // Error message string.
void * pPsimParams // Pointer to a

EXT_FUNC_PSIM_INFO structure .)

– CLOSESIMUSER: This function is optional, and is called only once
at the end of the simulation. Its main purpose is to allow the DLL
to free any memory or resources that it has allocated. The prototype
of this function, along with every variable meaning, is presented below
(Powersim, 2004).

void CLOSESIMUSER (
const char *szId , // String ID of the DLL

block.
void ** ptrUserData // Pointer to the user -

defined data.)

62

• User Interface Function

– REQUESTUSERDATA: This function is optional, and handles the user
interface with PSIM R©. It is called by PSIM R© when the general DLL
block element is created or its properties are modified in the property
box. The prototype of this function, along with every variable meaning,
is presented below (Powersim, 2004).

void REQUESTUSERDATA (
int nRequestReason , // Describes the user

action when the function is called.
int nRequestCode , // Describes the

information being requested.
int nRequestParam ,
void ** ptrUserData , // Pointer to the user

-defined data. Allows the user to manage
memory (allocate and free).

int * pnParam1 ,
int * pnParam2 ,
char * szParam1 ,
char * szParam2)

nRequestParam depends on nRequestCode’s value. Also, pnParams and
szParams are dependent of nRequestReason, nRequestCode and nRe-
questParam values.

3.5 Functional Mock-up Interface

FMI is a tool independent standard to support both model exchange and co-
simulation of dynamic models using a combination of .xml files and C-code (either
compiled in DLL/shared objects or in source code) (MODELISAR and Modelica
Association, 2014).

The development of FMI was initiated and organized by Daimler AG within the
Information Technology for European Advancement 2 (ITEA2) project MOD-
ELISAR. Its’ first version, FMI 1.0, was published in 2010. The primary goal
is to support the exchange of simulation models between suppliers and Original

63

Equipment Manufacturers (OEMs), even if a large variety of different tools are
used (Blochwitz et al., 2011).

As of today, the FMI specification is now managed and developed as a Model-
ica Association Project, according to the Modelica Association Bylaws, and prof-
its with the membership of companies such as BOSCH or Daimler, along with
some research institutes. FMI 1.0 is supported by over 80 tools, with FMI 2.0
already being supported by over 40 tools. A table with all the tools that cur-
rently support the FMI standard can be found online, at the FMI standard site,
on https://www.fmi-standard.org/tools. This standard is used by automotive
and non-automotive organizations throughout Europe, Asia and North America
(MODELISAR and Modelica Association, 2014).

As the MODELISAR project ended in December 2011, the new FMI version,
2.0, began to be developed. This new version, published in 2014, combines the
formerly separated interfaces for Model Exchange (MODELISAR, 2010a) and Co-
Simulation (MODELISAR, 2010b) in one standard. The new specification doc-
ument was clarified, which increases the compatibility of implementations. New
features ease the use and increase the performance especially for larger models
(Blochwitz et al., 2012). FMI 2.0 is not backwards compatible to FMI 1.0 (MOD-
ELISAR and Modelica Association, 2014).

The FMI specifications and source code that accompanies the specification doc-
uments are provided under the Berkeley Software Distribution (BSD) license.
Modifications must be also provided under the BSD license (MODELISAR and
Modelica Association, 2014).

3.5.1 FMI Overview

The FMI defines an interface to be implemented by an executable called Functional
Mock-up Unit (FMU). The FMI functions are used by a simulation environment
in order to create one or more instances of the FMU and to simulate them, typ-
ically together with other models. A FMU may either have its own solvers, as
in FMI for Co-Simulation, or require the simulation environment to perform nu-
merical integration, as in FMI for Model Exchange (MODELISAR and Modelica
Association, 2014).

An FMU is distributed in one zip file, containing:

64

• The FMI Description File, in eXtensible Markup Languague (XML) format.

• The C sources of the FMU, including the needed run-time libraries used
in the model, and/or binaries for one or several target machines, such as
Windows dynamic link libraries (.dll) or Linux shared object libraries (.so).

• Additional FMU data like tables or maps, in specific file formats (MOD-
ELISAR and Modelica Association, 2014).

A schematic view of an FMU can be seen in Figure 3.8.

Figure 3.8: Data flow between the environment and an FMU (MODELISAR and
Modelica Association, 2014).

The FMI 2.0 standard consists of two main parts:

• The FMI for Model Exchange interface defines an interface to the model
of a dynamic system described by equations (differential, algebraic and dis-
crete). The interface is designed to allow the description of large models.
Figure 3.9a represents this scenario (MODELISAR and Modelica Associa-
tion, 2014).

• The FMI for Co-Simulation interface is designed both for the coupling
of simulation tools (simulator coupling, tool coupling) and coupling with
subsystem models (MODELISAR and Modelica Association, 2014). The
intention is to couple two or more models with solvers in a co-simulation
environment. The data exchange between subsystems is restricted to discrete
communication points. In the time between two communication points, the
subsystems are solved independently from each other by their individual
solver. Master algorithms control the data exchange between subsystems and

65

the synchronization of all slave simulation solvers (Blochwitz et al., 2012).
Figure 3.9b represent this scenario.

(a) FMI model exchange diagram (MOD-
ELISAR and Modelica Association, 2014)

(b) FMI co-simulation diagram (MOD-
ELISAR and Modelica Association, 2014)

Figure 3.9: FMI simulation standards

From these two, the most important, regarding this work, is obviously the FMI
for Co-Simulation interface, as it is a industry standard for Co-Simulation en-
vironments.

3.5.2 FMI for Co-Simulation

Co-Simulation is a rather general approach to the simulation of coupled technical
systems and coupled physical phenomena in engineering with focus on in-stationary
(time-dependent) problems (MODELISAR and Modelica Association, 2014). The
FMI for Co-Simulation is designed both for coupling with subsystem models which
have been exported by their simulators together with its solvers as runnable code
(Figure 3.10a) and for coupling of simulation tools (Figures 3.10b) (MODELISAR
and Modelica Association, 2014).

(a) Stand alone co-simulation (MOD-
ELISAR and Modelica Association,
2014)

(b) Tool coupling co-simulation (MODELISAR and
Modelica Association, 2014)

Figure 3.10: FMI for Co-Simulation schemas.

Usually, a tool coupling based co-simulation is implemented on distributed hard-
ware with subsystems being handled by different computers with maybe different
OSs. The data exchange and communication between the subsystems is typi-
cally done via network, using Message Passing Interface (MPI) or Transmission

66

Control Protocol/Internet Protocol (TCP/IP). The definition of this communi-
cation layer is not part of the FMI standard, but co-simulation scenarios of this
kind can stil be implemented using FMI, with the master having to implement the
communication layer, as can be seen in Figure 3.11 (MODELISAR and Modelica
Association, 2014).

Figure 3.11: Distributed tool coupling co-simulation infrastructure (MODELISAR
and Modelica Association, 2014)

In co-simulation stand alone, an FMU contains not only a model, but also solver
code exported by another simulation tool to solve the model during simulation.
Figure 3.12 represents a co-simulation slave FMU, which contains both model and
solver.

Figure 3.12: Data flow at communication points for Co-Simulation Master FMU
(MODELISAR and Modelica Association, 2014)

3.5.3 FMI Library

The Functional Mock-up Interface Library (FMIL) is a software package writ-
ten in C that enables integration of FMUs import in applications. FMIL is an

67

independent open-source implementation of the FMI standard, presented above.
The library provides a C API for interacting with all parts of FMUs, and that
includes unzipping, loading of shared object files contained in FMUs as well as
parsing of XML model metadata files. The user is thereby relieved from managing
the details of FMU interaction, which significantly reduce the time required to
implement FMU import capabilities (Modelon, 2016).

This library is suitable in contexts where FMUs need to be integrated in existing
applications or in custom software projects. Its’ key features include:

• Full support for FMIs Model Exchange and Co-simulation 2.0

• Full support for FMIs Model Exchange and Co-simulation 1.0

• A unified C API encapsulating all parts of the FMU interaction

• Build system based on CMake, enabling generation of native build scripts
(Microsoft Visual C++ on Windows, GNU Compiler Collection (GCC) on
Linux and Mac)

• Extensive API documentation in HyperText Markup Language (HTML)
format (Modelon, 2016)

The FMIL is also the basis for the official FMU Compliance Checker, which is
a free software provided by the Modelica Association, implemented by Modelon
AB to check a given FMU compliance with the FMI standard. The FMU Com-
pliance Checker relies on the FMI Library for loading and interacting with FMUs
(Modelon, 2016).

The FMIL is licensed under the BSD license, and as such the source code is
available for download from the JModelica.org Subversion server, at https://
svn.jmodelica.org/FMILibrary/trunk (Modelon, 2016).

3.6 Previous Work vs. Developed Work

As already mentioned, this project follows Naia (2015) work, and some minor
changes were made to the design flow adopted there. The tools and interfaces
used to co-simulate hybrid embedded systems in that previous work were also
modified, with new domain specific tools being added. In this section, the main
changes in what comes to these topics are presented.

68

3.6.1 Design Flow Changes

As for the first stage of validation, which occurs during system modeling and
consists of validating the software application to the desired system, only the in-
puts and outputs were changed. During this phase, the application is running
directly on the host OS, and will now be connected to PSIM, the power electron-
ics simulation tool. This opens up the possibility to replace the previously used
input/output from text files with data from the simulation. After the system has
been modeled, the software application should undergo parallelization, turning it
into a multi-threaded software application.

When the developed application behaves as desired, the validation advances to
the next stage, with the software application being profiled, in order to find the
threads that should be migrated to hardware. These threads will be replaced with
delegate threads, and C/C++ behavioral models will be used.

After the hardware behavior is validated, the target machine is emulated using
QEMU and the hardware IP’s are simulated using an RTL simulator, e.g. Vivado
Simulator, that will communicate with QEMU. The hardware-accelerated software
application now runs on the QEMU emulated Linux-based target machine, with
the Vivado Simulator simulating the RTL designs of migrated IP’s, and PSIM
performing the same task as in the first stage of validation. Both the Vivado
Simulator and PSIM are coupled together with QEMU using a network interface
developed by Naia (2015).

3.6.2 Verilog PLI vs. SystemVerilog DPI

The adoption of the SystemVerilog DPI as the (System)Verilog simulation interface
over the Verilog PLI, which was the interface used by Naia (2015), opened new
doors when it comes to integrating SystemVerilog code with C code. By using a
simple DPI import declaration, a C function can be made to look as if it were a
native SystemVerilog function: it can be called directly from any place a native
SystemVerilog function can be called, SystemVerilog logic values can be passed
directly to the C function as inputs, and C function returns or output arguments
can be passed directly back to SystemVerilog. The DPI eliminates the Verilog PLI
overhead of creating system task/function names and indirectly passing values in
and out of C functions through complex PLI libraries (Sutherland, 2004).

69

The simple and direct nature of the SystemVerilog DPI makes it ideal for calling
functions from standard C libraries, such as the C math library, or from user-
defined libraries and is the ideal interface to use when the C function is working
with data exchanged directly with SystemVerilog through function arguments and
return values (Sutherland, 2004).

However, the DPI does not provide direct access to the internals of a simulation
data structure, limiting its capabilites in comparison to the Verilog PLI. It is
important to note, though, that many of these limitations of the SystemVerilog
DPI can be overcome by using the DPI and the Verilog PLI together. A DPI
based application, if imported as a content task or context function, can then
call functions from the Verilog PLI libraries. In this way, the user can have the
simplicity of the DPI import mechanism, and still have access to some aspects of
the simulation data structure (Sutherland, 2004).

Still, we cannot consider the DPI as being a replacement for the Verilog PLI,
because the PLI has full access to the internal simulation data structure, whereas
a DPI based application, even when calling functions from the PLI libraries, does
not have access to the full simulation data structure. Also, DPI-based applications
cannot directly synchronize to simulation activity. Due to this fact, the use of the
PLI is required for co-simulation environments that need to synchronize event
scheduling with the Verilog simulator (Sutherland, 2004).

Although, when the time synchronization is not imperative, and there is no need to
access the internal simulation data structures, the DPI is a very good alternative
to the PLI. The DPI is much easier to use, and unlike the PLI isn’t difficult
to learn. Also, when the DPI statements are done correctly, using the pure and
context keywords, the performance of the simulation can be greatly optimized.

As already mentioned, the SystemVerilog DPI is the simulation interface used
throughout in this dissertation, as it is a faster alternative to the PLI when devel-
oping the simulation extensions needed to support the co-simulation approaches
with QEMU.

3.6.3 Modelsim vs Vivado Design Suite

In his work, Naia (2015) used Modelsim by Mentor Graphics, but as already men-
tioned in this document, the chosen RTL simulator was the Vivado Simulator,

70

which is part of the Vivado Design Suite. This software suite developed by Xilinx
enables developers to use a single IDE to synthesize their designs, perform tim-
ing analysis, examine RTL diagrams and simulate design’s reaction to different
stimuli.

This choice was not only based in the extra tools provided by Xilinx that allow for
an easier compilation and integration of DPI applications, but also in the authors’
previous experience with the Vivado Design Suite tools.

As mentioned above, in section 3.3.2, the Vivado Design Suite includes tools to
generate header files based on the SystemVerilog design files, namely xelab, Xilinx’s
elaborator. The generated files can be included in the C Layer of the DPI appli-
cation in order to aid the developer by giving C compilers the ability to warn the
user in case he is not complying with the headers provided by the SystemVerilog
compiler.

The Vivado IDE allows the developer to use a single environment to write, syn-
thesize and simulate the IP’s in order to validate their behavior, and only then use
them as hardware accelerators together with the hardware-accelerated software
application.

Looking forward into possible improvements to this work, the Vivado Design Suite
also contains an high-level synthesis tool, Vivado HLS, that is shipped with a
toolchain that converts C/C++/SystemC code into programmable logic. This
feature can be used to generate the hardware accelerators using the previously val-
idated C/C++ code from the developed software-only application, being a faster
alternative to the development of the hardware accelerators "from scratch". Vi-
vado HLS is widely reviewed to increase developer productivity, supporting C++
classes, templates, functions and operator overloading.

3.6.4 Power Electronics Domain Simulation

As above-stated, the design flow is now tightly coupled with PSIM, a power elec-
tronics circuit simulator. PSIMs’ DLL Block Interface (described above in sub-
section 3.4.2) opens up the possibility to use data from a simulated circuit as the
input for the software-only application, along with interfacing with a waveform
viewer to show its’ outputs.

Regarding the developed integrated co-simulation environment, it now includes an

71

embedded platform simulation (QEMU), an RTL simulator (Vivado Simulator)
and a power electronics simulator (PSIM), which is also useful to verify the results
of the scenario under test, due to its integrated waveform viewer (SimView).

72

Chapter 4

Co-Simulation Extensions Design

In this chapter, the design flow adopted in this project is presented, along with the
developed extensions and libraries that allowed the creation of an integrated co-
simulation environment. Full System Co-Simulation allows reducing the time spent
on designing and debugging the system, along with the computation offloading and
validation phases, achieving improvements in the design flow.

In order to validate and stimulate the development of such extensions, a multi-
threaded hardware accelerated Linux-based programming model was co-designed,
and an overview diagram is presented in Figure 4.1.

C Standard Library

SW Thread

Linux Kernel

HW Delegate
Thread SW ThreadHW Delegate

Thread

Figure 4.1: Co-designed Linux-based programming model overview

The presented co-designed Linux-based programming model is composed by a se-
ries of threads that can either be implemented as software threads or as hardware
delegate threads. Software threads are the most "common" threads, and take care
of their own data processing. Hardware delegate threads entrust their data pro-

73

cessing responsibilities to hardware accelerators (using device drivers for commu-
nication), and act as software representations for hardware accelerators, providing
interfaces to the custom developed hardware accelerators .

4.1 System Co-Design Flow

The hardware software co-design scenarios presented in sections 3.1.3 and 3.1.4
were the foundations for the design flow adopted in this dissertation, with QEMU
being used as the software simulator for the target platform, Vivado Simulator
(XSim) as the HDL simulator and PSIM as the power electronics simulator.

The co-design flow proposed in this dissertation is directed to power electron-
ics application scenarios, since they usually require fast-responding, determinis-
tic controllers with real-time constraints, as already mentioned in the document.
To achieve this, hardware acceleration may be incorporated, making use of the
hardware true parallel nature and offloading critical application kernels to custom
hardware co-processors, as mentioned in section 2.3.

Figure 4.2 presents an overview diagram of such design flow, that follows the one
presented in section 2.4.1 and is discussed next in this section, with an overview
diagram for each phase being presented.

Figure 4.2: Design Flow Overview

4.1.1 System Modeling

The first stage of validation occurs during system modeling, and consists in val-
idating the software application that corresponds to the desired system. During
this phase, PSIM is used in order to model the power electronics hardware along
with the desired controller, modeled in a DLL Block. The software application
(.dll) runs directly on the host machine OS. An overview diagram for this phase
of the design flow can be seen in Figure 4.3.

74

GNU C Library

Software Application

.dllPSIM Circuit

Power Electronics
Hardware

DLL Block

Controller

Figure 4.3: System Modeling Overview

4.1.2 Software Parallelization

As the software application becomes more and more complex, the system tasks
must be identified in order to divide it into smaller parts. Then, the software will
be parallelized by means of a multi-thread programming model, as mentioned in
subsection 2.4.1.

GNU C Library

SW Thread

Multi-Threaded Software Application

SW Thread SW Thread

.dll
PSIM Circuit

Power Electronics
Hardware

DLL Block

Controller

Figure 4.4: Software Parallelization Overview

In this step, the multiple task algorithms are assigned to different threads. Since

75

threads usually share data, synchronization mechanisms are mandatory to avoid
race conditions, and are usually provided by the multi-threading API. The overview
diagram for this phase of the design flow is presented in Figure 4.4.

4.1.3 Hardware Behavioral Validation

Later, when the software application fits the system’s desired behavior, it must
be profiled, in order to find out the most CPU-hungry threads, as they are the
candidates for hardware acceleration. Before developing the accelerators, the hard-
ware’s behavior can be validated using the QEMU Plugin Extension 3.2.1, with
behavioral C/C++ models for the migrated hardware being integrated into the
emulated machine.

μClibC

Target Linux Kernel

SW Thread

Multi-Threaded Software Application
HW Delegate

Thread
HW Delegate

Thread

Emulated Target Machine

SW Thread

External I/O Models

I/O HW
Model

C/C++ HW IP
Model

Behavioral HW Models

C/C++ HW IP
Model

I/O HW
Model

I/O HW
Model

Figure 4.5: Hardware Behavioral Validation Overview

76

This allows the developer to try out behavioral hardware models before developing
the HDL IP’s, along with developing and validating their respective device drivers.

In this validation phase, the target machine is emulated using QEMU, and the
hardware-software application will run over the Target Linux Kernel. The soft-
ware application must be modified, with delegate threads replacing the software
threads identified as candidates for hardware acceleration. The hardware delegate
threads will entrust their processing to the C/C++ behavioral models. The power
electronics circuit being simulated on PSIM remains, and its’ interface with QEMU
is now represented by the Input/Output hardware models, that act as the stimuli
for the system. The overview diagram for the above-mentioned is presented above,
in the Figure 4.5.

In order to establish the connection between QEMU and PSIM, a library based on
the QEMU External Model Extension developed by Naia (2015) was developed.

4.1.4 System Co-Simulation

Since the hardware’s behavior and the device drivers were already validated in
the last phase, the hardware accelerators can now be developed and tested, with
the RLT simulation being performed on Vivado Simulator and the simulated IP’s
replacing the previously used C/C++ behavioral models. The hardware delegate
threads remain, and will now entrust their processing to the external HW models
present in the external HDL simulator.

In order to do so, a VPI dynamic library for Verilog simulators that support this
validation approach was developed by Naia (2015) in his work, but as mentioned
in section 3.3 the SystemVerilog DPI was the chosen interface for this work. Given
this, a DPI library for SystemVerilog simulators that makes use of the above-
mentioned QEMU External Model Extension was developed.

After the hardware IP’s have been developed, the system can be simulated in
all it’s domains: embedded software, hardware accelerators and electrical circuit.
This is possible by using QEMU along with the simulation extensions developed
during this work and the ones developed by Naia (2015). An overview diagram for
the last step of the design flow is presented in Figure 4.6.

77

μClibC

Target Linux Kernel

SW Thread

Multi-Threaded Software Application
HW Delegate

Thread
HW Delegate

Thread

Emulated Target Machine

SW Thread

External HW ModelsExternal I/O Models

HDL HW
Model

HDL HW
Model

I/O HW
Model

I/O HW
Model

I/O HW
Model

Figure 4.6: System Co-Simulation Overview

Co-Simulation Extensions

This chapter is then divided into three sections, with the next two sections de-
scribing the developed simulation extensions, with focus being placed on how both
were implemented and how to use them.

Firstly, the already mentioned QEMU Co-simulation DPI library will be presented.

78

This dynamic library allows SystemVerilog simulators that support DPI to simulate
hardware IPs integrated into QEMU’s emulated machines, and is based on the
QEMU External Model Extension (3.2.2).

Lastly, the QEMU Co-Simulation PSIM library is described. This library is a
DLL that allows PSIM to interact with QEMU’s emulated machines. As already
mentioned, this library also uses the QEMU External Model Extension (3.2.2).

4.2 QEMU Co-Simulation DPI Library

As seen in section 2.3, when an embedded system demands strict time constraints,
the software resources may be insufficient to meet them. By offloading critical
tasks to hardware co-processors, the CPUs load will be "lighter", allowing the
fulfillment of the system’s timing constraints.

Typically, these co-processors and peripherals are developed using hardware de-
scription languages and validated by HDL simulators using testbenches that con-
tain non-synthesizable constructs of the language. When using this kind of vali-
dation, the interactions between the software and the hardware co-processors are
not taken into account.

In order to ensure the integration of both domains is on point, validating both
device drivers and hardware acceleration domain components is needed. To do so,
a DPI library was developed in the context of this dissertation, implementing an
interface with QEMU based on the QEMU External Tool Library (3.2.2). This
library makes possible the interaction between HDL simulators that support Sys-
temVerilogs’ DPI (presented in subsection 3.3.2) and QEMU, thus enabling the
validation of the interactions between the software application and the developed
hardware co-processors.

4.2.1 Library Overview

In Figure 4.7, a programming model corresponding to a hardware accelerated em-
bedded Linux system emulated on QEMU with the hardware co-processors simu-
lated on Xilinx’s Vivado Simulator is presented. As seen in the figure, the hardware
accelerated embedded application is composed by software threads and hardware

79

delegate threads. These hardware delegate threads delegate their processing tasks
to hardware accelerators via device driver system calls.

External Tool Library

Hardware Simulation (Testbench)

μClibC

Target Linux Kernel

SW Thread

Multi-Threaded Software Application

HW Delegate
Thread

HW Delegate
Thread

Emulated Target Machine

External Tool
Proxy

DUT (Design Under Test)

DPI Library SystemVerilog Layer
(Stimuli Generator & Monitor)

HW IP HW IPHW IP

DPI Library
C Layer

DPI Library

Transaction Handling

Emulated
Hardware

Figure 4.7: QEMU Co-Simulation DPI library overview

The DPI library allows a QEMU machine simulation to interact with the hardware
accelerators being simulated in Vivado Simulator. This interaction is based on the
QEMU External Tool Library (3.2.2), that will take care of the data exchange
between the DPI Library and QEMU. The DPI library acts as the bridge between
the hardware simulation and the External Tool Library.

Library Initialization Overview

Figure 4.8 presents a sequence diagram of a hardware accelerator from Vivado
Simulator being registered as an external model in QEMU. As mentioned in
section 3.2.2, QEMU is blocked at start-up, until all the simulation tools connect.
In this case, let’s assume Vivado Simulator is the only tool being used, so after the
accelerator(s) are registered and the DPI saves that information, it will request the
connection with QEMU, using the DPI library interface. Along with the model’s
information, tool information is also provided to the External Tool Library. Before

80

connecting with QEMU, the DPI library will register the transaction routines, and
only then the connection is established, and the QEMU emulation may resume.

QEMU & External
tool libraryDPI Library

Register write/read routines

Top-level
Module

Register HW IP

Return

Start QEMU connection

Return

Connect tool to QEMU, passing
array of registered models

Resume emulation

Save model information

Return
Return

Figure 4.8: DPI library initialization sequence diagram

Library Transaction Handling Overview

Figure 4.9 presents a sequence diagram of a hardware transaction being issued by
QEMU and resolved by Vivado Simulator. When a transaction happens in the
QEMU emulation context, the External Tool Library will call the corresponding
registered transaction read or write function on the DPI library, who will then
pass the transaction information to the corresponding Vivado Simulator registered
model.

After the write/read request has been completed by the Vivado Simulator, the
DPI library will pass the data received back to QEMU, via the External Tool
Library. QEMU will then resume its emulation, which is halted until the hardware
transaction is completed.

81

Return read information

QEMU & External
tool libraryDPI LibraryTop-level

Module

HW transaction routine

HW transaction issued by
device driver

Acknowledge QEMU &
Resume emulation

HW DPI Read routine call

HW DPI Write routine call

Return

Return

Figure 4.9: DPI library transaction sequence diagram

Library Interrupt Handling Overview

Figure 4.10 presents a sequence diagram of an interrupt being caught on Vivado
Simulator, and passed into the QEMU emulation, so the respective device driver
IRQ can be called. When an interrupt from an HW accelerator is triggered in
Vivado Simulator, the DPI library raise/lower interrupt functions will be called.
The interrupt information will then be passed to the QEMU emulation by the
External Tool Library, so it can be handled by the emulated machine.

4.2.2 Library API

In order to allow the co-simulation between QEMU and SystemVerilog simulations,
the DPI library provides a set of functions that can be used by any HDL simulator
that supports the SystemVerilog DPI, such as the Vivado Simulator.

These functions must be imported using the DPI import statement, described in
section 3.3.2, so the simulator can link them to the library. The import statements
should be made in the top-level module of the simulation. Appendix B.4 contains

82

QEMU & External
tool libraryDPI Library

Interrupt request

Top-level
Module

Interrupt request

IRQ issued on
QEMU emulation

Interrupt issued by
hardware IP

Figure 4.10: DPI library interrupt sequence diagram

a SystemVerilog top-level module with these statements.

Along with the imported functions, the HDL top-level module should also contain
the DPI export statements (also presented in section 3.3.2), for the dpi_write
and dpi_read functions, that are called every time a write or read transaction is
received by the DPI Library, sent from the External Tool Library. Appendix B.4
also contains these statements.

Table 4.1 lists the above-mentioned functions, if they are imported or exported
functions, and the module they should be used on.

In order to correctly use the DPI API, the top-level module must contain a set of
standard signals, and every IP wrapper module must contain a set of parameters
that will be used to register the model in QEMU.

Top-Level Module

As shown in Appendix B.4 , the top-level module must contain the following
standard signals:

• clk

83

Table 4.1: QEMU Co-Simulation DPI library API

DPI
API Description Statement Module

Type
Register SysVerilog

qemu_register_ip module containing Import Top-level
external model

Connect to QEMU
qemu_connect using Ext. Tool Library Import Top-level

and start co-simulation
qemu_raise_int Raise an interrupt Import IP Wrap

in QEMU
qemu_lower_int Lower an interrupt Import IP Wrap

in QEMU
dpi_write Request write transaction Export Top-level

on HDL simulator
dpi_read Request read transaction Export Top-level

into HDL simulator
dpi_print Print information Export Top-level

on HDL simulator console
dpi_stop_sim Stop HDL simulation Export Top-level

This represents the simulation’s clock and is common to all modules.

• rst

This represents the simulation’s reset signal and is also common to all mod-
ules

• addr

This represents the address signal for the IPs, and has a maximum width
of 64 bits. When transactions occur, the exported functions defined in the
top-level module will write the value received from the DPI library into the
addr signal.

• din

This signal represents the input data, and is used only when write transac-
tions occur. The exported write function defined in the top-level module will
write the value received from the DPI library into the din signal. Its width
is parametrized, in order to match the machine word bit length.

84

• write

This signal is only used to indicate that the transaction in course is either a
write or read transaction. write is 1 for a write transaction, and 0 for a read
transaction.

• dout

This signal is a tristate signal, in order to be shared between IPs, and is
pulled down by default. It is only used when IPs need to output their values
in read transactions.

• ready

This is an acknowledgment tristate signal, also pulled down by default. It is
used by IPs to acknowledge finished transactions.

As above-mentioned, these signals must be present in the top-level module, in
order to achieve consistency when using this library. The IP wrapper modules will
share these signals, as they are passed to them when being instantiated.

Below is shown a template of an IP wrapper module instantiation:

IPWrap #(. WORD(WORD), . MAPPED_REG_SZ (MAPPED_REG_SZ))
IP_Mod (. addr(addr),

.din(din),

. offset(offs),

.dout(dout),

.write(write),

.busy(busy),

.ready(ready),

.clk(clk),

.rst(rst)
);

IP Wrapper Modules

Regarding the IP wrapper modules, a set of parameters must be present in every
one of them. These parameters are used when registering the external models on
QEMU, as they are input parameters for the imported function qemu_register_ip.

85

Assuming an IP Wrapper module called IP_Mod was instantiated in the top-level
module, an example of a call from Vivado Simulator to register that module is as
follows:

qemu_register_ip
(

IP_Mod .NAME ,
IP_Mod . MEMORY_MAPPED_ADDRESS ,
IP_Mod . MAPPED_AREA_SIZE ,
IP_Mod . INTERRUPTS_SIZE ,
IP_Mod . INTERRUPTS

);

As can be seen in Appendix B.5, every wrapper module must contain the following
standard parameters, with examples being presented for each one:

• NAME

SystemVerilog parameter of type string, can be consulted from QEMU Mon-
itor as a device property.

string NAME = " example_HW_IP ";

• MEMORY_MAPPED_ADDRESS

SystemVerilog parameter of type longint, corresponding to the base address
of the IP, has a maximum width of 64 bits.

longint MEMORY_MAPPED_ADDRESS = 64’ h54013000 ;

• MAPPED_AREA_SIZE

SystemVerilog parameter of type int, corresponding to the block size of the
local memory in bytes, has a maximum width of 32 bits.

int MAPPED_AREA_SIZE = 32’d28;

• INTERRUPTS_SIZE;

SystemVerilog parameter of type int, reflecting the number of interrupts the
model can use. QEMU uses this parameter in order to allocate IRQs in the
machine emulation.

int INTERRUPTS_SIZE = 32’d3;

86

• INTERRUPTS

SystemVerilog parameter of type string, containing the interrupt numbers
used by the requested IRQs registered in QEMU, ordered and separated by
an underscore (_). It is mandatory to provide an interrupt number for
each one of the requested IRQs. This parameter should have the following
format:

"INT1_INT2_INT3_INTN_"

string INTERRUPTS = "8 _21_16_ ";

As mentioned in the last subsection, after the QEMU emulation has been started,
and is waiting for the simulation tools to connect, the top-level module must
call the imported qemu_register_ip function for every wrapper module containing
IPs that are going to be used as external models, as seen above. Only then
the imported qemu_connect function may be called, in order to establish the
connection between QEMU and Vivado Simulator, specifically its external models.

4.2.3 C Layer Transaction Handling

As above-mentioned, the QEMU Co-Simulation DPI library uses the External Tool
Library (3.2.2) along with the exported functions (dpi_read and dpi_write) from
the top-level module in order implement transactions.

The transaction routines registered on the External Tool Library by the DPI Li-
brary will receive the transaction requests coming from the device drivers being
emulated on QEMU. In order to get the transaction information to the respective
external model, DPI exported routines must be used.

DPI Implementation Issues

Given that the use of DPI exported tasks (tasks can consume simulation time,
while functions can’t, as mentioned in subsection 3.3.2) is not yet supported by
the available HDL simulators, only DPI exported functions can be used.

This, combined with the fact that exported SystemVerilog routines can only be
called from C functions that have been imported as context functions/tasks, as seen

87

in subsection 3.3.2, denies the direct call from the registered transaction routines
from the DPI Library to the Vivado Simulator.

The above-mentioned is true because the transactions are sent into the DPI Library
via callbacks that were previously registered, and their scope is not local to the
Vivado Simulator DPI context.

Figure 4.11 represents a simple sequence diagram of the above-mentioned: when
the functions calls are made in the same context, they are allowed, and when the
call comes from an external scope, the DPI exported function calls will not work.

External
ApplicationDPI-CSystemVerilog

Module

Call DPI imported function

Call DPI exported function

Call DPI exported function

Request to call
DPI exported function

Same Context - Allowed

Different Context - NOT ALLOWED

Figure 4.11: Sequence diagram showing different DPI contexts

Transactions Redirection Mechanisms

This makes it necessary to implement mechanisms in order to redirect the trans-
actions from QEMU to the Vivado Simulator: a DPI imported function called
trans_handle is called at each positive edge of the top-level signal clk, represent-
ing the clock of the system, checking for any pending write/read transactions on
the DPI layer.

Calling the DPI C imported function trans_handle allows the DPI library to call
SystemVerilog exported functions, such as dpi_read and dpi_write, that will ma-
nipulate the signals in the RTL simulation in order to effectively complete the

88

transactions. Since the calls to these functions will be made from inside the
trans_handle function, which is a DPI imported function, they will consequently
have the same context as the Vivado Simulator.

A more accurate sequence diagram for this particular case, the QEMU Co-Simulation
DPI library, can be seen in Figure 4.12.

Simulation
Time

Elapsed = 0

Simulation
Time

Elapsed = 0

QEMU & External
tool libraryDPI LibraryTop-level

Module

Call imported function
(trans_handle)

Clock edge detected

Check for transactions:
>> No transactions pending

Call imported function
(trans_handle)

Clock edge detected

Transaction issued by
QEMU emulationCall registered

transaction routine

Save transaction information
Signal pending transaction

Check for transactions:
>> Transactions pending

Change simulation signals

Clock edge detected

Return from imported function

Return from imported function

Call exported function
(dpi_write / dpi_read)

Return from exported function

Figure 4.12: DPI Library transaction handling sequence diagram

An excerpt of code from the C Layer of the DPI Library can be found in Appendix
B.7. Smaller excerpts will be presented as this mechanisms are described, in order
to help the reader understand how they were implemented.

At each positive edge of the clock signal, the DPI Library will check for any pending

89

transactions. In case there aren’t any transactions pending, it will simply return.
Note that this process consumes no simulation time in Vivado Simulator, as seen
in section 3.3.2: "all imported functions shall complete their execution instantly
and consume zero simulation time".

In case a transaction is sent from the QEMU emulation, via the External Tool
Library, into the DPI Library registered slave transaction routines, that same
routine will save the transaction data (model address and offset, value sent and
message size) and set flags to signal the reception of a transmission, as shown in
the following code excerpt.

1 ///// HW ACCESS ROUTINES /////
2 uint64_t hw_write (...)
3 {
4 pthread_mutex_lock (& trans_write . trans_mutex);
5
6 trans_write . address = memory_mapped_address ;
7 trans_write . offset = offset;
8 trans_write .value = value;
9 trans_write .size = size;

10 trans_write .state = 1;
11
12 pthread_mutex_unlock (& trans_write . trans_mutex);
13 }
14
15 uint64_t hw_read (...)
16 {
17 pthread_mutex_lock (& trans_read . trans_mutex);
18
19 trans_read . address = memory_mapped_address ;
20 trans_read . offset = offset;
21 trans_read .size = size;
22 trans_read .state = 1;
23
24 pthread_mutex_unlock (& trans_read . trans_mutex);
25
26 *value = trans_read .value;
27 }

90

At the next positive edge of the clock, the DPI library will notice there are pending
transactions. Then, depending on the type of the request (write or read transac-
tion), the corresponding exported function will be called, namely dpi_read or
dpi_write, with the previously saved transaction data being passed as arguments.
These arguments are needed in order to change the simulation signals on the Vi-
vado Simulator, and in case it’s a read action, return the requested data. The
implementation of such mechanism can be seen in the next code excerpt.

1 ///// TRANSACTION HANDLER /////
2
3 void trans_handle ()
4 {
5 if(trans_write .state)
6 {
7 trans_write .state = 0;
8
9 pthread_mutex_lock (& trans_write . trans_mutex);

10
11 dpi_write (trans_write .address , trans_write .offset ,

trans_write .value , trans_write .size);
12
13 pthread_mutex_unlock (& trans_write . trans_mutex);
14 }
15
16 if(trans_read .state)
17 {
18 trans_read .state = 0;
19
20 pthread_mutex_lock (& trans_read . trans_mutex);
21
22 trans_read .value = dpi_read (trans_read .address ,

trans_read .offset , trans_read .size);
23
24 pthread_mutex_unlock (& trans_read . trans_mutex);
25 }
26 }

After these actions have finished, the exported function will return, and then

91

the imported function will return. From the moment the trans_handle imported
function is called until the moment it returns, the simulation time elapsed is also
zero, due to the above-mentioned reason.

In order to prevent race conditions and maintain data/transaction integrity, mutual
exclusion mechanisms are used by the DPI library.

Interrupt Handling

As mentioned in the last subsection, triggering interrupts in QEMU’s emulated
machine from the RTL simulation is supported, using a mechanism similar to the
transaction handling one. When it comes to interrupt handling, there aren’t any
context issues, as in the transaction requests, because the interrupts will always
be called from the HDL simulator to the QEMU emulation, only requiring the use
of imported functions.

The DPI library only purpose will be to "redirect" the interrupt request, with the
calls to the imported functions qemu_raise_int and qemu_lower_int. Both these
functions have as their only arguments the external model base address, along
with the respective interrupt number. These arguments will be used to match the
previously registered base address and interrupt numbers.

The above-mentioned DPI Library functions only task is to call the qemu_set_interrupt
function, implemented by the External Tool Library, that has as arguments the
base address of the model, the interrupt number and a flag to signal if it is a raise
interrupt (1) or a lower interrupt (0) request.

A sequence diagram of an interrupt request being handled by the QEMU Co-
Simulation DPI library can be seen in Figure 4.13.

The time elapsed on the RTL simulation when handling an interrupt request is
zero, as when handling transactions, since only DPI imported functions are used,
and they "complete their execution instantly and consume zero simulation time".

4.3 QEMU Co-Simulation PSIM R© Library

As mentioned in section 3.4, when building an integrated co-simulation environ-
ment, simulation tools from domains other than hardware acceleration may be

92

Simulation
Time

Elapsed = 0

QEMU & External
tool libraryDPI LibraryIP Wrapper

Module

Call imported function
(qemu_raise/lower_int)

Interrupt requested by
external model

Send trigger/clear
 interrupt request to

QEMU emulation

Call qemu_set_interrupt

Return form imported function Return

Figure 4.13: DPI Library interrupt handling sequence diagram

used, such as power electronics systems simulators.

A simplistic description for power electronics systems is that they are composed
of the "power circuit" (semiconductors, passive elements, etc.), the controller, the
sensors and actuators.

• The power circuit includes switching semiconductors, energy storing elements
such as inductors and capacitors and other passive elements.

• The controller is almost always an embedded system software, and may
belong to any of the embedded system types seen in section 2.1.2.

• The sensors and actuators are the systems’ "interfaces" with the real world,
therefore being essential.

Since most of the current power electronics systems use embedded systems soft-
ware to perform their control algorithms, and many of them have real-time con-
straints, that takes us to this works’ main topic: embedded system platforms
with strict time constraints, leading to the offloading of critical tasks to hardware
co-processors.

In order to simulate the interactions between the different components of power
electronics system, the co-simulation environment must contain tools that allows

93

for precise simulation of the physical components of the system: the power circuit,
the sensors and actuators.

As mentioned in subsection 3.4.2, PSIM R© was the chosen tool in this work when
it comes to power electronics systems simulation, mostly due to its external DLL
block component that allows PSIM R© to interact with other simulators or tools.

Given these facts, a library that allows connecting QEMU with PSIM R© was de-
veloped in the context of this dissertation, again based on the QEMU External
Tool Library (3.2.2). This library allows simulating the integration between the
software application and the physical components of the system, namely the power
system and the sensors/actuators.

When combined with the QEMU Co-Simulation DPI Library (4.2), this library
allows the Co-Simulation Environment to simulate the integration between the
software application, the hardware accelerators and the power electronics system.

4.3.1 Library Overview

Figure 4.14 presents an example of an embedded Linux system emulated on QEMU
receiving stimulus from external models on PSIM R©.

This figure is very similar to Figure 4.7, which is normal because both are based
on the QEMU External Tool Library (3.2.2) and will communicate with QEMU
using the same mechanisms.

The sensors and actuators of the system being simulated in PSIM R© will act as
inputs and outputs for the QEMU emulated machine software. In order to do
this, hardware delegate threads will again be used, making use of device drivers
system calls, in order to send/receive data to the PSIM R© simulation.

Library Initialization Overview

Figure 4.15 presents a sequence diagram of a hardware model from PSIM R© being
registered as an external model in QEMU. As mentioned in section 3.2.2, QEMU
is blocked at start-up, until all the simulation tools connect.

When the Run Simulation button is pressed on PSIM R©, the OPENSIMUSER
user-defined function described in subsection 3.4.2 will be called.

94

PSIM Circuit
Power Electronics

Hardware

External Tool Library

DLL Block (Controller)

μClibC

Target Linux Kernel

SW Thread

Multi-Threaded Software Application

HW Delegate
Thread

HW Delegate
Thread

Emulated Target Machine

External Tool Proxy

Models’ Memory Area

Model A Model B

A0 A1 A2 A3 B0 B1 B2

DLL Block Inputs DLL Block Outputs

0 1 2 0 1 2 3

Figure 4.14: QEMU Co-Simulation PSIM R© library overview

Assuming PSIM R© is the only tool being used, this function will simply register
the transaction routines and then request the connection with QEMU, passing the
models’ information along with the tools’ information, which is also provided to
the External Tool Library. After the connection has been successfully established,
the QEMU emulation may resume.

Library Transaction Handling Overview

Figure 4.16 presents a sequence diagram of a transaction being issued by QEMU
and resolved by the PSIM R© DLL. When an hardware access happens in the QEMU
emulation context on an device that is registered as a PSIM R© external model, the
External Tool Library will call the corresponding registered transaction function
on the DLL. In case it is a read transaction, the transaction function will return
the corresponding value. In case it is a write request, the transaction function will
write the value to the models’ memory mapped area.

95

Register transaction
routines

QEMU & External
tool libraryPSIM® DLL

Run Simulation

OPENSIMUSER Called

Save models' information
Allocate models' memory

Return

Connect tool to QEMU, passing
array of registered models

Return

Resume emulation

Figure 4.15: PSIM R© DLL initialization sequence diagram

4.3.2 Library Structure

In order to allow the machine emulated on QEMU to interface with external mod-
els from PSIM R©, a general DLL block (3.4.2) must be included in the PSIM R©

simulation.

As mentioned in subsection 3.4.2, the PSIM R© DLL Blocks interface has strict rules:
the RUNSIMUSER function must always be present, and the OPENSIMUSER
and CLOSESIMUSER functions are optional.

96

PSIM® DLL

Read: Return value
Write: Return

QEMU & External
tool library

Model
Memory Area

Call read/write
registered routine

Transaction issued by
device driver

Acknowledge QEMU &
Resume emulation

Read/Write Action

Return

Figure 4.16: PSIM R© DLL transaction sequence diagram

OPENSIMUSER Routine

In the co-simulation library, the OPENSIMUSER routine must always be present,
as it will issue the initialization process seen in the last subsection. This routine
is called only once, right before the simulation starts.

This functions’ behavior is to register the transaction routines and connect PSIM R©

with QEMU, using the External Tool Library interfaces.

The following code shows an example of this routine:

1 void OPENSIMUSER (...)
2 {
3 qemu_register_model
4 (
5 model1 .name ,
6 model1 . memory_mapped_address ,
7 model1 . mapped_area_size ,
8 model1. interrupt_requests_size ,
9 (const char *) model1. interrupt_requests

10);

97

11
12 qemu_register_model
13 (
14 model2 .name ,
15 model2 . memory_mapped_address ,
16 model2 . mapped_area_size ,
17 model2. interrupt_requests_size ,
18 (const char *) model2. interrupt_requests
19);
20
21 if(qemu_connect ()) printf("\ nConnect OK.\n");
22 else printf ("\ nConnect failed .\n");
23
24 pthread_mutex_init (& in_mutex , NULL);
25 pthread_mutex_init (& out_mutex , NULL);
26 }

This functions’ implementation should follow the flowchart present in Figure 4.17.

When the connecting routine (qemu_connect_tool) is called, information about
the tool and models to be registered must be provided. The structs tool_info_t
and model_info_t defined by the External Model Library will be used in order to
do so.

This is the tool information struct that must be used for the PSIM R© library:

1 static tool_info_t psim_info =
2 {
3 .name = "PSIM",
4 . domain = "Power Electronics ",
5 . models = NULL ,
6 . n_models = 0
7 };

This is a template of a struct to be used for the models that are going to be used
as external models:

1 static model_info_t MODEL = {
2 .name = " Model_Name ",
3 . memory_mapped_address = 0x54113000 ,

98

OPENSIMUSER
Start

End
No errors

Models > 0?

Register Model

Yes

No

All models
registered?

Yes

No

Connect to
QEMU

Connect OK

End
Return error

Connect Failed

Figure 4.17: PSIM R© DLL OPENSIMUSER flowchart

4 . mapped_area_size = 32
5 };

This function also has the duty to allocate the memory needed by every exter-
nal model, given by the mapped_area_size parameter in the models’ information

99

structure. This allocated memory will be accessed every time a read/write trans-
action is issued to the model.

CLOSESIMUSER Routine

This routine must be present in the co-simulation library, so the connection to
QEMU can be closed properly when the PSIM R© simulation ends, which is the
only time this routine is called.

The following code shows an example of this routine:

1 void CLOSESIMUSER (...)
2 {
3 memory_cleanup ();
4 qemu_close_connection ();
5 printf (" Simulation ending\n");
6 }

This function should only free any memory allocated by the DLL and then call
the qemu_close_connection function from the External Tool Library.

Given this, its’ flowchart is very simple, and is present in Figure 4.18.

CLOSESIMUSER
Start

Free any allocated
memory

Close QEMU
connection

End

Figure 4.18: PSIM R© DLL CLOSESIMUSER flowchart

100

RUNSIMUSER Routine

As mentioned in subsection 3.4.2, this routine is mandatory for any DLL being
used on PSIM R© DLL Blocks, and is called at each simulation time step.

The following code shows a possible implementation for this routine:

1 void RUNSIMUSER (...)
2 {
3 pthread_mutex_lock (& in_mutex);
4
5 model1_in [0] = in [0];
6 model1_in [1] = in [1];
7 model1_in [2] = in [2];
8 model1_in [3] = in [3];
9

10 model2_in [4] = in [4];
11 model2_in [5] = in [5];
12
13 pthread_mutex_unlock (& in_mutex);
14
15 // Synchronization goes here , if needed
16
17 pthread_mutex_lock (& out_mutex . trans_mutex);
18
19 out [0] = model1_in [0];
20 out [1] = model2_in [0];
21 out [2] = model2_in [1];
22
23 pthread_mutex_unlock (& out_mutex);
24 }

This functions’ parameters include two arrays called in and out, respectively rep-
resenting the input and output data. Given this, this functions’ flowchart should
always be close to the presented in Figure 4.19, which is pretty straightforward.

This functions’ first task will always be loading the input data received via the
in array of values, either into the external simulation models registers or other
auxiliary variables. After that, the library must make sure it can proceed to the

101

RUNSIMUSER
Start

Lock input mutex

Save inputs
Unlock input mutex

Tools
Synchronized?

yes

no

End

Update outputs

Lock output mutex

Figure 4.19: PSIM R© DLL RUNSIMUSER flowchart

next time step. This will happen when other tools need to be synchronized with the
PSIM R© simulation. This synchronization can be very useful, even indispensable,
in cases where the inputs must be used for processing in an external tool and the
simulation has to wait for the processed values in order to write them on the output
array, allowing the external tool to influence the simulation. The mechanisms used
to do this may be very simple and can vary a lot, depending on the application
scenario under test.

By updating the output values, using the out array, the simulation components

102

behavior such as switching semiconductor may be changed.

4.3.3 Library Transaction Handling

As above-mentioned, the QEMU Co-Simulation PSIM R© library uses the External
Tool Library (3.2.2) in order to register the transaction routines in order to handle
the transactions issued by the QEMU emulated machine.

The transaction routines registered on the External Tool Library by the DLL will
receive the transaction requests coming from the device drivers being emulated on
QEMU.

In order to get the transaction information to the respective external model, the
memory address present in the received message will be compared. The offset will
also be checked, in order to perform the write/read action on the correct register
amongst all the mapped memory area each model owns.

Unlike what happens with the QEMU Co-Simulation DPI Library (4.2), the regis-
tered transaction routines can directly access each models’ allocated memory. This
makes the implementation of the transaction handling mechanisms much easier.

Figure 4.20 presents a more precise sequence diagram for the the QEMU Co-
Simulation PSIM R© Library. As already mentioned, and is referred in the figure,
read and write transactions may happen several times, as many as needed. This
number is determined by the software application running on the QEMU emulated
machine. That same application is what determines the flow of the transactions,
along with the synchronization between QEMU and PSIM R©.

As seen above, the DLL inputs are saved at the very start of the RUNSIMUSER
function, so the PSIM R© simulation always has the actual values stored and ready
to be read by the software application.

The read transactions must always happen first, as the PSIM R© simulation will
have different input values at each time step. These transactions will allow the
software application to receive updated values.

When they are issued by QEMU, coming from the device driver, the registered read
routine will be called. There, the address received in the transaction message will
be compared with the registered models on the PSIM R© DLL, so the transaction

103

PSIM® DLL
(Models' Memory)

Read transaction may occur
several times

PSIM® DLL QEMU & External
tool library

Call registered
read routine

Read transaction
received

Acknowledge QEMU

Return

Next time step
(call RUNSIMUSER again)

Synchronize simulation

Synchronization between
PSIM® and QEMU

Compare address
and offset

Request read from memory
Read value

Return

Write transaction may occur
several times

Call registered
write routine

Write transaction
received

Acknowledge QEMU

Return

Compare address
and offset

Request write to memory
Write value

Return

Figure 4.20: PSIM R© Library transaction handling sequence diagram

is directed to the correct model. The received offset will also be checked, in order
to access the correct register amongst the models’ allocated memory.

After all the readings have been performed, the software application running on the
emulated machine will use the received values in order to process them and perform

104

its’ specific algorithms. When the data and algorithms have been processed, the
outputs of the software application have to be sent back to the PSIM R© simulation,
which is waiting for that same data in order to proceed to the next time-step. This
synchronization between the tools will be addressed below.

The write transactions are very similar to the read transactions: the registered
routine is called and compares the received address and offset in order to write the
received value into the correct register from the correct model allocated memory.
When all the write actions have completed, the DLLs output values will be updated
and the PSIM R© simulation may proceed to the next time-step.

PSIM R© & QEMU Synchronization

As mentioned in the last subsection, there may be a need for the software appli-
cation running on the QEMU emulated machine to synchronize with the PSIM R©

simulation, for instance when the input values from the simulation are needed to
the control algorithms and feedback must be given back to the PSIM R© simulation
in order to alter the hardware behavior, for example by changing the semiconduc-
tor driver signals.

The mechanisms used to achieve this synchronization can be as simple as counting
the number of read/write transactions, and when all have been completed, move
on to the next time-step on the PSIM R© simulation. The software application will
always be the trigger to the synchronization, since it controls the co-simulation
flow.

In order to prevent race conditions and maintain data/transaction integrity, mu-
tual exclusion mechanisms can and should be used, as they bring integrity to the
system, even though good algorithms implemented in the software application can
avoid using them.

105

106

Chapter 5

Application Scenario

In order to demonstrate the developed work in a practical context, an application
scenario stimuli for the proposed design flow was selected. As already mentioned,
this dissertation has a great focus on power electronics systems, so the chosen case
belongs to that area, more precisely on the electrical grid and the power electronic
devices used to study, evaluate and improve quality. The chosen scenario corre-
sponds to a shunt active power filter that is being used with merit for compensating
current harmonics, unbalances and installation power factor.

The instantaneous active and reactive power theory, usually referred to as "p-q
Theory", was introduced in 1983 and is very useful when dealing with controllers
of power conditioners (Akagi et al., 2007). The digital controller for a shunt
active power filter, operating over harmonic currents along with current unbalance,
following a constant power at source side strategy on power systems, based on the
above-mentioned p-q Theory (Akagi et al., 2007), may be developed following the
design flow adopted in this dissertation and described in section 4.1.

An overview diagram for such design flow was already presented, and can be seen
in Figure 4.2. Figure 5.1 presents the procedures taken in order to move from one
phase to the other, in order to help the reader understand this design flow. These
steps will be presented during the course of the current chapter, where each step
will be addressed.

In order to comply with that same design flow, the controller for the active power
filter was first modeled and validated by developing a software application that
corresponds to the desired system, using PSIM as stimuli. After that, the software
application was parallelized using a software multi-threading paradigm. The multi-

107

Figure 5.1: Design Flow Methodology

threaded software application was profiled in order to identify the most CPU-heavy
tasks in the system, as they are the candidates for hardware acceleration. Then,
the hardware accelerators behavior was validated using C/C++ behavioral models,
and only then the HDL IPs were developed. At this time, the integrated co-
simulation environment allowed the simulation of the system in it’s three domains:
embedded software, hardware accelerators and power electronics.

5.1 System Modeling

As above-mentioned, the chosen application scenario was Shunt Active Power Fil-
ter, and its’ controller follows the p-q Theory by Akagi et al. (2007). The filter is
connected to a three-phase, three-wire, electrical power grid where some non-linear
loads are present, causing harmonic currents along with current unbalance.

Nowadays, since many of the loads present in electrical installations are non-linear,
their power consumption consists of active and reactive powers. Only the active
power contributes to energy consumption by the load, with reactive power being an
undesired component. Still, the reactive power is provided by the electrical grid,
and will therefore be taxed if significant. A Shunt Active Power Filter allows the
compensation of the reactive powers, thus reducing their presence in an electrical
installation.

108

5.1.1 System Overview

The system under study is composed of a three-phase, three-wire, electrical power
source and the loads being supplied by it, which will be described later, but can
either be linear or non-linear, single-phase or three-phase, with the The Shunt
Active Power Filter being connected to this electrical installation. An overview
diagram of the described system can be seen in Figure 5.2.

Active Filter
Compensation Currents

Monitoring

icB*

Phase A

Phase B

Phase C

Power
Source

vA

iA

vB

vC

Voltage
Sensors

Electrical
Installation

Loads

Controller

Shunt Active Power Filter Controller

Current
Sensors

Electrical
Power Grid

Grid
Impedance

Figure 5.2: Three-phase, three-wire shunt active power filter overview diagram

Some hardware components other than the above-mentioned must also be present
in such a system, like voltage and current sensors for the three phases, which are
the inputs for the controller.

The controller must compute the reference currents that must be produced by a
power inverter stage, in real-time, to force a power converter to synthesize them

109

accurately. The shunt active filter may then compensate the harmonic currents of
non-linear loads, continuously tracking changes in its harmonic contents.

5.1.2 Controller Modeling

The p-q Theory by Akagi et al. (2007) defines instantaneous real and imaginary
powers through the use of the Clarke transform. The controller for the shunt ac-
tive power filter is based on that control theory, allowing the compensation of the
unwanted power components, thus reducing their presence in the electrical instal-
lation. Appendix D contains the mathematical fundamentals of the p-q Theory.

The calculated real power (p) of the load can be separated into its average (p̄)
and oscillating (p̃) parts. Likewise, the load imaginary power (q) can be separated
into its average (q̄) and oscillating (q̃) parts. Then, undesired portions of the real
and imaginary powers of the load that should be compensated are selected (Akagi
et al., 2007).

Controller Description

The idea is to compensate all undesirable power components generated by non-
linear loads that can damage or make the power system overloaded or stressed by
harmonic pollution. This way, it would be desirable for a three-phase balanced
power supply to deliver only the average real power (p̄) of the load. Thus, all the
other power components required by non-linear loads (p̃, q̄, q̃, p̄0 and p̃0) should
be compensated by a shunt compensator (Akagi et al., 2007).

A particular characteristic of three-phase, three-wire systems is the absence of
the neutral conductor, and, consequently, the absence of zero-sequence current
components (p0 = p̄0 + p̃0). Thus, the zero-sequence power is always zero in these
systems (p0 = 0) (Akagi et al., 2007). Since the system under study is a system
like this (Figure 5.2), the zero-sequence power components are discarded.

The control algorithm implemented in the controller of the active filter determines
the compensation characteristics of the system. The controller design is particu-
larly difficult if the shunt active power filter is applied in power systems in which
the supply voltage itself has been already distorted andor unbalanced (Akagi et al.,
2007). The chosen control strategy, as already briefly mentioned, was the constant

110

instantaneous power. This technique guarantees that only the p̄ portion of power
is drawn from the source.

As stated by Akagi et al. (2007), when compensating both the p̃ and all q compo-
nents, all the undesirable current components of the loads are being eliminated.
In a scenario like this, and if the voltages are sinusoidal and balanced, the com-
pensated current is sinusoidal, produces a constant real power and does not gen-
erate any imaginary powers. The source current has a minimum Root Mean
Squared (RMS) value that transfers the same energy as the original load current
that produce the average real power (p̄). This is the best compensation that can
be made from the power-flow point-of-view, because it smooths down the power
drawn from the electrical grid, and eliminates all the harmonic currents. However,
it should be pointed out that this is a particular situation in which no unbalances
or distortions are present in the system voltages.

Control Algorithm

Figure 5.3 presents the algorithm of a controller for a three-phase, three-wire
shunt active power filter that compensates the oscillating real power (p̃) and the
imaginary power (q) of the loads and follows the constant instantaneous power
control strategy.

As can be seen in the block diagram of the controller (Figure 5.3) and the overview
of the system (Figure 5.2), the controller inputs are the voltages and currents for
the three phases a, b and c.

The first task performed by the controller is the α-β-0 transformation, also known
as the Clarke Transformation. Basically, it maps the three-phase instantaneous
voltages/currents in the abc phases (va, vb, vc) into the instantaneous voltages/cur-
rents on the α-β-0 axes (vα, vβ and v0).

The next block calculates the instantaneous powers of the loads using the α-β
voltages and currents, according to the mathematical operations described in the
p-q Theory. As already stated, in a three-phase, three-wire system, the zero-
sequence powers are always zero. Still, they are present in the diagram since
calculation errors may cause the zero-sequence powers to exist. By introducing
these powers into the instantaneous powers calculation may reduce errors in the
compensation currents calculation.

111

v{a,b,c}

i{a,b,c}

- pp+

-q

qp

-p~

v{α,β,0}

i{α,β,0}

1

v{α{{ ,α β,0}

i{α{{ ,α β,0}

1

iC{α,β}

i0
i0

v{α,β}

1

i0ii

v{α{{ ,α β}

1

iC{a,b,c}

Figure 5.3: Block diagram for the shunt active power filter controller

Next, the power components to be compensated must be selected, and as already
mentioned, the chosen control strategy for the controller states that only the con-
stant portion of the real power (p̄) should be supplied by the source to the loads.
Given this, the alternate real power (−p̃) along with the total imaginary power
(−q = −q̄ − q̃) should be compensated. In order to separate p into p̄ and p̃, a
moving average filter may be used in a digital implementation, being very simple
and effective (Akagi et al., 2007).

Next, the reference compensation currents icα and icβ are calculated, based on the
selected power components to be compensated and the α / β voltages previously
calculated. After calculating the compensation currents in the α-β reference frame,
they must be converted back to the abc reference frame. To perform this action,
the Clarke Transformation will again be used, but this time in its’ inverse form.

When applying the Inverse Clarke Transformation to the α-β compensation cur-
rents, the compensation currents for the a, b and c phases are obtained. These
currents are used as references for the inverter control unit that will determine

112

when to turn on or off the power semiconductors in order to inject the compen-
sation currents into the electrical installation. The ideal compensated current can
be calculated simply by subtracting the eliminated current from the load current
(icompensated = iloads − icompensation) (Akagi et al., 2007).

A software implementation of the described algorithm for the controller of the
shunt active filter was developed, following the p-q Theory mathematical funda-
mentals present in Appendix D along with the block diagram present in Figure
5.3. This software implementation was used to validate the behavior of the control
system algorithms. As mentioned in subsubsection 4.1.1, during this phase PSIM
is used in order to model the power electronics hardware along with the controller
(the software application is compiled as a PSIM DLL).

5.1.3 PSIM R© Simulation

The schematic of the circuit simulated in PSIM R© and used as stimuli for the
controller of the shunt active filter can be seen in Figure 5.4.

Active Power Filter Simulation

Electrical Installation

Controller Loads

Figure 5.4: Schematic of the PSIM R© circuit used in the simulation

The schematic follows the system overview presented in Figure 5.2, and is divided
into three parts: the electrical installation, the active filter controller and the loads.
The electrical installation is composed of a 400 V RMS three-phase power source

113

along with the grid impedance. There are also three voltage sensors sensing each
phase voltage, along with three current sensors sensing the three phases currents.
The controller is basically composed of the DLL Block, with its’ inputs being the
sensed voltages and currents for each phase, and the outputs being the reference
compensation currents for the three phases A, B and C.

The loads used were the following:

• An 100 mH inductor connected from phases A to B;

• An 10 Ω resistor connected from phases B to C;

• An 1 Ω resistor in series with a 15 mH inductor connected from phases C to
B;

• An 100 mH inductor in parallel with a 10 Ω resistor connected from phases
C to A;

• An one-phase diode bridge with a parallel of a 2 mF capacitor and a 50 Ω
resistor, connected from phases C to A;

• An one-phase diode bridge with a 50 Ω resistor connected from phases C to
A;

• A three-phase 5 Ω resistive load in series with with a 100 mH inductor
connected in delta;

• A three-phase diode bridge with a parallel of a 1 mF capacitor and a 10 Ω
resistor.

Appendix E contains the results of the performed simulations, where the DLL
Block is running the developed software application that mimics the control algo-
rithm above described.

5.2 Software Parallelization

Following the design flow presented in section 4.1, and already refered in this
chapter, when the algorithm for the software application is working properly, and
as it becomes more and more complex, the system core tasks must be identified,
in order to split it into smaller parts. Then, the software will be parallelized by
means of a multi-thread programming model.

114

In this step, the multiple task algorithms are assigned to different threads. Since
threads usually share data, synchronization mechanisms are mandatory to avoid
race conditions, and are usually provided by the multi-threading API. Figure 5.5
presents the task graph of the system, where the core tasks of the system are identi-
fied and were already assigned to different threads, along with the synchronization
mechanisms be used.

3-phase Grid Samples
FIFO

AquisitionThread
2-phase (α/β)

Voltage/Current FIFO

Clarke Transformation
Thread

Instantaneous Powers
Calculation Thread

α/β Currents
Calculation Thread

Inverse Clarke
Transformation Thread

Sensors

Average/Alternating
Powers FIFOα/β Compensation

Currents FIFO Pop

Compensation
Currents

Push Push PopPop

Push

PopPop

Figure 5.5: Active power filter controller application task graph

The modeled system was implemented using the C++ programming language,
and implement each different task in software, POSIX threads were used. Similar
blocks were grouped in the same thread, such as voltage and current acquisition,
or the Clarke Transformations for the voltage and current values.

The programming technique used to achieve concurrency (topic discussed in sub-
section 2.2.1) was the mesa-style semantics, which is based on the producer-
consumer synchronization problem. This was the chosen technique since it is
more efficient, requiring less context switches than for example Hoare semantics,
and signal broadcasting is also easier to implement.

As already mentioned, POSIX synchronization mechanisms were used, namely mu-
texes and condition variables. First In First Out (FIFO) queues were used to store
data and allow threads to process data independently, breaking the sequentiality
between them.

Figure 5.6 presents the first part of the Unified Modeling Language (UML) class
diagram for the developed application, since only the "main" class, CSystem, along
with the processing and queue classes are represented. The rest, namely the thread
data classes, are to be presented later in the second part of the UML class diagram.

As can be seen in the first part of the class diagram, the CSystem class groups all

115

CADC
-miSize: int
-mpdSamples: double *
-mfpFile: FILE *
-msFilename: string
+CADC(string, int)
+~CADC()
+connect(): bool
+disconnect(): bool
+acquire(): void
+getGridS(): SGridSample
+insert(int32_t, int32_t, int32_t): void

CClarkeTransform
-mi32A: int32_t
-mi32B: int32_t
-mi32C: int32_t
-mi32Alpha: int32_t
-mi32Beta: int32_t
-mi32Zero: int32_t
+CClarkeTransform()
+~CClarkeTransform()
+insert(int32_t, int32_t, int32_t): void
+calculateCT(): void
+get_alpha(): int32_t
+get_beta(): int32_t
+get_zero(): int32_t

CPQCalc
-mi32IAlpha: int32_t
-mi32IBeta: int32_t
-mi32IZero: int32_t
-mi32VAlpha: int32_t
-mi32VBeta: int32_t
-mi32VZero: int32_t
-mi32P: int32_t
-mi32Q: int32_t
+CPQCalc()
+~CPQCalc()
+insert_Current(int32_t, int32_t,
int32_t): void
+insert_Voltage(int32_t, int32_t,
int32_t): void
+calculate_PQ(): void
+get_iAlpha(): int32_t
+get_iBeta(): int32_t
+get_iZero(): int32_t
+get_vAlpha(): int32_t
+get_vBeta(): int32_t
+get_vZero(): int32_t
+get_P(): int32_t
+get_Q(): int32_t

CThread
-mthID: pthread_t
-mpThread_func: void *(*)(void *)
-miPriority: int
-mpData: SThreadData *
+CThread(void *(*)(void *), int ,
SThreadData *)
+~CThread()
+init(): void
+join(): void

CSystem
-GridVoltage: CADC
-GridCurrent: CADC
-ClarkeVoltage: CClarkeTransform
-ClarkeCurrent: CClarkeTransform
-PQ: CPQCalc
-AB: CABCalc
-CC: CCompCurrCalc

-FifoGrid: CFifo
-FifoClarke: CFifo
-FifoAB: CFifo
-FifoPQ: CFifoPQ

-Acq_Thread: CThread
-CT_Thread: CThread
-PQ_Thread: CThread
-AB_Thread: CThread
-Comp_Thread: CThread

-Acq_Thread_Data:
SAcquisitionThreadData
-CT_Thread_Data: SClarkeThreadData
-PQ_Thread_Data: SPowersThreadData
-AB_Thread_Data:
SAlphaBetaThreadData
-Comp_Thread_Data:
SCompThreadData

-FifoClarkeMutex: pthread_mutex_t
-FifoClarkeCond: pthread_cond_t
-FifoPQMutex: pthread_mutex_t
-FifoPQCond: pthread_cond_t
-FifoABMutex: pthread_mutex_t
-FifoABCond: pthread_cond_t
-CSystem()
-~CSystem()
+init(): void

CABCalc
-mi32VAlpha: int32_t
-mi32VBeta: int32_t
-mi32P_comp: int32_t
-mi32Q_comp: int32_t
-mi32ICAlpha: int32_t
-mi32ICBeta: int32_t
-mi32ICZero: int32_t
+CABCalc()
+~CABCalc()
+insert(int32_t, int32_t, int32_t,
int32_t, int32_t): void
+calculateAB_currs(): void
+get_iCAlpha(): int32_t
+get_iCBeta(): int32_t
+get_iCZero(): int32_t

CCompCurrCalc
-mi32ICAlpha: int32_t
-mi32ICBeta: int32_t
-mi32ICZero: int32_t
-mi32ICA: int32_t
-mi32ICB: int32_t
-mi32ICC: int32_t
+CCompCurrCalc()
+~CCompCurrCalc()
+insert(int32_t, int32_t, int32_t): void
+calculate_compCurrs(): void
+get_iCA(): int32_t
+get_iCB(): int32_t
+get_iCC(): int32_t

TFifo
-mpBuffer: Sample *
-mpEnd: Sample *
-mpToPush: Sample *
-mpToPop: Sample *
-mbPopWrap: bool
-mbPushWrap: bool
+CFifo(int size = SIZE)
+~CFifo()
+pop(): Sample
+push(Sample): void
+empty(): bool
+full(): bool

Sample

TFifoPQ
-mpBuffer: Sample *
-mpEnd: Sample *
-mpToPush: Sample *
-mpToPop: Sample *
-mbPopWrap: bool
-mbPushWrap: bool
-miSumWrap: int
-mSSum: Sample
+CFifoPQ(int size = SIZE)
+~CFifoPQ()
+pop(): Sample
+push(Sample): void
+empty(): bool
+full(): bool
+get_avg(): Sample

Sample

Figure 5.6: Active power filter controller application UML, part 1

the objects that will be used by the threads. Only 1 object of this type will be
instantiated, that will initialize and join the threads.

The template classes TFifo and TFifoPQ are very similar, but TFifoPQ has special
operators to deal with the mean real power calculation. These classes represent

116

the FIFOs to be used by the application in order to transfer data between threads.

The CADC class represents the "Aquisition" task in figure 5.3. It implements
mechanisms to read values from the PSIM simulation and place them on a FIFO,
acting as an Analog to Digital Converter (ADC).

The CClarkeTransform class represents the "Clarke Transformation" task in the
task graph. This class grabs the values from the ADC and perform the Clarke
Transformation, placing the results in the next FIFO.

The CPQCalc class represents the "Instantaneous Powers Calculation" task in the
task graph. It uses the α/β voltage and current received values in order to calculate
the real and imaginary powers. It will then push the values into a PQ-FIFO, as
above-mentioned.

The CABCalc class represents the "α/β Currents Calculation" task in the task
graph. This class will calculate the compensation currents in the α/β reference
frame, and place them on the last FIFO.

The CCompCurrCalc class represents the "Inverse Clarke Transformation" task in
the task graph. It will grab the α/β compensation currents from the last FIFO
and perform the Inverse Clarke Transformation on the voltage and current values.
These values will then be sent back to PSIM, so they can be shown in the integrated
waveform viwer SimView.

The CThread class is present in the next class diagram, and will then be explained.

Figure 5.7 presents the second and last part of the UML class diagram for the
developed application.

In this diagram, the CSystem class is again shown, but in a simplified represen-
tation, since it was already shown in the last one. The CThread is fully also
replicated. The other represented classes are the thread data structures and the
different sample types data structures.

The CThread objects represent the running threads and contain each thread iden-
tifier and priority along with the start routine and data container.

The SThreadData struct is an empty base-struct, so the CThread class can have a
generic data container, represented by the derived-structs SAcquisitionThreadData,
SClarkeThreadData, SAlphaBetaThreadData and SCompThreadData. Each one
of these structs have different members, in order to provide their correspondent

117

CThread
-mthID: pthread_t
-mpThread_func: void *(*)(void *)
-miPriority: int
-mpData: SThreadData *
+CThread(void *(*)(void *), int ,
SThreadData *)
+~CThread()
+init(): void
+join(): void

SThreadData

CSystem
-Acq_Thread: CThread
-CT_Thread: CThread
-PQ_Thread: CThread
-AB_Thread: CThread
-Comp_Thread: CThread

SAcquisitionThreadData
+mpFifo: TFifo <SGridSample> *
+mpVoltageADC: CADC*
+mpCurrentADC: CADC*
+mpFifoMutex: pthread_mutex *
+mpFifoCond: pthread_cond *
+thread_acquisition_func(void*): void*

SClarkeThreadData
+mpInFifo: TFifo <SGridSample> *
+mpOutFifo: TFifo <SClarkeSample> *
+mpClarkeVoltage: CClarkeTransform*
+mpClarkeCurrent: CClarkeTransform*
+mpInFifoMutex: pthread_mutex *
+mpInFifoCond: pthread_cond *
+mpOutFifoMutex: pthread_mutex *
+mpOutFifoCond: pthread_cond *
+thread_clarke_func(void*): void*

SPowersThreadData
+mpInFifo: TFifo <SClarkeSample> *
+mpOutFifo:TFifoPQ<SPowerSample>*
+mpInstantPowers: CPQCalc*
+mpInFifoMutex: pthread_mutex *
+mpInFifoCond: pthread_cond *
+mpOutFifoMutex: pthread_mutex *
+mpOutFifoCond: pthread_cond *
+thread_powers_func(void*): void*

SAlphaBetaThreadData
+mpInFifo: TFifoPQ<SPowerSample> *
+mpOutFifo:TFifo<SABCompSample> *
+mpABCurrents: CABCalc*
+mpInFifoMutex: pthread_mutex *
+mpInFifoCond: pthread_cond *
+mpOutFifoMutex: pthread_mutex *
+mpOutFifoCond: pthread_cond *
+thread_alphabeta_func(void*): void*

SCompThreadData
+mpFifo: TFifo *
+mpCompCurrents: CCompCurrCalc*
+mpFifoMutex: pthread_mutex *
+mpFifoCond: pthread_cond *
+thread_compensation_func(void*):
void*

SGridSample
+mi32iA: int32_t
+mi32iB: int32_t
+mi32iC: int32_t
+mi32vA: int32_t
+mi32vB: int32_t
+mi32vC: int32_t

SClarkeSample
+mi32Current: SClarke
+mi32Voltage: SClarke

SPowerSample
+mi32P: int32_t
+mi32Q: int32_t
+mi32Clarke: SClarkeSample

SABCompSample
+mi32ICAlpha: int32_t
+mi32ICBeta: int32_t
+mi32ICZero: int32_t

SCompSample
+mi32ICA: int32_t
+mi32ICB: int32_t
+mi32ICC: int32_t
+mi32ICN: int32_t

SClarke
+mi32Alpha: int32_t
+mi32Beta: int32_t
+mi32Zero: int32_t

Figure 5.7: Active power filter controller application UML, part 2

thread with the needed data.

5.3 Hardware Behavioral Validation

The functionality of the developed software application for the shunt active power
filter controller was proven in the last subsection, but as mentioned in the beginning
of the current section, in order to identify the threads to be migrated to hardware
the application has to be profiled.

118

5.3.1 Profiling

Oprofile was used to profile the software-only application. It is unobtrusive, which
means there is no need for special recompilations or wrapper libraries when using
it, instead being based on CPU performance counters (Oprofile, 2015).

The results from the software application profiling are dependent on the target
architecture, so the profiling results can be misleading, since the hardware behavior
can be very different from the expected. Even though, by profiling the software
application, the developer can take some impressions: the most critical tasks as
seen from the profiling results are good candidates for hardware acceleration. From
the profiling results obtained, the Clarke Transformation thread is one of the
most critical tasks in terms of processing, along with the Instantaneous Powers
Calculation, the first due to its’ calculus, and the second due to the number of
memory accesses.

5.3.2 C/C++ Behavioral Models

Again following the design flow presented in section 4.1, before developing the
accelerators, the hardware’s behavior can be validated using the QEMU Plugin
Extension developed by Naia (2015), with behavioral C/C++ models for the mi-
grated hardware being integrated into the emulated machine. This allows testing
the behavior of the hardware before developing the HDL IP’s, allowing the de-
velopment and validation of the device drivers, that may reveal a very lengthy
task.

The hardware-software application will now run over the Target Linux Kernel,
on the QEMU emulated target machine. As already mentioned, the software
application must be modified, with delegate threads replacing the software threads
identified as candidates for hardware acceleration.

Hardware Delegate Threads

Figure 5.8 shows how the Clarke Transformation Software Thread behaves as re-
gards to the Clarke Transformation calculus: in order to perform it, the thread
invokes the calculate_CT function from the CClarkeTransformation class.

119

 while(true)
 {

(…)
//Next step: Clarke Transformation
 clarkeCurrent->calculate_CT();

 clarkeVoltage->calculate_CT();

(…)
 }

SW Thread

void CClarkeTransform::calculate_CT()
{

(…)
}

CClarkeTransform.cpp

Figure 5.8: Clarke Transformation SW Thread Processing Overview

As already mentioned, the hardware delegate threads must entrust their process-
ing to the C/C++ behavioral models. This procedure can be observed in Figure
5.9, and the main difference from the SW thread is that when the Clarke Trans-
formation calculus must be performed, the application performs a read or write
system call to a device driver. This device driver will perform a write/read on the
hardware, that QEMU will grab and send to the Clarke Transformation Behavioral
Model, which is a C/C++ QEMU Plugin Model. This plugin acts as a hardware
representation for the Clarke Transformation, and will perform its’ calculus.

 while(true)
 {

(…)
//Next step: Clarke Transformation
write(driverA, dataA , sizeof(dataA));

read(driverA, data , sizeof(data));

(…)
 }

HW Delegate Thread Linux Kernel
(Device Drivers)

static ssize_t dev_read(...)
{

(…)
read = ioread32(base_addr);
(…)

}

C/C++ Clarke Transformation

Behavioral Model

Figure 5.9: Clarke Transformation HW Delegate Thread Processing Overview

This way, the device drivers can be easily tested and validated, so that when
passing to the RTL simulation phase, there are no issues related to them.

120

5.4 System Co-Simulation

Since the hardware’s behavior and the device drivers were already validated in
the last phase, the hardware accelerators can now be developed and tested, with
the RLT simulation being performed on Vivado Simulator and the simulated IP’s
replacing the previously used C/C++ behavioral models. The hardware delegate
threads remain, and will now entrust their processing to the external HW models
present in the external HDL simulator.

After the hardware IP’s have been developed, the system can be simulated in
all it’s domains: embedded software, hardware accelerators and electrical circuit.
This is possible by using QEMU along with the simulation extensions developed
during this work and the ones developed by Naia (2015), and Figure 4.6 presents
an overview diagram of the co-simulation environment.

The hardware IPs being simulated on Vivado Simulator will communicate with
QEMU using the simulation extensions described in chapter 4, via device driver
system calls made from the hardware delegate thread present in the now altered
software application described in the last subsection.

5.4.1 Hardware Acceleration

As above-mentioned, the chosen task for hardware acceleration was the Clarke
Transformation. Given this, an hardware IP that performs the Clarke Transfor-
mation must be developed and tested. In this work, the used HDL was SystemVer-
ilog, and the used RTL simulator was the Vivado Simulator, as already mentioned
in the document.

The Clarke Transformation IP will behave the same as the Clarke Transformation
Behavioral Model used in the last design flow phase. As the software thread for
the Clarke Transformation task was already migrated into a delegate hardware
thread, and the device driver was developed and validated, testing the developed
HW IP along with the rest of system is now faster and less prone to errors.

Appendix B.6 contains the Clarke Transformation IP SystemVerilog code used to
co-simulate the system.

121

122

Chapter 6

Conclusion

This chapter finalizes this document, summing up this dissertation by reviewing
the developed work. Some interesting topics regarding future work will also be
mentioned.

In order to achieve the objectives of this challenging project that brought to-
gether the Embedded Systems and Power Electronics domains, a broad set of
skills was needed. The required knowledge areas are varied, including embedded
system design and platform bring-up, Linux device driver development, dynamic
library integration, HDL dedicated co-processor design, HDL simulation interface
frameworks, HVL simulation interface frameworks, analog hardware simulation
interfaces, harmonic current compensation from electrical installations and co-
simulation environments.

Given that this work is framed with the ESRGs concept of co-simulation, and
is a sequel to a previous work, the first stages were based on assimilating the
already developed concepts and interfaces. This dissertation leaves "open doors"
for further development and improvement of the current co-simulation framework
for hardware accelerated embedded systems.

Given the above-mentioned reasons, along with the project’s validation using the
obtained results, it is concluded that the educational and project objectives were
accomplished.

123

6.1 Developed Work

Concerning the developed work, the simulation extensions that had been com-
pleted in the past along with the ones developed during this dissertation enables
the creation of an integrated co-simulation environment. The initial software ap-
plication trials using rapid deployment of behavioral hardware IPs as plugins, that
was made possible before this work, were now complimented with extensions that
allow not only for co-simulation between software and hardware acceleration , but
also involving the power systems domain.

The possibility of stimulating the system under test using simulation tools such
as PSIM R©, which also enables graphic and analytic verification of the outputs, is
a great improvement and a step forward in the development of a framework for
co-simulation purposes.

By using a real application scenario to validate the behavior of the co-simulation
environment, the hardware acceleration and power systems related extensions were
tested, along with the developed Linux device drivers. The presented design flow
for hardware accelerated embedded systems was also validated, which allows for
faster development of projects of this kind.

However, the HDL modules simulation used does not model any system bus inter-
actions accurately, and when it comes to real system buses, the transactions will
surely be slower. In order to prevent this shortcoming, every developed hardware
co-processor must be wrapped in a slave wrapper for the specific architecture’s
system bus.

6.2 Future Work

Regarding possible future work, and as already stated, this project opens up many
interesting possibilities for further improvements that may result in benefits to the
design flow, minimizing development time and costs.

To begin with, support for commonly used SoC-based platforms such as the Xil-
inx Zynq family could be added to QEMU. This task may prove easier than it
looks like, since Xilinx actively develops a QEMU tree for both Microblaze, Zynq
and Zynq UltraScale+. By adding support for these architectures, the deploy-
ment of the developed hardware accelerators along with the simulated software

124

would become much easier and direct, requiring less changes in order to be fully
functional.

As mentioned in section 2.4.1, HLS tools can be used in order to fasten up the
hardware acceleration phase, since they use behavioral descriptions to create digital
hardware that implements such behavior. By using HLS tools such as Xilinxs’
Vivado High-Level Synthesis, the algorithms may be developed and verified in
software languages like C/C++ and then converted to HW IP’s.

Another enhancement would be to implement cycle-accurate emulation for sys-
tem buses commonly used in target architectures, such as Advanced eXtensible
Interface (AXI), Processor Local Bus (PLB) or Peripheral Component Interconnect
express (PCIe). Before performing platform deployment, mistakes made when
mapping the hardware IP in the target system bus may go by unnoticed, since
the interface between the hardware delegate threads and the co-processors is per-
formed by the testbench. As it is, the currently supported design flow partially
helps system wide validation, but this step would enable less changes to the sim-
ulated system when being deployed into the target platform.

Also, other simulation domains could be integrated in this co-simulation environ-
ment, by introducing domain-specific tools, like a SPICE simulator. This way, full
system validation would become even closer to reality, which is a very appealing
feature while developing power electronics scenarios.

By adapting the developed simulation extensions to follow the FMI standard pre-
sented in section 3.5 would allow for a more portable interface, not to mention
the industry acceptance. The integration of other simulators and tools into the
co-simulation environment would also be easier, since there are many simulation
tools in other domains that already support this standard.

The last suggestion for future work is to improve the thread model used, in order
to allow direct data exchange between hardware delegate threads and reduce the
overhead introduced by the device driver system calls. The use of DMAs would
be a good way to improve the real-time capabilities of the co-simulation environ-
ment, since it allows peripheral components to transfer their I/O data directly to
and from main memory, greatly increasing throughput to and from a device and
eliminating great part of computational overhead.

125

126

Bibliography

D. Abbott, Linux for Embedded and Real-Time Applications, ser. Embedded tech-
nology series. Newnes, 2003.

H. Akagi, E. W. Hirokazu, and M. Aredes, Instantaneous Power Theory and Ap-
plications to Power Conditioning, ser. IEEE Press Series on Power Engineering.
Wiley-IEEE Press, 2007.

Altera, “What is an SoC FPGA?” Architecture Brief, 2014. [Online].
Available: https://www.altera.com/content/dam/altera-www/global/en_US/
pdfs/literature/ab/ab1_soc_fpga.pdf

——, “Spectra-Q Engine,” Backgrounder, 2015. [Online]. Avail-
able: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/
literature/backgrounder/spectra-q-engine-backgrounder.pdf

M. Armbruster, “QEMU interface introspection: From hacks to so-
lutions,” 2015. [Online]. Available: https://drive.google.com/file/d/
0BzyAwvVlQckeWW5DRldRU2tKYlU/view

F. Balducci, “OpenRisc Verilog simulation of serial port communica-
tion,” 2009. [Online]. Available: https://balau82.wordpress.com/2009/12/17/
openrisc-verilog-simulation-of-serial-port-communication/

Barebox.org, “The Barebox Bootloader,” 2016. [Online]. Available: http:
//www.barebox.org/

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist,
a. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel,
H. Olsson, J. V. Peetz, and S. Wolf, “The Functional Mock-up Interface
for Tool independent Exchange of Simulation Models,” in Proceedings of
the 8th International MODELICA Conference in Dresden, no. 063. Linköping

127

University Electronic Press, March 2011, pp. 105–114. [Online]. Available:
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf

T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist,
M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel et al., “Functional Mock-
up Interface 2.0: The Standard for Tool Independent Exchange of Simulation
Models,” in Proceedings of the 9th International MODELICA Conference in
Munich, no. 076. Linköping University Electronic Press, November 2012, pp.
173–184. [Online]. Available: http://www.ep.liu.se/ecp/076/017/ecp12076017.
pdf

DENX Software Engineering, “Das U-Boot - the Universal Boot Loader,” 2016.
[Online]. Available: http://www.denx.de/wiki/U-Boot

C. Ebert and C. Jones, “Embedded software: Facts, figures, and future,”
Computer, vol. 42, no. 4, pp. 42–52, apr 2009. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5054871

Free Electrons, “Buildroot,” 2016. [Online]. Available: https://buildroot.org/

M. Gries and K. Keutzer, Building ASIPS: The Mescal Methodology. Springer,
2005.

L. Hansen, “Unleash the Unparalleled Power and Flexibility of Zynq
UltraScale+ MPSoCs,” Xilinx, White Paper, June 2016, v1.1.
[Online]. Available: http://www.xilinx.com/support/documentation/white_
papers/wp470-ultrascale-plus-power-flexibility.pdf

S. Hauck and A. DeHon, Reconfigurable Computing - The Theory and Pratice of
FPGA-Based Computing. Morgan Kaufmann Publishers Inc., 2008.

T. Huffmire, C. Irvine, T. D. Nguyen, T. Levin, R. Kastner, and T. Sherwood,
Handbook of FPGA Design Security. Springer, 2010.

IEEE, “IEEE Standard for SystemVerilog - Unified Hardware Design, Specifica-
tion, and Verification Language,” IEEE Std. 1800TM-2012, February 2013. [On-
line]. Available: https://standards.ieee.org/findstds/standard/1800-2012.html

S. P. Khatri and K. Gulati, Hardware Acceleration of EDA Algorithms: Custom
ICs, FPGAs and GPUs, 1st ed. Springer US, 2010.

I. Lee, J. Y.-T. Leung, and S. H. Son, Handbook of Real-Time and Embedded
Systems. Chapman and Hall/CRC, 2007.

128

J. Liaw, “QEMU Binary Translations,” 2014. [Online]. Available: http:
//pt.slideshare.net/RampantJeff/qemu-binary-translation

M. Marazakis, “QEMU: Architecture and Internals Lecture for the Embedded
Systems Course.” [Online]. Available: http://www.csd.uoc.gr/~hy428/reading/
qemu-internals-slides-may6-2014.pdf

C. Maxfield, FPGAs: World Class Designs. Newnes, 2009, vol. 1.

A. McHoes and I. M. Flynn, Understanding Operating Systems, 7th ed. Course
Technology, 2013.

MODELISAR, Functional Mock-up Interface for Co-Simulation, October 2010,
version 1.0. [Online]. Available: https://svn.modelica.org/fmi/branches/public/
specifications/v1.0/FMI_for_CoSimulation_v1.0.pdf

——, Functional Mock-up Interface for Model Exchange , January 2010, ver-
sion 1.0. [Online]. Available: https://svn.modelica.org/fmi/branches/public/
specifications/v1.0/FMI_for_ModelExchange_v1.0.pdf

MODELISAR and Modelica Association, Functional Mock-up Interface for
Model Exchange and Co-Simulation, July 2014, version 2.0. [Online]. Avail-
able: https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_
for_ModelExchange_and_CoSimulation_v2.0.pdf

Modelon, FMI Library: part of JModelica.org, April 2016, version 2.0.2b3. [Online].
Available: http://www.jmodelica.org/api-docs/FMIL_docs/FMILibrary-2.0.
2b3.pdf

N. Naia, “Real-Time Linux and Hardware Accelerated Systems on QEMU,” Master
Thesis, Universidade do Minho, 2015.

T. Noergaard, Embedded Systems Architecture: A Comprehensive Guide for Engi-
neers and Programmers, 2nd ed. Newnes, 2013.

P. Oliveira, “Sistema de Aquisição de Sinais em Tempo Real Baseado em Linux,”
Master Thesis, Universidade do Minho, 2013.

Oprofile, “Oprofile Overview and Features,” 2015. [Online]. Available: http:
//oprofile.sourceforge.net/about/

129

T. Petazzoni, “Device Tree for Dummies,” October 2013, pre-
sented at Embedded Linux Conference Europe 2013. [On-
line]. Available: https://events.linuxfoundation.org/sites/events/files/slides/
petazzoni-device-tree-dummies.pdf

Powersim, “Help on the General DLL Block in PSIM R©,” User Guide, October
2004. [Online]. Available: http://caxapa.ru/thumbs/591244/Help_General_
DLL_Block.pdf

——, “PSIM R© User’s Guide,” User Guide, January 2016, version 10.0,
Release 5. [Online]. Available: https://powersimtech.com/drive/uploads/2016/
06/PSIM-User-Manual.pdf

Red Hat, Inc., “RedBoot,” 2016. [Online]. Available: https://sourceware.org/
redboot/

J. Sato, M. Imai, T. Hakata, A. Alomary, and N. Hikichi, “An integrated design
environment for application specific integrated processor,” IEEE International
Conference on Computer Design: VLSI in Computers and Processors, pp. 414–
417, October 1991.

V. Silva, “Sistema de Aquisição de Dados Tempo Real baseado em Linux,” Master
Thesis, Universidade do Minho, 2011.

C. Spear and G. Tumbush, SystemVerilog for Verification: A Guide to Learning
the Testbench Language Features, 3rd ed. Springer Science+Business Media,
2012.

W. Stallings, Operating Systems: Internals and Design Principles, 8th ed. Pear-
son, 2014.

S. Sutherland, “Transitioning to the New PLI Standard,” March 1998,
paper presented at the 1998 IEEE International Verilog HDL Conference
in Santa Clara. [Online]. Available: http://sutherland-hdl.com/papers/
1998-HDLCon-paper_transitioning_to_new_PLI.pdf

——, The Verilog PLI Handbook: User’s Guide and Comprehensive Reference
on the Verilog Programming Language Interface, 2nd ed. Kluwer Academic
Publishers, 2002, no. 1.

——, “SystemVerilog 3.1: The Hardware Description AND Verification Language,”
March 2003, paper presented at Synopsys 2003 SNUG San Jose conference.

130

[Online]. Available: http://sutherland-hdl.com/papers/2003-SNUG-paper_
SystemVerilog.pdf

——, “The Verilog PLI Is Dead (maybe). Long Live The SystemVerilog DPI!”
March 2004, paper presented at Synopsys 2004 SNUG San Jose conference.
[Online]. Available: http://sutherland-hdl.com/papers/2004-SNUG-paper_
Verilog_PLI_versus_SystemVerilog_DPI.pdf

S. Sutherland and D. Mills, “Synthesizing SystemVerilog: Busting
the Myth that SystemVerilog is only for Verification,” Novem-
ber 2013, paper presented at Synopsys 2013 SNUG Silicon Valley
2013. [Online]. Available: http://sutherland-hdl.com/papers/2013-SNUG-SV_
Synthesizable-SystemVerilog_paper.pdf

S. Tu, “AtomTM-x5/x7 series processor, codenamed Cherry Trail,” January
2015, Intel Developer Forum 2015. [Online]. Available: http://www.hotchips.
org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.
70-Processors-Epub/HC27.25.740-Atom-CherryTrail-Tu-Intel.pdf

J. Turley, The Essential Guide to Semiconductors, 1st ed. Prentice Hall, 2002.

F. Vahid and T. Givargis, Embedded System Design - A Unified Hardware/Software
Approach. University of California, 1999.

C. Wen-Ren, “QEMU Detailed Study,” 2011. [Online]. Available: https:
//lists.gnu.org/archive/html/qemu-devel/2011-04/pdfhC5rVdz7U8.pdf

Xilinx, “Vivado Design Suite: Logic Simulation,” User Guide, June 2016,
v2016.2. [Online]. Available: http://www.xilinx.com/support/documentation/
sw_manuals/xilinx2016_2/ug900-vivado-logic-simulation.pdf

——, “Vivado Design Suite High-Level Synthesis,” User Guide, June 2016,
v2016.2. [Online]. Available: http://www.xilinx.com/support/documentation/
sw_manuals/xilinx2016_2/ug902-vivado-high-level-synthesis.pdf

——, “7 Series FPGAs Overview,” Product Specification, May 2015, v1.17.
[Online]. Available: http://www.xilinx.com/support/documentation/data_
sheets/ds180_7Series_Overview.pdf

K. Yaghmour, J. Masters, G. Ben-Yossef, and P. Gerum, Building Embedded Linux
Systems, 2nd ed. O’Reilly Media, 2008.

131

W. M. Zabołotny, “Development of embedded PC and FPGA based systems with
virtual hardware,” in Proc. of SPIE Vol. 8454 84540S-1, Photonics Applica-
tions in Astronomy, Communications, Industry, and High-Energy Physics Ex-
periments, 2012.

132

Appendix A

Buildroot Support

A.1 Real-time Linux Patching and Compilation
with Buildroot

In this appendix, the basics on how to compile a real-time Linux kernel using
Buildroot will be shown.

A.1.1 Buildroot Installation

The latest stable buildroot version can be downloaded from:

https://buildroot.org/download.html

This location also maintains stable versions of Buildroot, as well as Release Candidate
(RC) versions, although their use is not encouraged. As of this document’s elabo-
ration, the latest stable release is 2016.08 and it will be the one used throughout
this appendix.

To download Buildroot, use the following command:

$ wget https :// buildroot .org/ downloads /buildroot
-2016.08. tar.gz

The downloaded context is compressed, so it should be later extracted to a desired
directory using:

$ tar -xvf buildroot -2016.08. tar.gz -C "target folder"

133

The result of the extraction is the creation of a folder called "buildroot-2016.08" at
the target directory, with a set of makefiles and scripts that constitute Buildroot.

This does not contain the toolchain, Linux sources and other services related to
target system generation, as they will be downloaded later during the system com-
pilation, with the produced output being located at "buildroot-2016.08/output".

A.1.2 Real-time Linux Compilation

Buildroot provides a set of default configurations for a wide number of supported
boards. To list the supported defconfigs run:

$ make list - defconfigs

For this example, the used defconfig will be the as follows:

$ make qemu_arm_vexpress_defconfig

To access kernel-specific configuration, a graphical menu can be prompted using:

$ make linux - menuconfig

By accessing the kernel features, it is possible to observe that no real-time pre-
emption is available:

Figure A.1: Linux kernel configuration

134

Figure A.2: Linux kernel features

Figure A.3: Linux kernel preemption mode selection

135

To enable real-time preemption, a patch is maintained in kernel.org, formally
known as the RT-Preempt Patch. The latest stable version of the RT-Preempt
patch can be found in:

https://www.kernel.org/pub/linux/kernel/projects/rt

Buildroot provides support for kernel patches, like the RT-Preempt Patch. To
launch the Buildroot configuration menu just run:

$ make menuconfig

Figure A.4: Buildroot configuration

Fill the Custom Kernel patch field with the the .gz patch file URL, matching it
with the Kernel version currently being used.

136

Figure A.5: Buildroot configuration of kernel patch

Afterwards, if the kernel configuration menu is accessed again, real-time preemp-
tion will be available.

Figure A.6: Linux kernel preemption mode selection: real-time preemption

Finally, to compile the kernel simply run:

$ make

137

138

Appendix B

DPI Co-Simulation Library
Support Material

B.1 QEMU Monitor HW IP Property Output

dev: external -model , id ""
model name = " exampleHW "
simulation domain = " Hardware Acceleration "
simulation tool = "Vivado Simulator "
tool ip = " 127.0.0.1 "
tool port = 34429 (0 x867d)
memory mapped address = 1409363968 (0 x54013000)
mapped area size = 32 (0 x20)
number of interrupts = 0 (0x0)
mmio 0000000054013000/0000000000000020

139

B.2 Scripts for DPI Library: Compilation and
Usage

Parsing design SystemVerilog files:

xvlog -prj vlog.prj -sv toplevel .sv wrapper .sv ip.v

Elaborate and generate design snapshot for RTL simulation along with generating
the DPI header file to include in the DPI Library C layer:

xelab --relax --debug typical -m64 -L xil_defaultlib
-L unisims_ver -L unimacro_ver -L secureip
--snapshot toplevel xil_defaultlib .tb
-log elaborate .log -dpiheader dpi.h

B.2.1 Script to Parse and Elaborate Design files & Com-
pile the DPI C Layer Library

#!/bin/csh -xvf

xvlog -prj vlog.prj -sv toplevel .sv wrapper .sv ip.v

xelab --relax --debug typical -m64 -L xil_defaultlib
-L unisims_ver -L unimacro_ver -L secureip
--snapshot toplevel xil_defaultlib .tb
-log elaborate .log -dpiheader dpi.h

make UNIX =1

The makefile used in this script is present in Appendix B.8.

140

B.3 Device Driver for Vivado Simulator HW IP
External Model

1 # include <linux/init.h>
2 # include <linux/ module.h>
3 # include <linux/ device.h>
4 # include <linux/ kernel.h>
5 # include <linux/fs.h>
6 # include <asm/ uaccess .h>
7 # include <linux/wait.h>
8 # include <linux/ interrupt .h>
9 # include <linux/irq.h>

10 # include <asm/io.h>
11 # include <linux/ ioport.h>
12
13 #define DEVICE_NAME " exampleHW " // "/dev/DEVICE_NAME"
14 #define CLASS_NAME "hw -ip - example "
15 #define BASE_ADDR 0 x54013000
16 #define MAPPED_BLOCK_SIZE 32
17
18 MODULE_LICENSE ("GPL");
19 MODULE_AUTHOR (" CarlosMesquita ");
20 MODULE_DESCRIPTION ("Qemu hardware interface device

driver -> exampleHW ");
21 MODULE_VERSION ("1.1");
22
23
24 // Stores the device number - determined automatically
25 static int majorNumber ;
26
27 // The device -driver class struct pointerstatic
28 struct class* hw_ip_class = NULL;
29
30 // The device -driver device struct pointer
31 static struct device * hw_ip_device = NULL;
32

141

33 static int dev_open (struct inode *, struct file *);
34 static int dev_release (struct inode *, struct file *);
35 static ssize_t dev_read (struct file *, char *, size_t ,

loff_t *);
36 static ssize_t dev_write (struct file *, const char *,

size_t , loff_t *);
37
38 static struct file_operations fops =
39 {
40 .open = dev_open ,
41 .read = dev_read ,
42 .write = dev_write ,
43 . release = dev_release
44 };
45
46 static uint32_t * base_addr ;
47
48 // IRQ handler
49 static irqreturn_t irq_handler (int irq , void *dev_id)
50 {
51 return IRQ_HANDLED ;
52 }
53
54 // LKM initialization function
55 static int __init dev_init (void)
56 {
57 printk (KERN_INFO "%s: Initializing LKM\n",

DEVICE_NAME);
58
59 // Try to allocate a major number for the device
60 majorNumber = register_chrdev (0, DEVICE_NAME , &fops);
61 if (majorNumber < 0)
62 {
63 printk (KERN_ALERT "%s failed to register a major

number \n", DEVICE_NAME);
64 return majorNumber ;
65 }

142

66 printk (KERN_INFO "%s: registered correctly with major
number %d\n",DEVICE_NAME , majorNumber);

67
68 // Register the device class
69 hw_ip_class = class_create (THIS_MODULE , CLASS_NAME);
70
71 if (IS_ERR (hw_ip_class))
72 {
73 unregister_chrdev (majorNumber , DEVICE_NAME);
74 printk (KERN_ALERT "Failed to register device class

%s\n", CLASS_NAME);
75 return PTR_ERR (hw_ip_class);
76 }
77 printk (KERN_INFO "%s: device class registered

correctly \n", CLASS_NAME);
78
79 // Register the device driver
80 hw_ip_device = device_create(hw_ip_class , NULL , MKDEV

(majorNumber , 0), NULL , DEVICE_NAME);
81
82 if (IS_ERR(hw_ip_device))
83 {
84 class_destroy (hw_ip_class);
85 unregister_chrdev (majorNumber , DEVICE_NAME);
86 printk (KERN_ALERT "Failed to create device %s\n",

DEVICE_NAME);
87 return PTR_ERR (hw_ip_device);
88 }
89
90 if(! request_mem_region (BASE_ADDR , MAPPED_BLOCK_SIZE ,

DEVICE_NAME))
91 {
92 device_destroy (hw_ip_class , MKDEV(majorNumber ,0));
93 class_unregister (hw_ip_class);
94 class_destroy (hw_ip_class);
95 unregister_chrdev (majorNumber , DEVICE_NAME);
96 printk (KERN_ALERT "%s: Cannot acquire memory

143

region \n", DEVICE_NAME);
97 return -EBUSY;
98 }
99

100 base_addr = (uint32_t *) ioremap (BASE_ADDR ,
MAPPED_BLOCK_SIZE);

101
102 if(request_irq (INTERRUPT_0 , irq_handler ,

IRQF_IRQPOLL , DEVICE_NAME , NULL))
103 {
104 device_destroy (hw_ip_class , MKDEV(majorNumber ,0));
105 class_unregister (hw_ip_class);
106 class_destroy (hw_ip_class);
107 unregister_chrdev (majorNumber , DEVICE_NAME);
108 iounmap (base_addr);
109 release_mem_region (BASE_ADDR , MAPPED_BLOCK_SIZE);
110 printk (KERN_ALERT "%s: Couldn ’t install interrupt

handler \n", DEVICE_NAME);
111 return -EBUSY;
112 }
113 printk (KERN_INFO "%s: device created correctly \n",

DEVICE_NAME);
114 return 0;
115 }
116
117 // LKM cleanup function
118 static void __exit dev_exit (void)
119 {
120 device_destroy (hw_ip_class , MKDEV(majorNumber , 0));
121 class_unregister (hw_ip_class);
122 class_destroy (hw_ip_class);
123 unregister_chrdev (majorNumber , DEVICE_NAME);
124 iounmap (base_addr);
125 release_mem_region (BASE_ADDR , MAPPED_BLOCK_SIZE);
126 printk (KERN_INFO "%s: Removing module\n", DEVICE_NAME

);
127 }

144

128 // Device open function
129 static int dev_open (struct inode *inodep , struct file *

filep)
130 {
131 return 0;
132 }
133
134 // Device read function , called whenever the device is

being read from user space
135 static ssize_t dev_read (struct file *filep , char *buffer

, size_t len , loff_t *offset)
136 {
137 int error_count , read;
138
139 char * to_send = kmalloc (len , GFP_KERNEL);
140 if(! to_send)
141 {
142 printk (KERN_ALERT "%s: could not allocate memory

on read", DEVICE_NAME);
143 return -EFAULT ;
144 }
145
146 read = ioread32 (base_addr + offset);
147 sprintf (to_send , "%d", read);
148
149 error_count = copy_to_user (buffer , (char *) to_send ,

len);
150
151 kfree(to_send);
152
153 if(! error_count)
154 return len;
155 else
156 return -EFAULT ;
157 }
158
159

145

160 // Device write function , called whenever the device is
being written to from user space

161 static ssize_t dev_write (struct file *filep , const char
*buffer , size_t len , loff_t *offset)

162 {
163 int value;
164 char *recv;
165
166 recv = kmalloc (len , GFP_KERNEL);
167 if(! recv)
168 {
169 printk (KERN_ALERT "%s: could not allocate memory

on write", DEVICE_NAME);
170 return -EFAULT ;
171 }
172
173 copy_from_user (recv , buffer , len);
174 kstrtoint (recv , 10, &value);
175 iowrite32 (value , base_addr + offs);
176
177 kfree(recv);
178 return len;
179 }
180
181 static int dev_release (struct inode *inodep , struct file

*filep)
182 {
183 return 0;
184 }
185
186 module_init (dev_init);
187 module_exit (dev_exit);

146

B.4 SystemVerilog Top-Level Module Example

1 ‘timescale 1ns / 1ps
2
3 ‘default_nettype none
4
5 module top_level ();
6
7 localparam WORD = 32;
8
9 reg clk;

10 reg rst;
11 reg write;
12 reg ready;
13 reg busy;
14
15 reg [63 : 0] addr;
16 reg [63 : 0] offs;
17 reg [WORD - 1 : 0] din;
18 reg [WORD - 1 : 0] dout;
19
20
21 int PORT = 0;
22 string IP = "";
23
24 wrapper #(. WORD(WORD))
25 ex_wrapper (.addr(addr), .din(din), .offset(offs),

.dout(dout), .write(write), .busy(busy), .ready(
ready), .clk(clk), .rst(rst));

26
27
28 ///// INTERFACE EXPORT DECLARATIONS /////
29
30 export "DPI -C" function dpi_print ;
31 function void dpi_print (input string msg);
32 $ display ("%t :: %s", $time , msg);
33 endfunction

147

34
35 export "DPI -C" function stop_sim ;
36 function void stop_sim ();
37 display ("Stop simulation issued , stopping .");
38 $ finish ();
39 endfunction
40
41
42 ///// HW_ACCESS EXPORT DECLARATIONS /////
43
44 export "DPI -C" function dpi_write ;
45 function void dpi_write (input longint unsigned

memory_mapped_address , input longint unsigned
offset , input longint value , input int unsigned
size);

46 //Write Transaction to IP’s
47 endfunction
48
49 export "DPI -C" function dpi_read ;
50 function longint signed dpi_read (input longint

unsigned memory_mapped_address , input longint
unsigned offset , input int unsigned size);

51 //Read Transaction from IP’s
52 endfunction
53
54
55 ///// IMPORT DECLARATIONS /////
56
57 import "DPI -C" function int qemu_register_ip (string NAME

, longint unsigned MEMORY_MAPPED_ADDRESS , int
unsigned MAPPED_AREA_SIZE , int unsigned
INTERRUPTS_SIZE , string INTERRUPTS) ;

58
59 import "DPI -C" function int qemu_connect (string IP , int

PORT);
60
61 import "DPI -C" function void qemu_raise_int (longint

148

unsigned memory_mapped_address , int interrupt);
62
63 import "DPI -C" function void qemu_lower_int (longint

unsigned memory_mapped_address , int interrupt);
64
65 import "DPI -C" context function void trans_handle ();
66
67
68 ///// TESTBENCH /////
69
70 initial begin
71 qemu_register_ip
72 (
73 ex_wrapper .NAME ,
74 ex_wrapper . MEMORY_MAPPED_ADDRESS ,
75 ex_wrapper . MAPPED_AREA_SIZE ,
76 ex_wrapper . INTERRUPTS_SIZE ,
77 ex_wrapper . INTERRUPTS
78);
79
80 qemu_connect (IP , PORT);
81
82 #50
83 rst = 1;
84 #50
85 rst = 0;
86 end
87
88
89 always
90 begin
91 #100 clk = ~clk;
92 trans_handle ();
93 end
94
95 endmodule

149

B.5 SystemVerilog IP Wrapper Example

1 module wrapper #(parameter WORD = 32)
2 (
3 input clk ,
4 input rst ,
5 input [63 : 0]addr ,
6 input [63 : 0] offset ,
7 input [WORD - 1 : 0]din ,
8 input write ,
9 output [WORD - 1 : 0]dout ,

10 output ready ,
11 output busy
12);
13
14 string NAME = " example_HW_IP ";
15 longint MEMORY_MAPPED_ADDRESS = 64’ h54013000 ;
16 int MAPPED_AREA_SIZE = 32’d32;
17 int INTERRUPTS_SIZE = 32’d2;
18 string INTERRUPTS = "41 _20";
19
20 localparam MAPPED_REG_SIZE = MAPPED_AREA_SIZE /(WORD

/8);
21
22 wire[WORD -1:0] mapped_registers_input [MAPPED_REG_SIZE

-1:0];
23 wire[WORD -1:0] ip_write_enable [MAPPED_REG_SIZE -1:0];
24 reg[WORD -1:0] mapped_registers[MAPPED_REG_SIZE -1:0];
25
26 //Write access state machine
27 // states
28 localparam WAIT = 3’d0;
29 localparam READ = 3’d1;
30 localparam WRITE = 3’d2;
31 localparam READY_READ = 3’d3;
32 localparam READY_WRITE = 3’d4;
33 reg [2 : 0] state;

150

34 reg [2 : 0] next_state ;
35
36 // Sequential state logic
37 always@ (posedge clk)
38 begin
39 if(rst)
40 state <= WAIT;
41 else
42 state <= next_state ;
43 end
44
45 //Next state logic
46 always@ (*)
47 begin
48 case (state)
49 WAIT:
50 begin
51 if((addr >= MEMORY_MAPPED_ADDRESS)

&& (addr < (MEMORY_MAPPED_ADDRESS
+ MAPPED_AREA_SIZE)))

52 next_state = write ? WRITE :
READ;

53 else
54 next_state = WAIT;
55 end
56 READ:
57 next_state = READY_READ ;
58 WRITE:
59 next_state = READY_WRITE ;
60 READY_READ :
61 next_state = MEM WAIT;
62 READY_WRITE :
63 next_state = WAIT;
64 endcase
65 end
66
67 assign dout = (state == READ || state == READY_READ)

151

? mapped_registers [offset] : ’hz;
68 assign ready = (state == READY_READ || state ==

READY_WRITE) ? ’h1 : ’hz;
69
70
71 //IP instantiation
72 wire [WORD -1:0] _input;
73 wire [WORD -1:0] _output ;
74 wire [WORD -1:0] _output_ready ;
75
76 example_IP example_instance
77 (
78 .clock(clk),
79 .reset(rst),
80 .input(_input),
81 .output(_output),
82 . output_ready (_output_ready)
83);
84
85 //Port INPUT
86 assign _input = mapped_registers [0];
87 assign mapped_registers_input [0] = ’hz;
88
89 //PORT OUTPUT
90 assign mapped_registers_input [1] = _output ;
91 assign ip_write_enable [1] = {WORD{ _output_ready }};
92
93 endmodule

152

B.6 SystemVerilog Clarke Transformation IP

1 ‘define STATE1 4’b0000
2 ‘define STATE2 4’b0001
3 (...)
4 ‘define STATE9 4’b1000
5 ‘define RST 4’b1001
6
7 module clarkeTransform
8 (
9 input wire [31:0] sampleA ,

10 input wire [31:0] sampleB ,
11 input wire [31:0] sampleC ,
12 input wire clk ,
13 input wire rst ,
14 input wire trigger ,
15 output wire [31:0] outAlpha ,
16 output wire [31:0] outBeta ,
17 output wire [31:0] outZero ,
18 output wire busy ,
19 output wire ready
20);
21
22 //State machine
23 reg [3:0] currState ;
24 reg [3:0] nextState ;
25
26 // Control flags
27 reg rstState ;
28 reg saveAlpha ;
29 reg saveBeta ;
30 reg saveZero ;
31 reg saveMul ;
32 reg saveSom ;
33 reg rBusy;
34 reg rReady ;
35

153

36 // Add/Sub
37 reg [31:0] A;
38 reg [31:0] B;
39 reg add;
40 wire [31:0] S;
41
42 // Mult
43 wire [63:0] outputMul ;
44 reg [31:0] inputMulA ;
45 reg [31:0] inputMulB ;
46 reg ce;
47
48 reg [31:0] ralpha ;
49 reg [31:0] rbeta;
50 reg [31:0] rzero;
51
52 reg [31:0] auxSom ;
53 reg [31:0] auxMul ;
54
55 always @ (posedge clk) // update next state
56 begin
57 if(rst)
58 currState = ‘RST;
59 else
60 currState <= nextState ;
61 end
62
63 always @(*)
64 begin
65 case(currState)
66 ‘STATE1 :
67 nextState = (trigger) ? ‘STATE2 : ‘STATE1 ;
68 ‘STATE2 :
69 nextState = ‘STATE3 ;
70 ‘STATE3 :
71 nextState = ‘STATE4 ;
72 ‘STATE4 :

154

73 nextState = ‘STATE5 ;
74 ‘STATE5 :
75 nextState = ‘STATE6 ;
76 ‘STATE6 :
77 nextState = ‘STATE7 ;
78 ‘STATE7 :
79 nextState = ‘STATE8 ;
80 ‘STATE8 :
81 nextState = ‘STATE9 ;
82 ‘STATE9 :
83 nextState = ‘STATE1 ;
84 ‘RST:
85 nextState = ‘STATE1 ;
86 default:
87 nextState = ‘STATE1 ;
88 endcase
89 end
90
91 // add and sub block
92 addsub add_sub
93 (
94 .A(A), // input wire [31 : 0] A
95 .B(B), // input wire [31 : 0] B
96 .ADD(add), // input wire ADD
97 .S(S) // output wire [31 : 0] S
98);
99

100 multiplier mult
101 (
102 .CLK(clk), // input wire CLK
103 .A(inputMulA), // input wire [15 : 0] A
104 .B(inputMulB), // input wire [15 : 0] B
105 .CE(ce), // input wire CE
106 .P(outputMul) // output wire [31 : 0] P
107);
108
109

155

110 always @(*)
111 begin
112 if(currState == ‘STATE1) //Wait for trigger to begin
113 begin
114 (...)
115 end
116 else if(currState == ‘STATE2) //C2(B+C)
117 begin
118 (...)
119 end
120 else if(currState == ‘STATE3) //C1(A - ResultLast)
121 begin
122 (...)
123 end
124 else if(currState == ‘STATE4) //save Alpha
125 begin
126 (...)
127 end
128 else if(currState == ‘STATE5) // C3(B-C)
129 begin
130 (...)
131 end
132 else if(currState == ‘STATE6) // save Beta + (A+B)
133 begin
134 (...)
135 end
136
137 else if(currState == ‘STATE7) // C4(A+B+C)
138 begin
139 (...)
140 end
141
142 else if(currState == ‘STATE8) //save Zero
143 begin
144 (...)
145 end
146

156

147 else if(currState == ‘STATE9) // finish
148 begin
149 (...)
150 end
151 else // RST or default state
152 begin
153 (...)
154 end
155 end
156
157 // output
158 assign outAlpha = (ready == 1) ? ralpha : 0;
159 assign outBeta = (ready == 1) ? rbeta :0;
160 assign outZero = (ready == 1) ? rzero: 0;
161 assign ready = rReady ;
162 assign busy = rBusy;
163
164 always @(posedge clk)
165 begin
166 if(rstState)
167 begin
168 ralpha = 0;
169 rbeta = 0;
170 rzero = 0;
171 auxSom = 0;
172 auxMul = 0;
173 // rst state
174 end
175 else
176 begin
177 if(saveAlpha) // save Alpha
178 begin
179 ralpha = S ;
180 end
181
182 if(saveBeta) // save Beta
183 begin

157

184 if(outputMul [31] == 1)
185 rbeta ={10 ’ b1111111111 , outputMul

[31:10]};
186 else
187 rbeta ={10 ’ b0000000000 , outputMul

[31:10]};
188 end
189
190 if(saveZero) // save Zero
191 begin
192 if(outputMul [31] == 1)
193 rzero ={10 ’ b1111111111 , outputMul

[31:10]};
194 else
195 rzero ={10 ’ b0000000000 , outputMul

[31:10]};
196 end
197
198 if(saveSom)
199 auxSom = S;
200
201 if(saveMul)
202 begin
203 if(outputMul [31] == 1)
204 auxMul ={10 ’ b1111111111 , outputMul

[31:10]};
205 else
206 auxMul ={10 ’ b0000000000 , outputMul

[31:10]};
207 end
208 end
209 end
210
211 endmodule

158

B.7 DPI Library C Layer

1 static tool_info_t vivado_info = {
2 .name = "Vivado ",
3 .domain = " Hardware Acceleration ",
4 .models = NULL ,
5 . n_models = 0
6 };
7
8 typedef struct transaction_struct
9 {

10 int state;
11 pthread_mutex_t trans_mutex ;
12 pthread_cond_t trans_cond ;
13 uint64_t address ;
14 uint64_t offset;
15 int64_t value;
16 uint64_t size;
17 } transaction_struct ;
18
19 transaction_struct trans_read ;
20 transaction_struct trans_write ;
21
22
23 ///// TRANSACTION HANDLER /////
24
25 void trans_handle ()
26 {
27 if(trans_write .state)
28 {
29 trans_write .state = 0;
30
31 pthread_mutex_lock (& trans_write . trans_mutex);
32
33 dpi_write (trans_write .address , trans_write .offset ,

trans_write .value , trans_write .size);
34

159

35 pthread_mutex_unlock (& trans_write . trans_mutex);
36 }
37
38 if(trans_read .state)
39 {
40 trans_read .state = 0;
41
42 pthread_mutex_lock (& trans_read . trans_mutex);
43
44 trans_read .value = dpi_read (trans_read .address ,

trans_read .offset , trans_read .size);
45
46 pthread_mutex_unlock (& trans_read . trans_mutex);
47 }
48 }
49
50
51 ///// HW ACCESS ROUTINES /////
52
53 uint64_t hw_write (uint64_t memory_mapped_address ,

uint64_t offset , uint64_t value , uint32_t size ,
uint64_t time)

54 {
55 pthread_mutex_lock (& trans_write . trans_mutex);
56
57 trans_write . address = memory_mapped_address ;
58 trans_write . offset = offset;
59 trans_write .value = value;
60 trans_write .size = size;
61 trans_write .state = 1;
62
63 pthread_mutex_unlock (& trans_write . trans_mutex);
64 }
65
66
67 uint64_t hw_read (uint64_t memory_mapped_address ,

uint64_t offset , uint64_t *value , uint32_t size ,

160

uint64_t time)
68 {
69 pthread_mutex_lock (& trans_read . trans_mutex);
70
71 trans_read . address = memory_mapped_address ;
72 trans_read . offset = offset;
73 trans_read .size = size;
74 trans_read .state = 1;
75
76 pthread_mutex_unlock (& trans_read . trans_mutex);
77
78 *value = trans_read .value;
79 }
80
81
82 ///// INTERRUPT HANDLING /////
83
84 void dpi_raise_interrupt (uint64_t memory_mapped_address ,

int interrupt)
85 {
86 qemu_raise_interrupt (memory_mapped_address , interrupt

);
87 }
88
89 void dpi_lower_interrupt (uint64_t memory_mapped_address ,

int interrupt)
90 {
91 qemu_lower_interrupt (memory_mapped_address , interrupt

);
92 }

161

B.8 Makefile for the DPI C Layer Library and
the PSIM R© Library

1 NAME=dpi
2
3 ifdef UNIX
4 INC=$(MODEL_TECH)/ include /usr/ include /glib -2.0 /usr/lib

/x86_64 -linux -gnu/glib -2.0/ include $(QEMU_SOURCE) $(
QEMU_SOURCE)/ include

5 INC_PARAMS = $(INC :%=-I%)
6
7 CC=gcc
8 CFLAGS = -c -fPIC -DUNIX
9 LDFLAGS = -shared -lpthread -lhash

10
11 SRC = $(wildcard *.c)
12 OBJ = $(SRC :.c=.o)
13
14 $(NAME).so: $(OBJ)
15 $(CC) $(OBJ) $(LDFLAGS) -o $@
16
17 %.o: %.c
18 $(CC) $(CFLAGS) $(INC_PARAMS) $< -o $@
19 $(CC) -MM $(INC_PARAMS) $< > $*.d
20 @cp -f $*.d $*.d.tmp
21 @rm -f $*.d.tmp
22
23 else
24
25 INC=$(QEMU_SOURCE) $(QEMU_SOURCE)/ include
26 INC_PARAMS = $(INC :%=-I%)
27
28 ARCH =i686 -w64 - mingw32
29 CC = $(ARCH)-gcc
30 CXX = $(ARCH)-g++
31

162

32 CFLAGS = -shared -static -std=gnu99 -lpthread -lhash -
lwsock32 -DWIN32

33 CXXFLAGS = -shared -std=c++11 -static -lpthread -lhash -
lwsock32 -DWIN32

34 LDFLAGS = $(CFLAGS) -Wl ,--output -def
35
36 SRC = $(wildcard *.c)
37 OBJ = $(SRC :.c=.o)
38
39 DLL = $(NAME).dll
40 DEF = $(NAME).def
41
42 $(DLL): $(OBJ)
43 @$(CC) $(CFLAGS) $(INC_PARAMS) $(LDFLAGS),$(DEF) $(

OBJ) -o $(DLL) -lws2_32
44 @sed $(DEF) -i -e "s| _Z10RUNSIMUSERddPdS_PPvPiP |

RUNSIMUSER = _Z10RUNSIMUSERddPdS_PPvPiP |"
45 @sed $(DEF) -i -e "s| _Z11OPENSIMUSERPKcS0_PPvPiPcS1_ |

OPENSIMUSER = _Z11OPENSIMUSERPKcS0_PPvPiPcS1_ |"
46 @sed $(DEF) -i -e "s| _Z12CLOSESIMUSERPKcPPv |

CLOSESIMUSER = _Z12CLOSESIMUSERPKcPPv |"
47 @sed $(DEF) -i -e "s|

_Z15REQUESTUSERDATAiiiPPvPiS1_PcS2_ |
REQUESTUSERDATA =
_Z15REQUESTUSERDATAiiiPPvPiS1_PcS2_ |"

48 $(CC) $(CFLAGS) $(INC_PARAMS) $(DEF) $(OBJ) -o $(DLL)
-lws2_32

49
50 %.o: %.c
51 $(CC) $(CFLAGS) $(INC_PARAMS) -c $< -o $@
52 endif
53
54 .PHONY: clean
55
56 clean:
57 rm -rf *.o *. def *. dll *.so *.d *. log *.pb *. dir *~

163

164

Appendix C

PSIM R© Co-Simulation Library
Support Material

C.1 QEMU Monitor Property Output for PSIM R©

Model

dev: external -model , id ""
model name = " PSIM_HW_MODEL "
simulation domain = "Power Electronics "
simulation tool = "PSIM"
tool ip = " 127.0.0.1 "
tool port = 40711 (0 x9f07)
memory mapped address = 1091645440 (0 x41113000)
mapped area size = 16 (0 x10)
number of interrupts = 0 (0x0)
mmio 0000000054113000/0000000000000010

165

C.2 Makefile for PSIM R© DLL Creation

The makefile used to create the DLL is the same used for the DPI Library compi-
lation, but should be executed using make WIN32=1.

The part used for the DLL compilation is presented next.

1 NAME=dpi
2
3 ifdef UNIX
4 (...)
5
6 else \\ ifdef WIN32
7
8 INC=$(QEMU_SOURCE) $(QEMU_SOURCE)/ include
9 INC_PARAMS = $(INC :%=-I%)

10
11 ARCH =i686 -w64 - mingw32
12 CC = $(ARCH)-gcc
13 CXX = $(ARCH)-g++
14
15 CFLAGS = -shared -static -std=gnu99 -lpthread -lhash -

lwsock32 -DWIN32
16 CXXFLAGS = -shared -std=c++11 -static -lpthread -lhash -

lwsock32 -DWIN32
17 LDFLAGS = $(CFLAGS) -Wl ,--output -def
18
19 SRC = $(wildcard *.c)
20 OBJ = $(SRC :.c=.o)
21
22 DLL = $(NAME).dll
23 DEF = $(NAME).def
24
25 $(DLL): $(OBJ)
26 @$(CC) $(CFLAGS) $(INC_PARAMS) $(LDFLAGS),$(DEF) $(

OBJ) -o $(DLL) -lws2_32
27 @sed $(DEF) -i -e "s| _Z10RUNSIMUSERddPdS_PPvPiP |

RUNSIMUSER = _Z10RUNSIMUSERddPdS_PPvPiP |"

166

28 @sed $(DEF) -i -e "s| _Z11OPENSIMUSERPKcS0_PPvPiPcS1_ |
OPENSIMUSER = _Z11OPENSIMUSERPKcS0_PPvPiPcS1_ |"

29 @sed $(DEF) -i -e "s| _Z12CLOSESIMUSERPKcPPv |
CLOSESIMUSER = _Z12CLOSESIMUSERPKcPPv |"

30 @sed $(DEF) -i -e "s|
_Z15REQUESTUSERDATAiiiPPvPiS1_PcS2_ |
REQUESTUSERDATA =
_Z15REQUESTUSERDATAiiiPPvPiS1_PcS2_ |"

31 $(CC) $(CFLAGS) $(INC_PARAMS) $(DEF) $(OBJ) -o $(DLL)
-lws2_32

32
33 %.o: %.c
34 $(CC) $(CFLAGS) $(INC_PARAMS) -c $< -o $@
35 endif
36
37 .PHONY: clean
38
39 clean:
40 rm -rf *.o *. def *. dll *.so *.d *. log *.pb *. dir *~

167

168

Appendix D

p-q Theory

The instantaneous active and reactive power theory, or "p-q Theory", was first pro-
posed in 1983 by Akagi et al. (2007), and is mentioned in the beggining of chapter
5. It is based on the Clarke Transformation, which is a space vector transformation
of time-domain signals from a natural three-phase coordinate system (ABC) into
a stationary two-phase reference frame (α-β-0) (Naia, 2015).

The mathematical expressions used to perform the Clarke Transformation on the
currents and voltages are the following:

⎡
⎢⎢⎢⎣

v0

vα

vβ

⎤
⎥⎥⎥⎦ =

√
2
3

⎡
⎢⎢⎢⎣

1√
2

1√
2

1√
2

1 −1
2 −1

2

0
√

3
2 −

√
3

2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
va

vb

vc

⎤
⎥⎥⎥⎦ (D.1)

⎡
⎢⎢⎢⎣

i0

iα

iβ

⎤
⎥⎥⎥⎦ =

√
2
3

⎡
⎢⎢⎢⎣

1√
2

1√
2

1√
2

1 −1
2 −1

2

0
√

3
2 −

√
3

2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ia

ib

ic

⎤
⎥⎥⎥⎦ (D.2)

Once the Clarke Transform is performed, the instantaneous real power (p), imag-
inary power (q) and zero-sequence power (p0) may be calculated from the voltage
and current transformed values using the following expression:

⎡
⎢⎢⎢⎣
p0

p

q

⎤
⎥⎥⎥⎦ =

√
2
3

⎡
⎢⎢⎢⎣
v0 0 0
0 vα vβ

0 −vβ vα

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

i0

iα

iβ

⎤
⎥⎥⎥⎦ (D.3)

169

170

Appendix E

PSIM Simulation Results

In this Appendix, the results of the PSIM simulation performed with a software-
only controller are presented by means of the voltage/current waveforms before and
after compensation, along with some measurements used for validation purposes.
Since the grid frequency is 50 Hz and 500 samples per cycle were acquired, the
sampling frequency used was 40 μs.

E.1 Voltage/Current Waveforms

Figure E.1 presents the waveforms of the voltages for the three-phases, which are
distorted due to the non-linear current consumption by the loads.

0.1 0.11 0.12 0.13 0.14
Time (s)

0

-200

-400

200

400

VA VB VC

Figure E.1: Voltage waveforms for the three phases

171

Figure E.2 presents the waveforms of the currents for the three-phases.

0.1 0.11 0.12 0.13 0.14
Time (s)

0

-100

-200
-300

100

200
300

IA IB IC

Figure E.2: Current waveforms for the three phases

In order to help the reader understanding the waveforms presented, the next graphs
shown will refer only to phase A.

Figure E.3 presents the waveforms of the voltage and current for phase A, where
the distortion of the current is noticeable.

0.1 0.11 0.12 0.13 0.14
Time (s)

0

-200

-400

200

400

VA IA

Figure E.3: Voltage/Current waveforms for phase A

Figure E.4 presents the waveforms of the voltage and current for phase A along
with the calculated reference compensation current for phase A, in green.

172

0.1 0.11 0.12 0.13 0.14
Time (s)

0

-200

-400

200

400

VA IA IcA

Figure E.4: Voltage/Current waveforms for phase A along with the reference com-
pensation current for phase A

As stated by Akagi et al. (2007), the ideal compensated current can be calculated
simply by subtracting the eliminated current from the load current (iCompensated A =
iLine A − iReference Compensation A). Figure E.5 presents the waveforms of the voltage
for phase A along with the ideal compensated current for phase A, following the
above-mentioned statement.

0.1 0.11 0.12 0.13 0.14
Time (s)

0

-200

-400

200

400

VA IA-IcA

Figure E.5: Voltage and ideal compensated current waveforms for phase A

As can be seen from the current waveform in Figure E.5, it is now a lot less
distorted, and apparently in phase with the voltage.

173

E.2 Measurements

In order to verify that the reference compensation current is being correctly com-
pensated, and that this control algorithm actually reduces the harmonic currents
presence in the installation, along with reducing the current RMS values to the
possible lowest, some measurements are now presented:

Table E.1: Control Algorithm Validation

Measurement Before Compensation After Compensation
Line A Current THD 49,15 % 2,64 %
Line B Current THD 23,90 % 2,06 %
Line C Current THD 13,2 % 2,01 %
Line A RMS Current 91,0 A 62,0 A
Line B RMS Current 132,9 A 65,3 A
Line C RMS Current 128,8 A 64,0 A
Line A Power Factor 0,60 0,99
Line B Power Factor 0,77 0,99
Line C Power Factor 0,52 0,99

As can be verified from the table, the current THD values dropped to around 2%,
which is a noticeable improvement.

The line current RMS values are now very close (62,0; 64,0; 65,3), and in some
cases less than half of the values before compensation.

The power factor raised to 0,99 in the three-phases, which is also a noticeable
improvement.

174

