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Abstract: In viscous material systems, time and stress dependent instabilities often occur. The evolution of visco-elastic systems under
external stress has already been modeled by applying a matricial dynamics equation comprehending elasticity and viscosity matrices. In
this study we report a novel formulation for such kind of systems in an overdamped regime as a nonlinear quadratic eigenvalue problem.
The results presented were obtained after solving the eigenvalue equation of several sets of discrete damped mass-spring systems.
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1 Introduction

The harmonic oscillator is the paradigm to all condensed
matter. In a structured material system, resonance occurs
when the structure is excited by external forces whose
frequencies mime the natural frequencies/modes of the
system itself. Then, the system vibrations are amplified
towards infinity and it becomes unstable. The natural
modes of a structure can be seen as the solution of an
eigenvalue problem, that is quadratic when damping
effects are included in the model. When considering the
evolution of a damped visco-elastic systems under
external stress, it may be identified as a nonlinear
quadratic eigenvalue problem which models the second
order differential equation of the momentum balance of
the system. This was confirmed by the modularization of
an interconnected 2D damped mass-spring system for
which the solution of the dynamics equation was
successfully applied as herein presented.

After briefly addressing the problem of damped
visco-elastic systems under external stress and
introducing its physical dynamics equation, it is
addressed as a quadratic eigenvalue problem. For this

formulation new contributions were developed. A case
study of four, nine and sixteen damped mass-spring
system is analyzed as a QEP, calling upon MatLab.

2 Quadratic Eigenvalue Problem

Under an external appliedF the dynamics of a system is
governed by the momentum balance equation (Newton
second law). Considering elasticity and viscosity, it
follows:

Mü(t)+Bu̇(t)+Ku(t) = F(t) (1)

where M is the mass matrix (symmetric and positive
definite),K is the elasticity matrix (positive definite),B is
the viscosity matrix (symmetric), andu(t) stands for then
point masses individual displacements (M,K,B,∈ Rnxn,
u(t) ∈ Rn). The (static) resistance to displacement is
provided by a spring of elasticityK, while the (dynamic)
energy loss mechanism is represented by a damperB and
F(t) represents the external force (F(t) ∈ Rn).

The general solution to the homogeneous equation has
the form:
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u(t) = veλ t

whereλ andv are a scalar and a vector of dimensionn,
respectively.

The solution of the dynamic equation (1) can be
expressed as a nonlinear eigenvalue problem in terms of
the eigensolution of the corresponding Quadratic
Eigenvalue Problem (QEP).

The Quadratic Eigenvalue Problem has extensive
applications in areas such as the dynamic analysis of
structures with proportional damping models, electrical
circuit simulation or linear stability of flows in fluid
mechanics.The review paper by Tisseur and Meerbergen
[1] describes many applications of the QEP.

Given M,B,K ∈ C
r×r , the QEP formal definition

consists on finding scalarsλ and nonzero vectorsv ∈ Cr

andw∈Cr , such that:

(λ 2M+λB+K)v= 0 and w∗(λ 2M+λB+K) = 0,

where v and w∗ are the left and the right eigenvectors
corresponding to the eigenvalueλ (w∗ denotes the
conjugate transpose ofw) [1]. In all, QEP has 2r
eigenvalues with up to 2r right and 2r left eigenvectors,
though no more thanr eigenvectors linearly independent.

In the matrix polynomial of degree 2

Q(λ ) = λ 2M+λB+K

the coefficients of the matrix are quadratic polynomials in
the scalarλ .

Matrix Q(λ ) is self-adjoint if Q(λ ) = Q(λ )∗ for all
λ ∈ C or, equivalently, if M,B, and K are Hermitian
matrices. Knowing that the eigenvalues of a self-adjoint
matrixQ(λ ) are real or arise in complex conjugate pairs:

Q(λ )v= 0 ⇔ w∗Q(λ ) = 0,

where v is a right eigenvector ofλ and w is a left
eigenvector ofλ . When the matrices are real, then the sets
of left and right eigenvectors coincide.

When the matricesM,B, andK are real and symmetric,
M,B> 0, andK ≥ 0, sincev is an eigenvector, the roots of
v∗Q(λ )v= 0 are

λ =

(

−(v∗Bv)±
√

(v∗Bv)2−4(v∗Mv)(v∗Kv)

)

/(2v∗Mv),

and we say that the system isoverdampedwhen it is
satisfied the overdamping condition:

min||v||2=1
[

(v∗Bv)2−4(v∗Mv)(v∗Kv)
]

> 0.

We observe that forB> 0 andK > 0, we haveRe(λ )<
0, all the eigenvalues are real and nonpositive, lying in the
left half-plane and the system is stable [1].

3 A 2-D model of interconnected masses

As an example of a QEP, we consider the interconnected
2D damped mass-spring system illustrated in Figure1.
Each mass has 2 degrees of freedom and is connected to
all the others by a spring and a damper with constantsκ
(elasticity) and b (friction or viscous damping),
respectively.

Fig. 1: An 8-degrees of freedom damped mass-spring system.

The second order differential equation (1) governs the
behavior of the system where the mass matrixM is
diagonal and the elasticity and damping matrices,K and
B are written according to equation (2) [2].

Initially we have taken a 4-point square geometry,
strictly regular first, and slightly distorted afterwards -
either contracted or stretched by the displacement of one
of its mass-points (see Figure2). In further essays, the set
has been expanded to a 9 and to a 16 point masses
arrangement, equally distorted by the contraction or
stretching of a single point.

Fig. 2: Set of 4 point-mass in a regular (square) geometry (a) and
in a contracted (b) and stretched (c) polygon.

Assuming that all massesm are equal and that the
elasticκ and dampingb constants are the same for every
pair of interconnected masses, we can seek for solutions
at the overdamping regime.

The associated mass matrixM is a 2n×2n diagonal,
and the elasticityK and dampingB matrices are 2n× 2n
symmetric and defined after [2] as,

K = κ









P Oα Oγ Oδ
Oα Q Oβ Oθ
Oγ Oβ R Oϕ
Oδ Oθ Oϕ S









, B= b









P Oα Oγ Oδ
Oα Q Oβ Oθ
Oγ Oβ R Oϕ
Oδ Oθ Oϕ S









, (2)
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where the block sub-matricesOi (i = α,β ,γ, θ , ϕ andδ ),
P, Q, R and S traduce the geometrical relations between
each mass-point and its neighbors. Anglesα,β ,γ, θ , ϕ
andδ result from the direction defined by every couple of
mass-points relative to the X-axis (see details in [2]).

4 Results

The case study from now on reported is an overdamped
visco-elastic system taking the mass-points to have one
unit value and the ratio of elasticity to viscosity
coefficients to be 1/10, so that the over damped regime is
guaranteed. In this frame, matricesK and B have been
built and the eigenvalues of equationQ(λ )v= 0 obtained
in MatLab, by calling the functionpolyeig(K,B,M) [3].

The above mentioned 4, 9 and 16-point sets have been
successively taken as shown in Figure3.

Fig. 3: The sets of 4, 9 and 16 mass-points.

The eigenvalues of the three sets of mass-points, either
in regular geometry, or contracted or stretched, have been
obtained and are plotted in Figure4. Table1 shows only
the 4-point case to exemplify.

All the eigenvalues are real and non-positive, as
expected for an overdamped regime [1]. The eigenvalues
are degenerate for the regular geometries, but degeneracy
is partially broken both for contracted and stretched
geometries due to its lower degree of symmetry.

Increasing the set of mass-points from 4 to 9 to 16
leads to an increasing number of non-zero eigenvalues,
though many of then very close to null.

Extending the system from 4 to 9 to 16 mass-points to
an arbitrarily large number of points will eventually lead
from discrete to continuous sets of eigenvalues.

5 Final remarks

The introduced QEP case can be generalized for an
arbitrary large number of disordered point masses,
belonging to a single material (characterized by a single

Table 1: Eigenvalue of the QEP for 4 overdamped mass-spring
systems regular, contracted and stretched.

4 mass-points geometry

regular contracted stretched

0,0000 0 ,0000 0,0000
0,0000 0,0000 0,0000
0,0000 0,0000 0,0000
0,0000 0,0000 0,0000

-0,0100 -0,0100 -0,0100
-0,0100 -0,0100 -0,0100
-0,0100 -0,0100 -0,0100
-0,0100 -0,0100 -0,0100
-0,0100 -0,0100 -0,0100
-0,0100 -0,0100 -0,0100

-58,5700 -55,3000 -55,8951
-58,5700 -61,7600 -61,1943

-199,9900 -198,6300 -199,0939
-199,9900 -198,9000 -199,2405
-341,4100 -324,0800 -326,9483
-341,4100 -361,2600 -357,5681

Fig. 4: Eigenvalue distribution of the QEP for overdamped mass-
spring systems regular, contracted and stretched. For sakeof
clarity, all eigenvalues greater than−1 are not shown.

set of m, κ and b), or to heterogeneous - blended or
layered - materials with different sets of parameters.

In a previous work [4], we have developed an
algorithm, to a domain of material points, that establishes
the set of physical bonds between any two neighbours and
their geometrical relations (anglesα,β ,γ, θ , ϕ andδ ), so
to define anadjacency matrix. This is the scaffold to build
up matricesK andB, used in the herein QEP example.

As an undamped dynamic system has already been
addressed as an Eigenvalue Complementarity Problem
(EiCP) [5], we intend to treat a broader case by
formulating a Quadratic Eigenvalues Complementarity
Problem (QEiCP) [6] to a visco-elastic system.
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