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Tissue engineering (TE) envisions the creation of functional substitutes for damaged tis-
sues through integrated solutions, where medical, biological, and engineering principles are
combined. Bone regeneration is one of the areas in which designing a model that mimics all
tissue properties is still a challenge. The hierarchical structure and high vascularization of
bone hampers a TE approach, especially in large bone defects. Nanotechnology can open up
a new era for TE, allowing the creation of nanostructures that are comparable in size to
those appearing in natural bone. Therefore, nanoengineered systems are now able to more
closely mimic the structures observed in naturally occurring systems, and it is also possible
to combine several approaches - such as drug delivery and cell labeling - within a single
system. This review aims to cover the most recent developments on the use of different nano-
particles for bone TE, with emphasis on their application for scaffolds improvement; drug
and gene delivery carriers, and labeling techniques. VC 2017 American Institute of Chemical
Engineers Biotechnol. Prog., 000:000–000, 2017
Keywords: nanoparticles, bone tissue engineering, scaffolds, drug and gene delivery,
imaging

Introduction

Tissue engineering and regenerative medicine (TERM)

aims to conjugate engineering and biological properties to

create functional substitutes for damaged and diseased tis-

sues.1 Ideally, these structures would be capable of restoring,

maintaining, or even improving tissue function. The strategy

used on TERM research combines three essential elements -

scaffolds, stem cells, and growth factors - to produce a tissue

engineered construct. Scaffolds provide the support for cell

growth and tissue formation. For that, they are seeded with

stem cells. These cells have the potential to differentiate and

form the new tissue. Growth factors are also included as

they regulate the differentiation and proliferation processes.

The so-called tissue engineering triad, represented in Figure

1, represents the whole strategy of TERM.

Bone tissue regeneration is one of the greatest challenges

for TERM. The anatomical complexity of bone, allied with

the high mechanical stress to which it is exposed, makes it

unique, and almost impossible to replicate. Nevertheless,

some strategies have been exploited, with positive results.

Nanotechnology has made it possible to create structures

within the same size as those that constitute naturally occur-

ring bone, opening a new era for TERM. Hence, nanopar-

ticles (NPs) can be used to modify scaffolds properties,

leading to enhanced characteristics such as superior mechani-

cal properties2–5 and osteointegration, osteoconduction, and

osteoinduction.2,6–9 Moreover, NPs can be applied to deliver

drugs in a controlled and dependent manner, either systemi-

cally or locally.10–18 In another approach, NPs can be used

to label cells, namely stem cells, enabling the continuous

cell tracking and monitoring of its fate.19–23 This versatility

is mostly a result of wide range of approaches for NPs func-

tionalization. Antibodies, labeling probes, hydrophobic or

hydrophilic molecules, DNA, and/or oligonucleotides are
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some of the molecules that can be linked to NPs, allowing a
tailored application for the desired purpose.24 Although there
are no applications for bone TERM using nanoparticles cur-
rently on market, the number of in vitro and in vivo studies
in the last years reveals the great potential of this technol-
ogy. This review will discuss the application of NPs in bone
TERM, focusing on their use in scaffold improvement, deliv-
ery carriers, and cell labeling.

Types of Nanoparticles

Nanoparticles (NPs) of distinct nature are now available

for research purposes and in the clinics, and the efforts to

produce superior ones are ongoing. The most used NPs for

bone TERM are schematically represented in Figure 2, along

with their advantages and disadvantages.

Organic NPs

Liposomes. Liposomes are vesicles composed of one or

more concentric bilayers, (lamellae) of natural nontoxic

phospholipids. Each layer surrounds an aqueous compart-

ment, where the head polar groups of phospholipids are in

contact with aqueous phases while the hydrophobic parts are

packed together (schematic representation in Figure 2, lipo-

somes). Alec D. Bangham, who first introduced this type of

particles in mid-1960s, described liposomes as “simply the

vesicles which form spontaneously when isolated natural cell

membrane phospholipids are shaken in water.”25 Taking

advantage of this characteristic, the author used the lipo-

somes as model for the cell membrane, but nowadays these

particles are also used in a wide range of applications, as

recently reviewed,26,27 including drug delivery and imaging.

Liposomes properties are affected by several parameters,

such as lipid composition and organization, surface charge,

preparation method, and size.28 The lipid composition deter-

mines the charge and fluidity of the bilayer and its sensitivity

to external stimuli. The preparation methods affect the self-

assembly of phospholipids, leading to different types of

liposomes, which can be classified by their size and

lamellarity.29

Commonly, liposomes are used as vehicles in delivery

and/or targeting systems. For that end, it is necessary to

incorporate the desired molecules inside the liposome struc-

ture. Such process can be performed in two possible ways,

considering the nature of the cargo to include. If the mole-

cule is hydrophobic, it is mixed with an organic solvent, and

it will be integrated inside the hydrophobic part. But when

the cargo is hydrophilic, it must be added as an aqueous

solution, being retained in liposome inner part.30 Liposome

size is also a particularly important parameter that directly

affects the circulation half-life time. In fact, liposomes can

vary from very small particles to large ones, that is, from

few nanometers up to micrometers. Specifically, liposomes

within the nanoscale range can be administrated along

with drugs, or with other types of NPs, as reviewed by

W. Al-Jamal et al.31 A drawback of these strategies is a fast

recognition of liposomes by the reticuloendothelial system,

which speeds up the process of their elimination from the

bloodstream. This phenomenon can be reduced by using

stealth liposomes, that is, liposomes coated with hydrophilic

biocompatible polymers, such as poly(ethylene glycol)

(PEG).32 Because they are highly biocompatible, biodegrad-

able, and show a reduced toxicity, liposomes are considered

as a suitable strategy for clinical applications. Moreover, it is

possible to functionalize liposomes to be responsive to cer-

tain stimuli such as pH, light, or enzyme cleavage. Together,

these are great advantages as compared to other systems,

which made the liposomes the most clinically established

nanometer-scale systems, with several formulations being

already commercialized.28

Polymeric NPs. Owing to their bulk physical properties,

tunable architecture, and biodegradability, polymers have

been attracting much attention in recent years. The synthesis

methods of polymers are flexible, and the polymer chains

can usually be functionalized with a wide range of mole-

cules. In this regard, the final polymers can present distinct

compositions and properties, envisioning a wide range of

applications and strategies.24 Usually, polymeric NPs are

spherical with a diameter of approximately 100 nm, but this

dimension can be tuned, depending on their final application.

Moreover, different applications may employ diverse archi-

tectures, changing NPs’ physicochemical properties. Up to

now, polymers are being used to produce polymeric

micelles,33 nanofibers,34 and spherical NPs,35 either nanocap-

sules or nanospheres (Figure 2, polymeric NPs). Other struc-

tures with higher level of complexity can also be obtained

by the self-assembling of responsive block copolymers, as

reviewed by others.36

Another advantage of polymeric NPs is related to their

unique high drug loading capability. Organic and inorganic

molecules can be physically dissolved, dispersed, or linked

by covalent interactions with the polymeric elements.24

Therefore, these carriers are now being used for transport

Figure 1. Tissue engineering triad.
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Figure 2. Insight of the different nanoparticles current used on bone tissue engineering research.

Electron microscopy images show the morphology of each type of particle. SEM images of liposomes (A, adapted from Ref. 144, with permission
from John Wiley & Sons) and polyester NPs (B, adapted from Ref. 139, with permission from John Wiley & Sons). TEM images of dendrimers
(C, adapted from Ref. 142, with permission from Elsevier), mesoporous silica NPs (D, adapted from Ref. 148 with permission from John Wiley &
Sons), gold NPs (E), SPIOs (F, adapted from Ref. 172), bioactive glass NPs (G, adapted from Ref. 121 with permission from Elsevier), carbon NTs
(H, adapted from Ref. 181 with permission from John Wiley & Sons), and QDs (I, adapted from Ref. 104 with permission from SAGE Publications).
J is a representation of aqueous solutions of 525, 565, 585, and 605 quantum dots (left to right) under ultraviolet (UV) light (adapted from Ref. 104
with permission from SAGE Publications).
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and delivery of molecules in several fields, such as vaccina-

tion, cancer, inflammation, neurologic pathologies, and tissue

regeneration.24,37,38 There are numerous methods to synthe-

size polymer-based NPs, applied in accordance with the

employed polymeric materials.24 For natural polymers, such

as proteins and polysaccharides, the desolvation process39

and gelation40 are respectively preferred. For self-assembly

of polymers in aqueous solution, emulsion–solvent evapora-

tion,41 nanoprecipitation,42 and salting-out techniques are the

most commonly used.24 Similar to other nanoparticle sys-

tems, polymer-based NPs can be functionalized to perform

active targeting. The functionalization process can be done

before or after the assembly process. Generally, the decision

is driven by the size of the ligand to be attached. Small

ligands, such as small organic molecules or small peptides,

can be linked prior to the assembly or after nanoparticle for-

mation, at its surface.43,44 On the other hand, bulky ligands -

such as polypeptides, proteins, or antibodies—are linked

mostly at the surface of performed nanocarriers, considering

that the secondary structure of these molecules is often dena-

tured by solubilization in organic solvents.45

Dendrimers. The first dendrimers were reported in the

late 1970s, by V€ogtle group,46 followed in the early 1980s

by the work of Tomalia et al.47 It appeared as a very versa-

tile and tunable particle, with a tree-like structure, branching

out from a central core and subdivided into hierarchical

branch units, ending with external capping units (Figure 2,

dendrimers). These spherical, biocompatible, and biodegrad-

able polymeric-based NPs possess a large number of surface

functional groups, leading to a very versatile functionaliza-

tion for a considerable number of applications.48 The core

usually consists of an amine, although sugar or other mole-

cules can also be used, with multiple identical reaction sites

where two monomers bind, making a generation.49 In addi-

tion to cargo binding, the peripheral polar functional groups

endow physicochemical properties to dendrimers that can be

used to improve targeted drug delivery. That includes enzy-

matic, pH, temperature, light, solvent, and ionic strength sen-

sitivity, with configuration changes as a result of interactions

between particles and the medium.50 Thus, it is possible to

control cargo release, based on environmental conditions.

Dendrimers are commonly used for targeted drug delivery

purposes,51 with an improvement on drug solubility.52

Although the monodispersity of dendrimers provides repro-

ducible results and pharmacokinetics on clinical trials,49 they

still have some drawbacks, such as cytotoxicity and poor

drug retention within the dendrimer branches. Moreover, for

positively charged dendrimers, such as poly(amido amine)

(PAMAM) and poly(ethylenimine) (PEI), the cytotoxicity is

proportional to the generation number. For instance, a first

generation (G1) PAMAM dendrimer has approximately 22Å

in diameter and eight surface groups. By increasing one gen-

eration, to G2, the diameter rises to 29Å but the number of

surface groups grows exponentially to 16. Thence, an

increase in dendrimers’ generation highly increases the num-

ber of positive charges available to interact with cells mem-

brane, causing their disruption.53

Inorganic NPs

Inorganic nanomaterials are also being exploited for bio-

medical applications. Within this field, silica NPs, metallic

NPs (such as magnetic, gold, or silver NPs), bioceramic

NPs, carbon nanotubes, and quantum dots are the most

promising and will be herein discussed.

Silica NPs. Silica is known to be biocompatible, with an

excellent chemical stability and defined surface proper-

ties.54,55 Hence, this material has been used for a plethora of
biomedical applications, such as imaging and drug deliv-

ery,56 either itself or as a coating of other compounds.54

SiNPs can be synthesized by the St€ober method, through
hydrolysis of silane, and the size can be tuned by varying

the ratios of tetraethylorthosilicate (TEOS), ammonium

hydroxide, and deionized water.57 Depending on their final
use, silica NPs can be synthesized not only as bulk silica

particles (SiNPs)55 but also as core/shell silica NPs (C/S,

SiNPs)56,58 and mesoporous silica NPs (MSNPs).56 C/S,
SiNPs are often used in imaging agent delivery.56 The silica

shell protects the core, composed of imaging agents like

fluorescent probes, decreasing the extent of photobleaching
and enabling long-term monitoring of the labeled material.58

Similarly to SiNPs, C/S, SiNPs can also be constructed with

tunable size, through a reverse microemulsion method.59 For

controlled release applications, MSNPs have aroused signifi-
cant interest. First, one can consider their tunable particle

and pore size as well as their unique pore structure, high sur-

face area, and large pore volume. That is a consequence of
MSNPs morphology, as these particles are formed by hun-

dreds of mesopores, in a honeycomb-like porous structure.

Therefore, MSNPs are able to absorb/encapsulate large
amounts of biomolecules.54 Second, MSNPs display an

improved resistance to heat, pH, mechanical stress, and

hydrolysis-induced degradations. Finally, MSNPs are charac-
terized by a chemical and thermal stability, nontoxic nature

and simple fabrication,60 advantageous for biomedical

applications.

MSNPs synthesis can be performed in several ways to get

particles with different sizes and morphologies. As an exam-

ple, the fluorocarbon-surfactant-mediated synthesis method,
reported by Y. Han et al.,61 yields particles with sizes

between 50 and 300 nm and with distinct types of meso-

structures, as 3D cubic, 2D hexagonal, foam-like, and
disordered.

To control particle size and morphology and to improve
structural order, J. Gu et al.62 added ethylene glycol to the

synthesis process. In another approach, K. M€oeller et al.63

were able to synthesize colloidal mesoporous silica with
high yields by replacing the common base NaOH by the

poly alcohol triethanolamine (TEA). The authors found that

the amount of TEA added to the system controls the size of
the resulting NPs. As a result, these particles exhibit unique

pore geometry, because the pores grew radially from the

center to the periphery, with large pore volume and size

comprised between 50 and 100 nm. Considering the bigger
pore volume, such particles can be applied on drug delivery

purposes, as more cargo can be included in the devoid

volume.

Metallic NPs. Gold NPs. Metallic NPs exhibit

unique characteristics, different from the bulk material,
which are a direct consequence of the quantic effect.64

Among this type of NPs, gold NPs have arisen as an option

for many biotechnology applications. Drug delivery, biosens-
ing, bioimaging, and photothermal therapy are some of the

areas where these particles can be applied.65–68 Such versa-

tility is explained by the number of possible surface modifi-
cations, optical properties, biocompatibility, and reduced
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toxicity as compared to other metallic particles.68 Gold NPs

can be synthesized with diverse shapes such as spheres,69

rods,70 star-like,71 and cages.66 The combination of gold NPs
with other compounds such as silica, resulting on core-shell

NPs, is also common.72 As a characteristic of gold NPs, the

surface plasmon resonances (SPR) are verified on all the
referred conformations, meaning that is possible to evaluate

some of their properties, such as diameter or shape, through

UV–vis spectra analysis. Given that SPR bands are influ-
enced by small changes on size, shape, surface ligands,

charge, temperature, and aggregation, it presents great

advantages for biomedical applications, such as biosensing
and diagnosis.73 Gold NPs are also interesting for bioimag-

ing processes, as they can be tuned to absorb in the near

infrared range, thus leading to enhanced deep-tissue visuali-
zation by imaging techniques. Also, the high atomic number

can induce strong X-ray attenuation resulting in an enhanced

computed tomography contrast.74 Although gold NPs are

considered safer than other metallic NPs, it is still necessary
to examine their biocompatibility, biodistribution, bioelimi-

nation, and environmental impact before their production on

a large scale for in vivo applications.75

Magnetic NPs. Magnetic elements such as iron, nickel,

cobalt, and their oxides, with a nanometer size, are being
used in different biomedical applications. Detailed informa-

tion about the most common uses of magnetic NPs (MNPs)

were recently reviewed.76,77 This group of NPs includes
metallic, bimetallic, magnetic cationic liposomes, and super-

paramagnetic iron oxide NPs (SPIONs).78 Similar to other

nanosystems, their surface can be functionalized to recognize
specific targets. Hence, they can be used for imaging pro-

cesses, cell tracking and isolation, biosensors, guided drug

and gene delivery, 3D cell organization, and hyperthermia.76

Although some MNPs, such as nickel ferrites, have shown
potential toxicity affecting cell proliferation and viability,79

some of the iron oxide MNPs become biocompatible when

coated with specific surface modifiers.80 Still, there is much
research to be performed to fully characterize these particles

and understand their behavior and safety profile in vivo.

Bioceramics and Bioactive Glass NPs. Bioceramics,

glasses, and glass–ceramics are characterized as materials

with an inorganic/nonmetallic composition that are biocom-
patible and applicable for biomedical uses.81 From a chemi-

cal perspective, these materials can be divided into two

classes: (i) calcium phosphate groups, that includes hydroxy-
apatite and b-tricalcium phosphate; and (ii) others, such as

alumina, bioactive glass systems, and bioactive glass–

ceramic systems.81

Bioceramic NPs such as hydroxyapatite (HAp), calcium-

defective HAp (CDHA), and tricalcium phosphate have been

combined with natural82 and synthetic polymers,83,84 forming
nanocomposite materials.85,86 These hybrid biomaterials hold

superior mechanical properties87 that can be used to improve

tissue regeneration strategies, mostly the ones related to
bone diseases. Thence, bioceramic NPs can be applied to

improve scaffolds’ performance, and also as a controlled

delivery system for biologically active substances like
drugs88 or genetic material.89

Bioactive glasses are amorphous silicate-based materials
that can form a chemical bond with bone tissue. The first

bioactive glass, the Bioglass
VR

,90 was discovered in 1969 by

Larry Hench et al.91 The silicon component of this material
is released when the bioactive glass is implanted, inducing

the formation of a calcium deficient hydroxyapatite layer on

its surface. This layer interacts with collagen fibrils of dam-

aged bone, allowing bioactive glass to bond to the surround-

ing tissue.92

Although the synthesis of monodisperse bioactive glass

NPs is not a simple process, these particles have attracted

great deal of attention from biological material research-

ers.85,93,94 As a result, similarly to bioceramics, bioactive

glass NPs have been combined with different types of

polymers, both synthetic95,96 and natural,97 to produce bioac-

tive nanostructured polymeric composites with improved

properties.

Carbon Nanotubes. Since their discovery in 1991, car-

bon nanotubes (CNTs) have been regarded as a potential

tool for a variety of applications. In the biomedical field,

researchers are working to evaluate their potential for drug

delivery, theranostics, biosensing, microscopy, and reinforce-

ment of composite materials.98 CNTs are graphitic hollow

tubular structures, made by a sheet of carbon atoms con-

nected by sp2 bounds, with excellent electrical properties

and high mechanical and chemical stability. They can be

composed by a single tube with a diameter range of 0.4–

2 nm (single-walled carbon nanotubes (SWCNT)) or by con-

centric walls, with an external diameter varying between 2

and 100 nm (multiwalled carbon nanotubes (MWCNT)).

Their size is variable and they can be either conductive or

nonconductive. Owing to their tubular structure, it is possible

to functionalize these structures both from inside and out-

side, with two distinctive molecules for two different

purposes. As aforementioned, CNTs usually have a high

chemical stability which is a disadvantage for covalent func-

tionalization process, as they require defective carbon atoms

on the tubular structure.99 Regarding clinical applications, it

is still necessary to perform deeper and standardized studies

to understand their toxicity. Parameters such as shape,

length, surface charge, diameter, purity, and agglomeration

are considered the key-players in CNTs toxicity.100

Quantum Dots. Quantum dots (QDs) are colloidal semi-

conductor nanocrystals, ranging from 1 to 10 nm. In each

nanocrystal, a large fraction of atoms is at the surface, mean-

ing a high surface area-to-volume ratio. The typical configu-

ration of QDs is a core/shell structure of type II–VI, where

the shell protects and improves the optical properties of the

core. CdSeS/ZnS, CdSe/ZnS, and CdTe/ZnS are the most

common combinations for biological applications,101 namely

bioimaging and bioanalysis. Advantageous optical properties

of QDs over conventional fluorescent markers include their

photostability and longer excited state lifetime, making them

suitable probes for tracking dynamic processes over time and

for long-term cell labeling.102,103 Moreover, these NPs are

quite useful for multiplexed analysis and multicolor imaging,

as it is possible to simultaneously excite and detect multiple

colors of QDs using a single light source, as shown in Figure

2, (quantum dots).104 That arises from the fact that QDs

exhibit broad absorption but narrow emission spectra. As the

photoluminescence properties of the QDs are strictly related

to their size, it is possible to control and select the emission

spectra of the QD by tuning this property.105 Although they

can be used in a wide range of biomedical applications, the

latent toxicity of QDs could hinder their broad use. One of

the concerns relies on the release of free cadmium ions by

cadmium-containing QDs, causing cell death.106 Generation

of reactive oxygen species has also been implicated as a

Biotechnol. Prog., 2017, Vol. 00, No. 00 5



reason for QDs cytotoxicity, which is known to damage cel-
lular proteins, lipids, and DNA.107 However, in more com-
plex models such animal models, QDs seem to be safe.101,108

Such discrepancy can be explained by the dose. While cell
studies are based on a constant QDs dose, in animal models
only a fraction of the particles will interact with cells. More-
over, QDs suffer modifications after passage through the
body, changing their size and surface chemistry. Such modi-
fications can alter the degree of particle internalization, then
changing the effective intracellular concentration and conse-
quently the cytotoxic effects.109 It is also worth pointing out
that, in most of the cases, QDs undergo minimal excretion,
meaning that long-term toxicity could be a problem, but has
not been established yet.108 Therefore, QDs toxicity is still
an issue of much concern, and should be addressed using
standardized and systematized protocols to avoid methodo-
logical variability, and should also use a case-by-case
approach as distinct QDs formulations can trigger different
biological responses.108 Other materials, such as silicon110

and carbon,111 are also being used to remove heavy metals
from QDs formulations, thereby avoiding their deleterious
effects.

Applications for Bone TE

NPs can be used as tools for bone TE through a wide

range of applications - from drug delivery systems to the

construction of biomimetic hierarchical scaffolds. Constructs

can be improved, leading to multivalent systems that closely

resemble the natural occurring ones. Drug and gene delivery

can be performed specifically on a target area, increasing

its efficiency, with less systemic effects. Moreover, with

nanotechnology, the cell labeling techniques have become

more specific and abiding, allowing noninvasive in vivo

approaches for cell monitoring and tracking. These topics

are schematically represented in Figure 3 and in the follow-

ing subsections, they will be discussed in more detail.

Scaffolds

Several TE strategies are based on scaffolds properties,

due to scaffolds’ importance in providing architectural sup-

port for cell growth and establishing the appropriate regener-

ative niche.87 The major goal of scaffold-based strategies is

to obtain an implant to replace the native tissue while

Figure 3. Main applications of NPs in the developments of scaffolds, carriers, and cell labeling.

(SBF, simulated body fluid.)
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supporting the regeneration process without further compli-
cations. To achieve such goal, scaffolds should be three-
dimensional and highly porous, forming an interconnected
pore network. Biocompatibility is also necessary along with
a controlled degradation and resorption rate. The surface
chemistry should allow cell attachment, proliferation, and
differentiation and to be mechanically similar to tissues, at
the implantation site.112 For bone regeneration, scaffolds
should also be able to deliver physicochemical and mechano-
chemical cues and provide mechanical strength and support
through suitable biophysical properties.87

From a TE perspective, bone is a complex nanocomposite,
hierarchically organized, with an organic extracellular
matrix, strengthened by inorganic calcium phosphate NPs,
HAp crystals,113 as depicted in Figure 4. Hence, bone-
inspired hybrid scaffolds, that is, organic and inorganic por-
tioned, have been considered as a potential approach for
bone regeneration. As polymers are easily modified and
functionalized, they are commonly used as the organic por-
tion, mostly as nanofibers. This configuration is beneficial
for bone tissue formation because it mimics the type I colla-
gen fibers found in natural bone.114 However, their compati-
bility to bone tissue and their mechanical strength is often
inferior when compared to calcium phosphate ceramics. As
summarized in Table 1, diverse types of NPs have been used
to tackle this problem, with promising results.

Incorporation of calcium phosphate NPs, with similar size
and functionality as the nanosized inorganic ceramic par-
ticles that are naturally present in bone, is a way to improve
scaffolds properties. This strategy often leads to an increased
osteocompatibility and mechanical performance of such
nanocomposites over purely polymeric bone substi-
tutes.6,115,116 Qian et al.8 compared the behavior of a bio-
morphic poly(lactic-co-glycolic acid) (PLGA) scaffold with
and without HAp NPs. The presence of particles had a bene-
ficial effect in several parameters, such as cell attachment,
proliferation, and differentiation of MC3T3-E1 cells (Figure
5). Chae et al.9 designed alginate nanofibers with a uniform
deposition of HAp nanocrystals, avoiding the aggregation
that occurs when the conventional mechanical blending/elec-
trospinning method is used. This uniform distribution at
polymer surface contributed for a stronger attachment of
osteoblast cells to the scaffold when HAp NPs where mixed
with the alginate matrix. Indeed, osteoblasts acquired a
spindle-shape form with filopodia formation on the HAp/
alginate scaffolds, while on pure alginate, cells were round
and flattened. This effect was also observed by others and
the positive effect of HAp NPs on cell focal adhesion

formation and protein absorption were already reported.117

In another work, HAp NPs were doped with gadolinium and
then used within a polycaprolactone (PCL) nanofibrous scaf-
fold. Hence, HAp acquired a dual purpose, both improving
bone conductivity and acting as a magnetic resonance con-
trast agent.118 The incorporation of 30–40 nm sized HAp-
doped NPs rendered scaffolds with different properties, as
compared to pure PCL. The contact angle was lower
(130.8 6 18 vs. 146.2 6 0.68), which is a consequence of the
addition of hydrophilic HAp NPs. Tensile stress failure tests
showed that the scaffolds with doped HAp NPs present a
superior mechanical strength, with a stress at failure of 3.33
MP, while pure PCL was found to be 1.3 MPa. The authors
hypothesized that this improvement is a result of the incor-
poration of HAp NPs, similar to what happens in native
bone where HAp nanocrystals increase its stiffness and com-
pressive strength. Moreover, the smaller diameter of PCL
fibres, observed when HAp NPs were included, results in a
decreased pore size that can also contribute for the strength
improvement. The incorporation of HAp NPs also increased
the protein absorption to the fibres (11.5 6 0.38 lg/mg vs.
8.6 6 0.24 lg/mg after 8 h) by creating an irregular surface
on PCL. Human MSCs osteogenic differentiation was also
improved, with an increase of ALP expression of approxi-
mately 43% in scaffolds with NPs compared with pure PCL.
The RUNX2 protein was also expressed earlier on composite
scaffolds, corroborating the osteogenic potential of these
scaffolds. The introduction of gadolinium allowed the track-
ing of the engineered constructs in vitro, during cell culture.
Without cells, the scaffolds had a poor contrast due to the
hydrophobicity of PCL that hinder proton exchange. When
cells start to grow, the contrast increased as PCL interacted
with the lipid cell membrane, promoting the proton exchange
with the contrast agent. The contrast peaked at day 14 and
then decreased as minerals started depositing. Such behavior
can be used to monitor cell differentiation on these scaffolds
that displayed bone forming capacity and improved strength.

Silk fibroin (SF), combined with calcium phosphate NPs,
is also being used as scaffold. L. Yan et al.82 have developed
a new method for silk fibroin/nanosized calcium phosphate
scaffolds with in situ synthesis, leading to a homogeneous
distribution of the calcium phosphate NPs within the SF
matrix. The resulting scaffold displayed higher porosity,
osteoconductivity, and osteogenic potential. In vivo studies
on rat femur showed that this scaffold induced new bone for-
mation after 3 weeks of implantation, compared to bare SF
scaffolds.119 Another approach was developed by Kim et al.3

to overcome the poorly controlled nanofiber structures

Figure 4. Bone hierarchical structure.

Reprinted with permission from Macmillan Publishers Ltd: Nature Communications.182
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Table 1. Summary of Recent Works with Scaffolds and NPs

Application Type of NP Matrix Concentration Model Outcome Ref.

Scaffolds HAp Poly(ester
urethane)

10, 20,
and 30 wt%

In vivo—dorsal
skinfold chamber
model (BALB/c
mice)

Enhanced mechanical properties;
biocompatibility and vasculariza-
tion are not affected by the modi-
fication with HAp NPs.

6,7

HAp Alginate n.a. In vitro—rat calvarial
osteoblasts

Well-dispersed HAp along the
matrix; improved cell adhesion.

9

HAp PLLA 5 wt% In vivo—femoral
condyle of sheep

Improved bioactivity; better
mechanical properties.

115

CDHA PLA 25%
(CDHA ratio)

In vitro—7F2 mouse
osteoblast cells

Enhanced bioactivity; control of pH
decrease (caused by PLA degra-
dation); faster PLA degradation;
improved cell growth.

116

HAp/PCL HAp/b-TCP n.a. (coating) In vitro—human
osteoblast-like
cells

Better mechanical properties;
enhanced bioactivity; improved
differentiation profile.

2

HAp PLGA 5 wt% In vitro—MC3T3-E1
cells

Improved elastic modulus; higher
biocompatibility.

8

Calcium
phosphate

Silk fibroin 4–16 wt% In vitro—L929 fibro-
blasts; in vivo—
wistar rat femur.

Self-mineralization capacity; induc-
tion of higher amount of new
bone.

82

Bioactive glass HAp/b-TCP 1–90 wt% In vitro—primary
human bone-
derived cells

Improvement of differentiation pro-
file; higher bioactivity; faster deg-
radation rate; induction of cell
differentiation.

121

Bioactive glass Gelatin 30 wt% In vivo—human air-
way fibroblast
cells; in vivo—
New Zealand white
rabbit.

Helped in vivo growth and healing
of bone.

120

Bioactive glass PCL 40 wt% SBF immersion. Higher apatite-forming bioactivity;
increased elastic modulus.

96

Bioactive glass Chitosan 10, 30,
and 50 wt%

SBF immersion. Improved mechanical properties,
namely compressive modulus and
strength; apatite formation—bio-
active scaffold

97

Bioactive glass Alginate 0, 10, 20,
and 30 wt%

In vitro—rat bone
marrow mesenchy-
mal stromal cells;
in vivo—Sprague-
Dawley rats, sub-
cutaneous pockets;

Higher cell infiltration in vivo;
enhanced osteogenic
differentiation.

123

CNTs Bioactive
glass

0, 0.1, 0.25,
and 0.5 wt%

n.a. Higher compressive strength and
elastic modulus with 0.25 wt%
bioactive glass.

4

CNTs Chitosan 0, 0.1, 0.5,
and 1%

In vitro—murine
osteoblasts.

Improved mechanical properties; no
cytotoxicity.

5

CNTs PLGA 1, 3, and
5 mg/mL

In vitro—MC3T3-E1
cells.

Improved mechanical strength;
increased surface roughness;
higher cell attachment, prolifera-
tion, and differentiation.

124

CNTs Chitosan/HAp 0–5 wt% In vitro—MC3T3-E1
cells.

Improved mechanical properties;
higher cell proliferation.

125

CNTs PLGA 1 wt% In vitro—MC3T3-E1
cells.

Improved mechanical properties;
higher cell proliferation.

127

Magnetic/HAp PLA 8 wt%/31 wt% In vivo—rabbit lum-
bar transverse
defect.

Faster bone tissue formation due to
supermagnetic responsive
properties.

129

Magnetic HAp 0.2–2 wt% In vitro—MC3T3-E1
and ROS 17/2.8
cells.

Magnetic response; superior bio-
compatibility, cell proliferation,
and differentiation.

130

Silica PCL 1, 3, and
5 layers of NPs

In vitro—hFOB 1.19
cells.

Increased surface roughness and
wettability; one layer of NPs is
indicated to have better cell per-
formance; enhanced osteoconduc-
tivity, and osteoinductivity.

55

AuNPs Gelatin 1, 5, and 14 lg In vitro—ASCs; in
vivo—New Zealand
white rabbit parie-
tal bone defect.

Better differentiation profile (dose
dependent).

133

ASCs, adipose-derived stem cells; AuNPs, gold nanoparticles; CDHA, calcium-deficient hydroxyapatite; CNTs, carbon nanotubes; HAp, hydroxyapa-
tite; n.a., not applicable; NPs, nanoparticles; PCL, polycaprolactone; PLA, polylactic acid; PLLA, poly-L-lactic acid; PLGA, poly lactic-co-glycolic acid;
SBF, simulated body fluid; TCP, tricalcium phosphate.
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resulting from the electrospinning of liquid and particulate-
based suspensions. The strategy involved the functionaliza-

tion of HAp NPs with c-glycidoxypropyltrimethoxysilane
(GPTMS), which can react with side chains of SF, such as
lysine, histidine, arginine, and tyrosine. Such modification
led to a uniform dispersion and enhanced interfacial bonding

between HAp and SF fibers, up to a concentration of 20%
wt HAp. Regarding the mechanical properties, tensile testing
of the composite scaffolds showed the peak strength at 20%

wt HAp. Higher concentrations of HAp NPs disrupted the
SF polymer chains, hampering the mechanical properties of
the fibers.3

Composite scaffolds can also be reinforced by the addition

of ceramic NPs. Roohani-Esfahani et al.2 studied the HAp
NPs effects, specifically how their shape and size influences
the properties of biphasic hydroxyapatite/b-tricalcium phos-

phate (BCP) scaffolds. The scaffolds were coated with a
nanocomposite layer of HAp NPs (with different shapes)
embedded in PCL, or with a microcomposite layer. The
authors found that needle shaped HAp NPs improved the

compressive strength, elastic behavior, and bioactivity of the
scaffolds. Moreover, between sphere-, rod-, and needle-
shaped HAp NPs, the incorporation of the last configuration
led to a higher bioactivity, as shown in Figure 6 by apatite

formation, and to a superior osteoblast differentiation
profile.2

Owing to their bioactive nature, bioactive glass NPs are
also commonly used for bone TE.120–122 In a follow-up work
of the above-mentioned, Roohani-Esfahani et al. replaced the

HAp NPs by bioactive glass NPs to increase the degradation
rate and to enhance the bioactivity of biphasic calcium phos-
phate scaffolds coated with HAp–PCL composites.121 This
strategy also led to a significant increase of the gene expres-

sion of RUNX2 and bone sialoprotein in human osteoblast
cells cultured for 7 days. Hafezi et al. designed and tested in
vivo a gelatin/bioactive glass NPs scaffold.120 After 12
weeks of application in an ulna defect on rabbits, radio-

graphs of the defect site have shown that the composite scaf-
fold helped bone growth and healing.120 Recently,
Pourhaghgouy et al. reinforced chitosan scaffolds with bioac-

tive glass NPs (10, 30, and 50 wt%). The resulting nanocom-
posite scaffolds, produced by the freeze-casting technique,
had a good interfacial bonding between the NPs and the
polymeric matrix, which resulted in a structure with

improved mechanical properties in regard to the compressive
strength (from 34 kPa of chitosan to 363, 375, and 419 kPa,
respectively) and modulus (10.04, 10.43, and 10.77 MPa ver-
sus 0.41 MPa of chitosan).122 Buitrago et al.123 used the

Figure 5. Effect of HAp NPs on MC3T3-E1 cells.

Panel A: SEM images of MC3T3-E1 cells on PLGA scaffold (A, B, C) and PLGA/HAp NPs composite (D, E, F) scaffolds cultured for 1 (A, D), 3
(B, E) and 5 (C, F) days. Panel B: Metabolic activity (optical density values) for MC3T3-E1 cells on PLGA and PLGA/HAp NPs composite scaf-
folds after different culture periods (days 1, 3, and 5). The symbol * indicates a significant difference. Panel C: Levels of ALP activity of MC3T3-
E1 cells on PLGA and PLGA/nHA composite scaffolds after different culture periods (days 1, 3, and 5). The symbol * indicates a significant differ-
ence. Adapted and reprinted from Ref. 8 with kind permission from Elsevier.
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bioactive glass NPs as nanoparticulate cues for bone TE in a

core-shell fiber hydrogel system. The strategy relied on a

collagen core surrounded by an alginate shell with NPs. In

vitro osteogenic differentiation of rat MSCs encapsulated in

the fiber core was assessed by alkaline phosphatase activity

and gene expression of collagen I, bone-sialoprotein, and

osteocalcin. The results show an enhanced osteogenic behav-

ior in the presence of bioactive glass NPs, and a higher in

vivo cell infiltration. These observations could be explained

by the release of Ca21 and Si41 from the NPs to the sur-

rounding environment.123

Another approach is the incorporation of carbon nanotubes

for the development of bone-like materials. Multiwalled car-

bon nanotubes (MWCNT) have shown to improve the com-

pressive strength and elastic modulus of 45S5 Bioglass
VR

scaffolds,4 tensile modulus, and strength of chitosan films5

and enhancement of surface roughness in carbon nanotube–

poly(lactide-co-glycolide) composite scaffolds.124 L. Chen

et al. have demonstrated that MC3T3-E1 cell proliferation

was significantly higher in chitosan - MWCNT/HAp nano-

composites when compared to chitosan/HAp scaffolds.125 A

result that can be attributed to the capacity of MWCNT to

adsorb proteins, thus affecting cell behavior.126 By its turn,

the incorporation of single-walled carbon nanotubes

(SWCNT) within a PLGA matrix, forming SWCNT/PLGA

composites, also revealed superior properties. These include

a higher cell proliferation rate of MC3T3-E1 cells and

increased compressive modulus and ultimate compressive

strength of SWCNT/PLGA composites, when compared to

PLGA alone.127

As reviewed by Castro,128 magnetic NPs are also being

applied for TE, including in the design of scaffolds for bone

TE. These NPs are being used either to produce superpara-

magnetic responsive nanofibrous scaffolds129 or to improve

cell adhesion, proliferation, and differentiation on ceramic

scaffolds.130 The incorporation of silica NPs55 onto PCL

fibers has been reported to increase its surface roughness and

wettability. Moreover, such fibers revealed superior osteo-

conductivity and osteoinductivity, showing the potential for

further uses in bone TE.

Recently, gold NPs have arisen a great interest as osteo-

genic agents, due to their potential to promote cell differenti-

ation toward an osteogenic phenotype in vitro.131,132 This

capacity may be related to the activation of ERK/MAPK

Figure 6. Effect o HAp NPs shape on composite scaffolds’ bioactivity.

SEM images of the surface of prepared scaffolds after soaking in simulated body fluid (SBF) for 14 days; Hydroxyapatite/b-tricalcium phosphate
(BCP) (A); BCP plus coating with micron size HAp–PCL (B); BCP coated by PCL combined with spherical (C), needle shape (E), and rod (F) Hap
NPs; BCP coated with PCL (D). Reprinted from Ref. 2 with permission from Elsevier.
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pathway by AuNPs.131 The combination of gelatin scaffolds

and these NPs has also promoted osteogenic differentiation

of adipose-derived stem cells (ASCs) both in vitro and in

vivo, in a dose-dependent manner.133

NPs as carriers

Adsorbing molecules of interest to a biomaterial surface

can overcome problems associated with systemic delivery,

such as rapid body clearance.134 Thus, nanomaterials can be

used for in vitro drug and gene delivery, dispersed on culture

medium, or can be incorporated into scaffolds to deliver and

maintain the physiochemical cues needed during the regener-

ation process. Such bivalent systems are then able to support

cells and also provide growth and differentiation factors.87

Studies using several types of NPs such as polymeric,135–143

liposomes,12,144–146 silica,147,148 and calcium phosphate

ceramic NPs149–151 indicated that the use of nanoparticulate

systems as carriers allow a sustained delivery of their cargo.

Table 2 summarizes the outcomes of NPs used as drug and

gene carriers.

Drug Delivery. Bone homeostasis is maintained by the

balance between osteoblasts (bone-forming cells) and osteo-

clasts (bone-resorbing cells).152 Consequently, for a regener-

ative process, osteoblastic activity should be supported,

leading to a superior bone deposition in favor of bone

resorption. This can be achieved through growth factors

delivery, namely, bone morphogenetic proteins (BMP), a

member of transforming growth factor (TGF)-b superfam-

ily.134 These molecules stimulate the primary signal for oste-

ogenic differentiation, from noncommitted pluripotent cells

to mineral-depositing osteoblasts.138 There are more than 20

identified BMPs, but BMP-2 and BMP-7 are the ones most

commonly used, and are already approved by FDA for clini-

cal applications.153 As reviewed by Z. Haidar et al.,154 there

are several ways to deliver these growth factors. One possi-

bility is to include BMP-2 within polymeric

NPs,14,17,18,138,140 such as used by L. Cao et al.155 Photo-

cross-linked hydrogel incorporating recombinant human

BMP-2 loaded 2-N, 6-O-sulfated chitosan NPs showed good

cell viability, adhesion, and time-dependent ingrowth when

in culture with human mesenchymal stem cells (MSCs).

Moreover, in vivo studies using a rabbit radius critical defect

compared the outcomes of hydrogels containing BMP-2-

loaded chitosan NPs with hydrogels directly supplemented

with BMP-2. The results have shown that the incorporation

of BMP-2 within the NPs improved new bone replacement

and induced the consolidation of the bone marrow cavity,

after 12 weeks.155 Another approach was based on sequential

growth factor delivery, to mimic the natural process of heal-

ing. Sequential BMP-2/BMP-7 delivery was achieved by

encapsulating different growth factors in NPs constituted by

polymers with different degradation rates, such as PLGA -

fast degradation rate - and poly(3-hydroxybutyrate-co-3-

hydroxyvalerate) (PHBV) - slow degradation rate. The com-

bination of BMP-2-loaded PLGA nanocapsules and BMP-7-

loaded PHBV nanocapsules supported the sequential delivery

of BMPs, that is, BMP-2 followed by BMP-7. Compared to

simultaneous delivery of BMPs, this approach was found to

enhance the differentiation of MSCs into osteoblasts in vitro,

while decreasing the proliferation rate.139 Following this

work, Yilgor et al.16 incorporated this dual-system inside

chitosan-based scaffolds, creating a bifunctional construct,

able to support cell growth and effectively deliver growth
factors.

Another frequently used molecule in bone TE is dexa-
methasone (Dex), a glucocorticoid known to promote the
osteogenic differentiation of marrow stromal cells. However,
as a glucocorticoid, Dex may cause unwanted side effects in
humans, such as secondary osteoporosis.156 To avoid these
effects, Oliveira et al. designed a dexamethasone-loaded car-
boxymethylchitosan/poly(amidoamine) dendrimer NPs (Dex-
loaded CMCht/PAMAM).142 Rat bone marrow stromal cells
were cultured in vitro, supplemented with the dendrimers
and then seeded on HAp and starch–polycaprolactone
(SPCL) scaffolds. Under these conditions, cells have posi-
tively differentiated into osteoblasts. Afterward, the group
found that Dex-loaded CMCht/PAMAM dendrimers have a
pH and ionic-responsive nature and are able to promote
superior ectopic de novo bone formation, upon subcutaneous
implantation on the back of rats for a period of 2 and 4
weeks.10,143 These works evidence the intracellular preprog-
ramming potential and show how nanocarriers can be used
to achieve this purpose, leading to the development of new
bone tissue. Figure 7 shows the rationale of drug intracellu-
lar delivery promoting osteogenesis, starting in vitro and
concluding in vivo. In a recent work, Hasani-Sadrabadi
et al.157 optimized the production of chitosan NPs as vehicle
for Dex delivery, using a microfluidic approach. By changing
the mixing rate on the microfluidic device, the authors were
able to control the size, surface charge, and cargo release
rate from NPs, parameters that have affected the different
osteogenic markers including osteoblast-related gene expres-
sion of MSCs, ALP activity, osteocalcin content, and cal-
cium deposition (Figure 8). In fact, microfluidic-assisted
prepared NPs were more effective than bulk synthetized
NPs. Moreover, among the particles produced by microflui-
dics, smaller NPs were more prone to be internalized by
MSCs, resulting in an improved differentiation profile, as
compared with larger NPs sizes.157 El-Fiqi et al.15 took
advantage of mesoporous bioactive glass NPs to incorporate
Dex. Such NPs were then added to polycaprolactone/gelatin
nanofibrous scaffolds, resulting in a multifunctional scaffold
with sustained drug release for 1 month. Dex delivery
together with the nanocomposite scaffold stimulated the oste-
ogenic differentiation of stem cells derived from periodontal
ligament and improved in vivo bone formation.15 More
recently, Li et al. developed a scaffold with controlled deliv-
ery of dexamethasone (Dex) and BMP-2.18 While dexameth-
asone was included within the polymeric phase of the
electrospun scaffold, BMP-2 was first incorporated into
chitosan-stabilized bovine serum albumin (BSA) NPs, to
maintain the bioactivity of the growth factor. The resulting
polymeric nanofibers confer a multibarrier structure, delaying
the BMP-2 delivery. Consequently, BMP-2 exhibited a gen-
tle release pattern, without the initial burst release observed
for Dex. When applied in vivo, in a rat calvarial defect
model, the scaffold successfully promoted the defect repair.
For the authors, such dual-delivery system confers an advan-
tage, as Dex can promote earlier calcified bone formation,
whereas BMP-2, which is released later, is favorable for
long-term new bone formation.18 The synergistic effect
achieved by the combined release of BMP-2 and Dex was
also studied by Zhou et al.158 The authors have used meso-
porous silica NPs as delivery vehicle, by covalent incorpora-
tion of BMP-2 peptide on the surface and Dex inside the
NPs pores. In vivo studies in rat revealed the effective
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Table 2. Summary of Recent Works of Drug and Gene Delivery with NPs

Application Type of NP Cargo Model Outcome Ref.

Drug delivery Albumin 1 PEI-PEG
coating

BMP-2 In vitro—human C2C12
cells; in vivo—rat.

Reduced cytotoxicity; effective ex vivo
bone formation.

17

Albumin BMP-2 In vitro—rat bone mar-
row mesenchymal
stem cells; in vivo—rat
calvarial defect model.

Gentle release pattern of BMP-2;
osteoinduction; higher in vivo bone
repair.

18

Heparin-conjugated
PLGA

BMP-2 In vitro—human bone
marrow mesenchymal
stem cells.

Sustained release; extended in vivo
bone formation.

140

2-N, 6-O-sulfated
chitosan nanoparticles

BMP-2 In vitro—HUVECs,
C2C12, human mesen-
chymal stem cells; in
vivo—critical size
defect of rabbit radius.

Sustained release; increased healing
rate and better repair.

13,155

PLGA/PHBV BMP-2/BMP-7 In vitro—rat bone mar-
row mesenchymal
stem cells

Sequential release due to different
degradation rates; increased
differentiation.

16,139

Elastin-like BMP-2 and BMP-14 In vitro—C2C12 cells Induction of ALP activity and
osteogenic mineralization; BMPs
activity preserved.

14

HAp Osteopontin In vivo—canine endo-
sseous gap implant
model.

Enhanced new bone formation. 151

Chitosan BMP-7 and bFGF In vitro—fetal
osteoblasts.

Improved cell viability and
differentiation due to growth factor
sustained release.

136

Mesoporous silica BMP-2-derived peptide;
dexamethasone

In vitro—bone mesen-
chymal stem cells;
in vivo—Sprague-
Dawley rats.

Effective internalization of NPs;
successful and enhanced in vitro
differentiation; ectopic bone
formation.

158

Dendrimer Dexamethasone In vitro—rat bone mar-
row stromal cells; in
vivo—Fischer 344/N
rats.

Intracellular delivery of dexamethasone;
promote osteogenic differentiation;
promote de novo bone formation
in vivo.

10,142

Chitosan Dexamethasone In vitro—rat mesenchy-
mal stem cells

Fine-tuned production; smaller NPs
with better results due to higher
internalization

157

Bioactive Glass Dexamethasone In vitro—rat periodontal
ligament stem cells; in
vivo—rat calvarial
defect model.

Sustained drug release; improved bone
formation.

15

Gelatin-based micelles Dexamethasone In vitro—rat bone mar-
row mesenchymal
stem cells; in vivo—
rat ulna defect.

NPs pH-responsive; enhanced in vitro
osteogenic differentiation and de
novo bone formation in vivo.

33

Liposomes Dexamethasone In vitro—human bone
marrow-derived mes-
enchymal stem cells

Earlier osteogenic differentiation 144

Liposomes EGF In vivo—wistar rats Faster recovery from tooth extraction;
controlled delivery and protection of
drug.

145

Albumin Resveratrol In vitro—human bone
marrow-derived mes-
enchymal stem cells

Increased ALP activity and calcium
deposits on scaffolds with NPs.

135

Chitosan-chondroitin
sulphate

Platelet lysate In vitro—human ASCs Controlled release of platelet lysates
enhanced osteogenic differentiation.

137

Gene Delivery Aminated
mesoporous silica

BMP-2 plasmid DNA In vitro—rat bone mar-
row mesenchymal
stem cells

High transfection efficiency; successful
production of BMP-2 protein on
transfected cells.

147

Dendrimer BMP-2 plasmid DNA In vitro—rat mesenchy-
mal stem cells

Low transfection levels; successful pro-
motion of osteogenic differentiation.

11

Calcium phosphate BMP-2 plasmid DNA In vitro—MC3T3-E1
cells;

High DNA incorporation; sustained
release; injectable system; successful
bony tissue formation.

150

Silver miR-148b In vitro—humanASCs; in
vivo—critical size
mouse calvarial defect.

Temporal controlled release; spatial/
temporal-controlled differentiation
upon light irradiation.

163,164

Calcium phosphate siRNA targeting
noggin

In vitro—mice ASCs NPs modified with glutamine-
conjugated oligochitosan are more
stable; effective suppression of NOG
protein with increased osteogenic
differentiation.

89

ALP, alkaline phosphatase; ASCs, adipose-derived stem cells; bFGF, basic fibroblast growth factor; BMP, bone morphogenetic protein; EGF, epider-
mal growth factor; HAp, hydroxyapatite; HUVECs, human umbilical vein endothelial cells; PEG, polyethylene glycol; PEI, polyethylenimine; PLGA,
poly lactic-co-glycolic acid; PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate); siRNA, small interfering RNA.
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osteoblast differentiation and bone regeneration after 3
weeks of intramuscular implantation. Liposomes were also
reported as carriers for Dex intracellular delivery, promoting
earlier osteogenic differentiation of human bone marrow

MSCs without cytotoxicity.144 Liposomes are also being
used for the delivery of other components, such as antibacte-
rial drugs that can be released within scaffolds to inhibit the
growth of bacterial biofilms,159 and for epidermal growth

Figure 7. Schematic illustration of Oliveira et al. approach.

Dendron-like NPs are internalized by stem cells in vitro, and then cells are seeded onto SPCL scaffolds and implanted. Release of Dex to the cyto-
plasm will occur and de novo bone formation (blue areas) is observed within SPCL scaffolds after 4 weeks of implantation. Reprinted from Ref. 10
with permission from Elsevier.

Figure 8. Effect of the microfluidics and bulk Dex-loaded chitosan NPs in mesenchymal stem cells (MSCs).

Panel A: Effect of the microfluidics and bulk Dex-loaded chitosan NPs on Alkaline phosphatase (ALP), core binding factor alpha 1 (cbfal), alpha I
chain of collagen type I (COL1A1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression in MSCs. Representative image of
reverse transcription polymerase chain reaction (RT-PCR). MSCs were cultured in the absence and presence of NPs (A). The mRNA levels of ALP
(B), cbfal (C), and COL1A1 (D) in cells, compared and normalized with mRNA of GAPDH in the same sample using RT-PCR. NP-1: MSCs treated
with medium containing Dex-loaded microfluidic-obtained 58 nm NPs (lF-58 nm). NP-2: MSCs treated with medium containing Dex-loaded lF-
74 nm NPs. NP-3: MSCs treated with medium containing Dex-loaded lF-93 nm NPs. NP-4: MSCs treated with medium containing Dex-loaded lF-
125 nm NPs. NP-bulk: MSCs treated with medium containing Dex-loaded bulk NPs. Values indicate mean 6 SD; Panel B: ALP activity by protein
content without (A) and with Dex (B). Osteocalcin per DNA content of MSCs after culturing in culture media containing microfluidics-assisted pre-
pared NPs of different sizes for periods of 2, 7, and 14 days (C). Calcium content deposited on the extracellular matrix (D). The cells were trans-
fected with Dex-containing chitosan microfluidics NPs and cultured for 21 days. Results are expressed as average 6 SD. Adapted and reprinted from
Ref. 157 with kind permission from Elsevier.
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factor (EGF) delivery on rat tooth sockets. In the latter case,

the liposomes allowed a controlled release of EGF that stim-

ulated MSCs migration and osteoblast differentiation. While
free exogenous EGF in PBS was cleared faster and did not

lead to full wound regeneration, EGF entrapped in liposomes

allowed faster recovery, with approximately 50% more bone
trabeculae present after 21 days.145

Extracellular matrix molecules can also be used for bone
regeneration improvement. Osteopontin, a key player in the

bone remodeling process, was used to functionalize HAp

NPs that were further mixed with poly-L-D-lactic acid
(PDLLA) to create an implant coating.151 When incorporated

in a canine endosseous gap implant model, the implants with

osteopontin led to an increase in new bone formation within
the implant porosities (15 6 8% vs. 30 6 7%).151

Other strategies for drug delivery have been developed
and hold great promise for bone TE. Jiang T. et al.160 modi-

fied PLGA NPs with a poly aspartic acid peptide that specifi-

cally binds to HAp present in bone. Thence, these particles
can specifically bind to mineralized tissues, such as bone,

paving the way for bone targeted drug delivery systems.

Recently, our group has used a natural polysaccharide, gellan

gum, to improve gold nanoparticles’ behavior under physio-
logical conditions.70 Gold nanorods coated with a bilayer of

polyelectrolytes followed by a shell of gellan gum have

shown superior stability over a wide range of pH and ionic
strength as compared to bare ones. Moreover, when in con-

tact with preosteoblast cells (SaOS-2), these hybrid particles

are internalized by cells, without compromising their viabil-
ity.70 The same effect was noticed when gold nanorods were

added to a rabbit adipose stem cells (ASCs) culture, as

depicted in Figure 9. Furthermore, these NPs led to an
enhanced mineralization capacity of SaOS-2, showing their

potential for application on the scope of intracellular drug

delivery and bone TE.

Gene Delivery. Gene delivery is also a promising

approach, due to the possibility of long-term expression and

consequent longer therapeutic effect. It can be achieved using
either viral or nonviral vehicles that serve to both transport and

provide protection of the genetic material from degradation

once internalized by cells. Although viral vectors have shown
a high transduction rate, there are some concerns related to

their toxicity and immunogenicity.161 Nonviral vectors are

built to bind to the genetic material by electrostatic interac-
tions, and are considered a much safer strategy, although less

efficient as compared to viral counterparts.162 To be success-

ful, the vehicles must be able to pass through the cellular mem-
brane and to escape from the endocytic pathway. Then,

nanoparticles arise as strategic tools for gene delivery mostly

due to their size and simple functionalization.

T. Kim et al.147 and J. Santos et al.11 have developed sys-

tems to deliver BMP-2 DNA into rat MSCs. The first group

used amine-modified mesoporous silica NPs to incorporate
plasmid DNA encoding the growth factor. The functionaliza-

tion with amine groups, together with the porous structure of

NPs, improved the loading efficiency of the genetic material
up to approximately 18%. After transfection, 66% of trans-

fected cells expressed BMP-2 protein. Moreover, the trans-

fection procedure promoted osteogenic differentiation of
MSCs after 14 days, with a significant increase in the

expression of different bone related genes such as bone sialo-

protein, osteopontin, and osteocalcin.147 When compared to
nontransfected cells, the expression of these genes was

approximately three times (bone sialoprotein) and five times

(osteopontin and osteocalcin) higher. On the other hand,

PAMAM dendrimers were used by J. Santos et al.11 Transfec-

tion of MSCs was shown to be dependent on dendrimer gener-

ation, the amine-to-phosphate group ratio, and the cell passage

number. The process efficiency of human BMP-2 was very

low, but it was still sufficient to promote the osteogenic differ-

entiation of MSCs in vitro.11 A gene delivery system, com-

posed of an injectable alginate hydrogel with calcium

phosphate NPs loaded with BMP-2 encoding plasmid, was

reported by Krebs et al.150 Such particles could release the

plasmid DNA in a sustainable manner in vitro and were incor-

porated in an injectable alginate hydrogel, together with

MC3T3-E1 pre-osteoblast cells. When injected subcutane-

ously in the back of mice, MC3T3-E1 cells present within the

hydrogel could produce bony tissue after 2.5 weeks, showing

the potential of this minimal invasive method.

Another approach involves the intracellular delivery of

microRNAs (miRNA), small molecules that regulate post-

transcriptional events, to control the osteogenic differentiation.

Some miRNA, as miR-148b, have shown to be related to oste-

ogenesis of MSCs. Bearing this in mind, Qureshi et al.163

designed a photoresponsive system that delivers miR-148b in

a temporally controlled manner, to induce osteogenic differen-

tiation in human adipose-derived stem cells (ASCs).163 The

miR-148b was tethered to silver NPs via a photocleavable

linker, which breaks when photoactivated by an external light

source. The construct appears as inert until photoactivation

occurs, where the miR-148b is released from particles. The

application of this system allowed a spatial/temporal-con-

trolled differentiation of human ASCs in vitro and in vivo.164

Imaging

Cell-based therapies, namely stem cell-based, are arising

as a promising approach in regenerative medicine field, due

to their inherent biological properties.165 However, there are

a substantial number of questions regarding the outcomes of

Figure 9. Transmission electron microscopy (TEM) images of
rabbit ASCs culture in presence of gellan gum-
coated gold nanorods.

Black arrows point to internalized NPs. Author personal
collection.
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such treatments, including stem cells biodistribution after
transplantation, and their migration pattern. The development
and implementation of monitoring tools capable of tracking
injected stem cells has paved the way for a fuller compre-
hension of transplanted cells’ fate and their interactions with
the surrounding environment. To achieve such monitoring
systems, cells need to be labeled either by indirect or direct

methods.166 The former implies a genetic modification, such
that the cells produce an imaging marker after transplanta-
tion. The reporter gene can be expressed while cells are
alive, without any loss of signal over time. Nevertheless, the
difficulty of getting images of deep body structures, along
with the impossibility of using genetically modified cells in
clinics, hinders future applications in regenerative medicine.

Figure 10. In vivo MRI of scaffolds seeded with labelled human adipose stem cells (ASCs)

In vivo MRI of scaffolds loaded with 5 3 105 labeled (a) or unlabeled human ASCs (b) per 20 mm3 disk at different times (days 1, 7, 14, 21, and
28) after implantation. On the left, macroscopic MRI images obtained at day 1 showing both scaffold loaded with labeled and unlabeled cells
seeded with 5 3 105. The arrows indicate the position of the scaffold with labeled (small arrow on the right) and unlabeled cells (large arrow on
the right). Images were obtained at 4.7 T with a T2*-gradient echo sequence. Reprinted from Ref. 21 with kind permission from eCM journal
(http://www.ecmjournal.org).

Figure 11. In vivo monitoring of MSCs labeled with gold NPs by ultrasound and photoacoustic (US/PA) imaging.

(A–C) In vivo ultrasound, photoacoustic, and US/PA images of a gel containing MSCs loaded with gold NPs injected in the lateral gastrocnemius
of a Lewis rat (1 3 105 cells/mL). Injection depth was about 5 mm under the skin. (D–F) Control at the region of the lateral gastrocnemius of the
other hind limb without any injection. Photoacoustic images were acquired at the wavelength of 760 nm with a fluence of 11 mJ/cm2. Adapted and
reprinted from Ref. 23.
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Direct methods employ a previous ex vivo incubation with
contrast agents, which are internalized by cells, before the
transplant. This approach allows the application of different
imaging techniques, overcoming some flaws of indirect
methods. However, it implies a decrease of marker concen-
tration over time.166

Considering the direct methods, NPs appear as a good alter-
native method for noninvasive cell monitoring and tracking.
As contrast agents, NPs can be detected by several imaging
modalities, including magnetic resonance (MRI),118,167 com-
puted tomography (CT),168 and photoacoustic imaging.169

Some products are, in fact, already on market for this purpose,

as reviewed by Wang et al.19

From a regenerative perspective, MSCs are an important
cell population due to their capacity to differentiate into dis-
tinct lineages, including the osteogenic lineage.170 Therefore,
MSCs labeling has become an important tool, allowing their

post-transplantation tracking, which is essential to understand
their in vivo behavior, biodistribution, and molecular regula-
tion.20 The most used NPs are SPIONs,21,171–174 gold
NPs,74,175 mesoporous silica NPs,176 and QDs.22,177

SPIONs were found to be efficiently internalized by
human MSCs, acting as a negative contrast for MRI scan-

ning, as shown in Figure 10.21 Although the labeling capac-
ity is consistent across different studies, the effect on
differentiation capacity is still a controversy point, highly
dependent on the applied coating and concentration used.
While some studies report impairment of osteogenic and
chondrogenic differentiation ability,171,178 others did not find

an impact of SPIONs labeling on the differentiation capacity

of labeled cells.179 Recently, J. Fan et al.172 performed a

comparative study between the labeling capacity on adipose-

derived MSCs and bone-derived MSCs. Results have shown

that increasing concentrations of SPIONs led to a decrease

in cell viability in both cell groups, as well as adipogenic

and osteogenic differentiation potentials.

Studies with gold NPs have shown that these particles do

not hinder the differentiation capacity of human MSCs.

Zhang et al.,66 and Tsai et al.180 reported no influence in the

differentiation capacity of human MSCs and MG63-

osteoblast like cells, respectively. More recently, some

authors reported that gold NPs were able to stimulate differ-

entiation and mineralization of primary osteoblasts.70,131

After being labeled with these NPs, samples can be analyzed

by photoacoustic tomography (Figure 11), allowing a deeper

and higher detection sensitivity, compared to other methods

such as MRI and fluorescence microscopy.23,66 Similarly, sil-

ica NPs have shown great potential as tracking agent. As an

example, the work of Shen et al.176 took advantage of the

mesoporous structure of silica NPs to incorporate gadolinium

for further MRI detection. The preliminary in vitro studies

revealed that gadolinium–silica NPs were successfully taken

up by cells, without affecting cell viability and differentia-

tion potential of both bone MSCs and neural stem cells. In

vivo studies using rats demonstrated the feasibility of using

gadolinium–silica NPs as long-term MRI probes.

It is noteworthy that imaging of bone-targeted MSCs is

subject to some technical problems, mostly due to high min-

eralization in bone tissue, that hinder the follow-up of

MSCs. Additionally, there is also a concern regarding the

Table 3. Summary of Recent Works of Imaging Using NPs

Application Type of NP Detection method Concentration Model Outcome Ref.

Imaging Ultrasmall
SPIO

MRI 15 mM (Fe31) In vitro—Human ASCs;
in vivo—Nude mice.

Efficient internalization without
cytotoxicity; successful track-
ing after in vivo transplant.

21

SPIO MRI 25, 50, and
100 lg/mL

In vitro—ASCs and bone
marrow mesenchymal
stem cells

Cell viability decreased with
higher concentrations; adipo-
genic and osteogenic differen-
tiation were hampered by the
presence of SPIO.

172

SPIO MRI 25 lg/mL In vitro—Rat/mice bone
marrow mesenchymal
stem cells
In vivo—C57BL/6 mice

Successful observation by MRI;
particle uptake was higher in
presence of facilitating agents
(PLL and protamine); osteo-
genic, adipogenic and condro-
genic differentiation were not
affected.

179

Dendrimer-QDs Fluorescence 10 nM In vitro—Mice
mesenchymal
stem cells;
in vivo—C57BL/6 mice.

Conjugation of QDs with den-
drimers allowed endocytic
escape; longer fluorescent
emission both in vitro and in
vivo.

22

QDs Fluorescence 5 nM In vivo—Nude rat critical
size defect

Negative impact on in vivo per-
formance; retention of QDs in
macrophages.

177

AuNPs Ultrasound-guided
photoacoustic

imaging

�[4.53 6 0.04] 3
105 NPs/cell

In vitro—Mesenchymal
stem cells;
in vivo—Lewis rat.

High detection sensitivity; high
temporal and spatial
resolution.

23

AuNPs Two-photon
microscopy and
photoacoustic
microscopy

25 pM In vitro—Human
mesenchymal stem cells;
in vivo—Nude mice

Successful labeling and tracking
of cells; long-term imaging;
increased depth resolution.

66

Mesoporous
silica doped
with Gd31

MRI 50 lg/mL In vitro—rat mesenchymal
stem cells;
in vivo—Sprague
Dawley rat.

Long-term imaging; high Gd31

payload.
176

ASCs, adipose-derived stem cells; AuNPs, gold nanoparticles; MRI, magnetic resonance imaging; PLL, poly-L-lysine; QDs, quantum dots; siRNA,
small interfering RNA; SPIO, superparamagnetic iron oxide.
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uncertain fate of NPs once inside the body. The label can be

freed from cells by means of exocytosis and/or apoptosis,

and then internalized by other cell types, which can lead to

misconception of the imaging results.74,166 Research is still

ongoing trying to improve the image acquisition process,

thus allowing the wide use of these techniques in research

and in the clinic. Table 3 condenses the most relevant works

reported to date in this field.

Final Remarks and Future Trends

The incorporation of nanotechnology in TE applications

has been providing a wide range of new opportunities for

researchers and a new hope for future clinical applications.

It is now possible to create structures not only within the

same size range as natural occurring ones but also specifi-

cally tailored to fit with them. This specificity results from

the possibility to modify NPs properties and functionalize

them accordingly to the desired interaction. For bone TE,

research has been done mostly in three areas showing prom-

ising results: scaffolds improvement, nanocarriers, and cell

labeling for imaging. The conjugation of these three strate-

gies in a single system might be the trend in this field. With

this approach, it is possible not only to provide the appropri-

ate scaffold and stimulate cell differentiation and mainte-

nance through intracellular drug release, but also to track

delivered cells in vivo. This labeling capacity has a great

impact on the development of new solutions, since it enables

the monitoring of cell biodistribution and function after

transplantation for an extended time. Moreover, this labeling

capacity can be used to understand how NPs distribute inside

cells and how they interact with cytoplasmic elements, which

is also extremely important to understand and improve NPs

usage.

Despite the increase of NPs applications in research, it is

still necessary to fully understand the interaction mechanisms

between NPs and living organisms. Because of their small

dimensions, the material properties are changed and chemi-

cal reactivity is highly increased. This means that size- and

dose-dependent mechanistic paradigms of bulk materials are

inaccurate when applied to NPs. Most of the reviewed works

have included cytotoxicologic studies; however, that is insuf-

ficient to understand the real toxicological effect of NPs.

Hence, Nanotoxicology is an area that needs to grow along

with nanotechnology, providing safety profiles for each type

of NPs. These studies should include a comprehensive char-

acterization of NPs, regarding their size, material, shape,

charge, and application mode (immobilized in scaffolds or

free); estimated number of NPs used; pharmacokinetic stud-

ies, that is, how NPs are adsorbed, distributed, metabolized,

and excreted by organisms; and NPs uptake dynamics and

pathways. The establishment of representative models for

each type of nanoparticle and toxicity test protocols, to stan-

dardize the collected data, is also needed.

Another key parameter that should be considered when

designing NPs is the bench to market transition. This is a

big challenge for researchers and engineers, as it implies a

scale-up of laboratory procedures for an industrial scale,

with an affordable cost. Additionally, all the procedures,

from synthesis to shipping and storage, must be consistent

with Good Manufacturing Practice (GMP), which is not

always easy to accomplish.

Summing up, nanotechnology holds a great potential for

bone TERM and can be used as multifunctional tool within

different fields. Although we are getting closer to developing

therapeutic approaches with clinical applications, there is

still a substantial amount of investigation to do and chal-

lenges to surpass before this goal can be achieved.
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