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A B S T R A C T

Porous polymeric materials are studied in tissue engineering, because they can act as support for cell
proliferation and as drug delivery vehicles for regeneration of tissues. Hydrogel foaming with supercritical
CO2 is a suitable alternative for the creation of these structures, since it avoids the use of organic solvents and
high temperature in the processing. In this work, β-glucans were used as raw materials to create hydrogels due to
their easily gelation and biological properties. The enhancement of porosity was generated by a fast
decompression after keeping the hydrogels in contact with CO2. The effect of the processing conditions and
type of β-glucan in the final properties was assessed regarding morphological and mechanical properties. Finally,
the ability of these materials to sustainably deliver dexamethasone was evaluated. The scaffolds had good
morphology and provided a controlled release, thus being suitable to be used as scaffolds and drug delivery
vehicles.

1. Introduction

Tissue engineering involves the use of a combination of polymeric
scaffolds, cells and bioactive compounds (such as growth factors) in
order to mimic the host tissue and provide the necessary cues to induce
its regeneration. The aim is to enhance the regeneration of damaged
tissue with an implant containing stem or differentiated cells which
allow in situ growth of new tissue [1,2].

The scaffolds must meet certain requirements to be used in cartilage
or bone tissue engineering [3,4]. They have to be prepared from a
biocompatible material that degrades at the same rate as the growth of
the tissue, so that it disappears when new tissue is created [5]. Also they
must have similar mechanical characteristics to the tissue they are
going to replace, depending on whether it is a soft tissue like cartilage,
or a hard and more compact tissue like bone. The mechanical properties
of the polymeric scaffolds can be tuned by the addition of ceramic
materials [2]. Not only the incorporation of ceramics like hydroxyapa-
tite or β-tricalcium phosphate improves the mechanical properties but
also enhances the biocompatibility and integration of the material in
the implant zone [6]. Regarding the structure of the scaffold, macro

pores in the order of 150 μm are required. Furthermore, the pores have
to be highly interconnected to allow the transport of nutrients and by-
products to and from the cells in the matrix, respectively [7]. The
scaffolds should not only act as support for cellular growth, but also as
drug delivery vehicle for some active compounds. For instance, they
could include an anti-inflammatory agent that prevents an undesired
inflammatory reaction of the surrounding tissues upon implantation
[1].

β-Glucans were chosen in this work as biopolymer for the fabrica-
tion of scaffolds. Polysaccharides are widely used with this purpose
because they are non-toxic, biocompatible, biodegradable and are
obtained from renewable sources in nature. In this context, β-glucans
are a good option, since they are able to create a hydrogel easily by
thermal changes. Besides, they offer some interesting biological proper-
ties, such as the ability to improve wound healing or modulate the
immune system, and their anti-inflammatory and anti-bacterial proper-
ties, that increase their potential in medical and pharmaceutical
applications [8–10]. Some previous works explore the use of different
β-glucans for tissue engineering. Przekora et al. studied the properties
of a scaffold composed of bacterial 1,3-β-glucan (curdlan) with chitosan
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and hydroxyapatite prepared by gelling of the components and air-
drying the hydrogels [11]. They found out that the addition of β-glucan
to hydroxyapatite increased the elasticity and water uptake capacity of
the scaffold, suggesting a better adaptation into the implant site,
although mechanical strength was decreased [12]. Also curdlan was
effectively used for wound dressing in burn injuries [13]. Furthermore,
regarding cell culture, the presence of β-glucan in the chitosan-
hydroxyapatite composite enhanced cell adhesion and growth [14].
Another work also reported an improvement in cell regeneration
through a better adhesion and proliferation in membranes of poly
(lactic-co-glycolic acid) when they were mixed with 1,3–1,6-β-glucans
[15]. Nevertheless, in previous works, the β-glucan-based materials for
these applications were created mainly by moulding or electrospinning
of the polymeric solution. Up to our knowledge, there are no reports
aiming to produce β-glucan scaffolds with enhanced porous properties
for tissue engineering applications, particularly in which concerns bone
regeneration.

Several techniques are used to create porous scaffolds, such as salt
leaching, phase separation or sintering [16–19]. However, these
procedures imply the introduction of organic solvents or very high
temperatures, and further purification steps to completely remove toxic
residues [20]. Foaming of polymers with supercritical CO2 is an
extensively used alternative, since the porosity is produced using CO2

as blowing agent, and it is easily removed later by decompression
[3,21]. This process is based on the ability of supercritical CO2 to
plasticize and saturate the polymer above its critical point. When
pressure is released, supersaturation of the CO2 occurs, giving rise to
bubble nuclei inside the polymer that result in pores upon solidification
[22]. Nevertheless, this procedure can only be applied to amorphous or
semi-crystalline hydrophobic polymers, but not to hydrophilic polymers
that do not experiment any phase transition before thermal degradation
[23,24]. In these cases, porous structures can be formed with super-
critical CO2 by developing first a hydrogel so that the dense gas is
dissolved in the aqueous phase and is also able to penetrate and swell
the rubbery structure of the hydrogel [24]. Then, when the system is
depressurize, pores are created by bubble formation due to super-
saturation of CO2. With this process, highly interconnected structures
from natural-origin polymers can be prepared. Different studies re-
ported in the literature show the ability to foam natural-based polymers
using this technique, particularly chitosan, elastin and collagen
[23,25,26].

In this work, porous scaffolds were prepared in order to be used as
polymeric matrix for bone regeneration. The scaffolds were created by
hydrogel foaming with supercritical CO2 with 2 different β-glucans:
(1–3, 1–4)-β-glucans from barley and (1–3, 1–6)-β-glucans from yeast
Saccharomyces cerevisae. Both β-glucans differ in their structure and
properties: whereas barley β-glucan is a linear, water soluble polymer,
yeast β-glucan has a branched conformation and is not soluble in water.
Thus, their behavior is different and they have to be processed in a
different way in order to create the hydrogel. Also, this will influence
the structure and the properties of the final products, which were
analyzed regarding morphology and mechanical properties, and com-
pared to freeze-dried materials as control. Besides, dexamethasone was
included in the formulations as a model active compound to study the
release from the scaffold. Dexamethasone was chosen as model active
compound because it promotes the differentiation of stem cells towards
osteogenic lineage and, at the same time, has anti-inflammatory effect
in the implant zone [27,28].

2. Materials and methods

2.1. Materials

Barley β-glucans (BBG, 75% purity; Glucagel, kindly supplied by
DKSH, France) and yeast β-glucans (YBG, 64% purity; L-Naturae
Nutraceutical, kindly supplied by Naturae, Spain) were used as raw

materials to create the hydrogels. Dexamethasone (CAS 50-02-2) was
purchased from Sigma. PBS was prepared from tablets (Sigma).

2.2. Production of β-glucan hydrogels

BBG hydrogels (4% w/w) were produced by dissolving the β-
glucans in water at 80 °C, boiling them for 5 min and then keeping
them at 75 °C for 1 h. After that time, the solution was poured into 96-
well plate molds and kept at 4 °C for 3 days until they became gel.

YBG hydrogels (2.5% w/w) were created from a suspension. YBG
was first stirred for 30 min, in order to correctly hydrate them and
achieve a homogeneous dispersion. Then they were heated at 90 °C for
1 h and poured into molds, where they were kept overnight to form the
hydrogel. The concentration of both β-glucans was chosen as the lowest
which allowed the formation of the hydrogel.

2.3. Hydrogel foaming with supercritical CO2

The hydrogels were placed in a high-pressure vessel, preheated at
37 °C. Then the vessel was closed and CO2 was fed up to the chosen
operating pressure, namely 8, 12, 16 or 20 MPa, using a high-pressure
pump (Haskell, MCPV-71). The hydrogels were kept in contact with
supercritical CO2 for 1.5 h, in order to have enough time to allow the
diffusion of CO2 into the bulk of the hydrogels and saturate them. After
that time, a fast decompression was performed to promote the foaming
and at the same time freezing off the structures. In this way, the porous
structure produced was stabilized and kept overnight at −80 °C. Water
was removed by freeze-drying (−80 °C, vacuum lower than 0.5 mbar).
As a control, hydrogel samples not subjected to pressurized carbon
dioxide were directly frozen and freeze-dried.

2.4. Morphological characterization of the scaffolds

Micro-Computed Tomography (Micro-CT) was used to evaluate the
porosity and pore size of the 3D structures obtained. The images were
acquired on a high-resolution micro-CT SkyScan 1272 scanner (Bruker,
Germany) using a voltage of 50 kV and a current of 240 μA. Images
were acquired with an exposure time of 160 ms and a pixel size of
15.99 μm. After image acquisition the noise was reduced with nRecon
software. CT Analyser software (SkyScan, Belgium) was used to obtain
representative data sets of the samples and converting them into 2D
images. For each set of conditions, 3 different samples were analyzed.
The interconnectivity of the scaffold is calculated according to the
formula: I = [(Vtotalpores − Vdisconnectedpores)/Vtotalpores] × 100, where
the volume of the disconnected pores is defined to be the volume of
porous which are not connected by channels higher than 50 μm.

The produced scaffolds were observed by scanning electron micro-
scopy (SEM) with a high-resolution field emission scanning electron
microscope with focus ion beam (Auriga Compact, Zeiss). The samples
were cut in liquid nitrogen and the sections were placed by mutual
conductive adhesive tape on aluminum holders and covered with gold
palladium using a sputter coater.

2.5. Mechanical properties

The mechanical behavior of the samples was assessed in compres-
sion mode using a universal testing machine (Instron 5540). The
scaffolds were compressed at 1 mm min−1 until a maximum deforma-
tion of 70% of the initial height. The compressive Young modulus was
determined as the initial slope in the stress-strain graphs. The analysis
was performed in triplicate.

2.6. In vitro release of dexamethasone

Dexamethasone was loaded in the initial aqueous solution of β-
glucans at different concentrations, namely 5 and 10 wt% in respect to
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the weight of the polymer, and then the processing of the structures was
done as described before (Sections 2.2 and 2.3). The conditions selected
for the foaming were 37 °C and 12 MPa.

The different scaffolds were immersed in 20 mL PBS in a water bath
at 37 °C. Aliquots of 150 μL of the liquid medium were withdrawn at
different time points (5, 10, 15 and 30 min, 1, 2, 3, 4.5, 6, 8, 24 and
32 h, and daily from 2 to 11 days) and replaced with the same quantity
of fresh PBS. The samples were analyzed by UV–vis spectrophotometry
at 245 nm and the absorbance value was adjusted into a calibration
curve between 0 and 0.05 g/L of dexamethasone to determine the drug
concentration released into the liquid. Three different samples were
prepared for each time point. The replacement of liquid with fresh PBS
was taken into account in the calculations of the cumulative mass of
dexamethasone.

The release kinetics was analyzed with different empirical models in
order to determine which one better represented the release behavior
from the structures, in particular Korsmeyer-Peppas (Eq. (1)), zero
order (Eq. (2)), first order (Eq. (3)), Higuchi (Eq. (4)) and Hixson-
Crowell’s models (Eq. (5)) [29].
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In these equations, Mt is the quantity of drug released at time t, Mr is the
quantity of mass retained at time t, M∞ is defined as the quantity of
drug that would be released at infinite time, which is the total quantity
of drug initially on the scaffold and k is the kinetic constant.

In order to complete the information from the Korsmeyer-Peppas
model, Peppas and Sahlin proposed another empirical equation to
determine the contribution of each release mechanism (diffusion
controlled or swelling controlled) to the total drug release [30]:

M
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Where m is the diffusion exponent of the pure Fickian diffusion, which
is 0.45 for a cylindrical geometry. In this equation, the first term of the
right (k1tm) corresponds to the Fickian contribution, and the second

Fig. 1. Porosity (a), interconnectivity (b) and mean pore size (c) of the scaffolds at different foaming pressure. Closed symbols: BBG (* significantly different results, p < 0.05). Open
symbols: YBG (# significantly different results, p < 0.05).
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(k2t2m) corresponds to the relaxation contribution. By fitting k1 and k2
to the experimental data up to 60% release, it is possible to calculate
the relative contribution of Fickian (F) and relaxation (R) mechanisms
as follows:

F
t

= 1
1 + k

k
m2

1 (7)

R
F

k
k

t= m2

1 (8)

2.7. Statistical analysis

For the morphological analysis, the average values and standard
deviation of porosity, mean pore size and interconnectivity were
evaluated, and Student’s t-test was performed (unpaired samples,
unequal variances) in order to check whether there were significant
differences between each sample for each parameter, with a signifi-
cance p-value of 0.05.

Statistical differences between the calculated Young moduli and
maximum stress in compression test were evaluated by Student’s t-test
for each β-glucan (unpaired samples, unequal variances, significance p-
value of 0.05).

3. Results and discussion

3.1. Morphological characterization of β-glucan scaffolds

β-Glucan scaffolds with enhanced porous properties were obtained
by hydrogel foaming with supercritical CO2. An important step in the
hydrogel foaming is the stabilization of the structures. The Joule-
Thompson effect plays a key role in this process. Upon the fast
decompression, the samples were frozen due to the sudden expansion
of CO2 to atmospheric pressure, so that the bigger the pressure drop, the
greater the cooling effect and hence stabilization of the materials. Thus,
the samples were completely frozen when working at 12 MPa or more,
but at 8 MPa it was more difficult to stabilize the structures and this

resulted in less homogeneity.
Morphological properties were obtained by micro-CT (Fig. 1).

Porosity, pore size and interconnectivity followed an increasing ten-
dency with the foaming pressure for both β-glucans, although some
differences were observed between them. For BBG, porosity increased
from 30% when the material was just freeze-dried to 55–60% when the
structures were foamed with supercritical CO2, without significant
differences with the pressure (Fig. 1a). On the contrary, YBG had
higher porosity than BBG when it was processed just by freeze-drying
(60%), which could be due to the lower concentration of polymer used
to create the hydrogel. When the material was foamed, the porosity
increased up to 80% with 20 MPa. These values are in the range of
those of natural bone, which is between 50 and 90% porosity [31].

Regarding interconnectivity of the pores, YBG showed a greater
increase with the foaming pressure when compared with BBG (Fig. 1b).
Although interconnectivity was the same for both β-glucans obtained
by freeze-drying (around 10%), after supercritical foaming with CO2 it
was bigger for YBG in all the range of pressure tested, reaching 53% for
BBG and 75% for YBG at 20 MPa. Nevertheless, there was a noticeable
increase for both polymers when they were processed with supercritical
CO2, compared to conventional freeze-drying.

Despite the differences between BBG and YBG in porosity and
interconnectivity, both β-glucans had very similar mean pore size, and
the same increasing tendency with foaming pressure, from 50 to 75 μm
by freeze-drying, to 230–290 μm at 20 MPa (Fig. 1c). This increment in
pore size makes the scaffolds suitable to be used in bone regeneration
regarding pore size, since 100 μm is considered to be the minimum size
required for proper bone growth. In addition, pore size up to 300 μm
contributes to the formation of capillaries that enhance vascularization
of the new tissue [31]. This effect of foaming pressure in pore size was
not observed and had not been described in previous works reporting
foaming of chitosan and chitin hydrogels [23,26].

At higher foaming pressure, more quantity of CO2 saturates the
hydrogel [32]. Thus, more nuclei are formed during depressurization,
and each one will correspond later to one pore. This partially explains
the increase in porosity with the foaming pressure. However, at higher
pressures, the amount of CO2 in the hydrogels is too high and it cannot

Fig. 2. Micro-ct reconstructions of β-glucan scaffolds produced by freeze-drying (a and d) and by foaming with CO2 at 12 (b and e) and 20 MPa (c and f).
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be totally released during the decompression. Thus dry ice is formed
inside the matrix, which will then be sublimated when the freeze-drying
takes place [26]. In this way, it creates channels that link the pores,
producing at the same time an increase in the porosity and in
interconnectivity. Finally, coalescence of pores and channels generates
the increase in pore size.

The increase in porosity and pore size is easily observed on the 2D
images of the micro-CT reconstructions of the materials (Fig. 2). By
freeze-drying (Fig. 2a and d), the samples presented less void spaces,
and only the typical channels correspondent to water crystals were
noticed. A much porous structure was obtained by foaming with
supercritical CO2 (Fig. 2b and e), with the pores well-distributed along
the material. However, when the pressure was increased up to 20 MPa
(Fig. 2c and f), non-homogeneous samples with very large pores were
produced, so that the material was almost hollow on the inside and the
polymer being placed mostly on the outer part. According to those
results, pressures of 12 or 16 MPa can be identified as the optimum
operating conditions in order to establish a balance between the pore
size, porosity and interconnectivity required for tissue engineering
applications and the homogeneity of the samples produced.

The structure of the scaffolds was also analyzed by SEM (Fig. 3). In
the freeze-dried samples not foamed, the pores were smaller, and were
oriented following the directions of the crystallization of ice. On the
contrary, when the samples were foamed, the pores increased. As it was
observed with micro-CT images, the most homogeneous porosity was
observed for the samples processed at intermediate pressures (12 and
16 MPa). At 8 and 20 MPa, a combination of small and very large pores
was noticed. In the case of 8 MPa, this fact is due to the incomplete
freezing of the material upon decompression, which made the struc-
tures very unstable and the porosity could not be well maintained. At
20 MPa, as it was aforementioned, the presence of big pores was a
consequence of the joining of the smaller ones because of an excess of
CO2 dissolved in the hydrogel during processing. Due to the inhomo-
geneity of the samples produced by foaming at 20 MPa, they were
disregarded for further mechanical analysis.

3.2. Mechanical properties

The mechanical properties of the scaffolds are highly dependent on
the porosity and interconnectivity of the pores. However, the variations

observed in the porous properties were not reflected in the mechanical
properties. For each β-glucan, there were no significant differences with
the foaming pressure in Young modulus values. For maximum stress
until failure, only the value corresponding to 16 MPa for BBG is
significantly lower than the ones at lower foaming pressure. YBG
samples were much more brittle and fragile, probably due to the lower
polymer concentration and some of them could not even be handled
and were therefore not analyzed. Fig. 4 shows the results of the
compression test.

The values obtained were much lower than those of compact and
spongy bone (15–20 GPa and 0.1–5 GPa, respectively) or cartilage
[12,33,34]. Nevertheless, it has been reported that, although cartilage
has values of Young modulus between 0.5–1 MPa, values around 4 kPa
enhance the formation of cartilage, whereas Young modulus higher
than 40 kPa facilitates osteogenesis [35]. Young modulus results were
in the range of those obtained by other authors in elastin hydrogels
(1.9 kPa, and 11.8 kPa in a composite with tropoelastin) foamed with
high-pressure CO2 [36], and slighlty lower than the ones reported for
chitosan hydrogels foamed with high-pressure CO2 (41.6 kPa when it
was cross-linked with glutaraldehyde and 73.9 kPa when it was cross-
linked with genipin) [23]. These higher values compared to β-glucan
foamed samples could be attributed to the stronger network created by
chemical cross-linking rather than by thermal gelling. However, as
mentioned before, porosity, pore size and interconnectivity were
suitable for the scaffold to be able to host cells and allow their growth.
One of the solutions to overcome this, and in order to balance porous
and mechanical properties, is to load a ceramic material to the initial β-
glucan solution, so that after processing by hydrogel foaming a similar
porous structure would be obtained, but with enhanced mechanical
properties [37,38].

3.3. In vitro release of dexamethasone

The most promising scaffolds for tissue engineering were obtained
with 4% BBG prepared at 37 °C and 12 MPa, hence this formulation was
the one chosen to proceed with the impregnation of dexamethasone and
the study of these matrices as possible drug delivery systems. Following
previous results reported in the literature, two different concentrations
of dexamethasone were loaded in the scaffolds, 5 and 10 wt% [39,40].
We observed that the release profile of dexamethasone into PBS (Fig. 5)

Fig. 3. SEM images of 4% BBG scaffolds produced by freeze-drying (a) and by foaming with CO2 at 8 (b), 12 (c), 16 (d) and 20 MPa (e). Scale bar: 100 μm. Magnification: ×200.
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was very similar for both concentrations of the active compound tested.
This would be expected since it depends mostly on the properties of the
polymeric matrix and on the interactions between the active compound
and the polymer. First, there was a burst release up to 8 h, in which 36
and 44 mg of dexamethasone per g of scaffold was released to the liquid
medium for each concentration (which accounted for 75 and 49% of the
total loaded amount, respectively). After that period, a slower release
was obtained until 4 days. At that point, the release reached a constant
value and was maintained for the following days, around 51 and 78 mg
dex/g scaffold for 5 and 10% dexamethasone, respectively. Much faster
release of dexamethasone (90% in 2 h) was obtained in chitosan
scaffolds loaded by supercritical impregnation of the freeze-dried
material [41]. In chitosan nanoparticles prepared by mixing dexa-
methasone in the initial solution and then freeze-drying of the particles,
a release profile similar to ours was obtained [42].

The initial burst release is usually attributed to the active compound
present on the surface of the materials. The fast release up to 8 h
achieved in our work could be a consequence of a combination of the
release of the superficial drug and the highly porous matrix, which
allowed a rapid penetration of PBS into the scaffold and the extraction
of dexamethasone present also in the surface of the more accessible
pores towards the liquid medium during the first hours. Afterwards, a
sustained release was observed for the following days due to the
diffusion of the drug from the polymeric matrix to the liquid medium.
A initial release rate similar to ours (around 30–35 mg dexamethasone/
g scaffold in the first 8 h) was observed in a blend of starch and poly-
lactic acid scaffold produced by supercritical-assisted phase inversion,
although after that initial period the release was slower and controlled
up to 21 days [39]. This longer release period could be attributed to the
higher hydrophobicity of poly-lactic acid in comparison with β-glucan,
which slows down the extraction of dexamethasone by PBS.

In order to be able to draw conclusions on the mechanisms
governing drug release from the scaffolds, different empirical equations
were applied to the experimental data. Results of the fitting of the
results of release in PBS (Table 1) revealed that release for 10%
dexamethasone could be well described by first-order model, which
represents a control by both diffusion and relaxation of the matrix.
However, in the case of 5% dexamethasone, the adjustment with
Higuchi model was better. Thus, the release was mostly controlled by
the diffusion of dexamethasone from the polymer to the liquid.

With Korsmeyer-Peppas’ model, it is also possible to obtain the
diffusion exponent, n, which characterizes the mechanism governing
the drug release [29]. In both cases the diffusion exponent determined
for the BBG scaffolds loaded with dexamethasone fell in the values
determined for anomalous transport for a cylindrical matrix, i.e., a
value of n between 0.45 and 0.89. This means that the release is
governed by both diffusion and swelling of the scaffold.

In order to determine the contribution of each mechanism to the
total drug release, the release data were introduced in Eq. (6), and
values of k1 = 0.0328 min−0.45 and k2 = 0.0008 min−0.45 for 5%
dexamethasone, and k1 = 0.0277 min−0.45 and k2 = 0.0006 min−0.45

for 10% dexamethasone were obtained. Introducing these values in Eqs.
(7) and (8), it was observed that the release was mainly controlled by
the diffusion of dexamethasone from the β-glucan matrix to the liquid
medium (Fig. 6). At initial time, release was almost totally controlled by
Fickian diffusion, although this contribution decreased with time, while
relaxation of the matrix gained importance in controlling the release.
Nevertheless, the contribution of the relaxation of the polymer was
lower than 25%. As it would be expected, the results were similar for
both concentrations of dexamethasone, since the matrix was the same.

These calculations further confirm the observations from the release
profiles. According to this, the release rate of dexamethasone was first

Fig. 4. Compressive Young modulus (a) and maximum compression stress until failure (b) of the foamed samples of 4% BBG (grey) and 2.5% YBG (white). *: significantly different values
for BBG samples (p < 0.05).

Fig. 5. Release profile of dexamethasone from BBG scaffolds. Initial dexamethasone in the scaffolds: 5% (w/w, squares) or 10% (w/w, triangles). Lines are added to guide the eye.
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controlled by the diffusion rate of the drug from the scaffold to the
liquid. With time, the scaffold was wetted and relaxation of chains
occurred, so that this fact also contributed to the release of dexametha-
sone from the zones that were initially inaccessible to the liquid.
However, the release mechanism governing the process was always the
diffusion, possibly due to the high porosity of the scaffolds, which
allowed the liquid to easily penetrate into the matrix, be in contact with
the drug and extract it to the liquid medium.

4. Conclusions

In this work, we successfully obtained highly porous β-glucan
scaffolds after supercritical foaming of the hydrogels. This process is
based on the solubility of high-pressure CO2 in the water present in the
hydrogels, thus the porosity is created due to supersaturation of CO2

upon decompression. Barley and yeast β-glucans were used as biopo-
lymers for the production of the scaffolds. Influence of the foaming
pressure was noticeable on the porous properties of the materials
through an increase of porosity, pore size and interconnectivity with
the pressure. However no significant changes were observed on their
mechanical properties under compression stress. Regarding the type of
β-glucan, despite the scaffolds with YBG had greater porosity and
interconnectivity, mean pore size was similar for both β-glucans. Due to
the differences in porosity, YBG scaffolds had lower resistance to
compression. Although the morphological properties achieved in the
scaffolds with both β-glucans were appropriate for support of cells and
growth of new tissue, they were brittle and did not reach mechanical
properties of bone or cartilage tissue by themselves. A controlled
release of dexamethasone from BBG scaffolds was achieved, higher
during the first 8 h (between 50 and 75%), and slower until complete
release in 4 days. The release was mainly controlled by diffusion of the
active compound, although there was also some contribution due to
relaxation of the polymeric matrix.
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Fitting of the release of dexamethasone to different models.
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Korsmeyer-
Peppas

n

5% 0.6716 0.9218 0.9718 0.8464 0.9317 0.745
10% 0.7353 0.9187 0.8932 0.8645 0.8330 0.721

Fig. 6. Contribution of diffusion (F, squares) and relaxation of the polymer (R, triangles)
to the control of the release of dexamethasone. Grey: 5%, and black: 10% dexamethasone.
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