
AUTOMATIC SIMULATION MODELS GENERATION OF WAREHOUSES WITH

MILKRUNS AND PICKERS

António Vieira1, Luís S. Dias1, Guilherme B. Pereira1, José A. Oliveira1, M. Sameiro Carvalho1 and Paulo

Martins1

(1) (2) University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.

(1, 2) (antonio.vieira, lsd, gui, zan, Sameiro, pmartins)@dps.uminho.pt

ABSTRACT

To help a company of the Bosch Group to reduce its

costs (both in time and space) with its supermarket, a

micro simulation model was developed in Simio.

Particularly, the tool is able to model pickers riding milk

runs to collect containers of products, from a

supermarket, to satisfy the needs of the production lines.

Practitionaer may benefit from this tool, since it is able

to model different supermarket scenario, for instance

different storage strategies. Additionally, the

supermarket itself is automatically created, through an

Add-in of Simio that was developed in C#, which

implements the API of Simio. Conclusions and future

work are discussed.

Keywords: Warehouse, milk run, picking, Micro

simulation, Simio.

1. INTRODUCTION

In recent years, the Bosch Group has been applying

concepts of the Toyota Production System (TPS)

(Monden, 1998) and of the Lean Manufacturing

(Womack et al., 1990, Womack and Jones, 1996),

designated as Bosch Production System (BPS) (Yildiz et

al., 2010, Costa et al., 2011). Its purpose is to “eliminate

waste in production and all related business processes.

BPS provides the basis for continuous improvements in

quality, costs, and supply performance” (Bosch, 2014).

A significant part of the costs of a company are its

supermarkets (Baker and Canessa, 2009). Since one of

the objectives of the BPS is to reduce costs, the need, to

study alternatives to the current design and picking

system of the supermarket on the company Bosch Car

Multimedia Portugal in Ferreiros, Braga, arose.

In this context, a micro simulation model, using

Simio, was developed. The tool is able to model pickers

riding milk runs to collect containers of products, from

the channels of a supermarket, to satisfy the needs of the

production lines. A Channel is the basic unit for storage

in this supermarket. Each has the capacity to hold several

containers. On the other hand, a container holds many

units of one type of product.

The storage strategy used in this supermarket is the

dedicated. This is the most simple that can be used, since

it consists on having a channel dedicated to a single type

of product (Bartholdi and Hackman, 2008). One of its

great advantages, resides on the fact that, since the

locations of the product don’t change, the pickers can

memorize them, making the picking process more

efficient (Bartholdi and Hackman, 2008). Nevertheless,

the problem with this strategy is that “it does not use

space efficiently. In fact, it is expected that, on average,

the storage capacity is about 50%” (Bartholdi and

Hackman, 2008), which represents a high amount of

costs associated. To overcome this problem, other

strategies can be considered (e.g. random storage). Thus,

the simulation model must be able to model several

storage strategies. In addition to that, the quantity of

requests a picker gets per shift, the time between shifts,

the number of types of products, the arrival rate of

requests, and the number of milk runs and pickers need

to be configurable.

Additionally, the supermarket is composed by

circulation corridors for milk runs that gives them access

to corridors of racks. In its turn, each rack is composed

by a variable number of channels, in height and in width,

whereby it is necessary to create several layouts of the

supermarket. To do so, the API of Simio is being used to

create an add-in, in C#. The latter reads data from an

excel file, where the user is able to specify several inputs,

e.g. the number of corridors, their positions, their rotation

angles, the number of channels on each rack (in height

and in width), among others. Nevertheless, the creation

of the add-in will not be covered in this paper. Regardless

of that, the simulation model was built so that several

layouts of the supermarket could be modelled. Thus, this

paper intends to document the first part of the simulation

model developed, which consists on the pickers

receiving requests and riding their milk runs to collect the

respective containers from the supermarket. The return

of the leftover containers and the restock processes are

not yet modelled.

Section 2 presents a review over the literature. In

section 3 and 4, the development of the simulation

model; the data collected and validation of the model will

be covered. Section 5 addresses the development of the

add-in to automatically create the supermarket and, in th

final section the main conclusions are discussed.

2. LITERATURE REVIEW

According to Coyle et al. “Warehousing provides

time and place utility for raw materials, industrial goods,

and finished products, allowing firms to use customer

service as a dynamic value-adding competitive tool”

(1988). Thus, supermarkets represent a very important

role on modern supply chains (Baker and Canessa,

2009).

In fact, “whilst supermarkets are critical to a wide

range of customer service activities, they are also

significant from a cost perspective. Figures for the USA

indicate that the capital and operating costs of

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

231

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/132797578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

supermarkets represent about 22% of logistics costs

(Establish, 2005), whilst figures for Europe give a similar

figure of 25%” (Baker and Canessa, 2009). These costs

impel us to understand the problematic and to use the

storage space as efficiently as possible (Bartholdi and

Hackman, 2008).

Thus, the need to provide companies with methods

capable of improving the performance of supermarkets

arises. According to Gu et al., some of these methods

include simulation, analytical methods and

benchmarking. The former is the most used whether in

literature or in practice (2010). One example is the

simulation model developed by Costa et al. using Arena.

The authors conducted experiments to identify changes

that could be made on a material delivery system to

improve the efficiency and precision of the logistic train

functioning they were modelling (2008).

Since the number of simulation tool options can be

very high, tool comparison becomes a very important

task. However, most of scientific works related to this

subject “analyse only a small set of tools and usually

evaluating several parameters separately avoiding to

make a final judgement due to the subjective nature of

such task” (Dias et al., 2007).

Hlupic and Paul (1999) compared a set of

simulation tools, distinguishing between users of

software for educational purpose and users in industry.

In his turn, Hlupic (2000) developed “a survey of

academic and industrial users on the use of simulation

software, which was carried out in order to discover how

the users are satisfied with the simulation software they

use and how this software could be further improved”.

Dias and Pereira et al. (2007, 2011) compared a set of

tools based on popularity on the internet, scientific

publications, WSC (Winter Simulation Conference),

social networks and other sources. “Popularity should

never be used alone otherwise new tools, better than

existing ones would never get market place, and this is a

generic risk, not a simulation particularity” (Dias et al.,

2007). However, a positive correlation may exist

between popularity and quality, since the best tools have

a greater chance of being more popular. According to the

authors, the most popular tool is Arena and the good

classification of the Simio is noteworthy. Based on these

results, Vieira et al. compared both tools taking into

consideration several factors (2014a).

Simio was the chosen tool for this project. It is based

on intelligent objects (Sturrock and Pegden, 2010,

Pegden, 2007, Pegden and Sturrock, 2011). These “are

built by modellers and then may be used in multiple

modelling projects. Objects can be stored in libraries and

easily shared” (Pegden, 2013). Unlike other object-

oriented systems, in Simio there is no need to write any

programing code, since the process of creating a new

object is completely graphic (Pegden and Sturrock, 2011,

Pegden, 2007, Sturrock and Pegden, 2010). The activity

of building an object in Simio is identical to the activity

of building a model. In fact there is no difference

between an object and a model (Pegden, 2007, Pegden

and Sturrock, 2011). A vehicle, a costumer or any other

agent of a system are examples of possible objects and,

combining several of these, one can represent the

components of the system in analysis. Thus, a Simio

model looks like the real system (Pegden and Sturrock,

2011, Pegden, 2007). This fact can be very useful,

particularly while presenting the results to someone non-

familiar to the concepts of simulation.

In Simio the model logic and animation are built in

a single step (Pegden and Sturrock, 2011, Pegden, 2007).

This feature is very important, because it makes the

modulation process very intuitive (Pegden and Sturrock,

2011). Moreover, the animation can also be useful to

reflect the changing state of the object (Pegden, 2007). In

addition to the usual 2D animation, Simio also supports

3D animation as a natural part of the modelling process

(Sturrock and Pegden, 2010). To switch between 2D and

3D views the user only needs to press the 2 and 3 keys of

the keyboard (Sturrock and Pegden, 2010). Moreover,

Simio provides a direct link to Google Warehouse, a

library of graphic symbols for animating 3D objects

(Sturrock and Pegden, 2010, Pegden and Sturrock, 2011).

3. MODEL DEVELOPMENT

Throughout this section, some terms will be used

that may be unknown for a user not familiar with Simio.

For those, a reading of the paper written by Vieira et al.

(2014a) would be advisable.

For this simulation project, 4 types of entities and 5

models (4 sub-models and a main one) were created. In

the first section of this chapter, the former will be

presented, while the models will be analysed on the

following sections. Particularly, the main goals, the

properties and the external view of the sub-models will

be presented, so that it becomes easier to understand their

use on the main model, which will be addressed in the

last section. The 4 created types of entities were:

3.1. Types of Entities

 Picker: Represents the pickers of the system. Their

functions are to collect Requests at the beginning of a

shift and take Containers from Channels of the

Supermarket to place them on the milk run.

Figure 1: Symbol of the Picker entity

 milk run: Represents the milk runs of the system. Its

only purpose is to transport the Picker and the selected

Containers between the Supermarket.

Figure 2: Symbol of the milk run entity

 Request: Represents the request of the system

Figure 3: Symbol of the Request entity

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

232

 Container: Represents the containers of the system.

Figure 4: Symbol of the Container entity

3.2. Models

In this subsection, the developed models will be

explained. The first developed model is the GoTomilk

run. Its only purpose is to transfer a Picker to the riding

station of the respective milk run. This way, the Picker

will seem to be riding the milk run, while the Containers

will stay at the wagon of the milk run. Figure 5 presents

the external view of the model

Figure 5: External view of the GoTomilk run model

To model the milk run stopping; the Picker leaving

the milk run to collect containers, as well as the return of

th ePicker and to evaluate if the Picker needs to return to

the Channels or not - the picker collects 1 container at a

time – the StopPlace model was developed. The

properties defined for this model were:

 Place: Numeric property that works as an identifier

number of the instances of this model placed on the

Supermarket.

 Rack: String property that identifies the Rack that

this model belongs to.

 LastOfCorridor: Boolean property to indicate

whether this model is the last of a corridor or not.

 ConnectTo: Object property to specify instances of

this model. Used when a corridor has sets of channels on

both sides.

The Facility of this model is presented on Figure 6

and its external view is presented on Figure 7.

Figure 6: Facility of the StopPlace object

Figure 7: External view of the StopPlace model

For animation purposes, a new model – whose only

purpose is to show a copy of the picker in front of the

rack of channels – while the original travels inside the

channel to collect the intended containers, was

developed. Moreover, had this model not been developed

and, after entering the Channel, the Picker would

disappear for some time, before returning with the

selected Container. Figure 8 displays the external view

of this model.

Figure 8: External view of the StopPlace_Channel model

To store containers and model the behaviour of the

Pickers, when they analyse a channel to select the

container they want, the channel model was developed.

The external view of this model is presented on Figure 9.

The properties defined for this model were:

 Position: Numeric property that works as an

identifier number of the instances of this model placed

on the Supermarket.

 TotalProducts: Expression property that indicates

the number of types of products to be modelled.

 StockPolicy: Expression property. This property

indicates the stock strategy to be modelled. Since the

restock process is not yet modelled, the containers are

being created inside each Channel. Thus, this property

indicates if the type of each container being created should be

in accordance to the channel (dedicated storage) or not.

 StopPlace: Numeric property. The value of this

property must be equal to the Place property of the

StopPlace that allowed the Picker to reach this model.

Figure 9: External view of the Channel model

All the presented models compose the supermarket

itself. The properties of the supermarket model are:

 Numbermilk runs: Expression property that

indicates the number of milk runs and Pickers to be

modelled.

 StockPolicy: Expression property. It indicates, to all

instances of the Channel model, the storage strategy

being used.

 NumberRequests: Expression property that defines

the way the Pickers add Requests to their batches.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

233

 TotalProducts: Expression property that indicates,

to all instances of the Channel model, the number of

types of products to be modelled.

 RequestsIntensity: Expression property that defines

the average Interarrival time of Requests to the system.

To access all the Channel and StopPlace objects

placed on the Supermarket – among other reasons, to be

able to consult the containers stored in each channel - two

data tables were developed: one to gather all the channels

and another to gather all the StopPlace models. Each

object occupies an index of the data table correspondent

to its Place or Position property, respectively.

Additionally, a Corridors data table was created to gather

all the information of all the corridors. Figure 10 shows

an example of a Corridors data table.

Figure 10: Corridors data table

As can be seen, the data table holds information

relative to the rotation angle of the corridors, the number

of ways and the identifier numbers. The former will not

be analysed on this paper.

After being created, Pickers and milk runs will

travel through the supermarket in a serious of picking

shifts, by executing a set of processes. Figure 11 shows

one of such processes.

Figure 11: Process CheckIfRequests

The goals of this process are to make the picker wait

for its turn and to specify the quantity of Requests to be

allocated. If the property has a negative value, the Picker

waits an amount of time (in minutes) equal to the module

of that value. In this case, the number of Requests that

are on the Combiner object, is saved to the

BatchedRequests state. This way, when the Picker enters

the Combiner object itself, that number of Requests are

added to its batch. On the other hand, if the value is

positive, the associated token will save that number to the

BatchedRequests state of the Picker. Once on the

Combiner, it will wait the time needed for that amount of

Requests to be added to its batch. After the batch is

formed, an associated will execute the process displayed

on Figure 12.

Figure 12: Process GetDestinies

The goal of this process is to save all the Channels

that have the Containers correspondent to the Requests

added, on an object array of the Picker. This way, each

Picker has its own array of destinies. When analysing the

Requests, the token saves the number identifier of the

Picker on the state Requested of each Request. By doing

so, it is ensured that there will be no exchanges of

Requests during a picking shift. Lastly, when analysing

each Container, the token also saves the ID of the Picker

on their Requested state. This way, since the Containers

are requested, it is ensured that the destinies of the Picker

are the right ones and that no other Picker will take the

Container requested.

Once the process ends, the Picker enters the

GoTomilk run object, where the corresponding milk run

is. In this object the Picker will be transferred to the

riding station of the milk run. Additionally, on the

Process property of this object the value GetStopPlaces

is inserted, i.e., the milk run will have an associated token

execute that process. Figure 13 shows the process

GetStopPlaces. Similarly, to the process GetDestinies,

this intends to save the StopPlaces where the milk run

needs to enter, to an array of objects of each milk run. To

that end, the StopPlace, with a value on the Place

property equal to the value of the StopPlace property of

the Channel on the array of destinies of the Picker, will

be added. It should be noted that no repeated objects are

added. Once the process ends, the milk run leaves the

object and initiates its picking shift.

Figure 13: Process GetStopPlaces

The milk runs can travel through two types of

corridors. In the first, they only have access to corridors

of racks on one side of the corridor. In the second type,

they have access to corridors of racks on both sides.

Figure 14 and Figure 15 display examples of corridors of

type 1 and 2, respectively. It should be noted that the

placement of the objects this way only intends to make it

simpler to understand the way the corridors work.

Figure 14: Example of a corridor of type 1

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

234

Figure 15: Example of a corridor of type 2

As can be seen, regardless of the type of corridor,

both have two entry nodes. When the milk run enters one

of the entry nodes of a corridor, it executes the process

represented on Figure 16.

Figure 16: Process EnterCorridorOrNot

This process intends to evaluate if a milk run enter

a corridor, or not, by evaluating if a StopPlace of that

corridor belongs to the array of destinies of the milk run,

or not. Since the token needs to know if the StopPlace

being evaluated is the last of the corridor, the property

LastOfCorridor needs to be checked. Lastly, in the

possibility of being a type 2 corridor the ConnectTo

property of all StopPlaces needs to be analysed. If there

is an object specified on that property, the token also

needs to evaluate if it exists on the array of destinies of

the associated milk run.

Once inside a corridor, the milk runs enter a

succession of StopPlaces, where each one accesses a

different set of Channels. To better understand the

objects that need to be used on a corridor of type 1, Figure

18 was created. Once again, the placement of the objects

the way the figure displays only intends to make it

simpler to understand the way they work and thus, it is

not the final result of the animation of the model.

As can be seen, for any circulation direction, there

is a TransferNode before and another after a StopPlace.

Thus, on the first node, the process illustrated on Figure

17 is executed.

Figure 17: Process StopOrProceed

In this process, the milk run checks if the StopPlace

belongs to the array of destinies of the milk run. Once the

process ends, the milk run will select the Path based on

the value on a state of the picker. For instance,

considering that a milk run enters the TransferNode42

(from Figure 18) and executes the StopOrProceed

process, if its GoIn state has the value 1, the milk run will

select the Path that takes it to StopPlace8. Otherwise, it

will choose the Path that takes it directly to the

TransferNode43.

Figure 18: Objects used alongside a StopPlace and the

corresponding set of Channels on a corridor of type 1

When a milk run enters a StopPlace, it will wait for

the respective Picker to return from the set of Channels.

In this context, if the corridor is of type 1 (e.g. Figure 18),

the Picker will chose the Path that takes it to

StopPlace_Channel8. However, if the corridor is of type

2, the Picker will choose its destiny based on the value

on its GoToStopPlaceConnected. To help clarify this

situation, Figure 19 was created.

Figure 19: Pair of StopPlaces of a corridor of type 2

The Picker always returns to the StopPlace where its

milk run is waiting. As soon as the Picker enters a

StopPlace_Channel object, the remaining logic until it

returns to it, is the same for both types of corridors.

Considering Figure 18 again, it is possible to see

that there is only one TransferNode that gives access to a

Channel (e.g. TransferNode 34 to Channel22 and

TransferNode35 to Channel23 and) and, after leaving a

Channel, the Picker will necessarily return to the

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

235

StopPlace_Channel object, i.e., it can only take one

Container at a time. When a Picker enters a node that

gives access to a channel, it executes the process

presented by Figure 20.

Figure 20: Process OpenChannelOrNot

The purpose of this process is to evaluate if the

Channel in question belongs to the array of destinies of

the Picker. To that end, the associated token consults the

Channels data table on the index returned by the

previously updated target state of the Picker and

evaluates whether the returned object is one of the

destinies of the Picker or not. If it is a destiny, the token

assigns the value 1 to the GoIn state of the Picker,

otherwise, the value 0. Afterwards, the Picker selects the

next Path, based on the value of its GoIn state. Thus, if

the value is 1, it selects the Path that takes it to the

Channel. Conversely, if the value is 0, it selects the Path

that takes it to the next TransferNode, updating its target

state again, once on this Path. It should be noted that,

since the milk run only enters a StopPlace if any of the

Channels (that the StopPlace gives access to) is a destiny

of the Picker, it is guaranteed that the Picker will at least

enter one Channel.

Once inside a Channel object, the Picker selects the

required Container and adds it to its batch. After leaving

the Channel, the object is removed from its array of

destinies. Then, the Picker returns to the

StopPlace_Channel and, after that, to the StopPlace.

Naturally, before leaving the StopPlace object, the

Picker needs to be transferred to the riding station of its

milk run. Therefore, on the Facility of the StopPlace,

there was the need to use a GoTomilk run object (Figure

6). On its Process property, the name of the process

displayed by Figure 21 is inserted.

Figure 21: Process ReturnToChannelsOrLeave

The purpose of this process is to verify if the Picker

needs to return to the set of Channels or not. To that end,

the associated token verifies the StopPlace property of

every Channel on its array of destinies. If any of those

properties has a value equal to the Place property of the

StopPlace where the Picker is at, the token saves the

value 1 to the GoIn state of the Picker. Otherwise, it saves

the value 0. Additionally, if the StopPlace has an object

on its ConnectTo property, the token needs to repeat the

verification to that object. This way, the

GoToStopPlaceConnected state of the Picker will be

updated, to ensure that the Picker chooses the Path that

takes it to the correct StopPlace_Channel.

Once the Picker has placed all the required

Containers on the batch of the milk run, the latter

removes the StopPlace from its array of destinies and

resumes its route. When all the Containers from all the

corridors have been collected, the milk run returns to the

start point to restart a new shift.

3.3. Automatic Creation of Simulation Models

To make it simpler for the user to introduce the data

related to the warehouse he wants to create, it was

established that he would only have to introduce the data

on an Excel spreadsheet. Table 1 shows an example of

the content of the mentioned file and in this section the

cells that the user needs to fill will be covered.

Table 1: Input Excel table

In order to allow the user to specify any number of

racks per corridor, it was established that on each line of

the excel file, the user inserts data related to a single rack.

Therefore, to start a new corridor, the user has to enter

the value “1” on the column “New corridor?”.

Conversely, if the user wants to keep adding racks to a

corridor, he just has to keep entering the value “0” on the

corresponding rows, on the same column. Additionally,

for each corridor, the user can choose one of two types:

a simple corridor, which is comprised by one or more

racks; and a set of two corridors that are disposed

inwards, so that a milk run traveling it may collect

containers from both corridors of its left and right. To

make it simpler to refer to these corridors, on the

remaining sections of this document, these will be

referred as simple and double, respectively. In this sense,

to specify a double corridor, the user needs to assign the

value “2” to the row corresponding to its first rack.

In the columns “Size” and “Coordinates”, the user

can specify the size of the channels (length, width and

Length Width Height x y (z in Simio)

1 0,23 0,42 0,58 -50 -50 0 2 AP 3 3 3 3 3 3 3 3 3 3

0 AO 3 3 3 3 3 3 3 3 3 3

0 AN 3 3 3 3 3 3 3 3 3 3

0 AM 3 3 3 3 3 3 3 3 3 3

0 AL 3 3 3 3 3 3 3 3 3 3

0 AJ 3 3 3 3 3 3 3 3 3 3

0 AK 3 3 3 3 3 3 3 3 3 3

0 AI 3 3 3 3 3 3 3 3 3 3

0 AH 3 3 3 3 3 3 3 3 3 3

0 AG 3 3 3 3 3 3 3 3 3 3

0 AF 3 3 3 3 3 3 3 3 3 3

0 AE 3 3 3 3 3 3 3 3 3 3

0 AD 3 3 3 3 3 3 3 3 3 3

0 AC 3 3 3 3 3 3 3 3 3 3

0 AB 3 3 3 3 3 3 3 3 3 3

0 AA 3 3 3 3 3 3 3 3 3 3

2 BE 3 3 3 3 3 3 3 3 3 3

0 BD 3 3 3 3 3 3 3 3 3 3

0 BC 3 3 3 3 3 3 3 3 3 3

0 BB 3 3 3 3 3 3 3 3 3 3

0 BA 3 3 3 3 3 3 3 3 3 3

0 AZ 3 3 3 3 3 3 3 3 3 3

0 AY 3 3 3 3 3 3 3 3 3 3

0 AX 3 3 3 3 3 3 3 3 3 3

0 AW 3 3 3 3 3 3 3 3 3 3

0 AV 3 3 3 3 3 3 3 3 3 3

0 AU 3 3 3 3 3 3 3 3 3 3

0 AT 3 3 3 3 3 3 3 3 3 3

0 AS 3 3 3 3 3 3 3 3 3 3

0 AR 3 3 3 3 3 3 3 3 3 3

0 AQ 3 3 3 3 3 3 3 3 3 3

New

corridor?

Coordinates Symbol

index
Directions

Rack

description

Size
Channels per column

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

236

height) and the position on which the corridors starts to

be built. These values are only read if the user entered the

value “1” on the “New corridor?” column of that row,

since it was assumed that this information does not vary

in the same corridor. The same approach applies for the

“Symbol index” and “Directions” columns. On the first,

the user can specify a symbol, from an array of symbols,

to be assigned to the channel. The only difference

between the symbols on this array is its rotation angles.

This approach had to be considered, since the API of

Simio does not provide methods for rotating a fixed

object and, for animation purposes, it was very important

to rotate the corridors and its channels. However, this

approach has a couple of flaws. Firstly, since the waiting

queue of the object is not considered part of the symbol,

it is not “rotated”, i.e., despite the fact that a different

symbol is assigned to an object, its queue remains with

the rotation as the original. Lastly, the possible rotation

angles have to be previously assigned. For this case,

rotations of 45 degrees were considered (e.g. 1 means a

rotation of 45 degrees, 2 means a rotation of 90 degrees

and so on). On the “Directions” column the user can

define the number of ways through which the milk runs

can travel on the corridor. On the last column, “Channels

per column”, the user can define any number of columns

per rack and any number of channels per column,

depending on the number of cells that have values and

the values on each of those cells, respectively. On the

“Rack description” column, the user can specify a string

that, as the name implies, indicates the rack description

of the rack in question.

To create an object using the Simio API the user

needs to call the CreateObject method. This method takes

a string and a FacilityLocation as arguments. The later

defines the coordinates x, y and z in Simio and the first

is the name of the object that is supposed to be created

on the specified location. This object can be any one of

the Standard library of Simio, any other created by a user

(e.g. a sub model) or even the object that represents an

entity or a worker. Thus, to create the developed Simio

sub-models, which have already been discussed [6], this

method is used. Notwithstanding, to create a path, a

conveyor, a time path or a connector between objects a

different method is used, even though these are also

objects in Simio. In these cases, the method CreateLink

has to be used. Examples of both methods are given

below:

As can be seen, this method takes a string, two

INodeObjects and a collection of FacilityLocations as

arguments. The first corresponds to the object being

created, while the following two arguments correspond

to the two nodes the method is supposed to connect.

Lastly, the collection of FacilityLocations is a list of

coordinates used to create the vertexes of the object. If

the user does not want to specify any vertexes, the value

null can be passed through this argument.

Apart from creating objects, the Simio API may also

be useful for other reasons, such as editing object

properties. In many cases, to accomplish this, it is

necessary to know the name of the property and use the

following code line:

However, there are some properties that require other

means to edit them, like the name of the object, its size,

symbol index, location, among others. Nonetheless,

knowing the name of the property in question is not

always a simple task, due to the lack of information

concerning the Simio API available. In fact, when a user

interacts with the tool and edits an object property, the

name presented by Simio for that property is actually the

display name. To confirm this situation Figure 2 shows

the properties inherited by an object of the standard

library of Simio.

As can be seen, the name of the selected property is

“EnteredAddOnProcess”, while its display name is

“Entered”. Thus, to learn the name of this property, the

user would have to access the list of properties of the

object and check its name, which is very troublesome.

To create different orientations for the corridors, or

simply to create two corridors faced inwards, composing

a single corridor, it would be necessary to use a Simio

method that could rotate an object, just like it is possible

to do when interacting with the tool itself. However, the

API does not provide any method for this task, so other

workarounds were considered. The solution adopted for

this task was to assign different symbols to the objects,

each one representing a different rotation angle.

Nonetheless, this does not affect the queue of the objects.

This fact can be seen on Figure 6 and on Figure 7 (chapter

4), where all the queues, of all the channels, of the two

faced inwards corridors, are facing the same direction.

Thus, the queues of the channels on the second set of

channels are facing an opposite direction to where the

pickers and the milk runs travel.

When the add-in starts its execution, all the data is

read from the excel spreadsheet to avoid having to make

multiple communications with the application. The

method created to that end is given below.

As can be seen, the variable app is used to start

Excel. Afterwards, the workbook variable opens the

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

237

intended excel file, by providing it with the correct path.

Lastly, the sheet variable accesses the pretended

worksheet (the first of the opened workbook) and the

range variable gets the range currently being used. At this

point, to read data from a cell of the opened sheet, it was

necessary to use the following expression:

As the purpose of this method is to save the data

contained on the excel sheet to a multidimensional array,

the remaining code lines search through the cells with

content and saves its string value to the respective

position on the array to be returned. Once all the data is

read, the communication with Excel can be terminated.

After retrieving the data, the add-in can start building

the supermarket. In this section, the code for this task will

be explained as pseudo-code, given below.

As can be seen, the algorithm runs through the

retrieved multidimensional array of strings, with the

contents retrieved from the excel spreadsheet, and

searches for the value “1” on the first column of every

row it searches. Once it finds it, executes the

GetCorridorData method, which is displayed below.

The purpose of this method is to get all the

information related to a corridor and store it on a single

data structure. This method had to be used, since the way

defined to build a simple corridor is different from the

way defined to build a double one. Moreover, to make it

simple for the user to introduce data on the excel

spreadsheet, he only needs to assign the value “2” on the

first rack of the second corridor of the double corridor.

Thus, to know if the corridor in question is a simple one

or a double one, it is necessary to read all the rows

belonging to the same corridor.

To store the data related to a corridor, the authors

defined an array with only two positions of lists of lists

of strings. The strings are the data retrieved from the

excel spreadsheet, while the list of strings (channels in

the code given above) stores the data related to the

number of channels to create, per rack (values of the

column “Channels per column” of Table 1). All the

information related to racks belonging to the same

corridor is stored on the remaining list (racks0 on the

code above). Nonetheless, if the value “2” is found, the

values are saved on a different list (racks1 in the code

above.). After running through all the rows of a corridor,

the two lists are saved on the respective array positions,

and the final data structure is returned. Once again,

considering the data on Table 1, the data structures

resulted from executing the GetCorridorData for the first

corridor is illustrated on Figure 3.

4. DATA INPUT AND VALIDATION

The system being modelled consists on an advanced

supermarket, supermarket, which is located near the

production lines and stores a number of containers in

each channel (shelf-like structure that stores containers

in depth, usually in FIFO order). In its turn, each

container can store several product units of a single type.

Containers are sent to the supermarket, for later being

collected by pickers that travel through the supermarket,

driving milk runs. After collecting the intended

containers, the pickers deliver them to the respective

production lines. These consume the required material

and, when it is necessary to start consuming a different

type of product, a reference change occurs. In some

cases, this phenomenon can result on a container being

returned to the supermarket with the leftover product

units inside of it.

Through many meetings, the authors were able to

obtain the data required for the simulation model to

efficiently model the system in analysis. Among others,

values for the speed of the milk run, the picker,

devolution rates, production times, number of shifts per

day, number of production lines, time to remove

containers from their channels and others were collected.

This process is important, since it increases the

confidence level in the developed model.

To build a supermarket with a layout corresponding

to the real one, the authors used the developed Simio add-

in that automatically creates simulation models ready to

perform simulation experiments (Vieira et al., 2015b).

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

238

This add-in receives data input from excel spreadsheets,

in which the user can specify any physical layout.

The created supermarket corresponds to a single

corridor of two sets of channels that can be accessed by

a picker who travels in between them. This supermarket

corresponds to a size of 930 channels. Each channel has

the capacity to hold 6 containers. More examples of

automatically created simulation models, using the Simio

add-in developed for this project, can be found online

(Vieira et al., 2015b).

After analysing the raw data provided by the

company, the authors were able to produce, using VBA,

the required excel files that would “feed” the developed

simulation model with real data. To do so, this data was

imported into Simio. Figure 22 shows a diagram that

represents the mentioned data and its purpose in the

system in analysis.

Figure 22: Representation of the system being analysed

Each of the 3 big areas, displayed in the diagram,

represent a different excel spreadsheet imported into

Simio. The data contained in those excel files is

described inside each area. To specify containers that are

located in the supermarket, at the beginning of the

simulation (Supermarket area at the centre of the

diagram), the excel files contain a unique identifier of

each container and the correspondent type of that

container. Similarly, to specify containers that are sent

into the supermarket, the excel file must contain the

unique identifier of each container, the type of the

referred container and the date on which it is supposed to

be sent into the supermarket. Lastly, the excel files that

describe the containers required by the production lines

must contain the unique identifier of each container, its

type, the date on which it is required and a Boolean that

indicates whether each container will originate, or not, a

reference change. This data is important to indicate if a

specific container has a chance of being returned to the

supermarket, or not.

5. SIMULATION RESULTS AND ANALYSIS

In this section, the modelled storage strategies will

be introduced. Many references to these strategies will be

made throughout the paper. Therefore, the authors

assigned short names to them that can be consulted in

Table 2.

Table 2: Storage strategies definition

Short

name
Storage Strategy

A Single-product channels;

C Multi-product channels;

 Driven by consumption;

Strategy A corresponds to the one that is currently

being used on the supermarket of the case study, on

which the channels are dedicated (single-product). This

is the most simple case, since it consists on having

channels dedicated to a single type of container

(Bartholdi and Hackman, 2008). One of its great

advantages, resides on the fact that, since the locations of

the containers do not change, pickers can memorize

them, making the picking process more efficient

(Bartholdi and Hackman, 2008). Moreover, it should be

expected that single-product strategies require a higher

quantity of channels to work, since it does not store

different types of product on the same channel. In other

words, the problem with this strategy is that “it does not

use space efficiently. In fact, it is expected that, on

average, the storage capacity is about 50%” (Bartholdi

and Hackman, 2008), which represents a high amount of

costs associated. To overcome this problem, other

strategies can be considered. Figure 23 displays the

simulation running, while modelling a single-product

storage strategy, where different colours were assigned

for each type of container. As can be seen, all containers

stored within the same channel have the same colour.

Figure 23: Single product storage strategy

Alternatives to strategy A would have to allow

containers of different types to be mixed within the same

channel (multi-product), whereby some companies

oppose to its implementation. The main reason for this is

that the Information System (IS) would have to be much

more complex, to avoid picking from the non-first

position of a channel and to guide pickers to the proper

channel (and possibly also to the right position), once

they would no longer have the advantage of having

memorized the location of the containers. In a situation

where the IS cannot handle this issue, the pickers would

have to search for the container through all the positions

of all the channels of the supermarket, which would

negatively affect the picking system. Considering the

afore mentioned, the proposed alternatives for the

company have to analyse if, by allowing mixes of

containers of different types on each channel, the picking

of the containers will always be made in the first

position on each channel. In this sense, strategy C

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

239

consists on storing containers, based on their

consumption date, by giving priority to the channels that

already have containers of the same type. Thus, a

container can be stored in a channel with containers of

other types, as long as the container to be stored has a

posterior consumption date. Additionally, and similarly

to the previous storage policy, an established limit of the

number of containers of different types allowed per

channel has to be respected. Since consumption dates are

exposed to prediction errors, the impact of eventual

errors has to be made. Figure 24 shows the simulation

model in execution, while modelling a multi-product

storage strategy. As can be seen, in this case, containers

of different colour can be seen within a same channel.

Figure 24: Multi-product storage strategy

Some simulation scenarios were defined for this

problem, however only some of them will be presented

in this chapter. The conducted experiments were run with

a simulation time of one week. It should be noted,

however, that the results presented within this chapter are

directly dependent to the input data referred at chapter

Erro! A origem da referência não foi encontrada.. As

such, some of the conclusions withdrawn from this

comparison should not be generalized, since it

corresponds to a specific studied case.

The simulation experiments conducted in Simio

considered several performance indicators: Nonetheless,

the most important KPI (Key Performance Indicators)

considered were: the average total time spent in a picking

shift in seconds, the average position from which

containers are removed from the channels (depth), the

total amount of channels that were never used throughout

the simulation and the average number of stops per milk

run per picking shift. In its turn, the error assigned to the

prediction errors of the consumption dates and the time

interval of different types of containers in each channel

were defined as the properties of the simulation

experiments.

In an attempt to quantify the different simulation

scenarios, rather than using an explicit multi-criteria

approach, weights were assigned to the four KPI, to

define a score that considers all KPI values of all

scenarios. Thus, and taking into account the main

objective of the company, the weights 3 and 2 were

respectively assigned to the number of channels not used

and depth KPI. The remaining KPI had a weight of 1.

Currently, the storage strategy being used at the

company of the case study is the single-product one. This

strategy is the one that has the lower number of properties

that can be changed in our simulation model, since it

allows a single type of container per channel. Table 3

shows the obtained results for this strategy.

As the results indicate, the pickers always collected

the containers from the first position (depth), which is

one of the perks of using this strategy. However, this

affects the number of channels that were not used, which

is lower than the same KPI on the remaining strategies,

as will by shown in the next sections. Table 4 shows the

obtained results for this strategy.

Table 3: Simulation results for the modelled strategy A

Table 4: Simulation results for the modelled strategy C

When analysing these results, the first thing to

consider is that, similarly to the previous strategy, to

significantly affect the system, the gap should be in the

order of the days, rather than hours. Another aspect that

should be noted is that the gap between containers of

different types stored in the same channel – only for the

scenarios without prediction errors - mainly affects the

number of unused channels. The consequence of this fact

was already addressed in the previous storage policy.

When analysing the impact of the property that defines

the prediction errors, the data showed that, when the

errors were lower than the interval gaps, the depth values

were always equal to 1 and the average picking time

decreased

Assuming that a company can accurately predict the

consumption date of their containers, scenario 73 (global

score of 91%) can be considered the best solution. In

Scenario Strategy
Time

gap
Error Milkruns

Different types

of containers

Total

time

Number

of stops

Unused

channels
Depth

Global

Classification

4 A 0 Random.Uniform(0,0) 4 1 243,7 3,90 148 1,000 45%

Scenario Strategy
Time

gap
Error Milkruns

Different types

of containers

Total

time

Number

of stops

Unused

channels
Depth

Global

Classification

73 C 0 Random.Uniform(0,0) 4 6 214,9 1,72 473 1,000 91%
78 C 6 Random.Uniform(0,0) 4 6 215,6 1,75 428 1,000 87%
79 C 12 Random.Uniform(0,0) 4 6 215,0 1,73 403 1,000 85%
80 C 24 Random.Uniform(0,0) 4 6 215,2 1,73 401 1,000 84%
81 C 48 Random.Uniform(0,0) 4 6 215,9 1,78 357 1,000 80%
82 C 0 Random.Uniform(-01,01) 4 6 219,4 1,73 472 1,044 87%
83 C 6 Random.Uniform(-01,01) 4 6 215,3 1,74 425 1,000 87%
84 C 0 Random.Uniform(-12,12) 4 6 239,2 1,71 467 1,242 68%
85 C 6 Random.Uniform(-12,12) 4 6 222,7 1,73 422 1,075 79%
86 C 12 Random.Uniform(-12,12) 4 6 218,1 1,77 396 1,024 81%
87 C 24 Random.Uniform(-12,12) 4 6 216,3 1,81 369 1,000 81%
88 C 0 Random.Uniform(-24,24) 4 6 246,5 1,75 461 1,307 60%
89 C 12 Random.Uniform(-24,24) 4 6 221,8 1,78 395 1,058 78%
90 C 24 Random.Uniform(-24,24) 4 6 218,0 1,82 369 1,015 79%
91 C 48 Random.Uniform(-24,24) 4 6 216,1 1,80 360 1,000 80%
92 C 0 Random.Uniform(-48,48) 4 6 251,0 1,80 441 1,345 55%
93 C 24 Random.Uniform(-48,48) 4 6 225,4 1,84 370 1,084 73%
94 C 48 Random.Uniform(-48,48) 4 6 219,4 1,84 336 1,025 75%
95 C 72 Random.Uniform(-48,48) 4 6 217,0 1,81 349 1,006 78%
96 C 96 Random.Uniform(-48,48) 4 6 216,1 1,79 351 1,000 79%
97 C 0 Random.Uniform(-72,72) 4 6 253,5 1,82 424 1,365 51%
98 C 24 Random.Uniform(-72,72) 4 6 231,8 1,83 364 1,150 66%
99 C 48 Random.Uniform(-72,72) 4 6 223,1 1,83 337 1,065 71%
100 C 72 Random.Uniform(-72,72) 4 6 219,7 1,83 337 1,031 75%
101 C 96 Random.Uniform(-72,72) 4 6 218,1 1,84 346 1,013 77%
102 C 120 Random.Uniform(-72,72) 4 6 216,2 1,79 357 1,002 80%
103 C 144 Random.Uniform(-72,72) 4 6 215,7 1,77 356 1,000 80%

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

240

comparison to scenario 4 (the policy current being used

at the case study), scenario 73 corresponds to a reduction

of roughly 30 seconds per trip (12% of reduction) on the

average time per picking shift, 2 stops per picking shift

and per milk run (reduction of roughly 55%) and a

reduction of around 69% in the supermarket size

(average difference of about 325 channels). All these

gains were achieved by maintaining the rule stating that

containers should be collected from the first position of

any channel.

6. CONCLUSIONS

Warehouses are critical to a wide range of customer

service activities and yet, they are also quite significant

from a cost perspective. One of the goals of the Bosch

Production System (BPS), implemented at Bosch, is to

provide “the basis for continuous improvements in

quality, costs, and supply performance” (Bosch, 2014).

Thus, the opportunity to develop a micro simulation

model in Simio that could help the Bosch Car

Multimedia Portugal in Ferreiros, Braga arose.

Particularly, this tool needs to be able to design several

layouts of the supermarket and use them to test different

scenarios of their picking system. In this on-going work,

the present paper documents what was done to model the

picking system observed at the Bosch Car Multimedia

Portugal.

With the developed model, practitioners may

benefit by using it to model different types of

warehouses, not only supermarkets. Since the

simulation model can be automatically created, the user

only needs to insert the data correspondent to the layout

and generate the intended simulation model. Afterwards,

the model can be used to test different scenarios for the

warehouse. Researchers may also benefit from the tool

by using it to simulate different types of warehouses. The

quality of the animation is quite perceptive, as the

several figures illustrated throughout the document

suggest.

Nonetheless, while interacting with Simio, some

downsides were noted. Vieira et al. had already stated

some of them (Vieira et al., 2014b). Moreover, the very

useful expression editor feature that Simio offers, is not

always enabled. For instance, on an Assign step, to define

the StateVariableName property, the user can only select

the state from a limited list of options. While it is true

that it keeps it simpler for new users, it is also

troublesome to have to use the expression editor where it

is enabled to write a complex expression and then copy

it to the actual place we want to use it. This is also true

for other properties such as the StationName property of

a Transfer step.

ACKNOWLEDGMENTS

This work has been co-supported by SI I&DT

project in joint-promotion nº 36265/2013 (HMIEXCEL -

2013-2015 Project) and by FCT – Fundação para a

Ciência e Tecnologia in the scope of the project: PEst-

OE/EEI/UI0319/2014.

REFERENCES
BAKER, P. & CANESSA, M. 2009. Warehouse design: A structured

approach. European Journal of Operational Research, 193,

425-436.

BARTHOLDI, J. J. & HACKMAN, S. T. 2008. Warehouse &
Distribution Science: Release 0.89, The Supply Chain and

Logistics Institute.

BOSCH. 2014. consulted online at:
http://www.bosch.com/en/com/home/homepage.html

[Online]. [Accessed].

COSTA, B., DIAS, L. S., OLIVEIRA, J. A. & PEREIRA, G.
Simulation as a tool for planning a material delivery system

to manufacturing lines. Engineering Management

Conference, 2008. IEMC Europe 2008. IEEE International,
28-30 June 2008 2008. 1-5.

COSTA, P., ALVES, A. C. & SOUSA, R. M. 2011. Implementação da

metodologia Quick ChangeOver numa linha de montagem
final de auto-rádios: para além da técnica SMED.

COYLE, J. J., BARDI, E. J. & LANGLEY, C. J. 1988. The

management of business logistics, West Pub. Co.
DIAS, L., PEREIRA, G. & RODRIGUES, G. 2007. A Shortlist of the

Most Popular Discrete Simulation Tools. Simulation News

Europe, 17, 33-36.
GU, J., GOETSCHALCKX, M. & MCGINNIS, L. F. 2010. Research

on supermarket design and performance evaluation: A

comprehensive review. European Journal of Operational
Research, 203, 539-549.

HLUPIC, V. Simulation software: an Operational Research Society

survey of academic and industrial users. Simulation
Conference, 2000. Proceedings. Winter, 2000 2000. 1676-

1683 vol.2.

HLUPIC, V. & PAUL, R. 1999. Guidelines for selection of
manufacturing simulation software. IIE Transactions, 31,

21-29.

MONDEN, Y. 1998. Toyota Production System – an integrated
approach to Just-In-Time. Institute of Industrial Engineers,

Norcross, Georgia.

PEGDEN, C. D. Simio: A new simulation system based on intelligent
objects. Simulation Conference, 2007 Winter, 9-12 Dec.

2007 2007. 2293-2300.

PEGDEN, C. D. 2013. Intelligent objects: the future of simulation.
PEGDEN, C. D. & STURROCK, D. T. Introduction to Simio.

Proceedings - Winter Simulation Conference, 2011

Phoenix, AZ. 29-38.
PEREIRA, G., DIAS, L., VIK, P. & OLIVEIRA, J. A. 2011. Discrete

simulation tools ranking: a commercial software packages

comparison based on popularity.
STURROCK, D. T. & PEGDEN, C. D. Recent innovations in Simio.

Proceedings - Winter Simulation Conference, 2010

Baltimore, MD. 21-31.
VIEIRA, A., DIAS, L., PEREIRA, G. & OLIVEIRA, J. 2014a.

COMPARISON OF SIMIO AND ARENA SIMULATION
TOOLS. ISC. University of Skovde, Skovde, Sweden.

VIEIRA, A., DIAS, L., PEREIRA, G. & OLIVEIRA, J. 2014b. Micro

Simulation to Evaluate the Impact of Introducing Pre-
Signals in Traffic Intersections. ICCSA. University of

Minho at Guimarães - Portugal.

VIEIRA, A., DIAS, L. S., PEREIRA, G. A. B., OLIVEIRA, J. A.,
CARVALHO, M. S. & MARTINS, P. 2015a. Automatic

Generation of 3D Simulation Models: Warehouses

Performance Boosting. business sustainability. Póvoa de

Varzim, Portugal.

VIEIRA, A., DIAS, L. S., PEREIRA, G. A. B., OLIVEIRA, J. A.,

CARVALHO, M. S. & P., M. 2015b. Using Simio to
Automatically Create 3D Warehouses and Compare

Different Storage Strategies. Faculty of Mechanical

Engineering Transactions, 43, 335-343.
WOMACK, J. P. & JONES, D. T. 1996. Lean Thinking. Siman &

Schuster, New York, USA.

WOMACK, J. P., JONES, D. T. & ROOS, D. 1990. The machine that
changes the world. Rawson Associates, NY

YILDIZ, H., RAVI, R. & FAIREY, W. 2010. Integrated optimization

of customer and supplier logistics at Robert Bosch LLC.
European Journal of Operational Research, 207, 456-464.

Proceedings of the European Modeling and Simulation Symposium, 2016
978-88-97999-76-8; Bruzzone, Jiménez, Longo, Louca and Zhang Eds.

241

http://www.bosch.com/en/com/home/homepage.html

