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A B S T R A C T

The capability of perceiving olive oils sensory defects and intensities plays a key role on olive oils quality grade
classification since olive oils can only be classified as extra-virgin if no defect can be perceived by a human
trained sensory panel. Otherwise, olive oils may be classified as virgin or lampante depending on the median
intensity of the defect predominantly perceived and on the physicochemical levels. However, sensory analysis is
time-consuming and requires an official sensory panel, which can only evaluate a low number of samples per
day. In this work, the potential use of an electronic tongue as a taste sensor device to identify the defect
predominantly perceived in olive oils was evaluated. The potentiometric profiles recorded showed that intra-
and inter-day signal drifts could be neglected (i.e., relative standard deviations lower than 25%), being not
statistically significant the effect of the analysis day on the overall recorded E-tongue sensor fingerprints (P-
value = 0.5715, for multivariate analysis of variance using Pillai's trace test), which significantly differ according
to the olive oils’ sensory defect (P-value = 0.0084, for multivariate analysis of variance using Pillai's trace test).
Thus, a linear discriminant model based on 19 potentiometric signal sensors, selected by the simulated
annealing algorithm, could be established to correctly predict the olive oil main sensory defect (fusty, rancid,
wet-wood or winey-vinegary) with average sensitivity of 75 ± 3% and specificity of 73 ± 4% (repeated K-fold
cross-validation variant: 4 folds×10 repeats). Similarly, a linear discriminant model, based on 24 selected
sensors, correctly classified 92 ± 3% of the olive oils as virgin or lampante, being an average specificity of 93 ±
3% achieved. The overall satisfactory predictive performances strengthen the feasibility of the developed taste
sensor device as a complementary methodology for olive oils’ defects analysis and subsequent quality grade
classification. Furthermore, the capability of identifying the type of sensory defect of an olive oil may allow
establishing helpful insights regarding bad practices of olives or olive oils production, harvesting, transport and
storage.

1. Introduction

Olive oil is one of the oldest known vegetable oils produced in the
Mediterranean countries. Olive oils may be graded according to its
overall physicochemical composition and sensorial attributes as extra-
virgin olive oils (EVOOs), virgin olive oils (VOOs) or lampante olive oils
(LOOs). Since olive oils are a food product quite prone to frauds,
protection legal regulations have been implemented by the European

Union Commission [1–3], which take into account maximum levels of
chemical and physicochemical parameters (e.g., free acidity, peroxide
value, UV extinction coefficients, wax and alkyl esters contents) as well
as sensory evaluation (presence/absence of organoleptic defects and
the positive fruity sensation) [4–7].

Several analytical techniques have been described in the literature
to detect and/or verify possible frauds involving the production and
commercialization of olive oils, in order to guarantee consumer's
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confidence when purchasing this high-value product and to minimize
the risk of unfair competition among olive oil producers. Official
methods and recommended practices have been established by the
American Oil Chemists’ Society to assess olive oil quality [8]. However,
some of these methods are quite expensive, non-green techniques, and
require fulfillment of straight standardized procedures to ensure
accuracy. On the other hand, the assessment of the positive and
negative sensory attributes of olive oils is required for their quality
grade classification being, at the present time, the evaluation by an
official taste panel the only homologated method [1–3]. However, this
official methodology has several drawbacks, namely experts’ subjectiv-
ity, variability of responses over time, lack of reference standards and
low number of analyses per day [9].

The development of an objective, rapid, automated, low-cost and
precise methodology to assess sensory properties using instrumental
techniques is envisaged as an alternative/complementary solution to
taste panels. Several approaches have been proposed as alternatives to
human sensory panels to evaluate the quality of olive oil (positive and/
or negative attributes), namely those based on the individual or fused
application of electronic noses, tongues and/or eyes (E-nose, E-tongue
and/or E-eye), based on different analytical procedures and principles
[5,6,10–13]. Qualitative and/or quantitative E-tongue based ap-
proaches have been successfully reported for olive oils physicochemical
and positive sensory sensations assessment [10,13–21]. In which
concerns the evaluation of negative sensory attributes, Borràs et al.
[4] proposed partial least squares discriminant classification models,
based on mid-infrared spectra, to differentiate EVOOs (defect absent)
from lower quality olive oils (defect present). Recently, this same
research team demonstrated the feasibility of fusing an E-nose (based
on headspace mass spectrometry), an E-tongue (based on mid-infrared
spectroscopy) and an E-eye (based on UV–Vis spectrophotometry) to
discriminate EVOO, VOO and LOO, to detect the main off-flavors
(fusty, musty, rancid and winey-vinegary) of olive oils and to predict
the intensity scores of the main sensory attributes of olive oils
evaluated by a human taste panel [5,6]. The capability of a potentio-
metric E-tongue with cross-sensitivity and non specific lipid polymeric
membranes to correctly classify olive oils according to the sensory
intensity perception levels (i.e., intense, medium and light) of positive
attributes (fruity, bitter and pungency) has been shown by our research
team [13]. A similar electrochemical device was also used to classify
table olives according to the sensory quality category based on the
intensity of the defect predominantly perceived (DPP), to differentiate
organoleptic negative attributes that may be perceived in table olives,
using standard solutions and real samples as well as to quantify the
intensity of the DPP in table olive and respective brine solutions as well
as to evaluate table olives’ gustatory attributes (e.g., acid, bitter and
salty sensations) [22–24]. Furthermore, this type of E-tongue device
showed quantitative responses towards polar compounds (aldehydes,
esters and alcohols) usually found in olive oils and that are related to
their sensory positive attributes (e.g., green and fruity) [25]. The E-
tongues successful performances may be attributed to the capacity of
the lipid polymeric sensor membranes to promote interactions with
polar taste substances via electrostatic or hydrophobic interactions,
which are usually presented in the olive oils’ alcoholic extracts [26,27].
In this work, the potential application of a potentiometric E-tongue,
comprising lipid polymeric membranes, for olive oils’ classification
according to the sensory defect predominantly perceived (DPP) is
evaluated as well as for classifying olive oils with sensory defects
according to their quality grade. For this, a chemometric approach
involving linear discriminant analysis (LDA) coupled with the simu-
lated annealing (SA) variable selection algorithm, is applied and its
predictive performance assessed based on two cross-validation var-
iants: leave-one-out cross validation (LOO-CV) and repeated K-fold
cross-validation (repeated K-fold-CV with 10 repeats and 4 folds).

2. Materials and methods

2.1. Olive oil samples, sensory and physicochemical analysis

Portuguese olive oils from different commercial brands were bought
in supermarkets or obtained from local producers (Trás-os-Montes
region, northeast of Portugal), being selected for this study 42
independent olive oils for which at least one organoleptic defect could
be perceived by sensory panelists. Thus, according to EU Commission
Regulations [1–3], no olive oil could be classified as EVOO. All olive
oils were assessed by 8 trained panelists, following the methods and
standards adopted by the International Olive Council (IOC) [28,29] for
sensory analysis of olive oils, being in each sample perceived from one
up to three simultaneous sensory defects of a total of four different
negative organoleptic sensations: fusty, rancid, wet-wood and winey-
vinegary defects. Each olive oil was coded according to the defect
predominantly perceived (DPP) if more than one sensory defect was
detected. Also, the median intensity of the DPP was assessed (DPP ≤

3.5 or DPP > 3.5, for an intensity scale ranging from 0 (no defect
perceived) to 10 (maximum intensity of defect perceived)).
Furthermore, a physicochemical analysis was also carried out for the
42 olive oils under study at the laboratories of the School of Agriculture
of the Polytechnic Institute of Bragança (Portugal). The physicochem-
ical analysis followed the standard methods and the EU Commission
Regulations [1–3], being quantified the values of five quality para-
meters, namely the free acidity (FA, in % oleic acid), the peroxide
values (PV, in mEq O2/kg) as well as the specific coefficients of
extinction at 232 nm and 270 nm (K232, K270 and ΔK). Additionally,
the oxidative stability (OS, in hours) of each olive oil sample was also
assessed based on Rancimat assays as previously described by
Rodrigues et al. [19], which although not required for olive oil quality
grade classification is an useful parameter for inferring about olive oil
shelf life. All physicochemical assays were carried out in triplicate (i.e.,
3 subsamples were collected from each olive oil bottle and analyzed).
Based on the physicochemical mean contents and the sensory analysis
and taking into account the guidelines of the European Regulations [1–
3], each of the 42 olive oils were classified (Table 1) as VOO
(simultaneously: FA ≤ 2.0% oleic acid, PV ≤ 20 mEq O2/kg, K232 ≤
2.60, K270 ≤ 0.25 and ΔK ≤ 0.01 and DPP ≤ 3.5) or LOO (for the other
cases).

2.2. E-tongue device

The E-tongue (Fig. 1) included two home-made print-screen
potentiometric arrays each one with 20 cross-sensitivity membranes
as chemical sensors (diameter: 3.6 mm; thickness: 0.3 mm). As pre-
viously described by Dias et al. [30], a polyvinyl chloride (PVC) board
was covered with a sticker (on both sides) with the printed scheme of
the limits of the multi-sensor system (negative scheme), which was
covered with a silver epoxy resin (EPO-TEK E4110) and dried over-
night in an oven at 40 °C. After that, the sticker was removed, leaving
the printed scheme (positive scheme) on the PVC board. Adhesives
were placed at both ends of the board allowing protecting the board
wells where the polymeric membranes will be placed as well as the RS-
232 plug connection end. Then, the entire PVC board was covered with
an acrylic resin (PLASTIK 70) for obtaining a waterproof surface,
which required the application of multiple layers of the aerosol. After
this step, the adhesives were removed and, in a first step, the RS-232
plug was placed, fixed with ARALDITE epoxy resin, where 20 pins were
connected to the scheme of the PVC board using silver epoxy resin. In
the second and last step, lipid polymeric membranes were prepared
directly at each of the board wells according to the multi-sensor
scheme, using the drop-by-drop technique. The volatile solutions used
to prepare the lipid polymeric membranes were mixtures correspond-
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ing to different combinations of 4 different lipid additives (octadecy-
lamine, oleyl alcohol, methyltrioctylammonium chloride and oleic acid;
≈3%); 5 different plasticizers (bis(1-butylpentyl) adipate, dibutyl
sebacate, 2-nitrophenyl-octylether, tris(2-ethylhexyl)phosphate and
dioctyl phenylphosphonate; ≈ 65%) and high molecular weight poly-

vinyl chloride (PVC; ≈ 32%). All reagents were from Fluka (minimum
purity ≥ 97%). Although the two arrays comprised sensors with the
same combinations of lipid additive/plasticizers/PVC and with the
same relative composition, they could present different electrochemical
properties since the manual drop-by-drop technique used may allow

Table 1
Olive oils physicochemical and sensory data and respective quality grade classification.

Physicochemical analysisa Sensory analysisb Olive oil quality
gradec

Free acidity
(% oleic acid)

Peroxide value
(mEq O2/kg)

K232 K270 ΔK Oxidative
stability (h)

Defect predominantly
perceived

Other sensory
defects

Olive oil (OO)
sample code

Type Intensity

OO1 0.38 11.6 1.548 0.089 −0.002 6.78 Fusty ≤ 3.5 n.d. VOO
OO2 0.38 10.7 1.410 0.093 0.000 6.59 Fusty ≤ 3.5 n.d. VOO
OO3 0.47 10.7 1.320 0.097 0.000 8.53 Rancid > 3.5 Fusty LOO
OO4 0.38 9.9 1.364 0.094 0.000 8.05 Rancid > 3.5 Fusty LOO
OO5 1.13 243.1 8.794 1.044 0.027 0.09 Rancid > 3.5 n.d. LOO
OO6 1.04 241.4 9.780 1.015 0.024 0.09 Rancid > 3.5 n.d. LOO
OO7 0.47 14.1 1.917 0.145 0.000 6.95 Rancid > 3.5 Winey-vinegary LOO
OO8 0.38 13.3 1.787 0.153 −0.001 6.54 Rancid > 3.5 Winey-vinegary LOO
OO9 0.38 17.4 2.201 0.118 −0.002 5.85 Winey-

vinegary
> 3.5 Fusty, rancid LOO

OO10 0.38 17.4 2.343 0.112 −0.001 5.44 Winey-
vinegary

> 3.5 Fusty, rancid LOO

OO11 0.47 19.9 1.922 0.149 −0.001 6.68 Wet-wood > 3.5 Winey-vinegary LOO
OO12 0.47 18.3 2.114 0.157 0.001 6.49 Wet-wood > 3.5 Winey-vinegary LOO
OO13 0.28 11.6 1.751 0.125 0.000 7.05 Winey-

vinegary
≤ 3.5 n.d. VOO

OO14 0.28 10.8 1.990 0.129 0.000 6.47 Winey-
vinegary

≤ 3.5 n.d. VOO

OO15 0.38 25.7 4.298 0.248 0.007 2.17 Rancid > 3.5 n.d. LOO
OO16 0.28 25.7 4.121 0.239 0.007 2.06 Rancid > 3.5 n.d. LOO
OO17 0.38 15.0 1.517 0.131 0.001 6.69 Rancid ≤ 3.5 Winey-vinegary VOO
OO18 0.47 15.8 1.420 0.128 0.001 6.40 Rancid ≤ 3.5 Winey-vinegary VOO
OO19 0.47 10.0 1.048 0.105 −0.001 7.39 Winey-

vinegary
> 3.5 Rancid LOO

OO20 0.38 10.0 1.241 0.125 0.000 7.52 Winey-
vinegary

> 3.5 Rancid LOO

OO21 0.47 10.8 1.370 0.105 0.000 7.24 Fusty ≤ 3.5 n.d. VOO
OO22 0.47 10.0 1.300 0.100 0.000 7.54 Fusty ≤ 3.5 n.d. VOO
OO23 0.38 9.1 1.167 0.167 0.004 10.46 Rancid > 3.5 n.d. LOO
OO24 0.47 9.1 1.327 0.178 0.003 10.09 Rancid > 3.5 n.d. LOO
OO25 0.38 10.0 2.064 0.156 0.001 6.71 Wet-wood ≤ 3.5 Rancid VOO
OO26 0.38 10.8 2.177 0.154 0.000 6.65 Wet-wood ≤ 3.5 Rancid VOO
OO27 0.38 20.0 2.346 0.171 0.002 3.62 Rancid > 3.5 Fusty LOO
OO28 0.47 18.3 2.509 0.156 0.002 3.49 Rancid > 3.5 Fusty LOO
OO29 0.28 8.3 2.150 0.119 0.000 7.41 Wet-wood ≤ 3.5 n.d. VOO
OO30 0.38 7.5 2.084 0.131 −0.001 7.22 Wet-wood ≤ 3.5 n.d. VOO
OO31 0.75 12.5 1.955 0.190 0.000 11.44 Winey-

vinegary
> 3.5 n.d. LOO

OO32 0.85 11.6 1.858 0.177 0.000 11.95 Winey-
vinegary

> 3.5 n.d. LOO

OO33 0.38 9.2 2.076 0.104 −0.001 4.28 Wet-wood ≤ 3.5 Winey-vinegary,
Fusty

VOO

OO34 0.38 10.8 2.276 0.102 0.000 4.03 Wet-wood ≤ 3.5 Winey-vinegary,
Fusty

VOO

OO35 0.47 13.2 2.191 0.153 −0.001 9.28 Wet-wood ≤ 3.5 n.d. VOO
OO36 0.38 12.4 2.192 0.150 −0.001 9.19 Wet-wood ≤ 3.5 n.d. VOO
OO37 0.47 12.5 2.040 0.151 0.000 5.60 Winey-

vinegary
≤ 3.5 n.d. VOO

OO38 0.57 10.8 2.076 0.136 0.001 5.23 Winey-
vinegary

≤ 3.5 n.d. VOO

OO39 0.47 7.5 1.626 0.102 0.000 6.74 Wet-wood > 3.5 Winey-vinegary LOO
OO40 0.47 7.5 1.622 0.200 0.005 6.74 Wet-wood > 3.5 Winey-vinegary LOO
OO41 0.75 14.1 2.520 0.198 0.005 4.37 Winey-

vinegary
> 3.5 n.d. LOO

OO42 0.66 14.9 2.955 0.185 0.006 3.93 Winey-
vinegary

> 3.5 n.d. LOO

a Physicochemical parameters evaluated according to the EU Commission Regulation [1–3].
b Sensory analysis was performed by trained panelists following the IOC regulations [28,29].
c Olive oil quality grade classification based on the physicochemical levels and the sensory analysis [1–3,28,29]: EVOO (simultaneously: FA ≤ 0.8% oleic acid, PV ≤ 20 mEq O2/kg,

K232 ≤ 2.50, K270 ≤ 0.22, ΔK ≤ 0.01 and DPP = 0); VOO (simultaneously: FA ≤ 2.0% oleic acid, PV ≤ 20 mEq O2/kg, K232 ≤ 2.60, K270 ≤ 0.25, ΔK ≤ 0.01 and 0 <DPP ≤ 3.5) or LOO (for
the other cases).
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obtaining inhomogeneous membranes with different physical proper-
ties (e.g., different membrane transparency levels and porosity leading
to different adsorption phenomena and surface chemical reactions,
which may lead to deviations in sensors’ readings). Therefore, instead
of assuming a set of 20 sensor-sensor replica membranes it is more
realistic to consider the use of 40 independent sensors. The multi-
sensor system was used together with an Ag/AgCl reference electrode
(Crison, 5241), forming a multi-sensor device that allowed the
potentiometric measurements with a multiplexer Agilent Data
Acquisition Switch Unit model 34970A, controlled with the Agilent
BenchLink Data Logger software installed on a PC. The multi-sensor
device was placed in a KCl aqueous solution (1 mol/L) until used for
analysis. To keep the uniformity with previous works, each sensor was
identified with a code that includes a letter S (for sensor) followed by
the number of the array (1 or 2) and the number of the membrane (1–
20, corresponding to different combinations of plasticizer and additive
used) as described in Table 2.

2.3. E-tongue analysis: olive oils sample preparation and
potentiometric assays

All samples were electrochemically analyzed in the same day
avoiding the need of statistical complex signal pre-treatments to
overcome possible signal drifts issues. Indeed, it has been reported
that potentiometric signals gathered by lipid polymeric membranes
(similar to those comprised in the E-tongue device used in this work)
during the analysis (three times in day, corresponding to a 5 h interval)
of aqueous standard solutions of basic tastes (acid, bitter and salty) had
satisfactory intra-day repeatabilities (relative standard deviation per-
centages, RSD% varying from 0.1% to 12%) [24]. The low RSD% values
reported for usual time analysis periods (5 h), strengthen the satisfac-
tory E-tongue signals stability in time. On the other hand, based on the
experience of the research team, which used the same E-tongue device
in several works, this type of potentiometric E-tongue could be used
during at least one year period without requiring any replacement of
the lipid polymeric sensor membranes, showing the storage stability of
this type of sensor device. Furthermore, in previous works of the
research team, it was verified that the lipid polymeric sensor mem-
branes showed quantitative linear (sensitivities, mV/decade) response
towards the decimal logarithm of the concentration of chemical
standard solutions mimicking positive or negative sensory attributes
usually perceived in olives or olive oils [22,24,25]. It should be
emphasized that the sensing mechanism depends on the non-uniform
hydrophilicity of the lipid membranes and on the ionic environment at
the proximity of the membrane surface. Thus, the measured electric
potential depends on the membrane surface-charge density changes,
which are dependent of the surface electric charge density and of its
permeability to ions altered by the physical adsorption of non-electro-
lytes compounds [31–33]. Nevertheless, if the electrochemical analysis
required several days, possible signal drifts could be solved by signal
pre-treatment techniques such as subtracting the average signal profile
recorded by the E-tongue device during the analysis of each olive oil
sample by the average signal profile recorded for a specific standard
solution [19]. In this context, and to discard the need of signal pre-
treatment due to the occurrence of drift issues, in the present work,
intra-day and inter-day sensor signal repeatabilities were evaluated by
calculating the RSD% related to the analysis of different olive oils
(independent samples) for which a single sensory defect was perceived
by the panelists (number of independent defected olive oils × 2
extractions × 2 assays) in the same day or in two consecutive days.
This evaluation would allow verifying the occurrence of signal drifts
and the need of signal pre-treatment. The olive oil extraction procedure
used was previously described by Dias et al. [26]. Hydro-ethanolic
solutions (H2O:EtOH, 80:20 v/v) were used to overcome the difficulty
of carrying out electrochemical assays in viscous non-conductive
liquids [10]. Ethanol was of analytical grade (Panreac, Barcelona)

Fig. 1. Potentiometric E-tongue device.

Table 2
E-tongue sensors details (identification code; pairs of plasticizer additive compounds,
used in the preparation of each lipid-polymeric membrane).

Sensor code Plasticizer (~65%) Additive (~3%)

1st array 2nd array

S1:1 S2:1 2-Nitrophenyl-octyl
ether

Octadecylamine
S1:2 S2:2 Oleyl alcohol
S1:3 S2:3 Methyltrioctylammonium

chloride
S1:4 S2:4 Oleic acid

S1:5 S2:5 Tris(2-ethyl-hexyl)
phosphate

Octadecylamine
S1:6 S2:6 Oleyl alcohol
S1:7 S2:7 Methyltrioctylammonium

chloride
S1:8 S2:8 Oleic acid

S1:9 S2:9 Dibutyl sebacate Octadecylamine
S1:10 S2:10 Oleyl alcohol
S1:11 S2:11 Methyltrioctylammonium

chloride
S1:12 S2:12 Oleic acid

S1:13 S2:13 Bis(1-butylpentyl)
adipate

Octadecylamine
S1:14 S2:14 Oleyl alcohol
S1:15 S2:15 Methyltrioctylammonium

chloride
S1:16 S2:16 Oleic acid

S1:17 S2:17 Bis(2-ethylhexyl)
phthalate

Octadecylamine
S1:18 S2:18 Methyltrioctylammonium

chloride
S1:19 S2:19 Oleyl alcohol
S1:20 S2:20 Oleic acid
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and deionized water type II was used. For the electrochemical assays,
samples were withdrawn from each olive oil bottle after a smooth
shaken, and extracted. In each assay, 10.00 g of olive oil were mixed to
100 mL of hydro-ethanolic solution during 5–10 min under strong
agitation, using a vortex stirrer (LBX V05 series, lbx instruments), with
a constant speed of approximately 500 rpm. This process allowed the
extraction of polar compounds, which are responsible for sensory
attributes of olive oils [10,13,25,26]. The mixture was left at ambient
temperature during 60 min, after which, 40.0 mL of the supernatant
solution was carefully removed and immediately analyzed with the E-
tongue. The electrochemical analysis took 5 min enabling to carried out
several electrochemical scans, being retained the last one, which would
correspond to a pseudo-equilibrium state. Electrochemical assays were
performed in duplicate for each sample unless the coefficients of
variation of the potentiometric signals recorded by each E-tongue
sensor were greater than 20% (value set according to the IOC
regulations [28,29] for sensory analysis), in which cases a third assay
was performed. As proposed by Rodrigues et al. [19], to minimize the
risk of overoptimistic performance of the multivariate models, for data
split (establishment of training and internal-validation sets) and
modeling purposes, only one electrochemical “average” signal profile
per sample was used, avoiding that results from duplicate assays of the
same olive oil sample could be included into both training and
validation sets.

2.4. Statistical analysis

A two-way multivariate analysis of variance (2-way MANOVA) was
applied to evaluate the possible effects of the analysis day and/or type
of sensory defect perceived in the olive oils, considering simultaneously
all the dependent variables (i.e., E-tongue sensors signal profiles),
using the Pillai's trace test, aiming to verify the statistical significance
of the possible signals drifts as well as of the taste perception capability
of the E-tongue device. The potential use of the olive oils’ potentio-
metric E-tongue fingerprints for classifying olive oils according to the
sensory defect predominantly perceived by trained panelists (i.e., fusty,
rancid, wet-wood and winey-vinegary defects), regardless the olive oil
quality grade, was further evaluated using the linear discriminant
analysis (LDA), a supervised multivariate statistical technique, coupled
with a meta-heuristic simulated annealing (SA) algorithm, which is a
variable selection technique. The same electrochemical-chemometric
approach was also applied to verify the capability of extracting valuable
and representative information, contained on the potentiometric
signals profiles recorded by the E-tongue device during the analysis
of the hydro-ethanolic olive oils extracts, to classify olive oils according
to their quality grade (VOO or LOO), independently of the type and
number of organoleptic defects simultaneously perceived by the trained
panelists. In this study, the most informative subsets of independent
predictors (i.e., sensors) to be included in the final LDA models were
chosen by applying a variable selection algorithm, since not all sensors
present relevant information and so, their inclusion in the classification
models may increase the noise effects. The best subsets of sensors
(varying from 2 to 39) were established among the 40 potentiometric
sensor signals using the SA variable selection algorithm [34–36]. The
LDA potential was evaluated using two cross-validation (CV) variants:
leave-one-out (LOO-CV), known to be an over-optimistic procedure;
and, repeated K-fold (repeated K-fold-CV) technique. For the latter,
data was randomly split into K folds, being each of the folds left out in
turn and the other K-1 folds used to train the model. The held out fold
was used for test purposes and the quality of the predictions was
assessed using the average values of sensitivities (percentage of
correct/true classifications) and specificities (assumed as the true
negative rates). The K estimates are averaged to get the overall
resampled estimate [36]. In this work the K-folds were set equal to
4, enabling the random formation of internal validation subsets (for

each gustatory group) with 25% of the initial data, allowing bias
reduction. The procedure was repeated 10 times for putting the model
under stress. The repeated K-fold-CV technique allows reducing the
uncertainty of the estimates, by evaluating the predictive performance
of the models established using 4×10 random sub-sets for internal
validation (i.e., 40 total resamples). To normalize the weight of each
variable in the final linear classification model, variable scaling and
centering procedures were evaluated. The classification performance of
each LDA model was graphically evaluated using 2-D plot of the main
discriminant functions (when more than two class groups were
considered) or by plotting the 1-D frequency distribution of the data
for the sole discriminant function, for the cases where only two classes
were evaluated. For the multi-classes case, posterior probabilities were
computed using the Bayes’ theorem (which enables controlling over-
fitting issues) to deeper assess the classification capability of the
established LDA models (i.e., to infer the probability obtained after
an event has been observed), being also plotted as the class member-
ship boundary lines in the 2-D plots [37]. All statistical analysis were
performed using the Subselect [35,38] and MASS [39] packages of the
open source statistical program R (version 2.15.1), at a 5% significance
level.

3. Results and discussion

3.1. Olive oils quality grade classification based on the
physicochemical and sensory analysis

All the 42 olive oils studied in this work were analyzed taking into
account the five physicochemical quality parameters required (FA, PV,
K232, K270 and ΔK) by the EU Commission Regulations [1–3] for
quality grade classification of olive oils as EVOO, VOO or LOO, being
also determined the OS values (Table 1). Based on the physicochemical
levels determined it could be concluded that only 9 olive oils (sample
codes: OO5, OO6, OO15, OO16, OO27, OO28, OO32, OO41 and OO42;
FA > 0.8% oleic acid, PV > 20 mEq O2/Kg, K232 > 2.5, K270 > 0.25 and/
or ΔK > 0.01) would be graded as LOO, being all the other olive oils
classified as EVOO (simultaneously: FA ≤ 0.8% oleic acid, PV ≤ 20 mEq
O2/kg, K232 ≤ 2.50, K270 ≤ 0.22 and ΔK ≤ 0.01). However, the results
from the sensory analysis allowed perceiving at least one organoleptic
defect in all the 42 commercial olive oils evaluated in this study, being
possible to detect up to 3 different sensory defects in some olive oils
(Table 1). So, regarding the quality grade, none of the olive oils studied
could be classified as EVOO, being 18 classified as VOO and the other
24 as LOO, taking into account simultaneously the determined levels of
the physicochemical parameters (FA, PV, K232, K270 and ΔK) and the
intensity of the DPP and the limit levels established by the EU
Commission Regulations [1–3]. These findings show the importance
of performing a sensory analysis to confirm the label correctness
concerning olive oils’ quality grade. The practical limitations related
with sensory panels (i.e., availability, subjectivity, analysis cost, analy-
sis time and low number of samples evaluated per day) strengthen the
real need of establishing fast and accurate artificial sensory classifiers
like that envisaged in the present study. Moreover, by identifying the
organoleptic defect of an olive oil, valuable insights may be withdrawn
concerning possible bad practices of olives or olive oils production,
harvesting, transport and storage. The wet-wood defect may be related
to bad practices at the olive production level, being fusty and winey-
vinegary defects mainly related to bad practices of olives harvesting,
transport and storage. On the other hand, rancid negative attribute
may be partially due to bad olive oil storage conditions. In addition, it
should be remarked that, with the exception of some olive oils, the
interval range of the OS values (Table 1) are similar for VOO and LOO,
which could be explained by the fact that this classification was mainly
due to the sensory perception of defects and not to the olive oils
physicochemical contents. Finally, based on the type of DPP, each olive
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oil was classified into one of the following groups: winey-vinegary olive
oil (12 olive oils), wet-wood olive oil (12 olive oils), rancid olive oil (14
olive oils) and fusty/musty olive oil (4 olive oils).

3.2. Olive oils potentiometric signal profiles

Different potentiometric signal profiles (varying from −50 mV to
+275 mV) were acquired by the 40 E-tongue sensors during the
electrochemical analysis of the olive oils’ hydro-ethanolic extracts.
These differences were due to sensory defect predominantly perceived
by the trained panelists (i.e., fusty, rancid, wet-wood and winey-
vinegary as shown in Table 1) or to the olive oils quality grade,
assessed according to the physicochemical and sensory data (i.e., VOO
or LOO, since the perception of an organoleptic negative attribute does
not allow classifying any olive oils as EVOO).

The potentiometric average signals recorded by each sensor for
each of the four sensory defects perceived showed slight trend
differences (magnitude of the potentiometric signal and/or dynamic
signal range). These differences may allow the discrimination of the
olive oils according to the sensory defect predominantly perceived
(regardless the presence of other defects or the olive oil quality
classification) or according to the quality grade of the olive oil
(independently of the number and type of organoleptic defects
simultaneously perceived).

On the other hand, the signal stability (or possible signal drift,
commonly reported for potentiometric sensors) was evaluated using
the relative standard deviations (RSD%) calculated based on the
different electrochemical assays carried out in the same day (intra-
day repeatability) or in two consecutive days (inter-day repeatability).
For this study, only olive oils containing one of the four perceived
sensory defects were used (i.e., fusty: 4 olive oils × 2 extractions × 2
assays, samples OO1, OO2, OO21 and OO22; rancid; 6 olive oils × 2
extractions × 2 assays samples OO5, OO6, OO15, OO16, OO23 and
OO24; wet-wood: 4 olive oils × 2 extractions × 2 assays, samples OO29,
OO30, OO35 and OO36; or, winey-vinegary: 8 olive oils × 2 extractions
× 2 assays, samples OO13, OO14, OO31, OO32, OO37, OO38, OO41
and OO42; information gathered in Table 1). Nevertheless, this
selection ensured an intrinsic variability due to the different olive oils
analyzed, the extraction procedure and/or the duplicate electrochemi-
cal assays, for each main defect. The results showed that satisfactory
RSD% values could be obtained, varying in general between 0.5% and
20% or 3.5% and 25% for the intra- or inter-day analysis, which are in
agreement with those previously reported for intra-day repeatabilities
of standard solutions mimicking acid, bitter and salty taste sensations
(0.1% ≤ RSD% ≤ 12%) [24]. Fig. 2 shows, as an example, the average
signal profiles recorded by the 1st sensor array of the E-tongue device
(sensors: S1:1 to S1:20) during two consecutive days, for different olive
oils (from 4 to 8 olive oils, depending on the sensory defect, each one
extracted twice and electrochemically analyzed in duplicate) with a
single perceived sensory defect (i.e., fusty, rancid, wet-wood or winey-
vinegary). The overall satisfactory intra- and inter-day signal stability
of the E-tongue pointed out that the potentiometric signal drift could
be neglected, being patent the potentiometric signal stability over the
two consecutive analysis days from the plots of Fig. 2. Furthermore,
there is no clear day-dependence trend of the potentiometric signals
recorded (considering the results from the two days of analysis), being
signals increase or decrease dependent on the sensor and on the type of
sensory defected olive oil. Also, the referred plots allow verifying that
different potentiometric fingerprints could be obtained for olive oils
with different sensory defects, being expectable that the recorded signal
profiles could be used to discriminate olive oils according to the main
sensory defect. Finally, the 2-way MANOVA results (Pillai's trace test)
confirmed the previous conclusions, i.e., the analysis day does not have
a significant statistical effect at a 5% significance level (P-value =
0.5715) when the all the signal potentiometric profiles are considered
simultaneously but, on the other hand, the overall sensors’ signal

fingerprints significantly differ with the type of sensory defect perceived
on the olive oils (P-value = 0.0084).

3.3. Discrimination of olive oils with sensory defects based on
electrochemical profiles

The potentiometric signal data collected allowed to establish an E-
tongue-LDA-SA model (3 discriminant functions explaining 93.5%,
3.6% and 2.9% of the original data variability) based on the signal
profiles recorded with 19 E-tongue sensors (1st array sensors: S1:4,
S1:5, S1:8, S1:12, S1:15, S1:16, S1:19 and S1:20; 2nd array sensors;
S2:1, S2:8, S2:9, S2:11, S2:14, S2:15, S2:17, S2:18, S2:19 and S2:20),
during the analysis of olive oils’ hydro-ethanolic extracts. The proposed
model enabled the correct classification of 98% for the original grouped
data (Fig. 3) and 81% for the LOO-CV procedure, based on the
potentiometric data. In fact, for the original data, the sensitivities
varied from 92% for the winey-vinegary of defected olive oils to 100%
for the fusty, rancid or wet-wood groups. An overall specificity of 99%
was achieved with single specificities ranging from 96% for the rancid
group to 100% for fusty, wet-wood or winey-vinegary groups. For the
LOO-CV procedure, sensitivities of 75%, 64%, 83% and 100% and
specificities of 95%, 89%, 100% and 90% were obtained for the
classification of defected olive oils classified as fusty, rancid, wet-wood
or winey-vinegary, respectively. These results showed that all samples
classified as wet-wood defected olive oils were correctly classified and
misclassification of other samples as having this specific defect did not
occurred. Globally, the overall results pointed out that a mean
specificity of 94% could be expected and that more than 89% of the
correct classifications were not false predictions (true negative) for all
groups evaluated. It should also be remarked that the majority of the
misclassifications occurred between olive oils classified with winey-
vinegary defect and rancid defect, which could be justified by the fact
that in some of the commercial olive oils analyzed, more than one
organoleptic defect could be perceived simultaneously by the panelists,
turning out the E-tongue discrimination task more complex and
challenging. The E-tongue-LDA-SA predictive performance was further
verified using the repeated K-fold-CV procedure (4 folds and 10
repetitions, leading to 40 internal cross-validation test sets each
composed by 10–11 samples composed by 1, 3–4, 3 and 3 samples
of fusty, rancid, wet-wood and winey-vinegary groups, respectively).
The results showed that the best predictive E-tongue-LDA-SA model
based on the same 19 signal sensor profiles allowed achieving mean
correct classification rates of 75 ± 3% (varying from 69% to 79% for
each of the 10 random repetitions of the 4 folds data split) and an
average specificity of 73 ± 4% (ranging from 67% to 80% for each of the
10 random repetitions of the 4 folds data split). The results obtained
with this more realistic CV variant showed a similar effectiveness
regarding the correct classification rates (sensitivities: 71 ± 16%, 60 ±
8%, 92 ± 6% and 77 ± 7%; and, specificities: 51 ± 13%, 71 ± 8%, 98 ±
4% and 70 ± 8%; for fusty, rancid, wet-wood and winey-vinegary
defected olive oils, respectively) pointing out the consistency and
robustness of the electrochemical analytical device as a practical
classification tool of commercial sensory defected olive oils according
to the main sensory defect perceived. In fact, the E-tongue-LDA-SA
model selected allowed the correct classification of a defected olive oil
sample according to its main sensory defect with average largest
posterior probability of 0.97 ± 0.09 for fusty, 0.95 ± 0.11 for rancid,
0.99 ± 0.05 for wet-wood and 0.96 ± 0.10 for winey-vinegary negative
attributes. Furthermore, for the majority of misclassification samples,
the correct group had in general the second highest posterior prob-
ability. Finally, it is important to emphasize that these preliminary
results are quite satisfactory taking into account the heterogeneity of
the 42 commercial olive oils studied in this work (different brands,
different olive cultivars, etc.), plus the fact that the olive oil samples
evaluated had a high sensory complexity, being more than one sensory
defect usually perceived simultaneously by the panelists.
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3.4. Olive oils physicochemical quality discrimination based on
electrochemical profiles

The potentiometric signal data collected also allowed to establish an
E-tongue-LDA-SA model (with only one discriminant function that

explained 100% of the original data variability) based on the signal
profiles of 24 E-tongue sensors (1st array sensors: S1:2 to S1:8, S1:12,
S1:14, S1:15, S1:19 and S1:20; 2nd array sensors; S2:1 to S2:5, S2:7,
S2:10, S2:13, S2:16, S2:17, S2:18 and S2:20) to classify the olive oils as
VOO or LOO. The proposed model enabled the overall correct
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Fig. 2. Potentiometric mean signal profiles (error bars - related standard deviations) recorded by the 1st sensor array of the E-tongue device, concerning assays carried out in two
consecutive days, of olive oils’ hydro-ethanolic extracts of selected different olive oils for which a single sensory defect was perceived (i.e., fusty, rancid, wet-wood or winey-vinegary) by
trained panelists.
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Fig. 3. Discrimination of commercial olive oils according to the defect predominantly (fusty, rancid, wet-wood or winey-vinegary) perceived by trained sensory panelists: plots of the
three discriminant functions of the E-tongue-LDA-SA model based on the information of 19 signal sensor potentiometric profiles recorded during the olive oils hydro-ethanolic extracts
analysis (1st array sensors: S1:4, S1:5, S1:8, S1:12, S1:15, S1:16, S1:19 and S1:20; 2nd array sensors; S2:1, S2:8, S2:9, S2:11, S2:14, S2:15, S2:17, S2:18, S2:19 and S2:20). The full
lines represent the boundary lines based on the posterior probabilities calculated for each class membership.
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classification of 100% for the original grouped data (corresponding to
sensitivity and specificity values of 100%; Fig. 4). Also, for the LOO-CV
procedure, an overall sensitivity of 98% and sensitivity of 97% were
achieved, which were due to a LOO sample that was misclassified as
VOO. It should be noticed that several of the sensors included in this
quality grade classification model were also used in the E-tongue-LDA-
SA classification model previously established for olive oils’ defects
discrimination. Similarly, for the repeated K-fold-CV variant (4 folds
and 10 repetitions), the proposed E-tongue-LDA-SA model (based on
the potentiometric profiles of the same 24 sensors) allowed an average
correct class prediction (based on the sensitivity values for VOO and
LOO groups) of 92 ± 3% (varying from 88% to 98% for each of the 10
random repetitions of the 4 folds data split) and an average specificity
of 93 ± 3% (also ranging from 88% to 98% for each of the 10 random
repetitions of the 4 folds data split), regardless the number of sensory
defects simultaneously perceived in each sample. Concerning the olive
oils classification according to the quality grade group, mean sensitiv-
ities of 94 ± 5% and 91 ± 6% were obtained for VOO and LOO samples,
with mean specificities of 90 ± 7% and 95 ± 3%, respectively.
Furthermore, it should be remarked that olive oils correctly classified
according to their quality grade also showed largest average posterior
probabilities, namely of 1.00 ± 0.01 and 1.00 ± 0.04 for VOO and LOO
samples, respectively.

4. Conclusions

In this work, it was demonstrated the feasibility of applying a
potentiometric E-tongue (with lipid cross-sensitivity polymeric mem-
branes) in combination with chemometric tools, for the successful
discrimination of olive oils with negative organoleptic attributes, which
assessment is usually carried out by official trained sensory panels,
turning out in an expensive and time-consuming task. In addition, the
capability of identifying a specific sensory defect present in an olive oil

is also relevant since it could give some important insights regarding
possible bad practices at the olive production level (e.g., wet-wood), at
the olives harvesting, transport and storage levels (e.g., fusty and
winey-vinegary) or at the olive oil storage level (e.g., rancid). As well, it
has been verified the versatility of this simple, low-cost and fast
electrochemical tool to assess the quality grade of olive oils with
organoleptic defects (VOO or LOO). Thus, this preliminary study
shows the practical potential of this type of electrochemical tool (E-
tongue) as a taste sensor device for the successful evaluation of
organoleptic defects perceived in olive oils, which must be taken into
account for their quality commercial grade classification.
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