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ESTIMATING THE EXTREMAL INDEX THROUGH THE3 TAIL DEPENDENCE CONCEPT4 Marta Ferreira5 Center of Mathemati
s6 University of Minho, Portugal7 e-mail: msferreira�math.uminho.pt8 Abstra
t9 The extremal index θ is an important parameter in extreme value anal-10 ysis when extending results from independent and identi
ally distributed11 sequen
es to stationary ones. A 
onne
tion between the extremal index and12 the tail dependen
e 
oe�
ient allows the introdu
tion of new estimators.13 The proposed ones are easy to 
ompute and we analyze their performan
e14 through a simulation study. Comparisons with other existing methods are15 also presented. Case studies within environment are 
onsidered in the end.16 Keywords: Extreme value theory, extremal index, tail dependen
e 
oe�-17 
ient.18 2010 Mathemati
s Subje
t Classi�
ation: 62G32.19 1. Introdu
tion20 The 
entral result in 
lassi
al Extreme Value Theory states that, for an i.i.d. se-quen
e, {Xn}n≥1, having 
ommon distribution fun
tion (d.f.) F , if there are
onstants an > 0 and bn ∈ R su
h that,

P (max(X1, . . . ,Xn) ≤ anx+ bn) −→
n→∞

G(x) , (1)for some non degenerate fun
tion G, then it must be the Generalized ExtremeValue fun
tion (GEV ),
G(x) = exp(−(1 + γx)−1/γ), 1 + γx > 0, γ ∈ R,(G(x) = exp(−e−x) for γ = 0) and we say that F belongs to the max-domain of21 attra
tion of G, in short, F ∈ D(G). The parameter γ, known as the tail index,22
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2 M. Ferreirais a shape parameter determining the tail behavior of F : if γ > 0 we are in the23 domain of attra
tion Fré
het 
orresponding to a heavy tail, γ < 0 indi
ates the24 Weibull domain of attra
tion of light tails and γ = 0 means a Gumbel domain of25 attra
tion and an exponential tail.26 In a multivariate 
ontext, it is possible to extend the 
onvergen
e given in27 (1), but the 
lass of models in the limit is mu
h wider than model GEV. For28 simpli
ity, we 
onsider the bivariate 
ase, but everything 
an be rewritten for the29 more general d-variate 
ase, d ≥ 2. More pre
isely, let {(X(n)
1 ,X

(n)
2 )}n≥1 be a30 sequen
e of i.i.d. 
opies of the random pair (X1,X2), with 
ommon d.f. F, and31 let M (n)

j = max1≤i≤nX
(i)
j , j = 1, 2, be the maximum of ea
h marginal. If there32 exist sequen
es of real 
onstants a(n)j > 0 and b

(n)
j , for j = 1, 2 and n ≥ 1, and a33 d.f. G with non-degenerate margins, su
h that,34

P (M
(n)
1 ≤ a

(n)
1 x1 + b

(n)
1 ,M

(n)
2 ≤ a

(n)
2 x2 + b

(n)
2 )

= F
n(a

(n)
1 x1 + b

(n)
1 , a

(n)
2 x2 + b

(n)
2 )

−→
n→∞

G(x1, x2) ,for every 
ontinuity points of G, then this latter is said to be a bivariate extreme35 value distribution (BEV) and is de�ned by expression36
G(x1, x2) = exp[−l{− logG1(x1),− logG2(x2)}], (2)for some bivariate fun
tion l, where Gj , j = 1, 2, is the marginal d.f. of G. In this37 
ase, we have that F belongs to the max-domain of attra
tion of G, in short F ∈38

D(G). The fun
tion l in (2), usually 
alled stable tail dependen
e fun
tion is 
on-39 vex and homogeneous of order 1, and we have max(x1, x2) ≤ l(x1, x2) ≤ x1 + x2,40 for all (x1, x2) ∈ [0,∞)2, where the upper limit 
orresponds to independen
e and41 the lower one means 
omplete dependen
e (see, e.g. Beirlant et al. [2℄, Se
tion42 8.2.2).4344 The result in (1) may also be extended to study the maximum of a wide45 
lass of dependent pro
esses, a more realisti
 assumption for several data. Here46 we 
on
entrate on stationary sequen
es where the dependen
e is restri
ted by47 distributional mixing 
onditions.48 The 
ondition D(un) of Leadbetter ([14℄, 1983), providing a short range de-penden
e for whi
h at long lags the extremes are independent, is su�
ient toextend the result in (1) to stationary sequen
es. More pre
isely, for a stationarysequen
e {Xn}n≥1 satisfying D(un) with un = anx+ bn, we have that
P (max(X1, . . . ,Xn) ≤ un) −→

n→∞
Gθ(x) , (3)



Estimating the extremal index through the tail dependen
e 
on
ept3where 0 ≤ θ ≤ 1 is the extremal index. The extremal index is the primary measure49 of extremal dependen
e in su
h pro
esses, with θ = 1 indi
ating independen
e at50 asymptoti
ally high levels.51 There are di�erent interpretations of the extremal index. This 
on
ept, orig-inated in papers by Loynes ([15℄, 1965), O'Brien ([17℄, 1974) and developed indetail by Leadbetter ([14℄, 1983), re�e
ts the e�e
t of 
lustering of extreme ob-servations on the limiting distribution of the maximum. O'Brien (1987) provedthat the presen
e of 
lustering a�e
ts the limiting distribution of blo
k maxima:
P (max(X2, . . . ,Xrn) ≤ un|X1 > un) −→

n→∞
θ , (4)with rn su
h that rn → ∞ and rn = o(n). Under a mixing 
ondition slightlyrestri
tive than D(un), Hsing et al. ([13℄, 1988) showed that the limiting meannumber of ex
eedan
es of un in an interval of length rn is the inverse of theextremal index:

E
[∑rn

i=1 1{Xj>un}|
∑rn

i=1 1{Xj>un} ≥ 1
]
→ θ−1, (5)with 1(·) the indi
ator fun
tion. By stationarity this property is satis�ed for anyblo
k of rn 
onse
utive elements de�ned in the sequen
e. By rewriting (3) as

P (max(X1, . . . ,Xn) ≤ un) −→
n→∞

e−θτ(x) , 0 < τ(x) < ∞,Ferro and Segers ([9℄, 2003) found that the pro
ess of inter-ex
eedan
e times nor-malized by ex
eedan
es of un follows a mixture of a point mass and an exponentialdistribution Exp(θ−1), i.e.,
P (F (un)T (un) > t) −→

n→∞
θe−θt , t > 0, (6)with T (un) = min{n ≥ 1 : Xn+1 > un|X1 > un}, also under a slightly stri
ter52 mixing 
ondition than D(un).5354 Inferen
e about θ has been extensively studied, with the most popular es-timators being the runs method obtained from equation (4), the blo
ks methodderived from (5) and the intervals method developed from (6). More pre
isely,the runs estimator is given by

θ̂(R) = (N)−1
n−1∑

i=1

1{Xi>u}1{Xi+1≤u} . . .1{Xi+r≤u},where N is the total number of ex
eedan
es of a high threshold u. The blo
ksestimator for a sample divided into b blo
ks of length r (so n ≈ br), 
an be statedas
θ̂(B) =

log(1− Cn(u)/b)

r log(1−N/n)



4 M. Ferreirawhere Cn(u) is the number of blo
ks in whi
h at least one ex
eedan
e of u o

urs.After some 
onsiderations, the result in (6) yields the intervals estimator
θ̂(I) =





1 ∧ 2(
∑N−1

i=1 Ti)
2

(N−1)
∑N−1

i=1 T 2
i

, if max{Ti : 1 ≤ i ≤ N − 1} ≤ 2

1 ∧ 2(
∑N−1

i=1 (Ti−1))
2

(N−1)
∑N−1

i=1 (Ti−1)(Ti−2)
, if max{Ti : 1 ≤ i ≤ N − 1} > 2,with Ti denoting the ith inter-ex
eedan
e time, i = 1, . . . , N − 1. For a survey,55 see for instan
e, An
ona-Navarrete and Tawn ([1℄, 2000) and Beirlant et al. ([2℄,56 2004).5758 Imposing some 
onvenient lo
al dependen
e 
ondition may eliminate the needfor a 
luster identi�
ation s
heme as in the 
ase of the blo
ks or the runs estima-tors. An example of su
h 
ondition is the lo
al dependen
e 
ondition D(2)(un) ofCherni
k et al. (1991), whi
h holds whenever

nP (Xj > un,Xj+1 ≤ un,Mj+2,rn > un) → 0, n → ∞,with Mi,j = max{Xi, . . . ,Xj}, for i ≤ j (Mi,j = −∞ if i > j), the blo
k sizes59 sequen
e {rn} is su
h that n/rn → ∞ and 
ondition D(un) is simultaneously60 satis�ed. Condition D(2)(un) restri
ts the o

urren
e of an observation again ex-61 
eeding the high threshold un after dropping below it within a 
luster.6263 Under D(2)(un), and 
onsidering a log-likelihood based on the limiting d.f. ob-tained in (6), Süveges ([22℄, 2007) presents the maximum likelihood estimator
θ̂(ML) =

∑N−1
i=1 qSi +N − 1 +NC −

[(∑N−1
i=1 qSiN − 1 +NC

)2
− 8NC

∑N−1
i=1 qSi

]1/2

2
∑N−1

i=1 qSi

,where q is the estimate of F (u), Si = Ti − 1 and NC =
∑N−1

i=1 1{Si 6=0}.6465 Considering a lightly stronger 
ondition D′′(un) that restri
ts the o

urren
e oftwo or more up
rossings by imposing that n
∑rn−1

j=2 P (X1 > un,Xj ≤ un <
Xj+1) → 0, as n → ∞, Nandagopalan ([16℄, 1990) derives the estimator

θ̂(N) =

∑n−1
j=1 1{Xj≤u<Xj+1}∑n

j=1 1{Xj>u}
,for a suitable high threshold u. This is a spe
ial 
ase of the runs estimator when66

r = 1.6768



Estimating the extremal index through the tail dependen
e 
on
ept5A re
ent result in Ferreira and Ferreira ([7℄, 2012a), allow us to state θ = 1−λ69 under 
ondition D(2)(un), where λ is the tail dependen
e 
oe�
ient introdu
ed70 by Sibuya ([21℄, 1960). Here we shall analyze the estimation of θ based on some λ71 estimation methodologies of the literature. This will be done through a simulation72 study. The performan
e of our approa
h will be also assessed by 
omparing with73 the simulation results obtained for the above exposed existing estimators of the74 extremal index. At the end, we illustrate with appli
ations to real environmental75 data.76 2. Tail dependen
e77 The tail-dependen
e 
oe�
ient (TDC), usually denoted λ and �rst introdu
ed in78 Sibuya ([21℄, 1960), measures the probability of o

urring extreme values for one79 random variable (r.v.) given that another assumes an extreme value too, i.e.,80
λ = lim

t→∞
P (F1(X1) > 1− 1/t|F2(X2) > 1− 1/t), (7)where F1 and F2 are the distribution fun
tions (d.f.'s) of r.v.'s X1 and X2, re-81 spe
tively. It 
hara
terizes the dependen
e in the tail of a random pair (X1,X2),82 in the sense that, λ > 0 
orresponds to tail dependen
e whereas λ = 0 means tail83 independen
e.8485 The relation θ = 1 − λ stated in Proposition 4 of Ferreira and Ferreira ([7℄,86 2012a) under the lo
al dependen
e 
ondition D(2), lead to new estimators for87

θ through the TDC. A wide study 
on
erning TDC estimation is presented in88 Frahm et al. (2005). Parametri
 estimators are more a

urate but may have89 disastrous performan
es under wrong model assumptions. Here we will fo
us on90 nonparametri
 approa
h.9192 S
hmidt and Stadtmüller ([19℄, 2006) 
onsidered the estimator based on (7)93 by plugging-in the respe
tive empiri
al 
ounterparts,94
λ̂(SS) ≡ λ̂(SS)(kn) =

1

kn

n∑

i=1

1
{F̂1(X1)>1− kn

n
,F̂2(X2)>1− kn

n
}
, (8)where F̂j is the empiri
al d.f. of Fj , j = 1, 2, and {kn} is an intermediate sequen
e,i.e., kn → ∞ and kn/n → 0, as n → ∞. Con
erning estimation a

ura
y, somemodi�
ations of this latter may be used, like repla
ing the denominator n by n+1,i.e., 
onsidering

F̂j(u) =
1

n+ 1

n∑

k=1

1
{X

(k)
j ≤u}



6 M. Ferreira(for a dis
ussion on this topi
 see, for instan
e, Beirlant et al. 2004). The 
hoi
e95 of the value k in the sequen
e {kn} that allows the better trade-o� between bias96 and varian
e is of major di�
ulty, sin
e small values of k 
ome along with a large97 varian
e whenever an in
reasing k results in a strong bias. The true value is98 usually lo
ated at a stable region of the plot (k, λ̂(SS)(k)), for 1 ≤ k < n.99 In order to avoid the varian
e-bias problem, we will use an heuristi
 pro
edure100 presented in Frahm et al. ([10℄, 2005), 
onsisting on a �plateau �nding algorithm"101 applied to a smoothed version of (k, λ̂(SS)(k)), 1 ≤ k < n.102103 Based on the approa
h 
onsidered in Capéraà et al. ([3℄, 1997), whi
h assumes104 that the underlying distribution approximates a BEV model given in (2), Frahm105 et al. ([10℄, 2005) have proposed the following estimator:106
λ̂(CFG) = 2− 2 exp

{
1
n

∑n
i=1 log

(√
log F̂1(X1) log F̂2(X2)

log(F̂1(X1)∨F̂2(X2))−2

)}
, (9)where x ∨ y = max(x, y). Another estimator developed in Ferreira and Ferreira107 ([8℄, 2012b) under the same assumption but with a simpler form, is given by108

λ̂(FF ) = 3− (1− F̂1(X1) ∨ F̂2(X2))
−1,where F̂1(X1) ∨ F̂2(X2) is the sample mean of F̂1(X1) ∨ F̂2(X2), i.e.,109

F̂1(X1) ∨ F̂2(X2) =
1

n

n∑

i=1

[
F̂1(X

(i)
1 ) ∨ F̂2(X

(i)
2 )

]
.For a dis
ussion about the asymptoti
 properties of these estimators see, respe
-110 tively, Genest and Segers ([11℄, 2009) and Ferreira ([6℄, 2013).111112 From now on, we will use notation θ̂(SS), θ̂(CFG) and θ̂(FF ), whenever we refer113 to estimators λ̂(SS), λ̂(CFG) and λ̂(FF ), that is,114

θ̂(SS) = 1− λ̂(SS), θ̂(CFG) = 1− λ̂(CFG) and θ̂(FF ) = 1− λ̂(FF ).3. Simulation study115 We are going to analyze the performan
e of the estimators des
ribed above,116 through a simulation study based on the following models:117
• Independent sequen
e whi
h have θ = 1 (with unit Fré
het margins).118
• Markov Gaussian dependen
e pro
ess, Zj = αZj−1 + ǫj , where the ǫj are119 i.i.d. N(0, 1−α2) r.v.'s, for j ≥ 2 and Z1 is N(0, 1) distributed. This pro
ess120 has θ = 1 and shall be denoted AR.121
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• Bivariate extreme value Markov pro
ess with logisti
 dependen
e fun
tion,i.e.,

P (Xj ≤ x,Xj+1 ≤ y) = exp(−(x1/α + y1/α)α).As in An
ona-Navarrete and Tawn ([1℄, 2000), we 
onsider the dependen
e122 parameter α = 0.5 whi
h gives θ = 0.328, and denote the pro
ess BEV.123
• Autoregressive maximum pro
ess, Xi = αXi−1 ∨ ǫi, where 0 < α < 1 and124

{ǫi} are i.i.d. r.v.'s with d.f. Fǫ(x) = exp(−(1− α)/x), x > 0. This pro
ess125 has θ = 1 − α. We 
onsider α = 0.5 and hen
e θ = 0.5, and denote the126 pro
ess MAR.127
• Moving maxima pro
ess, Xi =

∨
j=0,...,m αjǫi−j , with ∑m

j=0 αj = 1 and128
αj ≥ 0, {ǫi} are i.i.d. unit Fé
het r.v.'s. This pro
ess has θ = ∨j=0,...,mαj .129 We 
onsider m = 3, α1 = α2 = 0.2, α0 = α3 = 0.3 and so θ = 0.3, and130 denote the pro
ess MM.131 We 
onsider samples of size n = 10000 and 
ompare the estimators using132 the absolute mean bias and the root mean square error (rmse) 
riteria, obtained133 using 200 independent repli
ations of the estimation pro
edures. The results134 of the proposed estimators, θ̂(FF ), θ̂(CFG) and θ̂(SS), are presented in Table 1.135 For 
omparison, we also in
lude the simulation results obtained from estimators136

θ̂(ML) and θ̂(N) derived under similar lo
al dependen
e 
onditions, i.e., D(2) and137 D′′, respe
tively (see Table 2). The estimates derived from the runs, the blo
ks138 and the intervals methods were also 
omputed and 
an be found in Table 3. We139 remark that the values 
onsidered for the number of blo
ks/runs were derived140 through additional simulation studies 
ondu
ted in An
ona-Navarrete and Tawn,141 ([1℄, 2000).142 Observe that the worst performan
e of the estimators 
oin
ides with the AR143 pro
ess. In this 
ase, estimator θ̂(SS) followed by θ̂(ML), θ̂(N), θ̂(B) and θ̂(I)144 for u = q0.99 ex
eed the remaining. In parti
ular, the bad performan
e of the145 proposed estimators θ̂(FF ) and θ̂(CFG) is due to the bad behavior of the respe
tive146 tail dependen
e 
oe�
ient estimators λ̂(FF ) in (8) and λ̂(CFG) in (9) under tail147 independent non-BEV models, i.e., models for whi
h λ = 0 and whose dependen
e148 stru
ture for 
onse
utive pairs 
an not be formulated as in (2), su
h as the 
ase of149 AR (see Ferreira, [6℄ 2013). Indeed, estimators θ̂(FF ) and θ̂(CFG) are not robust.150 They present the worst performan
es also within the BEV and MM pro
esses,151 missing the D(2) 
ondition. Therefore, 
on
erning robustness, the best of the152 three here proposed estimators is θ̂(SS), whi
h only demands the D(2) 
ondition153 and behaves better whenever this latter is violated (see the results for BEV and154 AR in Table 1). All the estimators behave quite well in the MAR pro
ess, with155 the best performan
es o

urring for our proposals θ̂(FF ) and θ̂(CFG), as well as,156 for θ̂(ML) and θ̂(N) with u = q0.99. We remark that this pro
ess satis�es 
ondition157



8 M. FerreiraD(2) as well as the BEV dependen
e assumption (see, e.g., Ferreira and Ferreira158 [7℄ 2012a and An
ona-Navarrete and Tawn [1℄ 2000). Regarding the MM 
ase,159 the best performan
e lies with the runs, blo
ks and intervals estimators, whi
h is160 not surprising sin
e it is easy to identify independent 
lusters in this pro
ess.161 Table 1. Sample absolute mean bias and rmse (in bra
kets) of estimators θ̂(FF ), θ̂(CFG)and θ̂(SS).
θ̂(FF ) θ̂(CFG) θ̂(SS)Indep. 0.00 (0.010) 0.00 (0.010) 0.05 (0.050)AR 0.40 (0.403) 0.36 (0.364) 0.12 (0.131)BEV 0.09 (0.088) 0.09 (0.089) 0.06 (0.063)MAR 0.00 (0.010) 0.00 (0.010) 0.03 (0.041)MM 0.10 (0.100) 0.10 (0.101) 0.07 (0.073)

Table 2. Sample absolute mean bias and rmse (in bra
kets) of estimators θ̂(ML) ≡ θ̂
(ML)
uand θ̂(N) ≡ θ̂

(N)
u , by 
onsidering thresholds u = q0.95, q0.99, respe
tively, the empiri
alquantiles 0.95 and 0.99.
θ̂
(ML)
q0.95 θ̂

(ML)
q0.99 θ̂

(N)
q0.95 θ̂

(N)
q0.99Indep. 0.05 (0.045) 0.01 (0.000) 0.05 (0.055) 0.01 (0.000)AR 0.24 (0.237) 0.13 (0.130) 0.24 (0.245) 0.13 (0.134)BEV 0.08 (0.089) 0.10 (0.114) 0.08 (0.077) 0.09 (0.114)MAR 0.01 (0.032) 0.00 (0.045) 0.02 (0.032) 0.00 (0.045)MM 0.10 (0.095) 0.11 (0.118) 0.09 (0.089) 0.11 (0.114)3.1. Case studies162 3.1.1. Wooster temperatures163 We 
onsider the daily minimum temperatures (in degrees Fahrenheit) at164 Wooster (Ohio), from 1983 to 1988, more pre
isely, the period of November-165 February winter months in order to a
hieve some stationarity (see Figure 1).166 This series was analyzed in Coles ([5℄, 2001) and blo
ks estimates were 
omputed167



Estimating the extremal index through the tail dependen
e 
on
ept9Table 3. Sample absolute mean bias and rmse (in bra
kets) of runs estimator θ̂(R) ≡ θ̂
(R)
u ,blo
ks estimator θ̂(B) ≡ θ̂

(B)
u and intervals estimator θ̂(I) ≡ θ̂

(I)
u by 
onsidering thresholds

u = q0.95, q0.99, respe
tively, the empiri
al quantiles 0.95 and 0.99. In the blo
ks and runsestimators it was used the suggested number of runs/blo
ks in An
ona-Navarrete andTawn ([1℄, 2000).
θ̂
(R)
q0.95 θ̂

(R)
q0.99 θ̂

(B)
q0.95 θ̂

(B)
q0.99 θ̂

(I)
q0.95 θ̂

(I)
q0.99Indep. 0.05 (0.055) 0.01 (0.000) 0.00 (0.008) 0.01 (0.014) 0.01 (0.000) 0.03 (0.055)AR 0.37 (0.370) 0.19 (0.183) 0.24 (0.241) 0.13 (0.135) 0.22 (0.224) 0.13 (0.155)BEV 0.03 (0.028) 0.04 (0.063) 0.07 (0.064) 0.03 (0.090) 0.04 (0.055) 0.03 (0.084)MAR 0.02 (0.032) 0.00 (0.045) 0.03 (0.044) 0.02 (0.034) 0.03 (0.045) 0.03 (0.084)MM 0.03 (0.027) 0.00 (0.031) 0.02 (0.030) 0.03 (0.041) 0.03 (0.045) 0.02 (0.055)for the extremal index. In parti
ular, it was 
onsidered the threshold u = −10168 with number of blo
ks b = 20, 31 leading to, respe
tively, θ̂(B) = 0.27, 0.42.169 Sin
e we have a sample of minimum values we assume that an approximation170 to a BEV model dependen
e stru
ture between 
onse
utive pairs is plausible. In171 order to 
he
k 
ondition D(2), we use the empiri
al methodology of Süveges ([22℄,172 2007) by 
al
ulating the proportion of anti-D(2) events among the ex
eedan
es for173 a range of blo
k sizes and thresholds:174

p(u, r) =

∑n
j=1 1{Xj>u,Xj+1≤u,Mj+2,r>u}∑n

j=1 1{Xj>u}
.Observe in Figure 2 that p(u, r) ≈ 0 as u and r in
rease, whi
h leads to an informal175 validation of D(2). Thus we assume the validity of estimators θ̂(ML) and θ̂(N), as176 well as the here presented θ̂(FF ), θ̂(CFG) and θ̂(SS).177 In Figure 3 are plotted, for several thresholds, the obtained estimates from178

θ̂(B) (for b = 20, 31), θ̂(R) (for r = 2, 4) and θ̂(I) (left), and from θ̂(ML) and179
θ̂(N) (right). Considering again u = −10, we have θ̂(R) = 0.35, 0.23, for r =180
2, 4, respe
tively, θ̂(I) = 0.26, θ̂(ML) = 0.43 and θ̂(N) = 0.4. By applying our181 estimators, we have θ̂(FF ) = 0.36, θ̂(CFG) = 0.38 and θ̂(SS) = 0.38, more 
loser to182 the ones obtained for θ̂(ML), θ̂(N), θ̂(B) with b = 31 and θ̂(R) with r = 2.183 3.1.2. Ozone pollution184 We now 
onsider n = 120 weekly maxima of hourly averages of ozone 
on
en-185 trations measured in parts per million, in the San Fran
is
o bay area, San Jose,186 available in the pa
kage Xtremes (Reiss and Thomas, [18℄ 2007). These data have187
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Figure 1. Negated Wooster daily minimum temperatures (in degrees Fahrenheit) on theleft, and 
onsidering winters only on the right.
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Figure 2. The observed proportion of anti D(2)(un) 
ondition for winters negated Woosterdaily minimum temperatures (in degrees Fahrenheit).been analyzed in Gomes et al. ([12℄, 2008) and Sebastião et al. ([20℄, 2013). We as-188 sume stationarity as in the latter referen
e (see also Figure 4). Gomes et al. ([12℄,189 2008) argued the plausibility of 
ondition D(2) to hold, based on the fa
t that190 these type of meteorologi
al data is usually modeled by pro
esses that satisfy this191 latter. See also Figure 5 and the 
on
lusions in Sebastião et al. ([20℄, 2013) whi
h192 
orroborates this assumption. A sample of maxima makes us 
omfortable with193 the hypothesis of an underlying model approximately BEV for 
onse
utive pairs194 of observations. The extremal index was evaluated in 0.7 in Gomes et al. ([12℄,195 2008). In what 
on
erns estimators θ̂(FF ), θ̂(CFG) and θ̂(SS), we have obtained,196
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Figure 3. The blo
ks, runs and intervals estimators (left) and the maximum likelihoodand Nandagopalan estimators (right), against threshold, for winters negated Woosterdaily minimum temperatures (in degrees Fahrenheit).
respe
tively, 0.74, 0.74 and 0.75. In analyzing Figure 6, the value 0.7 is a possible197 estimate, ex
ept in the 
ase of the blo
ks estimator.198
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Figure 4. Weekly maxima of hourly averages of ozone 
on
entrations (in parts per mil-lion), in the San Fran
is
o bay area, San Jose.
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Figure 5. The observed proportion of anti D(2)(un) 
ondition for weekly maxima of hourlyaverages of ozone 
on
entrations (in parts per million), in the San Fran
is
o bay area,San Jose.
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Figure 6. The blo
ks, runs and intervals estimators against threshold for weekly maximaof hourly averages of ozone 
on
entrations (in parts per million), in the San Fran
is
obay area, San Jose. 4. Con
luding remarks199 Here we have 
onsidered new estimators for the extremal index based on the200 tail dependen
e 
oe�
ient estimation, under the validity of 
ondition D(2)(un) of201 Cherni
k et al. ([4℄, 1991). Estimators θ̂(FF ) and θ̂(CFG) also require that the un-202
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ept13derlying distribution of 
onse
utive random pairs 
an be approximated by a BEV203 model dependen
e stru
ture. These latter are not robust whenever one of the two204 assumptions is brea
hed. On the other hand, estimator θ̂(SS) presents 
ompara-205 ble biases and rmse's to estimators θ̂(ML) and θ̂(N) whi
h were also derived under206 
ondition D(2)(un), in some 
ases, even outperforming these two latter. Estimator207
θ̂(SS) has also 
omparable performan
es to the ones of the runs and the blo
ks208 estimators in some models. Observe that it depends on only one parameter (the209 number k of observations to 
onsider in the estimation), while the runs and blo
ks210 estimators depend on a high threshold u and the number of runs r or blo
ks b,211 respe
tively. Sin
e D(2)(un) is a 
ru
ial requisite in the new approa
h, it is impor-212 tant to develop a more reliable diagnosti
 statisti
al tool for this 
ondition. This213 will be the aim of a future work.214215 A
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