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) Abstract

10 The extremal index 6 is an important parameter in extreme value anal-
11 ysis when extending results from independent and identically distributed
12 sequences to stationary ones. A connection between the extremal index and
13 the tail dependence coefficient allows the introduction of new estimators.
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15 through a simulation study. Comparisons with other existing methods are
16 also presented. Case studies within environment are considered in the end.
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20 1. INTRODUCTION

The central result in classical Extreme Value Theory states that, for an i.i.d. se-
quence, {X,},>1, having common distribution function (d.f.) F, if there are
constants a, > 0 and b,, € R such that,

P(max(X1,...,X,) <apx+b,) — G(x), (1)

n— o0

for some non degenerate function G, then it must be the Generalized Extreme
Value function (GEV),

G(z) = exp(—(1 +y2) ™), 1+ 72 > 0,7 € R,

a1 (G(x) = exp(—e™7) for v = 0) and we say that F' belongs to the max-domain of
22 attraction of G, in short, F' € D(G). The parameter v, known as the tail index,
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2 M. FERREIRA

is a shape parameter determining the tail behavior of F: if v > 0 we are in the
domain of attraction Fréchet corresponding to a heavy tail, v < 0 indicates the
Weibull domain of attraction of light tails and v = 0 means a Gumbel domain of
attraction and an exponential tail.

In a multivariate context, it is possible to extend the convergence given in
(1), but the class of models in the limit is much wider than model GEV. For
simplicity, we consider the bivariate case, but everything can be rewritten for the
more general d-variate case, d > 2. More precisely, let {(X§n),X2(n))}n21 be a
sequence of i.i.d. copies of the random pair (X7, X3), with common d.f. F, and

let M](n) = maxi<i<n X](-i), j = 1,2, be the maximum of each marginal. If there

exist sequences of real constants ag-n) > 0 and bgn), forj=1,2 and n > 1, and a
d.f. G with non-degenerate margins, such that,

P < alMay 467, M < alV s +05Y)
= F”(agn)ml + bgn), agn)ajg + bg”))

— G(a:l, xg) s

n—oo
for every continuity points of G, then this latter is said to be a bivariate extreme
value distribution (BEV) and is defined by expression

G(z1,22) = exp[—l{—1log G1(z1), — log Ga(x2)}], (2)

for some bivariate function [, where G, j = 1,2, is the marginal d.f. of G. In this
case, we have that F belongs to the max-domain of attraction of G, in short F €
D(G). The function ! in (2), usually called stable tail dependence function is con-
vex and homogeneous of order 1, and we have max(z1,x2) < l(z1,22) < 21 + 29,
for all (x1,z2) € [0,00)2, where the upper limit corresponds to independence and
the lower one means complete dependence (see, e.g. Beirlant et al. 2], Section
8.2.2).

The result in (1) may also be extended to study the maximum of a wide
class of dependent processes, a more realistic assumption for several data. Here
we concentrate on stationary sequences where the dependence is restricted by
distributional mixing conditions.

The condition D(u,) of Leadbetter (14|, 1983), providing a short range de-
pendence for which at long lags the extremes are independent, is sufficient to
extend the result in (1) to stationary sequences. More precisely, for a stationary
sequence {X,, },>1 satisfying D(u,) with u, = a,x + by, we have that

P(max(Xy,...,Xn) < up) — G%(x), (3)

n— o0
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ESTIMATING THE EXTREMAL INDEX THROUGH THE TAIL DEPENDENCE CONCEPT3

where 0 < 6 < 1is the extremal index. The extremal index is the primary measure
of extremal dependence in such processes, with § = 1 indicating independence at
asymptotically high levels.

There are different interpretations of the extremal index. This concept, orig-
inated in papers by Loynes (|15], 1965), O’Brien (|17], 1974) and developed in
detail by Leadbetter ([14], 1983), reflects the effect of clustering of extreme ob-
servations on the limiting distribution of the maximum. O’Brien (1987) proved
that the presence of clustering affects the limiting distribution of block maxima:

P(max(Xo,..., X, ) < u,|X1 > uy) n;é@, (4)

with 7, such that r, — oo and r, = o(n). Under a mixing condition slightly
restrictive than D(u,), Hsing et al. ([13], 1988) showed that the limiting mean
number of exceedances of u, in an interval of length 7, is the inverse of the
extremal index:

E[Z;& ]l{Xj>un}| 2221 ]l{Xj>un} > 1] — 9_1, (5)
with 1(-) the indicator function. By stationarity this property is satisfied for any
block of 7, consecutive elements defined in the sequence. By rewriting (3) as

P(max(Xy,...,X,) < up) — e 7@ 0 < 7(z) < o0,

n— o0

Ferro and Segers ([9], 2003) found that the process of inter-exceedance times nor-
malized by exceedances of u,, follows a mixture of a point mass and an exponential
distribution Exp(6~1), i.e.,
P(F(u)T(up) >t) — 0% ¢ >0, (6)
n—oo
with T'(uy,) = min{n > 1: X,41 > u,|X1 > u,}, also under a slightly stricter
mixing condition than D(uy,).

Inference about € has been extensively studied, with the most popular es-
timators being the runs method obtained from equation (4), the blocks method
derived from (5) and the intervals method developed from (6). More precisely,
the runs estimator is given by

n—1

0 = (N) ™Y v lix o <up - g <u)
i=1

where N is the total number of exceedances of a high threshold u. The blocks
estimator for a sample divided into b blocks of length r (so n & br), can be stated

- s _ log(1 = Cu(w)/b)
rlog(l — N/n)
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4 M. FERREIRA

where Cy,(u) is the number of blocks in which at least one exceedance of u occurs.
After some considerations, the result in (6) yields the intervals estimator

N-1 2
1A—£QA#Q— Cifmax{T:1<i<N -1} <2
~ (N-1) 3555 17
o) —
2= @-n)’ - 1<
1A TSR if max{7; : 1 <i< N —1} > 2,
with 7; denoting the ith inter-exceedance time, ¢ = 1,..., N — 1. For a survey,

see for instance, Ancona-Navarrete and Tawn ([1], 2000) and Beirlant et al. ([2],
2004).

Imposing some convenient local dependence condition may eliminate the need
for a cluster identification scheme as in the case of the blocks or the runs estima-
tors. An example of such condition is the local dependence condition D®) (u,,) of
Chernick et al. (1991), which holds whenever

nP(X; > un, Xjp1 < up, Mjqor, > up) — 0, n — o0,

with M;; = max{X;,..., X}, for i < j (M;; = —oo if ¢ > j), the block sizes
sequence {r,} is such that n/r, — oo and condition D(u,) is simultaneously
satisfied. Condition D) (u,,) restricts the occurrence of an observation again ex-
ceeding the high threshold u,, after dropping below it within a cluster.

Under D@ (u,,), and considering a log-likelihood based on the limiting d.f. ob-
tained in (6), Stiveges (]|22], 2007) presents the maximum likelihood estimator

0 =

2 Zz 1 q
where ¢ is the estimate of F'(u), S; =T; — 1 and N¢ = Zfi_ll L5203

Considering a lightly stronger condition D”(u,) that restricts the occurrence of
two or more upcrossings by imposing that nzzf’;gl P(X1 > up, Xj < up <
Xj+1) = 0, as n — oo, Nandagopalan ([16], 1990) derives the estimator

n—1
o) — Zj=1 Lix <u<x;iny
22?:1 Lix;>uy

for a suitable high threshold w. This is a special case of the runs estimator when
r=1.
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ESTIMATING THE EXTREMAL INDEX THROUGH THE TAIL DEPENDENCE CONCEPTH

A recent result in Ferreira and Ferreira (|7, 2012a), allow us to state § = 1—\
under condition D® (u,), where X is the tail dependence coefficient introduced
by Sibuya (|21], 1960). Here we shall analyze the estimation of § based on some A
estimation methodologies of the literature. This will be done through a simulation
study. The performance of our approach will be also assessed by comparing with
the simulation results obtained for the above exposed existing estimators of the
extremal index. At the end, we illustrate with applications to real environmental
data.

2. TAIL DEPENDENCE

The tail-dependence coefficient (TDC), usually denoted A and first introduced in
Sibuya (|21], 1960), measures the probability of occurring extreme values for one
random variable (r.v.) given that another assumes an extreme value too, i.e.,

A= tllgloP(Fl(Xl) >1-— 1/t|F2(X2) >1-— 1/t), (7)

where F} and Fy are the distribution functions (d.f.’s) of r.v.’s X; and Xy, re-
spectively. It characterizes the dependence in the tail of a random pair (X7, Xs),
in the sense that, A > 0 corresponds to tail dependence whereas A = 0 means tail
independence.

The relation § = 1 — X stated in Proposition 4 of Ferreira and Ferreira (|7],
2012a) under the local dependence condition D) lead to new estimators for
0 through the TDC. A wide study concerning TDC estimation is presented in
Frahm et al. (2005). Parametric estimators are more accurate but may have
disastrous performances under wrong model assumptions. Here we will focus on
nonparametric approach.

Schmidt and Stadtmiiller ([19], 2006) considered the estimator based on (7)
by plugging-in the respective empirical counterparts,

~ ~ 1 &
58) — Y(SS — }:

ABS = X9 (k) = L ]l{ﬁl(Xl)>1——’jj Fh(Xp)>1-Eny (8)
"i=1

where 1/7\] is the empirical d.f. of Fj, j = 1,2, and {k,} is an intermediate sequence,
ie., k, — oo and k,/n — 0, as n — oo. Concerning estimation accuracy, some
modifications of this latter may be used, like replacing the denominator n by n+1,
i.e., considering

1 n
Filu) = 2= Zﬂ{X}“sm
k=1
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6 M. FERREIRA

(for a discussion on this topic see, for instance, Beirlant et al. 2004). The choice
of the value k in the sequence {k,} that allows the better trade-off between bias
and variance is of major difficulty, since small values of k£ come along with a large
variance whenever an increasing k results in a strong bias. The true value is
usually located at a stable region of the plot (k, AS)(k)), for 1 < k < n.

In order to avoid the variance-bias problem, we will use an heuristic procedure
presented in Frahm et al. ([10], 2005), consisting on a “plateau finding algorithm"
applied to a smoothed version of (k, A5 (k)), 1 < k < n.

Based on the approach considered in Capéraa et al. ([3]|, 1997), which assumes
that the underlying distribution approximates a BEV model given in (2), Frahm
et al. (|10], 2005) have proposed the following estimator:

N n log F log F!
NEFE) = 2 — 2exp {% > i log <?§g(§ﬁ§3§§3ﬁf<§§§ﬁ)> } ’ (9)

where x V y = max(z,y). Another estimator developed in Ferreira and Ferreira
(|8], 2012b) under the same assumption but with a simpler form, is given by

AFE) =3 (1= F(X1) V Fy(X2)) 7Y,

where Fy(X1) V F5(X3) is the sample mean of Fy(X;) V Fy(Xy), ie.,

~ = 1 &~ : ~ ,
Fi(X1) vV Fa(Xa) = — 3[R X v E(x{)].
i=1
For a discussion about the asymptotic properties of these estimators see, respec-
tively, Genest and Segers (|11], 2009) and Ferreira (|6], 2013).

a2

From now on, we will use notation @’\(SS), 9(CFG) and

to estimators X(SS), NCFG) and X(FF), that is,

plSS) = 1 — \(89)  QICFG) =1 _\(CFG) 4nq QFF) =1 — \(FF),

, whenever we refer

3. SIMULATION STUDY

We are going to analyze the performance of the estimators described above,
through a simulation study based on the following models:

e Independent sequence which have # = 1 (with unit Fréchet margins).

e Markov Gaussian dependence process, Z; = aZ;_1 + ¢€;, where the ¢; are
i.i.d. N(0,1—a?)r.v.’s, for j > 2 and Z; is N(0, 1) distributed. This process
has # = 1 and shall be denoted AR.
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ESTIMATING THE EXTREMAL INDEX THROUGH THE TAIL DEPENDENCE CONCEPT7

e Bivariate extreme value Markov process with logistic dependence function,
le.,
P(X; <@, Xj1 < y) = exp(—(a!/* 4+ y"*)%).

As in Ancona-Navarrete and Tawn ([1], 2000), we consider the dependence
parameter o = 0.5 which gives 6§ = 0.328, and denote the process BEV.

e Autoregressive maximum process, X; = aX;_1 V¢, where 0 < o < 1 and
{€i} are i.i.d. r.v.’s with d.f. Fe(x) = exp(—(1 — a)/x), x > 0. This process
has 8 = 1 — a. We consider o = 0.5 and hence 6§ = 0.5, and denote the
process MAR.

e Moving maxima process, X; = V;_o , aj€i—j, with 377 ja; = 1 and
a; >0, {¢} are i.i.d. unit Féchet r.v.’s. This process has 0 = Vj—g_._ ma;.
We consider m = 3, a1 = as = 0.2, ag = a3 = 0.3 and so 8 = 0.3, and
denote the process MM.

We consider samples of size n = 10000 and compare the estimators using
the absolute mean bias and the root mean square error (rmse) criteria, obtained
using 200 independent replications of the estimation procedures. The results
of the proposed estimators, 8FF) 9ICFG) and 9199 are presented in Table 1.
For comparison, we also include the simulation results obtained from estimators
ML) and #W) derived under similar local dependence conditions, i.e., D) and
D", respectively (see Table 2). The estimates derived from the runs, the blocks
and the intervals methods were also computed and can be found in Table 3. We
remark that the values considered for the number of blocks/runs were derived
through additional simulation studies conducted in Ancona-Navarrete and Tawn,
(1], 2000).

Observe that the worst performance of the estimators coincides with the AR
process. In this case, estimator 859 followed by ML) gWV)  g(B) apd )
for u = go.99 exceed the remaining. In particular, the bad performance of the
proposed estimators 0 F) and (CFG) is due to the bad behavior of the respective
tail dependence coefficient estimators A(FF) in (8) and A¢FE) in (9) under tail
independent non-BEV models, i.e., models for which A = 0 and whose dependence
structure for consecutive pairs can not be formul/a\mted as in Q), such as the case of
AR (see Ferreira, [6] 2013). Indeed, estimators 8F) and #{°FS) are not robust.
They present the worst performances also within the BEV and MM processes,
missing the D@ condition. Therefore, concerning robustness, the best of the
three here proposed estimators is #°%) which only demands the D@ condition
and behaves better whenever this latter is violated (see the results for BEV and
AR in Table 1). All the estimators behave quite well in the MAR process, with
the best performances occurring for our proposals OUFF) and 9CFE) | as well as,
for ML) and W) with u = gg.99. We remark that this process satisfies condition
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155 D) as well as the BEV dependence assumption (see, e.g., Ferreira and Ferreira
1o [7] 2012a and Ancona-Navarrete and Tawn [1] 2000). Regarding the MM case,
160 the best performance lies with the runs, blocks and intervals estimators, which is
161 not surprising since it is easy to identify independent clusters in this process.

Table 1. Sample absolute mean bias and rmse (in brackets) of estimators §<FF>, glCcFa)

and 0(59).

g(FF) 9(CFG) 9(S59)
Indep. 0.00 (0.010) 0.00 (0.010) 0.05 (0.050)
AR 0.40 (0.403) 0.36 (0.364) 0.12 (0.131)
BEV  0.09 (0.088) 0.09 (0.089) 0.06 (0.063)
MAR  0.00 (0.010) 0.00 (0.010) 0.03 (0.041)
MM  0.10 (0.100) 0.10 (0.101) 0.07 (0.073)

—~

Table 2. Sample absolute mean bias and rmse (in brackets) of estimators (M%) oM e

and ON) = AqSN), by considering thresholds u = ¢g.95, qo.99, respectively, the empirical
quantiles 0.95 and 0.99.

pML) pML) ) o)
40.95 40.99 40.95 40.99
Indep. 0.05 (0.045) 0.01 (0.000) 0.05 (0.055) 0.01 (0.000)
AR 0.24 (0.237) 0.13 (0.130) 0.24 (0.245) 0.13 (0.134)
BEV  0.08 (0.089) 0.10 (0.114) 0.08 (0.077) 0.09 (0.114)
MAR 0.01 (0.032) 0.00 (0.045) 0.02 (0.032) 0.00 (0.045)
MM  0.10 (0.095) 0.11 (0.118) 0.09 (0.089) 0.11 (0.114)
12 3.1. Case studies
163 3.1.1. Wooster temperatures
164 We consider the daily minimum temperatures (in degrees Fahrenheit) at

1

o

s Wooster (Ohio), from 1983 to 1988, more precisely, the period of November-
166 February winter months in order to achieve some stationarity (see Figure 1).
167 This series was analyzed in Coles (|5], 2001) and blocks estimates were computed
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ESTIMATING THE EXTREMAL INDEX THROUGH THE TAIL DEPENDENCE CONCEPT9

Table 3. Sample absolute mean bias and rmse (in brackets) of runs estimator (%) = SR
blocks estimator #(B) = @S ) and intervals estimator 1) = éﬂ) by considering thresholds
U = qo.95, 40.99, respectively, the empirical quantiles 0.95 and 0.99. In the blocks and runs
estimators it was used the suggested number of runs/blocks in Ancona-Navarrete and

Tawn ([1], 2000).

i i i i ) )
40.95 40.99 40.95 40.99 40.95 40.99

Indep. 0.05 (0.055) 0.01 (0.000) 0.00 (0.008) 0.01 (0.014) 0.01 (0.000) 0.03 (0.055

AR 0.37(0.370) 0.19 (0.183) 0.24 (0.241) 0.13 (0.135) 0.22 (0.224) 0.13 (0.155

BEV  0.03 (0.028) 0.04 (0.063) 0.07 (0.064) 0.03 (0.090) 0.04 (0.055) 0.03 (0.084

MAR 0.02 (0.032) 0.00 (0.045) 0.03 (0.044) 0.02 (0.034) 0.03 (0.045) 0.03 (0.084

MM  0.03 (0.027) 0.00 (0.031) 0.02 (0.030) 0.03 (0.041) 0.03 (0.045) 0.02 (0.055
for the extremal index. In particular, it was considered the threshold v = —10

with number of blocks b = 20, 31 leading to, respectively, 9B = 0.27,0.42.

Since we have a sample of minimum values we assume that an approximation
to a BEV model dependence structure between consecutive pairs is plausible. In
order to check condition D) we use the empirical methodology of Siiveges ([22],
2007) by calculating the proportion of anti-D®) events among the exceedances for
a range of block sizes and thresholds:

Z] 1]1{X3>u Xjt1<u,Mjqo, r>u}
Z] 11{X >u}l

p(u,r) =

Observe in Figure 2 that p(u,r) = 0 as u and r increase, which leads to an informal
validation of D@ . Thus we assume the validity of estimators OML) and 60| as
well as the here presented 8UF) ICFG) and 9159,

__In Figure 3 are plotted, for several thresholds, the obtained estiniates from
6B) (for b = 20,31), ) (for r = 2,4) and o) (left), and from HML) and
o) (right). Considering again u = —10 we have ) = 0.35,0.23, for r =
2,4, respectively, o) = 0. 26, H(ML) = 0.43 and 8W) = 0.4. By applying our
estimators, we have H(EF) = 0.36, 0£CFG) = 0.38 and G(S‘i) = 0.38, more closer to
the ones obtained for ML) gIN) 9(B) with b = 31 and U with r = 2.

3.1.2. Ozone pollution

We now consider n = 120 weekly maxima of hourly averages of ozone concen-
trations measured in parts per million, in the San Francisco bay area, San Jose,
available in the package Xtremes (Reiss and Thomas, [18] 2007). These data have
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Figure 1. Negated Wooster daily minimum temperatures (in degrees Fahrenheit) on the
left, and considering winters only on the right.

Figure 2. The observed proportion of anti D(® (u,,) condition for winters negated Wooster
daily minimum temperatures (in degrees Fahrenheit).

been analyzed in Gomes et al. ([12], 2008) and Sebastiao et al. ([20], 2013). We as-
sume stationarity as in the latter reference (see also Figure 4). Gomes et al. (|12],
2008) argued the plausibility of condition D® to hold, based on the fact that
these type of meteorological data is usually modeled by processes that satisfy this
latter. See also Figure 5 and the conclusions in Sebastiao et al. (|20, 2013) which
corroborates this assumption. A sample of maxima makes us comfortable with
the hypothesis of an underlying model approximately BEV for consecutive pairs
of observations. The extremal index was evaluated in 0.7 in Gomes et al. ([12],
2008). In what concerns estimators ) glCFG) and 6159 we have obtained,
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Figure 3. The blocks, runs and intervals estimators (left) and the maximum likelihood
and Nandagopalan estimators (right), against threshold, for winters negated Wooster
daily minimum temperatures (in degrees Fahrenheit).

respectively, 0.74, 0.74 and 0.75. In analyzing Figure 6, the value 0.7 is a possible
estimate, except in the case of the blocks estimator.

ozone conc. (parts per million)
10
I

T
o 20 40 60 80 100 120

Figure 4. Weekly maxima of hourly averages of ozone concentrations (in parts per mil-
lion), in the San Francisco bay area, San Jose.
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Figure 5. The observed proportion of anti D) (w,,) condition for weekly maxima of hourly
averages of ozone concentrations (in parts per million), in the San Francisco bay area,
San Jose.
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Figure 6. The blocks, runs and intervals estimators against threshold for weekly maxima
of hourly averages of ozone concentrations (in parts per million), in the San Francisco
bay area, San Jose.

4. CONCLUDING REMARKS

Here we have considered new estimators for the extremal index based on the
tail dependence coefficient estimation, under the validity of condition D® (u,,) of
Chernick et al. ([4], 1991). Estimators ") and (&) also require that the un-
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derlying distribution of consecutive random pairs can be approximated by a BEV
model dependence structure. These latter are not robust whenever one of the two
assumptions is breached. On the other hand, estimator 6(55) presents compara-
ble biases and rmse’s to estimators 0ML) and §(N) which were also derived under
condition D® (up), in some cases, even outperforming these two latter. Estimator
0(55) has also comparable performances to the ones of the runs and the blocks
estimators in some models. Observe that it depends on only one parameter (the
number k of observations to consider in the estimation), while the runs and blocks
estimators depend on a high threshold w and the number of runs r or blocks b,
respectively. Since D(?) (uy) is a crucial requisite in the new approach, it is impor-
tant to develop a more reliable diagnostic statistical tool for this condition. This
will be the aim of a future work.
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