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Abstract 

This paper describes the procedures followed to develop an optimization method for the design of a 

sandwich panel to be used in flooring applications. This sandwich panel is composed of polyurethane 

foam core, fibre reinforced polymer bottom layer and webs, and a fibre reinforced mortar top layer. The 

possibility of adopting additional internal ribs to increase the flexural and shear stiffness was also 

considered. The panel was described using a standard stacking sequence, coded as a string, using 

continuous variables to describe the geometric, economic and environmental parameters, and discrete 

variables to describe the laminate stack architecture. The optimization procedure was based on a global 

approach strategy, divided into two steps: (i) firstly, the features of each individual panel solution were 

assessed by analytical procedures and a fitness was assigned using a ranking function; (ii) secondly, the 

multi-objective optimization problem was solved by using a genetic algorithm, which performs a 

random search from generation to generation and keeps the “best individuals”. Penalty criteria were also 

considered when any panel solution was not satisfying the restrictions and design requirements. 

Different solutions were obtained by imposing different restrictions to the design of the sandwich panel, 

namely considering: (i) the length; (ii) the width; and, (iii) the use of one or two types of fibres (carbon 

and glass). This paper discusses the results obtained, both regarding the performance of the optimization 

procedure developed and the optimal solutions obtained for each case studied. 

 

 

1. Introduction 

 

The Genetic Algorithms (GAs) are a metaheuristic approach that can be used to solve optimization 

problems based on the natural selection and genetics found in nature [1]. The GAs were mainly 

introduced by Holland [2], and quickly spread to many engineering fields to solve decision problems, 

to carry out genetic programming and to deal with design problems, among others. Examples of 

applications of GAs to the design of composite structures can be found in the literature. Martín et al. [3] 

used a GA to perform the geometric design of the composite materials of a stiffened panel, using static 

analysis and considering hydrothermal effects. Nagendra et al. [4] used GAs to reduce the computational 

cost involved in the design of composite panels. In general, GAs were shown to be one of most reliable 

tools in optimization problems. The present study is focused on the design of a hybrid sandwich panel 

to be used in flooring applications, mainly in rehabilitation of old buildings, using GAs. The 

optimization problem is based on the use of a GA to find the optimal geometry of the hybrid sandwich 

panel by minimizing the self-weight, the panel price and environmental footprint, using both classical 

laminate theory and sandwich panels theory. 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/132797367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:g.escusa@civil.uminho.pt
mailto:jsena@civi.uminho.pt
mailto:fabioquintascruz@hotmail.com
mailto:eduardo.pereira@civil.uminho.pt
mailto:isabelv@civil.uminho.pt
mailto:barros@civil.uminho.pt


APFIS2017 - 6th Asia-Pacific Conference on FRP in Structures 

Singapore, 19-21st July 2017  2 

Escusa G., Sena-Cruz J., Cruz F., Pereira E., Valente I. and Barros J. 

 

2. The Genetic Algorithm 

 

In this optimization problem, a steady-state concept of the GA was adopted [1], as presented in Figure 

1. The evolutionary process to search for the problem solution starts by creating a random population 

with high diversity, preferably within the limitations and restrictions of the problem. The number of 

individuals (NI) to be created depends on the complexity of the problem, and it should be noted: (i) a 

low NI can lead to a spurious solution, and (ii) a large NI can severely increase the computing time. 

After one particular population is created, a fitness evaluation function is used to classify each individual 

according to desired objective functions and boundary conditions. Subsequently, the population stack is 

sorted by classification where, by using an “Elitist” selection, the best individuals are chosen to create 

a new offspring of individuals, using the genetic operators, namely: (i) crossover and; (ii) mutations. 

Finally, the fitness of the new offspring is evaluated and then the stopping criteria is tested. Normally, 

if the population presents high fitness and low diversity, the GA is close to the solution set. Otherwise, 

it has to return to the “Elitist” selection of individuals and repeat the process again.  

 

 

 
Figure 1. The genetic algorithm flowchart. 

 

3. Problem Statement 

 

3.1. The sandwich panel variables and considerations 

 

The presented optimization procedure was described using 22 different input variables stored in a 

two-dimensional array with a length and width equal to the number of individuals and input variables, 

respectively. In addition, the input variables were stored with different datatypes, namely: (i) as float 

numbers; (ii) as integers, and; (iii) as strings. The input variables formed a chromosome-like structure 

with 5 genes, as shown in Figure 2, where each gene defined a major property of the hybrid sandwich 

panel. 

 

3.2. Objective functions and boundary conditions 

 

In the present work, the optimization procedure aims at finding design solutions for the sandwich panel 

with minimized self-weight, price and environmental footprint. Thus, a multi-objective optimization 

function, as presented in equation (Eq. 1), was followed. Also, a number of 100 individuals were 

established in this exercise. 

min[ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥1, 𝑥2, … , 𝑥22), 𝐶𝑜𝑠𝑡(𝑥1, 𝑥2, … , 𝑥22), 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡(𝑥1, 𝑥2, … , 𝑥22)]  (1) 

 

In order to create the random population and to continuously exclude the individuals outside the 

boundaries of the problem statement, a set of boundary conditions (BC) had to be established initially 

to avoid “cripple” solutions. Some of the BC were set according to the requirements of the manufacturer, 
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while others were established in order to guarantee the fulfillment of the European standards, Eurocode 1 

[5] and the Italian recommendation CNR DT 205 [6]. In Table 1 all BC considered for the design and 

optimization of this problem are presented. In addition, different solutions were evaluated by changing 

the BC of the problem, namely: (i) using only GFRP in the laminate stack architecture; and, (ii) using 

carbon fibre roving and glass fibre for chopped and woven fabrics. In total, four solutions were evaluated 

as shown in Figure 3. 

 

 

 
Figure 2. Input variables of the GA chromosome. 

 
 

Table 1. Boundary conditions. 

Variable name  Units Symbol Minimum Maximum 

Self-weight kg/m2 w - 75 

Height of the panel mm h - 140 

Thickness of the concrete layer mm tconc 18.5 - 

Thickness of the FRP bottom layer mm tbot 3 6 

Thickness of the FRP ribs mm tribs 3 6 

Density of the polyurethane kg/m3 ρpur 35 120 

Maximum deflection after 50 years (SLS)1 mm δ50 - 10 

Shear stress in the polyurethane MPa τpur - 0.30 

Shear stress in the ribs MPa τribs - 27.5 

Compressive stress in the concrete layer MPa σconc - 30 

Tensile stress in the FRP bottom layer MPa σbot - 200 

Fibre volume fraction in the laminates % vf - 50 

Thermal conductivity W/m2 U - 0.30 

Longitudinal axial stiffness MN/m EAL 550 - 

Transverse axial stiffness MN/m EAT 110 - 

Acoustic insulation to aerial sounds dB Dntw 35 - 

Acoustic insulation to impact sounds dB Lntw 95 - 
1The design working life was set to 50 years and the deflection was estimated using the quasi-permanent load combination [5]. 

 

 

4. Results and discussion 

 

The results obtained are shown in Table 2 and Figure 4, where the individuals that achieved the highest 

fitness in the stop verification criteria are presented. In these solutions (S1 to S4), the obtained deflection 

at SLS was always equal to 10 mm, meaning that this criterion is restrictive. Besides, solutions S1 and 

S2 presented total heights that exceeded the limitation imposed of 140 mm. This result can be explained 

by the steady-state nature of the GA used, which maintains the number of individuals constant from 
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generation to generation. This concept allows the GA to continue to search for the best individuals, even 

if the population is “crippled”. In terms of fitness, the best solution was the S1, but this solution did not 

fulfil the criterion of maximum height of the sandwich panel. Also, all solutions exhibited similar results 

of weight and price, with exception for the environmental footprint, due to the high environmental 

footprint presented by the use of the carbon roving. 

 

 

  
  

Figure 3. Evaluated solutions. Figure 4. Objective function values for each 

solution. 
 

 

Table 2. Results in terms of the physical and geometrical parameters obtained. 

Solution L b h tconc tbot tribs ρpur Dntw Lntw U 

 [m] [m] [mm] [mm] [mm] [mm] [kg/m3] [dB] [dB] [W/m2] 

S1 5 0.5 191.6 18.8 5.0 4.9 35 36.1 87.0 0.13 

S2 5 0.5 187.0 18.9 4.9 3.9 35 36.1 86.8 0.14 

S3 5 0.5 128.0 20.0 4.0 4.0 35 35.4 88.5 0.21 

S4 5 0.5 126.7 20.0 4.0 4.0 35 35.5 88.3 0.22 
 

 

Finally, S3 presented the best fitness and, at the same time, complied with all the imposed boundary 

conditions. Therefore, this solution was the one selected for the geometry/architecture of the sandwich 

panel to be produced by pultrusion, in the scope of the EasyFloor R&D project. 

 

5. Conclusions 

 

This manuscript presents the results of a design optimization procedure implemented for finding the 

optimal geometry of a hybrid sandwich panel for flooring applications. This procedure was based on a 

steady-state GA. In total, four solutions of the optimization problem were analysed. Solution S1 showed 

the best performance in terms of fitness, even if some of the boundary conditions were not satisfied, 

such as the ones related to the total height of the panel. Based on the obtained solutions, solution S3 was 

selected as the geometry/architecture of the panel to be produced by pultrusion in the scope of the 

EasyFloor R&D project. 
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