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ABSTRACT

The past two decades have witnessed great advances in the com-

putational modeling and systems biology fields. Soon after the

first models of metabolism were developed, methods for pheno-

type prediction were put forward, as well as strain optimization

methods, within the field of Metabolic Engineering. Evolution-

ary computation has been on the front line, with the proposal of

bilevel metaheuristics, where EC works over phenotype simulation,

selecting the most promising solutions for bioengineering tasks.

Recently, Schuetz and co-workers proposed that the metabo-

lism of bacteria operates close to the Pareto-optimal surface of a

three-dimensional space defined by competing objectives. Albeit

multi-objective strain optimization approaches focused on bioengi-

neering objectives have been proposed, none tackles the multiob-

jective nature of the cellular objectives. In this work, we propose

multi-objective evolutionary algorithms for strain optimization,

where objective functions are defined based on distinct phenotype

prediction methods, showing that those can lead to more robust

designs, allowing to find solutions in more complex scenarios.
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1 INTRODUCTION

The concept of metabolic pathway manipulation towards desirable

behavior is not new. Early methods relied mostly on the use of

mutagenesis and strain selection [19]. However, with increasingly

demanding industrial requirements, the need to resort to rational

approaches became evident. The development of genetic engineer-

ing brought ways to more precisely modify specific genes/enzymes,

thus paving the way towards the more rational introduction of

direct genetic changes to create desirable strains [11].

Moreover, the recent advances in genome sequencing technolo-

gies which culminated in the development of next generation se-

quencing technologies [16] and semi-automated annotation tech-

niques, made the availability of a large number of fully annotated

microbial genomes a reality. This also accelerated the development

of genome-scale metabolic models (GSMMs) for a large number of

organisms [5]. The development of phenotype prediction methods

supporting distinct genetic and environmental conditions, includ-

ing the well-known method of Flux Balance Analysis [7, 14, 15],

combined with GSMMs, brought powerful tools to predict the be-

havior of microbial strains and support rational ME efforts.

Backed by these efforts, the development of strain design meth-

ods, where bioengineering objectives could be rationally addressed,

became paramount. In 2003, OptKnock was proposed [3], becoming

the basis for a large number of constraint-based strain design meth-

ods. These approaches are able to propose genetic changes based on

computational simulation and optimization methods. While these

approaches have provided good results, they are still limited since

they usually return a single solution to the problem. Among all,

meta-heuristic CSOMs, mainly those based on Evolutionary Com-

putation (EC) [13] provide the most diverse solutions, but typically

those follow similar strategies to maximize the selected objective

function. To overcome these limitations, information from multiple

criteria is often included in a single objective function, which can

introduce undesired biases in the sampling process. Multi-objective

(MO) approaches search for optimal trade-offs of solutions instead

of a single optimal solution, thus providing a valuable tool for ex-

pert researchers, allowing them to opt for compromise solutions

believed to have better chances of working in vivo.

An analysis of available CSOMs reveals several shortcomings of

the current methods. As an example, defining an objective func-

tion for a CSOM can be a difficult task. Because of this, and since

models lack critical information to improve the quality of the predic-

tions, the solutions proposed by most CSOMs are not only overly-

optimistic, but sometimes physiologically impossible.

Indeed, assumptions regarding the cellular objectives of an organ-

ism when subjected to distinct conditions (environmental, genetic,
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etc.) are still the object of active discussion. The most common

approach is to consider the cell to be in a pseudo steady-state and,

since the solution space for the metabolic fluxes of the cell is usu-

ally very large, constraint-based optimization approaches are often

applied for simulating metabolic fluxes. Given this assumption,

it is therefore plausible to predict cellular behaviour by solving

optimization problems, as long as biologically realistic objective

functions are put forward. Several methods have been developed

following these trends. Among these, Flux Balance Analysis (FBA)

[8] is the most widely used phenotype prediction algorithm, that

uses a linear programming (LP) formulation for the maximization of

growth (synthesis of biomass constituents) as the objective function,

considering the biological assumption that unicellular organisms

tend to maximize their growth as an evolutionary trend [6].

However, to predict the cellular behaviour of mutant organisms,

such assumption is not widely accepted and, for that purpose, other

methods have been proposed such as Minimization of Metabolic

Adjustment (MOMA) [17] based on Quadratic Programming (QP),

where the objective function is the minimization of flux variations

relative to the wild-type. The hypothesis underlying MOMA is that

fluxes in a perturbed cell (e.g. a mutant) will be redistributed in

order to be as similar as possible to the wild-type [2].

In this work, we focused on variations of two of the most widely

used phenotype prediction methods, the parsimonious enzyme us-

age FBA (pFBA) (a variation of FBA that minimizes the overall sum

of enzyme-associated fluxes [9]) and LMOMA (a linear implemen-

tation of MOMA [1]). We analyze the influence of the simulation

methods on the results of strain optimization metaheuristic algo-

rithms and suggest a multi-objective approach capable of finding

designs compliant with the cellular objectives assumed by the vari-

ous phenotype prediction methods.

2 METHODS

In previous work by the authors, Evolutionary Algorithms (EA) and

Simulated Annealing (SA) have been proposed to address strain

optimization problems, selecting (near-)optimal sets of genes/ re-

actions to delete from a model, to overproduce a given compound,

where both used the same variable size set-based representation

[13]. Two types of reproduction operators were used: crossover

(EA only) and mutation (both EA and SA). The first is inspired on

uniform crossover and, regarding mutation, three operators were

used: random mutation, grow mutation and shrink mutation. The

details of both algorithms are depicted in Figure 1, and their full

configuration can be obtained in [10].

In the first part of this work, the two metaheuristics (EAs and

SAs) were executed using both pFBA and LMOMA as the phenotype

prediction method. The output of the phenotype prediction is the

set of flux values for all reactions in the model. These are used

to compute the fitness value of the solution, using the Biomass-

Product Coupled Yield (BPCY) [12] as objective function, given by
PB
S , where P stands for the flux of the desired product; B for the

biomass flux and S for the substrate uptake flux. In the EAs, the

population sizewas set to 100 individuals. For analysis purposes, the

resulting solution sets for the EA and SA algorithms were merged

for each set of conditions. However, the convergence analysis is

done separately (algorithm-dependent).
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Figure 1: Overview of the developed algorithms. The upper

region shows the major steps of the three algorithms. The

evaluation box illustrates the processes of solution decod-

ing, from Gene Knockout Sets (GKS) to Reaction Knockout

Sets (RKS) (upper-left), phenotype prediction showing the

added constraints (bottom) and fitness evaluation for both

MO and SO cases (upper-right).

In the second part of this work, a multi-objective mechanism,

capable of searching for genetic designs compliant with two or

more phenotype prediction methods, was devised. In this work, the

SPEA2 [21] was used following the structure depicted in Figure 1.

SPEA2 uses an external archive that contains non-dominated solu-

tions (called the external non-dominated set). At each generation,

non-dominated individuals are copied from the population to this

external set. For each individual in the archive, a strength value,

proportional to the number of solutions in the archive it dominates,

is computed. The fitness of each individual in the current population

is computed according to the strengths of all external individuals

that dominate it. This strategy is used to promote the convergence

of the algorithm. The fact that the external non-dominated set is

used in the selection process brings the problem that, if that set

grows too much, the selection pressure might be reduced, thus

slowing down the global search process. To prevent this, a clus-

tering technique called ”average linkage method” was adopted to

prune the external non-dominated set, thus maintaining diversity.

For all the algorithms, each individual candidate solution en-

codes a set of identifiers for metabolic genes whose activity should

be suppressed (knocked-out) from the GSMM. In the GSMM, this

information is made available by means of Gene-Protein-Reaction
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(GPR) associations which resorts to Boolean logic, where the rela-

tionships between reactions and their encoding genes are modeled

as logical and/ or operations representing, among others, cases of

protein complexes and isoenzymes, thus allowing, for instance, de-

termination of the reactions inactivated after a set of gene deletions.

In practice, each set of gene deletions encoded in a candidate solu-

tion is translated into the corresponding reaction deletions, which

in turn are set as override constraints whose lower and upper limits

are set to zero in the original model, thus simulating the effect of a

gene deletion.

The configuration for SPEA2 follows the one used by the EA, us-

ing the same operators and termination criterion (other details are

provided in [10]). The population and archive sizes were set to 100

individuals. Themain difference concerns the evaluation of the solu-

tions. In this case, each solution is decoded as before and simulated

independently using the selected phenotype prediction methods,

which in the experiments will be two: pFBA and LMOMA. These

originate two distinct flux distributions which will be evaluated

using BPCY. These two values, BPCY-pFBA and BPCY-LMOMA,

make the two objective functions used by SPEA2.

Using a recent model of Escherichia coli K12 (iAF1260) [4], the

experiments were setup considering two case studies for the pro-

duction of lactate and succinate from glucose in aerobic conditions.

For each algorithm, the execution was halted after 50000 function

evaluations and the process was repeated 30 times.

3 RESULTS

3.1 Effects of phenotype prediction methods
over strain optimization

A summary of the number of solutions generated by each of the

algorithms in the first part is presented in Table 1. Only solutions

where BPCY ≥ 1 × 10−5 are shown. Note that this was a criterion
used to take into account solutions where both the biomass and

target compound fluxes are larger than zero.

Table 1: Size of the merged solution sets (EAs and SAs). Tar-

get products: Lac. - lactate, Suc. - succinate.

Target Product

Method Lac. Suc.

pFBA 292 143

LMOMA 661 1187

In an initial analysis of this table, the larger number of solutions

reachable when LMOMA is the used prediction method is easily

observable. This seems to imply that the space of BPCY-valid solu-

tions is larger when LMOMA is used in the simulation, leading the

algorithms to more rapidly finding interesting solutions.

To understand how different phenotype prediction methods af-

fect the solutions reached, the convergences of the EA and SA,

when using pFBA and LMOMA were analyzed separately. Figure 2

depicts the convergences in the two case studies.

In a first observation of the convergence plots, a smoother con-

vergence when the LMOMA phenotype prediction method is being

used becomes evident. When pFBA is the selected method, the con-

vergence evolves in a stepped pattern, with no observable change in
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Figure 2: Convergence plots for the EA and SA algorithms

applied to the production of lactate and succinate. The solid

lines indicates the means of 30 runs, while the color-shaded

areas indicate the standard deviation. The dashed lines rep-

resent themaximum value for each algorithm and problem.

fitness for several evaluation functions and larger fitness jumps in

some steps. The LMOMA pattern is a smoother one, represented by

slight but constant increases in fitness until convergence is attained.

In the easier case study, lactate, these differences are not so easily

observable, while in the more difficult one, succinate, this trend

becomes evident. These trends are extensible to the additional case

studies (in supplementary material) where, in some cases, these

patterns are even more declared.

To evaluate the effect that these differences had in the pheno-

type (flux values) of the solutions reached by the algorithms with

each of the phenotype prediction methods, an analysis on the flux

distribution of such solutions was devised. A wild-type flux distri-

bution was predicted using pFBA and taken as the reference flux

distribution. The distribution of flux distances from the mutant

phenotypes to this reference was then computed (Figure 3). To

meet this end, the Jaccard distance for asymmetric binary attributes

(d J ) was employed:

d J =
M01 +M10

M01 +M10 +M11
(1)

1663



GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Paulo Maia, Isabel Rocha, and Miguel Rocha

whereM01 represents the total number of fluxes active in the mu-

tant, but inactive in the wild-type;M10 is the total number of fluxes

active in the wild-type but not in the mutant; and,M11 is the num-

ber of fluxes that are active in both the mutant and the wild type

flux distributions. This metric only considers the flux differences as

a binary array (on or off), thus ignoring the effective flux levels.
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Figure 3: Distribution of the Jaccard distances from the solu-

tions to the wild-type flux distributions for the production

of lactate and succinate. Red bins and blue bins represent

solutions generated by LMOMA and pFBA, respectively. So-

lutions were re-simulated with pFBA (top in each plot) and

LMOMA (bottom in each plot).

Every solution generated by the EA and SA, while using LMOMA

(LMOMA-generated) was re-simulated using pFBA (top histogram

in each chart), while every solution generated using pFBA (pFBA-

generated) was re-simulated using LMOMA (bottom histogram in

each chart). By visually inspecting the histograms, some observa-

tions are possible:

(1) Overall, the solutions simulated by LMOMA are usually

farther from the wild-type than the ones simulated by

pFBA;

(2) When re-simulated with pFBA, the LMOMA-generated

solutions, are generally closer to the wild-type than the

pFBA ones;

(3) When re-simulated with LMOMA, the pFBA-generated

solutions are generally much farther from the wild-type

than the LMOMA ones. Some of them even have ad J > 0.5.

These facts can be dissected and analyzed in more detail. The

formulation of the pFBA procedure helps explaining the observation

1 given that, for a given flux space that maximizes biomass, it will

return the flux distribution that minimizes the overall sum of fluxes.

On the other hand, the fact that LMOMA solutions are closer to

the wild-type than pFBA ones, even when simulated with pFBA

(observation 2), can be attributed to the fact that the LMOMA

objective function tries to minimize the distance between the wild-

type and the mutant flux distributions (i.e., there is a bias in the

LMOMA optimization towards this objective). This is important,

because we assume that solutions that are closer to the wild-type are

more likely towork in reality [17]. This is observable for simulations

with pFBA and LMOMA. On the other hand, the solutions simulated

with pFBA are generally closer to the wild-type, which can be

attributed to the pFBA objective function that minimizes the overall

sum of fluxes. This means that pFBA simulations are probably closer

to other phenotype prediction methods such as ROOM [18] than

LMOMA. Finally, in observation 3, the pFBA-generated solutions

are clearly modifying a higher number of fluxes when they are

simulated with LMOMA. This can be explained by the fact that the

pFBA procedure does not have any bias towards flux distributions

that are closer to the wild-type.

Another question that quickly arises is how many solutions,

generated by each of themethods, are actually valid when simulated

with the other. Venn-like diagrams are presented in Figure 4 to

provide a first answer to this question.
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PFBA BOTH LMOMA
(205) (488) (260)

0 250 500 750 1000
Number of solutions

PFBA

BOTH

LMOMA

Succinate

PFBA BOTH LMOMA
(92) (751) (487)

0 500 1000
Number of solutions

PFBA

BOTH

LMOMA

Figure 4: Venn-like diagrams for checking the inter-method

validity of the solutions. From left to right, solutions that

are BPCY-valid for: only pFBA, both pFBA and LMOMA, and

only LMOMA.

It is easily observable that a large number of solutions (about

half) are not BPCY-valid for both methods. From these, the ma-

jority are BPCY-valid for LMOMA only. This confirms that the
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phenotype prediction method is a determining factor not only on

the performance of the strain optimization algorithms, but also in

the sets of solutions they yield. If we assume that the likelihood of

these solutions working in reality increases if they are valid using

different phenotype prediction methods methods, then most of the

solutions found are not robust.

While it is also clear that, in these case studies, there is a good

set of solutions that are BPCY-valid for both methods, the quality

of these solutions is not addressed, since this analysis includes

solutions whose BPCY values are close to zero (≥ 1 × 10−5).
To better understand how the fitnesses vary as a function of the

phenotype prediction methods, Figures 5 and 6 are put forward,

where the BPCY-values are taken into account. In Figure 5 , solu-

tions generated by the strain optimization algorithms when one

of the phenotype prediction methods was used were re-simulated

with the other, their BPCY values were calculated for both cases

and represented in the form of boxplots.
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Figure 5: BPCY (mmol product . mmol substrate−1 . h−1) box-
plots for the Lactate and Succinate case studies. Solutions

generated with pFBA (blue,right) and LMOMA (red,left) are

re-simulated using both methods (x-axis).

From the boxplots it is clear that the distribution of the BPCY

values of the solutions generated when using one of the phenotype

prediction methods changes dramatically when using the other.

Remarkably, in the succinate case study, the average BPCY of the

LMOMA-generated solutionswhen simulatedwith pFBA is superior

to the average of the pFBA-generated solutions.

This fact is further supported by the scatter plots presented in

Figure 6, which allow the visualization of the BPCY obtained using

the two different methods for individual solutions. In these plots,

particular attention should be paid to the LMOMA solutions in the

top right region of the plots. In the perspective of this work, these

will be the desired solutions since they provide good results using

both prediction methods, being considered more reliable.

Albeit being curious, this can be partially attributed to the larger/less

constrained LMOMA solution space. That is, in cases where few

valid FBA solutions exist, and there is the necessity for a specific

(and restricted) combination of knockouts to guarantee the pro-

duction of a desired compound, that specific combination might
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Figure 6: Scatter plots showing BPCY

(mmol product . mmol substrate−1 . h−1) values obtained

by LMOMA(red) and pFBA(blue) generated solutions when

simulated using pFBA (x-axis) and LMOMA (y-axis) for the

lactate and succinate case studies.

be hard to reach using FBA, thus rendering the optimization pro-

cess close to a random sampling while no valid solution is found.

Alternatively, LMOMA solutions can spread the flux by multiple

reactions reaching a multitude of valid solutions from the early

stages of the optimization, i.e, with few knockouts (this effect can

be observed in the convergence plots). Some of these solutions

or areas of the LMOMA solution space are BPCY-valid for FBA as

well, as shown by Figures 5 and 6. This supports the rationale that

LMOMA-based optimization can be used to guide the FBA-based op-

timization, which was used as one of the pivotal reasonings behind

the development of the tandem optimization approach detailed in

the next section.

3.2 Robust strain optimization by means of
tandem phenotype prediction

We applied our MO approach to all previously presented case stud-

ies and compared the results. Thus, the analysis will be focused on

the aerobic production of succinate and lactate using glucose as the

carbon source. The number of solutions found by our method in
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the two case studies are the following: 1184 in lactate, and 709 in

succinate. The generally larger number of BPCY-valid solutions is

easily perceptible when compared to the last section results.

Figure 7 represents the Jaccard distance of the mutant flux distri-

butions (solutions found by the tandem approach) to the wild-type

flux distribution. From the histograms, it is possible to conclude that,

while the average distance of the LMOMA-based flux distributions

when simulated with both pFBA and LMOMA has not decreased

significantly in comparison with the EA/SA approaches, the out-

liers found in the pFBA-based flux distributions when simulated

with LMOMA are not present anymore.
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Figure 7: Distribution of the Jaccard distances from the so-

lutions flux distributions to the wild-type flux distributions

for the aerobic production of lactate and succinate from glu-

cose. All the solution were re-simulated with pFBA (top in

each plot) and LMOMA (bottom in each plot).

This observation suggests that the current solutions are closer

to each other in terms of flux distributions. Notwithstanding, as

stated in the previous section, if we assume that the likelihood of the

solutions working in reality increases, if they are valid for different

phenotype predictionmethods, no conclusions can be derived about

the inter-method validity of these solutions. To access the validity

in both pFBA and LMOMA phenotype prediction methods, Figure

8 is introduced. The results presented in the Venn-like diagrams

are self-explanatory, with all solutions but 2 in the succinate case

study and 1 in the lactate case study being BPCY-valid for both

methods. This result is extremely positive by itself, however, the

precise performance of these solutions remains to be evaluated.
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(1182) (2)

0 300 600 900 1200
Number of solutions

PFBA
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BOTH LMOMA
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0 200 400 600
Number of solutions

PFBA

BOTH

LMOMA

Figure 8: Venn-like diagrams for checking the inter-method

validity of the solutions. From left to right, solutions that

are BPCY-valid for: only pFBA, both pFBA and LMOMA, and

only LMOMA.

The hypothesis raised in the previous section, that the LMOMA-

based optimization could be used to guide the pFBA-based opti-

mization, is now revisited here. The corresponding boxplots were

generated and are presented in Figure 9.
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Figure 9: BPCY Boxplots for the Lactate and Succinate case

studies obtained by the tandem approach. Solutions are re-

simulated with both methods (x-axis).

By analyzing the boxplots it is now evident that the results have

improved greatly in comparison with the previous approach. In
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the Lactate case study, while in the former approach the pFBA-

generated solutions were generally not valid with LMOMA and the

LMOMA-generated solutions were not valid with pFBA, here, the

solutions are not only valid, but the average of their BPCY values

is better, in particular for the pFBA method.

Even more interesting are the results of the Succinate case study.

In the previous section, we pointed out the curious results found

for this example, where the LMOMA-generated solutions achieved

better BPCY values when simulated with pFBA than the pFBA-

generated solutions themselves. It is clear that the tandem ap-

proach is able to find still better solutions that are valid with

pFBA, than in the previous approach, with an average BPCY of

0.6mmol product .mmol substrate−1 . h−1. This improvement in

the results can also be witnessed in the scatter plots presented in

Figure 10 where a large portion of the solutions are located on the

top-right region of the plots.
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Figure 10: Scatter plots showing BPCY values obtained by

the tandem approach generated solutions when simulated

using pFBA (x-axis) and LMOMA (y-axis) for the lactate and

succinate case studies.

One of our claims is that, in very constrained FBA solution

spaces where few BPCY-valid solutions exist, i.e., where to reach so-

lutions than can couple biomass growth and target overproduction

a large number of specific deletions is required, the LMOMA-based

optimization process can act as chaperone for the FBA-based opti-

mization. To help illustrate this process, Figure 11 is put forward.
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Figure 11: Illustration of LMOMA-pFBA tandem optimiza-

tion. Solution spaces with few knockouts contain no valid

pFBA solutions while some LMOMA solutions can be found.

In the much larger, many-knockouts, solution space, pFBA,

LMOMA and pFBA/LMOMA solutions are found.

The early stage LMOMA solutions allow the algorithm to initial-

ize convergence towards interesting regions of the solution space,

by using solely LMOMA solutions’ fitnesses. For higher numbers

of deletions, despite being scarce, valid pFBA solutions exist. How-

ever, the probability of a valid combination of deletions being found

by an evolutionary heuristic using only pFBA as the phenotype

prediction method is low. When (and if) the LMOMA and pFBA fea-

sible solution spaces intersect, the tandem optimization approach

starts to attribute more value to solutions that are valid for both

methods. This is a natural outcome of the dominance property of

the underlying MO approach.

In this context, our interpretation of robustness is two-fold. First,

we introduce a new concept of robustness in which solutions that

are predicted by more than one phenotype prediction method are

more robust, since they comply with more than one assumption

regarding the behavior of the organism when subjected to pertur-

bations (multi-method robustness). While we will not provide any

further tests supporting this claim, this robustness is a natural con-

sequence of the objective functions of our tandem approach, which

are sufficiently detailed in our previous analyses.

Secondly, we argue that the tandem optimization process is able

to attain solutions that are also robust in the LP (FBA) solution

cone (FBA-robustness). The problems associated with competing

pathways not being accounted for by strain optimization algorithms

were first brought to light by Tepper and Schlomi in [20] where

they introduced the concept of robust solutions.

The FBA-robustness is tested in a 2-step approach, first a regular

FBA phenotype prediction is performed, maximizing the biomass

(biostep1), while subjected to the genetic and environmental condi-

tions of the solutions. Next, FBA is performed with the objective of

minimizing the production of the target compound, but an extra

constraint - biostep2 ≥ biostep1 ∗ (1 − α) where α = 0.00001- is

added to the problem. If FBA is still able to predict the production of

the target compound in these conditions, we consider the solution

to be FBA-robust.
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To analyze the validity of this claim, we observed the FBA-

robustness of the solutions reached by the tandem algorithm. The

results of this analysis show 76% in lactate and over 99% in succi-

nate. Thus, most of the solutions found by the tandem algorithm

are FBA-robust. The percentage of FBA-robust solutions found by

our method is in the same range of the previous methods, however

our method is able to find a much larger number of solutions. Thus,

as a consequence, a higher number of FBA-robust solutions is made

available to the researchers.

4 CONCLUSIONS

From the results of this work, we have confirmed that the results

of strain optimization meta-heuristics are highly dependent on

the phenotype prediction methods, and specifically, the use of

FBA/pFBA leads to sub-optimal results in more challenging tasks.

A new tandem optimization approach capable of finding robust

strain designs compliant with multiple phenotype prediction meth-

ods is proposed, to address these limitations. Several advantages

emerge from using this tandem approach. First, the algorithm helps

uncovering pFBA solutions that would otherwise be difficult to find

by traditional approaches. Secondly, the majority of these solutions

are both FBA-robust and multi-method robust.

Arguably, a valid alternative would be to ignore FBA/pFBA as a

phenotype prediction method for perturbed/mutant organisms and

use MOMA/LMOMA. However, LMOMA designs suffer from some

limitations. Given that the objective function in MOMA/LMOMA is

to minimize the distance to the wild-type flux distribution and since

it is not bound to the maximization of biomass constraint, MOMA

can artificially activate/deactivate a large number of reactions to

reach this minimum value. This results in flux distributions with a

large number of minimally activated fluxes, which is unlikely to be

biologically sound. Furthermore, because of this, the analysis of the

flux distribution of MOMA/LMOMA solutions is a challenging task,

whereas analyzing pFBA flux distributions is an amenable one. The

solutions attained by our tandem algorithm provide the advantages

of both approaches with none of the shortcomings.
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