Development of Text Mining Tools
for Information Retrieval from Patents

Tiago Alves' 29 Ritben Rodrigues', Hugo Costa?, and Miguel Rocha'

! Centre Biological Engineering, University of Minho, 4710-057 Braga, Portugal
tiago_alves26@hotmail.com
2 Silicolife Lda, 4715-387 Braga, Portugal

Abstract. Biomedical literature is composed of an ever increasing num-
ber of publications in natural language. Patents are a relevant fraction
of those, being important sources of information due to all the curated
data from the granting process. However, their unstructured data turns
the search of information a challenging task. To surpass that, Biomedical
text mining (BioTM) creates methodologies to search and structure that
data. Several BioTM techniques can be applied to patents. From those,
Information Retrieval is the process where relevant data is obtained from
collections of documents. In this work, a patent pipeline was developed
and integrated into @Note2, an open-source computational framework
for BioTM. This integration allows to run further BioTM tools over the
patent documents, including Information Extraction processes as Named
Entity Recognition or Relation Extraction.
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1 Introduction

Huge amounts of information are generated every day. In the life sciences, the
number of publications, reports and patents available on databases is increasing
considerably [1,2]. Patents are validated documents representing the intellectual
property rights of an invention, being important sources of information due to
their novelty nature, with exclusive data that is not published in other scientific
literature [3,4]. So, exploring them is critical to understand several biological
fields [3,5]. However, the access to these documents is limited. There are some
systems able to extract some patent sections. This is the case with SureChEMBL,
a tool that searches for chemicals and their structure on patents [6].

Patent documents are available in numerous databases. Those which have
grant protection only for specific countries can be used for localized searches. For
general-purpose searches, worldwide databases with patents with international
protection are a more viable option. The j-PlatPat from Japan Patent Office
(JPO) or PatFT from the United States Patent and Trademark Office (USPTO)

are databases included in the former group, while the PATENTSCOPE from
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World Intellectual Property Organization (WIPO) or esp@cenet from European
Patent Office (EPO) are included in the latter [4].

For instance, the WIPO database has 2.7 million patents registered only in
2014 [7-9]. Since these large amounts of data are available in an unstructured
nature without annotations about the text structure and available entities, the
search and extraction of relevant information is a difficult and time-consuming
task, impossible to be done manually [7]. To exploit these data, automating that
process, the Biomedical Text Mining (BioTM) field emerged [10]. It is based
on different knowledge areas such as statistics, artificial intelligence or manage-
ment science, combined with text analytic components as Information Retrieval
(IR), Information Extraction (IE) or Natural Language Processing (NLP) [11].
From these, IR allows to obtain relevant information resources (e.g. papers or
patents) from an extensive collection of documents, and IE allows the extraction
of pertinent information from these documents [12].

To apply BioTM techniques, text files are usually the input. However, patent
documents are typically accessed in Portable Document Format (PDF) files,
coming from encrypted image files, usually BMP, TIFF, PNG or GIF. So, the
conversion of these files into machine-coded, readable, editable and searchable
data is mandatory. For that, methods as Optical Character Recognition (OCR)
are used [13]. The process can be summarized in two main processes: character
extraction, where learned patterns are applied to delimit words or individual
letters; and character recognition, where words are identified [14].

Several BioTM platforms has been developed by the scientific community.
@Note2!, developed by the University of Minho and the SilicoLife company
is among these efforts. As a Java multi-platform BioTM Workbench, @Note2
uses a relational database and is based on a plug-in architecture, allowing the
development of new tools/methodologies in the BioTM field [15].

Structurally, @Note2 is organized into core libraries and user interface tools.
The core libraries are organized in three main functional modules: the Publi-
cation Manager Module (PMM), which can search documents on online repos-
itories (IR Search process) and download their respective full-text documents
(IR Crawling process); the Corpora Module (CM), responsible for corpora man-
agement, creating and applying IE processes to them with a manual curation
system; and the Resources Module (RM), which allows the management of lexi-
cal resources to be used in IE processes. The user interface tools allow a simples
interaction with the user to configure and use @Note2’s functionalities [15].

Here, the objective was to develop a pipeline, a new plug-in to @Note2, able
to make patent data amenable to be searched and used as an information source
for the IE processes already available in @Note2 and BioTM in general.

2 Patent Pipeline Development

The patent pipeline can be organized into four different tasks. It can search for
patent IDs, retrieve patent metadata, download the published patent PDF file,
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and, finally, apply PDF to text conversion methodologies to those files. Each task
was structured into a module with specific inputs and outputs. Thus, sources
to search and retrieve patent IDs, to search for metadata about each patent
and to return the patent file(s) in PDF format were configured as components of
the search sources module, metainformation sources module and retrieval sources
module, respectively. The used PDF to text conversion methodologies were orga-
nized in the PDF conversion module (Fig.1).
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Fig. 1. Summary of the designed patent pipeline (numbers represent the process flow).

To get any result using the first three modules, specific access keys resulting
from the services registration are required to get access to servers and retrieve the
requested data. To start the search process, input keyword(s) are required, which
may be biomedical entities as chemicals, genes, diseases, among others. These
keywords are then processed by the search sources module. Into this module,
two popular search engines (the Custom Search API from Google and the Bing
Search API from Microsoft) and the Open Patent Services (OPS) web services
API from EPO were used. The two first were configured to retrieve patent IDs
from Google Patents, with around 87 millions of patents from 17 countries [16].
The result is the union of the patent IDs returned by all components.

The metainformation sources module returns the invention title, authors,
publication date, a link to a patent database entry (if available) and the abstract
to each patent. When available, the description and claims are also extracted.
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To avoid repetitions, the patent family is extracted and only one ID is used to
retrieve metadata, being the others saved as external references. That data is
then stored into query, a data structure from @Note2 to save the document infor-
mation (Fig. 2). Two different services were configured: the PATENTSCOPE web
service API from WIPO and the OPS web service API from EPO.
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Fig. 2. Creation and update process for query and corpus data structures. The numbers
represent the modules of the pipeline and their flow. The orange query data field
represents the update process of the original query, while the orange corpus data field
represents the field that turns the corpus into a different data structure.

The retrieval sources module returns the patent PDF files, saving their path
into the query (Fig.2). This module uses the same APIs from the previous with
different configurations. Both metainformation and PDF retrieval modules use a
sequential architecture. The first takes all the patents, while the next components
receive only the ones that did not get any result. That process is repeated until
all patents are processed or all components were used.

The PDF conversion module takes all the files from the previous module,
extracting their text. As shown in Fig.2, this allows the creation of a corpus,
allowing to run IE methods, for instance, NER or RE. In this module, alongside
with Apache PDFBoz library (already implemented on @Note2) it was con-
figured the TessjJ, version 3.2.1 (developed by Quan Nguyen) implementing
Tesseract, an OCR algorithm from Google, and also a hybrid method combining
these two methodologies. The Apache PDFBox allows to extract the Unicode
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text available on PDF documents. The hybrid method allows a previous PDF
treatment, improving their quality to be processed by Tess4J system.

On @Note2, patent handling features were inserted in different core libraries.
The patent ID search and metadata retrieval were added as new IR Search
processes called “Patent Search”, while the patent PDF file download was added
as a new IR Crawling process, and the new PDF to text conversion methods were
put into the Corpora Module as a pre-processing method (Fig. 3).
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Fig. 3. @QNote2 structure with patent pipeline implementations. The orange boxes
represent the new components added.

3 Results

The pipeline is materialized by a plug-in allowing patent search in Google Patents
and esp@cenet repositories. A graphical interface was made to set @QNote2 Pref-
erences where credentials can be saved. The main wizard includes two steps
(Fig.4): the keywords and the guery name input pane; and the configurations
pane, where the previous defined configurations can be edited (Fig.5).

To test the system, data from the 1000 patents with the longest abstracts
from the BioCreative V. CHEMDNER task were used (IDs, titles and abstracts).
The abstract was tokenized and compared with the tokens from our PDF to
text conversion. In this comparison, we used the Smith-Waterman algorithm, a
Dynamic Programming algorithm to evaluate the matches. This allows calculat-
ing performance metrics as precision, recall and F1 values (based on the number
of tokens that match exactly on the texts). Alongside the accuracy calculation,
it is possible infer the amount of conversion errors, as well as verify the number
of documents correctly downloaded.

Complete metadata were extracted for 917 patents (91,7%). From the remain-
ing 83, 76 were filled partially. Then, also 993 patent PDF files were correctly
obtained (99,3%). For both processes, the success rate was limited due to repos-
itories coverage and to restrictions imposed by the use of free credentials.
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Fig. 4. QNote2 Patent Search plug-in. The pipeline uses input keywords, the query
name and configurations provided by the user or by @Note2 settings to search for
patent IDs and to download patent metadata.

——— — —
_[Patenios searn | Patstbeartormaton seaen | g
(snavessean pivom sng -
Bing Access Token -
oo ==
p— 00 casesense oot
Quiatwos [ optons
e Ds Searn e I
cpen Pt Senices AP Tom E70 =
i Wob w6t mang =
oo toncangs =
|
|
|
|
[ npon ] |
( oot )| id
S I Jox f
b) T L W N B () T
| Bl PatentIDs Search | Patent Metainformation Search
om Google 5
e
KEORDSORGANSI D] I 1 ()
——
|
‘ J
L N (J Case sensitve Expot
 Keywords' o L whote word Options.
PatentIDs Search ethod |
cpen Pt enices AP fom £70 —
ang Wob v At romBing =
Cusom searen AP om Goate -
l ]
| ®cma | (5] e o | Qeowmen | ) = ok

Fig. 5. @Note2 Patent Search GUI. (a) panel for @Note2 preferences; (b) and (c) Steps
1 and 2 from the Patent Search Wizard, respectively.
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From the PDF to text evaluation (Fig. 6), the precision values showed a small
variance being high in all documents (mean around 95%), while recall values were
higher than 80% for 75% of all documents. However, 94 documents returned a
recall value under 10% representing old patents (some patents before the 1970s)
with only some drawings and a brief description, being the full text data absent.
As expected, this led to a high standard deviation (around 30%) which can
be also explained by the presence of a high number of chemical structures or
formulas that are omitted in the BioCreative task abstract text or simply are
converted to noise. The F1 measure summarizes the system capacity to transform
most of the PDF files into readable text. Since some patent files have more than
200 pages, to process 1000 patents, the whole pipeline took around 3 days using
a PC with an i7 960 @ 3.2 GHz processor and 16 GB of RAM.
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Fig. 6. Boxplots for the evaluation metrics of the PDF to text conversion process. The
mean and standard deviation are given in bold.

4 Conclusions

Recently, patents have been a target for BioTM techniques since they are a great
source of information for many fields. Based on @Note2, IR Search and Crawling
processes were designed and implemented, allowing the search and retrieval of
patent information and respective documents. Also, new improvements were
made to the @Note2 PDF to text conversion system. Testing these processes
with a set of 1000 patents from a BioCreative V task shows that nearly all PDFs
were correctly downloaded with respective metadata. Using the new PDF to text
system on that documents, we got around 85% of F-score.

The main innovation of this work was the creation of new IR processes applied
to patents surpassing common problems related to searching and retrieving those
documents, allowing also the posterior implementation of several IE techniques
to those texts. Since @Note2 is an open-source software, this framework opens
doors to the community to take advantage of all sections from the published
patents with biological relevance more easily and without the need to expend
large amounts of time browsing several databases. To @Note2, the integration
of these tools allows developing an extensive set of text mining pipelines over
patents, which were only possible for scientific articles so far.
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Some improvements can still be made, namely reducing the processing time
and adding new components in each module using the designed architecture.
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