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A B S T R A C T

Antimicrobial combinations involving antimicrobial peptides (AMPs) attract considerable attention within
current antimicrobial and anti-resistance research. The objective of this study was to review the avail-
able scientific literature on the effects of antimicrobial combinations involving colistin (polymyxin E),
polymyxin B and nisin, which are US Food and Drug Administration (FDA)-approved AMPs broadly tested
against prominent multidrug-resistant pathogens. A bioinformatics approach based on literature mining
and manual expert curation supported the reconstruction of experimental evidence on the potential of
these AMP combinations, as described in the literature. Network analysis enabled further characterisa-
tion of the retrieved antimicrobial agents, targets and combinatory effects. This systematic analysis was
able to output valuable information on the studies conducted on colistin, polymyxin B and nisin com-
binations. The reconstructed networks enable the traversal and browsing of a large number of agent
combinations, providing comprehensive details on the organisms, modes of growth and methodologies
used in the studies. Therefore, network analysis enables a bird’s-eye view of current research trends as
well as in-depth analysis of specific drugs, organisms and combinatory effects, according to particular
user interests. The reconstructed knowledge networks are publicly accessible at http://sing-group.org/
antimicrobialCombination/. Hopefully, this resource will help researchers to look into antimicrobial
combinations more easily and systematically. User-customised queries may help identify missing and
less studied links and to generate new research hypotheses.

© 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

1. Introduction

Antimicrobial agents have significantly improved the well-
being and life expectancy of humans and animals, but their overuse
has accelerated the emergence of multidrug-resistant (MDR) micro-
organisms and has raised an urgent need for novel antimicrobials
[1]. Repurposing of natural compounds, such as antimicrobial pep-
tides (AMPs), and the creation of synergistic antimicrobial
combinations are two attractive and increasingly explored re-
search approaches [2].

AMPs are widespread in nature as part of the immune system of
plants and animals and can be also found in fungi and bacteria. In
fact, AMPs played a fundamental role in the evolution of complex mul-
ticellular organisms and are currently still effective host defence agents
[3]. In their majority, these peptides are short-length (between 15
and 30 amino acids), cationic, amphipathic, gene-encoded and di-

rected to the cell membrane [4,5]. As single agents, the multiple
mechanisms of action and the low specificity in terms of molecular
targets reduce the propensity of AMP therapeutics to the develop-
ment of antimicrobial resistance [4]; also, AMPs aid cellular processes
such as cytokine release, chemotaxis, antigen presentation, angio-
genesis and wound healing [5,6]. Synergistic combinations of AMPs
with other antimicrobials often decrease individual effective con-
centrations and broaden the antimicrobial spectrum, whilst reducing
antimicrobial resistance, toxicity and other side effects [2,7].

Most of these research outcomes are scattered across the ever-
growing scientific bibliome, which impedes their systematic
comparison. However, the development of computational workflows
to integrate and analyse such textual information has the poten-
tial to automate compilation and to enable comprehensive data
analysis. In previous work, we implemented the reconstruction of
antimicrobial-centric knowledge networks based on literature mining
and manual expert curation methodologies [8,9].

Here, our knowledge integration approach is applied to the study
of polymyxins and bacteriocins, two families of AMPs widely used
in healthcare and food-related studies. In particular, this paper dis-
cusses experimental findings retrieved from the scientific literature
on antimicrobial combinations involving colistin (polymyxin E),
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polymyxin B and nisin, which are US Food and Drug Administra-
tion (FDA)-approved AMPs broadly tested against prominent MDR
pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus,
Escherichia coli, Listeria monocytogenes and Candida albicans [10–12].

Colistin, also known as polymyxin E, and polymyxin B belong to
the polymyxin group of cationic polypeptides, i.e. cyclic, positively
charged decapeptides bound to a fatty acid and derived from various
species of Paenibacillus (Bacillus) polymyxa [11]; they differ in struc-
ture by only one amino acid, i.e. Leu in colistin versus Phe in polymyxin
B [13]. The basic mechanism of action consists of disruption of the
cell membrane by binding to the anionic part of the lipopolysaccha-
ride (LPS). This causes a detergent effect with permeability changes
in the cell envelope, leakage of cell contents and cell death [13,14].
The polymyxins are mainly active against Gram-negative patho-
gens, including major nosocomial pathogens such as E. coli, Klebsiella
spp., Enterobacter spp., P. aeruginosa and Acinetobacter spp. [11]. Co-
listin and polymyxin B are used as a last-resource treatment for
infections caused by MDR Gram-negative bacteria, such as P. aeruginosa
infections of the respiratory tract of cystic fibrosis patients [15,16].

Nisin is the main representative of the AMP class of lantibiotics
(lanthionine-containing antibiotics) or class I bacteriocins. These
small peptides (<5 kDa) are characterised by their unusual
post-translationally modified residues (e.g. lanthionine or
3-methyllanthionine), which result in the formation of rings by co-
valent bonding with other amino acids [17]. Nisin was first isolated
from Lactococcus lactis [18] and remains the only FDA-approved and
commercially available bacteriocin, being normally used as a food
additive [19]. In recent years, nisin has been increasingly studied
in biomedical scenarios, exploring its ability to form poration com-
plexes in cell membranes, mainly against Gram-positive bacteria
[10,20]. Nisin has reported antimicrobial activity against major Gram-
positive pathogens such as L. monocytogenes and S. aureus [21].

The three AMP-centric knowledge network reconstructions de-
scribe experimental results in an intuitive and user-customised way,
enabling various analysis perspectives. AMP–drug combinations are
described in terms of reported effects and experimental settings,
e.g. strains, mode of growth and methodologies of analysis found
in the literature. By focusing on various network features, we address
different questions about the role of these AMPs in antimicrobial
combinational therapy.

The reconstructed knowledge networks are publicly available at
http://sing-group.org/antimicrobialCombination/.

2. Methods

2.1. Information retrieval

Information extracted from the literature using text mining
methods was integrated with data from curated databases to re-
construct experimental evidence on the antimicrobial combinations
of colistin, polymyxin B and nisin in a comprehensive way. The cu-
ration pipeline is depicted in Supplementary Fig. S1.

Emphasis was put on experimentally validated combinations in-
volving any of the three AMPs and drugs, other AMPs or molecules with
added antimicrobial potential. To this end, the scope of the PubMed
queries was narrowed to experiments mentioning at least one of the
three AMPs (common name or name variants), any term variants de-
noting common agent combination effects (e.g. synergy, antagonism)
and experimental methods used in testing antimicrobial combina-
tion susceptibility (e.g. chequerboard method). PubMed document
retrieval, relevance assessment and initial annotation of entities of in-
terest (namely AMPs, drugs and molecules with antimicrobial potential)
were conducted automatically. Then, the prioritised documents were
manually curated. Notably, experts validated the relevance of the docu-
ments and annotated additional information (e.g. organisms, strains,
mode of growth and experimental tests) on truly relevant documents.

Curators also revised automatic normalisation of textual references to
antimicrobial agents to existing ontology terms, namely DrugBank [22],
PubChem [23], ChEBI [24], ChEMBL [25], LAMP [26], CAMPR3 [27] and
UniProt [28] database entries.

2.2. Data organisation and presentation

The annotated combinations are categorised as follows: ‘synergy’,
i.e. the combined action is superior to the sum of the isolated actions;
‘additiveness’, i.e. the combined action is equal to the sum of the
isolated actions; ‘indifference’, i.e. the combined action is equal to
the action of the most active single agent; and ‘antagonism’, i.e. the
combined action is inferior to the action of the most active single
agent. Other categories, named ‘synergy/additiveness’, ‘additiveness/
indifference’ and ‘antagonism/indifference’, are used to denote non-
conclusive results.

Categorisation of the combinations was dependent on the type
of methodology described in the paper. The two main standardised
methods in use are the chequerboard assay, with fractional inhibi-
tory concentration index (FICI) and fractional bactericidal concen-
tration index (FBCI) assessments, and time–kill curves. In the case
of the chequerboard assays, the common interpretation of the break-
point values is as follows: ‘synergy (S)’, FICI or FBCI ≤ 0.5; ‘additiveness
(Ad)’, 0.5 < FICI or FBCI ≤ 1; ‘indifference (I)’, 1 < FICI or FBCI ≤ 4; and
‘antagonism (A)’, FICI or FBCI > 4.0 [29]. In the case of time–kill
curves, the action of the combinations is compared with the action
of the most active individual agent and interpretation is as follows:
‘synergy (S)’, ≥2 log decrease; ‘additiveness (Ad)’, 1 ≤ log <2 de-
crease; ‘indifference (I)’, <1 log decrease; and ‘antagonism (A)’, ≥2 log
increase [30].

Annotation of the combination category was primarily based on
the textual descriptions presented in the paper. However, this was
not always possible due to discrepancies between studies, includ-
ing different types of analysis and different interpretations of the
results, which did not always result in the above classification. In
these cases, and in order to maintain a systematic and harmon-
ised annotation, the experts used the above definitions in order to
curate those results.

The reconstructed knowledge networks are publicly accessible
at http://sing-group.org/antimicrobialCombination/. Network web
visualisation is supported by Cytoscape Web v.2.6.1 [31] and ad-
vanced analyses are conducted in Cytoscape v.3.4.0 [32].

2.3. Data analysis

Data are analysed in relation to different types of totals, namely the
number of total combinations (TC), the number of combinations across
documents and species (CDS) and the number of combinations across
documents (CD). TC represents all the combinations that are present-
ly annotated in our knowledgebase, encompassing all documents,
species and respective strains tested. This number is used, for example,
to calculate the % synergy or other type of outcome for a given organ-
ism or drug. CDS counts antimicrobial combinations by unique species
targets, i.e. it ignores tests of the same combination on multiple strains
of the same species. This figure is important to calculate statistics such
as the most tested organisms. Finally, CD computes unique antimicro-
bial combinations in order to assess the most used drugs. Other totals
are used to present relative data and are described in the correspond-
ing table caption/footnote.

3. Results and discussion

3.1. Overview

The number of documents retrieved from the literature was
highest for colistin, followed by polymyxin B and nisin, with an
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approximate difference of 100 documents from one another (Table 1).
The number of relevant documents was also greater for colistin, fol-
lowed by nisin and polymyxin B. Interestingly, the TC was much
higher for colistin than for the other two AMPs. However, when
analysing the CDS, colistin has the lowest figure, which indicates
that studies using colistin tend to test susceptibility over more strains.

Historically, the number of combination studies involving co-
listin, polymyxin B or nisin has grown exponentially, reflecting the
interest that these studies have been receiving from researchers. The
majority of documents retrieved from the literature are dated after
2000. It is also clear that the present tendency is still of growth, since
the number of documents in the last 5 years is close (polymyxin
B) or already higher (colistin and nisin) than the total achieved in
the previous decade. More details are available in Supplementary
Fig. S2.

Given the fact that colistin is already used as an antibiotic in clin-
ical settings, it was expected that the great majority of studies
included a varied array of clinically isolated strains. In fact, 90% of
the strains used in the annotated colistin combinations are clini-
cal isolates (data not shown). Similarly, 67% of the strains used for
testing polymyxin B combinations are also clinical isolates (data not
shown). In turn, only 40% of strains used for testing nisin combi-
nations are clinical isolates, a fact that may be justified by the recent
application of this food additive to biomedical scenarios [10].

In general, AMPs are mainly combined with antibiotics and an-
tifungals (77%, 66% and 32% for each of the three AMPs, respectively),
and AMP–AMP combinations represent just a small fraction of all
the combinations tested. Current interest on the repurposing of an-
tibiotics by combination with other antimicrobials or antimicrobial
adjuvants can explain these percentages [7]. AMPs are known to
disrupt the bacterial membrane [5], which makes them excellent
partners for antibiotics whose antimicrobial action affects intra-
cellular targets, by facilitating their entrance into the cell. In contrast
to the other two AMPs, combinations of nisin with biomedical-
associated drugs, such as antibiotics and antifungals, do not yet
represent the main focus of the tests (<50%). This may relate with
the fact that nisin is mainly used as a food additive and its bio-
medical application has only been explored in recent years [10]. More
details can be found in Supplementary Table S1.

Other interesting data are that AMP combinations are still pri-
marily tested on planktonic cultures (82–97%). That is, experimental
results are somewhat limited in terms of describing effects on real-
world scenarios, namely over microbial biofilms (0.9–5.7%). Most
bacteria are naturally present in a biofilm mode of growth and these
consortia are related to persistent and chronic infections [33] and
possess multiple resistance mechanisms that challenge eradica-
tion [34]. Therefore, testing AMP combinations over these microbial
growth scenarios is an urgent necessity. In fact, AMPs have some
characteristics that make them promising for treating biofilms,
namely the fact that their main mechanism of action is indepen-
dent of the cell’s metabolic state (i.e. they are directed towards the
membrane). This makes them effective against active and dormant
cells, which are common types of cell populations in mature biofilms
[35].

Moreover, the majority of the reported combinations have a syn-
ergistic effect, which may reflect both the predisposition of AMPs

to be good adjuvants in antibiotic therapy [2] and the fact that sci-
entific papers often tend to report only/majorly positive outcomes.

3.2. Web search and visualisation

The reconstructed networks are publicly accessible at http://
sing-group.org/antimicrobialCombination/. The web interface
supports user-customised network visualisation, search and navi-
gation (Fig. 1). Network presentation was made simple and intuitive:
the antimicrobial agents are displayed as nodes and the antimi-
crobial combinations are represented by the edges linking those
nodes. The user may search combinations using different filter levels,
namely find information by organism, antimicrobial agent or type
of combination. Furthermore, different filters may be combined in
more advanced searches. For example, this approach can be used
to identify direct and indirect relations between two antimicro-
bial agents, or to find all combinations that produced a given effect
in a specific organism.

For visualisation simplicity, the shape of the nodes stands for the
type/family of the antimicrobial agents, and edges are coloured ac-
cording to the effect of the combinations. Moreover, the interface
takes advantage of topological metrics to highlight the represen-
tativeness and interconnection of antimicrobial agents. Specifically,
node size is dependent of the node degree, i.e. node size is scaled
according to the number of combinations that support its pres-
ence in the network.

3.3. Network content analysis

Table 2 presents the most annotated agents for each of the AMPs.
The following subsections make an in-depth analysis of these an-
notations for each of the AMP networks.

Table 1
General statistics on retrieved and annotated documents.

Antimicrobial peptide No. of documents
in query

No. (%) of relevant
documentsa

Total combinations
(TC)

Combinations across
documents and species (CDS)

Combinations across
documents (CD)

Colistin 374 187 (50) 2829 352 231
Polymyxin B 278 100 (36) 993 367 220
Nisin 184 130 (71) 900 464 263

a The % is relative to the total number of documents in query.

Table 2
Top three antimicrobials, organisms and methods co-annotated with the antimi-
crobial peptides (AMPs) colistin, polymyxin B and nisin.

AMP Combined
AMP/druga

Organismb Experimental
methoda

Colistin Rifampicin (7.8%) Pseudomonas
aeruginosa (32%)

Chequerboard
assay (53%)

Tigecycline (4.8%) Acinetobacter
baumannii (15%)

Time–kill
curve (31%)

Meropenem (4.3%) Klebsiella
pneumoniae (8.2%)

Etest (14%)

Polymyxin B Rifampicin (5.0%) P. aeruginosa (29%) Chequerboard
assay (37%)

Erythromycin (4.6%) Escherichia coli (14%) MIC determination
(28%)

Novobiocin (4.1%) K. pneumoniae (12%) Time–kill
curve (20%)

Nisin EDTA (3.8%) Listeria
monocytogenes (16%)

Cell viability (41%)

Vancomycin (2.3%) Staphylococcus
aureus (14%)

Chequerboard
assay (24%)

NaCl (2.3%) E. coli (9.9%) Cell growth (11%)

MIC, minimum inhibitory concentration; EDTA, ethylene diamine tetra-acetic acid.
a % relative to CD (see Table 1).
b % relative to CDS (see Table 1).
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3.3.1. Colistin combinations
Colistin is predominantly combined with the antibiotics rifam-

picin, tigecycline and meropenem (Table 2), which represent three
distinct classes of antibiotics (rifamycins, glycylcyclines and
carbapenems, respectively). All of these antibiotics possess intracel-
lular targets, such as the bacterial DNA-dependent RNA polymerase,
causing inhibition of RNA synthesis [36], the 30S ribosomal subunit,
causing inhibition of protein synthesis [37], and the penicillin-
binding proteins, causing inhibition of cell wall synthesis [38],
respectively. The combination of colistin with intracellular-acting an-
tibiotics was somewhat expected since the action of this AMP, i.e.
membrane disruption, can help other antibiotics to enter the cell more
easily. Chequerboard assays and time–kill curves are the most used
test methods in these studies (Table 2), which is in accordance with
the most used standardised methodologies for synergy testing [39].

Currently, the network reconstructed for colistin (Fig. 2) in-
cludes a total of 2829 antimicrobial combinations, which were
extracted from 187 documents. Most of the combinations involv-
ing colistin are tested against Gram-negative bacteria (Table 3). This
was somewhat expected given that the mechanism of action of co-
listin is more specific for this type of bacteria by targeting LPS, which
is a major constituent of the outer membrane of these bacteria
[11,13]. Infections by fungi and Gram-positive bacteria are ad-
dressed by a small fraction of the combinations (17%). P. aeruginosa
is the most represented Gram-negative bacteria with 743 colistin

combinations across 59 documents, 33% of which have synergistic
effects. At the top of colistin combinations against P. aeruginosa is
the combination with rifampicin (7.2% of the number of combina-
tions across documents for that species).

S. aureus is the most Gram-positive bacteria used in these tests.
Specifically, four documents describe the testing of seven combina-
tions, with 57% of them resulting in synergy. These combinations
involved six different drugs, three of which were antibiotics (namely
ciprofloxacin, sodium sulfadiazine and erythromycin). In turn, C.
albicans is the most tested fungi, with 12 colistin combinations an-
notated across two documents, with 75% of them resulting in synergy.
Colistin was mainly combined with the antifungal caspofungin (38%
of the number of combinations across documents for that species).

Apparently, there is no obvious correlation between the type of
organism and the per cent of synergy or antagonism results obtained.
Some of the less tested organisms showed more positive out-
comes; however, the number of documents was substantially lower,
which impairs the establishment of a statistically significant cor-
relation. It is known that AMPs are able to enlarge the antimicrobial
spectrum of certain antibiotics [2], which could explain the high
per cent synergy seen with colistin combinations both for Gram-
positive bacteria and fungi.

Analysis of the targets of the more and less successful combi-
nations with colistin is presented in Supplementary Table S2.
Apparently, the specific targets of the combined agents do not

Fig. 1. Web visualisation of the antimicrobial combination networks of colistin, polymyxin B and nisin (B). Node shape corresponds to antimicrobial agent type (C). Edges
are coloured according to the effect of the reported combination (D). Networks may be searched by organism, antimicrobial agent or combination effect (A). Both nodes
and edges are clickable and enable the display of additional information, e.g. alternative agent names, chemical activity, cross-links to chemical and other external data
sources (E).
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correlate with the four different combination categories since the
top three targets are equal and/or similar amongst them. In the case
of synergistic combinations, all of the targets are also reported for
the other combination categories. This might suggest that the synergy
amongst colistin and other agents is not dependent on the target
of the latter but rather on their mechanism of entering the cell and

the efficacy of colistin to facilitate that entrance depending on the
selected organism/conditions.

3.3.2. Polymyxin B combinations
Polymyxin B is mainly combined with antibiotics belonging to

three different classes, i.e. rifamycins (rifampicin), macrolides

Fig. 2. Antimicrobial combination network reconstructed for colistin.

Table 3
Distribution of organisms and synergistic/antagonistic (Syn/Ant) combinations in the antimicrobial combination network of colistin.

Type of organism (%)a Top 3 (%)a % Syn/% Antb No. of documents (%)c

Gram-negative bacteria (83%) Pseudomonas aeruginosa (32%) 33/1.1 59 (50%)
Acinetobacter baumannii (15%) 45/1.0 29 (24%)
Klebsiella pneumoniae (8.2%) 34/11 18 (15%)

Gram-positive bacteria (7.5%) Staphylococcus aureus (1.7%) 57/0 4 (3.4%)
Listeria monocytogenes (0.6%) 88/0 1 (0.8%)
Actinomyces spp., Bacillus cereus, Bifidobacterium adolescentis, Clostridium spp., Enterococcus
faecium, Eubacterium limosum, Lactobacillus spp., Peptococcus spp., Peptostreptococcus spp.,
Streptococcus spp. (0.28%)

5/0 2 (1.7%)

Fungi (9.5%) Candida albicans (2.3%) 75/0 2 (1.7%)
Pseudallescheria boydii, Pseudallescheria apiospermum, Scedosporium prolificans, Geosmithia
argillacea, Exophiala dermatitidis (0.9%)

9.0/14 1 (0.8%)

Batrachochytrium salamandrivorans (0.6%) 100/0 1 (0.8%)

a % relative to CDS (see Table 1).
b % relative to TC (see Table 1) for that species.
c % relative to the number of relevant documents.
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(erythromycin) and aminocoumarins (novobiocin) (Table 2). Ap-
parently, combinations that use polymyxins tend to use rifampicin,
as seen in the case of colistin. These antibiotics act intracellularly,
namely on the bacterial DNA-dependent RNA polymerase, causing
inhibition of RNA synthesis [36], the 23S rRNA molecule in the 50S
ribosomal subunit, causing inhibition of protein synthesis [40], and
the bacterial DNA gyrase, causing inhibition of DNA supercoiling [41],
respectively. The use of intracellular-acting antibiotics in these com-
binations follows the same line of reasoning as in the case of colistin,
as previously explained. Polymyxin B combinations are tested mainly
through chequerboard assay and minimum inhibitory concentra-
tion (MIC) determination (Table 2).

Currently, the network reconstructed for polymyxin B (Fig. 3)
has 993 antimicrobial combinations, which were extracted from
100 documents. Polymyxin B combinations are mainly tested on
Gram-negative bacteria (Table 4), probably due to its mechanism

of action, which is similar to colistin and affects the outer membrane
of Gram-negative bacteria [11,13]. Testing in Gram-positive bacte-
ria and fungi represents only 20% of the targeted organisms. Similar
to colistin, the most tested Gram-negative and Gram-positive bac-
teria and fungi were P. aeruginosa, S. aureus and C. albicans, respec-
tively. In the case of P. aeruginosa, 317 polymyxin B combinations
were annotated across 43 documents, with 54% of them showing
synergy. Here, polymyxin B was mostly combined with novobio-
cin (3.7% of the number of combinations across documents for that
species).

S. aureus was used to test 24 polymyxin B combinations across
14 documents, and 50% of them showed synergy. The most combined
drugs were the antibiotic neomycin, the AMP bacitracin, the protein
lysostaphin and the antifungal miconazole, each of which repre-
senting 9.5% of the number of combinations across documents for
that species.

A total of eight polymyxin B combinations, belonging to five dif-
ferent documents, were tested against C. albicans, and all demonstrated
synergistic outcomes. These combinations involved eight different
drugs, four of which are antifungals, i.e. amphotericin B, ketoconazole,
miconazole and fluconazole. The majority of the outcomes for all or-
ganisms were positive, which further illustrates the potential of the
AMP combinations.

Analysis of the targets of the more and less successful combinations
with polymyxin B is presented in Supplementary Table S3. Similar
to colistin, all top three targets for synergistic combinations are also
reported for the other combination categories, namely indiffer-
ence. Since the mechanisms of action of colistin and polymyxin B
are similar, this was somewhat expected. Notably, synergy between
polymyxin B and other agents appears independent of the target
but might be correlated with other agent features, such as the mech-
anism of cell entrance and the efficacy of polymyxin B to facilitate
that entrance.

Fig. 3. Antimicrobial combination network reconstructed for polymyxin B.

Table 4
Distribution of organisms and synergistic/antagonistic (Syn/Ant) combinations in
the antimicrobial combination network of polymyxin B.

Type of
organism (%)a

Top 3 (%)a % Syn/%
Antb

No. of
documents (%)c

Gram-negative
bacteria (80%)

Pseudomonas aeruginosa (30%) 54/3.2 43 (45%)
Escherichia coli (14%) 70/2.4 30 (32%)
Klebsiella pneumoniae (12%) 60/0 13 (14%)

Gram-positive
bacteria (12%)

Staphylococcus aureus (5.7%) 50/0 14 (15%)
Bacillus subtilis (1.6%) 33/0 4 (4.2%)
Staphylococcus epidermidis (0.8%) 67/0 2 (2.1%)

Fungi (8.0%) Candida albicans (2.2%) 100/0 5 (5.3%)
Saccharomyces cerevisiae (1.6%) 100/0 5 (5.3%)
Aspergillus niger (0.8%) 67/0 2 (2.1%)

a % relative to CDS (see Table 1).
b % relative to TC (see Table 1) for that species.
c % relative to the number of relevant documents.
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3.3.3. Nisin combinations
Nisin was primarily combined with three different types of com-

pounds: a surfactant [ethylene diamine tetra-acetic acid (EDTA)];
an antibiotic (vancomycin); and a salt (NaCl) (Table 2). This is prob-
ably due to the role of nisin as a food addictive [21], which changes
the types of agents that this AMP can be combined with in com-
parison with the polymyxins. Nevertheless, combination with
antibiotics for application in biomedical scenarios is attracting in-
creasing attention [10]. The salts are used to test the stability of nisin
in different ionic concentrations, which obviously varies amongst
foods and can dictate the effectiveness of the AMP [42]. Finally, EDTA
is a chelating agent and an FDA-approved food additive used to
prevent oxidation and other deteriorations. It also has antimicro-
bial activity and it is known to potentiate the activity of nisin and
other antimicrobials against Gram-negative micro-organisms [43].
For nisin, the chequerboard assay was also one of the most used
methods, alongside cell viability analysis.

Currently, the network reconstructed for nisin (Fig. 4) encom-
passes 900 antimicrobial combinations, which were extracted from
130 documents. In contrast to the polymyxins, the combinations
involving nisin were tested in their majority against Gram-positive
bacteria (Table 5), which is the main target of this peptide [20]. Still,
the testing of combinations against Gram-negative bacteria repre-
sented a sizable proportion (32%), with fungi being the least tested
organisms. E. coli, L. monocytogenes and Saccharomyces cerevisiae were
the most used Gram-negative bacteria, Gram-positive bacteria and
fungi, respectively, and all of them are considered food pathogens

[44]. A total of 50 nisin combinations were tested against E. coli across
25 documents, and 44% of them demonstrated synergy. Nisin is
mainly combined with three different compounds, namely EDTA,
lactoferrin and colistin, each of which represents 6.5% of the number
of combinations across documents for that species. L. monocytogenes
is used in 107 combination tests across 41 documents, and 62% of

Fig. 4. Antimicrobial combination network reconstructed for nisin.

Table 5
Distribution of organisms and synergistic/antagonistic (Syn/Ant) combinations in
the antimicrobial combination network of nisin.

Type of
organism (%)a

Top 3 (%)a % Syn/%
Antb

No. of
documents (%)c

Gram-negative
bacteria (32%)

Escherichia coli (9.9%) 44/8.0 25 (22%)
Salmonella enterica (6.7%) 24/8.8 15 (14%)
Pseudomonas aeruginosa (3.7%) 31/0 4 (3.6%)

Gram-positive
bacteria (66%)

Listeria monocytogenes (16%) 62/0 41 (37%)
Staphylococcus aureus (14%) 32/9.1 31 (28%)
Enterococcus faecalis (5.8%) 42/0 3 (2.7%)

Fungi (1.7%) Saccharomyces cerevisiae (0.6%) 67/0 2 (1.8%)
Mesophiles, Aspergillus parasiticus,
Zygosaccharomyces bailii, Fusarium
moniliforme, Aspergillus ochraceus
(0.2%)

80/20 3 (2.7%)

– d – –

a % relative to CDS (number of combinations across documents and species).
b % relative to TC (number of total combinations) for that species.
c % relative to the number of relevant documents.
d Indicates there were no more combinations.
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the outcomes were of synergy. Here, nisin was combined more fre-
quently with the lactoperoxidase system and EDTA (5.5% of the
number of combinations across documents for that species).

Finally, for S. cerevisiae, there are three combinations across two
documents, and 67% of them were synergistic. Nisin was com-
bined with two formulations of a drug, namely d-limonene and
d-limonene nanoemulsion, and was also combined with a method,
namely ultrahigh pressure. In contrast to the polymyxins, nisin was
frequently tested alongside physical methods such as high pres-
sure or pulsed electric fields in order to improve food preservation
[42].

Analysis of the targets of the more and less successful combi-
nations with nisin is presented in Supplementary Table S4. Unlike
the case for colistin and polymyxin B combinations, some of top
targets are unique of synergistic combinations, i.e. they are not re-
peated in the other combination category’s targets. These unique
targets, namely the 50S ribosomal protein L10, the DNA-directed
RNA polymerase subunit β and the DNA-directed RNA polymerase
subunit β′, could be used as ‘guidance’ to test other agents with equal
or similar targets and to validate the possibility of additional syn-
ergistic combinations with nisin. This type of directed approach has
more probability of success and reduces costs in terms of time and
resources, which are often significant in combination studies.

4. Conclusions

This work presented an integrative knowledge methodology for
the reconstruction of relevant experimental results on antimicro-
bial combination tests, based on text mining and network mining
methods and techniques. This methodology enabled the recon-
struction of antimicrobial combinations involving colistin, polymyxin
B and nisin and supports its periodical update, i.e. the curation of
new publications on these topics.

This methodology holds great potential in mining combination
networks for other AMPs. The aim would be to retrieve docu-
ments with similar text ‘profiles’, i.e. with similar core contents and
semantics. So, the only adjustment would be changing the name
of the AMP in question, alongside any possible synonyms or name
variants, in the PubMed query and thus retrieve new pools of po-
tentially relevant articles (i.e. describing experimental testing of
combinations involving that AMP). Therefore, in the near future, the
database will cover combination networks for a broader scope of
AMPs.

Both the continuous update and broader scope of the database
will be invaluable for exploring the possibility of building mathe-
matical models capable of inferring other novel combinations that
could be further experimentally validated. Such mathematical mod-
elling will likely incorporate various pharmacological/biochemical
features on both the agents and the reported combinations and will
emerge from the testing of multiple data mining algorithms.
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