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A B S T R A C T

Depending on the light regime inside the photobioreactor (PBR) and the flow pattern verified, cells experience
different histories with respect to the light regimes they are exposed to, wavelengths of light absorbed and period
of time spent under each specific condition. The high heterogeneity of the radiation field inside the PBR – due to
absorption and scattering of radiation by microalgae/cyanobacteria cells - and the fluctuating cells' light history
(CLH), greatly influence photosynthetic conversion and ultimately biomass productivity.

This work presents a relatively low-cost, simple, experimental technique which combines light regime and
flow pattern characterization, to determine the CLH inside PBRs. A fibre optic spectrometer and probes were
employed for quantitative and qualitative light characterization/mapping inside the PBR – in this study a split
cylinder airlift photobioreactor (SCAPBR) was used – while the flow pattern was determined by means of two
perpendicular digital cameras which were used to follow fluorescent alginate particles.

Temporal and spatial aspects of light patterns were obtained using a MATLAB algorithm that enables
automatic merging and synchronization of the data obtained by those two approaches. This provided
information about the average time during which cells are subjected to each light regime and how they
alternate between them, thus characterizing their CLH.

1. Introduction

One of the most important and challenging topics in phototrophic
cultivation of microalgae and cyanobacteria is associated with the
optimization of biomass productivity and, consequently, its cost-effec-
tiveness. In order to optimize the cultivation system productivity, the
balance between different factors such as light supply, reactor hydro-
dynamics and mass transfer must be considered.

Qualitative (wavelengths) and quantitative (intensity) light char-
acterization inside the photobioreactor (PBR) is of utmost importance
since microalgae and cyanobacteria growth and metabolite production
are influenced by light intensity and their ability to use the photons'
energy, which depends on the wavelength of radiation [1]. Addition-
ally, turbulent flow conditions and light gradients frequently occur
together in PBRs. Thus, photosynthetic cells cultivated in such reactors
experience light intensity fluctuations that vary in extent and fre-
quency, being highly dependent on hydrodynamic conditions and PBR
geometry [1,2].

It is also known that the conversion of light energy to biomass can
be enhanced if cells are forced to repeatedly cycle between the light and
dark areas of the PBR. This is achieved when ordered mixing forces the
cells to experience periodical light/dark cycles. The effect of these
cycles has been extensively studied [3–5], and it was found that
periodical light/dark cycles provided by a regular and defined pattern
flow [6], offered for example by airlift PBRs, might enhance growth
[2,7] in opposition to random mixing. Several authors have shown that
light patterns influence microalgal growth and product formation
[3,5,8–10]. In addition light intensity and duration of light-dark (LD)
intervals are also very relevant parameters [11].

These studies reveal how crucial is the determination and manip-
ulation of cells' light history (CLH) as a strategy to optimize biomass
productivity. However, to determine and then control the CLH, it is
necessary to know and integrate the light regime characterization (light
characterization in each PBR point) with the cells' flow pattern inside
de PBR.
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1.1. Determination of light distribution inside PBRs

Different options to obtain light characterization inside PBRs can be
found in the literature but generally they use a similar approach, which
is based on theoretical models [12–17]. For the construction of an
accurate model, both light absorption and scattering by pigments and
cells, respectively, have to be considered [18] [19] developed a two-
flux formulation based on a one-dimensional light attenuation hypoth-
esis and assuming both a quasi-collimated field of radiation and a
normal light incidence. This model was subsequently used by different
authors [20,21]. A methodology where a spherical quantum sensor is
used to obtain the incident light flux (in an empty PBR) is described by
[20]. The results obtained through this methodology were then used as
initial conditions in the light transfer modeling.

Most of light characterizations described on the literature are based
on the one-dimensional hypothesis i.e., light attenuation occurs in a
unique main direction, perpendicular to the illuminated face of the PBR
[12,22–26] as evidenced by the list presented by [27]. Additionally, to
simplify calculations, the models generally do not consider the wave-
length in the determination of light distribution [21]. The utilization of
models for light characterization, especially in more complex geome-
tries, can be complex and time-consuming [21,27].

1.2. Determination of cell flow pattern

Regarding the determination of cell trajectory inside bioreactors,
there are two main approaches described in the literature: 1) experi-
mental measurement using particle tracking or 2) Computational Fluid
Dynamics (CFDs).

Some of the most common experimental measurement techniques
include Particle Image Velocimetry (PIV) [20], Laser Doppler Veloci-
metry (LDV) [28], and Radioactive Tracking Particle (RTP) [29], which
can be computed automatically (CARTP) [30,31]. These techniques can
also be used to validate results obtained by CFDs calculations [32–39].
The main limitations of all these techniques used for determination of
cell trajectory are the price, complexity and, when models and CFDs are
used, the need for complementary experimental techniques in order to
validate the results. These techniques often analyse sections and not the
PBR as a whole. This means that several experiments are needed in
order to measure the cell flow pattern in all PBR sections, being the
trajectories based on statistical data and not on the real trajectory of the
main particles. Given those limitations, it is important to have a method
that allows measuring the cell flow patterns in the complete volume of
PBRs, being the statistical data retrieved from the global trajectory.

1.3. Determination of cells' light history

In order to automatically determine the CLH, it is necessary to
merge and integrate data from light characterization and cells´ flow
pattern obtained from different techniques, which can be a very
challenging and complex task due to the different nature of outputs
available. The ability to merge the results from both studies is thus of
extreme importance in order to be able to describe properly the light
history of a single photosynthetic cell [1] and therefore, determinate
the CLH of the whole culture.

Although there are several techniques for the characterization of
light distribution and determination of flow patterns inside the PBR, to
our knowledge there is no technique available to integrate these two
characteristics in order to determine the time that cells spend in each
light regime and the frequency of light/dark cycles that cells are
exposed to; further, it would be advantageous if that could be done
automatically, using low-cost equipment, and in a simple way.

Therefore, in this work we propose a user-friendly platform to
couple light regime characterization with particle tracking in order to
evaluate the CLH inside PBRs (Fig. 1). This technique allows a full light
characterization based on experimental results obtained with optical

fibre technology, which provide accurate and precise information
regarding quantitative (photosynthetic photon flux density) and quali-
tative (spectral intensity distribution) aspects of light patterns in each
point of the PBR [1].

The cell trajectory is determined using optical detection of a single
fluorescent particle that is followed by a set of two synchronized video
cameras. The results obtained with these two techniques are then
integrated and combined in order to obtain the CLH or “temporal
irradiance pattern” (Fig. 1). Other hydrodynamic parameters such as
liquid velocity, circulation time and Reynolds number can also be
estimated using the outputs of this technique.

For exemplification purposes and in order to demonstrate the
technique's fundamentals, outputs and potentialities, a split cylinder
airlift PBR (SCAPBR) previously described elsewhere [2] will be used as
case-study. The main steps, from light regime characterization to flow
pattern determination (using optical fibre technology and image
analysis, respectively) and the process of merging/synchronization of
data in order to obtain the CLH will be presented and explained through
illustrative results obtained by the utilization of this technique in the
SCAPBR characterization.

2. Procedure for cells' light history determination – SCAPBR case
study

A split cylinder airlift photobioreactor (SCAPBR) was used to test
this new technique for CLH determination (Fig. 2). Both the light
regime characterization and flow pattern determination were done in
the SCAPBR 50, being the first performed in the presence of different
concentrations of Chlorella vulgaris P12 and the second in the absence of
cells. This SCAPBR 50 - previously described and hydrodynamically
characterized elsewhere [2] - is made of 3.8 mm thick, transparent poly
(methyl methacrylate) with 90 mm of internal diameter. The liquid
height was 600 mm (total height 700 mm) and the working volume was
3.7 L, with a riser/downcomer ratio of 1.0 (riser is represented in Fig. 2
by a upward arrow while the downcomer by a downward arrow). The
baffle, also made of transparent poly(methyl methacrylate) to allow
light penetration, is 4.0 mm thick and is positioned 50 mm from the
bottom of the reactor and up to 50 mm below the liquid level.

The culture was mixed by sparging air through a sparger composed
by nineteen needles uniformly spaced. The needles, with 0.25 mm of
diameter (dn) and 20 mm length (Ln), had 5.0 mm of distance between
them. The shape and size of the needles ensure the formation of small
and well-defined bubbles. Needles' placement enables a uniform bubble

Fig. 1. Technical approach for CLH determination.
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distribution along the PBR.
The cells of Chlorella vulgaris P12 used during this work were grown

under the conditions described by [2] and placed in the SCAPBR for
light regime characterization. Flow pattern determination was done in
the absence of cells.

2.1. Light regime characterization

The SCAPBR was placed in a fully closed compartment with
controlled temperature (25 °C). Illumination was provided by 8 fluor-
escent lamps (Sylvania Standard 36 FW) all placed at the same distance
from the SCAPBR surface (200 mm) and equidistant to each other
(60 mm) on one side of the SCAPBR.

A photosynthetic photon flux density (PPFD) of 250 μmol m−2 s−1

was used, as determined (in triplicate) behind the front surface of the
SCAPBR at 5 different points in the absence of the microalgal culture,

by averaging the values of light intensities measured with a LI-COR
Quantum/Radiometer/Photometer Model LI-250 Light Meter (San
Diego, CA, USA).

The light radiating from the central baffle to the interior of the
SCAPBR was also measured. The SCAPBR was filled with water and
externally covered with opaque paper except in the line that represents
the intersection of the central baffle with the SCAPBR column, allowing
the penetration of light there. The light flux conveyed by the central
baffle was measured to be ca. 25 μmol m−2 s−1 (at the baffle surface).
This value is the average of the measurements (in triplicate) in 5
different points of the baffle and is independent of cell concentration,
since the baffle is filled with water.

The quantitative and qualitative light characterization allows an
extensive mapping of light regime in virtually all the SCAPBR volume at
different cell concentrations. Therefore, the output of this light regime
characterization will be the light intensity (in absolute value or per
wavelength) in each point of the PBR through a 3D coordinates system.
This data can be visualized if needed (Figs. 3 and 4) using appropriate
software (e.g. Excel or OriginLab) or simply combined with flow pattern
determination data in order to obtain the CLH.

2.1.1. Quantitative light characterization
Quantitative characterization of light regime was performed, as

previously described [1], using a fibre optic spectrometer AvaSpec-
2048-4-DT (2048 pixel, 200–1100 nm) coupled with a standard trans-
mission probe, model T300-RT-VIS/NIR, controlled by AvaSoft 6.0
software. Data were acquired between 200 and 1100 nm, but only the
range between 400 and 700 nm (Photosynthetically Active Radiation -
PAR) was used for calculations.

In this case, quantification of the light penetrating in the culture was
performed at different cell concentrations (ranging from 0.10 to

Fig. 2. Top and frontal view of experimental setup for CLH determination. SCAPBR 50 (A); Camera 1 (B); Camera 2 (C); Spectrometer (D); Data acquisition and processing (E); Optical
transmission probe (F); Light source (black or white light depending on the objective) (G); Fluorescent alginate sphere (H). The xn, yn and zn represent the coordinates in which the
SCAPBR was subdivided for data processing purposes and the grey circles in top view represent the sample points for light characterization.

Fig. 3. Illustrative light intensity profiles (top view) inside the SCAPBR obtained at
different C. vulgaris cell concentrations of 0.25 g L−1 (A) and 1.0 g L−1 (B).
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1 g L−1), different radial positions and light penetration distances with
5 mm intervals (Fig. 2). All measurements were made in triplicate, and
in all experiments the standard deviation was below 5%.

As example, Fig. 3 shows the light intensity (L.I.) variation profiles
at two of the different concentrations tested (0.25 g L−1 and
1.0 g L−1). For visualization purposes the graphical representation of
quantitative light characterization data was performed using OriginLab
6.1 software. However, if the purpose is just to determine the CLH,
graphical representation is not required. The maximum cell concentra-
tion used for graphic purposes was 1.0 g L−1 because above that value
no changes in the light profile were observed inside the 5 mm scale
used (data not shown).

Through Fig. 3, it is possible to see that at cell concentrations higher
than 1.0 g L−1, the cells only have access to light when they circulate
along the SCAPBR walls and along both sides of the central baffle wall.
Despite these results about light intensity profiles inside the PBRs
provide very useful information, it is not possible to use its full potential
while cells' flow pattern is not known.

2.1.2. Qualitative light characterization
There is no need for additional assays to obtain qualitative data,

since the procedure previously described for quantitative data also
supplies the qualitative information [1]. The same equipment and
software were thus used.

The “quality” (wavelength) of light penetrating into the culture is
expressed through the relative light intensity (RLI), which is the ratio of
the light intensity (LI), at each wavelength, measured at a given point in
the SCAPBR (at different cell concentrations, different radial positions,
and light penetration distances) and the reference light intensity (LIR),
which is measured at the same wavelengths inside the vessel filled with
medium in the absence of cells (Eq. (1)).

LI LIRLI = ∗100R (1)

All measurements are made in triplicate and in all experiments the
standard deviation was below 5%.

Fig. 4 shows an example of the information that can be obtained
with this technique, i.e. the qualitative light characterization in the
SCAPBR filled with Chlorella vulgaris (1.0 g L−1) at different light
penetration distances. As for the quantitative light characterization,
there is no need for graphical representation if the objective is just to
obtain the CLH, since the information that will be used is the intensity
of each wavelength in each of the PBR's 3D coordinates.

2.2. Particle tracking technique

The flow pattern visualization technique is based on tracking one
neutrally buoyant and fully wet alginate (0.5% w/v) sphere having a
mean size of 4.0 mm and containing riboflavin (R4500, Sigma-Aldrich)
at 0.001% w/v. This particle had a relative density of 0.998 (using
water at 25 °C as reference).

The utilization of such particle enables establishing a versatile (and
cheap) flow pattern visualization technique because it is very easy to
produce alginate particles with different sizes and densities allowing to
characterize the flow patterns of liquids or denser particles like cell
flocs [40].

The alginate particle is placed in the liquid phase and illuminated at
90 degrees by two fluorescent black lights (F20T9/BLB) in order to
make the incorporated riboflavin glow.

Particle flow was followed by recording sets of images with 2
perpendicular cameras (Canon EOS 600D - frame rate of 50 images/s)
placed around the SCAPBR and connected to a PC. The two cameras
were adjusted to the desired height and distance from the SCAPBR
(approx. 50 cm) so that cameras cover the entire reactor. The data
obtained (images) were stored in the computer.

The film was processed using Premiere Pro CS5 (Adobe Systems
Incorporated) and divided in a sequence of at least 12,000 image
snapshots (see examples of black and white frames in Fig. 5). Such
experiments were implemented using an air–water system at two
different values of gas superficial velocity (UGr) - 0.44 cm·s−1 and
0.77 cm·s−1 – which is directly related to the liquid circulation velocity
in the reactor. The particle movement inside the SCAPBR was recorded
until at least 100 trajectories were captured.

2.2.1. Flow pattern visualization
The particle tracking technique described above allows recording

the trajectory of a buoyant particle which movement simulates the
main trajectories of the microalgae cells inside a PBR.

Knowing how the cells move in and out of illuminated zones of the
PBR allows understanding and optimizing PBR productivity [31]. In
that sense, the existence of a technique that could give a fast and
accurate visualization about the flow pattern inside the PBR can be very
useful for optimization purposes. For example, if the objective is to
maintain a well-defined and repetitive flow pattern inside an airlift
bioreactor, the operator can set the initial operational parameters (e.g.
aeration rate or baffle position) and after 3–5 min a descriptive

Fig. 4. Relative light intensity (RLI) spectra for different light penetration distances within the SCAPBR (cell concentration = 1.0 g L−1); A - 5 mm; B - 10 mm; C - 15 mm; D - 20 mm, E -
25 mm;
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representation of the flow pattern inside the bioreactor will be
presented. Depending on the results, the operator can change the
operational parameters and repeat the process.

Fig. 4 shows different frames in which the alginate particle is visible
in a plane parallel to the light source (used for growth), i.e. a plane
perpendicular to the central wall of SCAPBR (riser is on the left side and
downcomer on the right side of each individual SCAPBR image).

The flow pattern visualization (Fig. 6) can be achieved by over-
lapping all the frames (obtained during the footage). The frame
overlapping was done using the Startrail application (Startrails(C) v
2.3, Achim Schaller, 2013) in order to obtain a clear image of the
trajectory made by the particle inside the SCAPBR.

Flow visualization studies such as those shown in the right image of
Fig. 5 and in Fig. 6 provide a useful insight into PBRs circulation
patterns, identification of dead zones and regions of intense turbulence.
Moreover, by a primary data treatment (cf. 2.2.2) it is possible to obtain
other liquid-phase properties such as: liquid velocity and circulation
time. Finally, it is possible to combine the results of two or more rounds
(Fig. 6) and have a clear idea of the main trajectories from the alginate
particle.

As an example, the flow pattern inside the SCAPBR operating at two
different values of gas superficial velocity (UGr) - 0.44 cm·s−1 and
0.77 cm·s−1 – are presented (Fig. 6).

Black and white pictures are shown because this will facilitate
further image processing (cf. Section 2.2.2). Though, for results
interpretation purposes it is easier if each of the particles' complete

circulation trajectories in the reactor are marked with different colours,
which can be done automatically through software such as Adobe
Photoshop CS5. Also, in each of the pictures presented in Fig. 6, only 2
trajectories (1 trajectory represent 1 particle circulation, which means
that the time needed for 1 trajectory can be regarded as circulation
time) are shown. This was done only for visualization purposes, since
we can add as many trajectories as we want using this technique.

With just a visual analysis of these images (without the further
analysis that will be presented in the following sections) it is possible to
i) take conclusions regarding the chaotic or well-defined flow pattern
that the particle is following; ii) identify dead zones inside the reactor;
iii) observe if particles alternate between theoretical light and dark
regions of the reactor or if they get trapped in a particular region. All
these observations can be quickly and easily re-evaluated after some
changes in operational parameters or reactor design enabling conclu-
sions on how those changes can affect those observations. Therefore,
this is a low-cost, fast and intuitive technique that can be used during
PBR design and optimization to visualize the flow pattern. However, to
get quantitative information from these results the images need to be
processed (cf. Section 2.2.2).

2.2.2. Primary image data treatment – particle detection and data
extraction from the videos

In order to automatically and accurately obtain data regarding the
particle's flow pattern and velocity, the frames obtained from the videos
(cf. 2.2.1) were processed and analysed using an in-house built
MATLAB algorithm. This technique consisted in the detection and
parameterization of all the objects in each frame based on combinations
of size and grey-scale intensity. Considering the differences in bright-
ness, shape and size of the alginate particle when compared to the air
bubbles inside the SCAPBR, an approach similar to the two-parameter
phase discrimination [41] was selected as the most suitable and the
particle was easily identified in each frame (Fig. 7).

In order to enable the detection of the alginate particle, the first step
of the algorithm was to make the image background as uniform as
possible since the original image background presented variable levels
of darkness. The image contrast was then increased to maximize the
particle detection followed by an image binarization into black and
white form (Fig. 7) via thresholding. Consequently, it was possible to
apply a “bwlabel” function to identify all the objects in the image. As the
particle dimensions are known it was possible to isolate the bubble from
particles and by previous calibration obtain its position in the plane.
Therefore, properties such as: particle position in 3D coordinates,
average intensity and area were obtained from the binary images of
all video frames. With the intention of implementing a methodology to

Fig. 5. Image overlapping of sequential frames (t0 – tfinal) in order to obtain a complete trajectory.

Fig. 6. Alginate particle trajectories (2 per picture) at two different gas superficial
velocities (0.44 cm·s−1 and 0.77 cm·s−1) inside the SCAPBR.
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determine the 3D coordinates and relate them with each camera pixel,
reference points were set in the SCAPBR before flow pattern tests were
performed.

2.3. Merging and synchronization of light regime and flow pattern data

As result of the steps described in Sections 2.1 and 2.2 a complete
mapping of the SCAPBR was obtained regarding light distribution and
particle position. This means that information associated with light
regime and particle position can be attributed to each SCAPBR's 3D
coordinate (x, y, z). However, these two independent groups of data
need to be merged and synchronized in order to obtain the CLH (Fig. 8).

Since the 2 cameras work simultaneously, the centre particle height
(z coordinate) and time are used as common values to obtain the x and
y coordinates of the particle. This means that it is relatively simple to
obtain the location in 3D coordinates. Moreover once two coordinates
from each camera (z and time) are used to define the 3D position, errors
can be detected easily and removed for statistical analysis, which
increases the system's robustness.

After knowing the global particle position over time, it is easy to
calculate velocity and the average time each particle spends in each
light regime area, allowing to finally obtain the CLH.

3. Technique output and potentialities

This technique was specially developed to assist in the design,
characterization and optimization of photobioreactors for the cultiva-
tion of photosynthetic microorganisms. The procedure consists in
merging and synchronization of data from two different techniques
that can be used separately for: 1) characterizing the light regime; 2)
characterizing and visualizing the flow pattern. However, the combined
use of these techniques boosts their individual potentialities by
enabling the determination of the CLH inside the PBR. This is of
extreme importance since no affordable, accurate and user-friendly
solution for CLH is currently available.

The very simple MATLAB algorithm developed allows not only to
synchronize data from both techniques, but also to make very simple
calculations that enable us to obtain: i) a report with the time, particle
position (coordinates) and light intensity in each frame (Fig. 9); and ii)
a report with CLH and some basic hydrodynamic parameters (Fig. 10).

The results (outputs) presented in Fig. 10 were obtained by
averaging 100 circulations in the SCAPBR at a gas superficial velocity
(UGr) of 0.44 cm·s−1 and a cell concentration of 0.25 g L−1.

Outputs such as i) the fraction of time that the particle spends in
each light regime (CLH); ii) the average irradiance that the particle
experienced (CLH); iii) the average L/D frequency – the frequency at
which cells change from “light” conditions to “dark” conditions can be
easily determined by defining a “light” and a “dark” threshold and then
calculating the time that the particle takes to pass from a “light”
condition to a “dark” condition; iv) the circulation time – time between
successive passages of the alginate particle by a reference line; v) the
velocity in the downcomer and in the riser – time that the particle takes
to pass through each section (i.e. downcomer and riser) divided by its
length; vi) the gas holdup – it is obtained by measuring the difference
between the height of the surface of the liquid under aerated conditions
and its height under non-aerated conditions.

4. Conclusions

This paper presents the development of a novel user-friendly
platform to couple light regime characterization with particle tracking
in order to determine cells' light history during phototrophic cultiva-
tions.

The technique merges and synchronizes, by means of an in-house
developed MATLAB algorithm, the data from light characterization
(obtained using fibre optic technology) and flow pattern determination
(obtained by particle tracking). Through the algorithm, each 3D
position of the PBR is characterized both in terms of light and
presence/absence of the fluorescent tracer particle. This novel techni-
que has been successfully applied in a SCAPBR 50 used to cultivate C.

Fig. 7. Snapshot of alginate particle identification (white point in the green box) using MATLAB algorithm. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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vulgaris.
Illustrative results obtained during the implementation of this new

technique have been presented in order to describe the concept and
prove that it is suitable for the determination of CLH in PBRs providing
a direct and comprehensive tool for the design, characterization and
optimization of PBRs.
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