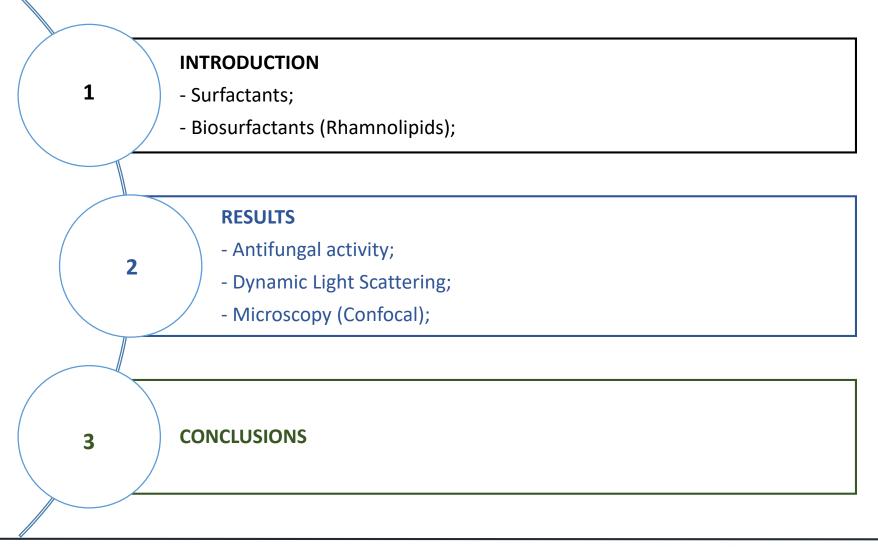
Linking life and technology to shape the future

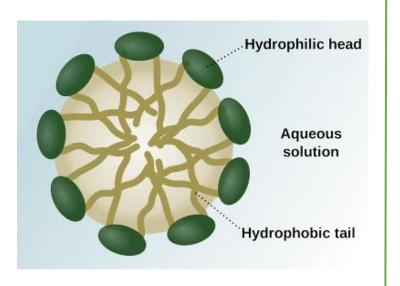
Effect of NaCl on the aggregation behavior of rhamnolipids and implications in their biological activity

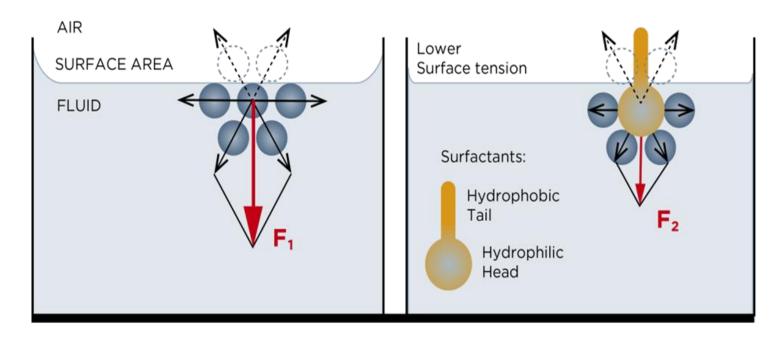
Ana I. Rodrigues, Eduardo J. Gudiña, José A. Teixeira, Lígia R. Rodrigues e-mail: isarodrigues_4@hotmail.com

> VII Iberian Meeting on Colloids and Interfaces (RICI7) Madrid 2017


CEB - Centre of Biological Engineering University of Minho

School of Engineering





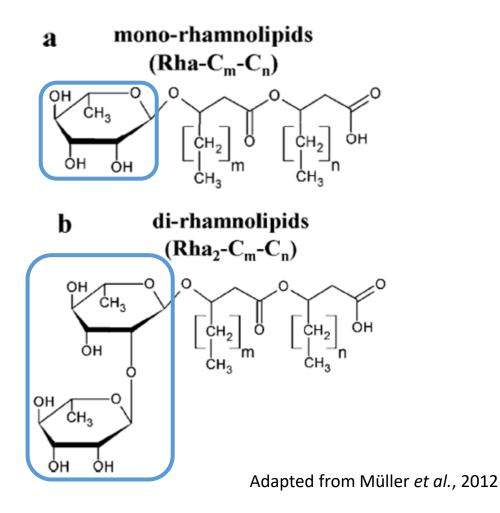
- ✓ Surfactants are amphiphilic compounds
- Contain hydrophilic and hydrophobic groups

 Reduce the surface or interfacial tension between two phases with different polarities

- Synthesized by different microorganisms : bacteria, yeasts and filamentous fungi
- Properties: low toxicity
 - high biodegradability high selectivity specific activity at extreme temperatures, pH and salinities
- Can be synthesized from renewable feed-stocks and agro-industrial wastes

Table 1. Structural classification of biosurfactants. Adapted from Müller *et al.*, 2012

Biosurfactant size	Structural class	Examples
Low-molecular- weight	Glycolipids	Mannosylerythritol-lipids Sophorolipids Rhamnolipids Trehaloselipids
	Lipopeptides/ lipoamino acids	Surfactin Lysin lipids Ornithine lipids
High-molecular- weight	Polymers	Proteins Lipoproteins Polysaccharides Lipopolysaccharides
	Oil/membranes	Glycerolipids Phospholipids Fatty acids

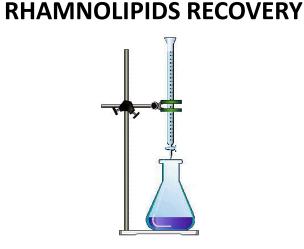


RHAMNOLIPIDS

 Rhamnolipids: one (a) or two (b) rhamnose molecules linked to one or two fatty acid tails of variable length

• They are mainly produced by the Gramnegative bacterium *Pseudomonas aeruginosa*

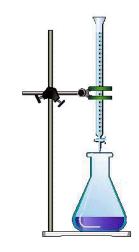
Production and recovery of rhamnolipids synthesized by P. aeruginosa #112



RHAMNOLIPIDS PRODUCTION

Conditions

Culture medium : Corn Steep Liquor + Sugarcane molasses (CSLM) Temperature: 37 °C Agitation: 180 rpm Fermentation Time : 144 h



Adsorption chromatography:

- polystyrene resin Amberlite XAD-2

• Elution (methanol)

RHAMNOLIPIDS CONGENERS PURIFICATION

Column chromatography:

- silica gel 60
 - Elution (Chloroform: Methanol mixtures with increasing polarity)

Yield =
$$3194 \pm 245 \text{ mg/L} (\text{cmc} = 50 \text{ mg/L})$$

Rodrigues, A. I. et al. Bioresource Technology 212 (2016) 144

Production and recovery of rhamnolipids synthesized by *P. aeruginosa* #112

✓ Characterization

Table 2. Rhamnolipid congeners produced by *P. aeruginosa* #112 in the culture medium CSLM identified by mass spectrometry.

Rhamnolipid congeners	m/z [M+Na] ⁺	Relative abundance	
Mono-Rhamnolipids			
Rha-(C ₁₀ -C ₈)	499.3	11.8 %	
Rha-(C ₁₀ -C ₁₀)	527.3	100 % *	
Rha-(C ₁₀ -C _{12:1})	553.3	10.4 %	
Rha-(C ₁₀ -C ₁₂)	555.4	13.8 %	
Di-Rhamnolipids			
Rha-Rha-(C ₈ -C ₁₀)	645.3	3.8 %	
Rha-Rha-(C ₁₀ -C ₁₀)	673.3	57.8 %	
Rha-Rha-(C ₁₀ -C _{12:1})	699.3	8.5 %	
Rha-Rha-(C ₁₀ -C ₁₂)	701.4	14.7 %	

Rodrigues, A. I. et al. Bioresource Technology 212 (2016) 144

* Most abundant ion.

Study of the biological activity of rhamnolipids against several fungi

Table 3. Growth inhibition percentages obtained with the cell-free supernatant and the crude rhamnolipid (RL) mixture produced by *P. aeruginosa* #112. The assays were performed at 25°C for 5 days.

Strain	[Rhamnolipids] (g/L)	Cell-free supernatant	Crude RL		
<i>Aspergillus niger</i> MUM 92.13	3.0	100.0 ± 0.0 ≠	20.3 ± 14.7		
	1.5	31.0 ± 2.4	13.0 ± 3.7		
	0.75	5.6 ± 8.5	8.1 ± 3.7		
	0.375	3.5 ± 3.2	17.1 ± 6.5		
<i>Aspergillus carbonarius</i> MUM 05.18	3.0	100.0 ± 0.0 ≠	22.6 ± 1.2		
	1.5	100.0 ± 0.0	29.5 ± 8.3		
	0.75	20.4 ± 9.1	26.7 ± 10.3		
	0.375	21.7 ± 4.6	24.0 ± 2.1		

Study of the biological activity of rhamnolipids against several fungi

Table 4. Growth inhibition percentages obtained with the cell-free supernatant and the crude rhamnolipid (RL) mixture produced by P. *aeruginosa* #112 at the optimized NaCl concentration. The assays were performed at 25°C for 5 days.

Strain	[Rhamnolipids] (g/L)	NaCl	Crude RL + NaCl	C	ell-free supernatant
<i>A. niger</i> MUM 92.13	3.0		100.0 ± 0.0	=	100.0 ± 0.0
	1.5	0.875 M	51.8 ± 1.2		31.0 ± 2.4
	0.75		53.2 ± 0.0		5.6 ± 8.5
	0.375		43.3 ± 1.2		3.5 ± 3.2
<i>A. carbonarius</i> MUM 05.18	3.0	0.375 M	100.0 ± 0.0	=	100.0 ± 0.0
	1.5		58.5 ± 3.8		100.0 ± 0.0
	0.75		47.2 ± 3.8		20.4 ± 9.1
	0.375		50.9 ± 6.5		21.7 ± 4.6

Growth Inhibition (%)

UNIÃO EUROPEIA

10

Study of the biological activity of rhamnolipids against several fungi

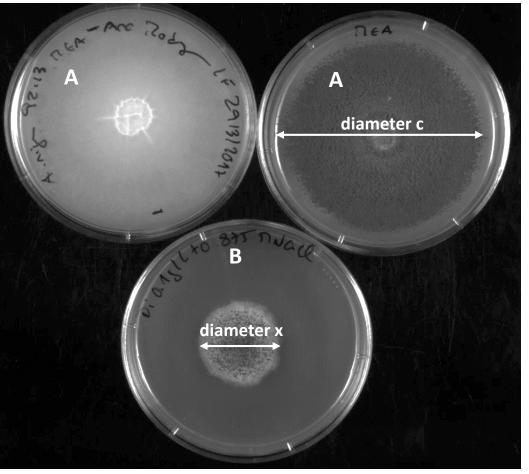


Table 5. Growth inhibition percentages obtained with the purified mono-rhamnolipidand di-rhamnolipid congeners.

A. niger MUM 92.13					
NaCl	Di- Rhamnolipid (g/L)	Inhibition (%)	Mono- Rhamnolipid (g/L)	Inhibition (%)	
	0.75	100.0 ± 0.0	1.5	41.8 ± 1.4	
	0.375	100.0 ± 0.0	0.75	21.2 ± 2.4	
0.875 M	0.2	100.0 ± 0.0	-	-	
	0.1	61.9 ± 1.2	-	-	
	0.05	52.4 ± 1.2	-	-	

*The assays were performed at 25°C for 5 days

Growth inhibition x (%) =
$$\left(1 - \frac{\text{diameter } x}{\text{diameter } c}\right) \times 100$$

A: Control B: 0.1 g _{Di-Rhamnolipid}/L +0.875M NaCl

Study of the biological activity of rhamnolipids against several fungi

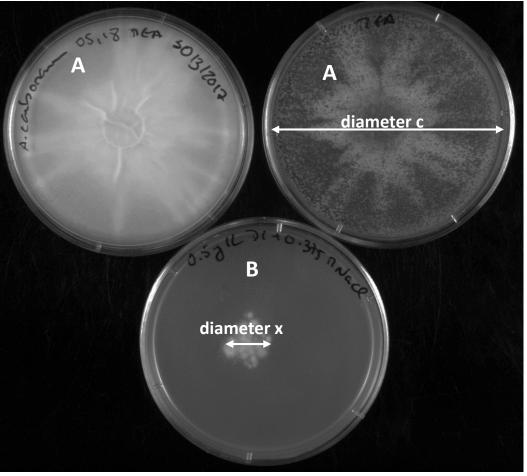


Table 6. Growth inhibition percentages obtained with the purified mono-rhamnolipid anddi-rhamnolipid congeners.

A. carbonarius MUM 05.18					
NaCl	Di- Rhamnolipid (g/L)	Mono- Rhamnolipid (g/L)	Inhibition (%)		
	0.75	100.0 ± 0.0	1.5	26.4 ± 2.7	
	0.6	80.7 ± 1.2	0.75	25.2 ± 4.4	
0.375 M	0.5	73.8 ± 1.2	-	-	
	0.375	72.6 ± 1.3	-	-	
	0.05	52.4 ± 1.2	-	-	

*The assays were performed at 25°C for 5 days.

Growth inhibition
$$x$$
 (%) = $\left(1 - \frac{\text{diameter } x}{\text{diameter } c}\right) \times 100$

A: Control B: 0.5 g _{Di-Rhamnolipid}/L +0.375M NaCl

Study of the biological activity of rhamnolipids against several fungi

Dynamic light scattering (DLS)

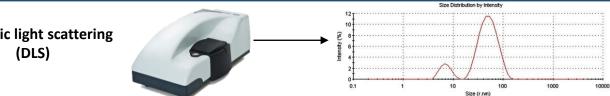
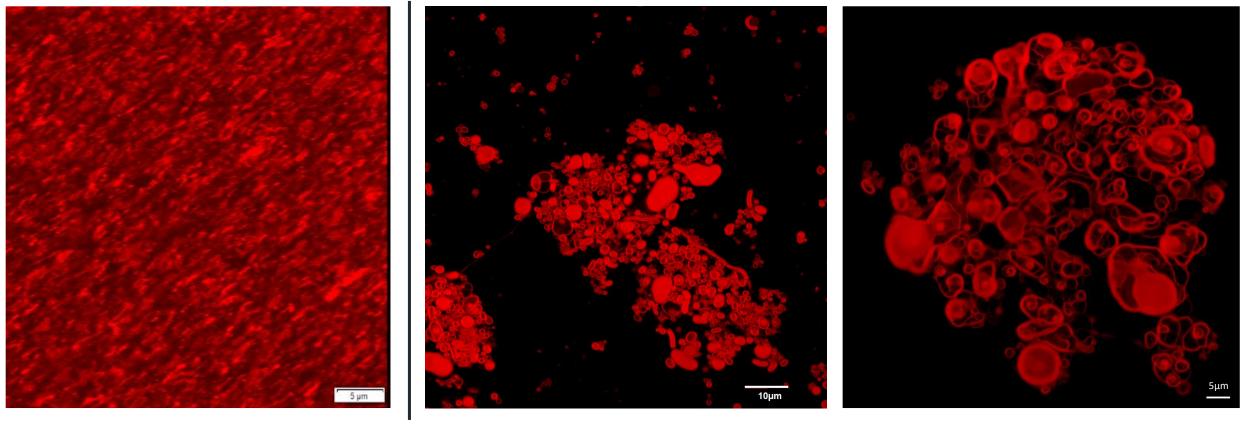


Table 7. Effect of NaCl on the micellar size distribution of the crude rhamnolipid mixture and the mono-rhamnolipid and dirhamnolipid congeners determined by DLS analysis.

Rhamnolipid	Rhamnolipid [Rhamnolipids] (g/L)		Size (nm)	PDI
		0.0	302.8 ± 7.4	0.549 ±0.009
Crude (Mixture)	1.5	0.375	456.6 ± 42.2	0.596 ± 0.106
(0.875	2343 ± 154.1	0.753 ± 0.190
		0.0	140.3 ± 2.0	0.263 ± 0.006
Mono-Rhamnolipid	1.0	0.375	2212 ± 444.1	0.890 ± 0.107
		0.875	↓ 4674 ± 359.8	1.000 ± 0.000
		0.0	133.1 ± 4.9	0.373 ± 0.042
Di-Rhamnolipid	0.5	0.375	> 10 000	-
		0.875	> 10 000	-

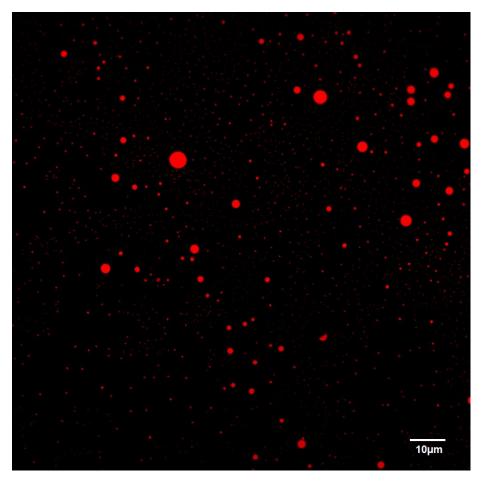
CSMPETE 2020



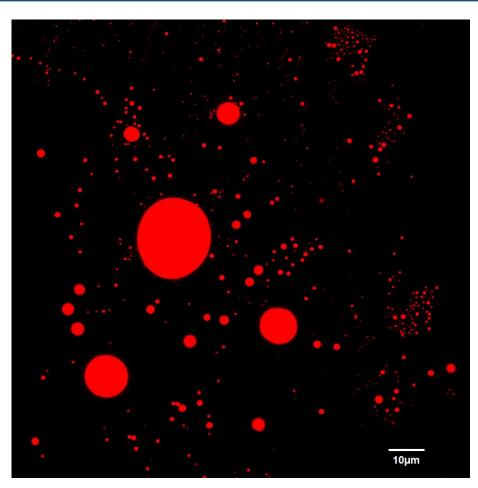
Study of the biological activity of rhamnolipids against several fungi

Crude Rhamnolipid (Mixture)

Crude Rhamnolipid (Mixture) + 0.875 M NaCl



14



Mono-Rhamnolipid + 0.875 M NaCl

Di-Rhamnolipid + 0.875 M NaCl

- ✓ The rhamnolipids produced in the culture medium CSLM exhibit antifungal activity against A. niger MUM 92.13 and A. carbonarius MUM 05.18
- ✓ The antifungal activity is lost during the process of rhamnolipids recovery
- ✓ The addition of NaCl alters the aggregation behavior of the crude rhamnolipids mixture restoring their antifungal activity
- ✓ The di-rhamnolipid congeners are responsible for the antifungal activity

✓ The rhamnolipids produced by *P. aeruginosa* #112 are a promising alternative to the chemical fungicides

ACKNOWLEDGEMENTS

Prof. Lígia Rodrigues

Prof. José Teixeira

Dr. Eduardo Gudiña

This study were supported by:

Linking life and technology to shape the future

Thank you for your attention

Centre of Biological Engineering University of Minho Campus de Gualtar 4710-057 Braga

f 🕥 🔂 in 👰 t 🧷

Email:ceb@ceb.uminho.ptWebsite:www.ceb.uminho.pt

CENTRE OF BIOLOGICAL