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Abstract: In many longitudinal studies information is collected on the times of
different kinds of events. Some of these studies involve repeated events, where a
subject or sample unit may experience a well-defined event several times along
his history. Such events are called recurrent events. In this work we consider
the estimation of the marginal and joint distribution functions of two gap times
under univariate random right censoring. We also consider the estimation of the
bivariate survival function.

Keywords: Censoring; Kaplan-Meier; Nonparametric estimation; Recurrent events;
Survival Analysis.

1 Introduction

In many longitudinal studies, subjects can experience recurrent events. This
type of data has been frequently observed in medical research, engineering,
economy and sociology. In medical research, the recurrent events could be
multiple occurrences of hospitalization from a group of patients, multiple
recurrence episodes in cancer studies, repeated heart attacks or multiple
relapses from remission for leukemia patients. In this work we consider the
estimation of the marginal and joint distribution / survival functions of
the gap times under univariate random right censoring. These issues have
received much attention recently. Among others they were investigated by
Lin, Sun and Ying (1999), de Uña-Álvarez and Meira-Machado (2008), de
Uña-Álvarez and Amorim (2011) or Moreira, Araújo and Meira-Machado
(2017).

2 Nonparametric estimators

In the context of recurrent event data, each individual may go through a
well-defined event several times along his history. Assume that each study
subject can potentially experience K consecutive events at times T1 < T2 <
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... < TK , which are measured from the start of the follow-up. In this work
we are primarily interested in the gap times Y1 := T1, Y2 := T2 − T1, ...,
Yk := Tk − Tk−1, k = 2, ...,K. For simplicity we assume K = 2.
Then, (Y1, Y2) is a vector of gap times of successive events, which we assume
to be observed subjected to (univariate) random right-censoring. Let C be
the right-censoring variable, assumed to be independent of (Y1, Y2). Because

of this, the observed data consists of (Ỹ1i, Ỹ2i,∆1i,∆2i), 1 ≤ i ≤ n, which

are n independent replications of (Ỹ1, Ỹ2,∆1,∆2), where Ỹ1 = Y1 ∧ C,

∆1 = I(Y1 ≤ C), Ỹ2 = Y2∧C2, ∆2 = I(Y2 ≤ C2) with C2 = (C−Y1)I(Y1 ≤
C) the censoring variable of the second gap time. Here and thereafter,
a ∧ b = min(a, b) and I(·) is the indicator function.
Let Fk, k = 1, 2 denote the distribution function of the k-th event time Tk.
Since Tk and C are independent, the Kaplan-Meier product-limit estima-
tor (Kaplan and Meier, 1958) based on the pairs (T̃ki,∆ki)’s, consistently
estimates the distribution of the time to the k-th event. Because Y2 and C2

will be in general dependent, the estimation of the marginal distribution
of the second gap time is not a simple issue. The same applies to the joint
distribution function F12(t1, t2) = P (Y1 ≤ t1, Y2 ≤ t2) and the joint sur-
vival function S12(t1, t2) = P (Y1 > t1, Y2 > t2). Some estimators for these
quantities will be presented below.
Below we present several different approaches for estimating the bivariate
distribution function of (Y1, Y2). An estimator based on Inverse Probability
of Censoring Weights was first introduced by Lin, Sun and Ying (1999):

F̂ IPCW
12 (t1, t2) =

1

n

n∑
i=1

I(Ỹ1i ≤ t1)∆1i

Ĝ1(Ỹ1i)
− 1

n

n∑
i=1

I(Ỹ1i ≤ t1, Ỹ2i > t2)

Ĝ(Ỹ1i + t2)
.

where G̃1 and G̃ stand for the Kaplan-Meier estimator (of the censoring

distribution) based on the (Ỹ1i, 1−∆1i)’s and (T̃2i, 1−∆2i)’s, respectively.
A simple estimator based on the Kaplan-Meier weights was later introduced
by de Uña-Álvarez and Meira-Machado (2008). The idea behind their esti-
mator is to weight the data by the Kaplan-Meier weights (Wi) pertaining
to the distribution of the total time (in this case, T2) of the process:

F̂ KMW
12 (t1, t2) =

n∑
i=1

WiI(Ỹ1i ≤ t1, Ỹ2i ≤ t2).

A related estimator based on presmoothing (F̂ PKMW
12 ) was later proposed

by de Uña-Álvarez and Amorim (2011). Successful applications of pres-
moothed estimators include nonparametric curve estimation, regression
analysis and estimation of the transition probabilities (Moreira et al. 2013).
Given that P (Y1 ≤ t1, Y2 ≤ t2) = P (Y2 ≤ t2 | Y1 ≤ t1)P (Y1 ≤ t1) we also
consider the landmark estimator (LDM) for which to estimate P (Y2 ≤ t2 |
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Y1 ≤ t1) the analysis is restricted to the individuals with an observed first
event time less or equal than t1. This is known as the landmark approach
(van Houwelingen et al. 2007). The corresponding estimator (LDM) is given
by

F̂ LDM
12 (t1, t2) =

n∑
i=1

W
(t1]
i I(Ỹ2i ≤ t2)× F̃KM

1 (t1)

where FKM
1 is the Kaplan-Meier estimator of the distribution of the first

time and W
(t1]
i denote the Kaplan-Meier weights of the distribution of T2

computed from the given sub sample
{
i : Ỹ1 ≤ t1

}
.

In this work we also introduce new estimators which are constructed using
the cumulative hazard of the total time given a first time but where each
observation has been weighted using the information of the first duration.
The proposed estimator (WCH - weighted cumulative hazard) is given by

F̂ WCH
12 (t1, t2) = P̂ (Y1 ≤ t1)(1 − P̂ (Y2 > t2 | Y1 ≤ t1)) where P̂ (Y1 ≤ t1)

is estimated by the Kaplan-Meier estimator of the first event time and
P̂ (Y2 > t2 | Y1 ≤ t1) =

∏
v≤t2(1− Λ̂Y2|Y1≤t1(dv)),

where

Λ̂Y2|Y1≤t1(dv) =

∑n
i=1 I(Ỹ1i ≤ t1, Ỹ2i = v,∆2i = 1)/Ĝ(Ŷ1i + v)∑n
i=1 I(Ỹ1i ≤ t1, Ỹ2i ≥ v,∆1i = 1)/Ĝ(Ŷ1i + v)

.

Finally we compare the aforementioned methods with the estimator of the
bivariate distribution which is obtained using Nearest Neighbor Estimation
(NNE).
Now, we consider the estimation of the bivariate survival function S(t1, t2) =
P (Y1 > t1, Y2 > t2). For this quantity, the estimator constructed us-
ing the Kaplan-Meier weights was built assuming the following equality
S(t1, t2) = 1−P (Y1 ≤ t1)−P (Y1 > t1, Y2 ≤ t2) where the first probability
on the right hand side is estimated using the Kaplan-Meier estimator of
the first event and the second probability is estimated using Kaplan-Meier
weights pertaining to the distribution of the total time (i.e., T2) in a simi-
lar way as introduced above. The weighted cumulative hazard estimator of
the bivariate survival function is given by ŜWCH

12 (t1, t2) = P̂ (Y2 > t2 | Y1 >

t1)(1− P̂ (Y1 ≤ t1)) where P̂ (Y2 > t2 | Y1 > t1) is obtained using the same
ideas given above. This is the Wang and Wells (1998) estimator.
Finally, landmark-based estimators can be introduced to estimate the bi-
variate survival function. Given that P (Y1 > t1, Y2 > t2) = 1 − P (Y2 ≤
t2 | Y1 > t1)(1 − P (Y1 ≤ t1)) the idea is to estimate P (Y2 ≤ t2 | Y1 > t1)
by restricting the analysis to the individuals with an observed first event
time greater or equal than t1. The corresponding estimator (LDM) is given

by ŜLDM
12 (t1, t2) = 1 −

∑n
i=1 W

[t1)
i I(Ỹ2i ≤ t2) × (1 − F̃KM

1 (t1)) where W
[t1)
i

denote the Kaplan-Meier weights of the distribution of T2 computed from

the sub sample
{
i : Ỹ1 > t1

}
.
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3 Example of Application

Our methodology is motivated by the re-analysis of the German breast
cancer data. In this study, patients were followed from the date of breast
cancer diagnosis until censoring or dying from breast cancer. From the total
of 686 women, 299 developed a recurrence and 171 died. These data can
be viewed as arising from a model with two consecutive events: ‘Alive with
Recurrence’ and ‘Dead’. In this section, we present plots for the proposed
methods to estimate the bivariate distribution function and bivariate sur-
vival function of the two gap times, Y1 = “Time to recurrence” and Y2 =
“Time from recurrence to death”.
Figure 1 reports estimated probabilities for a fixed value of t1 = 365 (days),
along time. Plot shown in the left hand side (bivariate d.f) show that all
proposed methods behave quite similar something that is not true with
regard to the estimation of the bivariate survival function (right hand side).

0 500 1000 1500 2000 2500

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Time

F
12

[x
=

73
0,

y]

LIN
WCH
KMW
PKMW
LDM

0 500 1000 1500 2000 2500

0.
3

0.
4

0.
5

0.
6

0.
7

Time

S
[x

=
73

0,
y]

WCH
KMW
LDM

FIGURE 1. Estimates of the bivariate d.f. and bivariate s.f. using the proposed
methods. Breast cancer data.

4 Simulation Studies

In this section, we investigate the performance of the proposed estima-
tors through simulations. To simulate the data we consider the bivari-
ate exponential distribution with marginal exponentials with rate parame-
ter 1. This corresponds to the so-called FarlieGumbelMorgenstern copula,
where the single parameter controlling for the amount of dependence be-
tween the gap times (Moreira and Meira-Machado, 2012; de Uña-Álvarez
and Meira-Machado, 2015; Araujo et al., 2015). An independent uniform
censoring time C was generated, according to models Uniform(0, 4) and
Uniform(0, 3). For each simulated setting we derive the analytic expres-
sion of F12(t1, t2) and S12(t1, t2) for several (t1, t2) pairs, corresponding to
combinations of the percentiles 20%, 40%, 60%, and 80% of the marginal
distributions of the gap times (i.e., 0.2231, 0.5108, 0.9163, 1.6094). Sample
sizes n = 100, n = 250, and n = 500 were considered.
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Results reveal that the all proposed methods for estimating the bivariate
distribution function perform quite well, though the performance of all
methods is poorer at the right tail (i.e., larger values of t1 and t2) where
the censoring effects are stronger. At these points the standard deviation
(SD) is in most cases larger. The SD decreases with an increase in the
sample size and with a decrease of the censoring percentage. All methods
proposed in this work obtain in all settings a negligible bias.
Attained results for the bivariate survival function reveal that the weighted
cumulative hazard estimator (WCH) is the recommended approach. This
is illustrated in Figure 2 in which we show the boxplots of the estimates
for the bivariate distribution function.
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FIGURE 2. Boxplot with estimated probabilities S12(t1, t2). On the top results
for the pair (0.2231, 0.2231) (left) and (0.2231,0.9163) (right); on the bottom
results for the pair (0.9163, 0.5108) (left) and (1.6094,1.6094) (right).
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