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Abstract The aim of this work was to study the production of comfortable cotton plain-weave 

fabrics with antibacterial and antifungal characteristics through a simple finishing process, 

which consists in applying microcapsules of phase change materials (mPCM), 

monochlorotriazinyl-β-cyclodextrin (MCT-β-CD) and thyme oil. The fabrics were 

characterized by Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), 

Contact Angle and Infrared Thermography. The thyme oil release was also analyzed, as well as 

the antibacterial and antifungal activity. The materials treated with 20 L/mL of thyme oil have 

shown anomalous oil release mechanisms, according to the Korsmeyer-Peppas model, and 

activity against Staphylococcus aureus, Escherichia coli, Trichophyton rubrum, Pseudomonas 

aeruginosa and Candida albicans. 

Therefore, it was reached the conclusion that mPCM, conjugated with thyme oil encapsulated 

in MCT-β-CD, proved to be an interesting option to produce materials possessing 

thermoregulation properties with putative clinical relevance for the prevention of infections, 

particularly dermatophytosis. 
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1. Introduction 

There is an increase in the number of studies about textiles with properties such as the ability 

to repel water and dirt, thermal comfort, resistance to the fire and inhibition of microorganisms, 

for example, looking for high quality products resulting from the combination of new materials 

with technologies [1,2]. Functionalization in textiles is an effective way to improve or add 

properties to modify their behavior. Currently, there are many studies concerning functionalized 

textiles, taking advantage of both the large surface area of textiles and the possibility to produce 

biodegradable and biocompatible structures. [3–5]. 

The use of phase change materials (PCMs) in textiles provides a thermoregulation system, 

developed to regulate the variations of temperature of the human body. Hence, by ensuring to 

the body a comfortable temperature through the wearing of these textiles, they promote comfort 

to the user, especially in the unfavorable environments [6–8]. 

An increasingly more adopted concept for the modification of textile substrates is based on the 

permanent bond of compounds, such as microcapsules and cyclodextrins (CD), on the surface 

of the material. Among the components of the microcapsules that can be added, the highlight 

is for PCMs. They are characterized by having a phase change in a given temperature range, 

which leads to the storing or transferring of thermal energy. Due to latent heat, the 

microcapsules can store and release energy, which occurs without significant change in 

temperature allowing an insulation effect [9–11]. 

CD provides hosting cavities that can include a large variety of guest molecules for specific 

functionalities. This finishing strategy offers the textiles new properties such as antimicrobial, 

anti-UV, cosmetic, and others, and is particularly useful for stabilizing active agents [12,13]. 

They are cyclic sugars obtained through the enzymatic degradation of starch, being that  
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and  CD with 6, 7 and 8 glucose units respectively are the most common. Nevertheless, -CD 

is the widely used in textile finishing due to the more suitable cavity diameter that allows the 

formation of stable inclusions of complexes with a large number of compounds [14–18]. The 

inclusion mechanism involves the displacement of water from the hydrophobic cavity by the 

hydrophobic guest molecule. Host-guest complexes are energy favorable [19,20]. 

Among all -CD derivations, monochlorotriazine-beta-cyclodextrin (MCT-β-CD) is the most 

interesting to be utilized in cellulosic substrates due to the simple attachment process under 

relatively smooth conditions. Monochlorotriazinyl groups of CD react through covalent bond 

with nucleophilic groups, such as hydroxyl groups, of cellulose [21,22]. 

Superficial infections by fungi and bacteria are very common. Dermatophytic infections affect 

20 to 25% of the world population and constitute a serious public health problem. These 

dermatophyte fungi metabolize the keratin present on human epidermis, hair and nails. Fungal 

nail infection, onychomycosis, accounts for 50% of all nail infections. Tinea pedis, also known 

as athlete's foot, is connected with highly contagious fungi. Trichophyton rubrum and 

Trichophyton mentagrophytes are the species more frequently involved. Yeasts, particularly 

Candida albicans and Candida parapsilosis, are also relevant infectious agents. Besides 

inflammation, the damaged tissue resulting from the infection becomes more vulnerable to 

bacterial infections and species such as Staphylococcus aureus and Pseudomonas aeruginosa 

can be involved as primary or secondary infectious agents [23,24] 

Plant extracts, essential oils and their active compounds have been isolated, identified and 

characterized, considering the acknowledgement of the importance of plant-based materials as 

potentially non-toxic and non-allergenic antimicrobial materials. Several medicinal plants such 

as Mentha piperita, Thymus vulgaris, Origanum compactum, Salvia officinalis, Artemisia 

absinthium and Lavandula angustifolia have been studied [25–29]. Among these natural 

biocides, thyme oil (from Thymus vulgaris L.) has been suggested to possess high antimicrobial, 

phytotoxic and insecticidal properties, which can be attributed to the presence of phenolic 
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compounds, especially thymol (5-methyl-2-(1-methylethyl)phenol) and carvacrol (2-methyl-5-

(1-methylethyl)-phenol) [30–34]. 

Hence, the aim of our study was to prepare and characterize cotton fabrics possessing thermal 

comfort together with antibacterial and antifungal properties through the combination of 

microcapsules of PCMs, MCT-β-CD and thyme oil in a simple application process. The interest 

in the design and optimization of these multifunctional materials is obvious, as far as we know 

even to the best of our knowledge, this combination of products has never been properly 

analyzed in textile finishing. 

 

2. Measurements and characterizations 

The samples utilized were composed of plain-weave bleached taffeta cotton fabrics, 585 g/m2, 

supplied by Textile Belém, Brazil.  

In this work, the thyme oil (composed of 44.88% thymol, 20.53% p-cymene, 14.27% -

terpinene, 5.98% linalool, 4.6% carvacrol and 9.74% of others components) was obtained from 

Soria Natural S. A. (Spain) and MCT-β-CD from Wacker & Chemie Ltd., Spain.  

The melamine-formaldehyde (MF) microcapsules of phase change materials (mPCMs) were 

supplied by Micrópolis Devan (Portugal). Phenolphthalein was supplied by Panreac, Montplet 

& Esteban S.A., Spain. 

All other reagents, such as ethanol and sodium carbonate, of analytical grade, were purchased 

from Sigma-Aldrich, Portugal. 

 

2.1. Measurements 

2.1.1. Functionalization of cotton with MCT-β-CD and mPCMs 

MCT-β-CD were applied by conventional pad-dry-cure method. A MCT-β-CD solution (30 

g/L; pH 4) was applied by impregnation in a Foulard Roaches (4 bar, 6 m/min, pick-up 90%). 

Samples were dried and cured in Warner Mathis AG, Stenter at 150ºC during 5 minutes. mPCM 
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(300 g/L) and MCT-β-CDs (30 g/L) were applied in a single bath (pH 4) by conventional pad-

dry-cure process. The samples were impregnated with solution in Foulard Roaches (4 bar, 6 

m/min, pick-up 90%), dried and cured at 140ºC during 2 minutes. Finally, they were rinsed 

thoroughly using hot tap water, followed by cold tap water for 10 min and dried in air 

conditioning. 

 

2.1.2. Evaluation of MCT-β-CD fixation on cotton samples 

The MCT-β-CD quantification on fabrics was made indirectly, through the phenolphthalein 

method [18,35,36]. Succinctly, this method is based on the decrease of the absorbance of the 

phenolphthalein alkaline solution due to the presence of CD. Phenolphthalein can form 1:1 

complexes with CD resulting in a change in color, measured with a UV-2101PC Shimadzu 

spectrophotometer (Kyoto, Japan). 

The phenolphthalein solution was prepared by dissolving 0.1g in ethanol (100mL). The solution 

was stirred for 30 minutes at 30°C. Then, a buffer solution (sodium carbonate 52.8 g/L and 

sodium bicarbonate 8.4 g/L; 1000mL) was added to achieve a final concentration of 3.2e-5 M. 

The resulting work solution was stored and kept protected from light.  

The alkaline solution of phenolphthalein (pH 10.5, 30 mL of 3.2e-5 M) was added to a flask 

containing a sample of MCT-β-CD-cotton fabrics (1g). After mixing for 3 hours at 25ºC, the 

absorbance of the solution was measured at 553 nm and the MCT-β-CD quantification was 

calculated according to the curve calibration previously made. Three independent 

measurements were made from each concentration. 
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2.1.3. Thyme oil application 

Modified and unmodified samples with MCT-β-CD were immersed in a solution composed of 

ethanol/water (60:40) containing thyme oil (2%) and put under spinning during 20 minutes. 

Afterward, they were squeezed on Foulard (pick-up 90%).  

The reference samples were treated with ethanol/water (60:40) solution only. After padding, 

the samples of fabrics were washed in tap water and dried at room temperature. 

 

2.2. Samples characterization 

2.2.1. FTIR Spectroscopy 

Attenuated total reflection Fourier Transform Infrared spectra (ATR-FTIR) of untreated cotton, 

cotton treated with MCT-β-CD loaded with thyme oil, and cotton treated with MCT-β-CD with 

mPCM were recorded on ATR-FTIR Avatar 360 spectrophotometer (Madison, USA). KBr 

windows of MCT-β-CD were made. mPCM and Thymus vulgaris oil were dried and analyzed 

using NaCl windows in the same equipment. Each spectrum was scanned 60 times with a 

resolution of 16 cm−1. 

 

2.2.2. DSC analysis 

DSC analyses were performed with a differential scanning calorimeter Mettler Toledo DSC-

822e instrument (Giessen, Germany). Melting point and heat of fusion calibration were carried 

out with indium under nitrogen atmosphere (80 mL/min). A heating rate of 10ºC/min going 

from 25ºC to 400ºC was used to investigate the inclusion complex with MCT-β-CD.  

A heating rate of 10ºC/min going from 0ºC to 50ºC was used to examine the thermoregulation 

effect of the fabrics containing mPCM. All the tests were performed thrice and the average 

values were recorded. The DSC analyses have covered random areas of each sample and an 

empty pan was used as the standard reference. Analyses were performed under a nitrogen purge. 

The weight of each sample was kept constant (5.7 ± 0.1 mg). 
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2.2.3. Infrared thermography 

The thermo-regulating properties of textiles were determined by using an infrared camera Testo 

876 (Lenzkirch, Germany). This equipment allows to measure thermal images between 20ºC to 

250ºC, with a precision of ± 2ºC. The samples were carefully placed on the preheating hotplate 

VWR professional (Pennsylvania, USA), at 33ºC to simulate the skin temperature [8]. The 

images of the samples were recorded and treated using the IRsoft software to measure the time 

delay to reach the same temperature. 

 

2.2.4. Fastness to rubbing 

The standard ISO 105-X12:2016, which describes a method for determining the resistance of 

the color in textiles, was adapted in order to analyze the influence of the friction in the 

thermoregulation of the samples treated with mPCM. 

Tests were performed in triplicate with a dry rubbing cloth during 10 cycles, according to the 

standard. The results were analyzed by comparing DSC thermograms of samples before and 

after the rubbing test. 

 

2.2.5. Static and dynamic contact angles 

The contact angle measurement was analyzed in a Dataphysics instrument (Filderstadt, 

Germany) with the OCA20 software. The samples were measured ten times each. The method 

consists basically in forming a water drop, with a specific quantity, and measure the contact 

angle between the drop and the material surface after a certain time [37,38]. 

 

2.2.6. Testing of antimicrobial efficiency 

The bacteria used were Escherichia coli ATCC® 25922TM, Staphylococcus aureus AATCC® 

6538TM, and Pseudomonas aeruginosa ATCC®27853TM. The fungi strains tested were Candida 
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albicans ATCC® 10231TM and Trichophyton rubrum (a clinical isolate from skin 

dermatophytosis-FF9). 

The antimicrobial activity of the samples was tested against bacteria and fungi strains using 

selective/differential media by agar diffusion methods. Bacteria were cultivated in Mac Conkey 

Agar (MAC-Liofilchem Diagnostic) for E. coli and P. aeruginosa and Manitol Salt Agar 

(MSA-Liofilchem Diagnostic) for S. aureus. Sabouraud Dextrose Agar (SDA-Biomérieux) was 

used for C. albicans and Mycosel Agar (MYC-Becton Dickinson) for T. rubrum. Overnight 

cultures of bacteria and 24 hour cultures of yeasts on Tryptic Soy Agar (TSA-Liofilchem 

Diagnostic), or SDA, respectively, were used to prepare a cell suspension in a sterile 0.85% 

saline solution at the standard density of 0.5 Mc Farland. The inoculum contained 

microorganisms in the range of 1-1.5x108 colony forming units (CFU)/mL. For dermatophytes, 

a spore suspension was prepared in a 0.85% sterile saline solution with tween 80, counted in a 

Neubauer chamber, to about 2.5-6 x 105 CFU/mL. 

Briefly, the plates containing adequate culture agar medium were inoculated by spreading on 

the surface with each of the inoculum microorganisms to be tested and dried for 15 min. 

Fabrics (15 mm) sterilized by ultra-violet (UV) radiation were placed over the center of the 

plates.  

Plates of bacteria were incubated during 24 hours at 37ºC, yeasts during 48 hours at 37ºC, and 

dermatophytes during 5-7 days at 28ºC. 

Zones of inhibition or absence of growth reveal the antimicrobial activity. The inhibition was 

assessed from the zone formed in and around the fabric. 

Sterilized swatches, treated or not with etanol:water (60:40) solutions, were used as negative 

controls in each experiment. A positive control, through the immersion of the untreated samples 

in a commercial thyme oil and dried at 37ºC for 24 hours was also performed. 
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2.2.7. Determination of minimal inhibitory concentration (MIC) for T. vulgaris essential oil 

The minimal inhibitory concentration for T. vulgaris was evaluated according to CLSI 

standard tests for bacteria, yeasts and fungi, M07-A9, M27-A2 and M38-A2, respectively.  

 

2.2.8. Controlled release of thyme oil 

The in vitro evaluation of the thyme oil release profile on textile substrates was determined. 

After functionalization, the cotton fabrics were placed in an alkaline solution that mimics 

human perspiration according to the ISO 105 E04, thermostated at 37ºC ± 5ºC under constant 

stirring on Agimatic Selecta (Spain). This alkaline solution is composed of 0.5 g/L of L-

histidine monohydrochloride monohydrate (C6H9O2N3·HCl·H2O); 5 g of sodium chloride 

(NaCl); and also 5 g/L of disodium hydrogen orthophosphate dodecahydrate 

(Na2HPO4·12H2O). The solution is brought to pH 8 (± 0.2) with 0.1 mol/L sodium hydroxide 

solution.  

Aliquots of 2 mL were taken at predetermined times in order to read the absorbance 

spectroscopy in the ultraviolet range, 275 nm, using a UV-VIS spectrophotometer Shimadzu 

UV-2101PC (Japan). All tests were performed thrice and the average values were calculated. 

The mathematical setting used for the evaluation of drug release was from the model of 

Korsmeyer et al. [39]. The statistical analysis was obtained through the graphical simulation in 

OriginPro 8.5.1. 

 

3. Results and discussion 

3.1. Functionalization of cotton with mPCM, MCT-β-CD and thyme oil 

MCT-β-CD and mPCM were applied to cotton through a padding process in a single step.  

The monochlorotriazinyl group of CD reacts with the hydroxyl groups of cellulose through a 

substitution nucleophilic mechanism. Briefly, the O- groups of cellulose attack the heterocyclic 

carbon of the reactive group, the nucleophilic group is replaced by the halogen of triazine and 
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a covalent bond is created [18]. Through a simple acidic or alkaline impregnation, followed by 

the curing or exhaustion processes, it is possible to achieve suitable fixation yield of MCT-β-

CD on cellulose despite the secondary reaction of hydrolysis. Therefore, this chemical strategy 

is common to functionalize cotton [40]. However, by our knowledge, no data was available 

about the application of MCT-β-CD and mPCM together. 

The MCT-β-CD attached on cotton with encapsulation capacity was quantified by the 

phenolphthalein test as described on materials and methods. It were compared the results when 

the CD was applied alone or combined with the mPCM in the same bath and under similar 

process conditions. The results obtained from the CD applied in cotton (30 g/L) were 6.81e-7 ± 

0.04e-8 mol CD/g of fabric (0.77 ± 0.03 mg CD/g of fabric), and from the CD applied 

conjugated with mPCM were 5.78e-7 ± 0.06e-8 mol CD/g of fabric (0.66 ± 0.02 mg CD/g of 

fabric). A slight decrease of fixation of CD was observed when together with the mPCM 

presence, which is justified by some interference on the accessibility to the bond sites on the 

surface of cellulose. However, the fixation obtained for CD is in accordance with the results 

reported by Bhaskara et al. [20], who achieved 1.47e-6 moles/g of cotton but using 40 g/L of 

CD solution. From a gravimetric analysis, the amount of mPCMs on fabric was s 8.7± 2.4% 

(w/w) when applied alone and 8.38 ± 2.0% (w/w) when applied with CDs, according to the 

gravimetric tests (results not shown). The slight difference noted can be explained by the 

competition of both compounds for the link sites on fiber. 

CDs are able to form inclusion complexes with oil molecules [15]. Moreover, β-CD cavity size 

is suitable for complex drugs with molecular weights between 200 and 800 g/mol by non-

covalent interactions like hydrophobic interactions, van der Waals-London dispersion forces, 

and hydrogen bonds [41,42].  

Thyme oil has proven to possess benefits in medical, cosmetic, veterinarian, agricultural and 

food related applications [43–45]. Despite thymol and carvacrol, alone or combined, be 

effective against bacteria and fungi, their antimicrobial applications still face chemical 
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reactivity problems, limited water solubility and also short-term availability, due to their 

volatile properties. Inclusion in CDs exerts a profound effect on the physicochemical properties 

of guests, namely solubility enhancement and stability effects. Besides, several recent studies 

have demonstrated the complexation of carvacrol and thymol in β -CD derivatives [17,46–49]. 

Based on the previously mentioned, it is expected that the carvacrol and thymol can be 

encapsulated in MCT-β-CD on the surface of cotton. 

Thyme oil, composed of thymol (44.88%) and carvacrol (4.6%), was applied to MCT-CD-

fabrics in defined conditions to prevent evaporation of the label components. The oil application 

was made with the assumption that β-CD can encapsulate carvacrol and thymol [34,50–52]. In 

fact, the interaction of β-CD and carvacrol in aqueous solution, results in a 1:1 complex, in 

which the isopropyl group of the molecule is located closer to the larger side of the hydrophobic 

cavity of β-CD. Thymol can also be encapsulated in β-CD very efficiently and with a constant 

stability of 618 M-1 [53]. 

The complex formation for the active compounds in the extracts is significantly lower when 

comparing with pure molecules of carvacrol and thymol, in view of the fact that the presence 

of other compounds in the extract could compete for inclusion reactions with the β-CD. 

Although the sample molecules have different equilibria in the solution,  to force them to form 

complexes, thymol and carvacrol, present in thyme essential oil, encapsulate as previously 

reported by Tao et al. [54]. Moreover, it should be noted that these compounds together make 

up 49.5% of its composition. 

 

3.2. FTIR spectral analysis 

The finished materials were characterized by ATR-FTIR. Figure 1a, b and c present the FTIR 

spectra of the thyme oil, MCT-β-CD and mPCM, the key components used in the 

functionalization of cotton fabrics. As oil is majority composed of thymol and carvacrol, the 

presence of phenolic OH group is observed with a band that corresponds to 3400 cm-1 due to –
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OH stretching vibration involving hydrogen bonding. Aromatic character of terpenes was 

exhibited by –C=C stretching of benzene ring at 1619 cm-1 (Fig. 1a). The bending vibration of 

–OH and –C–O stretching of phenolic group occurred as peaks at 1419 cm-1 and 1234 cm-1. 

Rukmani and Sundrarajan [47] obtained similar results, except a small band deviation (3392 

cm-1, 1625 cm-1,  1360 cm-1 and 1222 cm-1 respectively). 
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Fig. 1. FTIR spectra of: (a) thyme oil, (b) MCT-β-cyclodextrin and (c) mPCMs 

 

The spectrum of MCT-β-CD (Fig.1b) shows –OH stretching of cyclodextrin moiety at 3400 

cm-1 and C–H stretching at 2940 and 2860 cm-1. The absorption band at 1740 cm-1 can be 

assigned to the –C=N stretching vibration triazinyl group of MCT-β-CD [55]. The band related 

to the triazinyl ring without any substitution is at 1350-1587 cm-1. However, with Cl or CD as 

side chains, the bands shift to 1400-1650 cm-1. Consequently, the peak observed at around 1468 

and 1622 cm-1 is assigned to the stretching vibration of C=N [56]. 

The spectrum of mPCMs (Fig. 1c) shows an expanded absorption band at 3400 cm-1 that 

corresponds to elongation vibrations of the OH groups. The absorption peaks at 2920 cm-1 and 

2840 cm-1 can be assigned to vibration of C-H elongation. The absorption peak at 1740 cm-1 

can be assigned to the carbonyl group, N-H bending vibration at 1560 cm-1. The absorption 

band at 1370 cm-1 may correspond to the vibration of C-N [57]. 

The FTIR spectra of untreated cotton and cotton functionalized with MCT-β-CD loaded with 

thyme oil shown in Figure 2 have similar profile (Fig. 2a). Cotton spectrum shows a broad peak 

at 3280 cm-1 corresponding to –OH stretching vibration of cellulose and an asymmetric 

stretching of C–H is observed at 2900 cm-1. However, when analyzing the 1800 to 600 cm-1 

spectral region (Fig. 2b), the presence of MCT-CD bonded to cotton is confirmed by the 
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appearance of a small peak detected at 1715 cm–1, conjugated cyclic >C=N-systems show an 

absorption at waves between 1630 and 1430 cm–1 [18,55,58]. 

 

Fig. 2. FTIR spectra of cotton fabrics untreated and functionalized with MCT-β-CD and thyme oil 

 

The untreated cotton and the cotton treated with mPCM (Fig. 3a) and mPCMs conjugated with 

MCT-β-CD with thyme oil (Fig. 3b) were analyzed. It can be observed evidences of adhesion 

of mPCM (melanine-formaldehyde microcapsules) with reactive groups that can bind to cotton 

samples, mainly by increasing the intensity of the corresponding absorption band at elongation 

vibrations of the OH groups at 3280 cm-1 and CH at 2915 cm-1 and 2850 cm-1.  
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The increased intensity of peaks is caused by the reaction originated by the addition of the 

radical -CO-CH = CHR present in the melamine-formaldehyde microcapsules with the O-H 

groups in cellulose [59]. The CH3 deformation mode at 1262 cm-1 is considered to be the most 

characteristic band in the organosilicon infrared spectrum. There is a small absorption at 1262 

cm-1. Also, a small peak at 810 cm-1 is related to the breakdown of Si-O-Si groups and the 

formation of Si-O-cellulose binding [60].  

 

Fig. 3. FTIR spectra of (a) cotton fabrics functionalized with mPCM and (b) cotton fabrics functionalized with 

mPCM conjugated with MCT-β-CD loaded with thyme oil 
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3.3. DSC analysis 

The thermograms of untreated cotton and cotton with MCT-β-CD are shown in Figure 4.  

 

Fig. 4. DSC thermograms of untreated cotton and cotton functionalized with MCT-β-CD 

 

Untreated cotton fabric had a strong endothermic peak at 365°C associated to the thermal 

decomposition process of cellulose. The formation of the peak starts around 333°C until 387°C 

approximately. For the cotton fabrics treated with MCT-β-CD with thyme oil there was a strong 

peak at 362°C, although the formation of the peak started over 320°C and finished at 385°C. 

The advantage of a characterization using a DSC technique is the possibility to measure the 

thermal capacity and heat fusion of the compounds, given that the area of the thermogram peaks 

is directly proportional to enthalpy. The thermograph test was performed thrice and the average 

values of the enthalpy were calculated, showing that the enthalpy value of cotton sample was 

115.75 J/g and the enthalpy value of treated cotton was 119.87 J/g. According to Grigoriu et al. 

[61], this slight increase in the values of enthalpy is related to the splitting of the hydrogen 

bonds in the cotton fiber and also MCT-β-CD grafted to the cotton fiber of the hydroxyl groups, 

evidenced in this experiment. 

The friction fastness (namely related to mPCM fastness) of functionalized fabrics was 

investigated. Thermograms were recorded before and after rubbing under controlled pressure 
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for a specific number of times as described on standard test expressed above (Fig 5). No 

significant differences were observed on thermograms due to the friction.   

 

Fig. 5. DSC thermograms of cotton fabrics functionalized with mPCM and conjugated with mPCM and MCT-β-

CD before and after rubbing test 

 

3.4. Thermoregulation properties of functionalized fabrics 

The thermoregulation effects shown by the performed finishing on fabrics were analyzed based 

on DSC analyses and tests through Infrared Thermal Camera. Analyzing the DSC thermograms 

of Figure 5 and Table 1, which show the average values of the thermal storage energy (latent 

heats), as well as the melting and crystallization transition point to the samples treated with 

phase change materials and associated with MCT-β-CD before and after rubbing tests, it is 

possible to note that all the substrates treated allow the improvement of thermo-regulating 

properties and latent heat storage capacities. In fact, the possibility to obtain cotton with 

thermoregulation properties by coating the material with mPCM was well described by other 

researchers [2,62–64]. 

There are slight differences concerning to latent heat storage among the samples. Tests have 

shown that the simultaneous application of mPCM with CD did not have influence in the 

thermal-regulation of the fabrics; even after the friction tests, the samples continued showing a 

small difference, confirming the integrity of microcapsules into the textile. According to 
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published studies, the thermal load and comfort in a microclimate is not influenced only by 

latent heat. The heat transfer through fabrics is directly related with the amount of 

microcapsules added in the surface, but is also related with other factors like the application 

method and the textile structure [2,65]. 

 

Table 1 Thermal properties of cotton fabrics with mPCM and cotton fabrics with mPCM and 

MCT-β-CD, before and after rubbing tests 

 

Melting 

latent heats 

(J/g) 

Melting temp. 

(range) °C 

Crystallization 

latent heats 

(J/g) 

Crystallization 

temp. (range) °C 

Cotton with mPCM 6.40 27.4 (23.2-30.1) 7.30 12.7 (15.5-9.6) 

Cotton with mPCM after 

rubbing test 
6.10 26.8 (22.9-29.5) 7.19 13.0 (16.4-9.8) 

Cotton with mPCM and MCT-β-

CD 
6.70 27.7 (23.4-30.6) 8.68 12.6 (15.6-9.2) 

Cotton with PCM + MCT-β-CD 

after rubbing test 
6.47 27.7 (23.2-30.4) 7.93 12.6 (15.8-9.3) 

 

Untreated cotton and cotton treated with mPCMs and MCT-β-CD were also analyzed with an 

Infrared Thermal Camera.  The fabrics previously conditioned at 21ºC were heated in a hotplate 

until 33ºC. The cotton functionalized with mPCM and MCT-β-CD showed a delay to reach the 

same temperature when compared with untreated cotton, allowing the confirmation of the effect 

of mPCM already observed on DSC thermograms. The rise of temperature was measured frame 

by frame based on time, which is presented in Figure 6. 
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Fig. 6. Time delay to reach 33 ºC of untreated cotton and cotton functionalized with mPCM and MCT-β-CD 

 

Cotton reached 30ºC after 26 seconds and the temperature stabilized around 32ºC after 60 

seconds in contact with hotplate. However, the functionalized cotton reached the same 

temperature (30ºC) only after 40 seconds, though it had stabilized near to 31ºC. These results 

evidenced that the cotton with mPCM and MCT-β-CD has a better thermal performance. 

 

3.5. Influence of functionalization on hydrophilicity of fabrics 

The study of static and dynamic contact angle was used to measure the wetting properties of 

the samples. Sometimes, it is difficult to evaluate the contact angle in textiles due to the 

surface and structure irregularities and absorbency variations presented [66].  

The wetting properties are associated with the surface tension of the liquid in contact with the 

surface. When a surface has sufficient polar groups, the water drop is immediately absorbed; 

otherwise the water drop forms a contact angle with the surface. If this contact angle is smaller 

than 30°, the surface is considered hydrophilic and if a contact angle is higher than 90°, the 

surface is considered hydrophobic [38,67]. 
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Fig. 7. Static contact angle for tested samples: (a) cotton; (b) cotton with MCT-β-CD; (c) cotton with mPCM; 

(d) cotton with mPCM and MCT-β-CD 

 

Figure 7 shows the static contact angles measured for all tested fabrics. For cotton or cotton 

with MCT-β-CD, the drops are immediately absorbed. Nevertheless, cotton with mPCM and 

cotton with mPCM and CD show a contact angle of 141.8° and 147.6° respectively. Based only 

in this data, these samples could be considered as having hydrophobic behavior [38]. However, 

considering the results of the dynamic contact angle (Fig. 8), the average time for the absorption 

of the water drop is of 0.8 seconds approximately. This suggests that although the hydrophilicity 

of the surface has decreased, the samples continued to be hydrophilic. 

 

Fig. 8. Dynamic contact angles of the samples 
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3.6. Antimicrobial efficiency 

Thymus vulgaris essential oil was tested as an antimicrobial additive model due to the natural 

and biocompatible behavior and antimicrobial properties. 

The antimicrobial activity of cotton with MCT-β-CD as well as cotton with MCT-β-CD and 

mPCM was evaluated as negative control and no antimicrobial activity was detected, 

considering all the tested microorganisms (Table 2 and Fig. 9a).  

Comparing the MIC determined for the different microorganisms to T. vulgaris, according to 

CLSI methods, the most resistant was P. aeruginosa (MIC 2.5 - 5 µL/mL) and the most 

susceptible was T. rubrum (MIC 0.04 µL/mL). Moreover, S. aureus and E. coli showed a MIC 

of 0.16 µL/mL whereas the MIC for C. albicans was 0.32 µL/mL. 

As positive control, samples of cotton with MCT-β-CD and cotton with MCT-β-CD and mPCM 

impregnated with 20 L of thyme oil were tested. All these samples exhibited strong 

antimicrobial activity against all the tested microorganisms (Fig. 9b).  

Cotton with MCT-β-CD and cotton with MCT-β-CD and mPCM functionalized with 20 L/ 

mL of thyme oil (samples A and B, respectively), were assessed and the results shown in Table 

2 and Figure 10 are about the examples of S. aureus (similar results for E. coli), T. rubrum 

(similar results for P. aeruginosa) and C. albicans.  

Table 2 Results of antimicrobial activity for textiles functionalized with thyme oil, using 

diffusion methods 

 

 Microorganisms 

 S. aureus E. coli P. aeruginosa C. albicans T. rubrum 

A  ++++  +++ ++ ++ ++ 

B  ++++  ++++ + + +++ 

Control - - - - - 

Control: samples without essential oil, treated or not with the solvent. Samples functionalized with 20 L/mL of 

thyme oil: A- cotton with MCT-β-CD; B- cotton with MCT-β-CD and mPCM. (+/++/+++/++++): Level of 

microorganism’s growth inhibition; (-): microorganism’s growth. 
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The presence of MCT-β-CD did not demonstrate inhibition of all the microorganisms tested as 

well as the solvent (ethanol/water 60:40) used for the preparation of impregnated or 

functionalized samples with oil. Thus, the antimicrobial effect observed in tested samples can 

be attributed to the presence of thyme oil. Accordingly, the sample of thyme oil and the 

concentration in which it was used was able to inhibit completely, or almost completely, all the 

microorganisms tested, as it was possible to observe in the positive controls of samples 

impregnated with the same solution of essential oil used for the sample preparation. 

 

 

Fig. 9. Antimicrobial activity of control samples performed by diffusion methods: a-negative controls using 

cotton-MCT-β-CD with solvent for C. albicans, T. rubrum, and S. aureus; b-positive controls using cotton-

MCT-β-CD impregnated with 20 L of thyme oil for C. albicans, T. rubrum, and S. aureus 
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Fig. 10. Antimicrobial activity of cotton with MCT-β-CD (A) and cotton with MCT-β-CD-mPCM (B) 

functionalized with 20 L/mL of thyme oil for C. albicans, T. rubrum, and S. aureus, performed by diffusion 

methods 

 

Considering the obtained results, the cotton functionalized with thyme oil, inside MCT-β-CD 

and MCT-β-CD with mPCM, has shown antibacterial activity against gram-positive (S. aureus) 

and gram-negative (E. coli and P. aeruginosa) bacteria. However, P. aeruginosa was slightly 

less susceptible, which is in accordance with their higher MIC for the essential oil. 

Shahidi et al. [68] evaluated the effectiveness of antimicrobials with thymol and showed 100% 

of effectiveness in S. aureus inhibition. The interaction of this agent with bacteria and yeasts 

seems to disrupt the cell wall or lead to the destruction of the cellular membrane with a 

cytoplasm leakage, eventually causing cell death [31,69]. Some studies have shown a higher 

inhibitory activity of thymol, a major component of thyme oil, against E. coli than S. aureus.  

The selectivity of action could be justified by the different composition and structure of the cell 

wall of gram-positive and gram-negative bacteria. In addition, thymol displays best 

antimicrobial effect while conjoined with MCT-β-CD when compared to just absorbed on the 

fiber surface [47,48].  
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Cotton with MCT-β-CD and thyme oil and cotton with MCT-β-CD and mPCMs and oil, seemed 

to be less effective against fungi than bacteria. Nevertheless, the functionalized textiles 

demonstrated antifungal properties against T. rubrum and C. albicans (Table 2 and Figure 9), 

being the dermatophyte more susceptible than the yeast.  

 

3.7. Release kinetics of thyme oil 

The kinetics of thyme oil release from developed textiles was analyzed. Figure 11 shows the 

kinetics of controlled release for the cotton fabrics with thyme oil and cotton fabrics with MCT-

β-CD loaded with thyme oil. The equilibrium was achieved after about 10 minutes for cotton 

fabrics with thyme oil and after 24 hours for cotton fabrics with oil encapsulated.  

Evaluating the controlled release profile, it can be observed that there is a similar profile for 

both samples during the first 2 minutes with a subsequent change in the slope of the release 

curves. This first stage of process is often called "burst effect", where the drug releases at about 

60% in both cases. The early depletion of the drug is a disadvantage regarding the intended 

long-term release. However, values between 10-80%, depending on the load amount, are 

frequently obtained for similar applications [70].  

 

Fig. 11. In vitro controlled release profiles in alkaline solution thyme oil from cotton with thyme oil absorbed 

and cotton with thyme oil inside MCT-β-cyclodextrin  
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The kinetic Korsmeyer-Peppas model [39] describes a rapid release rate of compounds applying  

the equation below and it is a very useful tool to describe release systems. In the equation (1) n 

is a diffusion exponent indicating the type of release mechanism considering the textile 

structures as cylinders or materials with non-planar geometries. If n is 0.45, the release of drug 

occurs by a Fickian diffusion process; however, if n is 0.45<n<1.0 the diffusion process is 

anomalous. n = 1.0 non-Fickian diffusion process should be considered [3,71]. 

𝑀𝑡

𝑀∞
= 𝐾𝑡𝑛           (1) 

Additionally the model is highly accepted by the scientific community for its simplicity [72]. 

Considering a drug release of around 80% and using the Korsmeyer-Peppas equation, the main 

parameters K and n have been calculated. For cotton fabrics treated with thyme oil, the 

correlation coefficient was R2 = 0.9976, chi-square 0.0001, and the score obtained K = 0.0293 

± 0.0031 and n = 0.620 ± 0.0220. For cotton fabrics treated with MCT-β-CD loaded with thyme 

oil, the correlation coefficient was R2 = 0.9657 and chi-square 0.0023. According to the score 

K = 0.0360 ± 0.0100, n = 0.5444 ± 0.0510.  Based on this parameters, the release of oil follows 

anomalous diffusion mechanisms in both situations [71]. The release mechanism is based on 

the morphology, concentration and distribution of the drug, and also on the hydrophobicity or 

hydrophilic of the matrix material [73]. The anomalous mechanism is expected to hydrophilic 

fibers as well as cellulosic fibers, whereas the excellent affinity with water propitiates the 

relaxation of chains, modifying the interactions and providing different types of release of the 

drug [74].  

 

4. Conclusions 

Cotton plain-weave fabrics that combine thermoregulation properties with antimicrobial 

activity against S. aureus, E. coli, P. aeruginosa, T. rubrum, and C. albicans were obtained by 

a simple finishing method. For that purpose, microcapsules PCM and monochlorotriazinyl-β-
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cyclodextrin were applied in the same bath and the resulting materials were impregnated with 

thyme oil as a model active agent.  

The oil released from functionalized fabrics was analyzed using Korsmeyer-Peppas model and 

it was found that the mechanism was anomalous. Additionally, it was found that modified 

material retains thermal properties after the rubbing action and remain hydrophilic in the end 

of the finishing process. Therefore, it is supposed that these comfortable cotton materials 

developed with modulated antimicrobial properties may eventually be used in several areas of 

health and biomedical applications.  
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