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THE INVERSE EIGENVECTOR PROBLEM FOR REAL TRIDIAGONAL
MATRICES ∗

BERESFORD PARLETT† , FROILÁN M. DOPICO‡ , AND CARLA FERREIRA§

Abstract. A little known property of a pair of eigenvectors (column and row) of a real tridiagonal matrix is
presented. With its help we can define necessary and sufficient conditions for the unique real tridiagonal matrix for
which an approximate pair of complex eigenvectors are exact. Similarly we can designate the unique real tridiagonal
matrix for which two approximate real eigenvectors, with different real eigenvalues, are also exact. We close with an
illustration that these unique “backward error” matrices are sensitive to small rounding errors in certain partial sums
which play a key role in determining the matrices.
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1. Introduction. The real symmetric eigenvalue problem Ax = xλ is well posed, in an abso-
lute sense, because an eigenvalue λ can change by no more than the spectral norm of the change
in the matrix A. This is Weyl’s Theorem. In the unsymmetric eigenvalue problem some eigenval-
ues may be robust while others may be extremely sensitive to uncertainty in the matrix entries.
Consequently, the assessment of error becomes a major concern.

The best known, and useful, measure is the residual r defined by r := x̂λ̂−Ax̂ for approximate
eigenpair (λ̂, x̂). An alternative approach which is very appealing, especially for ill-posed and ill-

conditioned problems, is the so-called “backward error”. Find a matrix Â such that Âx̂ = x̂λ̂ and
measure, or estimate, ‖Â−A‖. Ideal would be the Â that minimizes Â−A in some norm.

The finely crafted procedure Hessenberg QR (HQR) is called “backward stable” because the
final triangular matrix is orthogonally similar to a matrix close, in norm, to the initial Hessenberg
matrix. So a close problem has been solved and there is no incentive to seek a backward error in
each particular case. Nevertheless, norm results do not usually respect any special structure in the
initial matrix, e.g., [4, 7, 12]. This situation motivates a steady research effort on backward errors
[1, 2, 5, 6, 8, 10, 11]. The problems tend to be so hard that the results are essentially theoretical

because the equations determining all the Â are too forbidding to solve for min ‖Â−A‖.
Tridiagonal matrices, see Section 2, are so special that even one complex triple (λ,x,y∗) can,

under suitable conditions, determine a unique real tridiagonal matrix C for which it is an eigentriple:
Cx = xλ, y∗C = λy∗. More generally, we determine when a few vectors, complex and real, define a
unique C for which they are eigenvectors. This suggests the possibility of exhibiting the backward
error matrix along with a computed eigentriple.

In the course of this investigation we made two auxiliary observations that are of independent
interest. The first is Theorem 3.2 (new to us) that describes two relations between the entries of the
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column and row eigenvectors of any real tridiagonal matrix. The second is the significant advantage
of replacing the given (C, I) form of the eigenproblem by the (T, S) form where T is real symmetric
tridiagonal and S is a signature matrix, S = diag(si), si = ±1. When both T and S are indefinite
there will usually be complex eigenvalues. The advantage comes in computing eigenvectors but this
form permits simple statements and proofs of conditions for uniqueness and the unreduced property.
In fact, ST will be a balanced matrix similar to C.

Most of the paper is concerned with exhibiting necessary and sufficient conditions for uniqueness
and the unreduced property in various cases and we end with a warning. Our nice simple formulae
involve certain partial sums which are sensitive to the rounding errors in just those partial sums
which are very small. Special care is needed.

2. Notation. A signature matrix S ∈ Rn×n has the form S = diag(s1, . . . , sn), si = ±1.
Throughout this paper real symmetric tridiagonal matrices are denoted by T and have the form

T := diag(a) + diag(b,−1) + diag(b,+1) =



a1 b1
b1 a2 b2

b2 a3 b3
. . .

. . .
. . .

bn−2 an−1 bn−1

bn−1 an


. (2.1)

In order to avoid many repetitions of the phrase “real symmetric tridiagonal matrix” we use instead
“T , as in (2.1)”.

In the real unsymmetric tridiagonal case we use Greek letters instead of Roman letters,

C := diag(α) + diag(β,−1) + diag(γ,+1) =



α1 γ1
β1 α2 γ2

β2 α3 γ3
. . .

. . .
. . .

βn−2 αn−1 γn−1

βn−1 αn


. (2.2)

The proper definition of the term “reducible” requires the use of permutations of rows and
columns. Such permutations are of no interest here and so, for C as in (2.1), we say that C is
reduced (not simply reducible) if any βjγj , j = 1, . . . , n− 1, vanishes. Otherwise it is unreduced.

For a column vector x ∈ Cn, we use xT for its transpose and x∗ for its conjugate transpose.
We reserve capital letters for matrices. For any matrix A ∈ Cn×n with eigenvalue λ, we write
the eigenvector equations as Au = uλ and v∗A = λv∗, with u,v ∈ Cn, and call u a column
eigenvector and v∗ a row eigenvector. Many authors use the terminology right eigenvector for u
and left eigenvector for v, instead of column and row eigenvectors.

3. Basic results.

3.1. Eigenvectors of real C with zero entries. If uj is the only zero entry of the column
eigenvector u, then the eigenvector equation

Cu = uλ, 0 6= u ∈ Cn, (3.1)
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splits naturally into two distinct smaller eigenvector equations. In a self explanatory notation, these
equations are

C1:j−1u1:j−1 = u1:j−1λ,

βj−1uj−1 + 0 + γjuj+1 = 0, (3.2)

Cj+1:nuj+1:n = uj+1:nλ.

In the other direction, any two tridiagonal matrices C1 and C2 which have a shared eigenvalue λ
with column eigenvectors z ∈ Cj−1 and w ∈ Cn−j , with no zero entries, may be put together into a

larger tridiagonal matrix C with column eigenvector
[
zT 0 wT

]T ∈ Cn by using a “link” equation

βj−1zj−1 + αjzj + γjw1 = zjλ

in which zj = 0 and αj is arbitrary. The other entries in column j of C, namely, γj−1 and βj , may
also be chosen arbitrarily. From the “link” equation, βj−1 and γj satisfy

βj−1zj−1 + γjw1 = 0. (3.3)

We can always choose βj−1 = γj = 0. To have βj−1γj 6= 0, condition (3.3) constrains the ratio

zj−1

w1
= − γj

βj−1
(3.4)

to be real. If zj−1/w1 is not real, then the vector
[
zT 0 wT

]T
must be changed by multiplying

either z or w by a suitable scalar so that (3.4) is satisfied.
To sum up, each zero entry in an eigenvector of a tridiagonal C leads to the study of two smaller

tridiagonal eigenvector problems, and so on, until we have a collection of small eigenvector problems
each of whose eigenvectors has no zeros entries. In other words, there is no loss of generality in
restricting attention to eigenvectors with no entries that vanish.

3.2. Complex eigenvectors of real C - the real property. We first recall standard prop-
erties of eigenvectors of a real tridiagonal matrix C. Consider the eigenvector equation (3.1) above.

Lemma 3.1. If C is unreduced (no βjγj vanishes) then
(i) u1un 6= 0;

(ii) two consecutive entries of u cannot both vanish.

Proof. Equation 1 in (3.1) shows that u1 = 0 implies u2 = 0. Equation n shows that un = 0
implies un−1 = 0. If uj−1 = 0 and uj = 0, then Equation j shows that uj+1 = 0 and, in sequence,
all other entries of u must vanish. This contradicts the property u 6= 0 for any eigenvector.

In the course of our investigations we stumbled on a useful property (appears to be new) of
column eigenvector u and row eigenvector v∗, with u,v ∈ Cn, when A is real tridiagonal. This
result implies that there is no loss of generality in requiring that ujvj ∈ R for all j (see Section 4.2).

Theorem 3.2. Consider an unreduced real tridiagonal matrix C, as in (2.2).The column eigen-
vector u and the row eigenvector v∗, with u,v ∈ Cn, of an eigenvalue λ ∈ C, with no zero entries,
satisfying Cu = uλ and v∗C = λv∗, may always be chosen so that

P1(j) : ujvj ∈ R, j = 1, 2, . . . , n, and
P2(j) : βjujvj+1 and γjvjuj+1 are conjugates for j = 1, 2, . . . , n− 1.

The analysis that follows is needed when λ is nonreal but it is also true, and sometimes trivial,
when λ is real.
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Proof. From the hypotheses we assume without explicit mention that 0 6= βjγj ∈ R, u1v1 6= 0,
λ− αj = λ− αj .

Since eigenvectors are unique only up to a scalar factor, u and v may be chosen so that

(0 6=)u1v1 ∈ R. (3.5)

We prove P1(j) and P2(j) by induction. The base P1(1) is (3.5).

Multiply together the first equations in Cu = uλ and in CTv = vλ, the conjugate transpose of
v∗C = λv∗,

γ1u2 = (λ− α1)u1, β1v2 = (λ− α1)v1, (3.6)

to find

γ1β1u2v2 = |λ− α1|2u1v1 ∈ R

and the unreduced property shows that (0 6=)u2v2 ∈ R, establishing P1(2). Next, multiply the first
equation in (3.6) by v1 and the second by u1 to find

γ1v1u2 = (λ− α1)u1v1, β1u1v2 = (λ− α1)u1v1 = (λ− α1)u1v1,

establishing P2(1).

Now assume that P1(j), P1(j − 1), P2(j − 1) hold for some 1 < j < n. Rewrite equation j in
Cu = uλ and in CTv = vλ as

γjuj+1 = (λ− αj)uj − βj−1uj−1, βjvj+1 = (λ− αj)vj − γj−1vj−1. (3.7)

Multiply together the two equations above and rearrange terms to find

γjβjuj+1vj+1 = |λ− αj |2ujvj + βj−1γj−1uj−1vj−1−
−
[
βj−1uj−1vj(λ− αj) + γj−1vj−1uj(λ− αj)

]
. (3.8)

Note that (λ − αj) and (λ − αj) are conjugates and invoke P2(j − 1) to see that the two terms in
[ · ] are conjugates and so their sum is real. P1(j) shows that the first term on the right hand side
of (3.8) is real and P1(j − 1) shows that the second term is real. Hence P1(j + 1) holds.

To establish P2(j) multiply the first equation in (3.7) by vj and the second by uj to find

γjvjuj+1 = (λ− αj)ujvj − βj−1uj−1vj (3.9)

βjujvj+1 = (λ− αj)ujvj − γj−1vj−1uj . (3.10)

P1(j) and αj ∈ R show that the first terms on the right of (3.9) and (3.10) are conjugates while
P2(j − 1) shows that the the second terms are conjugates. This yields P2(j).

Now invoke the base and the principle of finite induction to conclude that P1(j) holds
for j = 1, 2, . . . , n and P2(j) holds for j = 1, 2, . . . , n− 1.

When the eigenvectors are real then P1 holds automatically. Later we use this theorem in several
places.
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3.3. (T, S) form. Any unreduced real tridiagonal matrix C, i.e., βjγj 6= 0, j = 1, . . . , n − 1,
may be “balanced” by a diagonal similarity transformation B = ECE−1 so that

|Bi,i+1| = |Bi+1,i|, i = 1 : n− 1.

See [9]. There is a unique positive definite diagonal matrix E with E11 = 1 that achieves this state,

E = diag

(
1,

∣∣∣∣γ1β1
∣∣∣∣1/2 , ∣∣∣∣ γ1γ2β1β2

∣∣∣∣1/2 , . . . , ∣∣∣∣ γ1γ2 · · · γn−1

β1β2 . . . βn−1

∣∣∣∣1/2
)
.

Any real balanced tridiagonal B may be written as

B = ST, (3.11)

where S is a signature matrix given by

s1 = 1, sj+1 = sj sign

(
γj
βj

)
, j = 1, . . . , n− 1,

and T is real symmetric as in (2.1).

Note that S2 = I and so the spectrum of B is identical to the spectrum of the pair (T, S). The
eigenvector equation is

Tx = Sxλ, 0 6= x ∈ Cn. (3.12)

There are many advantages in computing with (T, S) instead of B and C.

3.4. Complex eigenvectors of a real (T, S) pair. The next elementary result is specifically
relevant to our case of a real pair (T, S) with complex eigenvector x. This can only occur if both T
and S are indefinite.

Lemma 3.3. Let S be an indefinite signature matrix and let T be as in (2.1). If Tx = Sxλ with
0 6= x ∈ C and λ nonreal, then

x∗Sx = 0. (3.13)

Proof. Premultiply the eigenvector equation by x∗ to find x∗Tx = x∗Sxλ. Note that
x∗Sx =

∑n
k=1 sk|xk|2 is real as is x∗Tx = xTTx = x∗Tx. Conjugate this equation and sub-

tract to find 0 = x∗Sx(λ− λ). By assumption λ 6= λ.

In what follows x∗Sx = 0 will always be a necessary condition on complex eigenvectors of real
pairs (T, S).

The strong attraction of using the (T, S) form to study eigenvectors is that, because of symmetry,
it is only necessary to compute the column eigenvector x (Tx = Sxλ, STx = xλ) since xTS is a
row eigenvector of ST : transposing we obtain xTT = λxTS and (xTS)ST = λxTS. Observe that
Lemma 3.3 does not contradict the fact that xTSx 6= 0 when λ is simple.
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4. Complex eigenvectors.

4.1. (T, S) pair with a given complex eigenvector. We begin our study of matrices T ,
given in (2.1), such that Tx = Sxλ, for given nonreal λ and x, with the generic case.

The next result is the key technical lemma in the paper.
Lemma 4.1. Let S be an indefinite signature matrix and let x be a complex vector with no zero

entries that satisfies x∗Sx = 0. A matrix T , as in (2.1), and nonreal λ ∈ C satisfy Tx = Sxλ if
and only if

(a) bk Im(xk xk+1) = Im(λ)

k∑
j=1

sj |xj |2, k = 1, . . . , n− 1,

(b) bk−1Re(xk−1xk) + ak|xk|2 + bkRe(xkxk+1) = sk|xk|2Re(λ) , k = 1, . . . , n,
(for brevity, let b0 = bn = 0).

The proof below is elementary for experts. Related proofs in the rest of the paper will be more
succinct.

Proof. We prove first “necessity”. Since xj 6= 0, the jth equation in Tx = Sxλ may be multiplied
by xj to obtain

bj−1xj−1xj + aj |xj |2 + bjxjxj+1 = sj |xj |2λ , j = 1, . . . , n. (4.1)

Since T is real, the imaginary part of (4.1) yields

bj−1Im(xj−1xj) + 0 + bjIm(xjxj+1) = sj |xj |2Im(λ) , j = 1, . . . , n. (4.2)

The key observation is that Im(xj−1xj) + Im(xj−1xj) = 0 and thus there is extensive cancellation
in summing (4.2) for j = 1, . . . , k, k < n, to find

bk Im(xk xk+1) = Im(λ)

k∑
j=1

sj |xj |2, for k < n.

This is conclusion (a) while conclusion (b) is just the real part of (4.1) for j = k and thus is a real
equation defining ak uniquely.

Summing (4.2) for j = 1, . . . , n yields 0 = (x∗Sx)Im(λ).
To prove “sufficiency”, let us assume that (a) and (b) hold. Subtract (a) with index k− 1 from

(a) with index k to obtain (4.2) with index k. This is the imaginary part of (4.1) with index k. In
addition, (b) is the real part of (4.1) with index k. Thus (a) and (b) imply (4.1) which is equivalent
to Tx = Sxλ.

Theorem 4.2 (generic case). Let S be an indefinite signature matrix and let x ∈ Cn have no
zero entries and satisfy x∗Sx = 0. For each nonreal λ ∈ C there exists a unique unreduced T , as
in (2.1), such that Tx = Sxλ if and only if

(A) Im(xk xk+1) 6= 0, k = 1, . . . , n− 1,

(B)

k∑
j=1

sj |xj |2 6= 0, k = 1, . . . , n− 1.

Proof. [Sufficiency]. Given (A) and (B) consider any matrix T , as in (2.1), such that Tx = Sxλ.
By Lemma 4.1(a), bk is determined uniquely by

bk =
Im(λ)

Im(xk xk+1)

k∑
j=1

sj |xj |2, k = 1, . . . , n− 1, (4.3)
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and does not vanish. Given unique bk, k = 1, . . . , n− 1, Lemma 4.1(b) determines ak uniquely since
xk 6= 0. So the matrix T given by (a) and (b) in Lemma 4.1 is unique and satisfies the eigenvector
equation for the given λ.

[Necessity]. Given an unreduced T such that Tx = Sxλ, then Lemma 4.1(a) shows that, for

k < n, both Im(xk xk+1) and
∑k

j=1 sj |xj |2, if they vanish, must vanish together, since bk 6= 0 and
Im(λ) 6= 0.

The next step is to show that Im(xk xk+1) = 0, k < n, violates uniqueness. Observe that
Im(xn−1 xn) 6= 0; see (4.2) with j = n. So, let k be the smallest index for which Im(xk xk+1) =
−Im(xk xk+1) = 0; necessarily k < n− 1. Then bk−1 6= 0 is uniquely determined by Lemma 4.1(a)
with index k − 1. Next consider Equation (4.2) in Lemma 4.1 with j = k + 1 < n,

bkIm(xkxk+1) + bk+1Im(xk+1xk+2) = sk+1|xk+1|2Im(λ).

With Im(xkxk+1) = 0,

bk+1Im(xk+1xk+2) = sk+1|xk+1|2Im(λ)

and the right hand side does not vanish and, since bk+1 6= 0, Im(xk+1xk+2) can not vanish either
and so bk+1 is uniquely determined by this equation. In contrast, (a) in Lemma 4.1 is vacuous,

bk · 0 = 0 · Im(λ),

and puts no constraint on bk. So, let b̃k represent any value other than the bk given by T . Now,
consider replacing bk by b̃k in Lemma 4.1. Conclusion (b) yields a unique new ãk in terms of b̃k, i.e.,

bk−1Re(xk−1xk) + ãk|xk|2 + b̃kRe(xkxk+1) = sk|xk|2Re(λ)

since |xk|2 6= 0. Next, increasing the index by 1,

b̃kRe(xkxk+1) + ãk+1|xk+1|2 + bk+1Re(xk+1xk+2) = sk+1|xk+1|2Re(λ)

determines a unique new ãk+1 in terms of b̃k, since |xk+1|2 6= 0. No other equations involve b̃k.

Thus there is another T , as in (2.1), differing from the given T in b̃k, ãk, ãk+1, only, that has
(λ,x) as an eigenpair. This violates uniqueness.

If

k∑
j=1

sj |xj |2 = 0, then Im(xk xk+1) 6= 0 implies that bk = 0 and T is reduced. Thus (A) and

(B) must hold for all k < n when T is unique and unreduced.
Theorem 4.3 (nongeneric case). Let S be an indefinite signature matrix and let x ∈ Cn

have no zero entries and satisfy x∗Sx = 0. For each nonreal λ ∈ C, there exists
(I) a unique T , as in (2.1), satisfying Tx = Sxλ if and only if

Im(xk xk+1) 6= 0, k = 1, . . . , n− 1. (4.4)

(II) an unreduced T , as in (2.1), such that Tx = Sxλ if and only if for each k = 1, . . . , n− 1,

either both or neither of Im(xk xk+1) and

k∑
j=1

sj |xj |2 vanish. (4.5)
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Proof. [Sufficiency for (I)]. Given (4.4), according to (a) in Lemma 4.1, bk is uniquely defined

by (4.3) and vanishes if and only if

k∑
j=1

sj |xj |2 = 0.

Since xk 6= 0 and the {bk} are unique, condition (b) in Lemma 4.1 defines ak uniquely.

[Necessity for (I)]. Note, from Equation (4.2) in Lemma 4.1, that

bn−1Im(xn−1xn) = sn|xn|2Im(λ) 6= 0.

Let k < n− 1 be the smallest index such that Im(xkxk+1) = 0. Then, by (a) in Lemma 4.1,

k∑
j=1

sj |xj |2 = bk Im(xk xk+1)/Im(λ) = 0.

Thus, there are no constraints on bk and, exactly as in the proof of Theorem 4.2, there is a family
of T matrices with Tx = Sxλ contradicting uniqueness. Hence, uniqueness implies (4.4).

[Sufficiency for (II)]. When Im(xk xk+1) 6= 0 and
∑k

j=1 sj |xj |2 6= 0, then (a) in Lemma 4.1
determines a unique nonzero bk. On the other hand, when both vanish, then, as in the proof of
Theorem 4.2, there is no constraint on bk and it may be taken as a free parameter in forming a
family of T with Tx = Sxλ. Any nonzero value for bk gives an unreduced T and it will not be
unique whenever Im(xk xk+1) = 0.

[Necessity for (II)]. Consider any unreduced T , as in (2.1), that satisfies Tx = Sxλ. Since

bk 6= 0, (a) in Lemma 4.1 shows that Im(xk xk+1) and
∑k

j=1 sj |xj |2 are both zero or neither is zero.
This is (4.5).

Remark 4.1. It is the condition that no xk can vanish that permits these simple proofs. The
reader is referred to Section 3.1 to see that there is no loss of generality in this assumption.

Remark 4.2. Condition (4.4) shows that, in the general case, an eigenvector x of a pair (T, S)
with no zero entries must have the property that the ratio xk+1/xk(= xk xk+1/|xk|2), k = 1, . . . , n−1,
is not real whenever its eigenvalue is not real.

Finally, a reader may ask for mere existence of T . The proof of (II) in Theorem 4.3 shows
Theorem 4.4. Let S be an indefinite signature matrix and let x ∈ Cn have no zero entries and

satisfy x∗Sx = 0. For each nonreal λ ∈ C,
(III) there exists a T , as in (2.1), with Tx = Sxλ if and only if, for k = 1, . . . , n− 1,

Im(xk xk+1) = 0 implies

k∑
j=1

sj |xj |2 = 0.

Proof. Condition (a) in Lemma 4.1 determines a bk but with no constraints when both sides
vanish. Condition (b) determines ak in terms of bk−1 and bk since xk 6= 0.

4.2. C with a given pair of complex eigenvectors. The next step is to extend the results
of Section 4.1 from the (T, S) form to the (C, I) form, as given in (2.2), with

C = diag(α) + diag(β,−1) + diag(γ,+1) (4.6)

for a real n-array α and two real n−1 arrays β and γ. Our interest is mainly in unreduced matrices
where βjγj 6= 0, j = 1, . . . , n− 1.

In this section we seek necessary and sufficient conditions on a pair of vectors, u,v ∈ Cn, so
that, for any nonreal λ, there exists a real C, as in (4.6), with Cu = uλ and v∗C = λv∗.
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By Theorem 3.2 in Section 3.2, u and v may always be chosen to satisfy certain conditions and
henceforth we only consider complex vectors u and v which satisfy these simplifying conditions.

Necessary and sufficient conditions may be found by following similar techniques to those used
in Section 4.1 but we claim that, despite first appearances, the problems in the two sections are
equivalent and so the results in Section 4.1 may be translated into the correct results for this
section.

The first appearances mentioned above are that there are 3n−2 real unkonwns α, β, γ and two
given complex vectors u and v amount to approximately 4n real conditions. The apparent mismatch
of conditions and unknowns is illusory because u and v are far from independent. See Theorem 3.2.

To see the equivalence of the two problems (Section 4.1 and Section 4.2), let us start with any
real unreduced C, as in (4.6). From Section 3.3 we know that C may be balanced by a unique
diagonal similarity transformation

ST = ECE−1

with E = diag(e1, . . . , en), positive definite and e1 = 1, determined by C. These properties of E are
used below. Recall that S is a signature matrix, S = diag(s1, s2, . . . , sn) with si = ±1.

Let x, with no zero entries, be the complex eigenvector of ST for λ,

STx = xλ, (xTS)ST = λxTS.

Now substitute ECE−1 for ST to find

CE−1x = E−1xλ and (xTSE)C = xTSEλ. (4.7)

Thus, given x, with E and S known, we can take u = E−1x and v∗ = xTSE, ignoring scalar
factors, with Cu = uλ and v∗C = λv∗, since the real property P1(j) in Theorem 3.2 is satisfied,

ujvj = (xj/ej)(xjsjej) = sj |xj |2 ∈ R.

Now, given two complex eigenvectors u and v∗ of C for a nonreal λ, with no zero entries and
satisfying the real condition P1(j) in Theorem 3.2, to have consistency in defining x from (4.7),
either as a multiple of Eu or as a multiple of SE−1v, with the signature matrix S defined from

sj := sign(ujvj), (4.8)

we need a scaling factor µ so that

xj = ejuj , xj = (sjvjµ)/ej .

Hence, since ujvj is real and e1 = 1,

µ = e2jsj(uj/vj) = e2j (sjujvj)/|vj |2 = e2j |ujvj |/|vj |2 = e2j |uj |/|vj |, j = 1, 2, . . . , n

= |u1|/|v1|. (4.9)

Also, from the equalities above,

e2j = |vj/v1|
/
|uj/u1| > 0, j = 1, 2, . . . , n. (4.10)

Observe that (4.9) fixes µ and then (4.10) fixes E, positive definite, as

ej =
(
|vj/v1|/|uj/u1|

)1/2
.
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Thus, under suitable conditions, for any nonreal λ, S and x define real T and C = E−1STE. Indeed,
the two problems (T, S) and (C, I) are equivallent.

Theorem 4.2 gives the conditions on x to have a unique real unreduced symmetric T satisfying
Tx = Sxλ for any nonreal λ. These conditons must be translated into the conditions on u and v.
In practice we normalize u and v so that |u1| = |v1| and then µ = 1. Formulae become simpler but,
for the theorem to follow, we do not need µ = 1.

Observe that

sj |xj |2 = sj(ejuj)(sjvjµ/ej) = µujvj , µ 6= 0, (4.11)

and Condition (B) in Theorem 4.2 gives us

k∑
j=1

ujvj 6= 0, k = 1, . . . , n− 1.

Set k = n to recover the necessary condition 0 = vTu = µ(x∗SE)(E−1x) = µx∗Sx when λ is
nonreal. This does not contradict the fact that v∗u 6= 0 when λ is simple.

For Condition (A) in Theorem 4.2 we must connect the two sets of off-diagonal entries β and γ
in (4.6) to one set of off-diagonal entries b of T . Again, C = E−1STE yields

γj = e−1
j sjbjej+1, βj = e−1

j+1sj+1bjej (4.12)

so that both γj and βj are simply related to bj . Also

αj = sjaj

for the diagonal entries.
The important quantity bkxkxk+1 from Lemma 4.1 satisfies

bkxkxk+1 = (γkskek/ek+1)[vk/(skek)µ](uk+1ek+1) = µγkvkuk+1. (4.13)

Note that its conjugate bkxk+1xk translates into

bkxk+1xk = (βksk+1ek+1/ek)[vk+1/(sk+1ek+1)µ](ukek) = µβkukvk+1. (4.14)

Again, the {ej} need not be known since they cancel out.
We have recovered property P2(j) in Theorem 3.2 in Section 3.2.

There are nice formulae for the entries of C. Substitute (4.11), (4.13) and (4.14) into Lemma
4.1 (a), for k = 1, . . . , n− 1, to obtain

γk Im(vk uk+1) = Im(λ)

k∑
j=1

ujvj , (4.15)

βk Im(uk vk+1) = −Im(λ)

k∑
j=1

ujvj . (4.16)

Equate real parts to find µβkRe(ukvk+1) = µγkRe(vkuk+1) = bkRe(xkxk+1) = bkRe(xk+1xk).
Lemma 4.1 (b), for k = 1, . . . , n, gives

βk−1Re(uk−1vk) + αkukvk + γkRe(vkuk+1) = ukvkRe(λ). (4.17)



Inverse eigenvector problem for tridiagonals 11

Other versions of (4.17) are

γk−1Re(ukvk−1) + αkukvk + γkRe(vkuk+1) = ukvkRe(λ)

and

βk−1Re(uk−1vk) + αkukvk + βkRe(ukvk+1) = ukvkRe(λ).

Since γkvkuk+1 and βkukvk+1 vanish together, if either vanishes, either Im(vk uk+1) 6= 0 or
Im(ukvk+1) 6= 0 may be substituted for the condition Im(xkxk+1) 6= 0 from Theorem 4.2. We are
now in a position to restate Theorem 4.2 as it applies to real C.

Theorem 4.5 (generic case). Let u ∈ Cn,v ∈ Cn be complex vectors with no zero entries
satisfying vTu = 0 and ujvj ∈ R, j = 1, . . . , n. For each nonreal λ ∈ C there exists a unique
unreduced C ∈ Rn×n, as in (2.2), such that Cu = uλ and v∗C = λv∗ if and only if

(A) Im(vk uk+1) 6= 0, k = 1, . . . , n− 1,

(B)

k∑
j=1

ujvj 6= 0, k = 1, . . . , n− 1.

For the nongeneric case Theorems 4.3 and 4.4 applied to real C gives
Theorem 4.6 (nongeneric case). Let u ∈ Cn,v ∈ Cn be complex vectors with no zero entries

satisfying vTu = 0 and ujvj ∈ R, j = 1, . . . , n. For each nonreal λ ∈ C, there exists
(I) a unique C ∈ Rn×n, as in (2.2), satisfying Cu = uλ and v∗C = v∗λ if and only if

Im(vk uk+1) 6= 0, k = 1, . . . , n− 1. (4.18)

However C might be reduced.
(II) an unreduced C ∈ Rn×n, as in (2.2), satisfying Cu = uλ and v∗C = v∗λ if and only if for

each k = 1, . . . , n− 1,

either both or neither of Im(vk uk+1) and

k∑
j=1

ujvj vanish. (4.19)

(III) (mere existence) C ∈ Rn×n, as in (2.2), satisfying Cu = uλ and v∗C = v∗λ if and only if
for k = 1, . . . , n− 1,

Im(vk uk+1) = 0 implies

k∑
j=1

ujvj = 0.

When both terms vanish then both γk and βk are unconstrained by (4.15) and (4.16).

4.3. J matrices. In many applications the matrix C in (2.2) has the special property that
γj = 1, j = 1, 2, . . . , n − 1. This is often called a J matrix and has the virtue of the form being
invariant under the LR and dqds transforms,

J =



α1 1
β1 α2 1

β2 α3 1
. . .

. . .
. . .

βn−2 αn−1 1
βn−1 αn


. (4.20)
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In this case relation (4.15), with γk = 1, imposes a tight connection between Im(vkuk+1) and
k∑

j=1

ujvj for each k = 1, 2, . . . , n− 1. Their ratios must all be equal and thus fix Im(λ).

From (4.13) and (4.14) we see that

βkukvk+1 = vkuk+1

and, thus,

βk =
(vkvk)(uk+1uk+1)

(ukvk)(uk+1vk+1)
=

|vk|2|uk+1|2

(ukvk)(uk+1vk+1)
6= 0, k = 1, 2, . . . , n− 1. (4.21)

So, βk is well defined, by the real property, and is unique. Moreover, on adding (4.15) and (4.16),
we have

βk = −Im(vkuk+1)/Im(ukvk+1), k = 1, 2, . . . , n− 1.

Then the relation (4.17) fixes αk for any given Re(λ) and Im(λ) = Im(v1u2)/u1v1 6= 0.
Turning to the nongeneric case we note that relation (4.15), with γk = 1, implies Condition III

in Theorem 4.6 and so uniqueness and the unreduced property must accompany (mere) existence of
a real J matrix with the given complex eigenvector. We state this result formally.

Theorem 4.7. Let u ∈ Cn, v ∈ Cn be complex vectors with no zero entries satisfying vTu = 0
and uivi ∈ R, i = 1, . . . , n. For a suitable real value Im(λ) 6= 0 there exists a real J matrix, as in
(4.20), such that Ju = uλ, v∗J = λv∗ if and only if

(A) Im(vk uk+1) = Im(λ)

k∑
j=1

ujvj, k = 1, . . . , n− 1.

In this case, for each value of Re(λ), (4.21) and (4.17), with γk = 1, determine a unique unreduced
J matrix with Ju = uλ and v∗J = λv∗.

5. Real eigenvectors.

5.1. (T, S) with a given pair of real eigenvectors. There are 2n − 1 free real degrees of
freedom in T , as in (2.1), while 2 real n-vectors x and y impose 2n real conditions. However, in
the problem considered here yTSx = 0 and thus the number of constraints matches the degrees of
freedom. This condition is true in general, not just in the tridiagonal case.

The analysis follows the pattern of the complex case and begins with a key technical lemma.
Remark 5.1. To see that determinants have been presented in Section 4 but hidden, observe

that

Im(xk xk+1) = det

[
Re(xk) Im(xk)
Re(xk+1) Im(xk+1)

]
.

Lemma 5.1. Consider a signature matrix S, which could be definite or indefinite, and two
linearly independent vectors x ∈ Rn, y ∈ Rn satisfying yTSx = 0 and (xj , yj) 6= (0, 0), j = 1, . . . , n.
If T , as in (2.1), satisfies Tx = Sxλ, Ty = Syµ, λ ∈ R, µ ∈ R, λ 6= µ, then

(a) bk det

[
xk yk
xk+1 yk+1

]
= (µ− λ)

k∑
j=1

sjxjyj , k = 1, . . . , n− 1.

(b) bk−1(xk−1yk + xkyk−1) + 2akxkyk + bk(xkyk+1 + xk+1yk) = skxkyk(µ+ λ), k = 1, . . . , n,
(for brevity, let b0 = bn = 0.)
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Proof. When xjyj 6= 0 it is legitimate to multiply the jth equation in Tx = Sxλ by yj and the
jth equation in Ty = Syµ by xj to obtain

bj−1xj−1yj + ajxjyj + bjxj+1yj = sjxjyjλ, (5.1)

bj−1xjyj−1 + ajxjyj + bjxjyj+1 = sjxjyjµ. (5.2)

Subtract the second from the first to find

bj−1(xj−1yj − xjyj−1) + 0 + bj(xj+1yj − xjyj+1) = sjxjyj(λ− µ), (5.3)

that is,

bj−1 det

[
xj−1 yj−1

xj yj

]
− bj det

[
xj yj
xj+1 yj+1

]
= sjxjyj(λ− µ), j = 1, . . . , n− 1. (5.4)

Observe that the second term on the left hand side of (5.4) for index j−1 is the negative of the first
term for index j. Now, sum equation (5.4) for j = 1, . . . , k, k < n, to obtain

−bk det

[
xk yk
xk+1 yk+1

]
= (λ− µ)

k∑
j=1

sjxjyj .

This is conclusion (a) when xjyj 6= 0.

Summing (5.3) for j = 1, . . . , n− 1, yields 0 = (λ−µ)
∑n

j=1 sjxjyj which shows that yTSx = 0
is a necessary condition.

Summing equations (5.1) and (5.2) yields

bj−1(xj−1yj + xjyj−1) + 2ajxjyj + bj(xjyj+1 + xj+1yj) = sjxjyj(λ+ µ), j = 1, . . . , n, (5.5)

which is conclusion (b) when xjyj 6= 0.

Next we seek to relax the condition xjyj 6= 0 to the weaker one (xj , yj) 6= (0, 0). Suppose that
xj = 0, yj 6= 0. Then (5.1) becomes

bj−1xj−1yj + 0 + bjxj+1yj = 0 (5.6)

and the jth equation in Ty = Syµ is ignored because it is now multiplied by xj = 0. However, (5.6)
is precisely both (5.4) and (5.5) when xj = 0.

The situation is the same when xj 6= 0, yj = 0. We recover (5.4) and (5.5). The rest of the
argument is unchanged and the proof is complete for conclusions (a) and (b).

Theorem 5.2 (generic case). Consider a signature matrix S, which could be definite or
indefinite, and two linearly independent vectors x ∈ Rn, y ∈ Rn with (xj , yj) 6= (0, 0), j = 1, . . . , n,
and yTSx = 0. For any λ ∈ R, µ ∈ R, λ 6= µ, there exists a unique unreduced T , as in (2.1), such
that Tx = Sxλ, Ty = Syµ if and only if

(A) det

[
xk yk
xk+1 yk+1

]
6= 0, k = 1, . . . , n− 1,

(B)

k∑
j=1

sjxjyj 6= 0, k = 1, . . . , n− 1.
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Proof. [Sufficiency]. When (A) and (B) hold, then (a) in Lemma 5.1 determines bk as unique
and nonzero. If xkyk 6= 0, then (b) in Lemma 5.1 defines ak uniquely. For the cases xk = 0, yk 6= 0
and xk 6= 0, yk = 0, the uniqueness of ak is confirmed by the k-th equation in Ty = Syλ and by the
k-th equation in Tx = Sxλ, respectively.

[Necessity].The argument follows the one in Theorem 4.2 with the determinant in (A) taking
place of Im(xk xk+1). When this determinant vanishes then bk may be taken as a free parameter
and both ak and ak+1 are determined uniquely given bk in all three cases: xkyk 6= 0; xk = 0, yk 6= 0;
xk 6= 0, yk = 0. Uniqueness is lost. Thus, when T is unique, the determinant cannot vanish and
then, using the unreduced property (bk 6= 0), (a) in Lemma 5.1 shows that the determinant in (A)

and the corresponding partial sum
∑k

j=1 sjxjyj must vanish together if either of them does vanish.
Thus, (A) and (B) hold.

The nongeneric case also follows the pattern of the complex case.

Theorem 5.3 (nongeneric case). Let S be a signature matrix, definite or indefinite, and
let two linearly independent vectors x ∈ Rn, y ∈ Rn satisfy (xj , yj) 6= (0, 0), j = 1, . . . , n, and
yTSx = 0. For any λ ∈ R, µ ∈ R, λ 6= µ, there exists

(I) a unique T , as in (2.1), such that Tx = Sxλ, Ty = Syµ if and only if

det

[
xk yk
xk+1 yk+1

]
6= 0, k = 1, . . . , n− 1. (5.7)

(II) an unreduced T , as in (2.1), such that Tx = Sxλ, Ty = Syµ if and only if for each
k = 1, . . . , n− 1,

det

[
xk yk
xk+1 yk+1

]
and

k∑
j=1

sjxjyj vanish together, if either vanishes. (5.8)

Proof. [Sufficiency for (I)]. When (5.7) holds, then (a) in Lemma 5.1 gives bk, k = 1, . . . , n− 1,

uniquely and bk vanishes if and only if

k∑
j=1

sjxjyj = 0. When one of xk, yk vanishes, then ak is

determined uniquely from either Tx = Sxλ or Ty = Syµ accordingly. When neither vanishes,
then ak is determined by Lemma 5.1 (b). Consistency follows from the exclusive use of elementary
operations in the proof of Lemma 5.1.

[Necessity for (I)]. The argument in the proof of “necessity” in Theorem 5.2 does not require

the unreduced property and so may be invoked here to show that if det

[
xk yk
xk+1 yk+1

]
= 0 for any

1 ≤ k ≤ n− 1, then uniqueness of T is lost. Lemma 5.1 (a) shows that the partial sum
∑k

j=1 sjxjyj
vanishes in this case.

[Sufficiency for (II)]. Assume that (5.8) holds. If det

[
xk yk
xk+1 yk+1

]
6= 0, then bk is determined

and nonzero by Lemma 5.1 (a). If the determinant vanishes, then bk is unconstrained and we can
choose bk 6= 0 which then determines ak and ak+1 as in the proof of Theorem 5.2. In such cases T
is not unique.

[Necessity for (II)]. Given an unreduced T satisfying Tx = Sxλ, Ty = Syµ, then Lemma 5.1

(a) shows that det

[
xk yk
xk+1 yk+1

]
and

k∑
j=1

sjxjyj vanish together if either does vanishes. Thus, (5.8)

holds.
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Finally, we state without proof that given S,x, λ,y, µ as in Theorem 5.3, then T , as in (2.1),
exists such that Tx = Sxλ, Ty = Syµ if and only if for k = 1, . . . , n− 1,

det

[
xk yk
xk+1 yk+1

]
= 0 implies

k∑
j=1

sjxjyj = 0.

5.2. C with two given pairs of real eigenvectors. We first study the necessary conditions
that constrain two pairs of real eigenvectors associated with different real eigenvalues of a real
unreduced tridiagonal matrix C as in (4.6),

Cu = uλ, vTC = λvT , Cw = wµ, zTC = µzT , λ 6= µ.

Note that, as for any real square matrix,

vTw = zTu = 0. (5.9)

For simplicity we assume no zero entries in u, v, w and z. This assumption is used extensively and
will not be mentioned each time.

We also assume the necessary conditions found in property P2(j) in Theorem 3.2, with no
mention of βj and γj , which take the simple form

uj+1

uj
/
vj+1

vj
=
wj+1

wj
/
zj+1

zj
, j = 1, . . . , n− 1. (5.10)

The eigenvector equations yield 4n equations. For j = 1, . . . , n,

βj−1uj−1 + αjuj + γjuj+1 = ujλ, βj−1wj−1 + αjwj + γjwj+1 = wjµ,

γj−1vj−1 + αjvj + βjvj+1 = vjλ, γj−1zj−1 + αjzj + βjzj+1 = zjµ.

All entries with index 0 and n + 1 vanish. We now perform elementary operations on this system
of equations to obtain an equivalent but more informative system. With condition (5.9) in mind we
combine equations for u, z and for w,v. Multiply the j-th equation for u by zj , the j-th equation
for z by uj and subtract. Do the same for v,w to find, for j = 1, . . . , n,

(βj−1uj−1zj − γj−1zj−1uj) + (γjzjuj+1 − βjujzj+1) = ujzj(λ− µ), (5.11)

(γj−1vj−1wj − βj−1wj−1vj) + (βjwjvj+1 − γjvjwj+1) = wjvj(λ− µ). (5.12)

Note that, in both equations above, the right (·) for j is the negative of the left (·) for j + 1. Sum
for j = 1, 2, . . . , k < n and use the cancellation to find[

zkuk+1 −ukzk+1

−vkwk+1 wkvk+1

] [
γk
βk

]
= (λ− µ)

[∑k
j=1 ujzj∑k
j=1 wjvj

]
. (5.13)

Now return to the original eigenvector equations and proceed as above but add rather than subtract.
The result is, for j = 1, . . . , n,

(βj−1uj−1zj + γj−1zj−1uj) + 2αjujzj + (γjzjuj+1 + βjujzj+1) = ujzj(λ+ µ), (5.14)

(γj−1vj−1wj + βj−1wj−1vj) + 2αjvjwj + (βjwjvj+1 + γjvjwj+1) = wjvj(λ+ µ). (5.15)

Observe that αj is determined uniquely by (5.14) or (5.15). Consistency is shown below.
The necessary condition (5.13) defines a unique nonzero vector

[
γk βk

]
6=
[
0 0

]
, for

k = 1, . . . , n− 1, provided that
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(A) det

[
zkuk+1 −ukzk+1

−vkwk+1 wkvk+1

]
6= 0, k = 1, . . . , n− 1,

(B)

k∑
j=1

ujzj and

k∑
j=1

wjvj do not vanish simultaneously for k = 1, . . . , n− 1.

By condition (5.9),

n∑
j=1

wjvj = 0 and

n∑
j=1

ujzj = 0.

The 4n linear equations (5.11), (5.12), (5.14) and (5.15) are equivalent to the original eigen-
vector equations since only elementary operations, which are reversible, were used to obtain them.
Consequently, the conditions (A) and (B) are necessary conditions on u, v, w and z to have a
unique unreduced C to satisfy the eigenvector equations. What about sufficiency?

When C is not given, equations (5.13), under conditions (A) and (B), determine unique [γk , βk] 6=
[0, 0], k = 1, . . . , n− 1. We have yet to show that βkγk 6= 0, i.e., C is unreduced. We must also show
that (5.14) and (5.15), the other half of our equations, are consistent, i.e., determine the same value
for αj .

At this point we need the unused necessary conditions (5.10). By multiplication we obtain

uj+1zj+1

ujzj
=
vj+1wj+1

vjwj
=:

1

σj
, j = 1, . . . , n− 1, (5.16)

and thus define σj . By the nonzero entry condition, rewrite (5.14) and (5.15) as

(βj−1uj−1/uj + γj−1zj−1/zj) + 2αj + (γjuj+1/uj + βjzj+1/zj) = λ+ µ, (5.17)

(γj−1vj−1/vj + βj−1wj−1/wj) + 2αj + (βjvj+1/vj + γjwj+1/wj) = λ+ µ. (5.18)

Next consider the partial sums in (5.13) and extract the last term in each, using (5.16), for j = k−1
down to j = 1. This gives

k∑
j=1

ujzj = ukzk(1 + σk−1 + σk−1σk−2 + . . .+ σk−1σk−2 · · ·σ1),

k∑
j=1

vjwj = vkwk(1 + σk−1 + σk−1σk−2 + . . .+ σk−1σk−2 · · ·σ1),

which suggests rewriting (5.13) in a more illuminating way as

γk
uk+1

uk
− βk

zk+1

zk
=
λ− µ
ukzk

k∑
j=1

ujzj ,

−γk
wk+1

wk
+ βk

vk+1

vk
=
λ− µ
wkvk

k∑
j=1

wjvj .

Rearranging the two left sides, which were shown to be equal above, yields

γk

(
uk+1

uk
+
wk+1

wk

)
= βk

(
vk+1

vk
+
zk+1

zk

)
. (5.19)

Now use (5.10) to find that

uk+1

uk
/
vk+1

vk
=
wk+1

wk
/
zk+1

zk
=

(
uk+1

uk
+
wk+1

wk

)
/

(
vk+1

vk
+
zk+1

zk

)
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and the crucial result
Lemma 5.4.

γkuk+1vk = βkvk+1uk, γkwk+1zk = βkzk+1wk, k = 1, . . . , n− 1.

Thus, with the necessary condition (5.10), Lemma 5.4 shows that βk and γk can only vanish
together, while conditions (A) and (B) forbid that both quantities vanish.

Finally, inspect the two equations (5.17) and (5.18) for αj and use Lemma 5.4 to see that

γjuj+1/uj + βjzj+1/zj = βjvj+1/vj + γjwj+1/wj

and

βj−1uj−1/uj + γj−1zj−1/zj = γj−1vj−1/vj + βj−1wj−1/wj .

Thus equations (5.17) and (5.18) are the same and determine the same unique value of αj ,
j = 1, . . . , n.

So (A) and (B) are sufficient conditions for the given vectors to be suitable eigenvectors for a
unique unreduced C. We have proved

Theorem 5.5 (generic case). Let u,v,w, z be four vectors in Rn with no zero entries satis-
fying vTw = zTu = 0 and

uj+1

uj
/
vj+1

vj
=
wj+1

wj
/
zj+1

zj
, j = 1, . . . , n− 1.

For any λ ∈ R, µ ∈ R, λ 6= µ, there exists a unique unreduced C ∈ Rn×n, as in (2.2), such that
Cu = uλ, vTC = λvT , Cw = wµ, zTC = µzT , if and only if

(A) det

[
zkuk+1 −ukzk+1

−vkwk+1 wkvk+1

]
6= 0, k = 1, . . . , n− 1,

(B)

k∑
j=1

ujzj and

k∑
j=1

wjvj do not vanish simultaneously for k = 1, . . . , n− 1.

5.3. J matrix with two given real eigenvectors. The result for two real vectors is a little
different from the symmetric (T, S) form case and we include the proof.

Theorem 5.6. Consider two vectors u ∈ Rn, v ∈ Rn with no zero entries and satisfying
vTu = 0. For any distinct λ ∈ R, µ ∈ R, λ 6= µ, there is always a unique J matrix, as in (4.20),
satisfying Ju = uλ, vTJ = µvT , and J is unreduced if and only if

vkuk+1 6= (λ− µ)

k∑
j=1

vjuj , k = 1, . . . , n− 1.

Proof. For brevity define β0 = βn = 0, un+1 = 0 and v0 = 0.
Since ujvj 6= 0, multiply the jth equation of Ju = uλ by vj and the jth equation of vTJ = µvT

by uj and first subtract and then add to find an equivalent pair of equations,

(vj−1uj − βj−1vjuj−1) + (βjvj+1uj − vjuj+1) = vjuj(µ− λ) (5.20)

(vj−1uj + βj−1vjuj−1) + 2αjvjuj + (βjvj+1uj + vjuj+1) = vjuj(µ+ λ). (5.21)
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Observe that the second (·) on the left hand side of (5.20) for index j − 1 is the negative of the first
(·) for index j . Now sum (5.20) for j = 1, . . . , k, and use the cancelation to find

βkvk+1uk − vkuk+1 = (µ− λ)

k∑
j=1

vjuj . (5.22)

Since no entry of u nor v vanishes, (5.22) determines uniquely each βk, k = 1, . . . , n − 1. Since
vTu = 0, an alternative form of (5.22) is

βkvk+1uk − vkuk+1 = (µ− λ)

− n∑
j=k+1

vjuj

 , (5.23)

and this arises from summing (5.20) for j = k + 1, . . . , n.
Finally, each αj is determined uniquely by (5.21).
Note that βk vanishes if and only if

vkuk+1 = (λ− µ)

k∑
j=1

vjuj ,

in which case there is a strong constraint on λ− µ.

6. Up and Down. If digital computers are to be used for computing the partial sums∑k
j=1 sj |xj |2, j = 1, . . . , n, needed in Lemma 4.1 to compute T from the given eigenvector x, then

roundoff error is a serious concern because some cancellation in the sums is to be expected. Ideal
would be to compute the |xi|2 exactly and sum them in twice working precision. If extra precision
is not available, we have to compute the partial sums with care. One approach is to compute them
in two ways, as follows:

sumdown(1) := s1|x1|2, sumdown(k) := sumdown(k − 1) + sk|xk|2, k = 2, . . . , n,

sumup(n) := sn|xn|2, sumup(k) := sumup(k + 1) + sk|xk|2, k = n− 1, . . . , 1.

In exact arithmetic

sumdown(n) = 0 and sumup(1) = 0.

With this notation, for each k, k = 1, . . . , n− 1, sumdown(k) + sumup(k + 1) = x∗Sx = 0.
We need to combine the two sequences with care. A sensible choice is to switch from sumdown to

sumup at any index where sumdown assumes its maximum absolute value. After this index sumdown

looses information with each cancellation. Similarly, sumup looses information with each cancellation
going up. In practice, we compute l such that

l := arg max
k

∣∣ sumdown(k)
∣∣

and create a spliced array by

sumspl(m) =

{
sumdown(m), m ≤ l,
− sumup(m+ 1), l < m < n,

sumspl(n) = 0.
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More elaborated schemes are possible. One of these uses “compensated summation”. This valuable
technique is not as universally used as it should be. A good reference is [4, p.93]. In brief, some extra
variables and extra operations are used to estimate the quantity that is discarded in each addition.
Compensated summation is not exact; nevertheless, in our case, it has proved beneficial for large
values of n.

Below we give an example to show how necessary it is to form the sum with care.

Example 6.1. This matrix of order n = 14 was created in ST form with

T = diag(a) + diag(b,−1) + diag(b,+1),

aj = (−1)j−1(2j + 3), j = 1, . . . , 14,

b = [−1 −1 −1 1 1 1 1 1 1 1 1 1 −1],

and S = diag
(
[1 −1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1]

)
. Given the approximate

eigenvalue λ = 16.0 + 7.65× 10−2
i and the approximate corresponding eigenvector

x =



−3.56× 10−7 + 3.59× 10−8
i

3.93× 10−6 − 3.69× 10−7
i

3.59× 10−5 − 3.07× 10−6
i

8.95× 10−4 − 7.37× 10−5
i

2.42× 10−2 − 1.93× 10−3
i

−7.05× 10−1 + 5.41× 10−2
i

7.07× 10−1

2.02× 10−2 − 4.40× 10−5
i

−5.42× 10−4 + 2.32× 10−6
i

−7.66× 10−5 − 4.90× 10−7
i

8.52× 10−6 + 1.27× 10−7
i

1.98× 10−7 + 2.60× 10−9
i

−4.39× 10−9 − 5.02× 10−11
i

9.34× 10−11 + 9.16× 10−13
i



,

we compute the new b according to the formula in (4.3) using the values of sumdown, sumup and
sumspl. We show the results in Table 6.1. The new b spliced at index 6 is shown in boldface (as well
as the relative errors). Table 6.2 shows the different partial sums.
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initial b down b down error up b up error

-1 −1.00 3.02 × 10−11 −1.06 6.33× 10−2

-1 −1.00 6.61 × 10−12 −9.99× 10−1 5.24× 10−4

-1 −1.00 4.91 × 10−11 −1.00 6.18× 10−6

1 1.00 3.33 × 10−16 1.00 1.00× 10−8

1 1.00 2.73 × 10−13 1.00 1.35× 10−11

1 1.00 6.44 × 10−15 1.00 9.88× 10−15

1 1.00 1.99× 10−11 1.00 2.34 × 10−14

1 1.00 2.70× 10−8 1.00 8.88 × 10−15

1 1.00 1.40× 10−6 1.00 3.22 × 10−15

1 1.00 1.12× 10−4 1.00 1.31 × 10−14

1 1.21 2.07× 10−1 1.00 9.99 × 10−15

1 −4.19× 102 4.20× 102 1.00 1.44 × 10−14

-1 −9.29× 105 9.29× 105 −1.00 1.11 × 10−15

Table 6.1
Relative errors for reconstructed b with sumdown and sumup.

k sumdown(k) sumup(k + 1) sumspl(k)

1 1.28× 10−13 −1.36× 10−13 1.28× 10−13

2 −1.55× 10−11 1.55× 10−11 −1.55× 10−11

3 −1.31× 10−9 1.31× 10−9 −1.31× 10−9

4 8.05× 10−7 −8.05× 10−7 8.05× 10−7

5 −5.90× 10−4 5.90× 10−4 −5.90× 10−4

6 −5.00× 10−1 5.00× 10−1 −5.00× 10−1

7 −4.06× 10−4 4.06× 10−4 −4.06× 10−4

8 3.00× 10−7 −3.00× 10−7 3.00× 10−7

9 5.80× 10−9 −5.80× 10−9 5.80× 10−9

10 −7.26× 10−11 7.26× 10−11 −7.26× 10−11

11 −4.72× 10−14 3.91× 10−14 −3.91× 10−14

12 −8.08× 10−15 −1.93× 10−17 1.93× 10−17

13 −8.10× 10−15 8.72× 10−21 −8.72× 10−21

Table 6.2
Partial sums - splice index equals 6.
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7. Conclusion. We have given a rather thorough account of all the cases when a unique real
tridiagonal matrix can make an approximate eigentriple (λ̂, x̂, ŷ∗) exact. Our results suggest two
related avenues for future work extending the results in [3]. The first is to exploit the apparent locality
of the formula in (4.3) for the off-diagonal entries in the (T, S) formulation to make well chosen
perturbations to just a few entries of the computed eigenvector in order to reduce the backward
error even further. This work is in its early stages. The second direction is to compare the backward
error from several, or all, the computed eigenvectors of a given tridiagonal matrix.

So far the technique shown in Section 6 have given adequate accuracy to the partial sums but
our results are limited.
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