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If you are receptive and humble, mathematics will lead you

by the hand. Again and again, when I have been at a loss

how to proceed, I have just had to wait until I have felt

the mathematics led me by the hand. It has led me along

an unexpected path, a path where new vistas open up, a

path leading to new territory, where one can set up a base

of operations, from which one can survey the surroundings

and plan future progress.

Paul Dirac
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Summary

This thesis addresses the joint analysis of data with different dimensions, such as scalars,

vectors, functions and images. This is of high practical and methodological relevance, as

in the course of the technical progress, data with increasing complexity and dimensionality

becomes available, requiring the extension of statistical models to new types of data and

leading to the development of completely new statistical methods.

In the first part of the thesis, multivariate functional principal component analysis (MF-

PCA) is developed for functional data on different dimensional domains. This is a novel

method, as existing approaches for MFPCA are restricted to multivariate functional data

on the same, one-dimensional interval. Using the new approach, principal components for

data consisting e.g. of functions and images (i.e. functions on a two-dimensional domain)

can be obtained, taking potential covariation in the elements into account. The thesis

constructs a thorough theoretical basis for multivariate functional data on different dimen-

sional domains and derives a theoretical relationship between univariate and multivariate

functional principal component analysis for finite sample sizes. The results can be used

to estimate multivariate functional principal components, eigenvalues and scores based on

their univariate counterparts. It is shown how the method can be extended to univariate

elements in general basis representations and to a weighted version of MFPCA to correct for

differences in domain, range or variation of the elements. The approach is also applicable

for sparse data or data with measurement error. The finite sample performance of the new

method is evaluated in a simulation study with different levels of complexity. Moreover,

asymptotic properties for large sample sizes are derived in two theorems, using results from

perturbation theory and showing consistency of the proposed estimators. The estimation

algorithm has been implemented in a publicly available R-package MFPCA, together with

another R-package funData for representing functional data in an object-oriented manner.

The thesis provides an introduction to the software and the underlying concepts. The new

approach is illustrated in an application to a neuroimaging dataset. The aim here is to

examine the relationship between trajectories of a neuropsychological test score over time

and FDG-PET brain scans at baseline, that can be interpreted as functions on a three-

dimensional domain, as the latter might be predictive of subsequent cognitive decline. The

results show that estimates obtained from the new MFPCA method are meaningful from a

medical point of view and provide new insights into the data.

The second part of the thesis is concerned with scalar-on-image regression. This class of

statistical methods models the relation of a scalar outcome and an image predictor, hence

data with different dimensions and a complex dependence structure. It is representative for

a broad class of statistical models for complex data, which intrinsically is unidentifiable,

as in general the number of observations will be low compared to the number of pixels

in the image. Strong model assumptions are thus required to obtain a unique solution,



which is of course conditional on the hypotheses made on the true coefficient image. In

the thesis, different models for scalar-on-image regression with different assumptions are

compared with respect to their ability to give reliable and interpretable estimates. To this

end, new measures for quantifying the influence of model assumptions are developed and

analyzed in a simulation study for nine different scalar-on-image models. The relevance of

the topic is illustrated in a practical neuroimaging application. It is shown that different

models with different assumptions can lead to results that share common patterns, but can

differ substantially in their details, as model assumptions can have a strong influence on

the estimates. This can entail the risk of over-interpreting effects that are mainly driven

by the model assumptions.



Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit der gemeinsamen Analyse von Daten unter-

schiedlicher Dimension, wie beispielsweise Skalare, Vektoren, Funktionen und Bilder. Dies

ist sowohl aus praktischer als auch aus methodischer Sicht relevant, da im Zuge des techni-

schen Fortschritts Daten mit zunehmender Komplexität und Dimensionalität zur Verfügung

stehen, die einerseits eine Erweiterung von statistischen Modellen auf neue Datentypen er-

fordern und andererseits zur Entwicklung völlig neuer statistischer Methoden führen.

Im ersten Teil der Arbeit wird eine multivariate funktionale Hauptkomponentenanalyse

(engl. multivariate functional principal component analysis, MFPCA) für funktionale Daten

auf unterschiedlich-dimensionalen Trägern entwickelt. Es handelt sich hier um eine neuar-

tige Methode, da bestehende Ansätze für MFPCA auf multivariate funktionale Daten auf

einem gemeinsamen eindimensionalen Intervall beschränkt sind. Mit dem neu entwickel-

ten Ansatz können Hauptkomponenten für Daten bestimmt werden, die z.B. aus Funk-

tionen und Bildern (d.h. Funktionen auf einem zwei-dimensionalen Träger) bestehen,

womit eventuell vorhandene Kovariation in den Elementen berücksichtigt werden kann.

In der Arbeit werden die theoretischen Grundlagen für multivariate funktionale Daten auf

unterschiedlich-dimensionalen Trägern gelegt. Für den Fall einer endlichen Stichprobe wird

anschließend einen theoretischen Zusammenhang zwischen univariater und multivariater

funktionaler Hauptkomponentenanalyse hergeleitet. Das Ergebnis kann zur Schätzung mul-

tivariater funktionaler Hauptkomponenten, Eigenwerte und Scores auf Basis der univariaten

Analoga genutzt werden. Es wird gezeigt, wie die Methode auf univariate Elemente in allge-

meinen Basisdarstellungen erweitert werden kann. Weiterhin wird eine gewichtete Version

der MFPCA vorgestellt, mithilfe derer für Unterschiede im Träger, Wertebereich oder Vari-

ation der einzelnen Elemente korrigiert werden kann. Der neue Ansatz eignet sich auch

für funktionale Daten mit wenig Beobachtungspunkten (engl. sparse data) oder Daten, die

mit Messfehlern erhoben wurden. Für den Fall endlicher Stichproben wird die Leistungs-

fähigkeit der neuen Methode im Rahmen einer Simulationsstudie mit unterschiedlichen

Komplexitätsgraden untersucht. Darüberhinaus werden die asymptotischen Eigenschaften

für große Stichproben in zwei Theoremen unter Verwendung von Resultaten aus der Per-

turbationstheorie hergeleitet und es wird bewiesen, dass die vorgeschlagenen Schätzer kon-

sistent sind. Der Schätzalgorithmus ist in dem öffentlich verfügbaren R-Paket MFPCA

implementiert, gemeinsam mit einem weiteren R-Paket funData zur objektorientierten

Darstellung funktionaler Daten. Die Arbeit enthält eine Einführung in die Software und die

zugrundeliegenden Konzepte. Die neue Methode wird in einem Anwendungskapitel anhand

eines Neuroimaging Datensatzes illustriert. Ziel der Untersuchung ist es, einen Zusammen-

hang zwischen den Ergebnissen eines neuropsychologischen Tests über den Studienverlauf

und FDG-PET Gehirnscans herzustellen, die zu Beginn der Studie aufgenommen wurden,

da Letztere prädiktiv für eine anschließende Verschlechterung der kognitiven Fähigkeiten



sein können. Die Scans können dabei als Funktionen auf einem drei-dimensionalen Träger

aufgefasst werden. Die Ergebnisse zeigen, dass die von der neuen MFPCA Methode gefun-

denen Schätzer medizinisch sinnvoll sind und neue Einblicke in die Daten ermöglichen.

Der zweite Teil der Arbeit beschäftigt sich mit Skalar-auf-Bild Regression. Diese statis-

tische Modellklasse beschreibt den Zusammenhang einer skalaren Zielgröße und einer Ein-

flussgröße in Form eines Bildes, also Daten mit unterschiedlicher Dimension und einer kom-

plexen Abhängigkeitsstruktur. Sie steht stellvertretend für eine breite Klasse statistischer

Modelle für komplexe Daten, die von sich aus nicht identifizierbar ist, da im Allgemeinen

die Anzahl der Beobachtungen im Verhältnis zur Anzahl der Pixel in einem Bild sehr klein

ist. Es sind also starke Modellannahmen vonnöten, um eine eindeutige Lösung zu erhal-

ten, die selbstverständlich durch die Annahmen an das wahre Koeffizientenbild bedingt

wird. In dieser Arbeit werden unterschiedliche Modelle für Skalar-auf-Bild Regression mit

unterschiedlichen Annahmen in Bezug auf ihre Fähigkeit, zuverlässige und interpretier-

bare Ergebnise zu erzielen, untersucht. Zu diesem Zweck werden neue Maße zur Quan-

tifizierung des Einflusses von Modellannahmen entwickelt und in einer Simulationsstudie

für neun verschiedene Skalar-auf-Bild Regressionsmodelle untersucht. Die Bedeutung der

Thematik wird wiederum in einer praktischen Anwendung aus dem Neuroimaging-Bereich

veranschaulicht. Es wird gezeigt, dass unterschiedliche Modelle mit unterschiedlichen An-

nahmen zu Ergebnissen führen können, die zwar ähnliche Muster aufweisen, sich in Details

aber zum Teil deutlich unterscheiden, da die Modellannahmen einen starken Einfluss auf

die Schätzungen haben können. Dies bringt die mögliche Gefahr mit sich, Effekte zu über-

interpretieren, die hauptsächlich von den Modellannahmen getrieben sind.
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1. Introduction

In recent years there has been a veritable boom concerning the collection and storage of

enormous amounts of data. Nowadays, data is recorded, collected and analyzed automat-

ically in nearly all areas of life, resulting in what has been called big data. In general,

the data is multivariate, i.e. one has many, potentially interdependent observations for

each observation unit. The available data has increased not only in quantity, but also in

complexity, such that for each unit one may have a collection of values, among which data

with a strong inherent structure. Examples for structured data include measurements that

have been collected in regular or irregular time intervals (longitudinal / functional data), or

images, which have a clear spatial structure. In the statistical analysis of this kind of data,

these different sources of dependence and complexity have to be taken into account. This

can be achieved by adapting existing models to the new data situation or by developing

new and specifically tailored statistical models. The present thesis contributes two aspects

to the statistical analysis of data with different dimensions.

The first part of the thesis introduces multivariate functional principal component analysis

for data observed on potentially different dimensional domains. This new approach allows

to find patterns of joint variation in multivariate functional data, i.e. data with different el-

ements of potentially different dimensions. Each of these elements can be seen as a discrete

realization of a (smooth) function. Examples for such data are e.g. combinations of func-

tions and images or even functions and three-dimensional images. The innovation in the

proposed method concerns the fact that all existing approaches for multivariate functional

principal component analysis are available only for one-dimensional data and the different

elements are restricted to have the same, one-dimensional domain. With the new approach,

by contrast, functions on different domains can be taken into account. The thesis pro-

vides the theoretical foundations for multivariate functional data on different dimensional

domains and defines a principal component analysis for this kind of data based on a mul-

tivariate version of the Karhunen-Loève Theorem. The resulting principal components are

seen to have the same structure as the data. This means that if the data consists e.g. of

functions and images, the principal component will also do. The multivariate functional

principal component analysis thus offers a natural representation of this very complex type

of data and yields individual scalar scores, which characterize the weight of each principal

component for each observation. The proposed estimation algorithm for the multivariate

1



1. Introduction

functional principal component analysis is based on univariate functional principal com-

ponent analysis or general basis expansions. Therefore, it can be customized to the data

at hand. The asymptotic properties of the resulting estimators are investigated, showing

consistency under a given set of assumptions. Moreover, an efficient implementation of the

method is presented which builds upon an object-oriented representation of (multivariate)

functional data. The relevance of the new multivariate functional principal component ap-

proach is demonstrated in a neuroimaging application. Here it allows to find joint patterns

of variation in bivariate functional data, consisting of functions over time combined with

two- or three-dimensional images. Within the application it is shown how multivariate func-

tional principal component analysis can be used to calculate predictions for new data which

have not been included in the multivariate functional principal component analysis.

For the statistical analysis of complex, high-dimensional data one frequently has to make

strong assumptions in order to make a model identifiable at all. This is the starting point for

the second part of this thesis. The issue is discussed by means of scalar-on-image regression.

This statistical model aims at combining scalar response values with images plus potentially

additional scalar covariates, hence high-dimensional data with different dimensions and

complexity. First of all, an overview of the most important methods for scalar-on-image

regression is given, with a special focus on their assumptions. In a subsequent simulation

study and application to real data, the extent of the problem is evaluated and quantified by

means of newly introduced measures. The results show that model assumptions can indeed

have a considerable impact on the estimates, which manifests in quite different estimated

coefficient images for the same data. This of course raises the question how to interpret

them. In the thesis, it is discussed how problematic settings can be identified in a specific

application and how one can characterize features that can be estimated at all using the

chosen methods and the data at hand.

In this way, this thesis contributes to the further development of statistical methodology

and software. At the same time it is shown that statistical methods for high-dimensional

data require particular caution concerning their application and interpretation, as they

frequently involve strong model assumptions.

2



Outline and Contributing Manuscripts

Chapter 2 discusses concepts of dimensionality for structured, high-dimensional data. It

gives an introduction to functional data analysis and Bayesian statistics, which form the

methodological basics of the methods developed in this thesis. Further, the chapter gives an

overview of the existing literature and open research questions, from which the new results

have emerged.

The following chapters are reprints of the contributing manuscripts of this thesis. The

beginning of each chapter contains a full reference to the original article and software,

copyright information (where applicable), a declaration of the individual contributions of

each author, acknowledgements and the abstract. The (online) appendices of each article

are given in the appendices A to D.

Chapter 3 introduces multivariate functional principal component analysis for data ob-

served on different dimensional domains. The properties of the estimators are investigated

theoretically as well as numerically for real and simulated data.

Chapter 4 contains a more advanced application of the multivariate functional principal

component analysis to bivariate data consisting of trajectories of a neuropsychological test

over time and three-dimensional brain scans at baseline. Further, it is shown how predictions

for new data can be obtained on the basis of multivariate functional principal component

analysis.

Chapter 5 describes the object-oriented representation of functional data in the R-package

funData, including many usage examples. In addition, the implementation of the estima-

tion algorithm for multivariate functional principal component analysis in the R-package

MFPCA is described, which is based on the funData package.

Chapter 6 discusses the impact of model assumptions in scalar-on-image regression. It

provides an overview of different approaches for this model class with a special focus on the

assumptions made in each model. The impact of the assumptions is studied for real and

synthetic data, showing that the respective assumptions can indeed have a strong influence

on the results.

The thesis concludes with a short summary and an outlook to potential aspects of future

research in Chapter 7.

Software

If not stated otherwise, all calculations have been carried out in R (R Core Team, 2015).
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2. Statistical Concepts for Structured

High-Dimensional Data

This chapter introduces the methodological basis for the articles that contribute to this

thesis. It gives an overview of the existing literature and explains the scientific context and

open research questions from which the contributing papers have emerged. Section 2.1 is

a general discussion of concepts of dimensionality for structured, high-dimensional data.

Section 2.2 introduces functional data analysis, which is used in both parts of the thesis.

Scalar-on-image regression is in the focus of part II of the thesis. Here Bayesian methods

have proven useful to deal with the complex structure of image data. The underlying

concepts are presented in Section 2.3.

2.1. Concepts of Dimensionality

In standard statistical settings, one often assumes to observe data from N ∈ N statistical

units, that may for instance be a group of people in a medical study (such as in Chapters 3,

4 and 6), weather stations (as in the examples in Chapter 5) or any other clearly defined

entity. For each unit, one usually investigates the same p ∈ N variables. The relevant

dimensions of the data are thus given by N and p, which determine important model

properties. As an example, (generalized) linear models are identifiable only if the number

of explaining variables (p− 1, if one of the p observed variables is the response) is lower or

equal to the number of observations N (Nelder and Wedderburn, 1972).

In recent years, methods for N � p settings, where the number of variables clearly exceeds

the number of observations, have grown in importance, as the technical progress in many

fields of applications allows to collect more and more data without much effort. In this case

of high-dimensional data, the p variables often have an inherent structure, being caused

e.g. by repeated measurements over time (longitudinal data; note that here the number of

variables per observation unit may vary) or space (spatial data). This structure can help to

overcome the “curse of dimensionality” and turn it into a “blessing” (Wang, Chiou, et al.,

2016). At the same time, it adds a new form of dimensionality to the data, describing

the time interval or the spatial dimension of the data. Images for example will typically
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2. Statistical Concepts for Structured High-Dimensional Data

form regular, two-dimensional lattices. In the context of neuroimaging, however, they can

become three- (cf. the FDG-PET scans in Chapter 4) or even four-dimensional (fMRI data,

e.g. Brezger et al., 2007; Smith and Fahrmeir, 2007).

When the temporal or spatial resolution of the data becomes finer, meaning that one has

many observations within a short time period or a small spatial distance, the observed data

can be considered as discrete measurements of an underlying stochastic process X : T → R
on a domain T ⊂ Rd with d ∈ N, which is continuous in time (d = 1) or space (d =
2, 3, 4, . . .). This is the key to functional data analysis, which is introduced in Section 2.2.

The process can be considered as infinite-dimensional, as one could – at least theoretically

– increase the resolution of the observation points to become arbitrarily fine, which would

lead to arbitrarily many observed values per observation unit. At the same time, the

dimensionality d of the domain T determines whether the realizations of the process are

functions (d = 1), images (d = 2) or even higher-dimensional.

Finally, one can combine multiple stochastic processes with potentially different dimensional

domains to form a multivariate stochastic process. This is the data structure which is in

the focus of Chapters 3 to 5. Here, the number of elements can be seen as an additional

kind of dimensionality.

In summary, structured, high-dimensional data can have different forms of dimensionality.

The statistical methods discussed in this thesis aim at combining information from data

with different dimensions, which becomes increasingly available. In the case of multivari-

ate functional principal component analysis (part I), the objective is to find the important

modes of joint variation in multivariate functional data, having elements with potentially

different dimensional domains, such as functions and images. The second part of the the-

sis focuses on scalar-on-image regression. This statistical model class aims at finding a

relationship between a scalar response and an image covariate, possibly supplemented by

some additional scalar covariates. The data observed for one statistical unit hence consists

of a scalar (a single variable), an image, which is high-dimensional with a regular spatial

structure, and a vector of scalar covariates. In order to obtain unique and interpretable

coefficients, that combine the scalar and image covariates with the response, strong model

assumptions are required, whose impact is discussed in Chapter 6.

2.2. Functional Data Analysis

Functional data analysis (Ramsay, 1982) is concerned with the analysis of data that can

be interpreted as discrete samples of functions. In this section, we define univariate and

multivariate functional data and give an overview of important techniques for functional

data that are used in the following chapters. A general overview of functional data analysis
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can be found e.g. in Ramsay and Silverman (2005), Ferraty and Vieu (2006), Horváth and

Kokoszka (2012), and Hsing and Eubank (2015) or in a more recent review of Wang, Chiou,

et al. (2016).

2.2.1. Functional Data

As mentioned in Section 2.1, the fundamental idea of functional data analysis is to interpret

data, which has a natural ordering (e.g. in time or space), as discrete measurements of an

underlying continuous stochastic process X : T → R. Realizations x1, . . . , xN of the process

will thus be functions over their domain T . Important tools for describing functional data

are the pointwise mean and covariance functions

µ(t) = E(X(t)), c(s, t) = Cov(X(s), X(t)), s, t ∈ T . (2.1)

In most cases, the process X is assumed to have rather smooth realizations and to lie in the

Hilbert space L2(T ) of square integrable functions over T (for a definition, see e.g. Reed

and Simon, 1980, Chapter III). The Hilbert space structure is associated with the existence

of a scalar product, which is mostly taken as the standard inner product in L2(T ),

〈f, g〉2 =
∫
T
f(t)g(t)dt, f, g ∈ L2(T ), (2.2)

and provides an induced norm ||f ||2 = 〈f, f〉21/2, f ∈ L2(T ). This allows to transfer many

concepts of multivariate statistics involving projections, angles or distances to the func-

tional case. Important examples include principal component analysis (see Section 2.2.3)

or regression models (see Section 2.2.4). The – at least theoretically – infinite dimen-

sionality of the data, however, poses additional methodological challenges, as one has e.g.

infinitely many principal components and the unknown coefficient in regression models be-

comes infinite-dimensional, too. One way to overcome these issues is to expand the data in

a finite number of basis functions, which is discussed in the next section.

The first part of the thesis is concerned with multivariate functional data. As indicated

before, this means that the data generating process X in this case is a vector of p stochas-

tic processes X(j) : Tj → Rdj , dj ∈ N, j = 1, . . . , p, which we call the elements of X.

They are again assumed to have realizations x
(j)
i ∈ L2(Tj), i = 1, . . . , N . Up to now,

methods for multivariate functional data have mainly focused on processes on the same,

one-dimensional domain T1 = . . . = Tp ⊂ R (e.g. Ramsay and Silverman, 2005; Berren-

dero et al., 2011; Jacques and Preda, 2014; Chiou, Yang, et al., 2014; Chiou and Müller,

2014). Chapter 3 formally introduces multivariate functional data on different dimensional

domains and defines multivariate analogues of the scalar product, the mean and covariance

functions. Subsequently, their theoretical properties are investigated, which form the basis

of multivariate functional principal component analysis.
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More generally, univariate and multivariate functional data can be seen as special cases of

so-called object data, which is studied in object-oriented data analysis (Wang and Marron,

2007). This is the motivation for the object-oriented software implementation of functional

data in the package funData (Happ, 2017a), which relates the statistical concept of object

orientation with the object-oriented programming paradigm in computer science (Booch

et al., 2007; Meyer, 1988). More details are given in Chapter 5.

2.2.2. Basis Function Approaches

Basis function approaches are widely used in functional data analysis and related fields,

such as semiparametric regression. The central idea here is to approximate a realization

x ∈ L2(T ) of a stochastic process (when working with functional data) or an unknown

coefficient function β ∈ L2(T ) (in the context of regression) in terms of a finite number of

given basis functions B1, . . . , BK ∈ L2(T ). The term basis functions is somewhat misleading

in this context, as a finite number of functions cannot entirely span the infinite-dimensional

space L2(T ). The functions B1, . . . , BK in general are linearly independent and thus are

elements of an infinite basis {Bk : k ∈ N} of L2(T ). Moreover, they may be orthogonal or

orthonormal. The approximation of x and β is given by their projection on the span of the

basis functions, i.e.

x ≈
K∑
k=1

θkBk, β ≈
K∑
k=1

bkBk. (2.3)

This means of course an immense dimension reduction, as functions in the infinite-

dimensional space L2(T ) are now represented by elements of the K-dimensional subspace

span{B1, . . . , BK} of L2(T ). Given observed data x(ts), s = 1, . . . , S with {t1, . . . , tS} ⊂ T ,

the approximation can be interpreted as

x(ts) =
K∑
k=1

θkBk(ts) + εs, εs
iid∼ N(0, σ2),

which is a standard linear model in the coefficients θk and can be solved via least squares

(x̃−Bθ)>(x̃−Bθ)→ min
θ

(2.4)

with x̃ = (x(t1), . . . , x(tS))§, B ∈ RS×K with entries bsk = Bk(ts) and θ = (θ1, . . . , θK). A

unique solution of (2.4) can be found if and only if K ≤ S, i.e. if the number of basis

functions does not exceed the number of observation points. The coefficients θ do not have

a clear interpretation in the regression model, this is why basis function approaches can

be considered as being part of the broad class of semiparametric methods (Ruppert et al.,

2003).

§If not stated otherwise, x = (x1, . . . , xp) denotes a p-dimensional column vector x ∈ Rp.
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Assuming that the approximation error is negligible, the functions in (2.3) can be repre-

sented by the K-dimensional coefficient vector θ or b = (b1, . . . , bK). This opens the broad

range of statistical methods for multivariate data to the functional case, by simply apply-

ing them to the coefficient vectors and transforming the result back to the original space.

Examples for this generic approach include e.g. principal component analysis (Ramsay and

Silverman, 2005, Chapter 8), clustering (e.g. Abraham et al., 2003; James and Sugar, 2003;

Jacques and Preda, 2013) or regression models (Marx and Eilers, 1999; Cardot et al., 2003;

Müller and Stadtmüller, 2005). The goodness of the results certainly depends on the ac-

curacy of the approximation, which is influenced by the type and the number of basis

functions. In Chapter 6 of this thesis it is investigated how the assumption of a basis

representation can influence the results in the special case of scalar-on-image regression.

In the following, P-spline bases and wavelets are presented in more detail as two typical

examples for basis functions used in the context of functional data analysis (cf. Chapters 3

and 6). While both of them provide basis functions with local support, the non-orthogonal

P-splines are mostly used to represent smooth functions (Eilers and Marx, 1996), whereas

wavelets are suitable for modeling sharp, highly localized features and make use of orthonor-

mality (Daubechies, 1988). Alternative choices of basis functions include all other forms

of splines (e.g. thin plate regression splines Wood, 2003), Fourier bases and discrete cosine

bases as their real counterparts (Ramsay and Silverman, 2005; Frigo and Johnson, 2005)

and many more. The principal components found by functional principal component anal-

ysis (see Section 2.2.3) represent a special case of basis functions that depend on the data.

Finally, random field methods, as discussed in Section 2.3, can be seen as basis function

approaches, too, with the basis being formed by indicator functions for each region.

P-Splines

Spline basis functions are very popular in semiparametric statistics and functional data

analysis. They are defined as piecewise polynomial functions, smoothly connected at so-

called knots (for a precise definition see e.g. Quarteroni et al., 2007, Chapter 7). B-Splines

(introduced in Schoenberg, 1946a; Schoenberg, 1946b) are commonly used due to their

mathematical and computational advantages: On the one hand, they have attractive math-

ematical properties, as they have local support and yield continuous and differentiable

functions, as long as the polynomial degree is sufficiently high. On the other hand, there

exist fast and efficient algorithms for evaluating the B-spline basis functions at observation

points {t1, . . . , tS} ⊂ T (De Boor, 1972).

The popularity of B-splines in the statistical community has grown substantially with the

seminal paper of Eilers and Marx (1996). They proposed a penalized approach (P-splines)

to circumvent the non-trivial problem of choosing appropriate knots by using many basis

functions and at the same time penalizing squared differences of the coefficients in order to
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obtain a smooth function. This is achieved by minimizing the penalized version of the least

squares criterion (2.4)

(x̃−Bθ)>(x̃−Bθ) + λθ>Pθ → min
θ

(2.5)

with P a penalty matrix, e.g. for squared first differences of neighbouring coefficients,

θ>Pθ =
K∑
k=2

(θk − θk−1)2. (2.6)

The smoothing parameter λ > 0 controls the influence of the penalty term θ>Pθ on the

solution of (2.5). If λ = 0, the penalty term drops out and the penalized least squares

criterion equals the unpenalized version in (2.4). For λ→∞, the penalty term dominates

the criterion and in the limiting case only parameter vectors θ in the null space of P are

considered, as they are not penalized. In the case of (2.6), these are all constant vectors

θ with θk = c for all k = 1, . . . , K and a constant c ∈ R. An optimal value for λ can be

found e.g. by (generalized) cross-validation, AIC or using a restricted maximum likelihood

(REML) approach (Wood, 2006, Chapters 4 and 6).

For functions on higher-dimensional domains, Marx and Eilers (2005) suggest to use tensor

products of univariate B-splines as basis functions. This is relevant in the case of images,

which can be interpreted as discretely observed functions on a two- or higher dimensional

domain, as it is repeatedly the case in this thesis. A function x : T → R with T ⊂ R2

evaluated at t = (tx, ty) can thus be approximated by

x(t) ≈
Kx∑
kx=1

Ky∑
ky=1

θkx,kyBkx(tx)Bky(ty).

The unknown coefficients θ = {θkx,ky : kx = 1, . . . , Kx, ky = 1, . . . , Ky} can again be found

by a penalized least squares criterion with a penalty that penalizes differences between

neighbouring coefficients both in x- and y- direction. For more details, see the discussion

in Chapter 6 and the paper of Marx and Eilers (2005).

Wavelets

Wavelets provide an alternative choice of fixed basis functions. While having some sim-

ilarities with Fourier basis functions, they can be chosen to have a local support, which

makes it easier to model functions with abrupt changes (e.g. edges in images). They

have become very popular e.g. in imaging and signal processing since the fundamental

papers of Daubechies (1988) and Mallat (1989). Wavelets are constructed as orthonor-

mal basis functions from a multiresolution analysis, which is a family of closed subspaces

{Vm ⊂ L2(R) : m ∈ Z} of the space L2(R) of square-integrable functions on R, such that

{0} ⊂ . . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . . ⊂ L2(R)
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and

f ∈ Vm ⇔ f ∗ ∈ Vm−1,

with f ∗(t) = f(2t), i.e. the spaces have a different resolution. Moreover, there exists a

so-called scaling function φ ∈ V0 such that the translated and dilatated versions φm,n(t) =
2−m/2φ(2−mt− n), n ∈ Z of φ form a basis of Vm for all m ∈ Z. Without loss of generality,

φ can be chosen such that the φm,n even form an orthonormal basis of Vm. Define now Wm

as the orthogonal complement of Vm in Vm−1, i.e.

Vm ⊥ Wm, Vm−1 = Vm ⊕Wm.

Then the spaces Wm are mutually orthogonal with direct sum L2(R). One can further

construct a function ψ ∈ W0 from φ (the so-called mother wavelet), such that the functions

ψm,n(t) = 2−m/2ψ(2−mt − n) form an orthonormal basis of Wm for all m ∈ Z. Combining

these results yields L2(R) = VM0⊕
(⊕M0

m=−∞Wm

)
for some resolution M0 ∈ Z, i.e. a function

x ∈ L2(R) can be written as

x(t) =
∑
n∈Z

cM0,nφM0,n(t) +
M0∑

m=−∞

∑
n∈Z

dm,nψm,n(t)

with cM0,n = 〈x, φM0,n〉2 and dm,n = 〈x, ψm,n〉2. In practical applications, x will be observed

on a finite grid {t1, . . . , tS}, and thus the infinite sums will be truncated, which corresponds

to the approximation in (2.3) with the coefficient vector θ being a combination of the

coefficients cM0,n and dm,n. If S is a power of 2, Mallat’s pyramid algorithm (Mallat, 1989)

describes how to efficiently calculate cM0,n and dm,n.

As in the case of splines, functions on higher-dimensional domains can be represented as

combinations of univariate bases. Given a one-dimensional multi-resolution analysis, a two-

dimensional version can be defined via V 2
m := Vm⊕Vm with a scaling function φ(2)(tx, ty) =

φ(tx)φ(ty) that yields basis functions

φ(2)
m,n(tx, ty) = 2−mφ(2)(2−mtx − nx, 2−mty − ny) = φm,nx(tx)φm,ny(ty)

of V 2
m with n = (nx, ny). Further V 2

m−1 = V 2
m⊕ [(Vm⊕Wm)⊕ (Wm⊕Vm)⊕ (Wm⊕Wm)], i.e.

the orthogonal complement W 2
m of V 2

m in V 2
m−1 is spanned by orthonormal basis functions

ψ(2,l)
m,n (tx, ty) = 2−mψ(l)(2−mtx − nx, 2−mty − ny)

with l = 1, 2, 3 and ψ(1)(tx, ty) = φ(tx)ψ(ty), ψ(2)(tx, ty) = ψ(tx)φ(ty) and ψ(3)(tx, ty) =
ψ(tx)ψ(ty). An efficient algorithm for calculating the basis coefficients is also derived in

Mallat (1989).

As the basis functions are defined locally and have different resolution, it is possible to

represent most functions, even those with sharp, highly localized features, well using only

11



2. Statistical Concepts for Structured High-Dimensional Data

a few basis functions. The coefficients of all other basis functions are thus close to zero

and model more or less “noise”. This is the starting point e.g. for regression models that

represent an unknown function in terms of wavelets and apply variable selection in order

to achieve a representation that is as sparse as possible (e.g. Wand and Ormerod, 2011;

Reiss, Huo, et al., 2015). The effect of such assumptions in the context of scalar-on-image

regression is also discussed in Chapter 6.

2.2.3. Functional Principal Component Analysis

Functional principal component analysis (FPCA) is a key concept in functional data analysis

and forms the basis for many functional data methods. It builds on the covariance operator

V of X, which is defined by

(V f)(t) =
∫
T
c(s, t)f(s)ds, f ∈ L2(T ),

with c(s, t) the covariance function of the process X, as in (2.1). It can be shown that V

is a symmetric, positive (in the sense of having non-negative eigenvalues) Hilbert-Schmidt

operator in L2(T ), if E(||X||2
2) < ∞ (see e.g. Horváth and Kokoszka, 2012, Chapter 2.3).

In this case, Mercer’s Theorem (Mercer, 1909) gives

c(s, t) =
∞∑
m=1

λmφm(s)φm(t),

where λ1 ≥ λ2 ≥ . . . ≥ 0 are the eigenvalues of V and {φm : m ∈ N} the associated

orthonormal eigenfunctions, or functional principal components, which are uniquely defined

up to a sign change. The pairs (λm, φm) are thus solutions to the eigenequation

V φm = λmφm, m ∈ N. (2.7)

It is easy to show that φ1 maximizes 〈V φ, φ〉2 subject to ||φ||2 = 1, i.e. φ1 explains the most

important mode of variation in X, and the subsequent principal components φm maximize

〈V φ, φ〉2 subject to ||φ||2 = 1 and 〈φ, φk〉2 for all k < m, provided that the corresponding

eigenvalues are distinct (e.g. Horváth and Kokoszka, 2012, Chapter 3.1.). FPCA is thus

a natural extension of multivariate principal component analysis to the functional case

(Horváth and Kokoszka, 2012; Ramsay and Silverman, 2005).

The Karhunen-Loève Theorem, named after Karhunen (1947) and Loève (1946), expands

the random process X in its principal components

X(t) = µ(t) +
∞∑
m=1

ξmφm(t), t ∈ T
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with random variables ξm = 〈X,φm〉2 that satisfy E(ξm) = 0, Var(ξm) = λm. In practice,

one often observes that the eigenvalues λm decrease quite rapidly, meaning that the first

few principal components contribute a large proportion of the variability and thus the

information in X. Realization x1, . . . , xN of X can hence be written as

xi(t) = µ(t) +
∞∑
m=1

ξi,mφm(t) ≈ µ(t) +
M∑
m=1

ξi,mφm(t), t ∈ T , i = 1, . . . , N (2.8)

for some truncation lag M . The approximation in (2.8) can be seen as special basis function

representation of xi − µ as in (2.3) where the basis functions, which in this case are the

functional principal components, depend on the process X through c(s, t). The functional

principal component scores ξi,m represent individual weights for each observation xi and

each principal component φm.

In practice, the covariance function c(s, t) – and thus the principal components, the asso-

ciated eigenvalues and the principal component scores – are unknown and have to be esti-

mated based on observed data xi(ti,s), where the observation points ti,s ∈ T , s = 1, . . . , Si
can be the same for all i = 1, . . . , N or differ between the realizations.

One possible estimation strategy is to expand the observed data in a fixed basis and reduce

the estimation of the FPCA to a matrix eigenanalysis problem, possibly including numerical

integration, if the basis is not orthonormal (cf. Ramsay and Silverman, 2005, Chapter 8.4.).

This gives estimated eigenvalues λ̂m and principal components φ̂m. The maximum number

of principal components that can be estimated this way is equal to K, the number of basis

functions used. The functional principal component scores can be found by numerically

approximating

ξ̂i,m = 〈xi, φ̂m〉2 =
∫
T
xi(t)φ̂m(t)dt. (2.9)

The goodness of the estimated FPCA clearly depends on the accuracy of the basis function

representation for xi and also on the number and location of observation points ti,s, as this

influences the quality of the numerical integration, particularly needed in (2.9).

An alternative estimation approach, which is especially suitable for sparse functional data,

having only a few observations for each realization xi at potentially different observation

points ti,s, has been proposed in Yao et al. (2005). This approach makes use of “borrow-

ing strength” across the realizations by smoothly estimating the mean and the covariance

function from the pooled data, e.g. by using local polynomial smoothers (Fan and Gijbels,

1997), as originally proposed in Yao et al. (2005), or based on a penalized spline approach

(Di et al., 2009), as implemented in the R-package refund (Goldsmith, Scheipl, et al., 2016).

The proposed method can also handle data that is observed with measurement error:

x̃i,s = xi(ti,s) + εi,s, s = 1, . . . , Si, i = 1, . . . , N
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with εi,s
iid∼ N(0, σ2) for some σ2 > 0. In this case, the diagonal of the covariance function

will show some additional “spikes” due to the independence assumption of the errors εi,s
and thus has to be treated separately. More details are given in Yao et al. (2005). For

the estimation of the principal component scores, the authors propose the PACE (principal

components analysis through conditional expectation) approach, which is based on the

assumption that the scores ξi,m and the measurement errors εi,s are jointly Gaussian. In

this case, the best prediction of the principal component score ξi,m conditional on the

observed data for observation unit i, is given by

ξ̃i,m = E (ξi,m|x̃i) = λmΦ>i,mΣ−1
i (x̃i − µi)

with x̃i = (x̃i,1, . . . , x̃i,Si), Φi,m = (φm(ti,1), . . . , φm(ti,Si)), Σi ∈ RSi×Si with entries Σi,rs =
c(ti,r, ti,s) + σ21{r = s} and µi = (µ(ti,1), . . . , µ(ti,Si)). If the Gaussianity assumption does

not hold, ξ̃i,m is still the best linear prediction of ξi,m given the observed data from subject

i (Yao et al., 2005). Estimated scores can be found by replacing all theoretical quantities

by their empirical counterparts. For a detailed discussion of the theoretical properties of

the estimators, see Yao et al. (2005).

For functional data on higher-dimensional domains, Allen (2013) has introduced a method

for finding smooth principal components, following ideas in Huang, Shen, et al. (2009).

General asymptotic theory for principal component analysis can e.g. be found in the book

of Bosq (2000) or in Hall and Hosseini-Nasab (2006).

In the case of multivariate functional data, several principal component methods have been

proposed in recent years. All of these approaches are restricted to functions observed on the

same one-dimensional interval: Ramsay and Silverman (2005) briefly outline multivariate

functional principal component analysis (MFPCA) for bivariate functional data by an illus-

trative example of gait data. They suggest to stack the observations of the two functions

and perform a standard (univariate) FPCA for the combined observations. The estimated

principal components are then separated into two parts, corresponding to the original two

functions. Jacques and Preda (2014) introduce MFPCA in the context of clustering of mul-

tivariate functional data with p elements. Their approach for MFCPA is somewhat related

to the ideas in Ramsay and Silverman (2005), as they propose to concatenate the observed

functions to a vector of functions. MFPCA is then based on the associated covariance

operator, using theory developed in Saporta (1981). The authors propose an estimation

procedure for multivariate functional principal components and principal component scores

by expanding each element of the multivariate functional data in terms of a given basis.

The basis functions can be chosen non-orthonormal and may also differ for each element.

In case that the different elements of the multivariate functional data are measured e.g. in

different units, the authors propose normed MFPCA by replacing the covariance operator

by a normalized version of it. The approach of Chiou, Yang, et al. (2014) for normalized

MFPCA goes in the same direction, but uses a slightly different normalization approach
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that leads to a normalized Karhunen-Loève representation of the data. Inspired by Yao

et al. (2005), they give an estimation method of normalized MFPCA for data that may be

observed with measurement error and discuss asymptotic properties of the approach. An

alternative approach to MFPCA is introduced by Berrendero et al. (2011), who perform

a standard multivariate PCA for each observation point, and then interpolate the results.

Hence, each observation can be characterized by one or a few score functions, rather than a

score vector. This approach differs considerably from the previously described methods, as

it does not aim at a Karhunen-Loève representation of the multivariate functional data.

The new MFPCA approach proposed in Chapter 3 overcomes the restriction that the do-

main of all elements has to be one-dimensional and the same for all elements. In this

way, it becomes possible to calculate principal components of multivariate functional data

consisting e.g. of functions and images (cf. Chapters 3 to 5).

2.2.4. Functional Regression Models

One main goal of statistics is to find relationships between a dependent variable based

on independent variable information in terms of regression models (Ramsay and Silverman,

2005, Chapter 1). The standard linear and generalized linear models can easily be extended

to functional data, that can take the role of an independent/explaining variable (scalar-

on-function regression), the depending/response variable (function-on-scalar regression) or

both (function-on-function regression) (see e.g. Morris, 2015; Greven and Scheipl, 2017, for

this terminology). In the simplest case of linear regression models, this yields the linear

scalar-on-function regression model for scalar responses yi and functional covariates xi

yi =
∫
T
xi(s)β(s)ds+ εi, i = 1, . . . , N, (2.10)

the linear function-on-scalar regression for functional responses yi and scalar covariates xi

yi(t) = xiβ(t) + εi(t), t ∈ T , i = 1, . . . , N

and the linear function-on-function regression model for both functional responses yi and

covariates xi
yi(t) =

∫
T
xi(s)β(s, t)ds+ εi(t), i = 1, . . . , N.

The relation to standard linear models is immediately seen as only the scalar product

between the covariates xi and the coefficient β has to be replaced by its counterpart in

L2(T ) when moving from vectors to functions.

In the past few years, there has been a broad interest in these types of regression models,

resulting in a vast literature on functional regression. An overview can for example be found

in some recent review papers that cover functional data analysis in general (Wang, Chiou,
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et al., 2016), functional regression models (Morris, 2015) or scalar-on-function regression

models (Reiss, Goldsmith, et al., 2016+). The discussion paper of Greven and Scheipl

(2017) shows how many of the existing functional regression models can be comprised into

a flexible overall framework for functional regression. In the following, the focus is on the

scalar-on-function regression model (2.10), which can be seen as a generalized version of

scalar-on-image regression, that is discussed in Chapter 6 with particular attention on the

impact that model assumptions can have on the estimates.

A very common approach for estimating the unknown coefficient function β in (2.10) is to

expand it in a given basis (Ramsay and Silverman, 2005, Chapter 15), as in (2.3). This

already implies an approximation, as discussed before:

yi =
∫
T
xi(t)β(t)dt+ εi ≈

K∑
k=1

bk

∫
T
xi(t)Bk(t)dt+ εi, i = 1, . . . , N.

The right hand side of this equation is in effect a standard linear regression model in

the coefficients bk and covariates zi,k =
∫
T
xi(t)Bk(t)dt, that have to be approximated

numerically based on the observed values xi(ti,s). Given an estimate b̂ for the coefficient

vector b, the estimated coefficient function is obtained by a simple plug-in principle:

β̂(t) =
K∑
k=1

b̂kBk(t), t ∈ T .

The model is identifiable if the number of observations N is larger or equal to the number of

basis functions K. A possible remedy in the case of non-identifiability is to use e.g. P-splines

with an appropriate penalty in order to obtain a smooth coefficient function β (Marx and

Eilers, 1999; Cardot et al., 2003). As long as the kernel of the covariance operator V , which

is the space spanned by eigenfunctions of V associated with the eigenvalue λ = 0, is null

or has no overlap with the space of unpenalized coefficient functions β, parametrized by

coefficient vectors b in the kernel of the penalty matrix, the model remains identifiable even

if N < K. A detailed discussion of this issue including diagnostic tools and proposals for

countermeasures is given in Happ (2013) for scalar-on-function regression and more general

in Scheipl and Greven (2016) for function-on-function regression.

Alternatively, the functional covariates xi can be expanded in the same basis functions as

β, which is particularly useful if the basis functions are orthonormal, as it is the case for

functional principal components (Cardot et al., 1999; Müller and Stadtmüller, 2005). In

this case, model (2.10) can be approximated as

yi =
∫
T
xi(t)β(t)dt+εi ≈

K∑
k=1

bk
M∑
m=1

ξi,m

∫
T
φk(t)φm(t)dt+εi =

min(M,K)∑
m=1

bmξi,m+εi, i = 1, . . . , N,

where the last equality is due to the orthonormality of the principal components. The

scalar-on-function regression model hence reduces to a standard linear model in the coeffi-

cients bm and the functional principal component scores ξi,m and does not require numerical
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integration as it makes use of the orthonormality of the principal components. In practice,

the functional principal components φm and the scores ξi,m have to be replaced by their

estimates found via FPCA (cf. Section 2.2.3). The model is identifiable if the number of

observation units N is larger or equal to min(M,K). In applications one often observes

that the data can be represented well by the first few principal components, meaning that

with M < 5 one can often explain more than 95% of the variance in the data (as e.g. in the

univariate FPCA for the ADAS-Cog trajectories in Chapters 3 and 4) and hence the model

is almost always identifiable. At the same time, however, this results in an immense dimen-

sion reduction and is the reason for a frequent criticism of this last FPCA based approach:

The coefficient function β is expanded in the first eigenfunctions of the covariance operator

V of X, which implicitly assumes that β has the same leading modes of variation as the data

(Goldsmith, Bobb, et al., 2011; Happ, 2013). Truncating the data at M = 3, say, means

that the unknown coefficient function is in effect assumed to lie in the three-dimensional

space spanned by the first three eigenfunctions, as only the first min(M,K) coefficients

bm enter the final regression model. When estimating a larger number of principal com-

ponents, the principal components of higher order tend to be often quite wiggly, which of

course transfers to the β coefficient functions. Penalized versions which aim at reducing

the influence of the higher order principal components (James and Silverman, 2005; Happ,

2013) seem to provide promising solutions in this case.

2.3. Bayesian Methods for Image Data

Bayesian methods have a long and successful history in statistical image analysis (Geman

and Geman, 1984; Besag et al., 1991) and provide an alternative approach to include image

data in a statistical model. Here, the images are no longer treated as discrete evalua-

tions of two-dimensional functions, but as the collection of all pixels, including information

about their spatial structure. In the scalar-on-image regression model, which is discussed in

Chapter 6, observed images x1, . . . , xN are used to explain response values y1, . . . , yN ∈ R.

The relationship is established through an unknown coefficient image β that has the same

structure as the observed images

yi =
L∑
l=1

βlxi,l + εi, i = 1, . . . , N,

where L denotes the number of pixels. For the error terms one uses the standard assumption

εi
iid∼ N(0, σ2

ε), where the notation σε emphasizes that this is the variance of εi. The model

can be extended to include some more scalar covariates, contained in a vector wi ∈ Rp for

each observation i = 1, . . . , N with a corresponding coefficient vector α:

yi = w>i α +
L∑
l=1

βlxi,l + εi, i = 1, . . . , N.
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A reformulation of the model, which is common in the Bayesian literature, stresses the

dependency of the response yi on both the data and the parameters (Goldsmith, Huang,

et al., 2014):

yi
∣∣∣wi, xi, α, β, σ2

ε
iid∼ N

(
w>i α +

L∑
l=1

βlxi,l, σ
2
ε

)
, i = 1, . . . , N. (2.11)

The following sections give a short overview of Bayesian methods in general and explain how

they can be applied to the special case of image data. A general introduction to Bayesian

methods can for example be found in the textbooks of Carlin and Louis (2009) or Gelman,

Carlin, et al. (2014). Statistical methods for image analysis with a focus on Bayesian models

are presented e.g. in Winkler (2003) or Meyer-Baese and Schmid (2014).

2.3.1. The Bayesian Paradigm

Consider a generic statistical model with data X and parameters θ ∈ Θ. In the case of

scalar-on-image regression, the data would be given by X = {(yi, wi, xi) : i = 1, . . . , N}
and the parameters can be combined into a vector θ = (α, β, σ2

ε) ∈ Rp × RL × (0,∞). In

a frequentist approach, the parameters are treated as fixed and conclusions about θ are

mostly drawn from the likelihood p (X|θ), a term introduced by Fisher (1922), which is the

density of the data, considered as a function of the parameters.

The Bayesian approach, in contrast, treats the parameter vector θ as a random variable,

having a distribution Fθ, which is called the prior distribution of θ with a density p(θ). The

prior can be chosen based on expert knowledge, e.g. from previous similar experiments. If no

reliable prior information on θ is available, it can be chosen to contain as little information

as possible (uninformative prior). Alternatively, the prior can be chosen in a mathemati-

cally convenient way (so-called conjugate prior). The advantages and disadvantages of the

different choices are for example discussed in Carlin and Louis (2009, Chapter 2). As it

is seen later on, the prior needs not necessarily be a proper density, meaning that it can

integrate to other values than 1.

The prior is combined with the likelihood according to Bayes’ Theorem, dating back to

Bayes (1763),

p (θ|X ) = p (X|θ) p(θ)∫
Θ p (X|ϑ) p(ϑ)dϑ, θ ∈ Θ. (2.12)

The distribution of θ given the data X is called the posterior and provides the basis for the

statistical analysis, such as e.g. inference or model selection. The marginal

m(X ) =
∫

Θ
p (X|ϑ) p(ϑ)dϑ
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ensures that the posterior integrates to 1 and thus forms a valid probability density, as

long as prior and likelihood contain enough information. In particular, improper priors can

still lead to a proper posterior provided that the likelihood integrates to some finite value

(Carlin and Louis, 2009, Chapter 2). As the marginal m(X ) is constant with respect to θ,

one often writes shorthand

p (θ|X ) ∝ p (X|θ) p(θ), (2.13)

as the right hand side uniquely defines m(X ) and thus the posterior.

The prior distribution for θ may of course depend on other parameters η ∈ H, the so-called

hyperparameters. These values can either be treated as fixed or they can also be assumed

to be random variables, having a distribution and a density p(η). In this case, model (2.12)

becomes (Carlin and Louis, 2009, Chapter 2)

p (θ, η|X ) = p (X|θ) p (θ|η) p(η)∫
Θ
∫
H p (X|ϑ) p (ϑ|ζ) p(ζ)dζ dϑ, θ ∈ Θ, η ∈ H

where the notation p(θ|η) emphasizes that the prior for θ depends on η. The hyperprior

p(η) can again depend on parameters, that in principle could be integrated into the model

in an analogous way, contributing their own priors and so forth. This leads to so-called

hierarchical models, where each additional prior contributes a new level in the hierarchy. In

practice, the number of levels is mostly restricted to a small number such as two or three,

as each new level contributes additional parameters to the model with decreasing impact on

the posterior (Carlin and Louis, 2009, Chapter 2). In the remainder of this section, there

is no distinction between the parameters θ and the hyperparameters η, which means that

θ denotes the vector of all parameters in a model that are not treated as fixed.

Especially if models contain many parameters, the posterior becomes high-dimensional and

thus difficult to handle. In this case, one often considers the so-called full conditional of a

single parameter or a subgroup of parameters θ∗ of θ, meaning the full conditional posterior

density of this parameter given the data X and all other parameters θ−∗

p (θ∗|·) := p (θ∗|X , θ−∗) .

The full conditional is easily seen to be proportional to the joint posterior of all parameters

(Carlin and Louis, 2009, Chapter 3), i.e.

p (θ∗|X , θ−∗) ∝ p (θ|X ) . (2.14)

This relation is used in some Markov-Chain-Monte-Carlo methods to draw samples from

the posterior based on the full conditionals (see Section 2.3.4).
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2.3.2. Random Fields as Latent Priors in Hierarchical Bayesian Models

Going back to the scalar-on-image regression model (2.11), an appropriate prior distribution

is needed for the parameter vector θ = (α, β, σ2
ε). It is common to assume the model

parameters to be independent a priori, such that p(θ) = p(α)p(β)p(σ2
ε) (Gelman, Carlin,

et al., 2014, Chapter 14). For the coefficient vector α of the scalar parameters and the error

variance σ2
ε one can use standard choices such as p(α) ∝ 1, which is an improper prior, and

σ2
ε ∼ IG(δ(1)

ε , δ(2)
ε ), which is (semi-)conjugate, as it can be shown that the full conditional

distribution of σ2
ε given the data and the other parameters is again an element of the family

of inverse-gamma distributions (e.g. Carlin and Louis, 2009, Chapter 2).

The parameter β is an image with L pixels, having a strong spatial structure, which should

be reflected appropriately in the prior. (Markov) random fields (Besag, 1974) and in partic-

ular Gaussian Markov random fields (GMRFs, for an introduction see e.g. Rue and Held,

2005) have proven to be suitable priors for image data (e.g. Besag et al., 1991; Winkler,

2003; Meyer-Baese and Schmid, 2014). The Markov property (Besag, 1974) assumes that

the value of the coefficient image in a pixel l depends only on the values of β in the neigh-

bourhood of this pixel and is independent of all other values:

p (βl|β−l) = p
(
βl
∣∣∣βδ(l)) .

Here β−l denotes the set of all pixels in β without βl and βδ(l) is the set of all neighbouring

coefficients, i.e. βδ(l) = {βj : j ∼ l}, where j ∼ l means that the pixels j and l are

neighbours. A neighbourhood in this case means for example the set of all pixels sharing an

edge with l. In particular, a neighbourhood structure must be symmetric (i.e. if j ∼ l, then

l must also be a neighbour of j) and the neighbourhood must not contain the pixel itself

(l 6∼ l) (Winkler, 2003, Chapter 3). Some typical examples for neighbourhoods in the case

of two-dimensional images are shown in Fig. 2.1. With the Markov property, the choice of

the neighbourhood defines the dependence structure in β.

In an (intrinsic) GMRF, the conditional distribution of βl given the values of β in the

neighbourhood βδ(l) and an additional variance parameter σ2
β is assumed to be Gaussian

βl
∣∣∣βδ(l), σ2

β ∼ N
 1
dl

∑
j∼l

βj,
σ2
β

dl


with dl = #{j = 1, . . . , L : j ∼ l} the number of neighbours of l (cf. Besag, 1974; Rue and

Held, 2005). The prior assumption for β can be rewritten in unconditional form using the

Hammersley-Clifford Theorem (Besag, 1974; Rue and Held, 2005)

p
(
β
∣∣∣σ2
β

)
∝ (σ2

β)− rank(P )/2 exp
(
− 1

2σ2
β

β>Pβ

)
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l l l l

Figure 2.1.: Typical examples for neighbourhood structures in the case of two-dimensional images.

The gray areas mark the neighbourhood of the pixel l in the center (boundary cases not shown).

with P ∈ RL×L the so-called neighbourhood matrix with

pjl =


dl j = l

−1 j ∼ l

0 else.

This is not a proper distribution, as P does not have full rank (rank(P ) = L − 1, Rue

and Held, 2005, Chapter 3). However, this prior assumption leads to a proper posterior

distribution in most cases of interest and to a Gaussian full conditional for β.

The variance parameter σ2
β in the prior for β is a hyperparameter. It can either be treated

as fixed or e.g. assumed to have an inverse-gamma distribution, which can be shown to be

conjugate in this case (Meyer-Baese and Schmid, 2014, Chapter 2):

σ2
β ∼ IG(δ(1)

β , δ
(2)
β ).

2.3.3. Relation to Penalized Basis Function Approaches

The Bayesian approach for scalar-on-image regression (or more general models) with GMRF

priors has an interesting relation to penalized spline methods, as indicated in Section 2.2.2.

The natural logarithm of the full conditional of β is easily shown to be of the form

− 1
2σ2

ε

 N∑
i=1

yi − p∑
j=1

wi,jαj −
L∑
l=1

xi,lβl

2

+ σ2
ε

σ2
β

∑
j∼l

(βj − βl)2

+ C

with some constant C. Maximizing this quantity, which gives the posterior mode as a point

estimate for β, is equivalent to minimizing the squared residuals yi−
∑p
j=1wi,jαj−

∑L
l=1 xi,lβl

with respect to a quadratic first order difference penalty on the coefficients with some

smoothing parameter λ = σ2
ε

σ2
β
. The GMRF approach thus corresponds to a penalized basis

function approach with constant local basis functions 1l for each pixel.
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2.3.4. Bayesian Inference and Markov-Chain-Monte-Carlo Methods

Bayesian inference is based on the posterior, i.e. the density of all parameters given the

data. As this might be a high-dimensional distribution and thus hard to interpret, one

can use Bayesian versions of point estimates, interval estimates and hypothesis tests to

summarize the information in the posterior (Carlin and Louis, 2009, Chapter 2).

Examples for Bayesian point estimates for θ are the posterior expectation

E (θ|X ) =
∫

Θ
θ p (θ|X ) dθ (2.15)

or, analogously, the posterior mode or the posterior median. Credible intervals (more

general: credible sets) are the Bayesian counterparts to confidence intervals. A set C ⊂ Θ
is said to be a 100 · (1− α) percent credible set for the parameter θ, if

P (C|X ) =
∫
C
p (θ|X ) dθ ≥ 1− α.

In contrast to a frequentist 100 · (1− α) percent confidence interval, C can be easily inter-

preted as the probability for θ ∈ C being greater or equal to 1−α, given the observed data

X . More details can be found e.g. in Carlin and Louis (2009, Chapter 2).

For simple models with only one or two parameters, the posterior can often be found

analytically. Particularly for parameters with conjugate priors it is then easy to derive e.g.

point estimates, as the posterior is a known distribution in this case and thus the posterior

mean is mostly just a function of the updated parameters of the posterior distribution

(with respect to the prior). For more complex models such as scalar-on-image regression,

the posterior is high-dimensional and thus the theoretical calculation of point estimates for

instance is hardly feasible, as it involves integration (posterior expectation) or optimization

(posterior mode) in a high-dimensional space. Instead, the theoretical point estimates or

credible intervals can be approximated by their empirical counterparts using a high number

of samples from the posterior. In the case of the posterior expectation, for example, this

means approximating the integral in (2.15) by so-called Monte Carlo integration (Carlin

and Louis, 2009, Chapter 3)

∫
Θ
θ p (θ|X ) dθ ≈ 1

J

J∑
j=1

θj with θj
iid∼ p (θ|X ) , j = 1, . . . , J. (2.16)

This of course requires the availability of efficient sampling methods for easily generating

hundreds or thousands of samples from the posterior, which are the condition for a good

approximation in (2.16).

In this context, Markov-Chain-Monte-Carlo methods (MCMC) have proven extremely use-

ful and have helped to pave the way to a broad applicability of high-dimensional Bayesian
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models (Geyer, 2011; Gilks et al., 1996). Starting from some given initial values for the pa-

rameters, they construct a Markov chain having the posterior as the stationary or invariant

distribution. For a review of Markov chain theory with a special focus on MCMC, see for

example Tierney (1996) or Geyer (2011).

The Metropolis-Hastings algorithm, named after Metropolis et al. (1953) and Hastings

(1970), describes how to construct a Markov chain with a given stationary distribution π,

which in the case of Bayesian approaches will always be the posterior, thus π(θ) = p (θ|X ).
Starting from θ(0) ∈ Θ with π(θ(0)) > 0 and given the state of the chain θ(j) in iteration

j ≥ 0, the state in the following iteration j + 1 is generated as follows:

1. Sample a candidate θ∗ from a proposal distribution q, that may depend on the current

state θ(j)

θ∗ ∼ q
(
·
∣∣∣θ(j)

)
.

2. Accept θ∗ with probability α(θ(j), θ∗), where

α(θ, θ∗) = min
(

1, π(θ∗)q (θ|θ∗)
π(θ)q (θ∗|θ)

)
. (2.17)

Acceptance means that θ(j+1) = θ∗, otherwise θ(j+1) = θ(j). Note that for the calculation of

α(θ, θ∗) the normalizing constant in π cancels out, as one considers only the ratio π(θ∗)
π(θ) . It is

therefore sufficient to know the posterior only up to the normalizing constant, as in (2.13).

After an initial phase (burnin), in which the values of the chain still depend on the starting

values, the states of the chain can be considered as samples from the limiting distribution,

and thus as samples from the posterior (Gilks et al., 1996). By construction, the samples

are not independent from each other, which can be problematic if mixing is slow and one

has to save a lot of highly correlated samples. To this end, one often uses thinning, meaning

that one saves only each n-th state of the chain, with e.g. n = 10 or n = 20, which also

reduces the dependence among the samples (Gelman and Shirley, 2011). Both concepts of

burnin and thinning have been the subject of criticism, as they throw away information in

form of samples. For a general discussion, see e.g. Geyer (2011).

The proposal distribution q can be chosen quite freely, but one should bear in mind that

sampling from this distribution should be easily achievable, as for each state of the chain,

a sample has to be drawn from q (Gilks et al., 1996) and usually, the number of iterations

will be in the order of thousands or millions. Moreover, the relationship between q and the

posterior π is crucial for convergence, as a higher acceptance rate in (2.17) and good mixing

properties lead to a better exploration of the posterior (Gilks et al., 1996). For regularity

conditions for q, see e.g. Geyer (2011).
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The update scheme can be modified by updating sub-blocks of θ at a time. Let θ =
(θ1, . . . , θh) be a division of all model parameters in blocks, where each block θk might

be one- or higher-dimensional. In the case of scalar-on-image regression as in (2.11), the

parameter θ might be split in h = 3 blocks, namely θ1 = α ∈ Rp, θ2 = β ∈ RL and

θ3 = σ2
β ∈ (0,∞). Then the update from iteration j to iteration j+ 1 comprises h updating

steps, one for each block. Let θ
(j)
k be the state of the k-th block after iteration j and denote

θ
(j)
−k = (θ(j+1)

1 , . . . , θ
(j+1)
k−1 , θ

(j)
k+1, . . . , θ

(j)
h ), i.e. all blocks except for θk, where the first k − 1

blocks have already been updated. A candidate θ∗k for the next state is sampled from the

k-th proposal distribution qk
(
·
∣∣∣θ(j)
k , θ

(j)
−k

)
, which depends on the current state of θk, but also

on the states of the other blocks in θ−k. The proposal is accepted with probability

α(θ(j)
k , θ

(j)
−k, θ

∗
k) = min

1,
π
(
θ

(j)
∗
∣∣∣θ(j)
−k

)
q
(
θ

(j)
k

∣∣∣θ∗k, θ(j)
−k

)
π
(
θ

(j)
k

∣∣∣θ(j)
−k

)
q
(
θ∗k

∣∣∣θ(j)
k , θ

(j)
−k

)
 .

Here π (θk|θ−k) = p (θk|θ−k,X ) is the full conditional of θk, given the parameters of all

other blocks and the data. This block-wise update scheme is known as single-component

Metropolis-Hastings (Gilks et al., 1996) or variable-at-a-time Metropolis-Hastings (Geyer,

2011). It is particularly useful for hierarchical models with many parameters, as one can

specify the proposals separately for each block.

Special cases of the Metropolis-Hastings algorithms are given by the Metropolis algorithm

(Metropolis et al., 1953), which uses a symmetric proposal density, i.e. q (θ∗|θ) = q (θ|θ∗).
This reduces the acceptance probability to α(θ, θ∗) = min(1, π(θ∗)

π(θ) ). The so-called Gibbs

sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) is a special case of the single-

component Metropolis-Hastings algorithm described before, where the proposal distribution

of the k-th block is set to the full conditional of this block, i.e. qk (·|θk, θ−k) = p (θk|θ−k,X ).
This choice yields α ≡ 1, hence the proposals are always accepted. At the same time, it

requires all full conditionals to be known distributions and to have appropriate sampling

algorithms available.

A frequent criticism of MCMC methods is that they are, in a sense, “black box” algorithms

(Geyer, 2011). This means that for example determining convergence of the chain is hardly

feasible, although some heuristics have been proposed (cf. Gelman and Shirley, 2011, and

references therein). In addition, MCMC methods usually take very long to converge, par-

ticularly for high-dimensional models with a strong dependence structure. In this context,

Rue, Martino, et al. (2009) have proposed integrated nested Laplace approximation (INLA),

which can be applied in the important special case of structured additive regression models

with latent Gaussian fields and a few hyperparameters. This broad class of models covers

for example spatial models involving Gaussian Markov random fields, as some of the meth-

ods for scalar-on-image regression used in Chapter 6. The basic idea here is to approximate

posterior marginals based on a repeated application of the Laplace approximation, which
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reduces the computation time from hours or days (MCMC) to seconds and minutes (INLA),

as argued in Rue, Martino, et al. (2009).

The method of Goldsmith, Huang, et al. (2014) for scalar-on-image regression alternatively

proposes to combine a Gibbs sampler for the unknown coefficient image β with K-fold

cross-validation for all hyperparameters in the model. They include two parameters of a

latent Ising field for implicit variable selection. These parameters do not have a known

conjugate distribution and hence Gibbs sampling is not applicable for them. The use of

cross-validation, however, has its own pitfalls: First, the computation time considerably

increases, as for each parameter combination that is to be considered a full Gibbs sampler

has to be run for each of the K folds. In the model of Goldsmith, Huang, et al. (2014), there

are in total four hyperparameters. If for each parameter M values have to be tested, this

results in running in total K ·M4 Gibbs samplers for β in order to find the optimal choice

of hyperparameters. Consequently, the number M of values per hyperparameter needs to

be extremely small, which is a second drawback (in the simulation in Chapter 6 we use

M = 3, K = 5 and extremely short Gibbs samplers with only 250 iterations as suggested in

Goldsmith, Huang, et al. (2014), but still one fit takes more than 2.5 hours for a moderate

number of N = 250 individuals and relatively small images of size 64× 64). Choosing from

only a few values corresponds to a discrete prior distribution with M possible values for

each parameter. This is of course highly informative if M is small and can be seen as a

quite strong model assumption.

An alternative approach to the model in Goldsmith, Huang, et al. (2014), using conjugate

priors for the variance parameters σ2
ε , σ

2
β and an auxiliary variable approach (Møller et al.,

2006) based on coupling from the past (Propp and Wilson, 1996) for the parameters of the

latent Ising field, performed rather poorly (not shown here). The results indicated that the

choice of the priors and thus of the model assumptions are crucial in complex statistical

models such as scalar-on-image regression. This was the starting point for the systematic

survey in Chapter 6.
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Abstract:

Existing approaches for multivariate functional principal component analysis are restricted

to data on the same one-dimensional interval. The presented approach focuses on multi-

variate functional data on different domains that may differ in dimension, e.g. functions

and images. The theoretical basis for multivariate functional principal component analysis

is given in terms of a Karhunen-Loève Theorem. For the practically relevant case of a

finite Karhunen-Loève representation, a relationship between univariate and multivariate

functional principal component analysis is established. This offers an estimation strategy to

calculate multivariate functional principal components and scores based on their univariate

counterparts. For the resulting estimators, asymptotic results are derived. The approach

can be extended to finite univariate expansions in general, not necessarily orthonormal

bases. It is also applicable for sparse functional data or data with measurement error. A

flexible R implementation is available on CRAN. The new method is shown to be competi-

tive to existing approaches for data observed on a common one-dimensional domain. The

motivating application is a neuroimaging study, where the goal is to explore how longitu-

dinal trajectories of a neuropsychological test score covary with FDG-PET brain scans at

baseline. Supplementary material, including detailed proofs, additional simulation results

and software is available online.
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3.1. Introduction

Statistical methods for functional data have become increasingly important in recent years.

Functional principal component analysis (FPCA) is one of the key techniques in functional

data analysis, as it provides an easily interpretable exploratory analysis of the data. Further,

it is an important building block for many statistical models (see e.g. Ramsay and Silverman,

2005). The technical progress in many fields of application allows the collection of more

and more data with functional features, often several kinds per observation unit. This

encourages the study of multivariate functional data and new methods are required to

reveal e.g. joint variation in the different elements.

As a simple motivating example, consider the gait cycle data (Ramsay and Silverman, 2005)

shown in Fig. 3.1. It contains 39 observations of hip and knee angle during a gait cycle on a

standardized time interval. Both elements of this bivariate data can be described separately

by their first three univariate eigenfunctions that explain 94.4% (hip) and 87.5% (knee)

of the total variability in the data. The associated functional principal component scores,

however, reveal that there is a non negligible correlation between almost all score pairs of the

two elements. The separate FPCA thus captures joint variation between hip and knee angles

only indirectly, which makes the interpretation of the FPCA results difficult. Correlated

scores can also lead to multicollinearity issues in a subsequent regression analysis (functional

principal component regression, e.g. Müller and Stadtmüller, 2005). Multivariate FPCA,

by contrast, directly adresses potential covariation between the hip and knee elements. The

first three bivariate principal components shown in Fig. 3.1, which explain 85.3% of the

variability in the data, give insight into the main modes of joint variation in the overall gait

movement. The corresponding scores do not only allow a more parsimonious representation

of the data (one score value per bivariate principal component and per observation), but

they are also uncorrelated by construction. Finally, the multivariate functional principal

components are more natural to represent multivariate functional data in the sense that

they have the same structure as each observation. The extension of FPCA to multivariate

functional data is hence of high practical relevance.

Existing approaches for multivariate functional principal component analysis (MFPCA)

are restricted to functions observed on the same finite, one-dimensional interval (Ramsay

and Silverman, 2005; Jacques and Preda, 2014; Chiou, Yang, et al., 2014; Berrendero et

al., 2011). Except for Berrendero et al. (2011), they all aim at a multivariate functional

Karhunen-Loève representation of the data. For data measured e.g. in different units,

Jacques and Preda (2014) and Chiou, Yang, et al. (2014) also discuss normalized versions

of MFPCA based on a normalized covariance operator.

The key motivation for this paper is that in practical applications, multivariate functional

data are neither restricted to lie on the same interval nor to have one-dimensional domains,
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Figure 3.1.: Univariate and multivariate FPCA for the gait cycle data. 1st column: Original

data. 2nd column: Results for univariate FPCA, calculated separately. The functions have been

reflected, if necessary, and rescaled to have the same norm as the multivariate eigenfunctions

for comparison purposes. 3rd column: Results for multivariate FPCA, calculated with the new

approach. 4th column: Empirical correlation of the univariate FPCA scores for hip and knee.

e.g. data that consists of functions and images, as in our neuroimaging application. We

start by extending the notion of multivariate functional data to the case of different (dimen-

sional) domains for the different elements. Next, the theoretical foundations of MFPCA

are provided in terms of a Karhunen-Loève Theorem. For the practically relevant case of

a finite or truncated Karhunen-Loève representation, we establish a direct theoretical re-

lationship between univariate and multivariate FPCA. This suggests a simple estimation

strategy for multivariate functional principal components and scores based on their uni-

variate counterparts. For data on higher dimensional domains (tensor data, e.g. images),

principal component methods have originally been developed in the context of psychomet-

rics (e.g. Tucker, 1966; Carroll and Chang, 1970) and have become particularly important

in the machine learning literature (Coppi and Bolasco, 1989; Lu et al., 2013). Recent ap-

proaches for functional or smooth principal component analysis for tensor data have been

proposed e.g. in Allen (2013). All these methods can be used as univariate building blocks

for MFPCA. The resulting estimators for MFPCA are shown to be consistent under a given

set of assumptions. In contrast to most of the existing methods for MFPCA, our new ap-

proach can be applied to sparse functional data and data with measurement error. It can

be generalized to data available in arbitrary basis expansions and hence includes the MF-

PCA procedure proposed by Jacques and Preda (2014) as a special case. The new method

further allows to incorporate weights for the elements, if they differ in domain, range or

variation.

The paper is organized as follows. Section 3.2 introduces multivariate functional data and

gives the theoretical basis for MFPCA. In Section 3.3 we derive the estimation algorithm
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for MFPCA based on univariate basis expansions and investigate asymptotic properties of

the resulting estimators. The performance of the new method is evaluated in Section 3.4

in a simulation with different levels of complexity. Section 3.5 contains the analysis of the

motivating neuroimaging dataset. The paper concludes with a discussion and an outlook in

Section 3.6. Supplementary material, containing detailed proofs of all propositions, more

simulation results and R code is available online.

3.2. Theoretical Foundations of Multivariate Functional

Data

3.2.1. Data Structure and Notation

This paper is concerned with multivariate functional data, i.e. each observation consists of

p ≥ 2 functions X(1), . . . , X(p). They may be defined on different domains T1, . . . , Tp with

possibly different dimensions. Technically, Tj must be compact sets in Rdj , dj ∈ N with

finite (Lebesgue-) measure and each element X(j) : Tj → R is assumed to be in L2(Tj).

In analogy to other approaches for multivariate functional data, the different functions are

combined in a vector X with

X(t) =
(
X(1)(t1), . . . , X(p)(tp)

)
∈ Rp.

Note that t := (t1, . . . , tp) ∈ T := T1×· · ·×Tp is a p-tuple of d1, . . . , dp-dimensional vectors

and not a scalar. This is a main difference to earlier approaches, as it allows each element

X(j) to have a different argument tj, even in the case of a common one-dimensional domain.

In the following, it will be further assumed that

µ(t) := E (X(t)) =
(
E
(
X(1)(t1)

)
, . . . ,E

(
X(p)(tp)

))
= 0 ∀ t ∈ T .

For s, t ∈ T , define the matrix of covariances C(s, t) := E (X(s)⊗X(t)) with elements

Cij(si, tj) := E
(
X(i)(si)X(j)(tj)

)
= Cov(X(i)(si), X(j)(tj)), si ∈ Ti, tj ∈ Tj. (3.1)

As noted in Ramsay and Silverman (2005, Chapter 8.5.), a suitable inner product is the

basis of all approaches for principal component analysis. For functions f = (f (1), . . . , f (p))
with elements f (j) ∈ L2(Tj) define the space H := L2(T1)× . . .× L2(Tp) and

〈〈f, g〉〉 :=
∑p

j=1 〈f
(j), g(j)〉2 =

∑p

j=1

∫
Tj
f (j)(tj)g(j)(tj)dtj, f, g ∈ H. (3.2)

Proposition 1. H is a Hilbert space with respect to the scalar product 〈〈·, ·〉〉.
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Proofs for all propositions are given in the online appendix. The norm induced by 〈〈·, ·〉〉 is

denoted by |||·|||∗. Next, define the covariance operator Γ: H → H with the j-th element of

Γf, f ∈ H given by

(Γf)(j)(tj) :=
∑p

i=1

∫
Ti
Cij(si, tj)f (i)(si)dsi = 〈〈C·j(·, tj), f〉〉, tj ∈ Tj. (3.3)

The setting can be generalized to a weighted scalar product on H, i.e.

〈〈f, g〉〉w :=
∑p

j=1wj〈f
(j), g(j)〉2, f, g ∈ H (3.4)

for some positive weights w1, . . . , wp, cf. Ramsay and Silverman (2005, Chapter 10.3. in the

context of hybrid data) or Chiou, Yang, et al. (2014). The associated weighted covariance

operator Γw is given by its elements (Γwf)(j) with f ∈ H and

(Γwf)(j)(tj) = 〈〈C·,j(·, tj), f〉〉w, tj ∈ Tj.

The use of weights may be necessary if the elements have quite different domains or ranges

or if they exhibit different amounts of variation, in order to obtain multivariate functional

principal components that have a meaningful interpretation (Chiou, Yang, et al., 2014). A

weighted scalar product corresponds to a (global) rescaling of the elements by w
1/2
j . An

alternative approach would be pointwise rescaling, e.g. by the inverse of the square root of

the pointwise variance Cjj(tj, tj). This can be seen as normalizing the covariance operator

(Chiou, Yang, et al., 2014; Jacques and Preda, 2014). However, this second approach

does not consider the size of the different domains Tj and would give equal variation per

observation point tj rather than per element j. Moreover, rescaling with the pointwise

variance would downweight areas in Tj with stronger variation, hence areas that might

contribute relevant information to the functional principal components. Therefore, only

global rescaling by means of a weighted scalar product is considered in the following. The

weights have to be chosen prior to the analysis. They can be specified based on expert

knowledge or estimated from the data, e.g. based on the variation in each element (see

references in Chiou, Yang, et al., 2014). A sensible choice will always depend on the

specific application and the question of interest. One possible solution that is analogous to

standardization in multivariate PCA is proposed in the application in Section 3.5. For the

sake of better readability, all following theoretical results are derived for w1 = . . . = wp = 1,

but remain valid in the more general case of different weights. For the estimation algorithm

discussed in Section 3.3.2, MFPCA based on the weighted scalar product is addressed

again.

∗The L2-norm induced by 〈·, ·〉2 on each L2(Tj) is denoted by ||·||2. Further, ||·|| is the Euclidean norm for

vectors and ||·||T denotes a norm on T with ||t||2T =
∑p
j=1 ||tj ||

2
for tj ∈ Tj ⊂ Rdj , j = 1, . . . , p.
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3.2.2. A Karhunen-Loève Theorem for Multivariate Functional Data

In the following it is shown that under mild conditions, Γ has the same properties as the

covariance operator in the univariate case and therefore a Karhunen-Loève representation

for multivariate functional data exists. The main difference to existing approaches for data

with elements observed on the same (one-dimensional) domain is that in this special case,

Γ is an integral operator with positive definite kernel C(s, t). This directly gives all of

the desired properties (Saporta, 1981). In the more general case of elements observed on

different domains, this is not obviously the case and the properties are shown explicitly.

Proposition 2. The covariance operator Γ defined in (3.3) is a linear, self-adjoint and

positive operator. If further for all i, j = 1, . . . , p there exist Kij <∞ with

||Cij(·, tj)||2
2 =

∫
Ti
Cij(si, tj)2dsi < Kij ∀ tj ∈ Tj, (3.5)

and Cij is uniformly continuous in the sense that

∀ ε > 0 ∃ δij > 0 :
∣∣∣∣∣∣tj − t∗j ∣∣∣∣∣∣ < δij ⇒

∣∣∣Cij(si, tj)− Cij(si, t∗j)∣∣∣ < ε ∀ si ∈ Ti,

then Γ is a compact operator.

In the remainder of this paper, it is assumed that the Cij satisfy all conditions of Prop. 2

and hence Γ can always be assumed to be a compact positive operator on H. By the

Hilbert-Schmidt Theorem (e.g. Reed and Simon, 1980, Thm. VI.16) it follows that there

exists a complete orthonormal basis of eigenfunctions ψm ∈ H, m ∈ N of Γ such that

Γψm = νmψm and νm → 0 for m→∞.

In particular, since Γ is a positive operator, it may be assumed w.l.o.g. that ν1 ≥ ν2 ≥ . . . ≥
0. Since ψm, m ∈ N is an orthonormal basis of H and Γ is self-adjoint, by the Spectral

Theorem (e.g. Werner, 2011, Thm. VI.3.2.) it holds that

Γf =
∑∞

m=1 νm〈〈f, ψm〉〉ψm ∀ f ∈ H.

The following proposition is a multivariate version of Mercer’s Theorem (Mercer, 1909). It

plays a key role in the proof of the Karhunen-Loève Theorem (Prop. 4).

Proposition 3 (Mercer’s Theorem). For j = 1, . . . , p and sj, tj ∈ Tj it holds that

Cov
(
X(j)(sj), X(j)(tj)

)
= Cjj(sj, tj) =

∑∞
m=1 νmψ

(j)
m (sj)ψ(j)

m (tj),

where the convergence is absolute and uniform.
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Proposition 4 (Multivariate Karhunen-Loève Theorem). Under the assumptions of

Prop. 2,

X(t) =
∑∞

m=1 ρmψm(t), t ∈ T , (3.6)

with zero mean random variables ρm = 〈〈X,ψm〉〉 and Cov(ρm, ρn) = νmδmn. Moreover

E
(∣∣∣∣∣∣∣∣X(t)−

∑M

m=1 ρmψm(t)
∣∣∣∣∣∣∣∣2
)
→ 0 for M →∞

uniformly for t ∈ T .

The multivariate Karhunen-Loève representation has an analogous interpretation as in the

univariate case (Ramsay and Silverman, 2005, Chapter 8.2.). The eigenvalues νm represent

the amount of variability in X explained by the single multivariate functional principal

components ψm, while the multivariate functional principal component scores ρm serve as

weights of ψm in the Karhunen-Loève representation of X. As the eigenvalues νm decrease

towards 0, leading eigenfunctions reflect the most important features of X. Truncated

Karhunen-Loève expansions, optimal M -dimensional approximations to X,

XdMe(t) :=
∑M

m=1 ρmψm(t), t ∈ T , (3.7)

are often used in practice. Single observations xi of X can then be characterized by their

score vectors (ρi,1, . . . , ρi,M) with ρi,m = 〈〈xi, ψm〉〉 for further analysis, e.g. for regression

(Müller and Stadtmüller, 2005) or clustering (Jacques and Preda, 2014).

3.3. Multivariate FPCA

3.3.1. Relationship Between Univariate and Multivariate FPCA for

Finite Karhunen-Loève Decompositions

Given the Karhunen-Loève representation of multivariate functional data X as in (3.6),

a natural question is how this representation relates to the univariate Karhunen-Loève

representations of the single elements X(j). The following proposition establishes a direct

relationship between these two representations if they are both finite, based on the theory

of integral equations (Zemyan, 2012).

Proposition 5. The multivariate functional vector X =
(
X(1), . . . , X(p)

)
in (3.6) has a

finite Karhunen-Loève representation if and only if all univariate elements X(1), . . . , X(p),

have a finite Karhunen-Loève representation. In this case, it holds:
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1. Given the multivariate Karhunen-Loève representation (3.6), the positive eigenvalues

λ
(j)
1 ≥ . . . ≥ λ

(j)
Mj

> 0, Mj ≤ M of the univariate covariance operator Γ(j) associated

with X(j) correspond to the positive eigenvalues of the matrix A(j) ∈ RM×M with

entries

A(j)
mn = (νmνn)1/2〈ψ(j)

m , ψ(j)
n 〉2, m, n = 1, . . . ,M.

The eigenfunctions of Γ(j) are given by

φ(j)
m (tj) =

(
λ(j)
m

)−1/2∑M

n=1 ν
1/2
n [u(j)

m ]nψ(j)
n (tj), tj ∈ Tj, m = 1, . . . ,Mj,

where u(j)
m denotes an (orthonormal) eigenvector of A(j) associated with eigenvalue

λ(j)
m and [u(j)

m ]n denotes the n-th entry of this vector. For the univariate scores

ξ(j)
m = 〈X(j), φ(j)

m 〉2 =
(
λ(j)
m

)−1/2∑M

n=1 ν
1/2
n

[
u(j)
m

]
n

∑M

k=1 ρk〈ψ
(j)
n , ψ

(j)
k 〉2.

2. Assuming the univariate Karhunen-Loève representation X(j) = ∑Mj

m=1 ξ
(j)
m φ(j)

m with

Γ(j)φ(j)
m = λ(j)

m φ(j)
m for each element X(j) of X, the positive eigenvalues ν1 ≥ . . . ≥

νM > 0 of Γ with M ≤ ∑p
j=1Mj =: M+ correspond to the positive eigenvalues of the

matrix Z ∈ RM+×M+ consisting of blocks Z(jk) ∈ RMj×Mk with entries

Z(jk)
mn = Cov

(
ξ(j)
m , ξ(k)

n

)
, m = 1, . . . ,Mj, n = 1, . . . ,Mk, j, k = 1, . . . , p.

The eigenfunctions of Γ are given by their elements

ψ(j)
m (tj) =

∑Mj

n=1[cm](j)n φ(j)
n (tj), tj ∈ Tj, m = 1, . . . ,M,

where [cm](j) ∈ RMj denotes the j-th block of an (orthonormal) eigenvector cm of Z

associated with eigenvalue νm. The scores are given by

ρm =
∑p

j=1

∑Mj

n=1[cm](j)n ξ(j)
n .

Extensions: The second part of Prop. 5 can be extended in a natural way if univariate

elements are expanded in finitely many, not necessarily orthonormal basis functions b(j)
m

with coefficients θ(j)
m , i.e.

X(j)(tj) =
∑Kj

m=1 θ
(j)
m b(j)

m (tj), tj ∈ Tj. (3.8)

This is a very likely situation in practice, e.g. due to presmoothing of noisy observations.

Following analogous steps as in the proof of Prop. 5 results in an eigenanalysis problem

BQc = νc as starting point for the MFPCA. Here B ∈ RK+×K+ with K+ = ∑p
j=1 Kj is a

block diagonal matrix of scalar products 〈b(j)
m , b(j)

n 〉2 of univariate basis functions associated

with each element X(j). In the special case that all univariate bases are orthonormal (e.g.

when using the univariate principal component bases as in Prop. 5), B equals the identity
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matrix. The symmetric block matrix Q with entries Q(jk)
mn = Cov(θ(j)

m , θ(k)
n ) corresponds

to Z in Prop. 5. Although BQ is in general not symmetric, its eigenvectors cm and

eigenvalues νm, which are at the same time the eigenvalues of Γ, are real. This can be easily

shown using the Cholesky decomposition of the symmetric matrix B = RR> and solving

R>QRc̃ = νc̃ with c̃ = R−1c. The estimation algorithm for principal components ψm and

associated scores ρm based on this general basis expansion is presented in the next section

combined with the case of a weighted scalar product.

3.3.2. Estimation of Multivariate FPCA

Estimation based on univariate FPCA: The second part of Prop. 5 suggests a simple

and natural approach for estimating the MFPCA. After calculation of univariate FPCAs

for each element, the estimates can be plugged into the formulae given in Prop. 5. Given

demeaned samples x1, . . . , xN of X, the proposed estimation procedure for MFPCA consists

of four steps:

1. For each element X(j) estimate a univariate FPCA based on the observations x
(j)
1 , . . .,

x
(j)
N . This results in estimated eigenfunctions φ̂(j)

m and scores ξ̂
(j)
i,m, i = 1, . . . , N, m =

1, . . . ,Mj for suitably chosen truncation lags Mj. As there exist numerous estimation

procedures, e.g. for irregularly sampled and sparse data with measurement error (Yao

et al., 2005), the multivariate method is also applicable to this kind of data.

2. Define the matrix Ξ ∈ RN×M+ , where each row (ξ̂(1)
i,1 , . . . , ξ̂

(1)
i,M1 , . . . , ξ̂

(p)
i,1 , . . . , ξ̂

(p)
i,Mp

)
contains all estimated scores for a single observation. An estimate Ẑ ∈ RM+×M+ of

the block matrix Z in Prop. 5 is given by Ẑ = (N − 1)−1Ξ>Ξ.

3. Perform a matrix eigenanalysis for Ẑ resulting in eigenvalues ν̂m and orthonormal

eigenvectors ĉm.

4. Estimates for the multivariate eigenfunctions are given by their elements

ψ̂(j)
m (tj) =

∑Mj

n=1[ĉm](j)n φ̂(j)
n (tj), tj ∈ Tj, m = 1, . . . ,M+ (3.9)

and multivariate scores can be calculated via

ρ̂i,m =
∑p

j=1

∑Mj

n=1[ĉm](j)n ξ̂
(j)
i,n = Ξi,·ĉm. (3.10)

Finding an appropriate truncation lag Mj in step 1 is a well-known issue in functional data

analysis. Common approaches are based on the decrease of the estimated eigenvalues λ̂(j)
m

(scree-plot, Cattell, 1966) or the percentage of variance explained (e.g. Ramsay and Silver-

man, 2005, Chapter 8.2.). An optimal number M ≤M+ of multivariate functional principal

components can basically be chosen with the same techniques, while the importance of a
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3.3. Multivariate FPCA

“correct” choice depends on the specific application: For simply exploratory aims it is less

crucial than for subsequent analyses that ignore the information of the eigenvalues (and

hence, the proportion of variance explained by the single components) and are based solely

on multivariate eigenfunctions or scores, as e.g. clustering or functional principal component

regression. For the latter, relevant eigenfunctions can also be selected using model-based

approaches such as AIC or cross-validation. The goodness of the resulting MFPCA es-

timates of course depends on an appropriate choice of Mj, which can also be used as a

sensitivity check: If the first Mj eigenfunctions capture all the relevant information in X(j),

increasing Mj will add only little information and hence should have only little impact on

the results. This relationship is analyzed in a simulation in the online appendix.

Extensions: The estimation algorithm can easily be extended to elements X(j) available

in general basis expansions as in (3.8) and to MFPCA based on a weighted scalar product

as in (3.4). Given weights w1, . . . , wp > 0 and demeaned observations x1, . . . , xN of X with

estimated basis function coefficients θ̂
(j)
i,m for each element, the eigenanalysis problem to

solve is

(N − 1)−1BDΘ>ΘDc = νc. (3.11)

The matrix B is the block diagonal matrix of basis scalar products as in Section 3.3.1

and D = diag(w1/2
1 , . . . ,w1/2

p ) ∈ RK+×K+ accounts for the weights, where each w
1/2
j is

repeated Kj times to give w
1/2
j . Θ ∈ RN×K+ with rows (θ̂(1)

i,1 , . . . , θ̂
(1)
i,K1 , . . . , θ̂

(p)
i,1 , . . . , θ̂

(p)
i,Kp)

corresponds to the matrix Ξ defined in step 2 of the original algorithm and (N − 1)−1Θ>Θ
is an estimate for Q introduced in Section 3.3.1. Given eigenvectors ĉm and eigenvalues ν̂m
for (3.11), estimated orthonormal eigenfunctions ψ̂m of Γw and associated scores ρ̂i,m can

be calculated in analogy to (3.9) and (3.10) with Q̂w = (N − 1)−1DΘ>ΘD:

ψ̂(j)
m (tj) =

(
wj · ν̂mĉ>mQ̂wĉm

)−1/2∑p

k=1

∑Kj

l=1

∑Kk

n=1[Q̂w](jk)
ln [ĉm](k)

n b
(j)
l (tj),

ρ̂i,m = (ν̂m)1/2
(
ĉ>mQ̂wĉm

)−1/2
Θi,·Dĉm.

Clearly, the original algorithm is obtained as a special case with Θ = Ξ, B = I (univariate

FPCA for each element) and D = I (all weights equal to 1). Moreover, the extended

algorithm allows to flexibly combine univariate FPCA and general basis expansions for

different elements of the multivariate functional data.

If all elements X(j) are defined on the same (one-dimensional) interval and D = I, ex-

panding each element in a general basis is equivalent to the method of Jacques and Preda

(2014). The approach proposed in this paper, however, is more general, as it allows for

different intervals as well as for higher dimensional Tj and thus basis functions b(j)
m .

Implementation: All presented variations of the MFPCA estimation algorithm are im-

plemented in an R package MFPCA (Happ, 2017b). Univariate basis expansions include

univariate FPCA (1D), smooth tensor PCA (2D), spline bases (1D/2D) and cosine bases
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3. MFPCA for Data on Different (Dimensional) Domains

(2D/3D). New bases can be added easily and in a modular way. The MFPCA package is based

on the package funData (Happ, 2017a) for representing (multivariate) functional data on

potentially different dimensional domains.

3.3.3. Asymptotic Properties

The results of Prop. 5 and the estimators proposed in the previous section have been derived

under the assumption of a finite sample size N and a finite Karhunen-Loève representation

for each element X(j). This case is relevant in practice, since data is observable only in finite

form (finitely many observations, finite resolution) and hence contains only finite informa-

tion. In this case, the maximal number of principal components which can be estimated is

limited to the number of observations N . For a growing number of observations, the trun-

cation limits Mj and thus M+ may increase with N . All asympotic examinations hence

have to consider the approximation error caused by truncating the univariate Karhunen-

Loève representations to finite sums as well as the estimation error. For the eigenfunctions

(analogously for the eigenvalues and scores) one hence has the following decomposition:∣∣∣∣∣∣∣∣∣ψm − ψ̂m∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ψm − ψ[M ]
m

∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣ψ[M ]
m − ψ̂m

∣∣∣∣∣∣∣∣∣.
Here ψm is the true m-th eigenfunction of the covariance operator Γ and ψ̂m is the estimator

based on the assumption of a finite Karhunen-Loève representation in each element. This

assumption is reflected in ψ[M ]
m , which denotes the m-th eigenfunction of the covariance

operator Γ[M ] associated with X [M ] with elements equal to the truncated X(j). These are

really the eigenfunctions targeted with the estimation algorithm presented in Section 3.3.2.

The first term on the right hand side of the inequality can be seen as a bias term caused

by truncation. It depends on N only implicitly via M1, . . . ,Mp. The second term accounts

for the estimation error, thus can be interpreted as a variance term.

Proposition 6 (Approximation Error). Let ν [M ]
m , m ∈ N be the eigenvalues of the covari-

ance operator Γ[M ] associated with X [M ] having truncated univariate elements X [M ](j) =∑Mj

m=1 ξ
(j)
m φ(j)

m . Then the approximation error
∣∣∣∣∣∣∣∣∣X [M ] −X

∣∣∣∣∣∣∣∣∣ converges to 0 in probability for

M1, . . . ,Mp → ∞. For each m ∈ N, ν [M ]
m converges to νm including multiplicity and the

total projection P [M ]
m of H onto the eigenspace of Γ[M ] associated with ν [M ]

m converges in

norm to the total projection Pm of H onto the eigenspace of Γ associated with νm.

In particular, if νm and ν [M ]
m both have multiplicity 1 with associated eigenfunctions ψm and

ψ[M ]
m , such that 〈〈ψm, ψ[M ]

m 〉〉 ≥ 0, then∣∣∣∣∣∣∣∣∣ψ[M ]
m − ψm

∣∣∣∣∣∣∣∣∣→ 0 for M1, . . . ,Mp →∞.

The scores ρ[M ]
m := 〈〈X [M ], ψ[M ]

m 〉〉 converge in probability to ρm for all m ∈ N.
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3.3. Multivariate FPCA

In the remainder of this section, all non-zero eigenvalues νm are assumed to have multiplicity

1, as then the eigenfunctions ψ[M ]
m converge to ψm, if their orientation is chosen such that

〈〈ψm, ψ[M ]
m 〉〉 ≥ 0.

For the estimation error, consider the univariate elementsX(j) ofX with covariance operator

Γ(j) and associated eigenvalues λ(j)
m and eigenfunctions φ(j)

m , m = 1, . . . ,Mj. In the following,

let X1, . . . , XN be independent copies of X and assume for all j = 1, . . . , p

∆(j)
Mj

:= sup
m=1,...,Mj

(λ(j)
m − λ

(j)
m+1)−1 <∞ for every finite Mj (A1)∫

Tj

∫
Tk
E
(
X(j)(tj)2X(k)(sk)2

)
dsk dtj <∞ ∀ k = 1, . . . , p (A2)∥∥∥Γ(j) − Γ̂(j)
∥∥∥
op

= Op(rΓ
N) (A3)

〈φ(j)
m , φ̂(j)

m 〉2 ≥ 0 for all m = 1, . . . ,Mj (A4)

ξ̂
(j)
i,m = 〈X(j)

i , φ̂(j)
m 〉2 for all m = 1, . . . ,Mj, i = 1, . . . , N (A5)

(A1) – (A2) concern theoretical properties of X(j) and Γ(j), while (A3) – (A5) depend on

the univariate decompositions used. (A1) is a standard assumption in univariate FPCA

(Bosq, 2000; Hall and Hosseini-Nasab, 2006). It guarantees that the first Mj univariate

eigenvalues of each element all have multiplicity 1. With (A2), the integral operator with

kernel Ĉjk(s, t) := N−1∑N
i=1X

(j)
i (s)X(k)

i (t) converges to the one with kernel Cjk(s, t) with

rate N−1/2. (A2) is used in combination with (A5) to obtain a convergence rate for the

maximal eigenvalue of Z − Ẑ, which, in turn, affects the convergence of the eigenvectors

ĉm to cm (Yu et al., 2015). (A3) ensures that the operator Γ̂(j), which is the basis of

the univariate FPCA, converges to Γ(j) in the operator norm ‖·‖op induced by ||·||2 with

a given rate rΓ
N . For fully observed data, Hall and Horowitz (2007) show rΓ

N = N−1/2,

while the approach of Yao et al. (2005) yields rΓ
N = N−1/2h−2 in the case of measurement

error or irregularly sampled data for a certain bandwidth h. Together with (A1), rΓ
N gives

a convergence rate for the univariate eigenfunctions φ̂(j)
m (Bosq, 2000, Lemma 4.3). (A4)

guarantees that φ̂(j)
m is an estimator for φ(j)

m rather than for −φ(j)
m , as eigenfunctions are

defined only up to a sign change (Bosq, 2000; Hall and Hosseini-Nasab, 2006). Finally, (A5)

is used to formulate the convergence of the estimated scores in terms of convergence rates

for the estimated eigenfunctions. If this assumption does not hold (e.g. in Yao et al., 2005),

convergence results can still be obtained e.g. by assuming a convergence rate for ξ̂
(j)
i,m and

replacing (A2) by an assumption on the rate of convergence for the maximal eigenvalue of

Z − Ẑ.

Proposition 7 (Estimation Error). Assume (A1) – (A5) hold. Then for Mmax =
maxj=1,...,pMj and ∆M := maxj=1,...,p ∆(j)

Mj
, the maximal eigenvalue of Z − Ẑ can be char-

acterized by

λmax(Z − Ẑ) = Op(Mmax max(N−1/2,∆Mr
Γ
N)).
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3. MFPCA for Data on Different (Dimensional) Domains

Using the same notation as in Prop. 6, it holds for all m = 1, . . . ,M+ that∣∣∣ν [M ]
m − ν̂m

∣∣∣ = Op(Mmax max(N−1/2,∆Mr
Γ
N)),∣∣∣∣∣∣∣∣∣ψ[M ]

m − ψ̂m
∣∣∣∣∣∣∣∣∣ = Op(M3/2

max max(N−1/2,∆Mr
Γ
N)),∣∣∣ρ[M ]

i,m − ρ̂i,m
∣∣∣ = Op(M3/2

max max(N−1/2,∆Mr
Γ
N)),∣∣∣∣∣∣∣∣∣X [M ]

i − X̂ [M ]
i

∣∣∣∣∣∣∣∣∣ = Op(Mmax∆Mr
Γ
N)

with X̂
[M ](j)
i = ∑Mj

m=1 ξ̂
(j)
i,mφ̂

(j)
m .

When combining the results of Prop. 6 and Prop. 7, the analogy to bias and variance again

becomes apparent: For fixed N , higher values of M1, . . . ,Mp will reduce the approximation

error, but simultaneously increase the estimation error, as both Mmax and ∆M increase with

Mj. If one assumes for example M1 = . . . = Mp = Mmax = O(Nβ), rΓ
N = N−1/2, and that

the eigengaps fulfill λ(j)
m − λ

(j)
m+1 ≥ C−1m−α−1 with α > 1, C > 0 (cf. Hall and Horowitz,

2007), the MFPCA estimators given in Section 3.3.2 are consistent for 0 < β < (2α+5)−1.

3.4. Simulation

We illustrate the performance of our new MFPCA estimation procedure in three settings

with increasing complexity:

1. Densely observed bivariate functional data on the same one-dimensional interval.

2. Trivariate functional data on different one-dimensional intervals with different levels

of sparsity.

3. Bivariate functional data on different dimensional domains (images and functions).

The first two settings deal with multivariate functional data on one-dimensional domains

and are presented together in Section 3.4.1. Setting 3 is discussed separately in Section 3.4.2.

Examples for simulated data and estimation results for all three settings are given in the

online appendix, which also includes two additional simulations (cf. Sections 3.3.2 and 3.5).

Unless specified otherwise, the MFPCA package (Happ, 2017b, version 1.0-1) is used for all

calculations.

Each setting is based on 100 datasets with N = 250 observations of the form

xi(t) =
∑M

m=1 ρi,mψm(t) + εi(t), εi(t) iid∼ Np(0, σ2I), t ∈ T , i = 1, . . . , N.

In each case, we consider data without (σ2 = 0) and with (σ2 = 0.25) measurement error.

The scores ρi,m are independent samples from N(0, νm) for eigenvalues with exponential
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3.4. Simulation

(νexpm = exp(−(m + 1)/2)) or linear (ν linm = (M + 1−m) /M) decrease, while the choice of

T ,M and ψm varies between settings (see Sections 3.4.1 and 3.4.2). In all cases, we use unit

weights (wj = 1). The accuracy of the resulting estimates ν̂m and ψ̂m is measured by the rel-

ative errors Err(ν̂m) = (νm − ν̂m)2 /ν2
m and Err(ψ̂m) =

∣∣∣∣∣∣∣∣∣ψm − ψ̂m∣∣∣∣∣∣∣∣∣2. As functional principal

components are defined only up to a sign change, the estimate ψ̂m is reflected, i.e. multiplied

by−1, if 〈〈ψm, ψ̂m〉〉 < 0. The goodness of the reconstructed observations x̂i = ∑M
m=1 ρ̂i,mψ̂

(j)
m

is evaluated by the mean relative squared error MRSE = N−1∑N
i=1

(
|||xi − x̂i|||2/|||xi|||2

)
.

3.4.1. Multivariate Functional Data on One-Dimensional Domains

Setting 1: For the first setting, the first M = 8 Fourier basis functions on [0, 2] are split

into p = 2 parts. The pieces are shifted and multiplied by a random sign to form the

elements ψ(1)
m and ψ(2)

m on T1 = T2 = [0, 1] (for technical details, see online appendix). The

observations xi are sampled on an equispaced grid of S1 = S2 = 100 sampling points. The

MFPCA is based on M1 = M2 = 8 univariate functional principal components that are

calculated by the PACE algorithm (Yao et al., 2005) with penalized splines to smooth the

covariance function, as implemented in the R package refund (Goldsmith, Scheipl, et al.,

2016). In this simple setting of a common, one-dimensional domain, the new approach

can be compared to the method of Ramsay and Silverman (2005), which is implemented

in the R package fda (Ramsay, Wickham, et al., 2014) and in the following denoted by

MFPCARS. This method involves presmoothing of the elements with K = 15 cubic spline

basis functions. MFPCARS computes score values ρ̂
(j)
i,m = 〈x(j)

i , ψ̂(j)
m 〉2 for each observation

i and each element j. Since they do not have the same interpretation as the scores in

the multivariate Karhunen-Loève representation (Prop. 4),
∑p
j=1 ρ̂

(j)
i,m = ρ̂i,m is used for

comparison purposes.

The results for the first setting are shown in Fig. 3.2 and Table 3.1. In total, the new

approach can compete very well with the existing method of Ramsay and Silverman and

gives nearly identical results for synthetic and real data (see online appendix for the gait

cycle example). Both techniques mostly have higher errors in ψm for linearly decreasing

eigenvalues, as in these cases, the eigenfunctions are more often confused, i.e. ψ̂m is an

estimate for e.g. ψm−1 or ψm+1 rather than for ψm. In the ideal case of no measurement

error, MFPCARS yields lower MRSE values than the new approach, which might be an

effect of MFPCARS expecting smooth or presmoothed data. For the practically relevant

case of data with measurement error, both methods give almost the same prediction errors

(cf. Table 3.1). Simulations based on Legendre polynomials gave very similar results (not

shown here).

Setting 2: Here we consider trivariate functional data on T1 = [−1,−0.5], T2 = [0, 1], T3 =
[1.5, 2]. The eigenfunctions are constructed according to the same scheme as in setting 1 by
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3. MFPCA for Data on Different (Dimensional) Domains

Table 3.1.: Average MRSE (in %) for simulation settings 1 and 2, depending on eigenvalue decrease

and measurement error.

σ2 = 0 σ2 = 0.25
Setting νexpm νlinm νexpm νlinm
1 MFPCA 0.006 0.009 0.740 0.355

1 MFPCARS < 10−3 < 10−3 0.720 0.338

2 Full Data 0.004 0.007 0.778 0.367

2 Medium Sparsity 0.164 0.146 2.070 1.102

2 High Sparsity 5.755 4.568 15.365 10.824

splitting the first M = 8 Fourier basis functions on [0, 2] into p = 3 parts, followed by a shift

and multiplication with a random sign. The observations are sampled on equidistant grids

with S1 = S3 = 50 and S2 = 100 sampling points. We consider the dense observations as

well as sparse variants with medium (50−70%) and high (90−95% missings) sparsity. The

sparsification mechanism is analogous to Yao et al. (2005) and applied to each observation

and each element separately. The MFPCA is calculated in the same way as in setting 1,

using the PACE approach to estimate M1 = M2 = M3 = 8 functional principal components

for each element. For data with high sparsity, we set M1 = M3 = 3 and M2 = 5 to make

computation of the univariate FPCA feasible.
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Figure 3.2.: Relative errors for estimated eigenvalues (left) and eigenfunctions (right, log-scale) for

simulation settings 1 and 2, depending on eigenvalue decrease, measurement error and estimation

method (setting 1) or sparsity (setting 2).
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3.4. Simulation

The results are given in Fig. 3.2 and Table 3.1. Here there is no available competitor.

The performance of our MFPCA for full data is very similar to the simpler case of setting

1. Even for a moderate level of sparsity, the new method yields excellent results for most

eigenvalues and eigenfunctions at the expense of somewhat higher reconstruction errors.

For very sparse data, the leading eigenvalues and eigenfunctions are still estimated well,

but the reconstruction error is considerably higher than for the full data. However, this

is still acceptable (average MRSE is lower than 16% for all levels of sparsity), bearing in

mind that data with high sparsity contains at most 10% of the original information. Again,

simulations based on Legendre polynomials gave very similar results (not shown here).

3.4.2. Multivariate Functional Data Consisting of Functions and

Images

Setting 3: Observations are generated based on M = 25 principal components, where

the image elements ψ(1)
m are formed by tensor products of Fourier basis functions on T1 =

[0, 1] × [0, 0.5] and ψ(2)
m are given by Legendre polynomials on T2 = [−1, 1]. The elements

are weighted by random factors α1/2 and (1 − α)1/2, respectively, with α ∈ (0.2, 0.8) to

ensure orthonormality. For the scores, only exponentially decreasing eigenvalues are used.

The observations are discretized using a grid of S1 = 100 × 50 equidistant points for the

image element and S2 = 200 equidistant points for the functions.

We consider the new MFPCA approach based on univariate FPCA as well as non-orthogonal

basis functions. In the first case, the eigendecomposition for the image data is calculated

with the FCP-TPA algorithm for regularized tensor decomposition (Allen, 2013). The

smoothing parameters for penalizing second differences in both image directions are cho-

sen via generalized cross-validation in [10−5, 105] (Allen, 2013; Huang, Shen, et al., 2009).

Multivariate FPCA is calculated based on M1 = 20 eigenimages and M2 = 15 univariate

eigenfunctions. In the case of general basis functions, image elements are expanded in tensor

products of K1 = 10×12 B-splines and the one-dimensional element is represented in terms

of K2 = 15 B-spline basis functions. In the presence of measurement error the univariate

expansions are fit with appropriate smoothness penalties (Eilers and Marx, 1996).
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Figure 3.3.: Relative errors for estimated eigenvalues (left) and eigenfunctions (right, log-scale) for

simulation setting 3, depending on measurement error and univariate expansions.
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3. MFPCA for Data on Different (Dimensional) Domains

The overall results for the first M = 12 eigenvalue/eigenvector pairs are given in Fig. 3.3.

Compared to the settings with one-dimensional domains, the errors are slightly higher,

in particular for higher order eigenvalues and eigenfunctions. Exemplary results however,

show that even in this case, the new approach is still able to capture the important features

of the true eigenfunctions well (see online appendix). The results further show that the

general approach with spline basis functions performs mostly better than the pure MFPCA

approach. Moreover, the truncated Karhunen-Loève representation with M = 12 (true

M = 25) estimated eigenfunctions and scores gives an excellent reconstruction of the original

data. The average MRSE is 1.382%/0.398% (PCA/splines) for data without measurement

error and 2.233%/2.048% (PCA/splines) for data with measurement error.

3.5. Application – ADNI Study

In this section, the new method is applied to data from the Alzheimer’s Disease Neuroimag-

ing Initiative study (ADNI), which aims at identifying biomarkers for accurate diagnosis

of Alzheimer’s disease (AD) in an early stage (Mueller et al., 2005). We use MFPCA to

explore how longitudinal trajectories of a neuropsychological score (ADAS-Cog, a current

standard for monitoring AD progression) covary with FDG-PET scans at baseline. The

latter are used to assess the glucose metabolism in the brain, which is tightly coupled with

neuronal function. As the brain images might be predictive of subsequent cognitive decline,

common patterns between these two sources of information would be highly relevant.

Dataset: The dataset considered for MFPCA contains data from all N = 483 participants

enrolled in ADNI1, having an FDG-PET scan at baseline and at least three ADAS-Cog

measurements during follow-up. At baseline, 84 subjects were diagnosed with AD, 302
were suffering from mild cognitive impairment (MCI, in many cases an early stage of AD)

and 97 were cognitively healthy elderly controls. The ADAS-Cog trajectories constitute

the first element X(1), where high values indicate a high level of cognitive impairment. The

measurements contain missings, mostly in the second half of the study period and thus

are sparse. The second element X(2) is an axial slice of 93 × 117 pixels (139.5 × 175.5

mm2) of FDG-PET scans, containing the Precuneus and temporo-parietal regions. Both

are believed to show a strong relation between hypometabolism (reduced brain function)

and AD (Blennow et al., 2006). Exemplary data is shown in Fig. 3.4.

Weighted scalar product: As the ADAS-Cog trajectories and FDG-PET scans differ

considerably in domain, range and variation (cf. Fig. 3.4), we use a weighted MFPCA

with

wj =
(∫
Tj
Ĉjj(tj, tj)dtj

)−1

=
(∫
Tj

V̂ar
(
X(j)(tj)

)
dtj
)−1

, j = 1, 2,
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Figure 3.4.: Left: ADAS-Cog trajectories for all N = 483 subjects. Numbers above the x-axis

give the total number of measurements for each visit. Right: FDG-PET scans for three randomly

chosen male subjects (left to right: AD, MCI, normal; diagnosis at baseline).

where Ĉjj is estimated from the data. Using these weights, the integrated variance equals

1 for the rescaled elements X̃(j) = w
1/2
j X(j). All elements thus contribute equal amounts of

variation to the analysis, similarly to multivariate PCA, where the data is usually standard-

ized before the analysis. We believe that this a sensible choice for many applications, but

there may of course be situations, in which other weighting schemes may be preferable. For

example, one could think of data that has two image elements, representing brain regions

of different size for the same imaging modality. Here variability is naturally on the same

scale and it might be better to keep the information of the site of the individual domains

by setting both weights to one. On the other hand, if the images stem from different imag-

ing modalities on the same domain, it might be necessary to correct solely for differences

in variation. As a general rule, the weights should be chosen in close coordination with

practitioners, considering the objective of the analysis and the data at hand.

Results: The results for the first two multivariate functional principal components,

that account for 80.7% of the total weighted variance, are shown in Fig. 3.5. For the

univariate expansions, we use FPCA for X(1) with M1 = 3 principal components (explaining

99.2% of the univariate variance) and 20× 15 tensor product B-splines for the images X(2).

Fig. 3.5 further includes pointwise bootstrap confidence bands for the principal components

based on 100 nonparametric bootstrap iterations on the level of subjects. The coverage of

such confidence bands for data consisting of functions and images has been analyzed in

a simulation study, which gave good results, even in the presence of measurement error

(see online appendix). The entire analysis for the ADNI data took around 15 minutes

on a standard laptop (2.7 GHz, 16 GB RAM) including the calculation of the bootstrap

confidence bands and without parallelization.

Almost half of the variability in the data (46.7% of the weighted variance) is explained by

the first functional principal component. The ADAS-Cog element – and hence the degree

of cognitive impairment – is elevated relative to the mean and increases during follow-

up. The FDG-PET element exhibits hypometabolism in the Precuneus and the temporo-

parietal regions, i.e. this component reflects reduced brain activity in these regions already
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3. MFPCA for Data on Different (Dimensional) Domains

at baseline. In total, the first eigenfunction seems to be interpretable as an AD related

effect, as the pattern for positive scores perfectly agrees with medical knowledge about AD

progression. This interpretation is supported by the estimated scores, which are mainly

positive for people diagnosed with AD by their last visit, while scores of subjects who

remained cognitively normal during follow-up are nearly all negative. Persons with MCI

have intermediate score values, which is in line with the hypothesis that this diagnosis can

constitute a transitional phase between normal ageing and AD.

For the second functional principal component (explains 33.9% of weighted variance), the

ADAS-Cog element is nearly constant and has wide bootstrap confidence bands that include

zero during the whole follow-up. In contrast, the FDG-PET element differs significantly

from zero in almost all voxels (cf. Fig. 3.5). Hence, this principal component reflects

variation in the FDG-PET scans at baseline. Plotting the overall mean plus or minus this

component suggests that it can be interpreted as an effect of imperfect registration that

manifests in different brain sizes, which are known to correlate with gender (Ruigrok et al.,

2014). This hypothesis is supported by the boxplots of the estimated scores in Fig. 3.5,

while scores do not differ notably by diagnosis (not shown here).

Discussion: The results show that MFPCA is able to capture important sources of

variation in the data that have a meaningful interpretation from a medical and neuroimaging

point of view. An important issue not addressed here is that for ADAS-Cog, there may

well be an informative dropout of patients with high score values (cf. Fig. 3.4). While

addressing informative missingness goes beyond the scope of this paper, interpretation of

results should take this possibility into account. For instance, it is easily conceivable that

ψ̂
(1)
1 may be underestimating ψ

(1)
1 towards the end of the study period.

3.6. Discussion and Outlook

This paper introduces methodology and a practical estimation algorithm for multivariate

functional principal component analysis. While other methods for MFPCA are restricted to

observations on a common, one-dimensional interval, the new approach is suitable for data

on different domains, which may also differ in dimension, such as functions and images.

The key results are 1. a Karhunen-Loève Theorem, that establishes the theoretical basis

for MFPCA (Prop. 4), 2. an explicit relation between multivariate and univariate FPCA,

which serves as a starting point for the estimation (Prop. 5) and 3. asymptotic results for

the estimators (Prop. 6 and 7). The estimation algorithm can be extended to expansions of

the univariate elements in not necessarily orthonormal bases. This allows to flexibly choose

an appropriate basis for each element depending on the data structure, in particular also

mixtures of univariate FPCA and general bases. The algorithm is applicable to sparse data

or data with measurement error, as well as to images. Notably, the proposed method can
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Figure 3.5.: The first two estimated multivariate functional principal components for the ADNI

data (1st row: ψ̂1, 2nd row: ψ̂2). Estimates are given with pointwise 95% and 90% bootstrap con-

fidence bands based on 100 nonparametric bootstrap iterations (ADAS-Cog, 1st column: Dashed

lines; FDG-PET, 2nd and 3rd column: Pixels with pointwise 95% (left) and 90% (right) confidence

bands not including zero in color). Boxplots of the scores (4th column) support the interpretation.

be used to calculate smooth univariate functional principal components for data on higher

dimensional domains and is hence an alternative to existing methods for tensor PCA (Allen,

2013). The results of MFPCA give insights into simultaneous variation within the data and

provide a natural tool for dimension reduction. Moreover, they can be used as a building

block for further statistical analyses such as functional clustering methods or functional

principal component regression with multiple covariates (cf. Müller and Stadtmüller, 2005,

for the univariate case). If the elements differ in domain, range or variation, the new method

can incorporate weights, which should be chosen with respect to the question of interest

and the data at hand.

Possible extensions of the approach include normalization methods as an alternative to

the weighted scalar product, following the ideas in Jacques and Preda (2014) or Chiou,

Yang, et al. (2014) for functions observed on a common interval. However, one should

take into account that the domains may have different dimensions and sizes. The concept

of MFPCA could further be extended to hybrid data, i.e. data consisting of a functional

and a vector part (Ramsay and Silverman, 2005, Chapter 10.3.). A natural starting point

would be to extend the scalar product suggested by Ramsay and Silverman (2005) in this

context to multivariate functional data as proposed in Prop. 1. However, transferring

the results for MFPCA shown in this paper requires a careful revision of the concept of

the covariance operator and related proofs. Finally, one could think of estimating the

multivariate covariance operator directly without computing a univariate decomposition
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3. MFPCA for Data on Different (Dimensional) Domains

for each element. This operator is typically high-dimensional, making smoothing as well as

an eigendecomposition hardly feasible, which is avoided in our two-step approach.
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4. Application

4.1. Introduction

In Chapter 3, multivariate functional principal component analysis was introduced for mul-

tivariate functional data on different dimensional domains. In the application to the ADNI

data in Section 3.5 it was shown that MFPCA can give valuable insights into the joint

variation of ADAS-Cog trajectories and FDG-PET scans, finding patterns that are known

to be related to early signs of Alzheimer’s disease (AD). In this chapter, the analysis of the

ADNI data is deepened and extended by several aspects.

First of all, the full FDG-PET scans are considered for each subject, which means that

the amount of data considerably increases from 2D images with 93× 117 ≈ 1.1 · 104 pixels

to 3D images with 121 × 145 × 121 ≈ 2.1 · 106 voxels per subject. This is primarily a

computational challenge, as the data can hardly be analyzed with standard computers

(the raw data already requires 11 GB of memory). Moreover, a spline interpolation as in

Section 3.5 would become computationally very demanding. For this reason, it is replaced by

a discrete cosine transformation, for which fast and efficient algorithms have been developed

(Frigo and Johnson, 2005). The second principal component found in Chapter 3 further

suggests that there is a non negligible effect of imperfect registration in the images. In

order to remove this effect, the images have been registered before this analysis, using MRI

(magnetic resonance imaging) scans at baseline. We use data from the ADNI2 study only,

as here MRI T1 scans with a field strength of 3 Tesla are available for all subjects.

Second, the ADAS-Cog scores in the previous chapter were assumed to be measured at

regular intervals. This of course is a simplifying assumption, as one can expect a that the

exact dates can deviate from the schedule of visits by some days or weeks. To this end, we

consider ADAS-Cog at the exact visit dates for the analysis in this chapter. This does not

only add more information, but may also help to stabilize the univariate FPCA (Yao et al.,

2005).

In order to account for potentially confounding factors, both ADAS-Cog and FDG-PET

were adjusted for age, gender and years of education in this analysis.

The resulting MFPCA is in line with the results in the previous chapter. For the first

functional principal component, we find again an overall positive and increasing ADAS-

Cog element, associated with an FDG-PET element showing negative values, particularly

in the precuneus and lateral temporo-parietal regions. This is indicative of reduced global

cognition with respect to the overall mean, becoming worse during follow-up, associated

with below-average tracer uptake and thus hypometabolism in the affected brain areas

at baseline. The second principal component does not show a registration effect as in

Chapter 3. This demonstrates that registrations and adjustments for confounding factors

were successful.
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4.2. Methods

Another central aim of the analysis in this chapter is to use MFPCA for the long-term

prediction of ADAS-Cog. For subjects whose data has been used for the calculation of the

MFPCA (in-sample), the trajectories can easily be reconstructed based on the multivariate

Karhunen-Loève theorem proven in the previous chapter. As scores with very high absolute

values can yield reconstructions that exceed the natural range of ADAS-Cog (0 – 70), we

propose to transform the data before the analysis and retransform the predictions back to

the original scale. The reconstructed trajectories span the full study period of around 5.5
years, even if subjects have been measured only in the first one or two years after baseline.

For the prediction of ADAS-Cog for new subjects, a simple projection on the multivariate

functional principal components is not applicable due to the sparse nature of the ADAS-Cog

measurements. Instead, it is shown how individual scores can be calculated for each princi-

pal component, following the steps of the MFPCA algorithm on the basis of given MFPCA

results combined with data from the new subject. Once the scores are given, predicted

ADAS-Cog trajectories can be calculated as for the in-sample case. This new method is

applied for calculating predicted ADAS-Cog trajectories for subjects with preclinical AD

(HC-Aβ+) based on the MFPCA results for subjects with prodromal AD (MCI-Aβ+).

Here also, a transformation of the data ensures that the predictions stay within the scale

of ADAS-Cog.

The chapter is structured as follows: In Section 4.2 we describe the study design and the

methods used in the analysis. An overview of all steps is given in Fig. 4.1. The results

of the analysis are presented in Section 4.3. The chapter concludes with a summary and

a discussion of the results in Section 4.4. Supplementary plots are given in the appendix

(Appendix B).

4.2. Methods

4.2.1. Study Design

Subjects

We included 754 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

(Weiner et al., 2015). The inclusion criteria for this study were: FDG-PET, AV45-PET,

MRI T1 and cognitive assessments (summary score the Alzheimer’s Disease Assessment

Scale – Cognitive Subscale (ADAS-Cog)) available at baseline and at least two addi-

tional cognitive assessments at later visits. The subjects were diagnosed at baseline as

healthy controls (HC), mild cognitive impairment (MCI) and subjects with Dementia due

to Alzheimer’s Disease (AD) as per Petersen et al. (2010).
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FDG-PET Scans at Baseline
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Figure 4.1.: Schematic overview of the full analysis. If a reconstruction/prediction was calcu-

lated, the ADAS-Cog trajectories have been transformed before the analysis (∗) and the recon-

structed/predicted values have been transformed back to the original scale (∗∗).

Amyloid-β Status

AV45-PET scans were obtained 50 minutes after injection of 10±1.0 mCi of [18F]-Florbetapir

and consisted of four 300 s frames. All frames were averaged and attenuation-corrected and

the resulting images were transformed to standard orientation, resolution and voxel-size.

The ADNI PET Core at the University of Pittsburgh performed the image preprocessing

and SUVR quantification (Jagust et al., 2010). All the details, ROIs and procedures can

be found at the ADNI website (http://adni.loni.usc.edu/data-samples/pet).

Based on the global SUVR, we dichotomized the subjects into those with normal and

abnormal levels of brain Aβ (Aβ− and Aβ+ respectively) using a cutoff value of 1.11
(Landau, Breault, et al., 2013). In order to exclude subjects potentially misdiagnosed

with AD or with mixed dementias (Landau, Horng, et al., 2016; Chételat et al., 2016), we

excluded 13 AD-Aβ− subjects from all analyses, resulting in a final sample of 741.
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FDG-PET Acquisition

FDG-PET scans were obtained 30 minutes after injection of 5 ± 0.5 mCi of [18F]-Fluoro-

deoxyglucose and consisted of six 300 s frames. All frames were averaged and attenuation-

corrected and the resulting images were transformed to standard orientation, resolu-

tion and voxel-size. As with AV45-PET, all these steps were performed by the ADNI

PET Core and the scans used in this study were downloaded from the ADNI database

(https://ida.loni.usc.edu/) with these basic preprocessing steps already performed (Jagust

et al., 2010).

4.2.2. Preprocessing

FDG-PET Processing

The downloaded FDG-PET scans were normalized to standard MNI space with a pipeline

described previously (Araque Caballero et al., 2015). Briefly, nonlinear normalization pa-

rameters were estimated on the basis of the T1 scans using high-dimensional diffeomorphic

transformations from the DARTEL toolbox of SPM12 (Ashburner, 2007). To adjust the

FDG-PET uptake to the same scale across subjects, the voxel SUVR values for each MNI-

normalized image were divided with the average SUVR within the pons and vermis. These

MNI-normalized, pons-and-vermis scaled FDG-PET scans were the input to our analysis.

Adjustment for Confounding Variables

The ADAS-Cog scores were adjusted for the effect of potentially confounding variables (age,

gender, years of education) based on the HC group. We used the following generalized

additive model (GAM) (Hastie and Tibshirani, 1986; Wood, 2006)

ADASCogij = α + fTime (tij) + γi + βGender1Male (Genderi) + βEDUEDUi

+ fAge;m

(
Ageij

)
1Male (Genderi) + fAge;f

(
Ageij

)
1Female (Genderi) + εij

with ADASCogij the ADAS-Cog value and tij the years since baseline of the i-th subject

at the j-th visit (other variables analogously) and EDU as years of education. Although

the follow-up visits are scheduled at regular intervals, we use the exact visit dates for tij,

in order to account for deviations from the schedule of visits and to stabilize the following

principal component analysis (Yao et al., 2005). Time and age are modeled with a smooth

effect, with age being gender-specific. An analogous model having a smooth effect for EDU

resulted in a nearly linear function, showing that a linear approach is sufficient for capturing

the effect of EDU in this context. The estimated smooth coefficient functions are shown in
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Fig. B.2 in the appendix. The estimates ̂ADASCogij based on the HC group were then used

for all subjects to predict residuals ε̂ij = ADASCogij − ̂ADASCogij and calculate adjusted

values

ADASCogadj
ij = α̂ + f̂Time (tij) + β̂Gender + β̂EDUEDUref + f̂Age;m

(
Ageref,0 + tij

)
+ ε̂ij

with the reference subject being male, Ageref,0 = 72.4 (the median age at baseline) and

EDUref = 16 (the median years of education). Examples for adjusted trajectories are

shown in Fig. B.1 in the appendix.

The preprocessed FDG-PET scans were adjusted for age, gender and EDU based on the

HC group, similarly to the adjustment procedure applied to the ADAS-Cog trajectories.

The following linear regression model was fit separately for each voxel based on the HC

group

PETiν = αν + βGender,ν1Male (Genderi) + βAge,νAgei0 + βEDU,νEDUi

+ βGender;Age,νAgei01Male (Genderi) + εiν

with PETiν the FDG-PET value of subject i in voxel ν. The main difference between the

models for ADAS-Cog and for FDG-PET is that only data from baseline has been considered

(no time variable) and that the model includes only linear effects for all variables. Tests

with nonlinear effects resulted in nearly linear effects in all cases. Based on the estimates

found in the HC group, the adjustment for age, gender and EDU in all subjects was

PETadj
iν = α̂ν + β̂Gender,ν + β̂Age,νAgeref,0 + β̂EDU,νEDUref + β̂Gender;Age,νAgeref,0 + ε̂iν .

4.2.3. Multivariate Functional Principal Component Analysis

Introduction to MFPCA

Multivariate functional principal component analysis (MFPCA, Happ and Greven, 2017+)

allows to calculate a principal component analysis for multivariate functional data with

potentially different dimensional domains. The term “functional data” (Ramsay and Sil-

verman, 2005) in this context means that the values of FDG-PET can be interpreted as

discrete evaluations of a (smooth) function on a three-dimensional space (i.e. the brain),

and similarly the repeatedly sampled ADAS-Cog scores can be described as a smooth func-

tion over time for each subject. Combining both modalities, the ADAS-Cog trajectories

and the FDG-PET scans, results in a bivariate functional data set. As for the usual prin-

cipal component analysis (PCA), the main aim of MFPCA is to find the most important

modes of variation in the data. The advantage of MFPCA over the usual PCA, however,

is two-fold: First, considering the data as functions takes the spatial (for FDG-PET) and
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temporal (for ADAS-Cog) structure of the data into account. Second, it allows to consider

potential covariation between the modalities. This is achieved by expanding each modality

separately in a (univariate) basis and combining the information of the individual coeffi-

cients for each modality for the calculation of multivariate functional principal components.

The principal components found by the MFPCA method have the same structure as the

data, i.e. each principal component consists of an ADAS-Cog element and an FDG-PET

element. Subject-specific principal component scores can be derived for each component,

which are to be interpreted as weights for a particular principal component in representing

the data of a particular subject. For technical details see Happ and Greven (2017+).

Whole Sample MFPCA

In a first analysis, MFPCA was calculated for the whole sample (N = 741), including

subjects with AD, MCI and HC. The aim was to estimate joint patterns of baseline FDG-

PET and cognitive decline across a wide clinical spectrum of AD. In particular, we assessed

the ability of the individual MFPCA scores to differentiate between diagnostic groups.

Moreover, the accuracy of the reconstructed ADAS-Cog trajectories was quantified. In

order to ensure that the reconstructions stay within the total range of ADAS-Cog (0 – 70),

the MFPCA was rerun with transformed ADAS-Cog values (log
(

ADASCog
70−ADASCog

)
, where the

factor 70 transforms the ADAS-Cog scale to a 0 – 1 range) and the predicted trajectories

were transformed back to the original scale.

As a first step of the MFPCA, a univariate basis expansion was calculated for each element

(cf. Fig. 4.1). For ADAS-Cog, functional principal component analysis (FPCA, Yao et

al., 2005) was applied to the trajectories of the adjusted ADAS-Cog scores. The first two

principal components explained 97.7% of the variability in the data and were included in

the subsequent MFPCA. For the expansion of the FDG-PET elements, a 3D cosine basis

was used (Frigo and Johnson, 2005). As the signal here concentrates on a small proportion

of the cosine basis coefficients, they were thresholded according to their absolute values,

keeping only the most extreme 2.5% of the values and setting the remaining 97.5% of the

coefficients to zero. The resulting basis functions and individual coefficients for each subject

were subsequently fed into the MFPCA for combined analysis. In order to ensure that both

modalities contribute equal amounts of variation, the components were weighted by the

inverse of the integrated pointwise variance as proposed in Happ and Greven (2017+). For

ADAS-Cog, the weight was calculated based on the smooth variance estimate from the

univariate FPCA, while for FDG-PET the variance was calculated on the basis of voxels.

This resulted in weights wADAS = 3.64 · 10−3 for ADAS-Cog and wPET = 3.00 · 10−5 for the

FDG-PET. The MFPCA implementation in our R package MFPCA (Happ, 2017b) was used

for the analysis. After loading the data (the full uncompressed images require approximately

11 GB space), the full MFPCA took roughly ten minutes.
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Bootstrap Confidence Bands for Functional Principal Components

In order to quantify the estimation uncertainty in the MFPCA estimates, nonparametric

95% pointwise bootstrap confidence bands were calculated for the functional principal com-

ponents. The resampling was done on the level of subjects and in a stratified manner,

keeping the proportions of AD, MCI and healthy subjects at baseline constant over the 100

bootstrap iterations. The confidence bands were then calculated pointwise (for each time

point and each voxel separately) using the empirical 2.5% and 97.5% quantiles as lower and

upper bounds.

Reconstruction of ADAS-Cog Trajectories

The MFPCA results can be used to reconstruct ADAS-Cog trajectories based on the mul-

tivariate Karhunen-Loève representation (Happ and Greven, 2017+)

̂ADASCogi (t) = µ̂ADAS (t) +
M∑
m=1

ρ̂i,mψ̂
ADAS
m (t) , t = time since baseline. (4.1)

Here ̂ADASCogi denotes the reconstructed trajectory for subject i, ψ̂ADAS
m is the estimated

ADAS-Cog element of them-th principal component (we useM = 5 for reconstruction), ρ̂i,m
the associated subject-specific score and µ̂ADAS is the smoothed mean ADAS-Cog trajectory,

which is calculated during the MFPCA.

The accuracy of the reconstruction was measured by the root mean of squared differences

between corrected and predicted ADAS-Cog values for each individual (root mean squared

error, RMSE):

RMSEi =

√√√√√ 1
Ni

Ni∑
j=1

(
ADASCogij − ̂ADASCog(tij)

)2
, i = 1, . . . , N

with Ni the number of visits for subject i.

4.2.4. Out-of-Sample Prediction of ADAS-Cog Trajectories

From a clinical point of view, it would be particularly attractive if MFPCA results showed

utility for predicting potential long-term cognitive decline in the preclinical phase of AD

(HC-Aβ+). To this end, MFPCA was calculated within the MCI-Aβ+ subgroup only

(training group) in order to yield an independent estimate of MFPCA for subsequent pre-

diction for HC Aβ+ (test group). We chose MCI-Aβ+ as the training data set since AD

related changes in FDG-PET are usually well present without severe global brain damage

as observed in the AD dementia stage (Araque Caballero et al., 2015).
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Calculating Predictions

We propose to calculate out-of-sample predictions in analogy to the reconstruction in (4.1).

The key is hence to find good estimates ρ∗m based on the MFPCA results and the data

available for a new subject. We suggest to calculate the scores in analogy to the MFPCA

algorithm (see Fig. 4.1). In a first step, the new data is demeaned by the in-sample means

µ̂ADAS and µ̂PET and projected separately onto the univariate bases used for MFPCA. This

results in univariate functional principal component scores for ADAS-Cog and thresholded

cosine basis coefficients for FDG-PET. These univariate component scores are used together

with the MFPCA results to calculate multivariate scores ρ∗m for m = 1, . . . ,M , according

to the formula in Happ and Greven (2017+)

ρ∗m = ν̂1/2
m

(
ĉ>mQ̂wĉm

)−1/2
θ∗Dĉm.

Here θ∗ denotes the vector of univariate functional principal component scores for ADAS-

Cog and the thresholded cosine basis coefficients for FDG-PET for a new subject. All other

quantities stem from the original MFPCA: ν̂m is the eigenvalue associated with the m-th

principal component, ĉm is the m-th eigenvector of the matrix Q̂w = (N−1)−1DΘ>ΘD with

N being the number of subjects in the sample for which the MFPCA was calculated, D a

diagonal matrix of the weights w
1/2
ADAS and w

1/2
PET, each repeated according to the number of

univariate basis functions used. The matrix Θ contains the analogues of θ∗ for the original

sample in a row-wise manner.

Out-of-sample Predictions of ADAS-Cog in HC-Aβ+

In order to predict the ADAS-Cog trajectories of HC-Aβ+ over several years, we use the

baseline FDG-PET scans and the ADAS-Cog values at baseline and in the first year of

follow-up. This choice ensures that two univariate principal component scores can be

obtained for ADAS-Cog and all HC-Aβ+ subjects, which are needed for the subsequent

calculation of the multivariate scores that form the basis of the prediction.

As for the in-sample prediction, the ADAS-Cog values for both MCI-Aβ+ and HC-Aβ+
were transformed by the logit before the analysis and the final predictions of ADAS-Cog

for HC-Aβ+ were retransformed to the original scale. Note that this transformation affects

the interpretation of the principal components and scores obtained for MCI-Aβ+, which,

however, is not crucial for prediction. The prediction accuracy was measured via RMSE.
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4.3. Results

4.3.1. Subject Characteristics

Subject characteristics are presented in Table 4.1 for the full sample and for the HC-Aβ+
and MCI-Aβ+ groups separately. HC-Aβ+ had a higher proportion of females (χ2 =
13.05 ∼ χ2

1, p < 0.001) than MCI-Aβ+ subjects. As expected, ADAS-Cog values at

baseline for HC-Aβ+ were lower than for MCI-Aβ+ (t = 10.65 ∼ t213.7, p < 0.001). Mean

follow-up time was 2.92 years (Range 0.85 – 5.47).

Table 4.1.: Subject characteristics at baseline

Full Dataset MCI-Aβ+ HC-Aβ+

No. Subjects 741 230 73

Age – mean (SD) 72.4 (7.09) 72.87 (6.71) 74.12 (5.72)

Range 55 – 91.4 55 – 87.8 59.7 – 84.8

Gender – F/M (% of females) 356 / 385 (48%) 106 / 124 (46%) 52 / 21 (71%)∗

Years of education – mean (SD) 16.25 (2.64) 16.01 (2.8) 16.01 (2.65)

Range 8 – 20 9 – 20 8 – 20

Diagnosis (baseline) 85 (AD) 418 (MCI) 238 (HC) - -

ADAS-Cog – mean (SD) 9.34 (5.99) 10.47 (4.68) 5.77 (2.7)∗

Range 0 – 38 2 – 27 1 – 15

∗ p < 0.001 (MCI-Aβ+ vs. HC-Aβ+) Abb.: SD = Standard Deviation, F = Female, M = Male

4.3.2. Whole Sample MFPCA

MFPCA Component Overview

In total, five principal components were calculated. The first two components, which ex-

plained 97.1% of the variability in the data, are shown in Fig. 4.2. The first principal

component explains most of the variability (93.9%). Its ADAS-Cog element has positive

values for the whole study period and is increasing over time, with a change in slope af-

ter around two years since baseline. Positive score values thus represent a trajectory of

cognitive decline typical of AD. The 95% pointwise bootstrap confidence bands show that

the first principal component differs significantly from zero throughout the trajectory. The

FDG-PET element of the first principal component shows negative values in all voxels,

indicative of below-average tracer uptake. The lowest values of the element are distributed
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Figure 4.2.: The first two principal components for the whole sample MFPCA. Left: ADAS-Cog

element for each component (solid lines), along with the bootstrapped 95% CIs of the estimate

(dotted lines). The gray vertical line marks zero. Right: FDG-PET element of each of the two

components projected on to the brain surface. The FDG-PET elements are masked such that

any voxels having zero within the voxelwise bootstrapped 95% CIs were excluded, but only voxels

outside the brain were non-significant.

within the precuneus and lateral temporo-parietal regions, which is consistent with the pat-

tern of hypometabolism typically found in AD (La Joie et al., 2012). Virtually all of the

voxels in the brain had bootstrapped 95% CIs excluding zero, indicating that they differ

significantly from zero.

The second principal component explains 3.2% of the variability in the data. The ADAS-

Cog element starts at a negative value and increases over time, becoming positive at about

3.5 years after baseline. Positive score values thus indicate that a subject starts with rel-

atively benign ADAS-Cog values (i.e. above-average cognition) and progressively worsens.

The confidence band includes zero except for two short periods at the beginning of the

study and starting from four years after baseline, which means that the ADAS-Cog element
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does not differ significantly from zero during most of the study. The FDG-PET element of

the second principal component shows overall positive values, indicative of above-average

tracer uptake. All the voxels in the brain had bootstrapped 95% CIs excluding zero, where

the highest voxel values are found in the precuneus, lateral temporo-parietal and lateral

frontal regions. That is, the FDG-PET element of the second component is representative

of relatively well-preserved FDG-PET uptake in core AD regions.

Group Differences in MFPCA Scores
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Figure 4.3.: MFPCA score values for the first principal component in the whole sample MFPCA

depending on diagnostic groups. The gray horizontal line marks zero. An analogous plot for the

scores of the second principal component is shown in the appendix in Fig. B.3.

The scores of the first principal component are shown in Fig. 4.3 depending on the diagnostic

groups (one extreme value was removed from the plot). An analogous plot for the scores of

the second principal component are shown in Fig. B.3 in the appendix.

The scores of the first principal component are mostly positive for the AD-Aβ+ group and

partly also for MCI-Aβ+, which is consistent with the pattern of ADAS-Cog and reduced

FDG-PET uptake associated with this component. The scores of the second principal

component are mostly negative in the AD-Aβ+ group. The highest positive score values

were found for healthy controls (HC-Aβ+ and HC-Aβ−), suggesting a slower increase in

ADAS-Cog values and higher FDG-PET uptake present in the HC groups compared to the

overall average.

Group-wise t-tests showed significant differences in the scores of AD-Aβ+ and MCI-Aβ+
compared to HC-Aβ− for both principal components (p < 0.001 after Bonferroni adjust-

ment). The scores were not dependent on gender or years of education, which reflects that
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both the ADAS-Cog trajectories and the FDG-PET scans have been corrected for these

confounders.

Fig. 4.4 shows the ADAS-Cog trajectories depending on the score value associated with the

first principal component. An analogous plot for the second principal component is given

in the appendix in Fig. B.4. The first component distinguishes quite well between subjects

with constant trajectories and low ADAS-Cog values (negative score values) and trajectories

with an increasing trend (positive score values). Notably, trajectories that decrease towards

the last visit mainly also have negative scores.

AD−Aβ+ MCI−Aβ+ HC−Aβ+ MCI−Aβ− HC−Aβ−
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Figure 4.4.: Corrected ADAS-Cog trajectories by diagnostic group. The colors of the lines cor-

respond to the score values for the first principal component in the whole sample MFPCA. For

reasons of clarity, the 1% subjects having the highest and lowest score values, each, have been

removed from the plot. The gray curve marks the smooth overall mean. An analogous plot for

the scores of the second principal component is shown in the appendix in Fig. B.4.

In-sample Reconstruction of ADAS-Cog

Based on the estimated principal components for the MFPCA with transformed ADAS-

Cog trajectories and the resulting individual score values, ADAS-Cog trajectories were

reconstructed for each subject (see Fig. B.5 in the appendix). Overall, the reconstructed

trajectories fit the observed ones quite well, with an average predictive accuracy of RMSE

= 1.56 (standard dev. 1.11), meaning that the average deviation between the reconstructed

and the original ADAS-Cog values per subject is 1.56 units on the ADAS-Cog scale. For

subjects with a high variability in the score values over time, the predicted trajectories cor-

respond to a global smooth trend of the observed values. Boxplots of the RMSE depending

on the diagnostic group are shown in Fig. 4.5.

4.3.3. Out-of-Sample Predictions of ADAS-Cog in HC-Aβ+

In the first step, the MFPCA was calculated in the MCI-Aβ+ group based on the baseline

FDG-PET and the transformed ADAS-Cog trajectories. The results were used to calculate
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Figure 4.5.: Goodness of fit in the whole sample MFPCA: The boxplots show the root mean

squared error (RMSE) depending on the diagnostic groups.

individual predictions of ADAS-Cog for HC-Aβ+ based on the observed FDG-PET scans

of this group together with a minimal follow-up of 1.3 years for ADAS-Cog. Examples for

the predictions are shown in Fig. B.6 in the appendix.

The prediction of the ADAS-Cog trajectories for HC-Aβ+ in the first year of baseline, i.e.

reconstruction of the trajectory within the interval used for calculating the predictions,

gives very good results, similar to the in-sample prediction for the full dataset. The average

predictive accuracy in the first study period was 0.76 (standard dev.: 0.51). The prediction

of ADAS-Cog in the second study period poses a much greater challenge. In this second

period, the mean RMSE was 5.24 (standard dev.: 6.71). Here, the best and intermediate

predictions in terms of RMSE were obtained for subjects where the additional measurements

are consistent with the trend of data in the first year since baseline. Subjects with the worst

predictions are seen to have a higher variation and structural breaks in ADAS-Cog between

the two periods, which makes it harder to predict them.

4.4. Discussion

4.4.1. Whole Sample MFPCA

The whole sample MFPCA shows that the method is able to give interpretable results that

agree with medical knowledge. The results are in line with those of Section 3.5 in the previ-

ous chapter. The first principal component, which explains by far the most of the variance

in the data (93.7%), can be interpreted as an AD related effect. It shows reduced global
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cognition with respect to the global average, which becomes worse during the study, associ-

ated with below-average tracer uptake in the precuneus and lateral temporo-parietal brain

regions at baseline. The resulting scores showed a significant difference between healthy

controls (HC-Aβ−) compared to MCI-Aβ+ and AD-Aβ+. The in-sample reconstructions

resulted in an average RMSE of 1.56, meaning that the data can be precisely reconstructed

using the MFPCA results. For the calculation of the reconstructions, MFPCA was rerun

with transformed data, retransforming the results back to the original scale. While this

ensures that the reconstructed trajectories stay within the possible range of ADAS-Cog (0

– 70), the principal components and scores from the transformed data are less interpretable,

which, however, is not crucial if one aims only at the reconstruction.

4.4.2. Out-of-Sample Prediction

The newly developed method for calculating principal component scores for out-of-sample

prediction of ADAS-Cog was applied to HC-Aβ+ using MCI-Aβ+ as the reference group.

Based on the MFPCA results for MCI-Aβ+ combined with the observed FDG-PET scans

at baseline and a short follow-up of ADAS-Cog of 1.3 years for HC-Aβ+, we obtained scores

for all HC-Aβ+ subjects. Predictions were then calculated on the basis of these scores. The

results show that while the reconstruction of the observed ADAS-Cog values in the first 1.3

years since follow-up gave excellent results with an average RMSE of 0.75, the prediction

of the second study period from 1.3 years since baseline until the end of the study poses a

much greater challenge. Here the average RMSE was 5.24.

4.4.3. Strengths and Limitations

MFPCA is a new method that allows to model temporal profiles and images together

by taking covariation between these quite different types of data into account. Up to

now, methods for MFPCA were restricted to multivariate functional data on a common

one-dimensional domain and therefore not applicable to images. By contrast, our newly

proposed and theoretically founded method can include 2D and even 3D images, as in this

analysis, in a very flexible way. In particular, this means that the images enter the analysis

as a whole and not in a pixelwise manner. The results give insights into the joint variation of

ADAS-Cog over time and FDG-PET at baseline. An open source software implementation is

available that allows an efficient calculation of the MFPCA and convenient utility functions

to handle the data and display the results.

A limitation is that images up to now have to be defined as rectangles or cubes. For FDG-

PET this means that the data has many zero values outside the brain that increase the

memory load and the computation time. Moreover, the cosine basis expansion used in the
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analysis can lead to artifacts, producing non-zero principal component values outside the

brain area. The results of the analysis, however, indicate that this has only marginal influ-

ence on the estimates, while the FDG-PET element of the leading two principal components

was significantly different from zero in nearly all pixels within the brain. Another point

is that the algorithm used for the calculation of the scores in the out-of-sample prediction

requires at least two observations of ADAS-Cog for each subject, as the data is projected on

the univariate bases, which consists of the leading two principal components in the case of

ADAS-Cog. For this reason, a minimum of three visits was required as one of the inclusion

criteria. This means that the sample might not be completely representative, if subjects

with less than three visits differ systematically from the rest. A calculation of the scores

based on a mixed-models approach along the lines of the PACE approach proposed by Yao

et al. (2005) did not give satisfactory results (not shown here). Future research might aim at

a direct prediction method that can use e.g. only FDG-PET and ADAS-Cog at baseline.

In addition, the prediction based on the Karhunen-Loève Theorem does not allow for extra-

polation in the sense that the maximal time frame for the prediction of ADAS-Cog values

is the maximal follow-up time to which subjects have been observed. For the data used

in this analysis, this means that one can calculate predictions until roughly 5.5 years af-

ter baseline. Given that the average follow-up in the data set is 2.92 years, this means

that a reconstructed trajectory can be used for the prediction of ADAS-Cog from the last

measurement until the end of the study period, which is around 2.5 years per subject on

average.

4.4.4. Conclusion

Overall, MFPCA is a valuable method for the combined analysis of ADAS-Cog trajectories

and FDG-PET scans that gives insights into patterns of joint variation. Moreover, it can be

used to calculate out-of-sample predictions of ADAS-Cog trajectories given the FDG-PET

scans at baseline together with a short follow-up of ADAS-Cog. The principal component

scores represent individual weights for each subject with respect to each principal component

and allow thus a very parsimonious representation of this complex kind of data. They might

for example be helpful for the early identification of subjects who have an increased risk of

converting from MCI to AD. In future research it might be interesting to investigate this

relationship.
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5. Object-Oriented Software for

Functional Data

This chapter is a reprint of:

C. Happ (2017). “Object-Oriented Software for Functional Data”. arXiv: 1707.02129

The article presents the following software packages:

C. Happ (2017a). funData: An S4 Class for Functional Data. R package version 1.1

C. Happ (2017b). MFPCA: Multivariate Functional Principal Component Analysis for

Data Observed on Different Dimensional Domains. R package version 1.1

Abstract:

This paper introduces the funData R package as an object-oriented implementation of

functional data. It implements a unified framework for dense univariate and multivariate

functional data on one- and higher dimensional domains as well as for irregularly sampled

functional data. The aim of this package is to provide a user-friendly, self-contained core

toolbox for functional data, including important functionalities for creating, accessing and

modifying functional data objects, that can serve as a basis for other packages. The package

further contains a full simulation toolbox, which is a useful feature when implementing and

testing new methodological developments.

Based on the theory of object-oriented data analysis, it is shown why it is natural to

implement functional data in an object-oriented manner. The classes and methods provided

by funData are illustrated in many examples using two freely available datasets. The

MFPCA package, which implements multivariate functional principal component analysis,

is presented as an example for an advanced methodological package that uses the funData

package as a basis, including a case study with real data. Both packages are publicly

available on GitHub and CRAN.
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5.1. Introduction

Functional data analysis is a branch of modern statistics that has seen a rapid growth in

recent years. The technical progress in many fields of application allows to collect data in

increasingly fine resolution, e.g. over time or space, such that the observed datapoints form

quasi-continuous, possibly noisy, samples of smooth functions and are thus called functional

data. One central aspect of functional data analysis is that the focus of the analysis is not

a single data point, but the entirety of all datapoints that are considered to stem from the

same curve. Researchers in functional data analysis have developed many new statistical

methods for the analysis of this type of data, linking the concept of functional data also

to related branches of statistics, such as the study of longitudinal data, which can be seen

as sparse and often also irregular samples of smooth functions, or image data, that can be

represented as functions on two-dimensional domains. New approaches focus on even more

generalized functional objects (next generation functional data analysis, Wang, Chiou, et

al., 2016).

When it comes to the practical application of new methods to real data, appropriate software

solutions are needed to represent functional data in an adequate manner and ideally in a

way that new theoretical developments can be implemented easily. The most widely used

R package for functional data is fda (Ramsay, Wickham, et al., 2014), which is related to

the popular textbook of Ramsay and Silverman (2005). There are many other R packages

for functional data that build on it, e.g. Funclustering (Soueidatt, 2014) or funFEM

(Bouveyron, 2015) or funHDDC (Bouveyron and Jacques, 2014) or provide interfaces to

fda, e.g. fda.usc (Febrero-Bande and Oviedo de la Fuente, 2012) or refund (Goldsmith,

Scheipl, et al., 2016). The fda package contains a class fd for representing dense functional

data on one-dimensional domains together with many functionalities for fd objects, such

as plotting or summaries. It implements a variety of functional data methods, for example

principal component analysis, regression models or registration. The fd objects represent

the data as a finite linear combination of given basis functions, such as splines or Fourier

bases, i.e. they store the basis functions and the individual coefficients for each curve.

This representation of course works best if the underlying function is smooth and can be

represented well in the chosen basis. Moreover, the data should be observed with only a

small degree of noise.

Alternatively to the basis function representation, the raw, observed data can be saved

directly. There are two different approaches for organizing the observations: Many packages

use matrices, that contain the data in a row-wise (e.g. fda.usc, refund) or column-wise (e.g.

rainbow, Shang and Hyndman (2016)) manner. This representation is most suitable for

rather densely sampled data, where missing values can be coded via NA, which is supported

by most of the packages. When it comes to irregular data, this way of storing functional data

becomes quite inefficient, as the matrices then contain mostly missing values. Alternative
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solutions for sparse data or single points in 2D are list solutions (e.g. fdapace, Dai et al.

(2017)) or data.frame based versions containing the data in a long format (e.g. fpca, Peng

and Paul (2011), fdaPDE, Lila et al. (2016) or sparseFLMM, Cederbaum (2017)). Some

packages also accept different formats (funcy, Yassouridis (2017) or FDboost, Brockhaus

and Ruegamer (2017)).

Some packages also support image data, i.e. functions on two-dimensional domains (refund

and refund.wave, Huo et al. (2014) or fdasrvf, Tucker (2017)). Some others, as e.g. fda

and fda.usc implement image objects, but use them rather for representing covariance or

coefficient surfaces from function-on-function regression than for storing data in form of

images. The majority of the R packages for functional data, however, are restricted to

single functions on one-dimensional domains.

Methods for multivariate functional data, consisting of more than one function per observa-

tion unit, have also become relevant in recent years. The roahd package (Tarabelloni et al.,

2017) provides a special class for this type of data, while some others simply combine the

data from the different functions in a list (e.g. fda.usc, Funclustering or RFgroove, Gre-

gorutti (2016)). For all of these packages, the elements of the multivariate functional data

must be observed on one-dimensional domains, which means that combinations of functions

and images for example are not supported. In addition, the one-dimensional observation

grid must be the same for most of the implementations.

In summary, there exist already several software solutions for functional data, but there is

still need for a unified, flexible representation of functional data, univariate and multivariate,

on one- and higher dimensional domains and for dense and sparse functional data. The

funData package (Happ, 2017a), which is in the main focus of this article, attempts to fill

this gap. It provides a unified framework to represent all these different types of functional

data together with utility methods for handling the data objects. In order to take account

of the particular structure of functional data, the implementation is organized in an object-

oriented manner. In this way, a link is established between the broad methodological

field of object-oriented data analysis (Wang and Marron, 2007), in which functional data

analysis forms an important special case, and object-oriented programming (e.g. Meyer,

1988), which is a fundamental concept in modern software engineering. It is shown why it

is natural and reasonable to combine these two concepts for representing functional data.

In contrast to most R packages mentioned above, the funData package is not related to a

certain type of methodology, such as regression, clustering or principal component analysis.

Instead, it aims at providing a flexible and user-friendly core toolbox for functional data,

which can serve as a basis for other packages, similarly to the Matrix package for linear

algebra calculations for matrices (Bates and Maechler, 2017). It further contains a complete

simulation toolbox for generating functional data objects, which is fundamental for testing

new functional data methods.
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The MFPCA package (Happ, 2017b), which is also presented in this article, is an ex-

ample of a package that depends on funData. It implements a new methodological

approach – multivariate functional principal component analysis for data on potentially

different dimensional domains (Happ and Greven, 2017+) – that allows to calculate prin-

cipal components and individual score values for e.g. functions and images, taking co-

variation between the elements into account. All implementation aspects that relate to

functional data, i.e. input data, output data and all calculation steps involving functions

are implemented using the object-oriented functionalities of the funData package. Both

packages are publicly available on GitHub (https://github.com/ClaraHapp) and CRAN

(https://CRAN.R-project.org).

The structure of this article is as follows: Section 5.2 contains a short introduction to

the concept of object orientation in statistics and computer science and discusses how to

adequately represent functional data in terms of software objects. The next section presents

the object-oriented implementation of functional data in the funData package. Section 5.4

introduces the MFPCA package as an example on how to use the funData package for the

implementation of new functional data methods. The final section 5.5 contains a discussion

and an outlook to potential future extensions.

5.2. Object Orientation and Functional Data

Concepts of object orientation exist both in computer science and statistics. In statistics,

the term object-oriented data analysis (OODA) has been introduced by Wang and Marron

(2007). They define it as “the statistical analysis of complex objects” and draw their at-

tention on what they call the atom of the analysis. While in many parts of statistics these

atoms are numbers or vectors (multivariate analysis), Wang and Marron (2007) argue that

they can be much more complex objects such as images, shapes, graphs or trees. Functional

data analysis (Ramsay and Silverman, 2005) is an important special case of object-oriented

data analysis, where the atoms are functions. In most cases, they can be assumed to lie

in L2(T ), the space of square integrable functions on a domain T . This space has infinite

dimension, but being a Hilbert space, its mathematical structure has many parallels to the

space Rp of p-dimensional vectors, which allows to transfer many concepts of multivariate

statistics to the functional case in a quite straightforward manner.

In computer science, object orientation (Booch et al., 2007; Armstrong, 2006; Meyer, 1988)

is a programming paradigm which has profoundly changed the way how software is struc-

tured and developed. The key concept of object-oriented programming (OOP) is to replace

the until then predominant procedural programs by computer programs made of objects,

that can interact with each other and thus form, in a way, the “atoms” of the program.

These objects usually consist of two blocks. First, a collection of data, which may have
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different data types, such as numbers, character strings or vectors of different length and

is organized in fields. Second, a collection of methods, i.e. functions for accessing and/or

modifying the data and for interacting with other objects. The entirety of all objects and

their interactions forms the final program. A typical example for an object-oriented pro-

gramming language is Java. But also in many other languages, concepts of object-oriented

programming have been included, for instance in MATLAB (The MathWorks, Inc.) and

R (R Core Team, 2015). The taxonomy given in Armstrong (2006) identifies eight funda-

mental concepts of object-oriented programming (see Table 5.1). The first five concepts are

related to structure. Apart from the concept of objects, that contain data and methods and

the concept of classes, that provide abstract designs for concrete objects, the taxonomy also

lists abstraction, i.e. the fact that objects represent simplified version of reality, together

with encapsulation, the principle of limited access to the data via specified methods, and in-

heritance, i.e. the inclusion of specialized classes into more general ones. The second group

contains three concepts concerning behavior. One is the existence of methods. As discussed

before, this means that the objects contain functionalities that access or modify their data.

The other two concepts are message passing, i.e. objects can interact via messages that are

produced and understood by the individual object methods, and polymorphism, meaning

that one and the same message may be interpreted differently by the objects of different

classes.

Table 5.1.: Taxonomy of object-oriented programming in Armstrong (2006).

Concepts related to structure

Abstraction Creating classes to simplify aspects of reality using distinctions inher-

ent to the problem.

Class A description of the organization and actions shared by one or more

similar objects.

Encapsulation Designing classes and objects to restrict access to the data and behav-

ior by defining a limited set of messages that an object can receive.

Inheritance The data and behavior of one class is included in or used as the basis

for another class.

Object An individual, identifiable item, either real or abstract, which contains

data about itself and the descriptions of its manipulations of the data.

Concepts related to behavior

Message Passing An object sends data to another object or asks another object to

invoke a method.

Method A way to access, set or manipulate an object’s information.

Polymorphism Different classes may respond to the same message and each imple-

ments it appropriately.
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The main idea of the funData package is to combine the concepts of object orientation

that exist in computer science and in statistics for the representation of functional data.

The atom of the statistical analysis should thus be represented by the “atom” of the soft-

ware program. The package therefore provides classes to organize the observed data in an

appropriate manner. The class methods implement functionalities for accessing and mod-

ifying the data and for interaction between objects. As functional data objects represent

mathematical structures, interaction primarily means mathematical operations. The object

orientation is realized in R via the S4 object system (Chambers, 2008). This system fulfills

most of the concepts in Table 5.1 and is thus more rigorous than R’s widely used S3 system,

which is used e.g. by fda or fda.usc. In particular, it checks for example if a given set

of observation (time) points matches the observed data before constructing the functional

data object.

For the theoretical analysis of functional data, the functions are mostly considered as el-

ements of a function space such as L2(T ), as discussed before. For the practical analysis,

the data can of course only be obtained in finite resolution. Data with functional features

therefore will always come in pairs of the form (tij, xij) with

xij = xi(tij), j = 1, . . . , Si, i = 1, . . . , N

for some functions x1, . . . , xN that are considered as realizations of a random process X :
T → R. The domain T ⊂ Rd here is assumed to be a compact set with finite (Lebesgue-)

measure and in most cases, the dimension d will be equal to 1 (functions on one-dimensional

domains) sometimes also 2 (images) or 3 (3D images). The observation points tij ∈ T in

general can differ in their number and location between the individual functions.

When implementing functional data in an object-oriented way, it is thus natural to collect

the data in two fields: the observation points {(ti1, . . . , tiSi) : i = 1, . . . , N} on one hand

and the set of observed values {(xi1, . . . , xiSi) : i = 1, . . . , N} on the other hand. Both

fields form the data block of the functional data object as an inseparable entity. This is a

major advantage compared to non object-oriented implementations, that can consider the

observation points and the observed values as parameters in their methods, but can not

map the intrinsic dependency between both of them.

In the important special case that the functions are observed on a one-dimensional domain

and that the arguments do not differ across functions, they can be collected in a single

vector (t1, . . . , tS) and the observed values can be stored in a matrix X with entries xij, i =
1, . . . , N, j = 1, . . . , S. The matrix-based concept can be generalized to data observed on

common grids on higher dimensional domains. In this case, the observation grid can be

represented as a matrix (or array) or, in the case of a regular and rectangular grid, as a

collection of vectors that define the marginals of the observation grid. The observed data

is collected in an array with three or even more dimensions.
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In recent years, the study of multivariate functional data that takes multiple functions at

the same time into account, has led to new findings. Each observation unit hence consists

of a fixed number of functions p, that can also differ in their domain (e.g. functions and

images, Happ and Greven, 2017+). Technically, the observed values are assumed to stem

from a random process X = (X(1), . . . , X(p)), with random functions X(k) : Tk → R, Tk ∈
Rdk , k = 1, . . . , p, that we call the elements of X. Realizations x1, . . . , xN of such a process

all have the same structure as X. If for example p = 2 and d1 = 1, d2 = 2, the realizations

will all be bivariate functions with one functional and one image element. As data can only

be obtained in finite resolution, observed multivariate functional data is of the form

(t(k)
ij , x

(k)
ij ) j = 1, . . . , S(k)

i , i = 1, . . . , N, k = 1, . . . , p.

Each element thus can be represented separately by its observation points and the observed

values, and the full multivariate sample constitutes the collection of all the p elements.

5.3. The funData Package

The funData package implements the object-oriented approach for representing functional

data in R. It provides three classes for functional data on one- and higher dimensional

domains, multivariate functional data and irregularly sampled data, which are presented in

Section 5.3.1. The second Section 5.3.2 presents the methods associated with the functional

data classes based on two example datasets.

5.3.1. Three Classes for Functional Data

For the representation of functional data in terms of abstract classes – which, in turn, define

concrete objects – we distinguish three different cases.

1. Class funData for dense functional data of “arbitrary” dimension (in most cases the

dimension of the domain will is d ∈ {1, 2, 3}) on a common set of observation points

t1, . . . , tS for all curves. The curves may have missing values coded by NA.

2. Class irregFunData for irregularly sampled functional data with individual sampling

points tij, j = 1, . . . , Si, i = 1, . . . , N for all curves. The number Si and the location

of observation points can vary across individual observations. At the moment, only

data on one-dimensional domains is implemented.

3. Class multiFunData for multivariate functional data, which combines p elements of

functional data that may be defined on different dimensional domains (e.g. functions

and images).
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t1 t2 tST

x1

x2

x3

As funData object:

@argvals: list (t1, t2, . . . , tS)

@X: matrix


x11 x12 . . . x1S

x21 NA . . . x2S

x31 x32 . . . NA



Figure 5.1.: Left: An example of N = 3 observations of functional data on a one-dimensional

domain T , observed on a common discrete grid (t1, . . . , tS), where the observed values xij = xi(tj)
are represented by solid circles. The functions x2 and x3 have one missing value, each (open

circles). Right: Representation of the data in a funData object. The @argvals slot is a list of

length one, containing the observation grid as a vector. The @X slot is a matrix of dimension N×S
that contains the observed values in row-wise format. Missing values are coded with NA.

In the case of data on one-dimensional domains, the boundaries between the funData and

the irregFunData class may of course be blurred in practice. The conceptual difference is

that in 1. all curves are ideally supposed to be sampled on the full grid T = {t1, . . . , tS} ⊂ T
and differences in the number of observation points per curve are mainly driven by anomalies

or errors in the sampling process, such as missing values, which can be coded by NA. In

contrast, case 2. expects a priori that the curves can be observed at different observation

points tij, and that the number of observations per curve may vary.

For funData and irregFunData, the data is organized in two fields or slots, as they are

called for S4 classes (Chambers, 2008): The slot @argvals contains the observation points

and the slot @X contains the observed data. For funData, the @argvals slot is a list,

containing the common sampling grid for all functions and @X is an array containing all

observations. In the simplest case of functions defined on a one-dimensional domain and

sampled on a grid with S observation points, @argvals is a list of length one, containing a

vector of length S and @X is a matrix of dimension N×S, containing the observed values for

each curve in a row-wise manner. For an illustration, see Fig. 5.1. If the funData object is

supposed to represent N images with Sx×Sy pixels (i.e. Sx pixels long and Sy pixels high),

@argvals is a list of length 2, containing two vectors with Sx and Sy entries, respectively,

that represent the sampling grid. The slot @X is an array of dimension N × Sx × Sy,

cf. Fig. 5.2. For the irregFunData class, only functions on one-dimensional domains are

currently implemented. The @argvals slot here is a list of length N , containing in its

i-th entry the vector (ti1, . . . , tiSi) with all observation points for the i-th curve. The @X

slot organizes the observed values analogously, i.e. it is also a list of length N with the

i-th entry containing the vector (xi1, . . . , xiSi). An illustration is given in Fig. 5.3. The

multiFunData class, finally, represents multivariate functional data with p elements. An

object of this class is simply a list of p funData objects, representing the different elements.
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Tx1

xSx y1

ySy T
x1

xSx y1

ySy

T
x1

xSx y1

ySy

As funData object:

@argvals: list (y1, . . . , ySy)
(x1, . . . , xSx)

@X: array

Figure 5.2.: Left: An example of N = 3 observations of functional data on a two-dimensional

domain T . The functions are observed on a common discrete grid having Sx points in x- and Sy
points in y-direction, i.e. each observation forms an image with Sx × Sy pixels. Right: Represen-

tation of the data in a funData object. The @argvals slot is a list of length 2, containing the

marginal sampling points. The slot @X is an array of dimension N × Sx × Sy.

For an illustration, see Fig. 5.4. Given specific data, the realizations of such classes are

called funData, irregFunData or multiFunData objects. We will use the term functional

data object in the following for referring to objects of all three classes.

5.3.2. Methods for Functional Data Objects

Essential methods for functional data objects include the creation of an object from the

observed data, methods for modifying and extracting the data, plotting, arithmetics and

other functionalities. The methods in the funData package are implemented such that

they work on functional data objects as the atoms of the program, i.e. the methods accept

functional data objects as input and/or have functional data objects as output. Moreover,

all functions are implemented for the three different classes with appropriate sub-methods.

This corresponds to the principle of polymorphism in Armstrong (2006), as different classes

have their own implementation e.g. of a plot function. Using the S4 framework (Chambers,

2008), this is achieved by defining abstract, so-called generic functions and implementing

associated methods for each class. In most cases, the methods for multiFunData objects

will simply call the corresponding method for each element and concatenate the results

appropriately.
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T
t11 t1S1

x1

t21 t2S2

x2

t31 t3S3

x3

As irregfunData object:

@argvals: list

(t31, . . . , t3S3)
(t21, . . . , t2S2)
(t11, . . . , t1S1)

@X: list
(x31, . . . , x3S3)
(x21, . . . , x2S2)
(x11, . . . , x1S1)

Figure 5.3.: Left: An example of N = 3 irregular observations of functional data on a one-

dimensional domain T . The observation points for each function differ in number and location.

Right: Representation of the data in an irregFunData object. Both the @argvals and the @X

slot are a list of length N , containing the observation points tij and the observed values xij .
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As multiFunData object:

list

@argvals: list
(
t
(1)
1 , t

(1)
2 , . . . , t

(1)
S1

)

@X: matrix

x(1)
11 x

(1)
12 . . . x

(1)
1S1

x
(1)
21 NA . . . x

(1)
2S1



@argvals: list

(
x

(2)
1 , . . . , x

(2)
Sx

)
(
y

(2)
1 , . . . , y

(2)
Sy

)

@X: array

Figure 5.4.: Left: An example of N = 2 observations of bivariate functional data on different

domains, i.e. each observation (red/blue) consists of two elements, a curve and an image. Right:

Representation of the data as a multiFunData object. As the data is bivariate, the multiFunData

object is a list of length 2, containing the two elements as funData objects.
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Data Used in the Examples

The code examples use the Canadian weather data (Ramsay and Silverman, 2005), that are

available e.g. in the fda package and the CD4 cell count data (Goldsmith, Greven, et al.,

2013) from the refund package. In both cases, the data is observed on a one-dimensional

domain. Examples for image data are included in the description of the simulation toolbox

at the end of this section.

The Canadian weather data contains daily and monthly observations of temperature (in °C)

and precipitation (in mm) for N = 35 Canadian weather stations, averaged over the years

1960 to 1994. We will use the daily temperature as an example for dense functional data on

a one-dimensional domain. Moreover, the monthly precipitation data will be used together

with the daily temperature to construct multivariate functional data with elements on

different domains (T1 = [1, 365] for the temperature and T2 = [1, 12] for the precipitation).

The CD4 cell count data reports the number of CD4 cells per milliliter of blood for N = 366
subjects who participated in a study on AIDS (MACS, Multicenter AIDS Cohort Study).

CD4 cells are part of the human immune system and are attacked in the case of an infection

with HIV. Their number thus can be interpreted as a proxy for the disease progression. For

the present data, the CD4 counts were measured roughly twice a year and centered at

the time of seroconversion, i.e. the time point when HIV becomes detectable. In total,

the number of observations for each subject varies between 1 and 11 in the period of 18

months before and 42 months after seroconversion. The individual time points do also differ

between subjects. The dataset thus serves as an example for irregular functional data. For

more information on the data, please see Goldsmith, Greven, et al. (2013).

Creating New Objects and Accessing an Object’s Information

The following code creates funData objects for the Canadian temperature and precipitation

data:

R> dailyTemp <- funData(argvals = 1:365,

X = t(CanadianWeather$dailyAv[,, 'Temperature.C']))

R> monthlyPrec <- funData(argvals = 1:12,

X = t(CanadianWeather$monthlyPrecip))

It is then very easy to create a bivariate multiFunData object, containing the daily tem-

perature and the monthly precipitation for the 35 weather stations:

R> canadWeather <- multiFunData(dailyTemp, monthlyPrec)

The cd4 data in the refund package is stored in a data.frame with 366 × 61 entries,

containing the CD4 counts for each patient on the common grid of all sampling points.
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Missing values are coded as NA. Since each patient has at least 1 and at most 11 observations,

more than 90% of the dataset consists of missings. The irregFunData class stores only the

observed values and their time points and is therefore more parsimonious. The following

code extracts both separately as lists and then constructs an irregFunData object:

R> allArgvals <- seq(-18, 42)

R> argvalsList <- apply(cd4, 1, function(x){allArgvals[complete.cases(x)]})

R> obsList <- apply(cd4, 1, function(x){x[complete.cases(x)]})

R> cd4Counts <- irregFunData(argvals = argvalsList, X = obsList)

When a functional data object is called in the command line, some basic information is

printed to standard output. For the funData object containing the Canadian temperature

data:

R> dailyTemp

Functional data object with 35 observations of 1 - dimensional support

argvals:

1 2 ... 365 (365 sampling points)

X:

array of size 35 x 365

The multiFunData version lists the information of the different elements:

R> canadWeather

An object of class "multiFunData"

[[1]]

Functional data object with 35 observations of 1 - dimensional support

argvals:

1 2 ... 365 (365 sampling points)

X:

array of size 35 x 365

[[2]]

Functional data object with 35 observations of 1 - dimensional support

argvals:

1 2 ... 12 (12 sampling points)

X:

array of size 35 x 12

For irregFunData objects there is some additional information about the total number of

observations:

R> cd4Counts

Irregular functional data object with 366 observations of 1 - dimensional support

argvals:
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Values in -18 ... 42.

X:

Values in 10 ... 3184.

Total:

1888 observations on 60 different x-values (1 - 11 per observation).

The slots can be accessed directly via @argvals or @X. The preferable way of accessing and

modifying the data in the slots, however, is via the get/set methods, following the principle

of limited access (encapsulation, see Table 5.1), as an example:

R> getArgvals(monthlyPrec)

[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12

The method nObs returns the number of observations (functions) in each object:

R> nObs(dailyTemp)

[1] 35

R> nObs(cd4Counts)

[1] 366

R> nObs(canadWeather)

[1] 35

The number of observation points is given by nObsPoints. Note that dailyTemp and

canadWeather are densely sampled and therefore return a single number or two numbers

(one for each element). For the irregularly sampled data in cd4Counts, the method returns

a vector of length N = 366, containing the individual number of observations for each

subject:

R> nObsPoints(dailyTemp)

[1] 365

R> nObsPoints(cd4Counts)

[1] 3 4 8 4 8 3 4 7 2 6 8 3

... [output truncated] ...

R> nObsPoints(canadWeather) # 365 (temp.) and 12 (prec.) observation points
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[[1]]

[1] 365

[[2]]

[1] 12

The dimension of the domain can be obtained by the dimSupp method:

R> dimSupp(dailyTemp)

[1] 1

R> dimSupp(cd4Counts)

[1] 1

R> dimSupp(canadWeather) # both elements have one-dimensional support

[1] 1 1

Finally, a subset of the data can be extracted using the function extractObs. We can for

example extract the temperature data for the first five weather stations:

R> extractObs(dailyTemp, obs = 1:5)

Functional data object with 5 observations of 1 - dimensional support

argvals:

1 2 ... 365 (365 sampling points)

X:

array of size 5 x 365

or the CD4 counts of the first 8 patients before seroconversion (i.e. until time 0):

R> extractObs(cd4Counts, obs = 1:8, argvals = -18:0)

Irregular functional data object with 8 observations of 1 - dimensional support

argvals:

Values in -17 ... -3.

X:

Values in 429 ... 1454.

Total:

15 observations on 6 different x-values (1 - 3 per observation).

In both cases, the method returns an object of the same class as the argument with which

the function was called (funData for dailyTemp and irregFunData for cd4Counts), which

is seen by the output.
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Plotting

The more complex the data, the more important it is to have adequate visualization meth-

ods. The funData package comes with two plot methods for each class, one based on R’s

standard plotting engine (plot.default and matplot) and one based on the ggplot2 im-

plementation of the grammar of graphics (package ggplot2, Wickham (2009) and Wickham

et al. (2016)). The plot function inherits all parameters from the plot.default function

from the graphics package, i.e. colors, axis labels and many other options can be set as for

the usual plot.default function. The following code plots all 35 curves of the Canadian

temperature data:

R> plot(dailyTemp, main = "Daily Temperature Data",

xlab = "Day of Year", ylab = "Temperature in °C")

and the CD4 counts of the first five patients on the log-scale:

R> plot(cd4Counts, obs = 1:5, xlim = c(-18, 45), log = "y",

main = "CD4 Counts for Individuals 1-5",

xlab = "Month since seroconversion",

ylab = "CD4 cell count (log-scale)")

R> legend("topright", legend = 1:5, col = rainbow(5), lty = 1, pch = 20,

title = "Individual")

For multivariate functional data, the different elements are plotted side by side, as shown

here for the last ten Canadian weather stations:

R> plot(canadWeather, obs = 26:35, lwd = 2, log = c("", "y"),

main = c("Temperature", "Precipitation (log-scale)"),

xlab = c("Day of Year", "Month"),

ylab = c("Temperature in °C", "Precipitation in mm"))

The resulting plots are shown in Fig. 5.5.

The optional ggplot function creates a ggplot object that can be further modified by the

user by loading the ggplot2 package and using the functionality provided therein. For

plotting multivariate functional data, the gridExtra package (Auguie, 2016) is used to

order plots of all elements side by side. The following codes produce analogous plots to the

plot examples above for the Canadian temperature data:

R> library(ggplot2)

R>

R> tempPlot <- funData::ggplot(dailyTemp)

R> tempPlot + labs(title = "Daily Temperature Data",

x = "Day of Year", y = "Temperature in °C")
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for the CD4 counts:

R> cd4Plot <- funData::ggplot(cd4Counts, obs = 1:5)

R> cd4Plot + geom_line(aes(colour = obsInd)) +

labs(title = "CD4 Counts for Individuals 1-5", color = "Individual",

x = "Month since seroconversion", y = "CD4 cell count (log-scale)") +

scale_y_log10(breaks = seq(200,1000,200))

and for the bivariate Canadian weather data:

R> weatherPlot <- funData::ggplot(canadWeather, obs = 26:35)

R>

R> # customize the univariate plots

R> weatherPlot[[1]] <- weatherPlot[[1]] + geom_line(aes(colour = obsInd)) +

labs(title = "Temperature", colour = "Weather Station",

x = "Day of Year", y = "Temperature in °C")

R>

R> weatherPlot[[2]] <- weatherPlot[[2]] + geom_line(aes(colour = obsInd)) +

labs(title = "Precipitation (log-scale)", colour = "Weather Station",

x = "Month", y = "Precipitation in mm") +

scale_x_continuous(breaks = 1:12) +

scale_y_log10(breaks = c(0.1,0.5,1,5,10))

R>

R> # plot all elements of the multivariate functional data

R> gridExtra::grid.arrange(grobs = weatherPlot, nrow = 1)

The corresponding plots are shown in Fig. 5.6.

Coercion

As discussed earlier, there is no clear boundary between the irregFunData class and the

funData class for functions on one-dimensional domains. The package thus provides coer-

cion methods to coerce funData objects to irregFunData objects, as seen in the output:

R> as.irregFunData(dailyTemp)

Irregular functional data object with 35 observations of 1 - dimensional support

argvals:

Values in 1 ... 365.

X:

Values in -34.8 ... 22.8.

Total:

12775 observations on 365 different x-values (365 - 365 per observation).
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Figure 5.5.: Results of the plot commands for functional data objects. First row: The daily

temperature in 35 Canadian weather stations (funData object, left) and the CD4 counts for the

first five individuals (irregFunData object, right). Second row: The Canadian weather data for

ten weather stations (multiFunData object). See text for the commands used; all other options

were kept as defaults.

and vice versa, using the union of all observation points of all subjects as the common one

and coding missing values with NA:

R> as.funData(cd4Counts)

Functional data object with 366 observations of 1 - dimensional support

argvals:

-18 -17 ... 42 (60 sampling points)

X:

array of size 366 x 60

Further, funData objects can also be coerced to multiFunData objects with only one ele-

ment:
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Figure 5.6.: Results of the ggplot commands for functional data objects. First row: The daily

temperature in 35 Canadian weather stations (funData object, left) and the CD4 counts for the

first five individuals (irregFunData object, right). Second row: The Canadian weather data for

ten weather stations (multiFunData object). See text for the commands used. For all plots the

option theme_bw() has been added for optimal print results; all other parameters were kept as

defaults.

R> as.multiFunData(dailyTemp)

An object of class "multiFunData"

[[1]]

Functional data object with 35 observations of 1 - dimensional support

argvals:

1 2 ... 365 (365 sampling points)

X:

array of size 35 x 365

Mathematical Operations for Functional Data Objects

With the funData package, mathematical operations such as sums, products, calculating

the absolute value or the logarithm can directly be applied to functional data objects, with
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Figure 5.7.: Demeaned versions of the ten canadianWeather observations shown in Fig. 5.6. The

curves have been obtained by canadWeather - meanFunction(canadWeather), i.e. the bivariate

mean function of all 35 weather stations has been subtracted from each observation. The horizontal

gray lines mark zero, corresponding to the original mean function.

the calculation made pointwise and the return being again an object of the same class. The

operations build on the Arith and Math group generics for S4 classes. We can for example

convert the Canadian temperature data from Celsius to Fahrenheit:

R> 9/5 * dailyTemp + 32

or calculate the logarithms of the CD4 count data:

R> log(cd4Counts)

Arithmetic operations such as sums or products are implemented for scalars and functional

data objects as well as for two functional data objects. Note that in the last case, the

functional data objects must have the same number of observations (in this case, the calcu-

lation is done with the i-th function of the first object and the i-th function of the second

object) or one object may have only one observation (in this case, the calculation is made

with each function of the other object). This is particularly useful e.g. for subtracting a

common mean from all functions in an object as in the following example, using the special

meanFunction method:

R> canadWeather - meanFunction(canadWeather)

Some of the demeaned curves are shown in Fig. 5.7. Note that the functions also need to have

the same observation points, which is especially important for irregFunData objects.

The tensorProduct function allows to calculate tensor products of functional data objects

f1, f2 on one-dimensional domains T1, T2, respectively, i.e.

fTens(t1, t2) = f1(t1)f2(t2) t1 ∈ T1, t2 ∈ T2.

The following code calculates the tensor product of the Canadian weather data and the

output shows that the result is a funData object on a two-dimensional domain:
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Figure 5.8.: Two observations of the tensor product of daily temperature and monthly precipitation

from the Canadian weather data, calculated via tensorProduct(dailyTemp, monthlyPrec). As

seen in the plot, the domains of the functions have to be one-dimensional, but can be different.

The result is an object of class funData on the two-dimensional domain [1, 356] × [1, 12] with

352 = 1225 observations, from which two are shown here.

R> tensorData <- tensorProduct(dailyTemp, monthlyPrec)

R> tensorData

Functional data object with 1225 observations of 2 - dimensional support

argvals:

1 2 ... 365 (365 sampling points)

1 2 ... 12 (12 sampling points)

X:

array of size 1225 x 365 x 12

Two observations in tensorData are shown in Fig. 5.8. Note that for image data, a single

observation has to be specified for plotting.

Another important aspect when working with functional data is integration. The funData

package implements two quadrature rules, "midpoint" and "trapezoidal" (the default).

The data is always integrated over the full domain and in the case of multivariate functional

data, the integrals are calculated for each element and the results are added:

R> integrate(dailyTemp, method = "trapezoidal")

[1] 1715.70 2249.75 2015.30 2488.10 1916.15 1929.65

[7] -1824.20 1145.40 834.95 1500.95 1514.00 2246.65

... [output truncated] ...

R> integrate(canadWeather)

[1] 1759.7695 2292.5877 2058.6627 2525.2938 1951.8074

[6] 1963.3119 -1799.6470 1172.5376 863.3241 1537.4718

[11] 1547.7194 2275.1507

... [output truncated] ...
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For irregular data, the integral can be calculated on the observed points or they can be

extrapolated linearly to the full domain. For the latter, curves with only one observation

point are assumed to be constant.

Based on integrals, one defines the usual scalar product on L2(T )

〈f, g〉2 =
∫
T
f(t)g(t)dt

and the induced norm ||f ||2 = 〈f, f〉21/2 for f, g ∈ L2(T ). For multivariate functional data

on domains T1 × . . .× Tp, the scalar product can be extended to

〈〈f, g〉〉 =
p∑
j=1

f (j)(t)g(j)(t)dt

with the induced norm |||f ||| = 〈〈f, f〉〉1/2. The multivariate scalar product can further

be generalized by introducing weights wj > 0 for each element (cf. Happ and Greven,

2017+):

〈〈f, g〉〉w =
p∑
j=1

wj〈f (j), g(j)〉2. (5.1)

Scalar products and norms are implemented for all three classes in the funData pack-

age. Here also, the scalar product can be calculated for pairs of functions f1, . . . , fN and

g1, . . . , gN , hence 〈fi, gi〉2, or for a sample f1, . . . , fN and a single function g, returning

〈fi, g〉2. The norm function accepts some additional arguments, such as squared (logi-

cal, should the squared norm be calculated), obs (the indices of curves for which the norm

should be calculated) or weight (a vector containing the weights w1, . . . , wp for multivariate

functional data):

R> scalarProduct(dailyTemp, meanFunction(dailyTemp))

[1] 30737.63 38602.51 36314.96 32467.36 40324.06 43842.06

[7] 46235.71 48665.02 48404.69 46850.19 44177.40 47596.52

... [output truncated] ...

R> all.equal(scalarProduct(dailyTemp, dailyTemp),

funData::norm(dailyTemp, squared = TRUE))

[1] TRUE

R> # norm for the first 4 observations, extrapolated to full domain

R> funData::norm(cd4Counts, obs = 1:4, fullDom = TRUE)

[1] 15562439 30772035 32405620 109583314

R> # give temperature double weight

R> funData::norm(canadWeather, weight = c(2,1))
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[1] 54484.78 84524.45 74968.58 71400.87 85221.47

[6] 96849.21 136065.38 109946.26 107856.02 103943.63

[11] 93596.27 116518.97

... [output truncated] ...

Note that there also exists a function norm in the base package and thus it is better to use

funData::norm in this case.

Simulation Toolbox

The funData package comes with a full simulation toolbox for univariate and multivariate

functional data, which is a very useful feature when implementing and testing new method-

ological developments. The data is simulated based on a truncated Karhunen-Loève repre-

sentation of functional data, as for example in the simulation studies in Scheipl and Greven

(2016) or Happ and Greven (2017+). All examples in the following text use set.seed(1)

before calling a simulation function for reasons of reproducibility. Example plots are given

in the appendix.

For univariate functions xi : T → R, the Karhunen-Loève representation of a function xi
truncated at M ∈ N is given by

xi(t) = µ(t) +
M∑
m=1

ξi,mφm(t), i = 1, . . . , N, t ∈ T (5.2)

with a common mean function µ(t) and principal component functions φm, m = 1, . . . ,M .

The individual functional principal component scores ξi,m = 〈xi, φm〉2 are realizations of

random variables ξm with E(ξm) = 0 and Var(ξm) = λm with eigenvalues λm ≥ 0 that

decrease towards 0. This representation is valid for domains of arbitrary dimension, hence

also for T ⊂ R2 (images) or T ⊂ R3 (3D images).

The simulation algorithm constructs new data from a system of M orthonormal eigenfunc-

tions φ1 . . . φM and scores ξi,m according to the Karhunen-Loève representation (5.2) with

µ(t) ≡ 0. For the eigenfunctions, the package implements Legendre Polynomials, Fourier

basis functions and eigenfunctions of the Wiener process including some variations (e.g.

Fourier functions plus an orthogonalized version of the linear function). The scores are

generated via

ξi,m
iid∼ N(0, λm), m = 1, . . . ,M, i = 1, . . . , N. (5.3)

For the eigenvalues λm, one can choose between a linear (λm = M−m+1
M

) or exponential

decrease (exp(−m+1
2 )) or those of the Wiener process. New eigenfunctions and eigenvalues

can be added to the package in an easy and modular manner.
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The next code chunk simulates N = 8 curves on the one-dimensional observation grid

{0, 0.01, 0.02, . . . , 1} based on the first M = 10 Fourier basis functions on [0, 1] and eigen-

values with a linear decrease:

R> simUniv1D <- simFunData(N = 8, argvals = seq(0,1,0.01),

eFunType = "Fourier", eValType = "linear", M = 10)

The function returns a list with 3 entries: The simulated data (simData, a funData object

shown in Fig. C.1 in the appendix), the true eigenvalues (trueVals) and eigenfunctions

(trueFuns, also as a funData object).

For simulating functional data on a two- or higher dimensional domain, simFunData con-

structs eigenfunctions based on tensor products of univariate eigenfunctions. The user thus

has to supply the parameters that relate to the eigenfunctions as a list (for argvals) or as a

vector (M and eFunType), containing the information for each marginal. The total number

of eigenfunctions equals to the product of the entries of M . The following example code

simulates N = 5 functions on T = [0, 1] × [−0.5, 0.5]. The eigenfunctions are calculated

as tensor products of M1 = 10 eigenfunctions of the Wiener process on [0, 1] and M2 = 12
Fourier basis functions on [−0.5, 0.5]. In total, this leads to M = M1 ·M2 = 120 eigen-

functions. For each eigenfunction and each observed curve, the scores ξi,m are generated as

in (5.3) with linearly decreasing eigenvalues:

R> argvals <- list(seq(0,1,0.01), seq(-0.5,0.5, 0.01))

R> simUniv2D <- simFunData(N = 5, argvals = argvals,

eFunType = c("Wiener", "Fourier"), eValType = "linear", M = c(10,12))

The first simulated image is shown in Fig. C.1 in the appendix. As for functions on one-

dimensional domains, the function returns the simulated data together with the true eigen-

values and eigenfunctions.

For multivariate functional data, the simulation is based on the multivariate version of

the Karhunen-Loève Theorem (Happ and Greven, 2017+) for multivariate functional data

xi = (x(1)
i , . . . , x

(p)
i ) truncated at M ∈ N

xi(t) = µ(t) +
M∑
m=1

ρi,mψm(t), i = 1, . . . , N, t = (t1, . . . , tp) ∈ T1 × . . .× Tp (5.4)

with a multivariate mean function µ and multivariate eigenfunctions ψm that have the

same structure as xi (i.e. if xi consists of a function and an image, for example, then µ and

ψm will also consist of a function and an image). The individual scores ρi,m = 〈〈xi, ψm〉〉
for each observation xi and each eigenfunction ψm are real numbers and have the same

properties as in the univariate case, i.e. they are realizations of random variables ρm with

E(ρm) = 0 and Var(ρm) = νm with eigenvalues νm ≥ 0 that again form a decreasing

sequence that converges towards 0. As in the univariate case, the multivariate functions
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are simulated based on eigenfunctions and scores according to (5.4) with µ(t) ≡ 0. The

scores are sampled independently from a N(0, νm) distribution with decreasing eigenvalues

νm, analogously to (5.3). For the construction of multivariate eigenfunctions, Happ and

Greven (2017+) propose two approaches based on univariate orthonormal systems, which

are both implemented in the simMultiFunData function.

If all elements of the multivariate functional data are to be defined on one-dimensional

domains, the multivariate eigenfunctions can be obtained by starting from orthonormal

functions on a big domain, splitting them into p pieces and shifting the pieces to where

the elements should be defined. As an example, consider that one would like to simulate

bivariate functional data with one element defined on T1 = [−0.5, 0.5] and the other on T2 =
[0, 1] (note that each element is defined on a one-dimensional domain, not to be confused

with univariate functional data on a two-dimensional domain with margins [−0.5, 0.5] and

[0, 1]). For the orthonormal system on the big domain choose e.g. a Fourier basis on [0, 2].
The functions that form this big basis are now cut at t = 1, with the first pieces shifted

to the left by 0.5 and the second pieces to the left by 1 such that the first part of a split

function is defined on [−0.5, 0.5] and the second part is defined on [0, 1]. The functions on

[−0.5, 0.5] then form the first element of the bivariate eigenfunctions and the functions on

[0, 1] form the second element, after multiplication with a random sign for each element.

Orthonormality of the multivariate eigenfunctions is ensured by construction. For more

technical details, see Happ and Greven (2017+).

When calling simMultiFunData with the option "split", the user has to supply the obser-

vation points for the elements as a list, the type and number M of basis function for the big

orthonormal system and of course the number N of observations to be generated and how

the eigenvalues should decrease. The following code simulates N = 7 bivariate functions

on [−0.5, 0.5] and [0, 1] as in the example, based on M = 10 Fourier basis functions and

linearly decreasing eigenvalues. The parameter type = "split" indicates that the splitting

algorithm is used for obtaining the eigenfunctions, as just described:

R> argvals <- list(seq(-0.5,0.5,0.01), seq(0,1,0.01))

R> simMultiSplit <- simMultiFunData(N = 7, argvals = argvals,

eFunType = "Fourier", eValType = "linear", M = 10,

type = "split")

The result contains the simulated data as well as the eigenfunctions and eigenvalues, as for

the univariate simulation. The simulated functions are shown in Fig. C.2 in the appendix.

As an alternative, multivariate eigenfunctions can be constructed as weighted versions of

univariate eigenfunctions, i.e. the elements of a multivariate eigenfunction ψm are given by

ψ(j)
m = α

1/2
j f (j)

m with functions f (j)
m that form an orthonormal system for each j = 1, . . . , p and

weights αj ∈ [0, 1] that sum up to 1. This choice ensures orthonormality of the multivariate

functions ψm. With this approach, one can also simulate multivariate functional data on
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different dimensional domains, e.g. functions and images. It is implemented in funData’s

simMultiFunData method using the option type = "weighted". In this case, the user

has to supply the information for all univariate eigenfunctions in form of lists, i.e. M (the

number of univariate eigenfunctions), eFunType (the type of univariate eigenfunctions) and

argvals (the domains) have all to be supplied as a list with p elements with the j-th

entry specifying the information for the j-th univariate eigenfunctions. For elements on

higher dimensional domains, the corresponding list entry has to be a vector (for M and

eFunType) or a list (argvals) in order to construct higher dimensional basis functions

based on tensor products. The weights are generated randomly with αj = aj/
∑p
i=1 ai and

in aj ∼ U([0.2, 0.8]). This choice guarantees that for moderate p, the weights αj cannot

become arbitrarily small, which might cause issues in a later analysis. As for the "split"

algorithm, the number of observations and the type of eigenvalue decrease have to be

supplied in simMultiFunData.

The following code simulates N = 5 bivariate functions on T1 = [−0.5, 0.5] and T2 = [0, 1]×
[−1, 1]. The first elements of the eigenfunctions are derived from M1 = 12 Fourier basis

functions on T1 and the second elements of the eigenfunctions are constructed from tensor

products of 4 eigenfunctions of the Wiener process on [0, 1] and 3 Legendre polynomials on

[−1, 1], which give together M2 = 12 eigenfunctions on T2. The scores are sampled using

exponentially decreasing eigenvalues:

R> argvals <- list(seq(-0.5,0.5,0.01), list(seq(0,1,0.01), seq(-1,1,0.01)))

R> simMultiWeight <- simMultiFunData(N = 5, argvals = argvals,

eFunType = list("Fourier", c("Wiener", "Poly")),

eValType = "exponential", M = list(12, c(4,3)),

type = "weighted")

As before, the result contains the simulated data as well as the eigenfunctions and eigen-

values. The first observation is shown in Fig. C.3 in the appendix.

Once simulated, the data can be further processed by adding noise or by artificially deleting

measurements (sparsification). The latter is done in analogy to Yao et al. (2005) by first

randomly generating the number of observed values that is to be retained for each function

and then selecting the observation points randomly from the full grid. Note that this

is currently implemented only for funData and multiFunData objects on one-dimensional

domains. For the addError function, that adds pointwise noise ε(t) iid∼ N(0, σ2) (respectively

ε(j)(tj) iid∼ N(0, σ2
j ) for each element of multivariate functional data), the user can supply

the standard deviation as a non-negative number σ for univariate data or as vector σ =
(σ1, . . . , σp) for the multivariate case. The sparsify function, that creates sparse data,

accepts a minObs and a maxObs argument for the minimal and maximal number of values

to be retained, which are again scalar for the univariate case and vectors for the multivariate

case:
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R> # univariate data

R> addError(simUniv1D$simData, sd = 0.5)

R> sparsify(simUniv1D$simData, minObs = 5, maxObs = 10)

R>

R> # multivariate data

R> addError(simMultiWeight$simData, sd = c(0.5, 0.3))

R> sparsify(simMultiSplit$simData, minObs = c(5, 50), maxObs = c(10, 80))

Both functions return an object of the same class as the input data. The modified functions

of the code example are shown in the appendix (Fig. C.4 for the univariate case and in

Fig. C.5 for the multivariate case).

5.4. The MFPCA Package

The MFPCA package implements multivariate functional principal component analysis

(MFPCA) for data on potentially different dimensional domains (Happ and Greven, 2017+).

It heavily builds upon the funData package, i.e. all functions are implemented as functional

data objects. The MFPCA package thus illustrates the use of funData as a universal basis

for implementing new methods for functional data. Section 5.4.1 gives a short review of the

MFPCA methodology. The second section 5.4.2 describes the implementation including a

detailed description of the main functions and a practical case study. For theoretical details,

please refer to Happ and Greven (2017+).

5.4.1. Methodological Background

The basic idea of MFPCA is to extend functional principal component analysis to multi-

variate functional data on different dimensional domains. The data is assumed to be iid

samples x1, . . . , xN of a random process X = (X(1), . . . , X(p)) with p elements X(j) ∈ L2(Tj)
on domains Tj ⊂ Rdj with potentially different dimensional dimensions dj ∈ N. In Happ and

Greven (2017+), the theoretical properties of the process X and the associated covariance

operator are discussed. Moreover, the article provides an algorithm to estimate multivari-

ate functional principal components and scores based on their univariate counterparts. The

algorithm starts with demeaned samples x1, . . . , xN and consists of four steps:

1. Calculate a univariate functional principal component analysis for each element j =
1, . . . , p. This results in principal component functions φ̂

(j)
1 , . . . , φ̂

(j)
Mj

and principal

component scores ξ̂
(j)
i,1 , . . . , ξ̂

(j)
i,Mj

for each observation unit i = 1, . . . , N and suitably

chosen truncation lags Mj.
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2. Combine all coefficients into one big matrix Ξ ∈ RN×M+ with M+ = M1 + . . . + Mp,

having rows

Ξi,· =
(
ξ̂

(1)
i,1 , . . . , ξ̂

(1)
i,M1 , . . . , ξ̂

(p)
i,1 , . . . , ξ̂

(p)
i,Mp

)
and estimate the joint covariance matrix Ẑ = 1

N−1Ξ>Ξ.

3. Find eigenvectors ĉm and eigenvalues ν̂m of Ẑ for m = 1, . . . ,M for some truncation

lag M ≤M+.

4. Calculate estimated multivariate principal component functions ψ̂m and scores ρ̂i,m
based on the results from steps 1 and 3:

ψ̂(j)
m =

Mj∑
n=1

[ĉm](j)n φ̂(j)
n , ρ̂i,m =

p∑
j=1

Mj∑
n=1

[ĉm](j)n ξ̂
(j)
i,n = Ξi,·ĉm, m = 1, . . . ,M.

The advantage of MFPCA with respect to univariate FPCA for each component can be seen

in steps 2 and 3: The multivariate version takes covariation between the different elements

into account, by using the joint covariance of the scores of all elements.

As discussed in Section 5.3.2, the multivariate principal component functions will have the

same structure as the original samples, i.e. ψ̂m =
(
ψ̂(1)
m , . . . , ψ̂(p)

m

)
with ψ̂(j)

m ∈ L2(Tj) for

m = 1, . . . ,M . The scores ρ̂i,m give the individual weight of each observation xi for the

principal component ψ̂m in the empirical version of the truncated multivariate Karhunen-

Loève representation:

xi ≈ µ̂+
M∑
m=1

ρ̂i,mψ̂m, (5.5)

with µ̂ being an estimate for the multivariate mean function, cf. (5.4).

In some cases, it might be of interest to replace the univariate functional principal compo-

nent analysis in step 1 by a representation in terms of fixed basis functions B
(j)
1 , . . . , B

(j)
Kj

,

such as splines. In Happ and Greven (2017+) it is shown how the algorithm can be extended

to arbitrary basis functions in L2(Tj). Mixed approaches with some elements expanded in

principal components and others for instance in splines are also possible. Another very

likely case is that the elements of the multivariate functional data differ in their domain,

range or variation. For this case, Happ and Greven (2017+) develop a weighted version

of MFPCA with weights wj > 0 for the different elements j = 1, . . . , p. The weights have

to be chosen depending on the data and the question of interest. One possible choice is

to use the inverse of the integrated pointwise variance, as proposed in Happ and Greven

(2017+). The weighted MFPCA is then based on the weighted scalar product (5.1) with

weights wj =
(∫
Tj V̂ar(X(j)(t))dt

)−1
and the associated weighted covariance operator.
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5.4.2. MFPCA Implementation

The main function in the MFPCA package is MFPCA, that calculates the multivariate

functional principal component analysis. It requires as input arguments a multiFunData

object for which the MFPCA should be calculated, the number of principal components M

to calculate and a list uniExpansions specifying the univariate representations to use in

step 1.

Case Study: Calculating the MFPCA for the Canadian Weather Data

The following example calculates a multivariate functional principal component analysis

for the bivariate Canadian weather data with three principal components, using univariate

FPCA with five principal components for the daily temperature (element 1) and univariate

FPCA with four principal components for the monthly precipitation (element 2). The

univariate expansions are specified in a list with two list entries (one for each element) and

are then passed to the main function:

R> uniExpansions <- list(list(type = "uFPCA", npc = 5), # temperature element

list(type = "uFPCA", npc = 4)) # precipitation element

R> MFPCAweather <- MFPCA(canadWeather, M = 3, uniExpansions = uniExpansions)

The full analysis takes roughly nine seconds on a standard laptop, with most time spent

for the univariate decompositions (if the elements are e.g. expanded in penalized splines,

the total calculation time reduces to one second, see also the next section).

The result of the MFPCA function is a list containing the multivariate mean function (mean-

Function, as the data is demeaned automatically before the analysis), the empirical mul-

tivariate principal component functions (functions) and scores (scores) as well as the

estimated eigenvalues (values). Additionally, it returns the eigenvectors ĉm (vectors) and

normalization factors (normFactors, arise if non-orthogonal basis functions or weights are

used), that can be used for predicting scores out-of-sample. All functions are represented as

functional data objects and can thus for example be plotted using the methods provided by

the funData package (see Fig. 5.9). The mean function of the temperature element is seen

to have low values below -10°C in the winter and a peak at around 15°C in the summer,

while the mean of the monthly precipitation data is slightly increasing over the year. The

first principal component has negative values for both elements, i.e. weather stations with

positive scores will in general have lower temperatures and less precipitation than the mean.

The difference is more pronounced in the winter than in the summer, as both the tempera-

ture as well as the precipitation element of the first principal component has more negative

values in the winter period. This indicates that there is covariation between both elements,

that can be captured by the MFPCA approach. In total, the first bivariate eigenfunction
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can be associated with arctic and continental climate, characterized by low temperatures

(especially in the winter) and less precipitation than on average. Weather stations with

negative score values will show an opposite behavior, with higher temperatures and more

rainfall than on average, particularly in the winter months. This is typical for maritime

climate.
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Figure 5.9.: MFPCA results for the Canadian weather data. First row: The bivariate mean

function, which is subtracted from the data before calculating the MFPCA. Second row: The

first three bivariate functional principal components. The gray horizontal lines in the principal

component plots mark zero.

The estimated scores for the first principal component support this interpretation, as

weather stations in arctic and continental areas mainly have positive scores, while sta-

tions in the coastal areas have negative values in most cases (see Fig. 5.10). Moreover,

weather stations in the arctic and pacific regions are seen to have more extreme score val-

ues than those in continental areas and on the Atlantic coast, meaning that the latter have

a more moderate climate. The eigenvalues, that also give the variance of the scores, are

rapidly decreasing, i.e. the first principal component explains most of the variability in the

data:

R> MFPCAweather$values

[1] 15541.684 1481.960 330.112
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Figure 5.10.: Scores of the first three bivariate functional principal components (PCs) for the

Canadian weather data depending on the region of each weather station. The gray vertical lines

mark zero.

Univariate Basis Expansions

In the above example, both univariate elements have been decomposed in univariate func-

tional principal components in step 1. The MFPCA package implements some further

options for the univariate expansions, that can easily be extended in a modular way. Cur-

rently implemented basis expansions are:

� uFPCA: Univariate functional principal component analysis for data on one-

dimensional domains. This option was used in the previous example. The list entry

for one element has the form:

R> list(type = "uFPCA", nbasis, pve, npc, makePD, cov.weight.type)

The implementation is based on the PACE approach (Yao et al., 2005) with the mean

function and the covariance surface smoothed with penalized splines (Di et al., 2009),

following the implementation in the refund package. The MFPCA function returns

the smoothed mean function, while for all other options, the mean function is cal-

culated pointwise. Options for this expansion include the number of basis functions

nbasis used for the smoothed mean and covariance functions (defaults to 10; for the

covariance this number of basis functions is used for each marginal); pve, a value

between 0 and 1, giving the proportion of variance that should be explained by the

principal components (defaults to 0.99); npc, an alternative way to specify the num-

ber of principal components to be calculated explicitly (defaults to NULL, otherwise

overrides pve); makePD, an option to enforce positive definiteness of the covariance

surface estimate (defaults to FALSE) and cov.weight.type, which characterizes the

weighting scheme for the covariance surface (defaults to "none").

� spline1D and spline1Dpen: These options calculate a spline representation of func-

tions on one-dimensional domains using the gam function in the mgcv package (Wood,
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2011; Wood, 2017). When using this option, the uniExpansions entry for one element

is of the form:

R> list(type = "splines1D", bs, m, k)

R> list(type = "splines1Dpen", bs, m, k, parallel)

For spline1Dpen, the coefficients are found by a penalization approach, while for

spline1D the observations are simply projected on the spline space without penaliza-

tion. Thus, the spline1Dpen option will in general lead to smoother representations

than spline1D. Possible options passed for these expansions are bs, the type of basis

functions to use (defaults to "ps" for possibly penalized B-spline functions); m, the

order of the spline basis (defaults to NA, i.e. the order is chosen automatically); k, the

number of basis functions to use (default value is -1, which means that the number

of basis functions is chosen automatically). For the penalized version, there is an

additional option parallel which, if set to TRUE, calculates the spline coefficients in

parallel. In this case, a parallel backend must be registered before (defaults to FALSE).

� spline2D and spline2Dpen: These are analogue options to spline1D and

spline1Dpen for functional data on two-dimensional domains (images):

R> list(type = "splines2D", bs, m, k)

R> list(type = "splines2Dpen", bs, m, k, parallel)

The parameters bs, m and k for the type, order and number of basis functions can

be either a single number/character string that is used for all marginals or a vector

with the specifications for all marginals. For the penalized version, the function bam

in mgcv is used to speed up the calculations and reduce memory load. Setting

parallel=TRUE enables parallel calculation of the basis function coefficients. As for

the one-dimensional case, this requires a parallel backend to be registered before.

� FCP_TPA: This option uses the Functional CP-TPA algorithm of Allen (2013) to

compute an eigendecomposition of image observations, which can be interpreted

as functions on a two-dimensional domain. The algorithm assumes a CANDE-

COMP/PARAFRAC (CP) representation of the data tensor X ∈ RN×Sx×Sy con-

taining all observations xi with Sx × Sy pixels, each:

X =
M∑
m=1

dmum ◦ vm ◦ wm

Here, dm is a scalar, um ∈ RN , vm ∈ RSx , wm ∈ RSy are vectors and ◦ denotes the outer

product. We can thus interpret vm ◦wm as the m-th univariate eigenfunction ψ̂m eval-

uated at the same pixels as the originally observed data. The vector dm ·um ∈ RN can

in turn be interpreted as the score vector containing the scores for the m-th principal

component function and each observation. Note that this interpretation does neither
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imply that the eigenimages are normed functions nor that they are ordered such that

the associated eigenvalues form a decreasing sequence. The algorithm proposed in

Allen (2013) includes smoothing parameters λu, λv, λw ≥ 0 to smooth along all di-

mensions, extending the approach of Huang, Shen, et al. (2009) from one-dimensional

to two-dimensional functions. As smoothing along the observations um ∈ RN is not

required in the given context, the parameter λu is fixed to zero and the smoothing is

implemented only for the v and w directions. When decomposing images with this

algorithm, the user has to supply a list of the following form for the corresponding

element:

R> list(type = "FCP_TPA", npc, smoothingDegree, alphaRange,

orderValues, normalize)

Required options are npc, the number of eigenimages to be calculated, and alpha-

Range, the range of the smoothing parameters. The latter must be a list with two

entries named v and w, giving the possible range for λv, λw as vectors with the min-

imal and maximal value, each (e.g. alphaRange = list(v = c(10^-2,10^2), w =

c(10^-3,10^3)) would enforce λv ∈ [10−2, 102] and λw ∈ [10−3, 103]). Optimal val-

ues for λv and λw are found by numerically optimizing a GCV criterion (cf. Huang,

Shen, et al., 2009, in the one-dimensional case). Further options are the smoothing

degree, i.e. the type of differences that should be penalized in the smoothing step

(smoothingDegree, defaults to second differences for both directions) and two logical

parameters concerning the ordering of the principal components and their normaliza-

tions: If orderValues is TRUE, the eigenvalues and associated eigenimages and scores

are ordered decreasingly (defaults to TRUE), i.e. the first eigenimage corresponds to

the highest eigenvalue that has been found, the second eigenimage to the second high-

est eigenvalue and so on. The option normalize specifies whether the eigenimages

should be normalized (defaults to FALSE).

� UMPCA: This option implements the UMPCA (Uncorrelated Multilinear Principal

Component Analysis, Lu et al., 2009) algorithm for finding uncorrelated eigenim-

ages of two-dimensional functions (images). Essentially, this implements the UMPCA

toolbox for MATLAB (Lu, 2012) in R:

R> list(type = "UMPCA", npc)

The number of eigenimages that are calculated has to be supplied by the user (npc).

Note that this algorithm aims more at uncorrelated features than at an optimal recon-

struction of the images and thus may lead to unsatisfactory results for the MFPCA

approach.

� DCT2D/DCT3D: This option calculates a representation of functional data on two- or

three-dimensional domains in a tensor cosine basis. For speeding up the calculations,
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the implementation is based on the fftw3 C-library (Frigo and Johnson, 2005, de-

veloper version). If the fftw3-dev library is not available during the installation of

the MFPCA package, the DCT2D and DCT3D options are disabled and throw an error.

After installing fftw3-dev on the system, MFPCA has to be re-installed to acti-

vate DCT2D/DCT3D. The uniExpansions entry for a cosine representation of 2D/3D

elements is:

R> list(type = "DCT2D", qThresh, parallel)

R> list(type = "DCT3D", qThresh, parallel)

The discrete cosine transformation is a real-valued variant of the fast Fourier transform

(FFT) and usually results in a huge number of non-zero coefficients that mostly model

“noise” and can thus be set to zero without affecting the representation of the data.

The user has to supply a threshold between 0 and 1 (qThresh) that defines the

proportion of coefficients to be thresholded. Setting e.g. qThresh = 0.9 will set 90%
of the coefficients to zero, leaving only the 10% of the coefficients with the highest

absolute values. The coefficients are stored in a sparseMatrix (package Matrix)

object to reduce the memory load for the following computations. The calculations

can be run in parallel for the different observations by setting the parameter parallel

to TRUE (defaults to FALSE), if a parallel backend has been registered before.

Further Options for MFPCA

With the mean function, the principal components and the individual scores calculated in

the MFPCA function, the observed functions x1, . . . , xN can be reconstructed based on the

truncated Karhunen-Loève representation with plugged-in estimators as in (5.5). The re-

constructions can be obtained by setting the option fit = TRUE, which adds a multivariate

functional data object fit with N observations to the result list, where the i-th entry cor-

responds to the reconstruction x̂i of an observation xi. For a weighted version of MFPCA,

the weights can be supplied to the MFPCA function in form of a vector weights of length

p, containing the weights wj > 0 for each element j = 1, . . . , p. Both options are used

in the following example for the CanadWeather data, which uses the weights based on the

integrated pointwise variance, as discussed in Happ and Greven (2017+):

R> # calculate pointwise variance

R> varTemp <- funData(argvals = canadWeather[[1]]@argvals,

X = matrix(apply(canadWeather[[1]]@X, 2, var), nrow = 1))

R> varPrec <- funData(argvals = canadWeather[[2]]@argvals,

X = matrix(apply(canadWeather[[2]]@X, 2, var), nrow = 1))

R>

R> # compute weights based on variance functions
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Figure 5.11.: The ten observations of the bivariate Canadian weather data shown in Fig. 5.6 (solid

lines) and their reconstruction (dashed lines) based on the truncated Karhunen-Loève representa-

tion with estimates found by a weighted version of MFPCA (MFPCAweatherFit).

R> weightWeather <- c(1/integrate(varTemp), 1/integrate(varPrec))

R>

R> # weighted MFPCA with reconstruction for each observation

R> MFPCAweatherFit <- MFPCA(canadWeather, M = 3, uniExpansions = uniExpansions,

weights = weightWeather, fit = TRUE)

Fig. 5.11 shows some original functions of the canadWeather data and their reconstructions

saved in MFPCAweatherFit.

If elements are expanded in fixed basis functions, the number of basis functions that are

needed to represent the data well will in general be quite high, particularly for elements

with higher dimensional domains. As a consequence, the covariance matrix of all scores

in step 2 can become large and the eigendecompositions in step 3 can get computationally

very demanding. By setting the option approx.eigen = TRUE, the eigenproblem is solved

approximately using the augmented implicitly restarted Lanczos bidiagonalization algo-

rithm (IRLBA, Baglama and Reichel, 2005) implemented in the irlba package (Baglama,

Reichel, and Lewis, 2017). If the number M of principal components is low with respect

to the number of observations N and the total number of univariate basis functions for all

elements, the approximation will in general work very well. If in contrast M is small with

respect to N or the total number of univariate basis functions, the approximation may be

inappropriate. Following the recommendations in irlba, the approximation is not used if M

is larger than 1
2 min(N,M+) and a warning is thrown. On the other hand, if approx.eigen

= FALSE and the total number of univariate basis functions exceeds 1000, MFPCA throws a

warning, but continues calculating the exact eigendecomposition.
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Bootstrap Confidence Bands

The MFPCA function implements nonparametric bootstrap on the level of functions to

quantify the uncertainty in the estimation of the MFPCA (cf. Happ and Greven, 2017+). It

calculates pointwise bootstrap confidence bands for the principal component functions and

bootstrap confidence bands for the associated eigenvalues. For elements with fixed basis

functions, that do not depend on the data (i.e. no principal component-related methods

for the univariate decomposition), the algorithm efficiently uses the results of step 1 by

resampling from the scores on the level of curves. For all other elements, the principal

components and associated scores are recalculated for each bootstrap sample.

The confidence bands are calculated by setting the parameter bootstrap to TRUE. In this

case, the user has to supply a parameter nBootstrap, that gives the number of bootstrap

iterations and bootstrapAlpha, which specifies the significance level for the bootstrap

confidence intervals. This can be a number or a vector with multiple levels, if confidence

bands for more than one level should be calculated at a time. It defaults to 0.05. The

bootstrap confidence bands for the principal components are returned in an element CI,

which has the same length as bootstrapAlpha, the vector of significance levels. For each

level, the corresponding entry in CI is named e.g. alpha_0.05 for a confidence level of 0.05.

Each is a list of length 2, containing the upper (upper) and the lower bound (lower) as

multiFunData objects. The confidence intervals for the eigenvalues are returned in an entry

CIvalues, which is a list of length 2, containing the vectors of the lower or upper confidence

bounds, respectively.

5.5. Summary and Outlook

The funData package implements functional data in an object-oriented manner. The aim of

the package is to provide a flexible and unified toolbox for dense univariate and multivariate

functional data with different dimensional domains as well as irregular functional data. The

package implements basic utilities for creating, accessing and modifying the data, upon

which other packages can be built. This distinguishes the funData package from other

packages for functional data, that either do not provide a specific data structure together

with basic utilities or mix this aspect with the implementation of advanced methods for

functional data.

The funData package implements three classes for representing functional data based on

the observed values and without any further assumptions such as basis function represen-

tations. The classes follow a unified approach for representing and working with the data,
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which means that the same methods are implemented for all the three classes (polymor-

phism). The package further includes a full simulation toolbox for univariate and multivari-

ate functional data on one- and higher dimensional domains. This is a very useful feature

when implementing and testing new methodological developments.

The MFPCA package is an example for an advanced methodological package, which builds

upon the funData functionalities. It implements a new approach, multivariate functional

principal component analysis for data on different dimensional domains (Happ and Greven,

2017+). All calculations relating to the functional data, data input and output use the

basic funData classes and methods.

Both packages, funData and MFPCA, are publicly available on CRAN (https://CRAN.

R-project.org) and GitHub (https://github.com/ClaraHapp). They come with a com-

prehensive documentation, including many examples. Both of them use the testthat sys-

tem for unit testing (Wickham, 2011), to make the software development more safe and

stable and reach a code coverage of over 95%.

Potential future extensions of the funData package include interfaces to other packages,

e.g. fda, fda.usc or refund. This could open all methods for functional data implemented

in these packages to functional data objects of the funData package. At the same time,

the results of these methods could be transformed back to functional data objects of the

funData package for using the basic utility functions, such as e.g. plotting based on the

ggplot2 graphics engine. Further, one may think of extending the existing classes to

represent an even broader group of functional data, by e.g. allowing the irregFunData

class to have observation points in a higher dimensional space or by providing appropriate

plotting methods for one-dimensional curves in 2D or 3D space. For the MFPCA, new

basis functions as e.g. wavelets could be implemented.
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Abstract:

Complex statistical models often require strong assumptions to overcome the issue of non-

identifiability. While in theory it is well understood that model assumptions can strongly

influence the results, this seems to be underappreciated in practice. We address the impact

of model assumptions in the case of scalar-on-image regression.

This paper gives a systematic overview of the main approaches and their assumptions. We

propose to categorize the latter into underlying and parametric assumptions and develop

measures to quantify the degree to which specific assumptions are met. The extent of the

problem is investigated in a simulation study and in a practical application to neuroimaging

data. The results show that while the predictive performance is similar across models,

different assumptions can indeed lead to quite different estimates, raising the question of

their interpretability.

We thus recommend to carefully identify the assumptions made in a model. Moreover, it

seems helpful to compare the obtained estimates to others, found by models with different

assumptions, in order to find common patterns. These might help understanding which

features in the estimate are mostly driven by the data, dominated by the model assumptions

or supported by both. Systematic simulation studies based on observed data and hypothetic

coefficient images, as used in this paper, may lead to further insights about the features in

coefficient images that can be found with the data at hand.
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6.1. Introduction

With the increasing availability of complex data, highly specialized statistical methods

have been developed in recent years, which account for the particular characteristics of

such data. Image data, which are the focus of this article, are an example of data that

require specifically tailored statistical methods. Their development has largely been driven

by the technological progress in medical imaging and related fields (e.g. Friston et al., 2007;

Smith and Fahrmeir, 2007). Given today’s high-resolution imaging techniques, the number

of pixels (or voxels) and therefore parameters in an image is usually much higher than the

number of observed images. This makes the statistical analysis of image data a typical

example of an n � p problem, where the number of variables is higher than the number

of observations. Whereas for e.g. genetic data variable selection methods have proven

very useful (Zou and Hastie, 2005), statistical methods for image data can make use of the

spatial structure in the data. This is achieved by making structural model assumptions, that

translate e.g. the hypothesis of a smooth image into restrictions on the model parameters.

However, as stated in Coombs (1964) “we buy information with assumptions”. This comes

at the price that the estimate found by a certain model contains not only information from

the data, but also from the assumptions made in the model. It is thus fundamental to

consider the role of the model assumptions when analyzing the results.

Non-identifiability in scalar-on-image regression: In this paper, we address the issue

of how model assumptions influence the estimates in the case of scalar-on-image regression.

The goal here is to find a relationship between a scalar response and an image covariate.

In contrast to the widely used and very popular pixelwise or voxelwise methods, as for

example statistical parametric mapping (SPM, Friston et al., 2007), the pixels enter the

scalar-on-image regression models all at once. Consequently, the number of variables in

principle equals the number of pixels in the image, plus potentially further effects of other

covariates. The model is hence inherently unidentified and requires strong assumptions on

the coefficients to overcome the issue of non-identifiability. While this is less problematic for

prediction (different coefficient images may give similar predictions), it remains an issue for

the estimation and particularly for the interpretability of the coefficient image. Although all

this is well understood from a theoretical point of view, we consider it an underappreciated

problem in practice, which entails the risk of over-interpreting effects that are mainly driven

by the model assumptions.

Aims of this paper: The aim of this paper is three-fold. First, we provide an overview of

different conceptual approaches for scalar-on-image regression, including their assumptions

and currently available implementations. We systematically compare the models from a

theoretical point of view as well as in simulations and in a real case study based on neu-

roimaging data from a study on Alzheimer’s disease (Mueller et al., 2005; Weiner et al.,
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2015). Second, due to the inherent non-identifiability of scalar-on-image regression mod-

els, we investigate the influence of the model assumptions on the coefficient estimates and

examine the extent of the problem in practice. We show that different assumptions can

indeed lead to quite different estimates, raising the question of interpretability of the re-

sulting estimates. Finally, we give recommendations and develop measures that may help

to make modeling and interpretation decisions in practice.

Considered models and their assumptions: Overall, we discuss eight models that rep-

resent the principal approaches for scalar-on-image regression. Some reduce the complexity

by means of basis function representations of the coefficient image, such as penalized splines

(Marx and Eilers, 2005), wavelets (Daubechies, 1988) or functional principal components

(Allen, 2013) and can therefore be related to the broad field of scalar-on-function regression

methods (Reiss, Goldsmith, et al., 2016+; Müller and Stadtmüller, 2005; Cardot et al.,

1999). Others apply dimension reduction methods, such as principal component analy-

sis or partial least squares, partly combined with a basis function expansion (Reiss and

Ogden, 2010; Reiss, Huo, et al., 2015). Finally, we also consider methods that formulate

the model assumptions in terms of spatial Gaussian Markov random field priors (Besag,

1974; Goldsmith, Huang, et al., 2014). We argue that the structural assumptions made in

the different models can come in different levels of abstraction and propose to distinguish

between underlying and parametric model assumptions. In a spline regression model, for

example, the underlying assumption is smoothness, while the parametric assumption puts

a difference penalty on neighbouring spline coefficients. Across all scalar-on-image regres-

sion models considered in this paper, we find smoothness and sparsity to be the two key

concepts. One or both of them are considered in all discussed models. Prior variability and

projection onto a subspace are further central concepts. For all types of assumptions, we

propose interpretable measures to quantify the extent to which the model assumptions are

met. They can help to understand the influence of the assumptions on the estimation result

and are an important contribution for the appropriate interpretation of the results.

Conclusions from simulated and real data: The influence of the model assumptions

is studied in more detail in a simulation study with four different coefficient images that

reflect the four main assumptions of the models. The results show that while the predictive

performance is mostly similar among the models, there is a wide variability in the goodness

of the estimation, depending both on the“true”coefficient image and the assumptions made

in the model. We therefore highly recommend to carefully choose the model assumptions

in scalar-on-image regression and to take them into account when interpreting resulting

estimates. In the simulation study we demonstrate how numerical experiments with the

real data and hypothetic coefficient images can be used to determine which types of features

in a coefficient image can be found using models with appropriate assumptions and the

observed data. Moreover, comparing the estimate with results from similar models with

different assumptions may help to distinguish between features that are mostly driven by
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the data, those that mainly reflect the model assumptions and others that are supported

by both.

Outline: The article is structured as follows: Section 6.2 introduces the scalar-on-image

regression model and the different estimation methods. Particular emphasis is put on the

model assumptions. Section 6.3 compares and categorizes the assumptions, distinguishing

between underlying and parametric model assumptions. Further, measures are developed

that allow to characterize to what extent the assumptions of a certain model are met.

Section 6.4 contains the simulation study and Section 6.5 presents the neuroimaging ap-

plication. The paper concludes with a short discussion and an outlook to potential future

research in Section 6.6.

6.2. Overview of Methods for Scalar-on-Image Regression

This section introduces the scalar-on-image regression model (Section 6.2.1) and provides

a systematic overview of the approaches considered in this paper (Section 6.2.2 for basis

function approaches and Section 6.2.3 for random field methods). The presented models

have been selected to represent the most important assumptions and all relevant model

classes in scalar-on-image regression. In addition, we have focused on easily accessible

methods, for which software solutions are already available or can be implemented without

much effort. An overview of the implementations for the studied methods is given in

Section 6.2.4 and in the code supplement of this article (available on GitHub: https:

//github.com/ClaraHapp/SOIR).

6.2.1. The Scalar-on-Image Regression Model

The scalar-on-image regression model studied in this paper is assumed to be of the following

form:

yi =
p∑
j=1

wi,jαj +
L∑
l=1

xi,lβl + εi, i = 1, . . . , N. (6.1)

The observed data for each of the N ∈ N observation units (e.g. subjects in a medical

study) consist of a scalar response yi, an image covariate xi with L ∈ N pixels (demeaned

over all observations) and scalar covariates wi ∈ Rp, including an intercept term. As in the

standard linear model, the vector α ∈ Rp contains the coefficients for wi and the error term

εi is assumed to be i.i.d. Gaussian with variance σ2
ε > 0. The coefficient image β relates

the observed images xi to the response and therefore has the same size as xi. Alternatively,

the model can be written in matrix-form

y = Wα +Xβ + ε (6.2)
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with y = (y1, . . . , yN), W ∈ RN×p the matrix of scalar covariates (row-wise), X ∈ RN×L

the matrix of vectorized image covariates, β ∈ RL the vectorized coefficient image and

ε ∼ N(0, σ2
εIN) with IN ∈ RN×N the identity matrix. Note that theoretically, the images xi

and therefore also the coefficient image β can be two-, three- or even higher dimensional. In

practice, increasing the dimensionality of the images is frequently associated with a consid-

erable computational burden and is not supported by all implementations, see Section 6.2.4.

For reasons of simplicity and comparability, only 2D images are considered in the following

analysis.

Model (6.1) is effectively a standard linear model with coefficients α and β. In most cases,

however, the total number of coefficients p + L will exceed the number of observation

units N by far, i.e. model (6.1) will in general be unidentifiable. On the other hand,

the coefficients βl are known to form an image and thus will show dependencies between

neighbouring pixels. It is therefore natural to make structural assumptions about β such

as e.g. smoothness. These assumptions imply restrictions on the coefficients βl and can

thus help to overcome the issue of non-identifiability. As the true β coefficient is unknown,

the structural assumptions on β have to be made prior to the analysis. They reflect prior

beliefs about the unknown image and can be expected to have an influence on the result. If

one assumes e.g. smoothness and thus enforces smoothness in the model estimation, then

the result will be a more or less smooth image.

6.2.2. Basis Function Approaches

Basis function approaches start from the idea that the unknown coefficient image is gener-

ated by a function β(·) : T → R with T ⊂ R2. The function is evaluated at a rectangular

grid of observation points tl ∈ T (the pixels), such that βl = β(tl), and assumed to lie in the

span of K known basis functions B1, . . . , BK , which is a K-dimensional space. Then (6.1)

translates to

yi =
p∑
j=1

wi,jαj +
L∑
l=1

xi,lβl + εi =
p∑
j=1

wi,jαj +
L∑
l=1

xi,l
K∑
k=1

bkBk(tl) + εi. (6.3)

This assumption reduces the estimation of β from L coefficients βl to K coefficients bk, as

usually the number of basis functions K is chosen much smaller than the number of pixels

L. If further p + K < N , this solves the identifiability issue. Otherwise, one can make

additional assumptions on the coefficients bk, depending on the basis functions used.

110



6.2. Overview of Methods for Scalar-on-Image Regression

If the basis functions Bk are orthonormal, it can be useful to interpret the observed images

xi as functions, too, and to expand them in the same basis functions as β(·) with coefficients

θi,m, as then

yi =
p∑
j=1

wi,jαj +
L∑
l=1

xi,lβl + εi ≈
p∑
j=1

wi,jαj +
K∑
m=1

K∑
k=1

θi,mbk
L∑
l=1

Bm(tl)Bk(tl) + εi

≈
p∑
j=1

wi,jαj +
K∑
m=1

K∑
k=1

θi,mbk

∫
T
Bm(t)Bk(t)dt+ εi = w>i α + θ>i b+ εi, (6.4)

which is a standard linear regression with the covariate vectors wi = (wi,1, . . . , wi,p) and

θi = (θi,1, . . . , θi,K) and the coefficient vectors α and b = (b1, . . . , bK). Note that the

approximation in (6.4) in general must include integration weights to be valid. In most

cases, however, the pixels are all equidistant and the weights can be set to one, at most

changing the scale of β(·). Given an estimate b̂, a simple plug-in estimate for β then is

β̂l = ∑K
k=1 b̂kBk(tl).

The choice of the basis functions has a considerable influence on the estimate β̂. We divide

the methods into three classes with fixed basis functions, data-driven basis functions or a

combination of the two.

Fixed basis functions

(Penalized) B-Splines, Marx and Eilers (2005), in the following referred to as Splines :

B-Splines (Eilers and Marx, 1996; De Boor, 1972) are a popular class of bases for repre-

senting smooth functions. In the case of a two-dimensional function evaluated on a grid of

pixels, one can use tensor product splines (Marx and Eilers, 2005), giving

β(t) =
Kx∑
kx=1

Ky∑
ky=1

bkx,kyBkx(tx)Bky(ty)

for t = (tx, ty). In the scalar-on-image regression model proposed by Marx and Eilers

(2005), the unknown coefficients b and α are found by minimizing the penalized least squares

criterion

N∑
i=1

yi − p∑
j=1

wi,jαj −
L∑
l=1

xi,l
Kx∑
kx=1

Ky∑
ky=1

bkx,kyBkx(tl,x)Bky(tl,y)
2

+λx penx(b)+λy peny(b)→ min
α,b

,

where the penalty terms penx and peny usually penalize differences in b along the x- and

y- axes in order to obtain a smooth function and an identifiable model. In Happ (2013)

and more generally in Scheipl and Greven (2016), however, it is shown that identifiability

remains an issue if the covariates do not contain sufficient variation in the penalty null
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space. The penalty parameters λx, λy > 0 can be found e.g. by (generalized) cross-validation

(Marx and Eilers, 2005) or using a restricted maximum likelihood (REML) approach (Wood,

2011).

The main assumption here is that the unknown coefficient function β(·) can be represented

well by the Kx ·Ky tensor product spline basis functions and that it has smooth variation.

Wavelets, Reiss, Huo, et al. (2015), WNET :

Given a so-called pair of mother and father wavelet functions ψ and φ, an arbitrary function

f can be expressed as

f(t) =
∑
n∈Z

cM0,nφM0,n(t) +
M0∑

m=−∞

∑
n∈Z

dm,nψm,n(t)

with coefficients cM0,n = 〈f, φM0,n〉2 and dm,n = 〈f, ψm,n〉2. The basis functions φm,n and

ψm,n are orthonormal for a given resolution level m and derive from the original mother and

father wavelets via dilatation and translation: ψm,n(t) = 2−m/2ψ(2−mt − n) and φm,n(t) =
2−m/2φ(2−mt− n) with m,n ∈ Z (see e.g. Daubechies, 1988). In practical applications, f

will be observed on a finite grid {t1, . . . , tL}, and thus the infinite sums will be truncated.

For the two-dimensional case, one can again use a tensor-type approach, defining basis

functions for the x-, y- and xy-directions. The basis coefficients can be obtained efficiently

if the side length of the image is a power of 2 (Mallat, 1989).

In practice, one observes that only a few basis functions are needed to describe most func-

tions well, even those with sharp, highly localized features, due to the different resolutions

of the basis functions. The majority of the coefficients can therefore be set to 0 without

affecting the important characteristics of the function. This is the basic idea of the scalar-

on-image model proposed in Reiss, Huo, et al. (2015), where the expansion of the unknown

coefficient function β(·) in wavelet basis functions is combined with a variable selection

step. As the wavelet basis functions form an orthonormal basis, the observed images xi are

transformed to the wavelet space, according to (6.4), renaming the wavelet coefficients cM0,n

and dm,n associated with xi to θi,1, . . . , θi,K and the corresponding wavelet basis functions to

B1, . . . , BK . The coefficients bk thus represent the wavelet coefficients of β(·) with respect

to the same basis. In general, the number of coefficients K will equal the number of pixels,

i.e. the model is still non-identifiable. Here is where the variable selection step comes into

play: Reiss, Huo, et al. (2015) propose to add a (näıve) elastic net penalty (Zou and Hastie,

2005), i.e. one minimizes

N∑
i=1

yi − p∑
j=1

wi,jαj −
K∑
k=1

θi,kbk

2

+ λ

[
η

K∑
k=1
|bk|+ (1− η)

K∑
k=1

b2
k

]
→ min

α,b

for a penalty parameter λ > 0 and a mixing parameter η ∈ [0, 1]. For η = 0 one obtains

a Ridge-type penalty for the coefficients bk and for η = 1, the penalty corresponds to a
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LASSO approach (Tibshirani, 1996). For 0 < η < 1, the penalty is a mixture of both,

combining the smoothing property of Ridge regression with the variable selection made by

LASSO. The algorithm can be extended by an additional screening step, retaining only the

K∗ < K coefficients with the highest variance, following Johnstone and Lu (2009). This

number K∗, together with λ and η, can be chosen e.g. by cross-validation.

The main assumption on β(·) is sparsity of the coefficients bk, i.e. that the signal concentrates

on a few basis functions. The preselection step further assumes that the non-zero coefficients

in b are those corresponding to the highest variation in the observed images xi.

Data-driven basis functions

Principal component regression, e.g. Müller and Stadtmüller (2005) and Allen (2013),

PCR2D :

Principal component regression (e.g. Müller and Stadtmüller, 2005, for the functional case)

expands the unknown function β(·) in principal components (functions or images), that are

obtained from the data. They represent orthogonal modes of variation in the data and thus

provide the most parsimonious representation of the data in terms of the number of basis

functions needed to explain a given degree of variation in the data. Expanding the data

and the unknown β(·) in the same K leading principal component functions and making

use of their orthonormality yields (6.4) with covariates θi,k = ξi,k (individual principal

component scores for each observation and each principal component) and coefficients bk
to be estimated. In most cases the total number of unknown variables p + K will be

much smaller than the number of observations N , thus the model is identifiable. Allen

(2013) proposes an estimation algorithm to obtain smooth principal component images

based on the CANDECOMP/PARAFRAC (CP) representation of a tensor X ∈ RN×Lx×Ly ,

containing all observed image covariates xi in a “row-wise” manner

X =
K∑
k=1

dk · uk ◦ vk ◦ wk

with weights dk ∈ R, norm-one vectors uk ∈ RN , vk ∈ RLx , wk ∈ RLy and ◦ the outer

product. The expression vk ◦ wk ∈ RLx×Ly can be interpreted as eigenimages and ξi,k =
dk ·uk,i as the individual scores for image i and eigenimage k. The approach of Allen includes

a smoothness penalty along all axes of X, controlled by smoothing parameters λu, λv and

λw. Optimal values for these parameters can be found by a generalized cross-validation

criterion following Allen (2013) and Huang, Shen, et al. (2009). Note that in the case of

images, it makes sense to set λu = 0, as otherwise this would smooth along the observations

i = 1, . . . , N .
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There are thus three main assumptions on the coefficient function β(·): First, it is assumed

that β(·) is a linear combination of the first K principal components, i.e. that β(·) shares

the same modes of variation as the observed images xi. Second, the eigenfunctions are

assumed to be representable as outer vector products vk ◦ wk in the case of Allen (2013).

Third, the eigenfunctions are smoothed, i.e. β(·) is assumed to be a smooth function.

Combined Methods

The following methods combine a basis function expansion of β(·) with a subsequent data-

dependent dimension reduction based on principal component analysis or partial least

squares.

Principal component regression based on splines, Reiss and Ogden (2010), FPCR:

As in Marx and Eilers (2005) β(·) is expanded in a spline basis and a smoothness penalty

on the coefficients b is added to impose smoothness on β(·). The least squares criterion to

minimize thus becomes

||y −Wα−XBb||2
2 + λb>Pb→ min

α,b
(6.5)

with B ∈ RL×K the matrix of the basis functions B1, . . . , BK evaluated on the observation

grid {t1, . . . , tL}, λ > 0 a regularization parameter and P ∈ RK×K an appropriate penalty

matrix, e.g. for penalizing first differences. This corresponds to a penalized linear model

with design matrix XB for the coefficients b. In a next step, the singular value decom-

position of XB is calculated: XB = UDV > with V ∈ RK×K containing the principal

components of XB. Reiss and Ogden (2010) then assume b to lie in the span of the leading

K0 < K principal components of XB, i.e. b = V0b̃ with V0 ∈ RK×K0 the matrix containing

the first K0 columns of V . Then (6.5) can be written as a model in b̃∣∣∣∣∣∣y −Wα−XBV0b̃
∣∣∣∣∣∣

2

2
+ λb̃V >0 PV0b̃→ min

α,b̃
.

Usually, K0 will be much smaller than K, which makes the model identifiable in b̃ if K0 < n.

Once an estimate for b̃ is found, the estimated coefficient image is given by β̂ = BV0b̃. Reiss

and Ogden (2010) propose to find the optimal smoothing parameter λ via generalized cross-

validation (GCV), the Akaike information criterion (AIC) or REML. The optimal number

of principal components K0 can be found e.g. by cross-validation.

In this approach, the coefficient function β(·) is assumed to lie in the span of a given spline

basis with coefficients b and to be a smooth function, which is induced by a smoothness

penalty. Moreover, the coefficient vector is assumed to lie in the span of the leading principal

components of the matrix XB.
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Principal component regression in wavelet space, Reiss, Huo, et al. (2015), WCR:

The principal-component based wavelet method in Reiss, Huo, et al. (2015) proposes to

transform the unknown coefficient function β(·) to the wavelet space with coefficients

b = (b1, . . . , bK). As the wavelet basis is orthonormal, this is equivalent to transform-

ing the observed images xi to the wavelet domain, giving coefficients θi,k, k = 1, . . . , K and

solving (6.4). In a subsequent screening step, only the K∗ coefficients θi,k with the highest

sample-variance across the images are retained, giving a matrix X∗ ∈ RN×K∗
and the cor-

responding vector of unknown coefficients b∗ ∈ RK∗
(cf. WNET ). Next, the singular value

decomposition of X∗ = U∗D∗V ∗> is calculated with V ∗ ∈ RK∗×K∗
containing the principal

components of X∗. It is then assumed that b∗ lies in the span of the first K0 principal

components of X∗, i.e. b∗ = V ∗0 b̃
∗ with V ∗0 the matrix containing the first K0 columns of V ∗

as in the spline-based approach. An estimate for b̃∗ can be found by minimizing

∣∣∣∣∣∣y −Wα−X∗V ∗0 b̃∗
∣∣∣∣∣∣

2

2
→ min

α,b̃∗
.

Given the estimated values b̃∗, the estimated coefficient function β̂(·) can be obtained by

calculating b∗ = V ∗0 b̃
∗, setting all other coefficients in b to zero and retransforming b to the

original space. The number K∗ of wavelet coefficients to retain as well as the number K0

of principal components can be chosen by cross-validation.

The coefficient function β(·) here is assumed to be representable by given wavelet basis

functions, where only a small number K∗ of wavelet coefficients are assumed to be non-

zero, notably those coefficients which have the highest variation in the images (see also

the wavelet approach with elastic net). Moreover, the coefficient vector is assumed to lie

in the span of the leading principal components of the non-zero wavelet coefficients of the

images.

Partial least squares in wavelet space, Reiss, Huo, et al. (2015), WPLS :

A variant of the last method is presented in Reiss, Huo, et al. (2015), where principal

component analysis is replaced by partial least squares. While principal component analysis

focuses on the most important modes of variation in the covariate images xi or their wavelet

coefficients θi,k, respectively, partial least squares finds the components in xi that are most

relevant for predicting the outcome yi. The approach thus transforms the images to the

wavelet space and retains the K∗ coefficients with the highest covariance with the response,

giving a matrix X∗ ∈ RN×K∗
. Next, the K0 leading partial least squares components of the

remaining coefficients and the response yi are calculated and stored in a matrix R∗0. The

resulting least squares criterion is

∣∣∣∣∣∣y −Wα−X∗R∗0b̃∗
∣∣∣∣∣∣

2

2
→ min

α,b̃∗
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Given an estimate for b̃∗, the non-zero coefficients b∗ of β(·) in the wavelet space are given

by R∗0b̃
∗. As in the principal component version, the number K∗ of wavelet coefficients to

retain and the number K0 of PLS components can be chosen by cross-validation.

Similarly to the previous approach, β(·) is assumed to lie in the span of wavelets with a

sparse coefficient vector b, having non-zero values only for those entries where the corre-

sponding wavelet coefficients of the images have the highest covariation with the response.

Moreover, the non-zero coefficients b∗ are assumed to lie in the span of the leading princi-

pal least squares components of the corresponding wavelet coefficients θi,k of the observed

images xi with the response.

6.2.3. Random Field Methods

Random fields model the coefficient image β in a Bayesian framework. In contrast to

the basis function approaches, β is modeled directly on the pixel level, i.e. the unknown

coefficient is β = (β1, . . . , βL). Following the Bayesian paradigm, one assumes a prior

distribution for all variables in model (6.2), assuming that α, β and σ2
ε are independent:

y
∣∣∣α, β, σ2

ε ∼ N(Wα +Xβ, σ2
εIN)

p(α) ∝ const β ∼ Fβ σ2
ε ∼ IG(δ(1)

ε , δ(2)
ε )

for some δ(1)
ε , δ(2)

ε > 0. In this case, the full conditionals for α and σ2
ε are given by

α|· ∼ N
(
(W>W )−1W>(y −Xβ), σ2

ε(W>W )−1
)

σ2
ε

∣∣∣· ∼ IG
(
δ(1)
ε + N

2 , δ
(2)
ε + 1

2(y −Wα−Xβ)>(y −Wα−Xβ)
)
,

i.e. they are known distributions. Samples from the posterior distribution can thus be

obtained by a simple Gibbs sampler. The prior Fβ for β should be a random field, modeling

the spatial dependence between pixels. Ideally, it should yield a relatively simple full

conditional in order to facilitate sampling from the posterior.

Gaussian Markov Random Fields, e.g. Besag (1974) and Rue and Held (2005), GMRF :

A commonly used class of priors for β are (intrinsic) Gaussian Markov Random Fields

(GMRF), which can induce smoothness and constitute a conjugate prior for β. The value

of β for a pixel l is assumed to depend only on the values of β in the neighbourhood (Markov

property), which can be modeled as

βl
∣∣∣βδ(l), σ2

β ∼ N
( 1
dl

∑
j∼l

βj,
σ2
β

dl

)
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with dl = #{j = 1, . . . , L : j ∼ l} the number of neighbours of l and βδ(l) the set of all

neighbouring coefficients, i.e. βδ(l) = {βj : j ∼ l}, where j ∼ l means that the pixels j and

l are neighbours. (cf. Besag, 1974; Rue and Held, 2005). The choice of the neighbourhood

thus models the dependence structure in β. The common variance parameter σ2
β is again

assumed to have an IG(δ(1)
β , δ

(2)
β ), δ(1)

β , δ
(2)
β > 0 distribution, which can be shown to be

conjugate in this case. The prior assumption for β can be rewritten in an unconditional

form

p
(
β
∣∣∣σ2
β

)
∝ (σ2

β)− rank(P )/2 exp
(
− 1

2σ2
β

β>Pβ
)

with P ∈ RL×L the neighbourhood matrix with pj,l = dl for j = l, pj,l = −1 for j ∼ l

and pj,l = 0 otherwise. This is not a proper distribution, as P does not have full rank

(rank(P ) = L−1). However, this prior assumption yields a proper Gaussian full conditional

for β if the data contains enough information, and hence samples from the posterior can be

drawn by simple Gibbs sampling.

The Bayesian approach with Gaussian Markov random field priors has an interesting cor-

respondence to penalized basis function methods with constant local basis functions 1l for

each pixel, where the Gaussian prior corresponds to the quadratic penalty. The smoothing

parameter is given by λ = σ2
ε

σ2
β
.

The assumptions for the Bayesian GMRF models are given in terms of the priors. For the

coefficient image β the GMRF prior induces smoothness.

Sparse Gaussian Markov Random Field, Goldsmith, Huang, et al. (2014),

SparseGMRF :

The sparse GMRF method proposed in Goldsmith, Huang, et al. (2014) adds a variable

selection aspect to the GMRF model to combine smoothness with sparsity. The basic idea

here is that in general, not the full image xi will show a relevant association with the re-

sponse and thus major parts of the coefficient image β can be assumed to be zero. At the

same time, the non-zero pixels of interest ideally should form smooth coherent clusters.

In Goldsmith, Huang, et al. (2014), this is modeled by combining the GMRF prior for β

with a latent binary Ising prior γ. The corresponding priors are given as follows

βl
∣∣∣βδ(l), γl, σ2

β ∼


δ(0) γl = 0
N
(

1
dl

∑
j∼l βj,

σ2
β

dl

)
γl = 1

γ ∼ Ising(a, b)

with δ(0) the Dirac measure centered at 0. The sparse GMRF model thus has an additional

level γ in the hierarchical Bayesian model structure with parameters a and b. Depending

on the value of the Ising field γ in a pixel l, the corresponding β coefficient is either set
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to 0 (if γl = 0, pixel is not selected) or follows the GMRF prior distribution (if γl = 1,

i.e. pixel is selected). Goldsmith, Huang, et al. (2014) show that samples from the joint

full conditional of β and γ can be obtained by single-site Gibbs sampling. The authors

propose to choose the hyperparameters σ2
ε , σ

2
β, a and b via cross-validation with extremely

short MCMC chains (e.g. 250 iterations).

This model assumes the true β image to be sparse with a few coherent smooth areas of

non-zero pixels, which is modeled by a combination of a GMRF and a latent Ising field.

6.2.4. Implementations

For most of the considered approaches, software implementations are available in existing

R-packages or easily made available. This was one of the inclusion criteria.

The spline regression model (Splines) can be fit using the gam function for generalized

additive models in the R-package mgcv (Wood, 2011; Wood, 2017). The implementation is

very flexible and can handle 2D, 3D or even higher dimensional data and many different

basis functions.

All wavelet-based approaches (WCR, WPLS and WNET ) are implemented in the re-

fund.wave package (Huo et al., 2014, WCR and WPLS in wcr, using different options and

WNET in wnet), heavily building on the wavethresh package (Nason, 2016) for calculating

the transformations into the wavelet space and the retransformations back to the original

space. They all can handle 2D and 3D images with the restriction that the sidelength of the

images must be the same power of 2 for all dimensions. For WNET, the glmnet package

(Friedman et al., 2010) is used for the elastic net part.

The principal component regression approach based on splines (FPCR) is available in the

function fpcr in the related package refund (Goldsmith, Scheipl, et al., 2016). The imple-

mentation currently accepts only 2D images, but without restrictions on the sidelengths of

the images.

For the calculation of the eigenimages in PCR2D we use the implementation in the MFPCA

package (Happ, 2017b), which at present works only for 2D images. The scalar-on-image

regression model based on the scores can be fit with the standard lm function for linear

models. The reconstruction of the coefficient image β̂ using the estimated eigenimages

and the regression coefficients can easily be done using the expandBasisFunction method

in MFPCA. In principle, the MFPCA approach (Happ and Greven, 2017+) can be used to

calculate eigenimages, too, interpreting the images as multivariate functional data with a

single element on a two- or three-dimensional domain.

For SparseGMRF, Goldsmith, Huang, et al. (2014) provide an R implementation of the

Gibbs sampler in the supplementary files. As the code turns out to be quite slow for larger
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images, we use our own C implementation of the Gibbs sampler and implement the cross-

validation in R. For the fully Bayesian GMRF model, we use a variant of our C code for

SparseGMRF, without the latent Ising field γ, but including Gibbs sampling steps for the

variance parameters σ2
ε and σ2

β. Both models are currently implemented only for 2D images,

but can easily be extended to the 3D case. The most important aspect here is to properly

define the neighbourhood in the three-dimensional case.

Usage examples for all methods are given in the code supplement of this article (https:

//github.com/ClaraHapp/SOIR).

6.3. Discussion and Measures for Model Assumptions

As discussed in Section 6.2.1, the scalar-on-image regression model (6.1) in general is not

identifiable, as the total number of model coefficients in most applications exceeds the num-

ber of observation units. It is therefore necessary to make structural assumptions on β to

overcome the issue of non-identifiability and make estimation possible. However, all assump-

tions come at a price, as the estimated coefficient image will reflect the model assumptions,

e.g. in terms of smoothness. It is hence important to be aware of the assumptions made

and to understand how they influence the estimate.

6.3.1. Underlying and Parametric Model Assumptions

In the following, we distinguish between underlying and parametric model assumptions.

The underlying assumptions describe the fundamental model assumptions, such as smooth-

ness or sparsity, and the general class of coefficient images that a model can handle, e.g.

linear combinations of splines or wavelets. The parametric model assumptions reflect re-

strictions of the model parameters in the estimation process, in terms of penalties or variable

selection.

For the discussed models, the underlying and parametric model assumptions can be broadly

divided into three categories each (cf. Tables 6.1 and 6.2). For the underlying assumptions,

there are 1. smoothness, meaning that neighbouring pixels have similar values, 2. sparsity,

that is a few coefficients dominate all others and 3. projection, which reflects the assumption

that the true coefficient image β can be expanded in a finite number of given basis functions.

For the parametric model assumptions, we have 1. smoothness via quadratic difference

penalties of neighbouring coefficients, 2. sparsity via variable selection and 3. assumptions

on the variability of β (σ2
β in the Bayesian GMRF based models).

If the true β image fulfils the underlying model assumptions, then the model should be able

to find it, if enough data is provided. If the true β is not in the class of coefficient images
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Table 6.1.: Underlying model assumptions for the considered models. The order of the models

has been slightly rearranged with respect to the presentation in Section 6.2 according to their

assumptions.

Method Smoothness Sparsity Projection

Splines image - spline basis

FPCR image PCs of XB spline basis

PCR2D - PCs of images PCs of images

WCR - wavelet coefficients wavelet space

WPLS - wavelet coefficients wavelet space

WNET - wavelet coefficients wavelet space

SparseGMRF image pixels -

GMRF image - -

Table 6.2.: Parametric assumptions for the considered models.

Method Smoothness Sparsity Prior Variability

(Penalty/Prior) (Variable Selection)

Splines spline coefficients - -

FPCR spline coefficients PCs of XB -

PCR2D - PCs of images -

WCR - wavelet coefficients & PCs -

WPLS - wavelet coefficients & PLSCs -

WNET - wavelet coefficients -

SparseGMRF pixels pixels via Ising field CV for σ2
β

GMRF pixels - IG-prior on σ2
β

defined by the model, then the result will be an approximation of the true β within the

given class, i.e. the underlying assumptions will introduce some sort of bias. Strong model

assumptions will restrict the class of “estimable” coefficient images considerably and thus

will in general lead to a stronger bias than mild assumptions. In general, this bias cannot

be detected from in-sample prediction error due to non-identifiability of β, as different

estimates β̂ can give equally good predictions. Therefore, widely used methods such as

cross-validation can not provide protection against this issue. It is therefore important to

develop measures that quantify how well the underlying and parametric model assumptions

are met, in order to understand how strongly the assumptions affect the estimate.
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6.3.2. Measures for Quantifying the Impact of Model Assumptions

In the following, we develop measures for the underlying and parametric model assumptions

discussed before. For better comparability, all measures take values between 0 and 1 with 0
meaning that the model assumptions are perfectly met and 1 meaning that the assumptions

are not met at all.

Smoothness: Here we interpret smoothness as neighbouring pixels having similar values.

The sum of squared differences between neighbours can thus be used as a measure of

smoothness. For β ∈ RL with a given neighbourhood structure (e.g. first differences), a

natural smoothness measure is

m̃Smoothness(β) =
∑
i∼j

(βi − βj)2 = β>Pβ

for the symmetric and positive semidefinite neighbourhood matrix P ∈ RL×L (see GMRF

in Section 6.2.3). By the theorem of Rayleigh-Ritz (Horn and Johnson, 1985, Thm. 4.2.2),

it holds

λmin(P ) ≤ x>Px

x>x
≤ λmax(P ) for all x ∈ RL \ {0}

and the equalities are fulfilled for the eigenvectors of P associated with the minimal and

maximal eigenvalues of P , λmin(P ) and λmax(P ), respectively. For a constant vector x,

the value of m̃Smoothness will be equal to 0, as P does not have full rank and λmin(P ) = 0.

Rescaling m̃Smoothness to

mSmoothness(β) = β>Pβ

λmax(P )β>β

yields a smoothness measure between 0 (constant, i.e. extremely smooth image) and 1

(extremely nonsmooth images).

This measure can be used to assess the smoothness of an image as an underlying model

assumption and also for the parametric smoothness assumptions made for the GMRF based

models. For the approaches using splines, β has to be replaced by the vector of spline

coefficients (b1, . . . , bK) and P ∈ RK×K has to be chosen as the associated penalty matrix

to measure the parametric smoothness assumption.

Sparsity: Many scalar-on-image regression methods involve underlying sparsity assump-

tions, e.g. for the coefficient image (Goldsmith, Huang, et al., 2014) or for the wavelet

coefficients (e.g. Reiss, Huo, et al., 2015). Hurley and Rickard (2009) compare differ-

ent sparsity measures for images based on six criteria (Robin Hood, Scaling, Rising Tide,
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Cloning, Bill Gates, Babies), partly introduced by Dalton (1920) in the context of measur-

ing the inequity of incomes. The measure that fulfils all criteria and hence is a reasonable

measure for sparsity of an image β ∈ RL is the Gini index

G(β) = 1− 2
L∑
l=1

β(l)

‖β‖1

(
L− l + 1

2
L

)

with β(1) ≤ β(2) ≤ . . . ≤ β(L) the ordered values of |βl| , l = 1, . . . , L and ‖β‖1 = ∑L
i=l |βl|.

Note that at least one entry of β must be non-zero for G(β) to be well defined. For reasons

of consistency, we define

mSparsity(β) = 1−G(β)

with mSparsity(β) = 0 for complete inequality of β across all pixels (very sparse case) and

mSparsity(β) = 1 indicating complete equality of β across all entries (non-sparse case). This

measure can also be applied to a coefficient vector b = (b1, . . . , bK), e.g. of wavelet coeffi-

cients.

Sparsity can be induced by variable selection methods, setting many coefficients to zero. A

measure for a parametric sparsity assumption for a coefficient vector b ∈ RK obtained from

a variable selection method is thus given by

mSelection(b) = #{k = 1, . . . , K : bk 6= 0}
K

,

i.e. the proportion of variables in b that are not set to zero. The measure takes values

between 0 and 1, where 0 means extreme sparsity (b ≡ 0) and 1 means no sparsity. It

corresponds to a normalized version of the `0 measure studied in Hurley and Rickard (2009).

The sparse GMRF approach (Goldsmith, Huang, et al., 2014) assumes sparsity on the pixel

level, i.e. here one can apply mSelection to the vectorized posterior mean of the Ising field γ,

thresholded at 0.5.

Projection: Basis function approaches assume that the function β(·) generating the coef-

ficient image lies in the span of some predefined basis functions B1, . . . , BK , which can be

splines, wavelets or principal component functions. A suitable measure for this assumption

is

mProjection(β) = ‖P
⊥β‖2

‖β‖2 = 1− ‖Pβ‖
2

‖β‖2

with Pβ the orthogonal projection of β onto the space spanned by B1, . . . , BK , P⊥β the

projection onto the orthogonal complement of that space and ‖β‖2 = ∑L
l=1 β

2
l . By the

Pythagorean Theorem, this measure takes values between 0 and 1, where 1 means that β

lies completely in the orthogonal complement of the basis functions and mProjection(β) = 0,

if β is indeed a linear combination of the basis functions.
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While methods with given basis functions such as splines or wavelets will usually yield good

approximations of the true functions, provided that K is large enough, principal component

methods will be more restrictive, as here K is usually small and thus β is assumed to have

similar modes of variation as the data. For a given model, the estimate β̂ will always lie

in the given model class, i.e. this measure for underlying assumptions makes sense only

for the true β, which in general is not available. However, we will use this measure in the

simulation in Section 6.4.2.

Prior variability: For Bayesian methods, parametric assumptions on the parameters are

formulated as priors. In hierarchical models, one often defines independent or conditional

priors for the individual parameters. The so-called full conditionals are the corresponding

conditional posterior distributions of one parameter given all others and the data. It is

thus natural to use the relation between the (conditional) prior of a parameter and its full

conditional posterior as a measure for the prior impact. The Kullback-Leibler divergence

is one possible way to measure the distance of a distribution with respect to a reference

distribution. It has already been applied to the Bayesian case in the theory of Bayesian

surprise (see e.g. Itti and Baldi, 2005), but for prior and posterior densities and not for the

conditional case.

For the GMRF model, the prior variance of β, σ2
β, has an inverse gamma prior. It is thus

conjugate and leads to an inverse gamma full conditional. We choose the full conditional

as the reference and calculate the Kullback-Leibler divergence to the prior, which yields

D = log
(
b
apost
post

b
apri
pri

)
+ log

(
Γ(apri)
Γ(apost)

)
+ (apri − apost)[log(bpost)− ψ(apost)] + (bpri − bpost)

apost
bpost

with fpri the density of the prior (IG(apri, bpri)), fpost the density of the full conditional

(IG(apost, bpost)) and ψ the digamma function.

For the SparseGMRF model in Goldsmith, Huang, et al. (2014), σ2
β is chosen via cross-

validation. Here, the prior can be seen as a discrete uniform distribution on the set of pos-

sible values {σ2
1, . . . , σ

2
K} for σ2

β, i.e. fpri(σ2
β) = 1

K

∑K
k=1 1{σ2

β = σ2
k} and the full conditional is

a point measure on the optimal value σ2
∗ found by cross-validation: fpost(σ2

β) = 1{σ2
β = σ2

∗}.
For the Kullback-Leibler divergence, one obtains

D = log
(
fpost(σ2

∗)
fpri(σ2

∗)

)
fpost(σ2

∗) = log(K).

The resulting distance D between prior and posterior grows logarithmically with K: in-

creasing the number of possible values from 5 to 10, say, will have a much stronger impact

than an increase from 105 to 110.
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For numerical reasons, we divide D by 10 and transform the result to [0, 1], which gives the

measure for the prior variability

mPrior(β) = 1− exp(−D/10).

Values close to 1 correspond to D →∞, i.e. situations where the information from the prior

has little influence on the full conditional and thus model assumptions will in general not

be met. By contrast, values close to 0 correspond to D ≈ 0, hence prior and full conditional

are very similar, which means that the full conditional fulfils the prior assumptions.

As mentioned, mProjection is sensible only for the true coefficient image, while mPrior also

requires information from the likelihood, and hence can be calculated only for the estimate

β̂. The other measures, mSmoothness, mSparsity and mSelection can be used for true as well as

for estimated coefficient images, even though mSelection mainly aims at estimates which are

the result of a variable selection.

The measures are interpretable in the sense that they all range between 0 and 1 with

values near 0 meaning that the coefficient image is very close to the assumptions made and

values of approximately 1 that the coefficient image is far from the assumptions. In order

to interpret the absolute values in practice, it might be helpful to create some hypothetic

coefficient images, which should be motivated by the question of interest. The measures for

the coefficient image obtained from the real data can then be compared, either directly to

the measures for the hypothetic image or to measures for coefficient image estimates based

on simulated data. For the latter, one could for example use the original image covariates

xi and the hypothetic coefficient images to generate new response values, similarly to the

setting in our simulation study.

6.4. Simulation Study

In this section, the performance of different scalar-on-image regression approaches is ana-

lyzed for various coefficient images β, reflecting the assumptions in the different models,

and real data from the Alzheimer’s Disease Neuroimaging Initiative study (ADNI, Mueller

et al., 2005; Weiner et al., 2015) that are also considered in the application in Section 6.5.

On the one hand, this ensures that the image covariates have a realistic degree of complex-

ity (cf. Reiss and Ogden, 2007; Reiss and Ogden, 2010, for similar settings). On the other

hand, this allows to study systematically which features in the coefficient images can be

found with the data at hand. We consider four different coefficient images (see Fig. 6.1):

� bumpy, an image with some high-peaked, clearly defined “bumps”, as proposed in

Reiss, Huo, et al. (2015) as a two-dimensional version of the bump function of Donoho
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Figure 6.1.: Coefficient images β used for the simulation. From left to right: bumpy, pca (based

on the first N = 250 images in the dataset), smooth and sparse. Note the individual scale for each

image.

and Johnstone (1994), which has become a common benchmark for one-dimensional

wavelet models. It is thus expected that the wavelet-based methods should be the

most suitable ones for estimation.

� pca, an image constructed as a linear combination of the first K = 5 empiri-

cal principal components of the image covariates x1, . . . , xN with coefficients bk =
(−1)k exp(−k

5 ), k = 1, . . . , 5. Obviously, the principal component based model should

work very well in this case.

� smooth, a smooth image which corresponds to the smoothness assumption made in

the spline-based models and for the Bayesian models using Gaussian Markov random

fields. It is constructed as a mixture of three 2D normal densities.

� sparse, an image that is mostly zero with two small, smooth spikes (Goldsmith, Huang,

et al., 2014). This image corresponds to the assumption made for the SparseGMRF

model. It is a mixture of two normal densities, cut off at a certain threshold, setting

all pixels with absolute values below this threshold to zero.

The performance of the different estimation methods is evaluated for all four coefficient

images and for different sample sizes and signal-to-noise ratios. A sensitivity study with

varying coefficient images gave similar results, showing that the spatial distribution of

features in the coefficient images has only a marginal impact on the results (see appendix,

Section D.4).

The image covariates stem from FDG-PET scans, which measure the glucose uptake in the

brain. The original scans were co-registered to simultaneously measured MRI scans in order

to reduce registration effects (Araque Caballero et al., 2015). We use 64 × 64 subimages

of the first N = 250 or N = 500 images in the original data as covariates x1, . . . , xN , see

Fig. 6.2. The image size is determined by the wavelet-based methods, which require the
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sidelength of the images to be a power of 2. The demeaned images take values between −1
and 1.24.

The response is constructed as

yi = α +
L∑
l=1

xi,lβl + εi, i = 1, . . . , N

with α = −1 as intercept, a total number of L = 642 = 4096 pixels and εi chosen such that

the signal-to-noise ratio

SNR = ŝd(∑L
l=1 xi,lβl)

sd(εi)
is either equal to 4 or to 1 (see e.g. Goldsmith, Huang, et al., 2014, for an analogous

approach), which corresponds to R2 = 0.94 and 0.5 (cf. Reiss and Ogden, 2007). For each

setting, the simulation and analysis is repeated 100 times, fitting in total nine different

models to the data pairs {(xi, yi), i = 1, . . . , N}.

The resulting estimates β̂ and the fitted values

ŷi = α̂ +
L∑
l=1

xi,lβ̂l, i = 1, . . . , N

are evaluated with respect to the relative estimation accuracy and the relative (in-sample)

prediction error ∑L
i=l(βl − β̂l)2∑L
i=l(βl − β̄)2

and

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 .

with β̄ = 1
L

∑L
l=1 βl and ȳ = 1

N

∑N
i=1 yi. Taking the relative errors allows to compare the

results across coefficient images β and datasets {(xi, yi), i = 1, . . . , N} generated in different

iterations of the study. A relative estimation error of 1 means that the estimated coefficient

image gives equally good results as a constant image, taking the average value of the true β

in each pixel. This corresponds to a simpler model in the mean of the image covariate over

pixels. Analogously, a relative prediction error of 1 means that the prediction is comparable

to a simple intercept model, not taking the image information into account. Relative errors

above 1 therefore are indicators for poor performance. In addition, the underlying and

parametric model assumptions from Section 6.3 are calculated for each estimate β̂ and –

for the underlying assumptions – compared with those of the true images. As computation

time plays an important role for the practical usability of the models, it is also recorded.

6.4.1. Model Settings

Splines : The unknown β image is expanded in Kx = Ky = 15 cubic B-spline basis functions

in each direction, penalizing the second squared differences of the corresponding coefficients.
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Figure 6.2.: The first three image covariates x1, x2, x3 before demeaning.

The smoothing parameter λ is found via REML. The calculations can be done using the

gam function in the R-package mgcv (Wood, 2011; Wood, 2017).

FPCR: As for the pure spline approach we use Kx = Ky = 15 basis functions for

each marginal and choose the smoothing parameter via REML. The number K0 of

principal components retained for regression is chosen via five-fold cross-validation from

{5, 10, 25, 50, 100, 150}. The model is fit using the function fpcr in the R-package refund

(Goldsmith, Scheipl, et al., 2016).

PCR2D : We calculate 25 two-dimensional principal components of the observed images

using the approach of Allen (2013) as implemented in the MFPCA package (Happ, 2017b)

with second difference penalty for smoothing in each direction. The smoothing parameters

λv, λw are chosen via GCV within the boundaries 10−4 and 102. The response y is regressed

on the first K ∈ {1, 5, 10, 15, 20, 25} score vectors to find the coefficients for the unknown

coefficient image. An optimal choice of K is found via five-fold cross-validation.

WCR: We use the function wcr in the package refund.wave (Huo et al., 2014). The ob-

served images are transformed to the wavelet space using Daubechies least-asymmetric

orthonormal compactly supported wavelets with 10 vanishing moments. The resolu-

tion level M0 is fixed to 3. Only the K∗ ∈ {10, 25, 50, 100, 250, 500, 1000} coefficients

having the highest variance are retained. The response y is regressed on the leading

K0 ∈ {5, 10, 15, 25, 50, 75} principal components of the remaining coefficients (restricting

K0 ≤ K∗) and the result is transformed back to the original space. An optimal combination

of K∗ and K0 is found via five-fold cross-validation.

WPLS : The wavelet-based principal least squares method is implemented in the same func-

tion wcr of the refund.wave package, using the option method = "pls". For all parameters

(M0, K
∗, K0) we use the same specifications as for WCR.

WNET : Here also we use Daubechies least-asymmetric orthonormal compactly supported

wavelets with 10 vanishing moments and a resolution level M0 = 3 to obtain wavelet
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coefficients from the observed images. The model is estimated using the wnet function in

the R-package refund.wave (Huo et al., 2014). As for the other two wavelet methods, the

number of wavelet coefficients that are retained for the regression is chosen from K∗ ∈
{10, 25, 50, 100, 250, 500, 1000}. For the elastic net part, the mixing parameter η can take

values in {0, 0.25, 0.5, 0.75, 1}, with 0 corresponding to the Ridge penalty and 1 giving

the LASSO approach. Candidate values for the penalty parameter λ are automatically

generated by the glmnet function. An optimal combination of K∗ and η is chosen via

five-fold cross-validation.

SparseGMRF : A constant prior for α is used. The hyperparameters are chosen via five-fold

cross-validation from a ∈ {−4,−2,−0.5}, b ∈ {0.1, 0.5, 1.5}, σ2
ε , σ

2
β ∈ {10−5, 10−3, 10−1}.

For each parameter combination and each fold (in total 81 · 5 = 405 combinations), a

short Gibbs sampling is run with 250 iterations, of which 100 are discarded as burnin (no

thinning), following the settings in Goldsmith, Huang, et al. (2014). For the starting values,

γl is sampled randomly from {0, 1} and if γl = 1, βl is sampled from N(0, σ2
β), otherwise

βl = 0. The pixels are updated in random order.

GMRF: The prior for the unknown coefficient image β is chosen as an intrinsic GMRF with

four neighbours and for α a constant prior is used. The priors for the variance parameters σ2
ε

and σ2
β are chosen as conjugate inverse gamma distributions with σ2

ε , σ
2
β ∼ IG(1, 1) (which is

considered rather uninformative, but not entirely without controversy, see Gelman (2006);

model GMRF ) and σ2
ε , σ

2
β ∼ IG(10, 10−3) (highly informative with a prior mean of 10−3 and

a prior variance of 10−9; model GMRF2 ). For both models, the Gibbs Sampler is run over

5000 iterations, of which 500 are discarded as burnin and saving each 20th step (thinning).

As a starting value, βl is initialized with N(0, σ̃2
β) with σ̃2

β the prior mode. The pixels are

updated in random order.

6.4.2. Results

Fig. 6.3 shows the results of the simulation study for N = 250 in terms of the relative

prediction and estimation error. The computing time in seconds is shown in Fig. 6.4.

Example plots for estimates and predictions of all models and all coefficient images can be

found in the appendix, Section D.1. Boxplots of the measures for underlying and parametric

model assumptions developed in Section 6.3 are shown in Fig. 6.5 (underlying assumptions,

including measures for the true coefficient images) and Fig. 6.6 (parametric assumptions).

The corresponding results for N = 500 are shown in the appendix, Section D.5.

The predictive accuracy for the different coefficient images is rather constant over all models

(except GMRF ) with values around 0.5 for SNR = 1, which means that the performance is

somewhat better than a simple intercept model, and values close to 0.05 for SNR = 4, i.e.

the models clearly perform better than the intercept model. This means that if the focus is
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6.4. Simulation Study

only on prediction, the different models and their assumptions lead to equally good results.

The scalar-on-image regression model, however, also aims at an interpretable coefficient

image β̂, showing how the observed image covariates xi influence the response yi. The

relative estimation error is thus of greater importance for assessing a model’s ability of

giving interpretable results.

As seen in Fig. 6.3 for N = 250 and similarly also in Fig. D.15 in the appendix for N = 500,

the relative estimation errors vary around 1 for SNR = 1. Exceptions are found only for pca

and PCR2D and smooth and Splines, FPCR, SparseGMRF and GMRF2, hence settings

in which the true coefficient image meets the models assumptions very well. For SNR = 4,

the errors become smaller, but particularly for bumpy and sparse, i.e. coefficient images

with highly localized features, the methods still result in relatively high error rates. The

median estimation error over all methods (except GMRF ) for N = 250 and SNR = 4 are

0.70 (bumpy), 0.45 (pca), 0.28 (smooth) and 0.74 (sparse). Overall, FPCR gives the best

results, as it is always among the best two models in terms of estimation accuracy and

also by far the model with the shortest computation time. By contrast, the GMRF model

with the IG(1, 1) prior is clearly seen to have the worst estimation accuracy of all models,

yielding relative errors roughly around 100, i.e. it performs considerably worse than a simple

intercept model. The SparseGMRF model is much slower than the other models, requiring

around 85% of the total computation time of the study, although a relatively simple setting

was chosen with only three possible values for each hyperparameter.

For the pca coefficient image, the PCR2D model gives the best results, as expected. This

is due to the fact that the true coefficient image is completely spanned by the leading

K = 5 principal components of the images (see the mProjection value in Table 6.3), and thus

the model assumptions are perfectly met in PCR2D. It is followed by the other principal

component methods, FPCR and WCR. Their measures for the parametric model assump-

tions show that a rather small proportion of principal components (in the spline or wavelet

space) is used to calculate the estimate. For the remaining models, the smoothness assum-

ing approaches perform mostly better than the wavelet-based methods WPLS and WNET.

However, the estimates are relatively unsmooth, which is seen in the higher measures for

smoothness assumptions.

Similarly, the smooth coefficient image is estimated best by the spline-based methods

(Splines, FPCR) that assume smoothness, as the image can be represented well in the

spline space (see Table 6.3). The underlying smoothness measures for both models are very

low, indicating that the estimated images are actually smooth. They also have a high corre-

lation with the true coefficient image (Fig. 6.7). The Bayesian GMRF2 and SparseGMRF

models, that also assume smoothness of the coefficient image, perform slightly worse, as

here the smoothness is assumed on a pixelwise level and thus is more local. Notably, the

estimation error for SparseGMRF becomes higher with an increasing signal-to-noise ratio.

The wavelet methods, particularly WPLS and WNET, give rather poor results for SNR = 1.
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The sparsity assumption measures show that the estimated images are too sparse in the

wavelet space and thus the sparsity assumption dominates in the estimates.

For the bumpy image, the result is more surprising. One would expect the wavelet-based

methods to perform best, as argued in Reiss, Huo, et al. (2015). By contrast, all wavelet

methods are outperformed by FPCR and GMRF2, hence two methods that assume smooth-

ness. This, however, is in line with the results of Reiss, Huo, et al. (2015), who found that

wavelet methods did not clearly outperform non-wavelet methods for the bumpy coefficient

image when compared to sparse. The measures for the underlying model assumptions give

an explanation for this result: The bumpy image can be perfectly projected into the wavelet

space, just as all coefficient images can (see Table 6.3), but has a similar sparsity in the

wavelet space as pca and smooth, i.e. the sparsity assumption in WCR, WPLS and espe-

cially WNET has no advantage for the estimation. The smoothness measures for FPCR

and GMRF2 show that the resulting estimates are a bit too smooth, but they still yield

better results than the wavelet-based methods.

The sparse coefficient image is the most difficult to estimate, as it has two rather spiky

features and the rest of the image is equal to zero. Indeed, all models (except GMRF ) have

relative estimation errors close to 1, which means that the methods perform similarly as a

pure intercept model which simply ignores the non-zero pixels in the image. Contrary to

expectation, the SparseGMRF model does not clearly perform better than other models,

although it involves a variable selection step and hence the possibility to set entire areas of

the image to zero. The model measures for parametric assumptions show that it produces

estimates that are smooth, but completely non-sparse (sparsity measure is approximately 1),

which means that the sparsity assumption is more or less ignored in the estimation process.

SparseGMRF hence behaves more as a non-sparse GMRF with the variance parameters

chosen via cross-validation. This has also a high impact on the result, as in the simulation

there were only three possible values for σ2
β due to computational reasons.

In order to check the agreement of the estimated coefficient images among each other and

with the true β, correlations of the vectorized images were calculated (median for SNR = 4
is given in Fig. 6.7). They show that the smoothness inducing models (Splines, FPCR and

GMRF2 ) are highly correlated for all coefficient images β, and also with the true smooth

image. For the wavelet-based models, there is a high correlation between WPLS and WNET

for bumpy, pca and smooth, whereas for sparse, WNET aims at an even more sparse repre-

sentation in the wavelet space and here WCR and WPLS are highly correlated. Notably, for

sparse, all estimated coefficient images show medium to high correlation among themselves,

but rather low correlation with the true coefficient image. The Bayesian GMRF /GMRF2

models show that the choice of the prior for the variance parameters matters, as GMRF2

gives reasonably good estimates, while GMRF by far has the worst results. When looking

at the corresponding measure for the prior, the GMRF2 model with the highly informa-

tive prior for σ2
β yields much higher values than the model with the less informative prior
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(GMRF ). This seems reasonable, as the prior assumptions in the highly informative model

are much stricter and therefore more difficult to meet than the uninformative ones in GMRF.

The measure for SparseGMRF is quite low, reflecting that σ2
β is chosen via cross-validation

(cf. Section 6.3.2).

In summary, the simulation results show that the assumptions made for the different models

can lead to different results with different estimation quality. The estimation accuracy varies

depending on the structure of the true coefficient image and the model, while the predictive

performance is quite similar over all models. This shows that the different models can

give equally good predictions while at the same time they result in considerably different

estimates. This of course affects the interpretability of the results. For a higher SNR, the

relative errors decrease, both for estimation and prediction, meaning that more information

in the data leads to better results over all model classes and all coefficient images. Overall,

FPCR seems to give the best results in this simulation. In particular, the combination

of a spline basis representation and a principal component analysis for XB appears to

be advantageous compared to the pure Splines models. Similarly, WCR performs better

than the other wavelet basis methods in all settings considered in this study. As expected,

PCR2D clearly outperforms all other methods for the pca coefficient image, which perfectly

meets the assumptions made in this model. For all other coefficient images, PCR2D gives

intermediate results. Finally, for the GMRF based models, the highly informative GMRF2

model performs best, followed by SparseGMRF, which, however, does not make use of the

integrated variable selection and is computationally very demanding. The GMRF model

with an uninformative prior overall gives very poor results, performing substantially worse

than an intercept model (relative prediction error > 1) or a model with a constant coefficient

image (relative estimation error > 1).

Table 6.3.: Values of mProjection for the different coefficient images depending on the basis functions

used.

Coefficient Image

Projection on bumpy pca smooth sparse

PCs 1.22 · 10−01 3.65 · 10−30 7.05 · 10−02 8.54 · 10−01

splines 4.16 · 10−03 3.79 · 10−04 3.22 · 10−08 5.03 · 10−01

wavelets 1.73 · 10−18 2.43 · 10−18 2.36 · 10−18 4.39 · 10−18
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Figure 6.3.: Simulation results for N = 250 observations. Boxplots show the relative prediction

and estimation error for all nine models depending on the coefficient image and the signal-to-noise

ratio (SNR) over all 100 simulation runs. Gray horizontal lines mark 1, which corresponds to the

simple intercept model (for prediction error) or to a constant coefficient image, having the average

value of the true β image (estimation error).
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Figure 6.4.: Computation times per fit for all nine models and N = 250 observations. The boxplots

contain the merged values for all coefficient images and signal-to-noise ratios over all 100 simulation

runs.
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Figure 6.5.: Measures for underlying model assumptions in the simulation for N = 250 observa-

tions. Boxplots show the measures for the different models depending on the true coefficient image

and the signal-to-noise ratio (SNR) over all 100 simulation runs. All values on log-scale. Gray

horizontal lines correspond to the values for the true coefficient images.
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Figure 6.6.: Measures for parametric model assumptions in the simulation for N = 250 observa-

tions. Boxplots show the measures for the different coefficient images depending on the model

used and the signal-to-noise ratio (SNR) over all 100 simulation runs. Measures with extremely

low values on log-scale.
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Figure 6.7.: Correlation between the true coefficient images and the estimates found by the different

models in the simulation study with N = 250 observations and SNR = 4. The figures show the

median correlation of the vectorized images over 100 simulation runs depending on the true images

and the models used.
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6.5. Application

In this section, the different scalar-on-image regression models are applied to a neuroimaging

dataset with N = 754 subjects taken from the ADNI study (Mueller et al., 2005; Weiner

et al., 2015), cf. Section 6.4.2. This example shows that different model assumptions can

lead to quite different estimates for the coefficient image in practice, which of course has

consequences on the interpretability of the results.

The aim of this analysis is to find a relation between a neuropsychological test (Alzheimer’s

disease assessment scale - cognitive subscale, ADAS-Cog: Rosen et al., 1984) and FDG-

PET images, which measure the glucose uptake in the brain and thus reflect neural integrity.

The ADAS-Cog values form the scalar response and the FDG-PET images are considered

as image covariates together with age, gender and years of education as scalar covariates.

All quantities are measured at baseline. ADAS-Cog takes values between 0 and 70, where

higher values indicate worse global cognition and thus a higher risk of having Alzheimer’s

disease. The values are transformed via square root in order to obtain approximate residual

normality, see Fig. D.6 in the appendix. For the image covariates, we use 64×64 subimages

of the FDG-PET scans, which have also been used in the simulation study, see Fig. 6.2.

The resulting estimates for the coefficient image β̂ are shown in Fig. 6.8 together with

pointwise 95% credibility/confidence bands to illustrate the variability in the estimates (see

appendix, Section D.3 for details on the calculation). The appendix contains an analogous

plot for α̂ (Fig. D.7), measures for the underlying and parametric model assumptions as used

in the simulation study (Table D.1) and an illustration of the goodness of fit (Fig. D.6).

Overall, GMRF gives quite poor results, which is in line with our findings in the simulation

study. The IG(1, 1) priors for the variance parameters obviously do not contribute enough

information to give a reasonable fit. For all other models, the relative (in-sample) prediction

error is very similar with values around 0.6 (cf. Fig. D.6 in the appendix). This also agrees

with the results from the simulation, as different model assumptions may still lead to a

similar predictive ability of the models.

The estimated coefficient images and the confidence bands have some common features:

Most of the images have positive “bumps” in the upper left and right part as well as in the

lower left corner, that are also flagged as “significant” by most models (i.e. the CI does not

contain zero). Note that some pixels too many might be flagged, as the confidence bands

do not account for e.g. variable selection via cross-validation and are mostly calculated on a

pointwise basis. Areas with negative values are found especially in the center and the lower

right part of the images. However, the influence of the assumptions made for the different

models is clearly seen and the percentage of the “significant” pixels, their location and the

shape of the “significant” regions differ considerably among the methods.

137



6. The Impact of Model Assumptions in Scalar-on-Image Regression

The results for FPCR and Splines are very smooth, which is reflected in the low values

for the underlying sparsity assumption in Table D.1. The pixels flagged as “significant”

by both models form mostly large, round shaped areas. The Bayesian models GMRF2

and SparseGMRF do also assume smoothness, but on a pixel level rather than for basis

function coefficients. The estimates thus are a bit more structured, which is also seen in

the “significant” regions for SparseGMRF, that do also contain “non-significant” pixels and

do not have clearly defined borders as for Splines or FCPR. GRMF2 does not flag any

pixel at all. When comparing the estimates from the two Bayesian models, the result of

SparseGMRF seems to be a bit blurred compared to GMRF2, which might be due to the

fact that the β coefficients might have been set to zero in some MCMC iterations, shrinking

the posterior mean towards zero. The model assumption in SparseGMRF of many pixels

being equal to zero, while all others form smooth clusters, however, is not achieved, which

is also seen in the measure for the parametric sparsity assumption (it equals 1, i.e. the

posterior mean of the latent Ising field γ is greater or equal to 0.5 in all pixels). The

wavelet-based methods WCR, WPLS and WNET do not assume smoothness and hence

have a more pronounced small-scale structure with more abrupt changes between positive

and negative values. A very characteristic feature of the wavelet-based estimates are the

negative values in the center of the images, which might have been oversmoothed by the

other models. The main model assumption for WCR, WPLS and WNET is sparsity in the

wavelet space. As seen in Table D.1, the WNET estimate has the highest sparsity, followed

by WPLS. As seen in Fig. 6.8, higher sparsity translates to a more “spiky” estimate (note

the different scale for WPLS and WNET ). Finally, PCR2D assumes sparsity of β in the

principal component space. As seen in Table D.1 in the appendix, the leading 20 of 25
possible eigenimages are selected (80%) to construct the estimate. What is striking here

is the rectangular, “streaky” nature of the structures seen in the coefficient image. This is

clearly caused by constructing the eigenimages as rank-one approximation (Allen, 2013).

The correlation matrix in Fig. D.8 in the appendix measures the similarity between all

estimates. The highest correlation is found between models that assume smoothness

(SparseGMRF and FPCR: 92%, SparseGMRF and GMRF2 : 91%, FPCR and Splines :

90%). The GMRF estimate shows no correlation with any other method, which is also seen

in Fig. 6.8.

The coefficient estimates α̂ for the intercept as well as the effects of age at baseline, gender

and years of education are shown in Fig. D.7 in the appendix with the associated empirical

credibility/confidence intervals. Here also, the result for the GMRF model clearly differs

from all other models, particularly concerning the width of the confidence intervals. Except

for GMRF, all covariates are seen to have a “significant” effect, as the confidence intervals

do not include zero.

As for the coefficient images, there is again some common ground in the point estimates:

The estimated intercepts and the effects for age at baseline are both positive, which makes
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sense as ADAS-Cog takes positive values (note that the test scores have been transformed

via square root before the analysis and now take values between 0 and 8.37) and age is

known to be a main risk factor for Alzheimer’s disease. For gender and years of education,

the estimated coefficients are negative, which means that on average, being female and a

longer period of education are associated with lower ADAS-Cog values and a lower risk of

Alzheimer’s disease. However, there is also a notable variation between the methods, as

the confidence bands do not necessarily overlap or contain the point estimates of all other

methods. Some of the differences in α̂ might be caused by the fact that different coefficient

images β̂ might lead to different parameter estimates α̂.

In total, the results of the application show that while some methods used here show

some common patterns in their results, they can differ substantially in their details, as

model assumptions can have a strong influence on the results. In practical applications,

this can entail the risk of over-interpreting effects that are mainly driven by the model

assumptions.

6.6. Discussion

Scalar-on-image regression is an inherently non-identifiable statistical problem due to the

fact that the number of pixels – and therefore the number of coefficients – exceeds the

number of observations, in many cases by far. In order to overcome the issue of non-

identifiability, different approaches have been proposed in the literature, making different

structural assumptions on the coefficient image. The most widely used assumptions for

scalar-on-image regression include all forms and combinations of smoothness or sparsity,

projection onto a subspace or assumptions on the variability of the coefficient image in

terms of priors.

Whereas the beneficial aspects of making assumptions are well known and understood, their

impact on the estimates seems underappreciated in practice. From a theoretical point of

view it is obvious that models with different assumptions may lead to different estimates, as

the scalar-on-image regression model inherently is not identifiable. In practical applications,

however, it is not always clear which model is appropriate and to what extent the model

assumptions influence the results. While this is less crucial for predictions, it strongly

affects the interpretability of the coefficient image estimates, as one cannot identify whether

features in the estimate are dominated by the model assumptions or driven by the data or

are supported by both, as one would ideally assume. It is thus important to be aware of

the assumptions made and the impact that they can have on the estimates.

In this paper, we have provided a systematic overview of the principal approaches to scalar-

on-image regression and the assumptions made in the different models. The assumptions
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have been characterized as underlying ones, that describe the fundamental assumptions of

a model, and parametric assumptions, that are expressed in terms of penalties or priors for

model parameters. The methods discussed in this paper do not completely represent all

published scalar-on-image models, but largely cover all main classes and their assumptions.

Variations include e.g. the LASSO-variant of WNET (Zhao et al., 2015, implemented in

the R package refund.wave), all types of models that combine smoothness of the coefficient

image with a sparsity assumption as in SparseGMRF (e.g. Huang, Goldsmith, et al. (2013),

Shi and Kang (2015), Kang et al. (2016) or Li et al. (2015, provide a MATLAB implemen-

tation)) or methods for scalar-on-function regression that can easily be extended to the

scalar-on-image case (e.g. the PLS variant of FPCR, both discussed in Reiss and Ogden

(2007) in the case of functional data on one-dimensional domains). An overview of scalar-

on-function regression models that can handle functional covariates on higher dimensional

domains is provided in Reiss, Goldsmith, et al. (2016+).

Ideally, one would wish to have a diagnostic criterion that identifies problematic settings,

i.e. settings in which the model assumptions dominate the estimate, in advance. This,

however, seems very challenging, if even feasible. The measures proposed in this paper

constitute a first step in this direction, as they can measure the degree to which the model

assumptions are met. In Bayesian approaches, where model assumptions are formulated in

terms of priors, alternative measures have been proposed, e.g. for prior-data conflict (Evans

and Moshonov, 2006), prior informativeness (Müller, 2012) or prior data size with respect

to the likelihood (Reimherr et al., 2014). Together with the measures proposed in this

paper, they could serve as starting point for an overall measure for the appropriateness

of model assumptions. However, most of these Bayesian measures are restricted to rather

simple models and to proper priors. Further work is needed to be able to apply them

to high-dimensional models such as scalar-on-image regression, improper priors such as the

intrinsic GMRF priors or non-Bayesian models that include dimension reduction or variable

selection steps.

For practical applications, we recommend to carefully check the assumptions in the models

used. The measures proposed in this paper may help to interpret the results for real

data, e.g. by relating values obtained for estimates from the original data to the values

for hypothetic coefficient images, as in our simulation. The simulation results may also be

indicative for the types of features that can be found with the chosen methods and the

observed data. For the case of the FDG-PET images used in Sections 6.4 and 6.5, smooth

coefficients and those lying in the span of the leading principal components were estimated

quite well by methods with corresponding assumptions. At the same time, the coefficient

images bumpy and sparse, which have highly localized features, are seen to be considerably

more difficult to estimate.

Further, it seems helpful to compare the results with those of other approaches, making

different assumptions, in order to find common patterns. These may help understanding
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which features in the estimated coefficient image are mostly driven by the data, the model

assumptions or combine both sources of information. Empirical confidence bands as in

the application can serve as a first indicator, which regions of the estimated coefficient

images might be of interest. For the ADNI data studied in Section 6.5, the empirical

confidence bands agree most in the right upper and lower part of the images. Within

these regions of interest, one could for example calculate the median correlation of the

estimated coefficient images in order to check their agreement, which is an indicator of

data-driven effects. The idea of combining different models is also adopted in ensemble

methods, see e.g. the approach in Goldsmith and Scheipl (2014) for ensemble methods in

scalar-on-function regression. A drawback of this approach, however, is that it is based on

predictive performance in a cross-validation setting, which is not only associated with high

computational costs, but also aims more at prediction and not at interpretability.

In summary, model assumptions are a necessary and helpful tool to overcome identifiability

issues in complex models such as scalar-on-image regression. In practical applications,

however, it is advisable to be aware of the assumptions made in a model and the impact

that they can have on the coefficient estimates.
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Figure 6.8.: Coefficient image estimates for the application with pointwise 95% confidence

bands/credible intervals. Coloured pixels correspond to “significant” pixels, i.e. the confidence

band/credible interval in this pixel does not contain zero. Note the different scales for WPLS,

WNET and GMRF.
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7. Concluding Remarks

Being able to combine the information of data available in different structures and dimen-

sions becomes increasingly important in the big data era.

In the first part of this thesis, multivariate functional principal component analysis was

introduced as a tool for the joint analysis of multivariate functional data on different di-

mensional domains. The new method extends existing concepts for MFPCA in two ways.

First, the elements of the multivariate functional data need not necessarily be functions

on one-dimensional domains. This opens the methodology to images (two-dimensional) or

data on even higher dimensional domains, as the three-dimensional brain scans studied in

Chapter 4. Second, one can now combine elements of different domains, such as functions

and images, in one analysis. This provides new insights into the joint variation of data

with different structures. At the same time, the MFPCA results allow a very parsimonious

representation of the data in the form of individual scalar scores and principal components,

which have the same structure as the data.

Based on a thorough theoretical foundation, the proposed estimators for the principal com-

ponents, eigenvalues and scores were shown to be consistent under a given set of assump-

tions. The results of the simulation study further show that the new method is able to give

good results in the case of a finite sample size, even in the presence of sparsity or mea-

surement errors. In Chapter 4 it was demonstrated how MFPCA can be used to calculate

out-of-sample predictions for new observations. The newly proposed method is easily ap-

plicable, as it is based on univariate basis expansions that can be chosen flexibly depending

on the structure of the data. The current implementation of the algorithm in the MFPCA

package allows users to choose between several univariate basis functions for data on up to

three-dimensional domains. The implementation was done in an object-oriented manner,

reflecting the strong inherent structure of the data.

The results of the neuroimaging applications in Chapters 3 and 4 indicate that the method

yields principal components that are meaningful from a medical point of view and can lead

to new insights into the data. Applications are of course not restricted to the medical area.

For example, one could also think of meteorological data, combining webcam or satellite

images with measurements of temperature or humidity over time.
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7. Concluding Remarks

From a methodological point of view, MFPCA can be used as a starting point for further

statistical analysis of multivariate functional data, using the scores for instance in regression

or clustering approaches. First findings indicate that the principal components obtained

from MFPCA might lead to better results than combinations of univariate principal compo-

nents in regression in the case of strong correlation among the functional covariates (Palma,

2017, co-supervised during this thesis). Future research might aim at integrating not only

functions on different dimensional domains, but also vectors and more complicated objects

such as e.g. warping functions, in a combined principal component analysis. At least for

the warping functions, this would mean giving up the Hilbert space structure, which was a

key instrument in the theoretical derivations of the MFPCA presented in this thesis.

Scalar-on-image regression is a statistical model class that aims at finding a relationship

between scalar and image covariates and a scalar response. It thus combines data with

different structure and complexity into one model. Due to the high number of covariates,

the model is inherently non-identifiable and requires strong assumptions, whose impact was

studied in the second part of this thesis. The benefits of making assumptions are well

known and understood in statistical theory and practice. Their impact on the estimates,

however, seems sometimes underappreciated. To this end, several models, representing the

most important approaches for scalar-on-image regression, were analyzed and compared

with respect to the assumptions made and their ability of finding relevant structures in a

coefficient image. The results of the simulation study show that the model assumptions

can indeed have a quite strong influence on the estimation results. Moreover, there is not

one single model which dominates all others. Instead, the performance depends on how

well the unknown coefficient image matches the model assumptions. Even in the rather

unrealistic case of a signal-to-noise ratio of 4, there were still models that did not yield

better estimates than a simpler model with a constant coefficient image. In addition, not

all types of coefficient images are equally easy to estimate.

The findings of the study raise the question to what extent model assumptions influence

the results in general, not only in scalar-on-image regression, and how they affect the in-

terpretability of estimates obtained from complex models. At the same time, they open

up new perspectives for methodological research: starting from the development of new

methods with new assumptions, to the question of how to appropriately measure the dis-

crepancy between a “true” coefficient image and its estimated version, to quantifying the

impact of model assumptions on the estimates, to borrowing strength across several models

by combining their results. The measures developed in Chapter 6 are a first attempt in this

direction, but there is clearly room for improvements and extensions.

The results of this thesis illustrate that methodological statistical research is relevant, for the

development of new methods as well as for the critical examination of existing approaches,

also – and especially – in the era of big data.
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A. Appendix for Chapter 3

A.1. Proofs of Propositions

Proof of Prop. 1. H is a direct sum of the Hilbert spaces L2(Tj), j = 1, . . . , p, with natural

scalar product 〈〈·, ·〉〉 (cf. Reed and Simon, 1980, Chapter II.1.)

Proof of Prop. 2.

1. Γ is linear: Follows from the linearity of the scalar product in (3.3).

2. Γ is self-adjoint: Follows from the symmetry Cij(si, tj) = Cji(tj, si).

3. Γ is positive: Let f ∈ H. Then

〈〈f,Γf〉〉 =
∑p

j=1

∫
Tj
f (j)(tj)

∑p

i=1

∫
Ti
E
(
X(i)(si)X(j)(tj)

)
f (i)(si)dsi dtj

= E
(∑p

j=1

∫
Tj
f (j)(tj)X(j)(tj)dtj

)2

≥ 0.

4. Γ is compact: Let B := {f ∈ H : |||f |||2 ≤ B} be a bounded family in H for some

constant 0 < B <∞. Clearly,
∣∣∣∣∣∣f (j)

∣∣∣∣∣∣
2

2
≤ B for all j = 1, . . . , p. Define the image of B

under Γ by Z = ΓB = {g ∈ H : ∃ f ∈ B such that g = Γf}, which has the following

properties:

� Z is uniformly bounded: Let g ∈ Z and t ∈ T . Define K := maxi,j=1,...,pKij

with Kij as in (3.5). Then

||g(t)||2 ≤
∑p

j=1

(∑p

i=1

∫
Ti

∣∣∣Cij(si, tj)f (i)(si)
∣∣∣ dsi)2

Hölder
≤

∑p

j=1

(∑p

i=1

[∫
Ti
Cij(si, tj)2dsi

]1/2 [∫
Ti
f (i)(si)2dsi

]1/2
)2

≤
∑p

j=1

(∑p

i=1K
1/2B1/2

)2
= p3KB <∞.

147



A. Appendix for Chapter 3

� Z is equicontinuous: Denote by λ(Tj) the Lebesgue measure of Tj and let T =
maxj=1,...,p λ(Tj). For ε > 0, define ε̃ := ε

p(pTB)1/2 . By the continuity assumption

for Cij(si, ·), there exist δij > 0 such that∣∣∣∣∣∣tj − t∗j ∣∣∣∣∣∣ < δij ⇒ |Cij(si, tj)− Cij(si, t∗j)| < ε̃, ∀ si ∈ Ti. (A.1)

for all i, j = 1, . . . , p. Set δ := mini,j=1,...,p δij and let ||t− t∗||T < δ. Clearly,∣∣∣∣∣∣tj − t∗j ∣∣∣∣∣∣ < δ for all j = 1, . . . , p and for g ∈ Z it holds

||g(t)− g(t∗)||2 ≤
∑p

j=1

(∑p

i=1

∣∣∣∣∫
Ti

(
Cij(si, tj)− Cij(si, t∗j)

)
f (i)(si)dsi

∣∣∣∣)2

Hölder
≤

∑p

j=1

(∑p

i=1

[∫
Ti

(
Cij(si, tj)− Cij(si, t∗j)

)2
dsi
]1/2 [∫

Ti
f (i)(si)2dsi

]1/2
)2

(A.1)
<

∑p

j=1

(∑p

i=1

(∫
Ti
ε̃2dsi

)1/2 ∣∣∣∣∣∣f (i)
∣∣∣∣∣∣

2

)2

≤ p3TBε̃2 = ε2.

By the Theorem of Arzelà-Ascoli (Reed and Simon, 1980, Thm. I.28. and related

notes for Chapter I), for each sequence {fn}n∈N in B there exists a convergent subse-

quence {gn(i) = Γfn(i)}i∈N of the corresponding sequence {gn}n∈N in Z, which implies

that Γ is a compact operator (cf. Reed and Simon, 1980, Chapter VI.5.).

Lemma 1. For fixed m ∈ N and j ∈ {1, . . . , p}, the j-th element ψ(j)
m of the eigenfunction

ψm is continuous, if νm > 0 and Cij is uniformly continuous as in Prop. 2.

Proof. Let ε > 0 and ε̃ := ενm
(
2∑p

j=1 λ(Tj)1/2
)−1

. By the uniform continuity assumption

for Cij, there exist δij > 0 such that for all i = 1, . . . , p (A.1) holds. Let δj = mini=1,...,p δij
and

∣∣∣∣∣∣tj − t∗j ∣∣∣∣∣∣ < δj. Then, as νm > 0 and
∣∣∣∣∣∣ψ(i)

m

∣∣∣∣∣∣
2
≤ |||ψm||| = 1,

∣∣∣ψ(j)
m (tj)− ψ(j)

m (t∗j)
∣∣∣ = 1

νm

∣∣∣∣∑p

i=1

∫
Ti

[
Cij(si, tj)− Cij(si, t∗j)

]
ψ(i)
m (si)dsi

∣∣∣∣
≤ 1
νm
ε̃
∑p

i=1

∫
Ti

∣∣∣ψ(i)
m (si)

∣∣∣ dsi Hölder
≤ ε̃

νm

∑p

i=1

∣∣∣∣∣∣ψ(i)
m

∣∣∣∣∣∣
2
λ(Ti)1/2

≤ ε̃

νm

∑p

i=1 λ(Ti)1/2 = ε

2 < ε.

Proof of Prop. 3. The proof follows the idea in Werner (2011, Chapter VI.4.) for the proof

of Mercer’s Theorem in the univariate case. From the Spectral Theorem for compact self-

adjoint operators (Werner, 2011, Thm. VI.3.2.), it is known that

Γf =
∑∞

m=1 νm〈〈f, ψm〉〉ψm ∀ f ∈ H.
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For M ∈ N define

ΓMf :=
∑M

m=1 νm〈〈f, ψm〉〉ψm ∀ f ∈ H.

Then for all f ∈ H : 〈〈Γf, f〉〉 − 〈〈ΓMf, f〉〉 = ∑∞
m=M+1 νm〈〈f, ψm〉〉2 ≥ 0. Let j ∈ {1, . . . , p}

and t∗ ∈ Tj. Define f =
(
0, . . . , 0, f (j), 0, . . . , 0

)
with f (j) = λ

(
Bt∗

(
1
n

))−1
1Bt∗ ( 1

n
) for some

n ∈ N, where Bt∗( 1
n
) is a closed ball in Tj with center t∗ and radius 1

n
, λ(·) denotes the

Lebesgue measure and 1 is the indicator function. Clearly, f (j) ∈ L2(Tj) and f ∈ H.

Therefore

0 ≤ 〈〈Γf, f〉〉 − 〈〈ΓMf, f〉〉

= λ
(
Bt∗

(
1
n

))−2 ∫
Bt∗ ( 1

n
)

∫
Bt∗ ( 1

n
)
Cjj(sj, tj)−

∑M

m=1 νmψ
(j)
m (sj)ψ(j)

m (tj)dsj dtj

→ Cjj(t∗, t∗)−
∑M

m=1 νmψ
(j)
m (t∗)ψ(j)

m (t∗) for n→∞

by the Lebesgue Differentiation Theorem (Rudin, 1987, Thm. 7.10.). As t∗ was arbitrary

in Tj, this implies that for all M ∈ N
∑M

m=1 νmψ
(j)
m (t)2 ≤ Cjj(t, t) ≤ ‖Cjj‖∞ <∞ ∀ t ∈ Tj,

since Cjj is continuous and Tj is compact, implying that ‖Cjj‖∞ := supt∈Tj |Cjj(t, t)| is

finite. Using Hölder’s inequality∑∞
m=1

∣∣∣νmψ(j)
m (s)ψ(j)

m (t)
∣∣∣ ≤ Cjj(s, s)1/2Cjj(t, t)1/2 <∞,

i.e. the series C̃j(s, t) := ∑∞
m=1 νmψ

(j)
m (s)ψ(j)

m (t) is absolutely convergent for all s, t ∈ Tj.
In the following, assume t ∈ Tj to be fixed. For ε > 0 choose M ∈ N such that∑∞
m=M+1 νmψ

(j)
m (t)2 < ε2. Then, again by Hölder’s inequality∑∞

m=M+1

∣∣∣νmψ(j)
m (s)ψ(j)

m (t)
∣∣∣ ≤ Cjj(s, s)1/2 · ε ≤ ‖Cjj‖1/2

∞ · ε. (A.2)

The upper bound in (A.2) does not depend on s, hence C̃j(s, t) converges uniformly for

fixed t. As the eigenfunctions ψ(j)
m (s) are continuous in s for all m ∈ N (Lemma 1), C̃j(s, t)

is also continuous in s (Uniform Limit Theorem, Munkres, 2000, Thm. 21.6.). Define

hj(s) := Cjj(s, t)− C̃j(s, t), s ∈ Tj.

Let now g(j) ∈ L2(Tj) and define g :=
(
0, . . . , 0, g(j), 0, . . . , 0

)
, which is clearly in H. There-

fore∫
Tj
hj(s)g(j)(s)ds =

∑p

i=1

∫
Ti
Cij(si, t)g(i)(si)dsi −

∑∞
m=1 νm

∑p

i=1

∫
Ti
ψ(i)
m (si)g(i)(si)dsi ψ(j)

m (t)

= (Γg)(j)(t)−
∑∞

m=1 νm〈〈ψm, g〉〉ψ
(j)
m (t)

=
∑∞

m=1 νm〈〈g, ψm〉〉ψ
(j)
m (t)−

∑∞
m=1 νm〈〈ψm, g〉〉ψ

(j)
m (t) = 0
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according to the Spectral Theorem. Choosing g(j) = hj implies hj(s) = 0 for all s ∈ Tj, as

hj is continuous in s. Therefore,

C̃j(s, t) =
∑∞

m=1 νmψ
(j)
m (s)ψ(j)

m (t) = Cjj(s, t) ∀ s ∈ Tj.

By Dini’s Theorem (Werner, 2011, Thm. VI.4.6.) the series Cjj(t, t) = ∑∞
m=1 νmψ

(j)
m (t)2

converges uniformly. Hence, M can be chosen independent of t in (A.2). This implies that

C̃j(s, t) converges absolutely and uniformly to Cjj(s, t) for all s, t ∈ Tj.

Proof of Prop. 4. By the Hilbert-Schmidt Theorem (Reed and Simon, 1980, Thm. VI.16.),

the (deterministic) eigenfunctions of Γ form an orthonormal basis of H, i.e. X can be

written in the form X(t) = ∑∞
m=1 ρmψm(t), t ∈ T with random variables ρm = 〈〈X,ψm〉〉.

Hence for m,n ∈ N

1. E (ρm) =
∑p

j=1

∫
Tj
E
(
X(j)(tj)

)
ψ(j)
m (tj)dtj = 0, since E

(
X(j)(tj)

)
= 0 for all tj ∈ Tj,

j = 1, . . . , p by assumption.

2. Cov(ρm, ρn) = E
(∑p

i=1

∫
Ti
X(i)(si)ψ(i)

m (si)dsi ·
∑p

j=1

∫
Tj
X(j)(tj)ψ(j)

n (tj)dtj
)

=
∑p

j=1

∫
Tj

∑p

i=1

∫
Ti
Cij(si, tj)ψ(i)

m (si)dsi ψ(j)
n (tj)dtj

=
∑p

j=1

∫
Tj
νmψ

(j)
m (tj)ψ(j)

n (tj)dtj = νmδmn.

3. Let XdMe(t) :=
∑M

m=1 ρmψm(t) =
∑M

m=1

[∑p

i=1

∫
Ti
X(i)(si)ψ(i)

m (si)dsi
]
ψm(t) for

t ∈ T be the truncated Karhunen-Loève representation of X. Then

E
(∣∣∣∣∣∣X(t)−XdMe(t)

∣∣∣∣∣∣2) =
∑p

j=1

[
E
(
X(j)(tj)2

)
− 2E

(
X(j)(tj)X(j)

dMe(tj)
)

+ E
(
X

(j)
dMe(tj)

2
)]

=
∑p

j=1

[
Cjj(tj, tj)− 2

∑M

m=1

∑p

i=1

∫
Ti
Cij(si, tj)ψ(i)

m (si)dsi ψ(j)
m (tj)

+
∑M

m=1

∑M

n=1

∑p

i=1

∫
Ti

∑p

k=1

∫
Tk
Cki(uk, si)ψ(k)

n (uk)duk ψ(i)
m (si)dsi ψ(j)

m (tj)ψ(j)
n (tj)

]
=
∑p

j=1

[
Cjj(tj, tj)− 2

∑M

m=1 νmψ
(j)
m (tj)ψ(j)

m (tj)

+
∑M

m=1

∑M

n=1

∑p

i=1

∫
Ti
νnψ

(i)
n (si)ψ(i)

m (si)dsiψ(j)
m (tj)ψ(j)

n (tj)
]

=
∑p

j=1

[
Cjj(tj, tj)−

∑M

m=1 νmψ
(j)
m (tj)2

]
→ 0 for M →∞

uniformly for t ∈ T by Prop. 3.
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Proof of Prop. 5.

1. Let X have a finite Karhunen-Loève representation (3.7). Then, each element is given

by X(j) = ∑M
m=1 ρmψ

(j)
m . For t ∈ Tj(

Γ(j)φ̃(j)
)

(t) =
∫
Tj

Cov(X(j)(s), X(j)(t))φ̃(j)(s)ds

=
∫
Tj

∑M

m=1 νmψ
(j)
m (s)ψ(j)

m (t)φ̃(j)(s)ds != λ(j)φ̃(j)(t), (A.3)

which is a homogenous Fredholm integral equation of the second kind with separable

kernel function K(s, t) = ∑M
m=1 νmψ

(j)
m (s)ψ(j)

m (t) = ∑M
m=1 am(s)bm(t) with continuous

functions am(s) = ν1/2
m ψ(j)

m (s), bm(t) = ν1/2
m ψ(j)

m (t) (cf. Lemma 1). Following the

argumentation in Zemyan (2012, Chapter 1.3.), (A.3) can be transformed into the

matrix eigenequation

A(j)u = λ(j)u

with a symmetric matrix A(j) ∈ RM×M given by A(j)
mn = 〈am, bn〉2. Positivity of Γ(j)

implies λ(j) ≥ 0 and therefore A(j) is positive semidefinite. Hence it can have at most

M strictly positive eigenvalues λ(j)
m associated with eigenvectors u(j)

m ∈ RM

A(j)u(j)
m = λ(j)

m u
(j)
m .

Let λ
(j)
1 ≥ . . . ≥ λ

(j)
Mj

> 0, Mj ≤ M be the non-zero eigenvalues of A(j). They are

at the same time the only non-zero eigenvalues of Γ(j). The associated eigenfunctions

φ̃(j)
m of Γ(j) are parametrized by the eigenvectors u(j)

m via (Zemyan, 2012, Chapter 1.3.)

Γ(j)φ̃(j)
m =

∑M

n=1 ν
1/2
n ψ(j)

n [u(j)
m ]n = λ(j)

m φ̃(j)
m ⇔ φ̃(j)

m =
(
λ(j)
m

)−1∑M

n=1 ν
1/2
n ψ(j)

n [u(j)
m ]n.

Since 〈φ̃(j)
m , φ̃(j)

n 〉2 =
(
λ(j)
m λ(j)

n

)−1
u(j)
m

>
A(j)u(j)

n =
(
λ(j)
m

)−1
δmn, orthonormal eigenfunc-

tions φ(j)
m are given by

φ(j)
m = λ(j)

m

1/2
φ̃(j)
m =

(
λ(j)
m

)−1/2∑M

n=1 ν
1/2
n ψ(j)

n [u(j)
m ]n.

Therefore, X(j) has a finite Karhunen-Loève representation X(j) = ∑Mj

m=1 ξ
(j)
m φ(j)

m with

scores

ξ(j)
m = 〈X(j), φ(j)

m 〉2 =
(
λ(j)
m

)−1/2∑M

n=1 ν
1/2
n

[
u(j)
m

]
n

∑M

k=1 ρk〈ψ
(j)
n , ψ

(j)
k 〉2

and E(ξ(j)
m ) = 0, Cov(ξ(j)

m , ξ(j)
n ) = λ(j)

m δmn.

2. Assume the functional covariates X(1), . . . , X(p) do each have a finite Karhunen-Loève

representation, i.e. for each j = 1, . . . , p : X(j) = ∑Mj

m=1 ξ
(j)
m φ(j)

m . Let Γψ = νψ. Then

for all j = 1, . . . , p and tj ∈ Tj

(Γψ)(j) (tj) =
∑p

k=1

∫
Tk

Cov
(
X(k)(sk), X(j)(tj)

)
ψ(k)(sk)dsk

=
∑p

k=1

∑Mj

l=1

∑Mk

n=1 Cov
(
ξ

(j)
l , ξ(k)

n

)
︸ ︷︷ ︸

=:Z(jk)
ln

φ
(j)
l (tj)

∫
Tk
φ(k)
n (sk)ψ(k)(sk)dsk︸ ︷︷ ︸

=:c(k)
n

!= νψ(j)(tj).
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With a similar argumentation as in Zemyan (2012, Chapter 1.3.) it holds

∑p

k=1

∑Mj

l=1

∑Mk

n=1 Z
(jk)
ln φ

(j)
l (tj)c(k)

n = νψ(j)(tj) (A.4)

⇒
∫
Tj
φ(j)
m (tj) ·

∑p

k=1

∑Mj

l=1

∑Mk

n=1 Z
(jk)
ln φ

(j)
l (tj)c(k)

n dtj =
∫
Tj
φ(j)
m (tj) · νψ(j)(tj)dtj

⇔
∑p

k=1

∑Mk

n=1 Z
(jk)
mn c

(k)
n = νc(j)

m

for m = 1, . . . ,Mj due to orthonormality of φ(j)
m . Since m and j were arbitrarily

chosen, this is equivalent to
Z(11) . . . Z(1p)

...
. . .

...

Z(p1) . . . Z(pp)


︸ ︷︷ ︸

=:Z


c(1)

...

c(p)


︸ ︷︷ ︸

=:c

= ν


c(1)

...

c(p)



with matrices Z(jk) ∈ RMj×Mk and c(j) ∈ RMj . The last equation is again an

eigenequation for the symmetric (and since ν ≥ 0) positive semidefinite block ma-

trix Z ∈ RM+×M+ . Let ν1 ≥ . . . ≥ νM > 0, M ≤ M+ be the non-zero eigenvalues

of Z. These are also the only non-zero eigenvalues of Γ and the elements ψ(j)
m of

the associated eigenfunctions ψm are parametrized by the (orthonormal) eigenvectors

c1, . . . , cM associated with ν1, . . . , νM :

ψ(j)
m (tj)

(A.4)= 1
νm

∑p

k=1

∑Mj

l=1

∑Mk

n=1 Z
(jk)
ln [cm](k)

n φ
(j)
l (tj) =

∑Mj

l=1[cm](j)l φ
(j)
l (tj), tj ∈ Tj

for m = 1, . . . ,M, j = 1, . . . , p. The eigenfunctions form an orthonormal system with

respect to 〈〈·, ·〉〉:

〈〈ψm, ψn〉〉 =
∑p

j=1 〈ψ
(j)
m , ψ(j)

n 〉2 =
∑p

j=1

∑Mj

l=1[cm](j)l [cn](j)l = c>ncm = δmn.

The Karhunen-Loève decomposition of X is therefore given by X = ∑M
m=1 ρmψm with

scores

ρm = 〈〈X,ψm〉〉 =
∑p

j=1

∑Mj

n=1 [cm](j)n ξ(j)
n

and E(ρm) = 0, Cov(ρm, ρn) = νmδmn, m = 1, . . . ,M ≤M+.

Proof of Prop. 6. For f ∈ H, t ∈ T and j = 1, . . . , p, the covariance operator Γ[M ] associ-

ated with X [M ] is given by

(Γ[M ]f)(j)(tj) =
p∑
i=1

∫
Ti

Cov(X [M ](i)(si), X [M ](j)(tj))f (i)(si)dsi.
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In the following, use C
[M ]
ij (si, tj) := Cov(X [M ](i)(si), X [M ](j)(tj)) as short notation for the

covariance functions (cf. the definition of Cij in (3.1) in the paper). Next, recall some

well-known results for univariate functional data: By Mercer’s Theorem (Mercer, 1909)

C
[M ]
jj (tj, tj) =

Mj∑
m=1

λ(j)
m φ(j)

m (tj)2 ↗
∞∑
m=1

λ(j)
m φ(j)

m (tj)2 = Cjj(tj, tj) for Mj →∞, tj ∈ Tj. (A.5)

The univariate Karhunen-Loève Theorem (e.g. Bosq, 2000, Thm 1.5.) states that

E
[∣∣∣∣X(j)(tj)−

∑Mj

m=1 ξ
(j)
m φ(j)

m (tj)
∣∣∣∣2
]

converges uniformly to 0 for tj ∈ Tj and Mj → ∞. As both X(j) and X [M ](j) have zero

mean (X(j) by assumption and X [M ](j) since the scores ξ(j)
m have zero mean), this implies

Var
(
X(j)(tj)−X [M ](j)(tj)

)
→ 0 for Mj →∞. (A.6)

With the assumptions of Prop. 2 it further holds (cf. proof of Prop. 3) that

Var(X(j)(tj)) = Cjj(tj, tj) ≤ ‖Cjj‖∞ <∞. (A.7)

For fixed si ∈ Ti, tj ∈ Tj with i, j = 1, . . . , p, these three properties give∣∣∣Cij(si, tj)− C [M ]
ij (si, tj)

∣∣∣
≤
∣∣∣Cov(X(i)(si)−X [M ](i)(si), X(j)(tj))

∣∣∣+ ∣∣∣Cov(X [M ](i)(si), X(j)(tj)−X [M ](j)(tj))
∣∣∣

(A.5)

≤ Var(X(i)(si)−X [M ](i)(si))1/2︸ ︷︷ ︸
→0 for Mi→∞ (A.6)

Cjj(tj, tj)1/2︸ ︷︷ ︸
<∞ (A.7)

+Cii(si, si))1/2︸ ︷︷ ︸
<∞ (A.7)

Var(X(j)(tj)−X [M ](j)(tj))1/2︸ ︷︷ ︸
→0 for Mj→∞ (A.6)

Hence it holds that

C
[M ]
ij (si, tj)→ Cij(si, tj) for Mi,Mj →∞. (A.8)

The main proof is now in three steps:

1. Γ[M ] converges in norm to Γ for M1, . . . ,Mp → ∞: Let |||·|||op be the operator norm

induced by |||·|||. Then

∣∣∣∣∣∣∣∣∣Γ− Γ[M ]
∣∣∣∣∣∣∣∣∣2
op

= sup
|||f |||=1

p∑
j=1

∫
Tj

[ p∑
i=1

∫
Ti

(
Cij(si, tj)− C [M ]

ij (si, tj)
)
f (i)(si)dsi

]2

dtj

≤ sup
|||f |||=1

p∑
j=1

∫
Tj

[ p∑
i=1

∫
Ti

∣∣∣(Cij(si, tj)− C [M ]
ij (si, tj))f (i)(si)

∣∣∣ dsi
]2

dtj

Hölder
≤ sup

|||f |||=1

p∑
j=1

∫
Tj

[ p∑
i=1

∣∣∣∣∣∣Cij(·, tj)− C [M ]
ij (·, tj)

∣∣∣∣∣∣
2

∣∣∣∣∣∣f (i)
∣∣∣∣∣∣

2

]2

dtj

≤
p∑
j=1

∫
Tj

[ p∑
i=1

∣∣∣∣∣∣Cij(·, tj)− C [M ]
ij (·, tj)

∣∣∣∣∣∣
2

]2

dtj, (A.9)
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where the last equality holds since
∣∣∣∣∣∣f (i)

∣∣∣∣∣∣
2
≤ 1 for all f ∈ H with |||f ||| = 1. The final

bound for
∣∣∣∣∣∣∣∣∣Γ− Γ[M ]

∣∣∣∣∣∣∣∣∣2
op

converges to zero for M1, . . . ,Mp → ∞ by (A.8), applying

the Dominated Convergence Theorem twice: For the norm term in (A.9) consider

∣∣∣Cij(si, tj)− C [M ]
ij (si, tj)

∣∣∣ ≤ |Cij(si, tj)|+ ∣∣∣C [M ]
ij (si, tj)

∣∣∣ (A.5)

≤ 2Cii(si, si)1/2Cjj(tj, tj)1/2,

thus
∣∣∣Cij(si, tj)− C [M ]

ij (si, tj)
∣∣∣2 (A.7)

≤ 4 ‖Cii‖∞ ‖Cjj‖∞ < ∞. This upper bound is con-

stant and therefore integrable over Ti, which implies

lim
Mi→∞

∣∣∣∣∣∣Cij(·, tj)− C [M ]
ij (·, tj)

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣Cij(·, tj)− lim

Mi→∞
C

[M ]
ij (·, tj)

∣∣∣∣∣∣∣∣
2
.

For the outer integral in (A.9) the results of the norm term give( p∑
i=1

∣∣∣∣∣∣Cij(·, tj)− C [M ]
ij (·, tj)

∣∣∣∣∣∣
2

)2

≤ 4 ‖Cjj‖∞

( p∑
i=1

(‖Cii‖∞ λ(Ti))1/2
)2

,

where λ(Ti) is the Lebesuge measure of Ti as in the Proof of Prop. 2. The term

on the right hand side is constant and hence integrable over Tj, which gives that

for M1, . . . ,Mp → ∞, the limit Mj → ∞ and the integral over Tj in (A.9) can be

interchanged. In summary, these results give that Γ[M ] converges to Γ in norm for

M1, . . . ,Mp →∞.

2. Γ[M ] is bounded: Let f ∈ H. Clearly,
∣∣∣∣∣∣f (i)

∣∣∣∣∣∣
2
≤ |||f ||| for all i = 1, . . . , p and therefore

∣∣∣∣∣∣∣∣∣Γ[M ]f
∣∣∣∣∣∣∣∣∣2 =

p∑
j=1

∫
Tj

( p∑
i=1

∫
Ti
C

[M ]
ij (si, tj)f (i)(si)dsi

)2

dtj

Hölder
≤

p∑
j=1

∫
Tj

( p∑
i=1

(∫
Ti

∣∣∣C [M ]
ij (si, tj)

∣∣∣2 dsi
)1/2 (∫

Ti

∣∣∣f (i)(si)
∣∣∣2 dsi

)1/2
)2

dtj

(A.5) (A.7)

≤
p∑
j=1

∫
Tj

( p∑
i=1
‖Cii‖1/2

∞ ‖Cjj‖
1/2
∞ λ(Ti)1/2

∣∣∣∣∣∣f (i)
∣∣∣∣∣∣

2

)2

dtj

≤
p∑
j=1
‖Cjj‖∞ λ(Tj)

( p∑
i=1
‖Cii‖1/2

∞ λ(Ti)1/2
)2

|||f |||2 ≤ p3C2T 2|||f |||2,

for T = maxj=1,...,p λ(Tj) and C = maxj=1,...,p ‖Cjj‖∞. The value p3/2CT is constant

and finite, hence Γ[M ] is bounded.

3. Convergence results for ν [M ]
m , ψ[M ]

m and ρ[M ]
m : In Prop. 2, it was shown that Γ is com-

pact, which implies that this operator is also bounded (Reed and Simon, 1980, Chap-

ter VI.5.). As Γ and Γ[M ] are both bounded, norm convergence is equivalent to con-

vergence in the generalized sense (Kato, 1976, Chapter IV, §2.6., Thm. 2.23). This
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implies that the eigenvalues ν [M ]
m of Γ[M ] converge to the eigenvalues νm of Γ including

multiplicity (if the multiplicity is finite, which holds for all non-zero eigenvalues, as

Γ is compact (cf. Reed and Simon, 1980, Thm. VI.15.)) and the associated total

projections converge in norm (Kato, 1976, Chapter IV, §3.5.). If the m-th eigenvalue

has multiplicity 1, then the projections on the eigenspaces spanned by ψm and ψ[M ]
m ,

respectively, are given by

Pmf = 〈〈ψm, f〉〉ψm, P [M ]
m f = 〈〈ψ[M ]

m , f〉〉ψ[M ]
m , f ∈ H.

Without loss of generality one may choose the orientation of ψm and ψ[M ]
m such that

〈〈ψm, ψ[M ]
m 〉〉 ≥ 0. In this case, as ψm, ψ

[M ]
m both have norm 1,∣∣∣∣∣∣∣∣∣Pm − P [M ]

m

∣∣∣∣∣∣∣∣∣2
op
≥
∣∣∣∣∣∣∣∣∣〈〈ψm, ψm〉〉ψm − 〈〈ψ[M ]

m , ψm〉〉ψ[M ]
m

∣∣∣∣∣∣∣∣∣2 =
∣∣∣∣∣∣∣∣∣ψm − 〈〈ψ[M ]

m , ψm〉〉ψ[M ]
m

∣∣∣∣∣∣∣∣∣2
= |||ψm|||2 − 2〈〈ψm, 〈〈ψ[M ]

m , ψm〉〉ψ[M ]
m 〉〉+ 〈〈ψ[M ]

m , ψm〉〉2
∣∣∣∣∣∣∣∣∣ψ[M ]

m

∣∣∣∣∣∣∣∣∣2
= (1− 〈〈ψ[M ]

m , ψm〉〉)(1 + 〈〈ψ[M ]
m , ψm〉〉) ≥ (1− 〈〈ψ[M ]

m , ψm〉〉)

= 1
2 ·
∣∣∣∣∣∣∣∣∣ψm − ψ[M ]

m

∣∣∣∣∣∣∣∣∣2.
Norm convergence of the total projections hence implies

∣∣∣∣∣∣∣∣∣ψm − ψ[M ]
m

∣∣∣∣∣∣∣∣∣ → 0 for

M1, . . . ,Mp →∞.

To derive convergence of the scores ρ[M ]
m , note that for ε > 0 and c :=(

2
ε

∑p
j=1 ‖Cjj‖∞ λ(Tj)

)1/2

P (|||X||| > c)
Markov
≤ 1

c2E
[
|||X|||2

]
Fubini= 1

c2

p∑
j=1

∫
Tj
E
[
X(j)(tj)2

]
dtj

= 1
c2

p∑
j=1

∫
Tj
Cjj(tj, tj)dtj ≤

1
c2

p∑
j=1
‖Cjj‖∞ λ(Tj) = ε

2 < ε, (A.10)

i.e. the norm of X is bounded in probability. Moreover,

E
[∣∣∣∣∣∣∣∣∣X −X [M ]

∣∣∣∣∣∣∣∣∣2] Fubini=
p∑
j=1

∫
Tj
E
[∣∣∣X(j)(tj)−X [M ](j)(tj)

∣∣∣2] dtj → 0

for M1, . . . ,Mp →∞, as the expectation in the integral converges uniformly to 0 and

is thus bounded (by univariate Karhunen-Loève). As Tj has finite measure, the overall

integral converges to 0. Hence
∣∣∣∣∣∣∣∣∣X −X [M ]

∣∣∣∣∣∣∣∣∣ converges in the second mean to 0, thus∣∣∣∣∣∣∣∣∣X −X [M ]
∣∣∣∣∣∣∣∣∣ = op(1). Finally, this leads to∣∣∣ρm − ρ[M ]

m

∣∣∣ =
∣∣∣〈〈X,ψm〉〉 − 〈〈X [M ], ψ[M ]

m 〉〉
∣∣∣ ≤ ∣∣∣〈〈X,ψm − ψ[M ]

m 〉〉
∣∣∣+ ∣∣∣〈〈X −X [M ], ψ[M ]

m 〉〉
∣∣∣

≤ |||X|||
∣∣∣∣∣∣∣∣∣ψm − ψ[M ]

m

∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣X −X [M ]
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ψ[M ]

m

∣∣∣∣∣∣∣∣∣ = Op(1)o(1) + op(1) = op(1).

i.e. ρ[M ]
m converges in probability to ρm.
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Lemma 2. Under the assumptions of Prop. 7 it holds that

λmax(Z − Ẑ) ≤ Op(Mmax max(N−1/2,∆Mr
Γ
N)).

with Z as defined in Prop. 5, Ẑ = (N−1)−1Ξ>Ξ as in Section 3.3.2, Mmax = maxj=1,...,pMj

and ∆M := maxj=1,...,p ∆(j)
Mj

.

Proof of Lemma 2. For j, k = 1, . . . , p and f ∈ L2(Tj) define the bounded operator

Γ(jk) : L2(Tj)→ L2(Tk) via

(
Γ(jk)f

)
(t) :=

∫
Tj

Cov
(
X(j)(s), X(k)(t)

)
f(s)ds =

∫
Tj
Cjk(s, t)f(s)ds

Analogously, define Γ̂(jk) : L2(Tj)→ L2(Tk) by

(
Γ̂(jk)f

)
(t) :=

∫
Tj

Ĉov
(
X(j)(s), X(k)(t)

)
f(s)ds =

∫
Tj
Ĉjk(s, t)f(s)ds

with Ĉjk(s, t) := Ĉov
(
X(j)(s), X(k)(t)

)
= 1

N

∑N
i=1X

(j)
i (s)X(k)

i (t). If the Xi are independent

copies of the process X, it holds

E
[∫
Tj

∫
Tk

(
Cjk(s, t)− Ĉjk(s, t)

)2
ds dt

]

= E
[

1
N2

N∑
i=1

N∑
l=1

∫
Tj

∫
Tk

(
Cjk(s, t)−X(j)

i (s)X(k)
i (t)

) (
Cjk(s, t)−X(j)

l (s)X(k)
l (t)

)
ds dt

]

= 1
N2

N∑
i=1

∫
Tj

∫
Tk
E
[(
Cjk(s, t)−X(j)

i (s)X(k)
i (t)

)2
]

ds dt

= 1
N

∫
Tj

∫
Tk
E
[
X(j)(s)2X(k)(t)2

]
− Cjk(s, t)2ds dt = O(N−1).

The last step follows from the fact that the integral term does not depend on N and is

finite by assumption (A2) and the conditions in Prop. 2 for Cjk. This implies

∥∥∥Γ(jk) − Γ̂(jk)
∥∥∥
op
≤
(∫
Tj

∫
Tk

(
Cjk(s, t)− Ĉjk(s, t)

)2
ds dt

)1/2
Markov= Op(N−1/2).

Recall Z
(jk)
ln = Cov(ξ(j)

l , ξ(k)
n ) and Ẑ

(jk)
ln = 1

N−1
∑N
i=1 ξ̂

(j)
i,l ξ̂

(k)
i,n for j, k = 1, . . . , p, l =

1, . . . ,Mj, n = 1, . . . ,Mk. As Z and Ẑ are both symmetric matrices in RM+×M+ it holds

(cf. Horn and Johnson, 1991, Chapter 3.7)

λmax(Z − Ẑ) ≤ max
j=1,...,p

max
l=1,...,Mj

p∑
k=1

Mk∑
n=1

∣∣∣Z(jk)
ln − Ẑ(jk)

ln

∣∣∣ . (A.11)
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Let now j, k = 1, . . . , p, l = 1, . . . ,Mj, n = 1, . . . ,Mk be fixed. Assumption (A5) gives

∣∣∣Z(jk)
ln − Ẑ(jk)

ln

∣∣∣ =
∣∣∣∣∣Cov

(
ξ

(j)
l , ξ(k)

n

)
− 1
N

N∑
i=1

ξ̂
(j)
i,l ξ̂

(k)
i,n −

1
N(N − 1)

N∑
i=1

ξ̂
(j)
i,l ξ̂

(k)
i,n

∣∣∣∣∣
(A5)

≤
∣∣∣∣∣Cov

(
〈X(j), φ

(j)
l 〉2, 〈X(k), φ(k)

n 〉2
)
− 1
N

N∑
i=1
〈X(j)

i , φ̂
(j)
l 〉2 · 〈X

(k)
i , φ̂(k)

n 〉2
∣∣∣∣∣

+ 1
N(N − 1)

N∑
i=1

∣∣∣〈X(j)
i , φ̂

(j)
l 〉2

∣∣∣ ∣∣∣〈X(k)
i , φ̂(k)

n 〉2
∣∣∣

≤
∣∣∣∣∣
∫
Tj

∫
Tk
E
(
X(j)(s)X(k)(t)

)
φ

(j)
l (s)φ(k)

n (t)ds dt−

∫
Tj

∫
Tk

1
N

N∑
i=1

(
X

(j)
i (s)X(k)

i (t)
)
φ̂

(j)
l (s)φ̂(k)

n (t)ds dt
∣∣∣∣∣

+ 1
N(N − 1)

N∑
i=1

∣∣∣∣∣∣X(j)
i

∣∣∣∣∣∣
2

∣∣∣∣∣∣φ̂(j)
l

∣∣∣∣∣∣
2

∣∣∣∣∣∣X(k)
i

∣∣∣∣∣∣
2

∣∣∣∣∣∣φ̂(k)
n

∣∣∣∣∣∣
2

(A.10)=
∣∣∣∣∣
∫
Tj

∫
Tk

Cov
(
X(j)(s), X(k)(t)

)
φ

(j)
l (s)φ(k)

n (t)− Ĉov
(
X(j)(s), X(k)(t)

)
φ̂

(j)
l (s)φ̂(k)

n (t)ds dt
∣∣∣∣∣

+ 1
N(N − 1)

N∑
i=1

Op(1) · 1 ·Op(1) · 1

=
∣∣∣∣∣
∫
Tj

∫
Tk
Cjk(s, t)

[
φ

(j)
l (s)φ(k)

n (t)− φ̂(j)
l (s)φ̂(k)

n (t)
]

ds dt
∣∣∣∣∣

+
∣∣∣∣∣
∫
Tj

∫
Tk

[
Cjk(s, t)− Ĉjk(s, t)

]
φ̂

(j)
l (s)φ̂(k)

n (t)ds dt
∣∣∣∣∣+Op(N−1)

≤
∫
Tj

∫
Tk
Cjj(s, s)1/2Ckk(t, t)1/2

∣∣∣φ(j)
l (s)φ(k)

n (t)− φ̂(j)
l (s)φ̂(k)

n (t)
∣∣∣ ds dt

+
∫
Tk

∣∣∣((Γ(jk) − Γ̂(jk))φ̂(j)
l

)
(t)φ̂(k)

n (t)
∣∣∣ dt+Op(N−1)

≤ ‖Cjj‖1/2
∞ ‖Ckk‖

1/2
∞

(∫
Tj

∫
Tk

∣∣∣φ(j)
l (s)

∣∣∣ ∣∣∣φ(k)
n (t)− φ̂(k)

n (t)
∣∣∣ ds dt+

∫
Tj

∫
Tk

∣∣∣φ(j)
l (s)− φ̂(j)

l (s)
∣∣∣ ∣∣∣φ̂(k)

n (t)
∣∣∣ ds dt

)
+
∣∣∣∣∣∣(Γ(jk) − Γ̂(jk))φ̂(j)

l

∣∣∣∣∣∣
2

∣∣∣∣∣∣φ̂(k)
n

∣∣∣∣∣∣
2

+Op(N−1)

≤
(
‖Cjj‖∞ ‖Ckk‖∞ λ(Tj)λ(Tk)

)1/2 (∣∣∣∣∣∣φ(j)
l

∣∣∣∣∣∣
2

∣∣∣∣∣∣φ(k)
n − φ̂(k)

n

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣φ(j)

l − φ̂
(j)
l

∣∣∣∣∣∣
2

∣∣∣∣∣∣φ̂(k)
n

∣∣∣∣∣∣
2

)
+
∥∥∥Γ(jk) − Γ̂(jk)

∥∥∥
op

∣∣∣∣∣∣φ̂(j)
l

∣∣∣∣∣∣
2

∣∣∣∣∣∣φ̂(k)
n

∣∣∣∣∣∣
2

+Op(N−1)

=
(
‖Cjj‖∞ ‖Ckk‖∞ λ(Tj)λ(Tk)

)1/2 (∣∣∣∣∣∣φ(k)
n − φ̂(k)

n

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣φ(j)

l − φ̂
(j)
l

∣∣∣∣∣∣
2

)
+
∥∥∥Γ(jk) − Γ̂(jk)

∥∥∥
op

+Op(N−1)

= Op(∆(j)
Mj
rΓ
N) +Op(∆(k)

Mk
rΓ
N) +Op(N−1/2) +Op(N−1) = Op(max(∆(j)

Mj
rΓ
N ,∆

(k)
Mk
rΓ
N , N

−1/2)).
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The rate for φ(k)
n and φ

(j)
l in the last steps is shown at the beginning of the proof of Prop. 7.

In total, equation (A.11), Mmax = maxj=1,...,pMj and ∆M := maxj=1,...,p ∆(j)
Mj

give

λmax(Z − Ẑ) ≤ Op(Mmax max(N−1/2,∆Mr
Γ
N)).

Proof of Prop. 7. Under assumption (A4) and using the convention λ
(j)
0 :=∞, Lemma 4.3.

in Bosq (2000) gives for m = 1, . . . ,Mj

∣∣∣∣∣∣φ(j)
m − φ̂(j)

m

∣∣∣∣∣∣
2
≤ 81/2

[
min

(
λ(j)
m − λ

(j)
m+1, λ

(j)
m−1 − λ(j)

m

)]−1 ∥∥∥Γ(j) − Γ̂(j)
∥∥∥
op

≤ 81/2∆(j)
Mj

∥∥∥Γ(j) − Γ̂(j)
∥∥∥
op

= Op(∆(j)
Mj
rΓ
N).

Based on this result, Lemma 2 states that λmax(Z − Ẑ) ≤ Op(Mmax max(N−1/2,∆Mr
Γ
N))

with ∆M := maxj=1,...,p ∆(j)
Mj

and Mmax = maxj=1,...,pMj.

1. Eigenvalues: Let ξ ∈ RM+ with entries ξ(j)
m = 〈X(j), φ(j)

m 〉2 = 〈X [M ](j), φ(j)
m 〉2, m =

1, . . . ,Mj, j = 1, . . . , p. For fixed m = 1, . . . ,M+ it holds that

∣∣∣ν [M ]
m − ν̂m

∣∣∣ =
∣∣∣Var(〈〈X [M ]

i , ψ[M ]
m 〉〉)− ĉ>mẐĉm

∣∣∣ =
∣∣∣c>m Var(ξ)cm − ĉ>mẐĉm

∣∣∣
=
∣∣∣(cm − ĉm)>Zcm + ĉ>mZ(cm − ĉm) + ĉ>m(Z − Ẑ)ĉm

∣∣∣
≤ ||cm − ĉm|| · ν [M ]

m ||cm||+ λmax(Z)||cm − ĉm||+ λmax(Z − Ẑ)||ĉm||
= ||cm − ĉm||(ν [M ]

m + ν
[M ]
1 ) + λmax(Z − Ẑ)

≤ 81/2λmax(Z − Ẑ)
min(ν [M ]

m−1 − ν
[M ]
m , ν

[M ]
m − ν [M ]

m+1)
2ν [M ]

1 + λmax(Z − Ẑ)

=
 25/2ν

[M ]
1

min(ν [M ]
m−1 − ν

[M ]
m , ν

[M ]
m − ν [M ]

m+1)
+ 1

λmax(Z − Ẑ)

= Op(Mmax max(N−1/2,∆Mr
Γ
N)),

as the expression in square brackets converges to a constant C < ∞ (cf. Prop. 6

and the fact that νm is assumed to have multiplicity 1, see p. 41 in Chapter 3).

Here λmax(A) denotes the maximal eigenvalue of a symmetric matrix A. The second

inequality follows from Corollary 1 in Yu et al. (2015) and the fact that ν [M ]
m ≤ ν

[M ]
1 .
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2. Eigenfunctions: Consider the j-th element of the m-th eigenfunctions:

∣∣∣∣∣∣ψ[M ](j)
m − ψ̂(j)

m

∣∣∣∣∣∣
2
≤

Mj∑
n=1

∣∣∣[cm](j)n − [ĉm](j)n
∣∣∣ ∣∣∣∣∣∣φ(j)

n

∣∣∣∣∣∣
2

+
∣∣∣[ĉm](j)n

∣∣∣ ∣∣∣∣∣∣φ(j)
n − φ̂(j)

n

∣∣∣∣∣∣
2

≤M
1/2
j ||cm − ĉm||+M

1/2
j ||ĉm||Op(∆(j)

Mj
rΓ
N)

≤M
1/2
j

 81/2λmax(Z − Ẑ)
min(ν [M ]

m−1 − ν
[M ]
m , ν

[M ]
m − ν [M ]

m+1)
+Op(∆(j)

Mj
rΓ
N)


= M
1/2
j Op

(
max(MmaxN

−1/2,Mmax∆Mr
Γ
N ,∆

(j)
Mj
rΓ
N)
)
,

where the last inequality uses again Corollary 1 in Yu et al. (2015). By definition of

the norm, the result for the single elements implies∣∣∣∣∣∣∣∣∣ψ[M ]
m − ψ̂m

∣∣∣∣∣∣∣∣∣ = Op

(
M3/2

max max(N−1/2,∆Mr
Γ
N)
)
.

3. Scores and reconstructed X̂: For ρ̂i,m = Ξi,·ĉm = 〈〈X̂ [M ]
i , ψ̂m〉〉 as in Section 3.3.2 with

X̂
[M ](j)
i = ∑Mj

m=1 ξ̂
(j)
i,mφ̂

(j)
m ,

∣∣∣ρ[M ]
i,m − ρ̂i,m

∣∣∣ =
∣∣∣〈〈X [M ]

i , ψ[M ]
m − ψ̂m〉〉+ 〈〈X [M ]

i − X̂ [M ]
i , ψ̂m〉〉

∣∣∣
≤
∣∣∣∣∣∣∣∣∣X [M ]

i

∣∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣∣ψ[M ]
m − ψ̂m

∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣X [M ]
i − X̂ [M ]

i

∣∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣∣ψ̂m∣∣∣∣∣∣∣∣∣.
∣∣∣∣∣∣∣∣∣X [M ]

i

∣∣∣∣∣∣∣∣∣ is bounded in probability using (A.5) and analogous arguments as for |||X|||
in the proof of Prop. 6 (convergence of ρ[M ]

m ). For the second term, note that

∣∣∣∣∣∣X [M ](j)
i − X̂ [M ](j)

i

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
Mj∑
m=1

ξ
(j)
i,mφ

(j)
m − ξ̂

(j)
i,mφ̂

(j)
m

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
Mj∑
m=1

∣∣∣ξ(j)
i,m

∣∣∣ ∣∣∣∣∣∣φ(j)
m − φ̂(j)

m

∣∣∣∣∣∣
2

+
∣∣∣ξ(j)
i,m − ξ̂

(j)
i,m

∣∣∣ ∣∣∣∣∣∣φ̂(j)
m

∣∣∣∣∣∣
2

≤
Mj∑
m=1

∣∣∣ξ(j)
i,m

∣∣∣ ∣∣∣∣∣∣φ(j)
m − φ̂(j)

m

∣∣∣∣∣∣
2

+
∣∣∣〈X(j)

i , φ(j)
m 〉2 − 〈X

(j)
i , φ̂(j)

m 〉2
∣∣∣

≤
Mj∑
m=1

(∣∣∣ξ(j)
i,m

∣∣∣+ ∣∣∣∣∣∣X(j)
i

∣∣∣∣∣∣
2

) ∣∣∣∣∣∣φ(j)
m − φ̂(j)

m

∣∣∣∣∣∣
2
.

The univariate scores are uniformly bounded in probability: For m = 1, . . . ,Mj, let

ε > 0 and c := (2λ(j)
1
ε

)1/2 <∞. Then

P (|ξ(j)
i,m| > c)

Markov
≤ 1

c2E[|ξ(j)
i,m|2] = 1

c2 Var(ξ(j)
i,m) = λ(j)

m

c2 < ε.
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Hence
∣∣∣∣∣∣X [M ](j)

i − X̂ [M ](j)
i

∣∣∣∣∣∣
2

= MjOp(1)Op(∆(j)
Mj
rΓ
N) and

∣∣∣∣∣∣∣∣∣X [M ]
i − X̂ [M ]

i

∣∣∣∣∣∣∣∣∣ = Op(Mmax∆Mr
Γ
N).

In total,∣∣∣ρ[M ]
i,m − ρ̂i,m

∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣X [M ]
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ψ[M ]
m − ψ̂m

∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣X [M ]
i − X̂ [M ]

i

∣∣∣∣∣∣∣∣∣
= Op(1)Op(M3/2

max max(N−1/2,∆Mr
Γ
N)) +Op(Mmax∆Mr

Γ
N)

= Op(M3/2
max max(N−1/2,∆Mr

Γ
N)).
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A.2. Simulation – Additional Results

A.2.1. Construction of Eigenfunctions (Technical Details)

Setting 1 and 2: The first two settings of the simulation study consider multivariate

functional data where each element has a one-dimensional domain (cf. Section 3.4.1). As a

starting point for the construction of the multivariate eigenfunctions ψm with p elements,

we use Fourier basis functions f1, . . . , fM on the interval [0, 2]. Next, choose split points

0 = T1 < T2 < . . . < Tp < Tp+1 = 2 and shift values η1, . . . , ηp ∈ R such that Tj =
[Tj + ηj, Tj+1 + ηj]. In the first setting with p = 2, one has T1 = 0, T2 = 1, T3 = 2 and

η1 = 0, η2 = 1, i.e. the functions are cut at T2 = 1, and the second part is shifted to the left

by 1 such that T1 = T2 = [0, 1]. Given random signs σ1, . . . , σp ∈ {−1, 1}, the multivariate

eigenfunctions are given by their elements

ψ(j)
m (tj) = σj · fm|[Tj ,Tj+1](tj − ηj), m = 1, . . . ,M.

The constuction process is illustrated in Fig. A.1. Clearly, {ψm, m = 1, . . . ,M} is an

orthonormal system inH = L2(T1)×. . .×L2(Tp). The observations xi for the simulation are

constructed as a truncated Karhunen-Loève expansion, cf. the introduction of Section 3.4.

Exemplary data for the second simulation setting including sparse data and data with

measurement error is given in Fig. A.2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0.0 0.5 1.0 0.0 0.5 1.0

Figure A.1.: Illustration of the construction of the multivariate eigenfunctions ψm for the first

setting. Left: The first M = 3 functions of the Fourier basis on [0, 2] with one split point. Right:

The shifted pieces multiplied with random signs form the first three bivariate eigenfunctions.

Setting 3: The data in the third setting consists of images and functions, hence multivariate

functional data with elements having different dimensional domains (cf. Section 3.4.2). The

basic idea here is to find orthonormal bases for each of the domains and to construct the

eigenfunctions as weighted combinations of those bases. Specifically, we use five Fourier

basis functions f (1,1)
m1 , f (1,2)

m2 on [0, 1] or [0, 0.5], respectively, to form M = 25 tensor product
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Figure A.2.: Three examples for simulated data in simulation setting 2 based on the leading M = 8
Fourier basis functions and exponential eigenvalue decay. Left: x

(1)
i , Middle: x

(2)
i , Right: x

(3)
i .

Solid lines show the realizations xi, small points are the corresponding data with measurement

error, big points mark measurements of the artificially sparsified data (high sparsity level).

functions f (1)
m on [0, 1] × [0, 0.5] and M = 25 Legendre Polynomials f (2)

m on [−1, 1]. The

eigenfunctions are defined via

ψ(1)
m (s, t) =

√
αf (1,1)

m1 (s) · f (1,2)
m2 (t), (s, t) ∈ T1 := [0, 1]× [0, 0.5],

ψ(2)
m (t) =

√
1− αf (2)

m (t), t ∈ T2 := [−1, 1]

with a random weight α ∈ (0, 1). This choice implies that ψm forms an orthonormal system

in H = L2(T1) × L2(T2). In order to avoid extreme weights, α is set to u1/(u1 + u2) with

u1, u2 ∼ U(0.2, 0.8). This construction restricts α ∈ (0.2, 0.8) and can easily be generalized

to the simulation of multivariate functional data with p elements. Example data based on

this type of eigenfunctions is shown in Fig. A.3.
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Figure A.3.: Examples for simulated data in the third simulation setting (cf. Section 3.4.2) con-

sisting of images (x
(1)
i , left) and functions (x

(2)
i , right) without (1st row) and with measurement

error (2nd row).

A.2.2. Example Fits

Table A.1.: True and estimated eigenvalues for the first simulation setting (exponential eigenvalue

decay, eigenfunctions based on the first M = 8 Fourier basis functions) for one replication with

N = 250 observations. The reconstruction errors are (in %) 0.007 (MFPCA, σ2 = 0; simulation

median: 0.008), 0.734 (MFPCA, σ2 = 0.25; simulation median: 0.497), < 10−3 (MFPCARS, σ
2 =

0; simulation median: < 10−3) and 0.710 (MFPCARS, σ
2 = 0.25; simulation median: 0.480). The

results for the corresponding eigenfunctions are given in Fig. A.4.

m = 1 2 3 4 5 6 7 8
True Eigenvalues 1.000 0.607 0.368 0.223 0.135 0.082 0.050 0.030

MFPCA (σ2 = 0) 1.144 0.502 0.316 0.249 0.128 0.090 0.048 0.034

MFPCA (σ2 = 0.25) 1.140 0.501 0.316 0.249 0.128 0.087 0.046 0.031

MFPCARS (σ2 = 0) 1.140 0.500 0.315 0.248 0.127 0.090 0.048 0.034

MFPCARS (σ2 = 0.25) 1.139 0.504 0.317 0.252 0.130 0.091 0.048 0.035
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Figure A.4.: True and estimated eigenfunctions for the first setting based on one example repli-

cation with N = 250 observations. The results for the corresponding eigenfunctions are given in

Table A.1.
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A.2.3. Sensitivity Analysis

As discussed in Section 3.3.2, the number Mj of univariate eigenfunctions used for MFPCA

clearly has an impact on the results, as they control how much of the information in the

univariate elements is used for calculating the multivariate FPCA. A standard approach in

functional data analysis for quantifying the amount of information contributed by single

eigenfunctions φ(j)
m is the percentage of variance explained (pve), which is the ratio of the

associated eigenvalue λ(j)
m and the sum of all eigenvalues. The following simulation system-

atically examines the sensitivity of the MFPCA result based on the pve of the univariate

eigenfunctions.

Simulation Setup: The simulation is based on 100 replications with N = 250 ob-

servations of bivariate data on the unit interval (cf. setting 1 in Section 3.4.1), with

M = 8 Fourier basis functions and exponentially decreasing eigenvalues for simulating

the data. The number of univariate eigenfunctions M1,M2 for MFPCA is chosen based on

pve ∈ {0.75, 0.90, 0.95, 0.99} for both elements and M1 = M2 = M = 8 for comparison. The

number of multivariate principal component functions is then set to min{M1 +M2,M}.

Results: The results of the sensitivity analysis are shown in Fig. A.7 and Table A.2.

The number of estimated multivariate eigenvalues/eigenfunctions is for all 100 datasets

M̂ = 4 for pve = 0.75, M̂ = 6 for pve = 0.90 and M̂ = 8 in all other cases. The results

are as expected: Increasing the pve, and hence the information in the univariate FPCA,

improves the estimation accuracy for both, multivariate eigenvalues and eigenfunctions. As

a consequence, the reconstruction error reduces with increasing pve. Moreover, for a fixed

m, the results show that there is a critical amount of information in univariate FPCA that

is needed to describe the multivariate eigenvalues and eigenfunctions well. If this is reached

(e.g. pve = 0.95 for m = 5, cf. Fig. A.7), the additional benefit of using more univariate

eigenfunctions (pve > 0.95) becomes negligible. If, in contrast, the univariate FPCA does

not contain enough information (pve < 0.95), the error rates for the MFPCA estimates

are considerably increased. For fixed pve, the error rates rise abruptly for the last pair of

eigenfunctions (m ∈ {M̂+ − 1, M̂+}). This is due to the fact that in this simulation, the

multivariate functional principal components are derived from a Fourier basis. The last two

eigenfunctions are hence sine and cosine functions with highest frequency and cannot be

represented well by the univariate functions used, as they contain only functions with lower

frequency, in other words, they do not contain enough information.
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Figure A.7.: Relative errors for estimated eigenvalues (left) and eigenfunctions (right, log-scale)

for the sensitivity analysis. Extreme values cut off for better comparability.

Table A.2.: Average MRSE (in %) in the sensitivity analysis.

Choice of Mj (pve) True M

0.75 0.90 0.95 0.99
σ2 = 0 23.756 9.075 2.924 0.165 0.006

σ2 = 0.25 24.099 9.583 3.593 0.842 0.740

A.2.4. Coverage Analysis of Pointwise Bootstrap Confidence Bands

In Section 3.5, pointwise bootstrap confidence bands were calculated for the multivariate

functional principal components estimated from the ADNI data to quantify the variability

in the estimates. The following simulation study examines the coverage properties of such

confidence bands.

Simulation Setup: The data generating process is the same as in the simulation in

Section 3.4.2, mimicking the ADNI data that consists of functions on a one-dimensional

domain and images. In total, the simulation is based on 100 datasets, all having N =
250 observations. Each dataset is considered with and without measurement error. Both

elements are represented in terms of B-spline basis functions with appropriate smoothness

penalties in the presence of measurement error (cf. Section 3.4.2). For each dataset and

each estimated eigenfunction, a pointwise 95% bootstrap confidence band is calculated

based on 100 bootstrap samples on the level of subjects (cf. Section 3.5). The coefficients

of the spline basis decompositions can efficiently be reused when bootstrapping, as the

basis is fixed and does not depend on the bootstrap sample. In contrast, the univariate

functional principal components for the ADAS-Cog trajectories in the ADNI application

have to be re-estimated for each bootstrap sample. This computational aspect is taken into

account in the bootstrap implementation in the MFPCA package (Happ, 2017b). Finally,

the confidence bands are calculated separately for each element as pointwise percentile

bootstrap confidence intervals.

For each eigenfunction and each observation point, the estimated coverage at one point

tj ∈ Tj is the percentage of datasets for which the true eigenfunction ψ(j)
m evaluated at tj
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is enclosed in the bootstrap confidence band (up to a sign change of the whole function).

Fig. A.8 shows the estimated coverages of the elements of the eigenfunctions for data with

and without measurement error aggregated over the observation points.

Results: If the data is observed without measurement error, the pointwise confidence

bands enclose the true functions fairly precisely in 95% of all cases with very little variation

between the observation points. For the leading eigenfunctions, the same holds true if the

data is observed with measurement error. For higher order eigenfunctions, that explain

hardly any variation in the data, the estimated coverage decreases, especially for the sec-

ond element (ψ(2)
m , one-dimensional domain) and shows a much higher variation between

the observation points. On the one hand this may be caused by the fact that the true eigen-

functions ψ(2)
m have a stronger curvature for growing m (cf. Fig. A.6). Severe undercoverage

for higher order eigenfunctions occurs mainly in regions of high curvature and slope of the

eigenfunctions, where the low signal-to-noise level leads to oversmoothing (cf. Fig. A.9). On

the other hand, the results of Section 3.4.2 show that the estimates for higher order eigen-

function elements become more inaccurate due to interchanging of eigenfunctions, hence

the bootstrap confidence bands can be centered incorrectly. For the image elements ψ(1)
m ,

the bootstrapped confidence bands give much better results, except for some outliers that

form spatially smooth outlying regions (see e.g. Fig. A.9). This reflects that the pointwise

coverages are not independent, as the true eigenfunctions as well as the confidence bands

are smooth: If the function ψ(j)
m lies within the bootstrap confidence band at a point tj, it

is very likely that it will also be inside the confidence band at the neighbouring observation

points (analogously for points outside the CI). This relation is highlighted in Fig. A.9, which

illustrates the coverage rates for ψ3 (having a good coverage) and ψ9 (having a rather poor

coverage) in the case of measurement error. In summary, the results of the simulation show

that the bootstrapped confidence bands give reliable results, in particular for the leading

eigenfunctions that explain most of the variation in the data. Moreover, smooth eigen-

functions will have a stabilizing effect for the coverage. However, when interpreting such

pointwise confidence bands, one should keep in mind the dependence across neighbouring

observation points due to the smoothness of the eigenfunctions.
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Figure A.8.: Empirical coverages from the bootstrap simulation study for data without (σ2 = 0)

and with (σ2 = 0.25) measurement error. The boxplots show the pointwise coverage of the

bootstrap confidence bands aggregated over the corresponding domains for both elements of the

true eigenfunctions ψm, m = 1, . . . , 12 (1st row: Image element ψ
(1)
m , 2nd row: Element ψ

(2)
m with

one-dimensional domain). The dashed line marks a coverage of 95%.
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Figure A.9.: Exemplary results from the bootstrap simulation study for data observed with mea-

surement error. The first row shows the estimated coverages for the third eigenfunction, the second

row shows the estimated coverages for the eigenfunction of order 9 (see also Fig. A.8). The first

column corresponds to the estimated elements ψ̂
(1)
m and the second column corresponds to the

estimated elements ψ̂
(2)
m . For the latter, the dashed lines correspond to the nominal level of 95%.
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A.3. Applications – Gait Cycle Data
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Figure A.10.: The first three estimated bivariate eigenfunctions for the gait data set. Solid lines

show the results of the new MFPCA approach, dashed lines correspond to the approach of Ramsay

and Silverman (2005). The functions have been reflected, if necessary, for comparison purposes.

A.3. Applications – Gait Cycle Data

For comparison to an existing method in the special case of densely sampled bivariate data

on the same one-dimensional interval, the new MFPCA approach is applied to the gait

cycle data (cf. Fig. 3.1 in the main document) and compared to the method of Ramsay and

Silverman (2005) as implemented in the R-package fda (Ramsay, Wickham, et al., 2014).

The results are shown in Fig. A.10. For the new approach, the multivariate principal com-

ponents are calculated based on univariate FPCA with M1 = M2 = 5 principal components.

For MFPCARS, the observed functions are presmoothed using K = 15 cubic spline basis

functions as in the simulation study (cf. Section 3.4.1). As for synthetic data, the two

methods give nearly identical results.
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Figure B.1.: Illustration of the ADAS-Cog correction for confounding variables. Left: Original

and corrected ADAS-Cog trajectories for six example subjects, selected to systematically differ

from the reference values. Right: Subject roster identification (RID) and demographic values for

all example subjects, coded by color. Bold entries mark systematic differences from the reference

values.
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Figure B.2.: Smooth and random effects for the ADAS-Cog correction based on the exact exam

dates. The gray horizontal lines indicate zero. 1st row: Estimated effect for time including

95% confidence bands (left) and QQ plot for the random effect of individuals (right). 2nd row:

Estimated age effect in males (left) and estimated effect for age in females (right). 3rd row:

Scatterplot of the individual times tij , tik, revealing the variability in the examination dates,

which is advantageous to univariate functional principal component analysis.
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depending on diagnostic groups. The gray horizontal line marks zero.
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Figure B.4.: Corrected ADAS-Cog trajectories by diagnostic group. The colors of the lines corre-

spond to the score values for the second principal component in the whole sample MFPCA. For

reasons of clarity, the 1% subjects having the highest and lowest score values, each, have been

removed from the plot. The gray curve marks the smooth overall mean.
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Figure B.5.: Example reconstructions of ADAS-Cog trajectories based on the whole sample

MPFCA for five subjects, each, according to their (in-sample) prediction accuracy. The dots

represent the original ADAS-Cog scores corrected for age, gender and education. The solid lines

represent the reconstructed trajectories. Figures on the right of the plots give the RMSE for each

subject, coded by color.
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Figure B.6.: Example predictions of ADAS-Cog trajectories for HC-Aβ+ based on the MFPCA

for MCI-Aβ+, according to their (out-of-sample) prediction accuracy within the first follow-up
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Simulation Toolbox: Example Plots
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Figure C.1.: Left: N = 8 simulated curves on [0, 1] based on the first M = 10 Fourier basis

functions and eigenvalues with a linear decrease. Right: One simulated image on [0, 1]× [−0.5, 0.5]
based on tensor products of M1 = 10 eigenfunctions of the Wiener process on [0, 1] and M2 = 12
Fourier basis functions on [−0.5, 0.5] and linearly decreasing eigenvalues.
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Figure C.2.: N = 7 simulated bivariate curves on [−0.5, 0.5] and [0, 1] with eigenfunctions obtained

from the first M = 10 Fourier basis functions by the splitting algorithm (type = "split") and

linearly decreasing eigenvalues.
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Figure C.3.: One observation of simulated bivariate data on [−0.5, 0.5] and [0, 1] × [−1, 1] using

weighted orthonormal elements (type = "weighted"). See text for details.
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Figure C.4.: Transforming the simulated univariate functions in simUniv1D (see Fig. C.1). Left:

Adding noise with a standard deviation of σ = 0.5. Right: The effect of sparsification, keeping

five to ten observations per curve. Solid lines show the original data, filled dots correspond to the

observed values of the sparsified version.
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after sparsification (see Fig. C.2). Solid lines show the original data, filled dots correspond to the
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D.1. Example Plots for Simulation
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Figure D.1.: The bumpy coefficient image and corresponding estimates for all nine models used in

the simulation study for one example iteration (N = 250, SNR = 4). Note the different scales for

WPLS, WNET and GMRF.
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Figure D.2.: The pca coefficient image and corresponding estimates for all nine models used in

the simulation study for one example iteration (N = 250, SNR = 4). Note the different scale for

GMRF.
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Figure D.3.: The smooth coefficient image and corresponding estimates for all nine models used

in the simulation study for one example iteration (N = 250, SNR = 4). Note the different scales

for WPLS and GMRF.
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Figure D.4.: The sparse coefficient image and corresponding estimates for all nine models used in

the simulation study for one example iteration (N = 250, SNR = 4). Note the different scale for

GMRF.
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Figure D.5.: Predictions and relative prediction errors for one example iteration (N = 250, SNR =
4) in the simulation study. The plots show the observed response values yi and the fitted values

ŷi for all nine models depending on the true coefficient image used. The diagonal line in each plot

corresponds to a perfect fit.
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Figure D.6.: Assessing the goodness of fit for the application. Left: Normal QQ-Plots for the

standardized residuals in each model, showing that they are approximately normal. Center: Ob-

served response values yi vs. fitted values ŷi found by the nine different models. The diagonal line

corresponds to a perfect fit. Right: Relative prediction errors for each model.
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Figure D.8.: Correlation between the vectorized estimated coefficient images β̂ depending on the

model used.

Table D.1.: Measures for underlying and parametric model assumptions in the application.

Underlying Assumptions Parametric Assumptions

Smoothness Sparsity Smoothness Sparsity Prior

Model Image Image Wavelets Coef. Pixels Pixels PCs PLSCs Wavelets σ2
β

Splines 0.002 - - 0.001 - - - - - -

FPCR 0.002 - - < 10−3 - - 0.667 - - -

PCR2D - - - - - - 0.800 - - -

WCR - - 0.146 - - - 0.200 - 0.244 -

WPLS - - 0.116 - - - - 0.067 0.012 -

WNET - - 0.104 - - - - - 0.010 -

SparseGMRF 0.007 0.569 - - 0.007 1.000 - - - 0.104

GMRF 0.043 - - - 0.043 - - - - 0.300

GMRF2 0.010 - - - 0.010 - - - - 0.998

D.3. Calculation of Confidence/Credible Intervals for the

Application

For the application, Fig. 6.8 and Fig. D.7 show confidence or credible intervals for the

estimated coefficient image β̂ and the coefficient vector α̂ for the scalar covariates, which

have been obtained as follows:

Splines : For β̂, standard errors based on the Bayesian posterior covariance matrix of the

model coefficients are calculated using the predict.gam function of the mgcv package

(Wood, 2017), giving pointwise standard errors conditional on the estimated smoothing
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parameters, while not including uncertainty of the intercept α (as this is considered sepa-

rately). Using an approximate normality assumption, the pointwise confidence bands in a

pixel l = 1, . . . , L are constructed as 95% Wald confidence intervals

[β̂l + Φ−1(0.025) · ŝe(β̂l), β̂l + Φ−1(0.975) · ŝe(β̂l)] (D.1)

with Φ the distribution function of the standard normal distribution and ŝe(β̂l) the standard

error for β̂ in pixel l. For the α̂ coefficient, confidence intervals are constructed analogously,

using the standard errors ŝe(α̂j) produced by the summary.gam function from the mgcv

package:

[α̂j + Φ−1(0.025) · ŝe(α̂j), α̂j + Φ−1(0.975) · ŝe(α̂j)]. (D.2)

FPCR: Pointwise Bayesian standard errors for β̂ are calculated using the fpcr function in

refund (Goldsmith, Scheipl, et al., 2016). In a next step, pointwise 95% Wald confidence

bands are obtained in full analogy to the Splines model (D.1). For α̂, we use again the

summary.gam function from the mgcv package to obtain standard errors and calculate 95%
Wald confidence bands based on them as in (D.2).

PCR2D : The confidence intervals for β̂ and α̂ are found based on a nonparametric bootstrap

approach. To this end, the data was resampled 200 times and the coefficients were re-

estimated using the optimal number K of eigenimages found for the original fit due to

computational reasons. Pointwise confidence bands for β̂ and for the α̂ coefficients are

obtained as 95% percentile bootstrap intervals.

WCR/WPLS/WNET : For all three wavelet-based methods, the confidence bands for β̂

and α̂ are also based on a nonparametric bootstrap with 200 resampling iterations. For

each bootstrap sample, the models are refit, using M0 = 3 and the optimal parameters of

the original fit (K∗, K0 for WCR and WPLS ; K∗, η, λ for WNET ), similar to the case in

PCR2D. The confidence bands are calculated as 95% percentile bootstrap intervals for both

β̂ and α̂ on a pointwise basis.

SparseGMRF/GMRF/GMRF2 : For the Bayesian methods, we construct Bayesian 95%
credible intervals for each pixel in the coefficient image β̂l and for each coefficient α̂j based

on the posterior drawings produced by the Gibbs sampling algorithm. The credible intervals

are obtained as 2.5% and 97.5% empirical quantiles of the samples after burnin and potential

thinning.
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D.4. Sensitivity Study
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Figure D.9.: Random variations of the beta functions used for the sensitivity study. From left to

right: bumpy, pca, smooth and sparse.

The results in Section 6.4.2 have been obtained for fixed coefficient images. As the covariate

images xi do not have a constant variation over all pixels, some features of β might be easier

to find than others, notably if they are in areas with high variation and thus more infor-

mation. In order to study the sensitivity of the results with respect to the spatial structure

of β, a second study was conducted for N = 250 and SNR = 4 with spatially varying

coefficient images. Therefore, a new coefficient image was generated in each iteration of

the simulation, sampling the locations of the features randomly (for bumpy, smooth and

sparse) or with a random number of principal components and randomly chosen coefficient

bk (for pca). Examples for one iteration are shown in Fig. D.9. In this study, we consider

all models except for GMRF due to extreme error rates in the first simulation study and

SparseGMRF due to long computations. The results are given in Fig. D.11 (error rates)

and D.14 (correlations of the estimates with the true coefficient image and across models).

Boxplots of the measures for underlying and parametric model assumptions are given in

Figs. D.12, D.13 and D.10.

Overall, the results are very similar to the ones from the previous simulation study with

fixed image covariates. This shows that variations in the features of the true coefficient

images β have only marginal influence on the simulation results. Notable differences are

found for the parametric model measures concerning principal components as well as in

the results for the pca coefficient image. This is plausible, as for varying coefficient images

β, different numbers of principal components might be optimal in the FPCR, PCR2D

and WCR models. For pca, the higher variation can be explained by the fact that for

this coefficient image, the number of eigenimages and their coefficients are resampled for

generating new images β and hence may lead to a higher variation.
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Figure D.10.: Values of mProjection in the sensitivity study for the different coefficient images

depending on the basis functions used.
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Figure D.11.: Results of the sensitivity study. Boxplots show the relative prediction and estimation

error for all nine models depending on the coefficient image and the signal-to-noise ratio (SNR)

over all 100 simulation runs. Gray horizontal lines mark 1, which corresponds to the simple

intercept model (for prediction error) or to a constant coefficient image, having the average value

of the true β image (estimation error).
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Figure D.12.: Measures for underlying model assumptions in the sensitivity study. Boxplots show

the measures for the different models depending on the true coefficient image over all 100 simula-

tion runs. All values on log-scale. Gray horizontal lines correspond to the median (solid line) and

the 25% and 75% quantiles (dashed lines) for the true coefficient images.
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Figure D.13.: Measures for parametric model assumptions in the sensitivity study. Boxplots

show the measures for the different coefficient images depending on the model used over all 100
simulation runs. Measures with extremely low values on log-scale.
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Figure D.14.: Correlation between the true coefficient images and the estimates found by the

different models in the sensitivity study. The figures show the median correlation of the vectorized

images over 100 simulation runs depending on the true images and the models used.
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Figure D.15.: Simulation results for N = 500 observations. Boxplots show the relative prediction

and estimation error for all nine models depending on the coefficient image and the signal-to-noise

ratio (SNR) over all 100 simulation runs. Gray horizontal lines mark 1, which corresponds to the

simple intercept model (for prediction error) or to a constant coefficient image, having the average

value of the true β image (estimation error).
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Figure D.16.: Computation times for all nine models and N = 500 observations over all 100
simulation runs. The boxplots contain the merged values for all coefficient images and signal-to-

noise ratios.
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Figure D.17.: Measures for underlying model assumptions in the simulation for N = 250 obser-

vations. Boxplots show the measures for the different models depending on the true coefficient

image and the signal-to-noise ratio (SNR) over all 100 simulation runs. All values on log-scale.

Gray horizontal lines correspond to the values for the true coefficient images.

197



D. Appendix for Chapter 6

●●●

●●●●

●●

●●●●

●●

●●●●

●●●●●●●●●●●●●●●●● ●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●●●

●

●●●●●●

●

●

●●●●

●

●

●

●

●

●●●● ●●●●●

●●●

●

●●●●●

●●

●●●

●

●●●

●

●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●

●●●●●

●

●●●●●● ●●●●●●●

●●

●●●●●●●●●●●

●

●

●

●

●

●

●●

●●

●●

●●●●

●

●●

●

●●●●●●●●

●●●

●

●

●

●●●

●

●●
●●

●●●

●

●

●●●

●

●●

●●●●●

●

●●●●

●●

●

●

●

●●●

●●

●

●

●●

●

●●

●

●●

●

●●●●

● ●●●●● ●●●●●

●

●●

●
●●●

●
●
●●●

●
●
●

●●

●

●●●●

●
●●
●
●
●●
●●●
●

●

●●
●
●

●●

●●

●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●● ●

●

●●

●●●●

●●●

●

●●

●

●●●●●●●●●●●●

●

●●●●● ●●●●●●●●
●
●

FPCR PCR2D WCR WPLS WNET SparseGMRF

S
N

R
: 1

S
N

R
: 4

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

True Coefficient Image

M
ea

su
re

Sparsity

●

●

●●●
●

●
●

●

●●

●

●
●●

●

●

●●

●●
●
●
●

●

●

●

●

●●●
●

●●●

●●
●
●●
●
●
●●
●
●

●
● ●●

●

●

●

●●●●●

●

●
●
●
●
●
●●●
●
●
●

●●

●

●

● ●●● ●
●

●

●
●●●

●●●
●
●
●
●

●●●

Splines FPCR SparseGMRF GMRF GMRF2

S
N

R
: 1

S
N

R
: 4

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

True Coefficient Image

M
ea

su
re

Smoothness

●●●● ●●● ● ●

●●● ●● ●●●

●●● ●

● ●●●● ●●
●●●

SparseGMRF GMRF GMRF2

S
N

R
: 1

S
N

R
: 4

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

bu
m

py pc
a

sm
oo

th

sp
ar

se

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

True Coefficient Image

M
ea

su
re

Prior Variability

Sparsity of

Pixels

PCA Components

PLS Components

Wavelets

Smoothness of

Coefficients

Pixels

Variability of

σβ
2

Figure D.18.: Measures for parametric model assumptions in the simulation for N = 500 obser-

vations. Boxplots show the measures for the different coefficient images depending on the model

used and the signal-to-noise ratio (SNR) over all 100 simulation runs. Measures with extremely

low values on log-scale.
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D.5. Simulation Results for 500 Individuals
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Figure D.19.: Correlation between the true coefficient images and the estimates found by the

different models in the simulation study with N = 500 observations and SNR = 4. The figures

show the median correlation of the vectorized images over 100 simulation runs depending on the

true images and the models used.
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versité Pierre et Marie Curie, Paris.

Scheipl, F. & S. Greven (2016). “Identifiability in penalized function-on-function regression mod-

els”. Electronic Journal of Statistics 10.1, pp. 495–526.

Schoenberg, I. J. (1946a). “Contributions to the problem of approximation of equidistant data by

analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic

approximation formulae”. Quarterly of Applied Mathematics 4.1, pp. 45–99.

– (1946b). “Contributions to the problem of approximation of equidistant data by analytic func-

tions. Part B. On the problem of osculatory interpolation. A second class of analytic approxi-

mation formulae”. Quarterly of Applied Mathematics 4.2, pp. 112–141.

Shang, H. L. & R. J. Hyndman (2016). rainbow: Rainbow Plots, Bagplots and Boxplots for Func-

tional Data. R package version 3.4. url: https://CRAN.R-project.org/package=rainbow.

Shi, R. & J. Kang (2015). “Thresholded Multiscale Gaussian Processes with Application to

Bayesian Feature Selection for Massive Neuroimaging Data”. arXiv: 1504.06074.

Smith, M. & L. Fahrmeir (2007). “Spatial Bayesian Variable Selection With Application to Func-

tional Magnetic Resonance Imaging”. Journal of the American Statistical Association 102.478,

pp. 417–431.

Soueidatt, M. (2014). Funclustering: A package for functional data clustering. R package version

1.0.1. url: https://CRAN.R-project.org/package=Funclustering.

Tarabelloni, N., A. Arribas-Gil, F. Ieva, A. M. Paganoni & J. Romo (2017). roahd: Robust Analysis

of High Dimensional Data. R package version 1.3. url: https://CRAN.R- project.org/

package=roahd.

Tibshirani, R. (1996). “Regression Shrinkage and Selection via the Lasso”. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 58.1, pp. 267–288.

Tierney, L. (1996).“Introduction to general state-space Markov chain theory”. Markov chain Monte

Carlo in practice. Ed. by W. R. Gilks, S. Richardson & D. J. Spiegelhalter. Boca Raton: Chap-

man and Hall/CRC. Chap. 4, pp. 59–74.

Tucker, J. D. (2017). fdasrvf: Elastic Functional Data Analysis. R package version 1.8.1. url:

https://CRAN.R-project.org/package=fdasrvf.

Tucker, L. R. (1966). “Some Mathematical Notes on Three-Mode Factor Analysis”. Psychometrika

31.3, pp. 279–311.

Wand, M. & J. Ormerod (2011). “Penalized wavelets: Embedding wavelets into semiparametric

regression”. Electronic Journal of Statistics 5, pp. 1654–1717.

Wang, H. & J. S. Marron (2007). “Object oriented data analysis: Sets of trees”. Annals of Statistics

35.5, pp. 1849–1873.

Wang, J.-L., J.-M. Chiou & H.-G. Müller (2016). “Functional Data Analysis”. Annual Review of

Statistics and Its Application 3.1, pp. 257–295.

208

https://CRAN.R-project.org/package=rainbow
http://arxiv.org/abs/1504.06074
https://CRAN.R-project.org/package=Funclustering
https://CRAN.R-project.org/package=roahd
https://CRAN.R-project.org/package=roahd
https://CRAN.R-project.org/package=fdasrvf


Bibliography

Weiner, M. W., D. P. Veitch, P. S. Aisen, L. A. Beckett, N. J. Cairns, J. Cedarbaum, M. C.

Donohue, R. C. Green, D. Harvey, C. R. Jack, W. Jagust, J. C. Morris, R. C. Petersen, A. J.

Saykin, L. Shaw, P. M. Thompson, A. W. Toga & J. Q. Trojanowski (2015). “Impact of the

Alzheimer’s Disease Neuroimaging Initiative, 2004 to 2014”. Alzheimer’s & Dementia : The

Journal of the Alzheimer’s Association 11.7, pp. 865–884.

Werner, D. (2011). Funktionalanalysis. 7th ed. Berlin: Springer.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York: Springer.

– (2011). “testthat: Get Started with Testing”. The R Journal 3.1, pp. 5–10.

Wickham, H., W. Chang & RStudio (2016). ggplot2: Create Elegant Data Visualisations Using the

Grammar of Graphics. R package version 2.2.1. url: https://CRAN.R-project.org/package=

ggplot2.

Winkler, G. (2003). Image Analysis, Random Fields and Markov Chain Monte Carlo Methods.

Berlin: Springer.

Wood, S. (2003). “Thin plate regression splines”. Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 65.1, pp. 95–114.

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. London: Chapman &

Hall.

Wood, S. N. (2011).“Fast stable restricted maximum likelihood and marginal likelihood estimation

of semiparametric generalized linear models”. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 73.1, pp. 3–36.

– (2017). mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estima-

tion. R package version 1.8-17. url: https://CRAN.R-project.org/package=mgcv.

Yao, F., H.-G. Müller & J.-L. Wang (2005). “Functional Data Analysis for Sparse Longitudinal

Data”. Journal of the American Statistical Association 100.470, pp. 577–590.

Yassouridis, C. (2017). funcy: Functional Clustering Algorithms. R package version 0.8.6. url:

https://CRAN.R-project.org/package=funcy.

Yu, Y., T. Wang & R. J. Samworth (2015). “A useful variant of the Davis-Kahan theorem for

statisticians”. Biometrika 102.2, pp. 315–323.

Zemyan, S. (2012). The Classical Theory of Integral Equations. Basel: Birkhäuser.
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