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Abstract 

Covalent organic frameworks (COFs) represent an emerging class of crystalline, porous 

materials exhibiting unique structural and functional diversity. By connecting 

multidentate building blocks via covalent bonds, two- or three-dimensional frameworks 

with defined pore size and high specific surface area in conjunction with appreciable 

thermal and chemical stability can be constructed. Crystallinity and porosity are of 

central importance for many properties of COFs including adsorption, diffusion, and 

electronic transport. In this work, a new method was developed for strongly enhancing 

both of these aspects through the introduction of a modulating agent in the synthesis. 

This modulator competes with one of the building blocks during the solvothermal COF 

growth, resulting in highly crystalline frameworks with greatly increased domain sizes 

reaching several hundreds of nanometers. Using functionalized modulators, this 

synthetic approach also provides a new and facile method for the external surface 

functionalization of COF domains, providing accessible sites for post-synthetic 

modification reactions.  

The unique structural order of COFs offers a strategy to position molecular 

semiconductors within a rigid network in a highly controlled and predictable manner. 

The π-stacked columns of layered two-dimensional COFs enable electronic interactions 

between the COF sheets, thereby providing a path for exciton and charge carrier 

migration. Frameworks comprising two electronically separated subunits can form 

highly defined interdigitated donor‒acceptor heterojunctions, which can drive the 

photogeneration of free charge carriers. As a first example of a photovoltaic device that 

utilizes exclusively a crystalline organic framework with an inherent type II 

heterojunction as the active layer, a new triphenylene‒porphyrin COF was developed. 

This COF was found to efficiently generate and separate charges upon illumination to be 
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collected within a solar cell device. 

In a newly developed thienothiophene-porphyrin COF, evidence for a stacking order 

with a slight offset between successive layers in a preferred direction was found. This 

caused a loss in symmetry of the unit cell, which can be seen by the splitting of 

reflections in the X-ray diffraction pattern. Furthermore, the influence of the linear 

linker molecule within porphyrin COFs on the photo-luminescent decay lifetime was 

investigated. The lifetime can thereby be increased by pairing electron rich with 

deficient molecules, allowing for internal charge transfer from the porphyrin unit to the 

linear linker molecule.  

To integrate linker molecules with extended π-systems, a new strategy was developed 

by constructing asymmetric building blocks. The installation of solubilizing groups in an 

asymmetric fashion allows the linker molecule to alternate within the COF structure and 

hence reduce steric strain. As an example a new Pyr-4T COF was synthesized, consisting 

of four armed pyrene building blocks and linear tetra thiophenes, equipped with 

solubilizing groups, that form square planar sheets which stack in the third dimension 

with a high degree of crystalline order.  

An established strategy for extending the light harvesting capabilities of polymer solar 

cell devices is the design of materials with alternating electron-rich and electron-

deficient subunits, enabling intramolecular charge transfer upon photon excitation at 

photon energies considerably lower than required for π - π* transitions. Selection of the 

subunits also enables one to modulate the energy levels of the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in such 

a way to proper match the energy levels of a fullerene derivative used as acceptor phase. 

To realize this concept, a new push-pull linker was developed that comprises electron 

rich and deficient areas within its structure. Integrated within a COF structure, it was 
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found to increase the absorption spectrum such that light can be harvested efficiently 

throughout almost the entire visible region. The energy levels of the push-pull linker 

were finely tuned to align with those of a fullerene acceptor to eventually, when 

integrated within a COF structure, function as donor material in an ordered bulk 

heterojunction solar cell device.  
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1. Introduction 

Global environmental concerns and the world´s rapidly growing demand for energy 

require alternative zero-carbon energy solutions. The sunlight hitting the earth on one 

day would be sufficient to cover the energy needs of mankind for one year if harvested 

and stored in an efficient and cost-effective way.1 1.74×1017 W solar energy 

continuously reaches the earth, more than 10,000 times the world’s energy demand. 

 

 

Figure 1.1. World solar energy map depicting the direct normal irradiation averaged annual sum showing 
regions from under 800 kWh/m2/y (brown) to over 2800 kWh/m2/y (bright yellow).2  

To utilize this free and inexhaustible resource and convert its energy to electricity, many 

different strategies were developed with the goal of maximum power at minimum cost, 

initiated by Alexandre-Edmund Becquerel in 1839.3 

Silicon wafer based photovoltaic (PV) technology is most commonly used, constituting 

about 92 % of the market, as the solar cells exhibit good power conversion efficiencies 
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and long lifetimes.4 Their production is however, slow and requires a supply of highly 

pure chemicals, which makes the electricity they produce still more expensive compared 

to non-renewable utility-supplied electricity. The way towards a sustainable energy 

future therefore would benefit from an efficient and low-cost alternative to already 

existing PV technologies, while retaining the required stability. Organic compounds 

acting as active materials in solar cell devices can be fabricated on flexible substrates by 

fast and facile deposition processes and could therefore be a solution for the current 

limitations.5 

1.1 Organic Polymer Solar Cell Devices 

Organic photovoltaics have been in the focus of international research as they offer the 

potential of roll-to-roll processing on low-cost substrates.6 Thin films of organic 

semiconductors, typically in the range of 100 nm thickness, can be processed with 

printing and coating techniques on flexible substrates. 

The working principle of organic PV is often based on an intermixed phase of electron 

donor and acceptor materials, in which the donor is usually excited upon light 

illumination, causing an electron to be transferred to the acceptor phase. The holes and 

electrons created in this process are then transported to opposite electrodes to be 

utilized before recombination.7 

In 1986, Tang et al. reported a 1 % PCE for a donor-acceptor heterojunction, which helps 

to dissociate strongly bound excitons.8 The introduction of a bulk heterojunction (BHJ), 

which decreases the diffusion length of excitons from their generation to dissociation 

sites through an interpenetrated network of donor and acceptor phases (Figure 1.2)  
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Figure 1.2. Schematic diagram of the different types of organic donor–acceptor heterojunctions and the 
structure of a controlled bulk heterojunction (BHJ) device. (a) Planar heterojunction. (b) 
Thermodynamically driven BHJ formed by phase segregation. The carrier-conducting pathways contain 
bottlenecks and cul-de-sacs. (c) BHJ with a large donor–acceptor interface area and continuous carrier-
conducting pathways to the opposing electrodes formed by a controlled growth. Electrons are indicated 
by closed circles, holes by open circles, and excitons by pairs enclosed in dashed circles.9 

triggered further improvements in efficiency.9-12 The donor-acceptor heterojunction is 

used to generate charge carriers at the interface by dissociating excitons through an 

energy offset in LUMO levels between donor and acceptor materials that is sufficient to 

break the Coulomb attraction.13-14 To be converted to charge carriers before relaxing to 

the ground state, excitons need to diffuse into the interface between donor and acceptor 

material. The diffusion length is thereby depending on the exciton lifetime which is 

typically around 1 ns, limiting the diffusion length to less than 20 nm. As a result, only a 

fraction of excitons can diffuse to the interface in planar heterojunctions (Figure 1.2a).13 

Hence, optimizing the nature and structure of the interface could potentially lead to 

higher device efficiencies.  

A thermodynamically driven distribution of donor and acceptor phase can, however lead 

to bottlenecks and cul-de-sacs, which can cause a loss or recombination of the generated 

charges (Figure 1.2b). A controlled formation of the BHJ, resulting in an ordered, yet 

maximized interface area is favored (Figure 1.2c). This can be achieved by organic vapor 

phase deposition (OVPD) and can lead to an increase of efficiency from 1.4 to 2.7 %, 

compared to disordered interfaces.9, 15 The development of new donor-acceptor  
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Figure 1.3. Long wavelength absorbing polymers with donor and acceptor units. 16 

materials and new device concepts contributed to the rapid progress in efficiency, 

achieving maximum values of over 10 %.17 

A commonly used p-type semiconducting polymer is P3HT with an absorption spectrum 

reaching 650 nm. As incident light with longer wavelengths is not used effectively by 

this polymer, new materials with alternating donor-acceptor units in polymer chains 

were designed to widen the absorption spectrum, caused by intramolecular charge 

transfer (Figure 1.3).16  

An alternative to donor-acceptor polymers to achieve high PCE are polymers 

constructed to achieve high fill factors (FF). The FF is dependent on the shape of the  
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Figure 1.4. Chemical structures of polymer donors (PTPD3T, PBTI3T) and fullerene acceptor (PC71BM).16, 

18 

current-voltage (J-V) curve (Chapter 2.11) and exhibits ideally a rectangular shape. 

Enhanced charge mobility in the active layer can improve the transport efficiency and 

lower space charge build-up at near short-circuit conditions. Close to the open circuit-

voltage, the lifetimes of the charge carriers determine the charge extraction efficiency 

and thereby the shape of the J-V curve.16 Consequently, in order to increase the FF, both 

aspects, lifetime and carrier mobility have to be enhanced. It is believed that π-π 

interactions of highly ordered polymers could increase the mobility and thereby 

enhance the FF.19 Examples for polymers that achieve a high FF in combination with 

[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as electron acceptor can be seen in 

Figure 1.4.  

The device performance, influenced by the photogeneration and separation of charges is 

thereby strongly dependent on the morphology of the donor and acceptor phase. A 

technique to fully control and design the interface of organic bulk heterojunctions would 

therefore be highly beneficial.  
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1.2 Covalent Organic Frameworks- A New Class of Materials 

In 2005, Coté et al. were the first to develop covalent organic frameworks (COFs), a new 

class of crystalline materials, constituted solely of light-weight elements like carbon, 

hydrogen, nitrogen, oxygen, and boron.20 COFs are crystalline polymers, constructed 

from organic linker molecules by forming covalent bonds. This new material class allows 

for the integration of organic building blocks into an ordered structure with atomic 

precision. The first two examples of COFs were COF-1, formed by the self-condensation 

reaction of 1,4-benzenediboronic acid (BDBA) and COF-5, a combination of BDBA and 

2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) (Figure 1.5). 

 

Figure 1.5. (a) self-condensation reaction of BDBA to form the extended network COF-1 and (b) co-
condensation reaction of BDBA and HHTP to form COF-5.20 
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The combination of light-weight units linked by strong covalent bonds to form defined 

structures gives this new material a low mass density, high thermal stability and 

permanent porosity with exceptionally high specific surface areas.  

Based on the geometry of the linker molecules, the geometry of the resulting network 

can be tuned, leading to tetragonal, hexagonal or three-dimensional (3D) frameworks 

(Figure 1.6).21 
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Figure 1.6. Examples of different building blocks used for the synthesis of COFs with tetragonal, hexagonal 
or 3D geometry.21 

In 2D COFs, the linker molecules form 2D sheets that are stacking via π-π interactions to 

form aligned columnar structures. These ordered structures are uniquely constructed π-

systems, which would be difficult to create by conventional covalent or non-covalent 

approaches.22 

In contrast to kinetically controlled polymer synthesis with irreversible covalent bond 

formation, COFs can only form in slightly reversible reactions.23 In order to yield a 
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crystalline material, the bond formation needs to be reversible so that covalent bonds 

can be formed, broken and reformed to provide the system with a “self-healing” 

feedback. This feedback reduces the probability of defects, allowing an ordered system 

with high thermodynamic stability to be formed. 

Several different linkage motifs have been established for the construction of COFs. The 

first examples of COFs were based on boronic acids, as they are able to either self-

condense by forming six-membered boroxine rings, or co-condense with di-alcohols to 

obtain boronic ester linkages (Figure 1.5). Yaghi and coworkers introduced in 2009 a 

new linkage motif, by reacting amines and aldehydes in the presence of an acid to obtain 

imine bonds between the organic linker molecules (Schiff base reaction).24 Further 

linking motifs comprise imide bonds25 and hydrazone26, triazine27, and borazine28 

formation.  

The unique structure of the 2D COF materials, coupled with the extended π-system 

formed by the interlayer interactions, could lead to the development of new photoactive 

materials for optoelectronics. Thus, COFs represent a new platform to molecularly 

design semi- and photoconducting materials. 
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1.3 COFs as Electroactive Materials  

The ordered, conjugated π-system of COFs renders these materials promising 

candidates for electroactive materials in optoelectronics. COFs allow for tailoring the 

optical and electroactive properties by choosing the building units accordingly. Electron 

rich and/or photoluminescent linkers can be integrated into the COF walls, changing the 

properties of the resulting network accordingly. 

The feasibility of this material as photoactive material thereby strongly depends on the 

interlayer interactions, caused by the stacking mechanism of the 2D sheets. DFT 

calculations carried out by Spitler et al. showed that perfectly eclipsed layers with an 

AA-stacking behavior are un-favored. The layers rather appear to adopt a slight offset 

between one another of about 1.7 – 1.8 Å to exhibit a minimum in energy (Figure 1.7a).29 

The offset will happen in all symmetry-equivalent directions with the same probability 

and therefore cannot easily be monitored via X-ray diffraction. Calculations performed 

by Patwardhan et al. gave new insights into the delocalization of electrons in 

triphenylene based COFs. Up to distances of 3.6 Å, electrons were calculated to be 

completely delocalized over all triphenylenes in a stack (Figure 1.7b). 30
 

In 2008, Jiang and coworkers reported the first COF with high luminescent efficiencies 

and a broad absorption spectrum. The hexagonal TP-COF, formed by the co-

condensation of HHTP and pyrene-2,7-diboronic acid (PDBA) shows electronic 

conductivity which is attributed to the eclipsed stacking of the layers (Figure 1.8).31 

Owing to their large π-systems, a variety of phthalocyanine (Pc) containing COFs were 

developed to investigate their electronic properties.32-37 
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Figure 1.7. (a) Potential energy surface generated with density functional theory calculations and atomic 
representation of the two-layer eclipsed structure.29 (b) Nature of charge carriers: localized or 
delocalized.30 

 

 

 

Figure 1.8. Synthesis of TP-COF from the co-condensation of HHTP and PDBA to form a hexagonal 
structure.31 
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Ding et al. were able to control the π-electronic structure of Pc macrocycles within the 

COF structure to extend the absorbance to 1200 nm, ease the carrier transport, and tune 

the photocurrent gain by changing the central metal.38 

Charge carrier dynamics were also studied in a donor-acceptor COF consisting of Zn 

phthalocyanine electron-donor units and naphthalene diimide acting as electron 

accepting units. The COF promoted charge dissociation upon illumination with a 

prolonged lifetime of the charges, caused by suppressed recombination through 

delocalization within the π-stacked columns (Figure 1.9).37  

Moreover, chromophores like porphyrins, which exhibit extended π-electronic systems, 

were used to construct electroactive COFs.39-44 Feng et al. measured the influence of the 

central metal of a porphyrin macrocycle on the conductivity of the resulting networks. 

They could show that depending on the integrated metal, the porphyrin COF exhibited 

hole, ambipolar or electron conductivity (Figure 1.10).40 

To further tune the electronic properties of COFs, thiophene linker molecules were used 

to construct frameworks.45 Thiophene-based polymers possess an inherent electrical 

conductivity and are known components in organic photovoltaics.46 The first reported 

COF solar cell device was developed by Dogru et al. in 2013.47 Thin films of a 

thienothiophene-HHTP COF were grown on conductive substrates and infiltrated with 

the fullerene derivative PCBM as acceptor (Figure 1.11a and b). These films, covered 

with aluminum as top electrode, promote charge transfer from the electron donating 

TT-COF framework to the PCBM acceptor within the pores indicated by a complete 

quenching of photoluminescence (Figure 1.11c). This is the first example of a COF bulk 

heterojunction solar cell device with a unique order of the donor and acceptor phases 

with a power conversion efficiency reaching 0.053 % (Figure 1.11d).  
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Figure 1.9. (a) Illustration of a 2x2 cell of the donor–acceptor COF (DZnPc-ANDI-COF). Donor and acceptor 
units are shown in red and blue, respectively. (b) The time profile of the nanosecond transient absorption 
band at 480 nm of a benzonitrile-dispersed COF suspension at 298 K (red dot). The lifetime of the charge-
separated state was estimated to be 10 µs using curve fitting (dotted black curve).37 

 

Figure 1.10. (a) Schematic representation of MP-COFs (M=H2, Zn, and Cu). (b) Schematic graphs of a 2x2 
grid of MP-COFs with AA stacking 2D sheets (C: light blue; N: deep blue; H: white; O: red; B: pink; Zn: 
green; Cu: violet). c) Graphical representation of metal-on-metal and macrocycle-on-macrocycle channels 
for respective electron and hole transport in stacked porphyrin column of 2D porphyrin COFs.40 
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Figure 1.11. (a) Co-condensation reaction of TT (1) and HHTP (2) to form the TT-COF. (b) Illustration of 
the infiltration of the hexagonal TT-COF pores with PCBM and the charge transfer from the COF to the 
PCBM electron acceptor within the pores upon irradiation with light. (c) Photoluminescence spectrum of 
TT-COF (blue) and TT-COF:PCBM showing a complete quenching of photoluminescence indicating the 
successful charge transfer. (d) Current-voltage characteristics of the TT-COF:PCBM device measured 
under simulated solar light and illustration of the device fabrication.48 

 

As illustrated above, COFs have emerged as a new class of materials, combining light 

weight with robustness given by the strong covalent bonds. They are structures with 

designable geometry, pore size and optical properties. The well-defined crystalline 

structure together with the large accessible surface area that can be filled with 

functional molecules makes this class of materials an excellent candidate to investigate 

electronic processes in donor-acceptor systems at the nanoscale. 
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2. Characterization 

2.1 X-Ray Diffraction 

X-ray diffraction (XRD) is an analytical technique to determine the atomic structure of 

crystalline materials and to identify the composition of phase mixtures. X-rays were first 

observed by Wilhelm Conrad Röntgen in 1895. They are a form of electromagnetic 

radiation with typical wavelengths between 0.01 and 10 nm. X-rays are generated by 

bombarding cold metal targets with accelerated, focused electrons. The collision of the 

electrons with a specimen causes the emission of Bremsstrahlung, a continuous 

spectrum of X-rays. Furthermore, X-rays can arise from fluorescence. Impinging 

electrons create holes in the inner atomic shells, which are thereupon filled by electrons 

from outer shells. The energy difference between those two states is emitted as X-ray 

photon. By choosing different metal targets, the wavelength of the fluorescent X-rays can 

be varied. The correlation between the atomic number Z and the wavelength λ of the 

emitted characteristic radiation is described by Moseley´s Law:  

1

𝜆
=

𝐾

(𝑍 − 𝜎)2
 

(2.1) 

where K and σ are constant for a given spectral line. 

1912, Max von Laue discovered the interference of X-rays passing through crystals, 

acting as three-dimensional diffraction gratings.1 The scattering of electromagnetic 

waves in the Ångstrøm range (X-rays) on structures that have about the same 

characteristic dimensions (Figure 2.1) allows for structure determination by monitoring 

the diffraction maxima caused by constructive interference of the scattered X-rays. 
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Figure 2.1: Schematic representation of the constructive interference of reflected waves during the XRD 
measurement.2 

For constructive interference to occur, the lattices of matter have to be periodic and the 

path difference an integral number of wavelengths. This correlation is described by 

Bragg´s Law: 

𝑛𝜆 = 2𝑑 sin (𝜃) (2.2) 

λ: X-ray wavelength  

n: order of interference  

d: lattice plane distance 

θ: angle of incidence 

Powder X-ray diffraction is used to study crystalline, finely ground powders, showing 

statistical distributions of all possible diffractions projected onto one dimension. By 

applying the Scherrer equation the average crystalline domain size can be determined: 

 

𝐷 =
𝐾 𝜆

𝛽 𝑠𝑖𝑛𝜃
 

(2.3) 

D: crystalline domain size  
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K: Scherrer constant, in general set to 0.9  

λ: wavelength  

ß: full width at half maximum in radians  

θ: angle of incidence 

  



2.2 Nitrogen Physisorption 
 
 

21 

2.2 Nitrogen Physisorption 

Sorption measurements are an important technique to characterize porous materials 

regarding their pore size distribution, pore volume, and surface area.3 Nitrogen sorption 

can be classified as physisorption, where only weak interactions, like van-der-Waals 

forces occur between the material and gas molecules. 

During physisorption, the amount of adsorbed nitrogen is measured at different relative 

pressures p/p0 (with p being the absolute pressure and p0 being the saturation vapor 

pressure) with constant temperature (77 K) to obtain sorption isotherms (Figure 2.2).  

Six different isotherm types are classified by IUPAC; these can be assigned to different 

pore structures and sizes, and surface interactions between adsorbed nitrogen and 

adsorbent.4 

Type I describes microporous materials, with steep increase of adsorbed volume at 

small relative pressures, reaching a nearly constant value after pore filling.  

Type II shows the typical isotherm for macro, or non-porous materials. It shows a 

monolayer adsorption followed by unrestricted multilayer condensation. 

Type III occurs, when only weak interactions between adsorptive and adsorbent are 

present. 
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Figure 2.2. IUPAC classification of six different sorption isotherms.5 

Type IV describes mesoporous materials. The hysteresis loop is caused by capillary 

condensation within the mesopores. 

Type V describes materials similar to type III materials with weak adsorbate-adsorbent 

interactions, but also shows a hysteresis loop. 

Type VI can be observed for non-porous materials with stepwise multilayer adsorption. 

Covalent organic frameworks can have pore sizes between about 2 and 5 nm and 

therefore exhibit a type IV isotherm. Typical for this isotherm is the occurrence of a 

hysteresis loop. During the adsorption process, multilayers are formed which condense 

at a certain relative pressure inside the pores. This process is enthalpically favored. 

After complete pore filling, the isotherm reaches a constant value. When reducing the 

relative pressure to desorb the adsorbens, more energy has to be applied to overcome 

the van-der-Waals forces, resulting in a hysteresis loop (Figure 2.3). Specifically, it is  
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Figure 2.3. Adsorption and desorption process on a mesoporous material, depicting the capillary 
condensation and the cause of the hysteresis loop.6 

 

proposed that hysteresis is related to the different geometry of the liquid-gas interface 

during adsorption (cylindrically concave) and desorption (semi-spherically 

concave).The shape of the hysteresis thereby bears information about the pore shape. 

Four different types are classified by IUPAC (Figure 2.4).5 H1 occurs for cylindrical/slit-

like pores, the delayed condensation is due to metastable pore fluid where the 

desorption branch reflects the equilibrium of transition. H2, H3, H4 hysteresis can 

describe pore networks and ink-bottle pores, where a delay in evaporation occurs in 

addition to the delayed condensation, potentially due to pore blocking, cavitation or 

percolation phenomena.  
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Figure 2.4: Different types of hysteresis loops. 5 
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2.3 Specific Surface Area 

There are different methods to describe isotherms mathematically. The simplest model, 

developed and named after Langmuir, assumes (a) that the adsorption is limited to 

monolayer formation, (b) the surface of the material is homogeneous, (c) all binding 

sites are equal, and (d) there are no interactions between adsorbed molecules. The 

Langmuir model is described in equation (2.4): 

 

𝑛

𝑛𝑚
=  

𝐾 ∙ 𝑝

1 + 𝐾 ∙ 𝑝
 

 

(2.4) 

 

n: amount of adsorbate, nm: capacity of one monolayer, p: pressure, K = kad/kdes  

 

This model was extended by Brunauer, Emmett and Teller (BET) to also include the 

formation of multilayers.7 The BET model can be expressed as the following equation 

(2.5). 

 

 

𝑛

𝑛𝑚
=  

𝐶 ∙
𝑝
𝑝0

(1 −
𝑝
𝑝0

)(1 + 𝐶 −
𝑝
𝑝0

)
 

 

(2.5) 

 

n: amount of adsorbate, nm: capacity of one monolayer, C: BET constant, p: equilibrium 

pressure, p0: saturation vapor pressure of adsorbate  

To calculate the BET surface area, the linear region, typically between 0.05 and 0.3 p/p0 

is plotted with a linear regression.  
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2.4 Pore Size Calculation 

The isotherm can be further analyzed to determine the pore size distribution and pore 

volume of the material. This method implies the change of properties of adsorbed gas 

molecules within porous channels. The Kelvin equation describes the thermodynamic 

relation between the reduced pore radius rk and the relative vapor pressure p/p0: 

  (2.6) 

 

with rk being the reduced radius, γ the surface tension of the adsorbate, VL the molar 

volume, R the gas constant, T the temperature, p the equilibrium pressure and p0 the 

saturation vapor pressure of the adsorbate. 

 

This equation often leads to smaller calculated pore diameters, compared to the actual 

size. An extension of the Kelvin equation by Barrett-Joyner-Halenda (BJH) includes the 

thickness t of the monolayer to rk.8 However, this model is also limited as it does not 

consider inhomogeneities on surfaces, assuming only perfectly ordered layers and is 

therefore only applicable for cylindrical pores. Density functional theory based 

calculations, which also include grand canonical Monte Carlo (GCMC) simulations, are 

able to overcome these limitations. These simulations contain terms describing 

attractive and repulsive interactions in the solid-fluid and fluid-fluid states. For silica 

materials and ordered homogeneous carbon materials, a non-local density functional 

theory (NLDFT) method was deployed which allows, in combination with Monte Carlo 

simulations, an exact description of the local fluid structure at curved solid wall 

interfaces.9 NLDFT is, however, limited to silica materials or homogeneous carbon 

materials. To analyze heterogeneous carbon materials a new method was developed, 

named the quenched solid density functional theory (QSDFT).10 This method allows for a 

reliable pore size analysis in the pore width range from 0.35 nm to ca. 40 nm. It was 

therefore used in this work. 
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2.5 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) allows for the compositional analysis of materials 

with combustible components.11 TGA monitors the mass loss of the sample with 

increasing temperature. This method reveals the stability and purity of the material. A 

temperature program heats the sample in an oven with a constant heating rate up to 

900 °C. The heating procedure can be either under synthetic air or inert gas atmosphere. 

A sensitive thermobalance measures the weight loss as function of temperature. 

  



2.6 Infrared Spectroscopy 
 
 

28 

2.6 Infrared Spectroscopy 

Infrared (IR) spectroscopy can be used to obtain information about the presence of 

functional groups or to confirm the formation of chemical bonds by exciting vibrational 

transitions.12-14 The energy difference between excited and ground state is often 

characteristic for specific bond types or functional groups. For IR spectroscopy, typically 

radiation in the mid infrared region (200 – 4000 cm-1) is used. Modern IR instruments 

use Fourier transformed infrared spectroscopy (FTIR) which uses polychromatic light to 

pass first through a Michaelson interferometer before exciting the sample. Performing a 

background subtraction and Fourier transformation on the data allows for calculating 

the spectrum from the recorded interferogram. This technique yields data fast with a 

better signal-to-noise ratio (SNR) and higher accuracy. In order to be able to analyze a 

vibrational transition via FTIR spectroscopy, the dipole moment of the molecule has to 

change.  
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2.7 Nuclear Magnetic Resonance 

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to determine the 

electronic environment of atoms, the interactions with their neighboring atoms or to 

give information about the composition of compounds.12-13 It is based on the change of 

the magnetic moment of nuclei by interacting with an electromagnetic field within 

strong magnetic fields. In order to investigate elements, their nuclear spin has to be non-

zero, which applies for 1H, 13C, 19F, 29Si and 31P, amongst others. 

Electromagnetic waves in the radio frequency range can induce transitions between 

different energetic states if resonance conditions apply. The difference between the local 

magnetic field and the applied external field bears information about the electronic and 

chemical environment of the nuclei. The external magnetic field influences the magnetic 

energy level to differentiate to (2J+1) distinct energy states (J represents nuclear spin).  
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2.8 UV-Vis Absorption Spectroscopy 

UV-Vis spectroscopy enables insights into the electronical structure of materials by 

monitoring the optical transition from the ground state to excited states. It is thereby 

possible to analyze solutions, bulk material or thin films on transparent substrates.  

For a solution, the Lambert Beer law defines the absorbance A at a certain wavelength 

with the intensity I and the intensity of the incident beam I0: 

 

𝑨(𝝀) = −𝒍𝒐𝒈
𝑰(𝝀)

𝑰𝟎(𝝀)
= 𝜺(𝝀) 𝒄 𝑳 

(2.7) 

 

A: absorbance,  

λ: wavelength  

: specific absorption coefficient,  

c: concentration  

L: optical path length. 

For not fully transparent samples, scattering particles can make the determination of 

absorbed light difficult. An integrating sphere that collects scattered light at almost all 

angles can eliminate this problem with the choice of a suitable reference.15  

The sample is irradiated by electromagnetic light spanning from the ultraviolet (180-

400 nm) to the visible (400-750nm) and to the IR (-3000 nm) region. When absorbing 

the light, electrons from the highest occupied molecular orbital (HOMO) will be excited 

to the lowest unoccupied molecular orbital (LUMO). For semiconducting materials with 

a direct band gap, the energy of the difference can be estimated via UV-Vis spectroscopy. 
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With the Tauc equation, the band gap of semiconductors can be estimated: 

 

𝛼ℎ𝜈 = 𝐶(ℎ𝜈 − 𝐸𝑔)𝑛 
(2.8) 

with α = absorption coefficient, hν = photon energy, Eg = band gap energy, n = 1/2 (for 

direct band gap).16 

To estimate the optical band gap, (αhν)2 is plotted against hν for direct transitions. The 

linear regime of the absorption spectrum is extrapolated and the intersection with the 

abscissa yields the value for Eg (Figure 2.5). 

 

Figure 2.5. Tauc Plot applied to an absorption spectrum of a material with a direct transition. The 
intersection with the abscissa of the linear fit gives the value of the optical band gap energy Eg. 

For small molecules the maximum in the absorption spectrum is defined as the 

maximum of lowest-energy band in the vibrational multiplet of the S0->S1 transition and 

is determined most accurately from a multipeak fit. 
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2.9 Fluorescence Spectroscopy 

Fluorescence describes a physical process in which a material absorbs photons and 

subsequently emits photons of lower energy. Thereby, the fluorescence is the result of a 

three-stage process in the electron shells: Absorption of the light, resulting in an excited 

state, non-radiative transitions which occur within 10–12 s or less by thermalization to 

the lowest-energy S1 state, resulting in a loss of energy, followed by the emission of the 

photon, which can be observed as fluorescence. The Jablonski diagram depicts these 

processes in a simplified scheme (Figure 2.6).   

 

 

Figure 2.6: Jablonski diagram of fluorescence.17 

 

When the fluorophore is excited with the energy hex provided by an external source 

(lamp or laser), an electron is excited from the ground state S0 to the excited state S1`. 

The absorption process occurs in the femtosecond range. This process is followed by a 

non-radiative relaxation from the excited state S1` to the relaxed excited state S1, which 

is caused by conformational changes within the fluorophore.  

In the last step, the electrons reach the ground state by emitting photons with the 

energy hem of lower energy compared to hex. This usually takes 1 – 10 ns to occur. This 

loss in energy explains the red shift of fluorescence spectra compared to the 
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corresponding absorption spectra and is called Stokes shift.18-19  

Besides fluorescence, also other processes can take place, leading to a return of the 

excited electrons to the ground state, namely quenching, intersystem crossing 

(phosphorescence) or fluorescence energy transfer (FRET). 
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2.10 Time Correlated Single Photon Counting (TCSPC) 

Time correlated single photon counting measurements offer the possibility to record 

time resolved kinetics of the band gap photoemission.  

Repetitive excitation of the sample with a pulsed laser source is followed by the 

detection of a photon. The time between excitation and detection is monitored using an 

electronic “stopwatch”. Figure 2.7 shows that the start-stop-time is not constant, but 

differs for every excitation cycle. Quantum mechanics predict that it is not possible to 

determine the exact time of the relaxation process. Only the statistical expectation value 

over time of the excited species can be predicted. 

 

 

Figure 2.7: Measurement of start-stop times in a time-resolved fluorescence measurement with TCSPC.20 

To get the statistical expectation values, TCSPC usually uses lasers, pulsed at frequencies 

between 100 kHz and 80 MHz. This allows for the collection of a multitude of single 

photon measurement to assemble an average lifetime. Therefore, the exciting laser 

source needs to be weak enough to ensure a maximum of one photoemission event per 

laser pulse cycle. The collected individual data are sorted into a histogram, consisting of 

a range of time bins (Figure 2.8). This histogram typically shows an exponential decay 

over time, which can be fitted with one or more functions to extract the half-lifetime of 

the excited species. 
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Figure 2.8: Histogram of start-stop times in a time-resolved fluorescence measurement with TCSPC.20 
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2.11 Current-Voltage Measurements 

To evaluate the quality of a solar cell device, their power conversion efficiency (PCE, η) 

is determined under well-defined conditions. The current standard is the ASTM G173-3 

air mass 1.5 global (AM1.5G) spectrum at a total light intensity of 100 mW cm-2 which is 

defined as 1 sun.21 This spectrum includes absorption and scattering of the atmosphere 

and hemispheric illumination by diffuse light to mimic the real spectrum of the sun. 

Typically, laboratory solar simulators are equipped with a xenon lamp and appropriate 

filters to simulate this spectrum. 

The efficiency of a device can be obtained by performing a current-voltage (J-V) 

measurement under 1 sun illumination. A typical J-V curve for a bulk heterojunction in 

an inverted cell device assembly is shown in Figure 2.9. 

 

Figure 2.9: Typical J-V and power curve for a bulk heterojunction inverted solar cell. 
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The basic parameters of the solar cell can be extracted from this curve. The open-circuit 

voltage (VOC) is the voltage that has to be applied to neutralize the internal electrical field 

of the solar cell. VOC is influenced by the quasi-Fermi levels of the donor and acceptor 

phases. The short circuit current (JSC) displays the current running through the cell 

without any applied bias. JSC mainly depends on the optical absorption properties of the 

active material, the ability of creating free charge carriers from absorbed photons and 

the transport of the carriers to the electrodes. 

Pmax is defined as the point where the maximum of the power curve is reached and 

indicates the necessary voltage for the cell to perform most efficiently. The 

corresponding Vmax and Jmax define the PCE of the cell via the relation: 

 

𝑷𝑪𝑬 =
𝑷𝑴𝑨𝑿

𝑷𝒊𝒏

=
𝑽𝑴𝑨𝑿 ∙ 𝑱𝑴𝑨𝑿

𝑷𝒊𝒏

 
(2.9) 

with Pin being the power of the incident light. 

The fill factor (FF) defines thereby the quality of the device and follows the correlation: 

 

𝑭𝑭 =
𝑽𝑴𝑨𝑿 ∙ 𝑱𝑴𝑨𝑿

𝑽𝑶𝑪 ∙ 𝑱𝑺𝑪

=
𝑷𝑴𝑨𝑿

𝑽𝑶𝑪 ∙ 𝑱𝑺𝑪

 
(2.10) 

This equation describes the ratio between the light blue and dark blue rectangles in 

Figure 2.9.  
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2.12 External Quantum Efficiency 

External quantum efficiency measurements (EQE) allow one to complement the 

information of the device performance gained under white light illumination, by giving 

insights about the spectral response of the device. To this end, the current response of 

the device is measured spectrally resolved. The EQE is defined as the number of 

collected charges per incident photon of a certain wavelength given by the following 

equation: 

 

𝐸𝑄𝐸(𝜆) =
𝑛𝑒(𝜆)

𝑛𝑝ℎ(𝜆)
= 𝜂𝑎𝑏𝑠(𝜆) ∙ 𝜂𝑒𝑥 ∙ 𝜂𝐸𝐷 ∙ 𝜂𝑃𝐷(𝑉) ∙ 𝜂𝑐𝑜𝑙𝑙(𝑛𝑒𝑛ℎ) ∙ 𝜂𝐶𝑇   

(2.11) 

where ηabs is the photon absorption efficiency in the active layer, ηex is the exciton 

generation efficiency, ηED the efficiency for exciton diffusion and dissociation which is 

independent of the applied field as excitons are neutral quasi-particles, ηPD the polaron 

dissociation efficiency, and ηcoll the collection efficiency which is contingent on the 

number of charge carriers in the active layer. ηCT is the charge transport efficiency and 

depends on the built-in and the external field.  

To measure the EQE, an incident beam of monochromatic light, derived from a xenon 

lamp coupled to a monochromator with order sorting filters, is directed onto the sample 

and the current response at the respective wavelength is measured in relation to the 

response of a calibrated reference diode. To receive a better signal to noise ratio, the 

incident beam is chopped and the signal is detected by a lock-in amplifier, which is 

locked to the chopping frequency. 

EQE allows for identifying the photoactive species within a device, as the spectrum 

strongly correlates with the absorption spectrum of the active species.  
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2.13 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) is a technique to visualize surfaces and 

morphologies at the nanoscale. A scheme of the set-up is depicted in Figure 2.10.  

 

 
 

Figure 2.10: Scheme of a scanning electron microscope (SEM) set-up.22 

Heating a tungsten filament with voltages between 3 and 30 kV creates highly energetic 

electrons. An aperture like anode accelerates the electrons, which are then focused by 

various condenser lenses. Hitting the specimen, the primary electrons (PE) can produce 

several different signals that hold information about the morphology, shape and 
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composition of the analyzed material: Transmittance of the electron beam through the 

sample, allowing for phase and diffraction information (TEM) or backscattered 

electrons, which are almost constant in energy (BSE). If absorbed by the sample, these 

electrons can relax within the sample, accompanied by a loss of energy and emitted 

again as so-called secondary electrons (SE). A secondary electron detector, placed at a 

specific angle to the sample holder, detects these SE. 23 The electron beam interaction 

diagram is depicted in Figure 2.11. 

 

 
 

Figure 2.11. Interaction of electrons with matter.24 

In this work, SEM was used to take cross section images of COF based solar cell devices 

to determine thickness and morphology of the COF films. 
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2.14 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is a powerful technique to observe structures 

at the atomic length scale due to spatial resolution down to 0.1 nm.25 

For imaging, an electron beam is generated by heating a pin-shaped tungsten filament 

(cathode) with a negative potential, which is focused by electromagnetic lenses. In order 

to generate the highest possible resolution, TEM requires ultrahigh vacuum, as strong 

interactions between electron beam and matter can occur. Limiting factors for the 

highest resolution are spherical aberrations, chromatic aberrations, and astigmatism.26 

When the electron beam hits the target, multiple processes can occur, generating X-rays, 

SE, BSE or Auger electrons. These electrons can be detected and used to image the 

material. Additionally, a certain percentage of electrons are transmitted through the 

sample without any loss in energy or directional change. These transmitted electrons 

are detected by a fluorescent screen or a CCD camera, which allows for a 

characterization of the internal structure of a specimen. A scheme of a TEM is depicted 

in Figure 2.12. 
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Figure 2.12: Schematic representation of a transmission electron microscope. The pathway of the electron 
beam is presented in yellow.29 

 

 

TEM was used to investigate and characterize the morphology and crystallinity of COFs, 

especially their domain size and the geometry of the crystallites. 
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3. From Highly Crystalline to Outer Surface-Functionalized 

Covalent Organic Frameworks – A Modulation Approach 

This chapter is based on the following publication: 
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Abstract 

Crystallinity and porosity are of central importance for many properties of covalent 

organic frameworks (COFs) including adsorption, diffusion, and electronic transport. We 

have developed a new method for strongly enhancing both aspects through the 

introduction of a modulating agent in the synthesis. This modulator competes with one 

of the building blocks during the solvothermal COF growth, resulting in highly 

crystalline frameworks with greatly increased domain sizes reaching several hundreds 

of nanometers. The obtained materials feature fully accessible pores with an internal 

surface area of over 2000 m2 g-1. Compositional analysis via NMR spectroscopy revealed 

that the COF-5 structure can form over a wide range of boronic acid to catechol ratios, 

spanning from highly boronic acid-deficient frameworks to networks with catechol 

voids. Visualization of an -SH functionalized modulating agent via iridium staining 
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revealed that the COF domains are terminated by the modulator. Using functionalized 

modulators, this synthetic approach thus also provides a new and facile method for the 

external surface functionalization of COF domains, providing accessible sites for post-

synthetic modification reactions. We demonstrate the feasibility of this concept by 

covalently attaching fluorescent dyes and hydrophilic polymers to the COF surface. We 

anticipate that the realization of highly crystalline COFs with the option of additional 

surface functionality will render the modulation concept beneficial for a range of 

applications including gas separations, catalysis, and optoelectronics. 

3.1 Introduction 

Covalent organic frameworks (COFs) represent an emerging class of crystalline, porous 

materials exhibiting unique structural and functional diversity. By combining 

multidentate building blocks via covalent bonds, two- or three-dimensional frameworks 

with defined pore size and high specific surface area in conjunction with appreciable 

thermal and chemical stability can be constructed.1-2 Depending on their topology and 

functionality, these reticular materials are promising candidates for various 

applications, such as gas adsorption3-4, separation5-6, catalysis7-8, proton conduction9, 

energy storage10 and optoelectronics.11-15 

In the context of the latter applications COFs consisting of two-dimensional layers (2D-

COFs) are of particular interest. These frameworks are realized by combining virtually 

planar building units into extended two-dimensional sheets, which assemble via 

dispersive forces (π-stacking) into highly anisotropic porous, crystalline materials. 

While the topology of a COF can be pre-designed via the geometry of its building blocks, 

the actual formation of a long-range ordered network relies on the reversibility of the 

covalent bond formation. Only if the reaction conditions are chosen such that the 
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covalent bonds can be formed, broken and reformed at a sufficiently high rate, thus 

providing a functional ‘self-healing’ mechanism, will crystalline frameworks be obtained. 

COF syntheses have predominantly been realized through reversible condensation 

reactions, including the formation of B-O bonds (boroxines, boronate esters16-18 and 

borosilicates19), imines20-21, imides22-23 and others24-26. 

While the optimization of the COF growth conditions can produce fairly crystalline 

frameworks, the realization of particularly well-ordered COFs with large domain sizes 

requires an even higher degree of synthetic control.  

The effects of ligands on the nucleation, growth, and properties of materials have been 

studied extensively for metal27 and inorganic semiconductor nanocrystals28-29. Also, 

nanoparticles of coordination polymers have been modified by the addition of 

surfactants and capping agents.30 In the field of metal-organic frameworks (MOFs) 

modulation concepts, which utilize the competition between the bridging ligands and a 

mono-functionalized terminating ligand, have proven very successful. Enabling the 

adjustment of growth kinetics and energies of specific crystal facets via selection of the 

modulator, this approach has been demonstrated to allow for the growth of highly 

crystalline MOFs with tailored morphology and domain sizes.31-34 

Dichtels’s group recently demonstrated that 3D COFs can be functionalized internally by 

adding truncated building blocks bearing functional groups to the synthesis mixture.35-37 

Growth rates of 2D COFs have been studied depending on the monomer reactivity and 

solvent mixtures.38-40 

In this work, we transfer the modulation concept to the synthesis of a 2D COF. Applying 

monoboronic acids as a modulator in the solvothermal synthesis of the archetypical 

COF-5 we are able to influence and optimize the crystallinity, domain size, and porosity 

of the resulting framework. Moreover, the addition of phenylboronic acids bearing a 
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functional group opens up a novel, convenient way for the surface functionalization of 

COF crystallites, which can be used for subsequent modifications, such as the attachment 

of dyes or polymers. 

3.2 Results and Discussion 

The hexagonal COF-5 was synthesized via a microwave-assisted co-condensation of 

2,3,6,7,10,11 hexahydroxytriphenylene (HHTP) with 1.5 equivalents of benzene-1,4-

diboronic acid (BDBA) in a 1:1 solvent mixture of mesitylene and 1,4-dioxane (Figure 

3.1). When a modulating agent was used in the synthesis, 2 equivalents of the modulator 

(denoted as COF-5-x, where x is expressed in %) were substituted for a fraction x of 

BDBA, thus keeping the amount of boronic acid groups in the reaction mixture constant. 

In our study the degree of substitution was systematically varied from 0 to 70 %. As a 

first example for a modulating agent we chose 4-mercaptophenylboronic acid (MPBA), 

as its size, shape and solubility are similar to BDBA. Additionally, its thiol group provides 

a way of detecting the incorporated modulator (see below).  

The influence of the modulator on the COF-5 crystallinity was monitored by powder X-

ray diffraction (PXRD) analysis (Figure 3.2a). Successful formation of the COF-5 

framework was observed up to x = 60. We found that the introduction of small amounts 

of the modulating agent led to an enhanced crystallinity of the resulting COF, as 

evidenced by a sharpening of the reflections. The COF-5-5 and COF-5-10 samples exhibit 

a series of particularly sharp reflections and a number of higher-order reflections, 
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Figure 3.1. Synthesis of COF-5-x via a co-condensation reaction of benzene-1,4-diboronic acid (blue) and 
2,3,6,7,10,11-hexahydroxytriphenylene (black) in the presence of a modulating agent (red) bearing a 
functional group. 

 

indicating the presence of large crystalline domains with a very low concentration of 

defects (Figure 3.9). The XRD patterns can be indexed assuming a hexagonal P6/mmm-

symmetry (Figure 3.2b and Figure 3.7a). Small deviations from this idealized model, i.e. 

a tilt of the bridging phenyl groups (P-3, Figure 3.7b) or a serrated rather than a fully 

eclipsed layer arrangement (Cmcm, Figure 3.7c) would produce nearly identical 

patterns and thus cannot be identified based on the experimental data (Figure 3.7). 

Pawley refinement of the experimental data applying the P6/mmm-symmetric model 

produced lattice parameters of a = b = 2.98 ± 0.02 nm and c = 0.35 ± 0.01 nm.  

COF-5 has been reported to be highly porous with a Brunauer–Emmett–Teller (BET) 

surface area of up to 1590 m2 g-1 and a pore volume of 0.998 cm3 g-1 (Figure 3.2c).1 

Nitrogen sorption experiments carried out for the COF-5-x series reveal a close 

correlation of the surface area and pore volume with the crystallinity of the frameworks 

(Figure 3.2d and 2.2e).  
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Figure 3.2. (a) Comparison of the PXRD patterns of the COF-5-x series. (b) Pawley refinement assuming 
P6/mmm symmetry (red) of the COF-5-10 PXRD pattern (blue), simulated pattern (black), reflection 
positions (green) and difference plot (dark green). (c) Illustration of COF-5 showing the hexagonal pores 
and the Connolly surface (blue). (d) Nitrogen sorption isotherms of the COF-5-x series recorded at 77 K. 
(e) BET surface areas obtained from the nitrogen sorption experiments. 

 

While in our hands the modulator-free synthesis produced frameworks with a surface 
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area of 1200 m2 g-1 and a pore volume of 0.64 cm3 g-1, the substitution of the modulator 

for 10 % of the BDBA increased the surface area to 2100 m2 g-1 at a pore volume of 

1.14 cm3 g-1. This represents an increase of 32 % in surface area when compared to 

literature values and 75 % when compared to our own data for the modulator-free COF-

5-0. Moreover, these values are close to the theoretical Connolly surface area and pore 

volume (2130 m2 g-1 and 1.21 cm3 g-1, respectively), indicating the realization of a highly 

crystalline network with fully open and accessible pores. Furthermore, the distinct step 

in the sorption isotherms at p/p0 = 0.1 underlines the very well-defined porosity of this 

material. 41-43 A further increase of the modulator content above x = 10 led to a gradual 

decrease in surface area and pore volume.  

 

Figure 3.3. TEM micrographs of (a) COF-5-0, (b) COF-5-10 and (c) COF-5-25. (d)TEM micrographs of COF-
5-10 stained with iridium at two different sample positions. (e) Corresponding scanning transmission 
electron microscopy (STEM) micrographs of the same sample positions (f) Overlay of TEM and STEM 
micrographs of COF-5-10 showing the increased Ir occurrence at the grain boundaries of the crystallite 
domains. 

 

The shape of the obtained isotherms also changes upon the substitution. COF-5-0 and 
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the COF-5-10 exhibit the typical sharp increase at p/p0 = 0.1 that is caused by the 

simultaneous pore condensation in the uniformly sized pores. The samples grown at a 

higher modulator concentration, COF-5-25, COF-5-50 and COF-5-60, however, display an 

increasingly broadened slope, suggesting less uniform pores and an increasing 

contribution of textural porosity. This trend is also reflected in the corresponding pore 

size distributions determined by quenched solid density functional theory (QSDFT) 

calculations (Figure 3.14). 

Transmission electron microscopy (TEM) images of the COF grown at several modulator 

contents underline the influence of the MPBA on the resulting material. While COF-5-0 is 

composed of intergrown domains that are 30-50 nm in size (Figure 3.3a), the domains of 

COF-5-10 can extend to hundreds of nanometers (Figure 3.3b). Depending on the 

orientation of a domain, either the hexagonal arrangement of the pores or straight 

porous channels are visible. Increased content of the modulator results in an apparent 

deterioration of the structural quality and a decrease of the domain size to only 15-

20 nm for COF-5-25, which we attribute primarily to the depletion of the bridging 

diboronic acid in the reaction mixture (Figure 3.3c). 

Based on these experimental findings we propose the following mechanism for the 

modulator-assisted COF growth:  

The modulator acts as a capping agent for the developing COF, terminating the 2D sheets 

during lateral growth. By repetitive attachment and detachment, the modulator slows 

the COF formation. The COF crystals thus experience an increased number of 

precipitation and dissolution steps, thus facilitating the healing of defects and bringing 

the system closer to thermodynamic equilibrium. Moreover, the modulator can saturate 

point or line defects, such as partially unreacted building blocks and dislocations, thus 

reducing strain in the crystal and allowing for a more stable overall crystal 
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conformation. Consequently, adding small amounts of the modulator enables the 

formation of very large and highly crystalline COF domains.  

In order to gain further insights into the formation mechanism, we compared the growth 

kinetics of unmodulated and modulated COF-5 (Figure 3.12). In absence of a modulator, 

the first reflections of the COF appear already after 0.5 h. After 4 h all of the starting 

material has been consumed and the crystallinity increases only moderately over the 

next 92 h (Figure 3.12a). If 10 % MPBA is used in the synthesis, the COF formation is 

slowed down appreciably, while the reflections of the starting material disappear faster 

(Figure 3.12b). First very weak reflections appear after 1 h, but remain considerably 

weaker than the corresponding ones of the unmodulated sample for the next hours. Only 

after 16 h the same reflection intensity is reached and the crystallinity of the modulated 

sample outperforms the unmodulated sample thereafter. The same trend was also 

observed for CPBA as modulator (Figure 3.12c). 

As the COF formation is thermodynamically favored over the precipitation of oligomers 

that might block the porous channels, we expect the modulator-assisted synthesis to 

produce COFs with very high porosity. Indeed, the surface area and pore volume are the 

highest for the modulator contents that yield the most crystalline COFs. Also, porosity 

values that are close to the theoretical maximum were achieved without an activation 

procedure, during which precipitated reactants and oligomers are digested and washed 

away. 

From the above considerations, some of the modulator is expected to incorporate into 

the crystal structure at high modulator concentration. For a quantitative compositional 

analysis the COF-5 samples grown at different modulator concentrations were dissolved 

by adding pinacol in deuterated DMSO. The proton NMR signals of HHTP, pinacol-

terminated BDBA and the pinacol-terminated modulators (MPBA or CPBA) were found 
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to be sufficiently separated to allow for a quantification of the COF constituents.  

For the highly ordered COF-5-x samples (x ≤ 10) no modulator was detected (Figure 3.4 

- Figure 3.6). As the surface to volume ratio is very small for the relatively large domains 

of COF-5-5 and COF-5-10, the amount of modulator that could be attached to the outer 

surface would be below the detection limit of this method. Starting from x = 25 we 

observe an advancing incorporation of the modulator into the structure, reaching a 

BDBA:MPBA ratio of 1:1 for x = 60 (Table 3.4).  

The HHTP:BDBA ratio reveals striking deviations from the expected 2:3 molecular 

composition of the idealized COF-5 structure. In the absence of the modulator, we 

observe a 6:4.3 ratio of the aryl proton integrals, corresponding to a 1:1.1 molar ratio of 

the two building blocks. This BDBA deficiency requires a significant amount of voids to 

be incorporated into the COF structure. Indeed, the pore size distribution of COF-5-0 

features an additional contribution of smaller pores around 20 Å (Figure 3.14). 

The composition of COF-5-10, which exhibits the highest degree of order, was found to 

be very close to the theoretical HHTP:BDBA molar ratio. In line with this observation, 

this material does not possess any porosity in addition to the hexagonal porous 

channels. 

Increasing the modulator content in the reaction mixture leads to a gradual decrease of 

the incorporated BDBA, which is, however, fully balanced by the increasing 

incorporation of the modulator. The overall HHTP:boronic acid group ratio remains 

constant at 1:3, indicating that all OH groups were saturated in the framework (Table 

3.4). As the space occupied by the diboronic acid in the framework is too small to 

accommodate two molecules of the modulator, the observed amount of modulator can 

only be incorporated alongside with HHTP voids (Figure 3.15). This would cause 

additional small pores inside the COF walls, which are indeed observed in the pore size 
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distributions of COF-5-25, -50, and -60 (Figure 3.14). 

In addition to the non-specific incorporation at high modulator concentration in the 

synthesis mixture, we expect the modulator, acting as capping agent for the growing 

crystal domains, to accumulate at grain boundaries. Due to the instability of the 

framework at large TEM probe currents, a direct determination of the –SH distribution 

inside the framework via energy-dispersive X-ray (EDX) analysis was not possible. 

Therefore an indirect method was chosen, where the –SH groups that are pointing into 

free space were stained with iridium clusters (Figure 3.13a) and visualized by scanning 

TEM in high angle annular dark field mode (STEM-HAADF) imaging. (for further 

information see chapter 3.4).44 In STEM-HAADF images, the intensity distribution is 

approximately proportional to the square of the atomic number. By overlaying the STEM-

HAADF images and TEM images, recorded at the same sample positions, an 

accumulation of Ir-clusters at grain boundaries, with respect to the crystal domains, was 

observable as white dots (Figure 3.3d-f). A COF-5-0 sample that does not feature the -SH 

functionalization did not show any preferred localization of the iridium clusters but a 

random distribution within the network (Figure 3.20). 

Having studied the effect of substituting an -SH functionalized modulator for a fraction 

of the diboronic acid, we asked whether a similar effect on the COF crystallization was 

also achievable with phenylboronic acids bearing other functional groups. Introducing 

carboxyphenyl boronic acid (CPBA) as modulating agent resulted in the same increase in 

domain size up to x = 10 followed by a gradual decrease as the modulator content was 

increased beyond 10 % (Figure 3.10). The application of the non-functionalized 

phenylboronic acid as modulator, however, did not produce crystalline COFs, possibly 

due to a different solubility and polarity. 

The above substitution approach proved to be very sensitive to the modulator 
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concentration and led to small domains for x > 10, which we attribute primarily to an 

increasingly unfavorable ratio between the bridging diboronic acid and the terminating 

monoboronic acid. In order to allow for high modulator contents, thus ensuring optimal 

reaction control, but at the same time provide enough diboronic acid to form extended 

networks, we tested the addition of variable amounts of the modulating agent to a 

stoichiometric reaction mixture of HHTP and BDBA. The addition of CPBA to a 2:3 

mixture of HHTP and BDBA resulted in improved crystallinity with the optimal 

modulator:BDBA ratio being at 3:10 (Figure 3.11). Optimal crystallinity of the COF was 

achieved at slightly higher modulator:BDBA ratio than for the substitution approach (i.e. 

2:9 corresponding to 10 % substitution), while the resulting domain sizes and the 

general trends were very similar.  

Post-functionalization of framework materials typically includes the risk of sample 

decomposition or the loss of crystallinity. In the case of 2D COFs, the delamination of the 

π-stacked, and thus comparably weakly interacting layers can be an issue of particular 

importance. Moreover, sterically demanding functional groups might prove very difficult 

to incorporate into close-packed 2D COFs and to convert in post-modification reactions. 

In cases where a modification on the outer surface of a COF domain is sufficient, the use 

of functionalized modulators during the COF synthesis can provide a convenient and 

versatile alternative. As discussed above the modulator is expressed at the outer surface 

of individual COF crystallites. Thus, the functional group of a para-substituted 

modulator, such as MPBA or CPBA, will be pointing away from the COF, rendering it 

easily accessible for subsequent reactions. 

As a first example for illustrating this concept we chose the attachment of a fluorescent 

dye to the carboxylic acid functionalized CPBA-modulated COF-5-10 surface. The N-

ethyl-N’-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) activated -COOH 
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groups were found to react readily at room temperature with the amino functionalized 

ATTO 633 dye. Any unreacted, not covalently bound dye was removed by extensive 

washing prior to the measurements. PXRD measurements confirmed that the 

crystallinity had been fully retained during this process (Figure 3.13b). The newly 

formed amide bond was identified via IR spectroscopy (Figure 3.16a). Moreover, the 

presence of the dye was confirmed via UV-VIS diffuse reflectance measurements (Figure 

3.18). While the COF-5-COOH absorbs strongly at wavelengths below 400 nm, its 

absorption in the visible range is very low and free of spectral features. The attachment 

of the dye gives rise to an increased absorption between 400 and 600 nm with a distinct 

absorption feature at 643 nm. The successful attachment of the dye was further 

confirmed via photoluminescence measurements (Figure 3.19). Upon excitation with a 

HeNe laser at 633 nm the ATTO 633 modified COF exhibits a broad emission centered at 

766 nm. As expected for a dye that is immobilized at a surface both the absorption and 

emission spectra are broadened and red-shifted versus the respective spectra of the dye 

in solution.45 

This strategy can also be used to coat the COF crystallites with a shell of a different 

material, thus altering properties like stability, dispersibility, or bio-compatibility. 

Methoxypolyethylene glycol maleimide (PEG-maleimide) was successfully attached to 

MPBA-modified COF-5-10 via a Michael-type addition (Figure 3.16b).46 While the bare 

COF-5-x is not stable towards alcohols, the PEG-modified material was found to retain its 

crystallinity upon soaking in ethanol. The corresponding PXRD pattern does not show 

any loss in crystallinity, whereas the non-functionalized COF-5-10 sample degrades 

rapidly (Figure 3.13c). 
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3.3 Conclusion 

We have developed a modulation strategy for the growth of highly crystalline COFs with 

large domains and very high porosity. The competition between the bridging COF 

building block and the terminating modulation agent was found to influence the 

dynamic equilibrium during framework formation, slowing down the COF growth and 

supporting the self-healing of crystal defects. Under optimized conditions, the crystal 

domains of the boronate ester-linked COF-5 reached several hundreds of nanometers. 

The pores of the framework were found to be open and fully accessible even without any 

activation procedure, which is reflected by a surface area close to the theoretical 

maximum and a very narrow pore size distribution. 

Compositional analysis via NMR revealed that the COF-5 structure forms over a wide 

range of molecular compositions, from highly diboronic acid-deficient frameworks to 

networks comprising an excess of the linear building block. 

The use of functionalized modulating agents furthermore provides a new strategy for 

functionalizing the outer surface of COF crystallites. These functional groups were found 

to be accessible for the subsequent covalent attachment of molecules or polymers, 

allowing for further modification of the chemical, physical, or electronic properties of 

the COF.  

The combination of an enhanced degree of crystallinity and the option for an outer 

surface post-modification of COF domains might prove beneficial for a range of 

applications, such as gas separation, catalysis, super resolution imaging, and 

optoelectronics. 
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3.4 Experimental 

Materials and Methods  

All reagents and solvents were obtained from commercial suppliers and used as 

received.  

Benzene-1,4-diboronic acid (BDBA, ≥95 %, Sigma-Aldrich), 4-carboxyphenylboronic 

acid (CPBA, Sigma-Aldrich), 2,3,6,7,10,11-hexahydroxytriphenylene hydrate (HHTP, 

>95 %, TCI) and 4-mercaptophenylboronic acid (MPBA, 90 %, Sigma-Aldrich) were used 

without further purification. 

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV 400 and AV 

400 TR spectrometers. Proton chemical shifts are expressed in parts per million (δ 

scale) and are calibrated using residual undeuterated solvent peaks as an internal 

reference (DMSO-d6: 2.50).  

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum BX II FT-IR system 

and a Thermo Scientific Nicolet™ 6700 FT-IR spectrometer in transmission mode. IR 

data are reported in wavenumbers (cm–1).  

UV-Vis spectra were recorded using a Perkin-Elmer Lambda 1050 spectrometer 

equipped with a 150 mm integrating sphere. Diffuse reflection measurements of COF 

powders were performed with a Harrick Praying Mantis accessory and referenced to 

BaSO4. 

For the photoluminescence measurements the COF powder was deposited on a glass 

slide. A 60x oil immersion objective with high numerical aperture (NA=1.49) was used in 

backscattering geometry to focus the laser beam onto the sample and to collect the 

emitted light. The samples were excited using a linearly polarized HeNe laser (λexc = 
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632.8 nm). Photoluminescence spectra were recorded using a multichannel 

spectrometer equipped with a 633 nm longpass filter. 

Thermogravimetric analysis (TGA) measurements were performed on a Netzsch 

Jupiter ST 449 C instrument equipped with a Netsch TASC 414/4 controller. The 

samples were heated from room temperature to 900 °C under a synthetic air 

atmosphere at a heating rate of 1 K/min. 

Nitrogen sorption isotherms were recorded on a Quantachrome Autosorb 1 at 77 K 

within a pressure range from p/p0 = 0.001 to 0.98. Prior to the measurement of the 

sorption isotherms the samples were heated for 24 h at 120°C under turbo-pumped 

vacuum. For the evaluation of the surface area the BET model was applied between 0.05 

and 0.2 p/p0. Pore size distributions were calculated using the QSDFT equilibrium model 

with a carbon kernel for cylindrical pores. 

X-ray diffraction (XRD) measurements were performed using a Bruker D8 Discover 

with Ni-filtered Cu Kα radiation and a LynxEye position-sensitive detector. 

Transmission electron microscopy (TEM) and scanning transmission electron 

microscopy (STEM) were performed on a Titan Themis at 300 kV. For STEM-HAADF, a 

camera length of 130 mm and a semi-convergence angle of 16.6 mrad were chosen. 

Syntheses 

COF-5 Modulation with MPBA - COF-5-x (SH) 

A 10 mL microwave glass tube was equipped with BDBA, HHTP and MPBA according to 

Table 3.1. The reagents were suspended in 4 mL of a mixture of 1,4-dioxane and 

mesitylene (2 mL : 2 mL). The reaction mixture was sonicated for 5 min. Afterwards, the 

sealed flask was placed in a microwave apparatus and heated for 1 h at 100 °C with 
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300 W. The gray solid product was isolated by filtration, washed with acetone and dried 

under vacuum. For the gas sorption measurement the product was heated to 120°C for 1 

d under dynamic vacuum. 

  



3.4 Experimental 
 
 

62 

Table 3.1. Applied initial weights for the syntheses of COF-5-x with MPBA as modulator. 

x 

[%] 

molar ratios 

(BDBA:HHTP:MPBA) 

BDBA 

[mg] 

BDBA 

[mmol] 

HHTP 

[mg] 

HHTP 

[mmol] 

MPBA 

[mg] 

MPBA 

[mmol] 

0 3.00 : 2 : 0.0 18.7 0.113 24.3 0.075 0.0 0.000 

5 2.85 : 2 : 0.3 17.7 0.107 24.3 0.075 1.7 0.011 

10 2.70 : 2 : 0.6 16.8 0.101 24.3 0.075 3.5 0.023 

25 2.25 : 2 : 1.5 14.0 0.084 24.3 0.075 6.9 0.056 

40 1.80 : 2 : 2.4 13.1 0.068 24.3 0.075 10.4 0.090 

50 1.50 : 2 : 3.0 9.30 0.056 24.3 0.075 17.3 0.112 

60 1.20 : 2 : 3.6 7.5 0.045 24.3 0.075 20.8 0.135 

70 0.90 : 2 : 4.2 5.6 0.034 24.3 0.075 24.3 0.158 

 

COF-5 Modulation with CPBA - COF-5-x (COOH) 

The synthesis of COF-5-x in the presence of CPBA as modulating agent was carried out 

following the procedure described above. BDBA, HHTP and CPBA were added to the 

reaction tube according to Table 3.2. The gray products were isolated by filtration and 

after washing with acetone dried under vacuum. 

 

Table 3.2. Applied initial weights for the syntheses of COF-5-x with CPBA as modulator. 

x 

[%] 

molar ratios 

(BDBA:HHTP:CPBA) 

BDBA 

[mg] 

BDBA 

[mmol] 

HHTP 

[mg] 

HHTP 

[mmol] 

CPBA 

[mg] 

CPBA 

[mmol] 

0 3.00 : 2 : 0.0 18.7 0.113 24.3 0.075 0.0 0.000 

5 2.85 : 2 : 0.3 17.7 0.107 24.3 0.075 1.9 0.011 

10 2.70 : 2 : 0.6 16.8 0.101 24.3 0.075 3.7 0.023 

15 2.55 : 2 : 0.9 15.9 0.096 24.3 0.075 5.6 0.034 

20 2.40 : 2 : 1.2 14.9 0.090 24.3 0.075 7.5 0.045 

30 2.10 : 2 : 1.8 13.1 0.079 24.3 0.075 11.2 0.068 

40 1.80 : 2 : 2.4 11.2 0.068 24.3 0.075 14.9 0.090 

50 1.50 : 2 : 3.0 9.3 0.056 24.3 0.075 18.7 0.113 

60 1.20 : 2 : 3.6 7.5 0.045 24.3 0.075 22.4 0.135 

  



3.4 Experimental 
 
 

63 

Modulation synthesis of COF-5 by the addition of CPBA  

The synthesis of COF-5-x in the presence of CPBA was carried out with addition of CPBA 

to a constant amount of BDBA instead of substituting BDBA, according to Table 3.3. 

Table 3.3. Applied initial weights for the synthesis of COF-5 with the addition of CPBA as modulator. 

BDBA : CPBA 

ratio 

molar ratios 

(BDBA:HHTP:CPBA) 

BDBA 

[mg] 

BDBA 

[mmol] 

HHTP 

[mg] 

HHTP 

[mmol] 

CPBA 

[mg] 

CPBA 

[mmol] 

1: 0 3.00 : 2 : 0.00 18.7 0.113 24.3 0.075 0.0 0.0 

1 : 0.05 3.00 : 2 : 0.15 18.7 0.113 24.3 0.075 0.93 0.007 

1 : 0.1 3.00 : 2 : 0.30 18.7 0.113 24.3 0.075 1.85 0.011 

1 : 0.2 3.00 : 2 : 0.60 18.7 0.113 24.3 0.075 3.71 0.023 

1 : 0.3 3.00 : 2 : 0.90 18.7 0.113 24.3 0.075 5.56 0.034 

1 : 0.4 3.00 : 2 : 1.20 18.7 0.113 24.3 0.075 7.42 0.045 

1 : 0.5 3.00 : 2 : 1.50 18.7 0.113 24.3 0.075 9.27 0.056 

1 : 0.6 3.00 : 2 : 1.80 18.7 0.113 24.3 0.075 11.13 0.068 

 

 

Post-modification of COF-5-10 (SH) 

To a suspension of 1 mg thiol-functionalized COF-5-10 material in 1 mL 1,4-dioxane, 1 

µL of methoxypolyethylene glycol maleimide (0.5 mg/mL in DMF) was added and 

reacted for 1 h. After several washing steps with 1,4-dioxane, the obtained solid was 

collected by centrifugation (4 min, 16873 rcf). 

 

Staining of COF-5-10 (SH) / COF-5-0 with IrCl3 

To a suspension of 1 mg COF (COF-5-10 (SH) or COF-5-0) in 1 mL 1,4-dioxane, 100 µL of 

a 0.1 M ethanolic solution of IrCl3 was added and reacted for 3 h. The solid was collected 

after several washing steps with 1,4-dioxane by centrifugation (4 min, 16900 rcf). 
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Post-modification of COF-5-10 (COOH) 

1 mg as-synthesized COOH-functionalized COF-5-10 material was mixed with 3 µL 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in 1 mL 1,4-dioxane. After 1 h, 1 

µL ATTO 633-NH2 (0.5 mg/mL in DMF) was added. The material was collected after 

centrifugation (4 min, 16900 rcf) and washed several times with 1,4-dioxane until no 

dye could be detected in the supernatant. The modification led to a slightly blue solid. 

Compositional Analysis by NMR 

For the compositional analysis by NMR the COFs were digested by the addition of a 

stoichiometric amount of pinacol in deuterated DMSO. 

 

Figure 3.4. Overview of the NMR spectra of a) COF-5-x (SH) and b) COF-5-x (COOH) showing the additional 
signals arising from the incorporation of the modulator at higher degrees of substitution. Up to a 
modulator content of 10 % in the reaction mixture, the amount of incorporated modulator is below the 
detection limit. 

 

  

http://de.wikipedia.org/%20/1-Ethyl-3-%283-dimethylaminopropyl%29carbodiimid
http://de.wikipedia.org/%20/1-Ethyl-3-%283-dimethylaminopropyl%29carbodiimid
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Table 3.4. Molecular composition of the MPBA-modulated COF-5 samples analyzed by NMR. 

Modulator 

in reaction 

mixture 

[%] 

HHTP aryl 

protons 

integral 

BDBA 

protons 

integral 

MPBA 

protons 

integral* 

HHTP 

molar ratio 

BDBA 

molar ratio 

MPBA 

molar ratio 

Total 

boronic 

acid 

groups 

0 6 4.25 0 1 1.06 0 2.12 

5 6 4.95 0 1 1.24 0 2.48 

10 6 5.82 0 1 1.46 0 2.92 

25 6 5.40 0.24 1 1.35 0.12 2.82 

40 6 5.00 0.77 1 1.25 0.39 2.89 

50 6 4.41 1.50 1 1.10 0.75 2.95 

60 6 3.81 1.82 1 0.95 0.91 2.81 

70 6 3.13 3.01 1 0.78 1.51 3.06 

* The doublet at 7.52 ppm was used for the analysis. 

 

 

Table 3.5. Molecular composition of the CPBA-modulated COF-5 samples analyzed by NMR. 

Modulator 

in reaction 

mixture 

[%] 

HHTP aryl 

protons 

integral 

BDBA 

protons 

integral 

CPBA 

protons 

integral* 

HHTP 

molar ratio 

BDBA 

molar ratio 

CPBA 

molar ratio 

Total 

boronic 

acid 

groups 

0 6 4.22 0 1 1.06 0 2.11 

5 6 4.48 0 1 1.12 0 2.24 

10 6 4.74 0.11 1 1.19 0.06 2.43 

25 6 3.46 0.38 1 0.87 0.19 1.92 

40 6 3.90 0.91 1 0.98 0.46 2.41 

50 6 3.74 1.62 1 0.94 0.81 2.68 

60 6 2.06 2.95 1 0.52 1.48 2.51 

70 6 1.83 3.09 1 0.46 1.55 2.47 

* The doublet at 7.78 ppm was used for the analysis. 
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Figure 3.5. NMR spectra of COF-5-x (SH) grown with different modulator contents. The integrals were 
referenced to the signal at 7.6 ppm arising from the HHTP protons. As expected for fully hydrolyzed HHTP, 
the ratio between the aryl and the –OH protons at 9.28 ppm is constant at 1:1 in all samples. The ratio 
between the HHTP and BDBA protons, however, deviates considerably from the theoretical ratio 
depending on the modulator content in the reaction mixture. Only at a modulator content of 10 %, the 
ratio between the trigonal and the linear building blocks reaches the expected theoretical ratio, i.e. 2:3, 
corresponding to a 1:1 proton ratio. 
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Figure 3.6. NMR spectra of COF-5-x (COOH) grown with different modulator contents. The integrals were 
referenced to the signal at 7.6 ppm arising from the HHTP protons. Similar to the –SH modulated COF-5, 
the ratio between the HHTP and BDBA protons deviates considerably from the theoretical ratio depending 
on the modulator content in the reaction mixture. At a modulator content of 5-10 %, the ratio between the 
trigonal and the linear building blocks is closest to the expected theoretical ratio, i.e. 2:3, corresponding to 
a 1:1 proton ratio. 
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Simulation of the COF-5 Crystal Structures 

Structure simulations were carried out using force-field methods with the Accelrys 

Materials Studio software package. 

 

Figure 3.7. Simulation of the COF-5 structure assuming (a) P6/mmm, (b) P-3, and (c) Cmcm symmetry. 
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Figure 3.8. Simulated PXRD patterns (lines) and Bragg positions (symbols) using the structures displayed 
in Figure 2.7. Inset: Enlarged plot of the 10-30 ° 2θ range. 

 

X-Ray Diffraction Analysis of Modulated COF-5-x 

COF-5 Modulation with MPBA - COF-5-x (SH) 

For XRD analysis in reflection mode a small amount of powder was flattened on top of a 

glass substrate. Domain sizes were estimated from the broadening of the 100 reflection 

using the Scherrer formula 

𝐹𝑊𝐻𝑀(2𝜃) =
𝐾 𝜆

𝐿 𝑐𝑜𝑠(𝜃)
 

with K = 0.9 (assuming spherical particles), λ = 0.15418 nm, θ being the diffraction angle, 

and L being the domain size. The observed FWHM was corrected for the instrument 

broadening of 0.11 °. 
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Figure 3.9. a) Comparison of XRD pattern of COF-5-x modulated by substituting BDBA with MPBA (with x 
= 0, 5, 10, 25, 40, 50, 60 and 70 %). b) Calculated domain sizes of COF-5-x using the FWHM of the 100 
reflection at 3.4° 2θ. 

 

COF-5 Modulation with CPBA - COF-5-x (COOH) 

 

Figure 3.10. a) Comparison of XRD patterns of COF-5-x modulated by substituting BDBA with CPBA (with 
x = 0, 5, 10, 15, 20, 30, 40, 50 and 60 %). b) Calculated domain sizes of COF-5-x using the FWHM of the 100 
reflection at 3.4° 2θ. 
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Modulation synthesis of COF-5 by the addition of CPBA  

In a different approach neither of the starting materials were substituted, but the 

modulating agent CPBA was added to the reaction mixture. Upon addition an increase in 

crystallinity and domain size could be observed. This technique was found to be less 

sensitive concerning the used modulator amount (compare to Figure 3.10).  

 

Figure 3.11. a) XRD pattern for COF-5 modulated by adding CPBA to the reaction mixture. BDBA to CPBA 
ratios were varied from 1:0 up to 1:0.6. b) Calculated domain sizes of COF-5-x using the FWHM of the 100 
reflection at 3.4° 2θ. 

 

Growth kinetics 

For studying the COF growth kinetics, the samples were prepared and handled as 

described in the synthesis section, except that the reactions were carried out by heating 

at 100 °C in a conventional oven. This way, the reaction was sufficiently slow to be able 

to monitor the framework formation. In all cases, the final products after 96 h were 

comparable to the products from the microwave-assisted syntheses. All samples were 

measured with identical instrument and scan settings.  
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Figure 3.12. Time evolution of the COF formation. a) in absence of a modulator, b) with 10 % MPBA and c) 
10 % CPBA. At identical scan settings, the peak intensities are more than doubled for the samples grown 
in the presence of a modulator. 

Post-modification of COF-5-10 



3.4 Experimental 
 
 

73 

Regardless of the modulating agent, COF-5-10 samples showed the highest crystallinity 

with the largest domain sizes. Therefore, these samples were used for post-

modifications. COF-5-10 (SH) was treated with an IrCl3 solution to promote the 

formation of Ir-S-clusters. The comparison of the PXRD data of the treated and untreated 

sample confirms that the crystallinity is retained (Figure 3.13a). 

Furthermore, COOH functionalized COF-5-10 was post-modified by the attachment of an 

ATTO 633 dye. The PXRD pattern of COF-5-10-ATTO reveals the intact crystallinity of 

the framework (Figure 3.13b).  

To a thiol-functionalized COF-5-10 sample maleimide-bearing polyethyleneglycol was 

added. The attachment of these PEG-groups was found to stabilize COF-5 toward EtOH. 

After dispersing COF-5-PEG (SH) in ethanol for 3 h the PXRD pattern confirms the 

completely maintained crystallinity of the framework (Figure 3.13c). 

 

 

Figure 3.13. Comparison of COF-5-10 before and after post-modifications. a) COF-5-10 (SH) and COF-5-10-
Ir showing the retained crystallinity of the framework after the addition of IrCl3. b) COF-5-10 (COOH) and 
ATTO 633 labeled COF-5-10 (COF-5-10-ATTO) and c) COF-5-10-PEG (SH) and COF-5-10-PEG (SH) after 
dispersing the sample in EtOH for 3 h. 
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Pore Size Distribution Analysis 

 

Figure 3.14. Bar chart of pore size distributions calculated for COF-5-x (SH) (with x = 0, 10, 25, 50 and 60) 
samples using a QSDFT equilibrium model with a carbon kernel for cylindrical pores. The pore size 
distribution for COF-5-10 shows the highest intensity with the narrowest distribution of all compared 
samples. The unmodulated sample as well as the COF-5-x samples with x ≥ 25 feature additional pores of 
smaller diameter. 

 

 

Figure 3.15. Illustration of the additional porosity arising from the incorporation of the modulator into the 
COF that is accompanied by HHTP voids. 

 

IR spectroscopy 
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Figure 3.16. IR spectra of a) COF-5-10 (COOH) powder and ATTO 633 labeled COF-5-10 (COOH) (COF-5-
ATTO) showing the characteristic signals of the C=O stretching vibration at 1700 cm-1 of the carboxylic 
acid, the amide I C=O stretching vibration at 1670 cm-1 and amide II N-H deformation vibration at 
1562 cm-1 and b) COF-5-10 (SH) and COF-5-10-PEG (SH) in comparison with maleimide-PEG showing the 
typical CH-stretching vibrations of methyl groups at 2926 cm-1 and CH-vibration of polyenes at 974 cm-1. 
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Thermal gravimetric analysis (TGA) 

 

 

Figure 3.17. Comparison of different COF-5-x (SH) (with x = 0, 10, 25, 50 and 60) samples investigated by 
TGA. The most crystalline sample (COF-5-10) exhibits the best-defined step at 450-500 °C, indicating a 
very well-ordered framework without residual starting material or oligomers in the pores. 
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UV-Vis Spectroscopy 

 

 

Figure 3.18. Diffuse reflectance spectra of -COOH-functionalized COF-5-10 (black) and the same sample 
after covalent attachment of the ATTO 633 dye (red). The inset shows a magnified cut-out of the spectrum, 
highlighting the characteristic absorption of the attached dye. 

 

Fluorescence Spectroscopy  

 

 

Figure 3.19. Photoluminescence spectrum of the ATTO 633-modified COF-5-10 (COOH) upon excitation 
with a 632.8 nm laser. The spectral features around 700 nm are artefacts from the setup. 
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Transmission Electron Microscopy / STEM 

 

 

Figure 3.20. (a) TEM micrograph of COF-5-0 stained with iridium. (b) Corresponding scanning 
transmission electron microscopy (STEM) micrograph of the same sample position. (c) Overlay of TEM 
and STEM micrographs of COF-5 showing a random distribution of iridium within the COF-5 network. 
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4. Extraction of Photogenerated Electrons and Holes from a 

COF Integrated Heterojunction 

 

This chapter is based on the following publication: 

Calik, M.; Auras, F.; Salonen, L. M.; Bader, K.; Grill, I.; Handloser, M.; Medina, D. D.; Dogru, 

M.; Löbermann, F.; Trauner, D.; Hartschuh, A.; Bein, T. J. Am. Chem. Soc. 2014, 136, 

17802. 

 

 

Abstract 

Covalent organic frameworks (COFs) offer a strategy to position molecular 

semiconductors within a rigid network in a highly controlled and predictable manner. 

The π-stacked columns of layered two-dimensional COFs enable electronic interactions 

between the COF sheets, thereby providing a path for exciton and charge carrier 

migration. Frameworks comprising two electronically separated subunits can form 

highly defined interdigitated donor‒acceptor heterojunctions, which can drive the 
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photogeneration of free charge carriers. Here we report the first example of a 

photovoltaic device that utilizes exclusively a crystalline organic framework with an 

inherent type II heterojunction as the active layer. The newly developed triphenylene‒

porphyrin COF was grown as an oriented thin film with the donor and acceptor units 

forming one-dimensional stacks that extend along the substrate normal, thus providing 

an optimal geometry for charge carrier transport. As a result of the degree of 

morphological precision that can be achieved with COFs and the enormous diversity of 

functional molecular building blocks that can be used to construct the frameworks, these 

materials show great potential as model systems for organic heterojunctions and might 

ultimately provide an alternative to the current disordered bulk heterojunctions. 

4.1 Introduction 

Organic polymer- and small molecule-based solar cells have reached impressive power 

conversion efficiencies during the past years.
1-4

 While much of the progress is stimulated by 

the development of new donor materials, the precise design of their nanoscale morphology 

within photoactive blends remains a major challenge.
5-8

 Efficient bulk heterojunction devices 

require the formation of a bicontinuous network of the donor and acceptor phases with 

appropriate length scales for charge generation, along with favorable molecular packing and 

long-range order for efficient charge carrier transport.
9-11

 It is, however, extremely difficult to 

predict and control the packing of functionalized conjugated molecules upon spinodal 

decomposition of a blend solution, as even minor chemical modifications can induce 

significant changes in the molecular arrangement. Therefore, the generation of an atomically 

defined interpenetrated three-dimensional (3D) heterojunction via a deterministic bottom-up 

approach would be a major breakthrough. 

Covalent organic frameworks (COFs) are an emerging class of materials featuring 
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molecular building blocks that are organized into 2D or 3D porous crystalline structures 

through covalent bonds.12-15 Specifically, the π-stacked aromatic subunits of 2D COFs 

enable electronic interactions between the COF layers and thus provide a path for 

exciton and charge carrier transport.16-20 The rigid COF network provides mechanical 

and thermal stability, while its optoelectronic properties can be tailored to a specific 

application via the selection of appropriate building blocks.21-25 Recently, COFs 

comprising alternating π-stacked columns of two electroactive building blocks have 

been reported.26-27 If the energy levels of these subunits are aligned adequately, an 

atomically ordered, interdigitated donor‒acceptor heterojunction can be formed. 

Similar to a polymer‒fullerene heterojunction, such a material would be expected to 

promote charge carrier separation upon photoexcitation, thereby presenting an 

alternative to the present solution-cast disordered photoactive layers. While the 

photogeneration of charge carriers inside donor‒acceptor COFs has been observed in 

pump‒probe experiments,28 the utilization of this effect in a photovoltaic device has 

remained elusive to date. Recently, two examples of COF-containing photovoltaic 

devices have been reported by our group29 and others.30 The COFs investigated in those 

reports, however, did not provide the photoactive junction within their framework but 

rather served as donor materials when combined with fullerene derivatives as 

acceptors.  

Herein we present for the first time a photovoltaic device that utilizes a vertically 

oriented thin film of a novel triphenylene‒porphyrin (TP-Por) COF as a photoactive 

donor‒acceptor junction. We show that the charge carrier collection yield can be further 

enhanced under reverse bias, enabling a peak external quantum efficiency of above 

30 %. 
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4.2 Results and Discussion 

The new 2D TP-Por COF was formed under solvothermal conditions via co-condensation 

of 5,15-bis(4-boronophenyl)porphyrin (1) and 2,3,6,7,10,11-hexahydroxytriphenylene 

(HHTP) in a 7:3 mixture of acetonitrile and mesitylene (Figure 4.1a, for experimental 

data see the Supporting Information, SI). The TP-Por COF is a porous hexagonal 

framework with the trigonal triphenylene units at the corners and the linear porphyrins 

located at the edges (Figure 4.1b). 

Powder X-ray diffraction (PXRD) confirms the formation of a periodic structure (Figure 

4.2a). The experimental pattern agrees well with the simulated one for an eclipsed (AA 

stacking) arrangement with P3 symmetry (Figure 4.2b), whereas a hypothetical 

staggered (AB) layer arrangement cannot reproduce the experimental data (Figure 4.2c 

and Experimental, Figure 4.5). Theoretical calculations carried out for other hexagonal 

COFs reveal that a slight offset of about 0.1 nm between adjacent layers is energetically 

favorable.31 Due to the non-planar geometry of the porphyrin building block resulting 

from the large dihedral angle between the porphyrin core and the aryl substituent,32 a 

similar or even more pronounced offset for the corresponding COF is anticipated. For 

the large-pore TP-Por COF, however, such deviations from a truly eclipsed structure 

would be sufficiently small (relative to the lattice parameters) to give rise to a nearly 

identical experimental PXRD pattern. Consequently, experimental PXRD data cannot 

provide enough evidence for the actual layer offset. crystal planes. The broad reflection 

at 2θ = 24° corresponds to the (001) planes, indicating an interlayer distance of 

0.38±0.02 nm. The larger interlayer distance of the 2D sheets compared with the  
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Figure 4.1. (a) Co-condensation of bis(boronophenyl)porphyrin 1 and HHTP leading to the formation of 
the layered TP-Por COF. The COF features hexagonal pores with a large diameter of 4.6 nm. (b) Illustration 
of the TP-Por COF highlighting the alternating columns of triphenylene (red) and porphyrin (blue) 
subunits. 

 

typically observed packing distance of about 0.35 nm12 can be rationalized as a result of 

the non-planarity of the porphyrin subunit. Transmission electron microscopy (TEM) 

images of TP-Por COF powder samples reveal the nanoscale morphology of the 

framework with crystalline domains of about 50 nm (Figure 4.2d). Straight porous 

channels that extend through entire crystal domains are visible for a number of 

crystallites in the lower part of the TEM image. The hexagonal pore arrangement is 

evident from domains that are oriented along the crystallographic c-axis. We observe a 

pore-to-pore distance of 5.0±0.3 nm, which is in good agreement with the d-spacing 

obtained from the PXRD measurements.  

Nitrogen sorption experiments on TP-Por COF bulk material performed at 77 K yielded 

isotherms with a typical type IV shape, which is characteristic of mesoporous materials 

(Figure 4.2e). The sorption isotherm exhibits a sharp step from P/P0 = 0.42 to 0.47, 

indicating a narrow pore size distribution. This was also confirmed by quenched-solid 

density functional theory (QSDFT) calculations, which showed an average pore diameter 

of 4.6 nm (Figure 4.2f). The calculated Brunauer‒Emmett‒Teller (BET) surface area is  
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Figure 4.2. (a) Experimental PXRD data (blue) vs simulated patterns (black and gray) for (b) eclipsed and 
(c) staggered arrangements of the 2D layers. The theoretical patterns were simulated for a crystallite size 
of 50 nm. (d) Transmission electron micrograph of TP-Por COF bulk material showing the hexagonal pore 
structure (middle) and straight porous channels (bottom). (e) Nitrogen sorption isotherm of a TP-Por COF 
powder sample measured at 77 K. (f) Corresponding pore size distribution with an average pore size of 
4.6 nm obtained by fitting the experimental data. 
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The experimental PXRD pattern of the TP-Por COF exhibits an intense reflection at 2θ = 

1.9°, corresponding to a d spacing of 4.6±0.1 nm that can be assigned to the (100) set of  

In order to study the optical properties of the TP-Por COF, thin films were grown on 

fused silica substrates covered with a 10 nm layer of vacuum-deposited MoOx. The COF 

layer was synthesized by immersing the substrates face down into a dilute reaction 

solution under otherwise identical reaction conditions.33  

The TP-Por COF film exhibits a broad optical absorption covering the entire visible 

range up to 680 nm with distinct absorption bands that can be ascribed to the 

triphenylene unit (279 nm) and the porphyrin Soret band (425 nm) and Q-bands (510‒

640 nm) (Figure 4.3a). Compared with the spectrum of a 2:3 mixture of the reactants, 

the absorption spectrum of the COF lacks the features of the porphyrin diboronic acid at 

300 and 350 nm (Experimental, Figure 4.9). At longer wavelengths the spectra are 

nearly identical, indicating similar packing schemes in the COF and in spin-coated films 

of its building blocks. Upon excitation at 405 nm, both the COF and the porphyrin 

precursor exhibit a bright red‒to‒infrared photoluminescence (PL) with two sharp 

main emission bands at 643 and 701 nm. Depending on the molecular packing 

arrangement, porphyrins are known to possess different allowed and forbidden optical 

transitions. Red-shifting of the Soret and Q bands compared with those of highly dilute 

precursor solutions and the existence of sharp PL bands generally indicate the formation 

of J-aggregates.34-35 This can be explained by the large aryl substituent‒porphyrin core 

dihedral angle, which hinders the formation of cofacial aggregates. Moreover, the tilted 

phenyl groups could even facilitate the formation of regular aggregates featuring a small 

offset between consecutive layers. 
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Figure 4.3. (a) Transmission absorption (black) and normalized PL (λexc = 405 nm, red) spectra of a TP-
Por COF thin film. (b) Frontier orbital energies of the two COF subunits measured by DPV in solution and a 
schematic illustration of the photoinduced charge transfer. (c) PIA spectrum of the TP-Por COF film after 
excitation at 470 nm (blue squares; the blue line serves as a guide to the eye) together with the radical ion 
absorption spectra of Por− (red) and TP+ (purple) and their sum (black) assuming a 1:1 ratio of the two 
species. After photoexcitation, the TP-Por COF film shows two absorption bands in the range of the free 
radical ion absorption, indicating electron transfer from the donor to the acceptor moiety within the 
network (see the text). (d) Cross-sectional scanning electron micrograph of a TP-Por COF-based 
photovoltaic device showing the COF layer between the ITO and Al electrodes. The MoOx and ZnO contact 
layers are too thin to be visible in the micrograph. The current−voltage curve (e) and EQE spectrum (f) 
confirm the successful integration of the donor−acceptor COF as the active layer of the photovoltaic 
device. 
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Boronate ester-linked COFs typically comprise two electronically different subunits that 

are arranged into 1D π-stacked columns. If the building blocks are selected in such a way 

that the HOMO and LUMO energy levels of one component are higher than the respective 

energy levels of the other component, the COF will form an interdigitated donor‒

acceptor structure. Similar to polymer‒fullerene bulk heterojunctions, an adequately 

designed COF would be expected to promote charge separation upon photoexcitation of 

either of its components (Figure 4.3b). Indeed, the formation of photogenerated charge 

carriers has been observed on the short time scale of pump‒probe experiments in some 

porphyrin- and phthalocyanine-containing COFs.28, 36 However, the yield of free charge 

carriers was typically low and successful extraction of photogenerated charge carriers 

from a COF layer has not been demonstrated to date. 

Electrochemical methods are widely used tools for analyzing the oxidation and 

reduction potentials of electroactive species. We employed differential pulse 

voltammetry (DPV) to determine the positions of the highest occupied molecular 

orbitals (HOMOs) position of the precursors relative to ferrocene as an internal standard 

(Experimental, Figure 4.10). Assuming E(Fc/Fc+) = ‒4.80 eV vs. vacuum level37 and 

calculating the corresponding lowest unoccupied molecular orbital (LUMO) energies as 

the sum of HOMO energy and the optical band gap, as determined by UV-Vis 

spectroscopy, we obtain EHOMO(TP) = ‒5.28 eV, ELUMO(TP) = ‒1.69 eV, EHOMO(Por) = ‒5.42 

eV, and ELUMO(Por) = ‒3.46 eV (Figure 4.3b). Although these data have been obtained 

from measurements in solution and the absolute values are expected to shift by a few 

tens of meV upon crystallization of the COF, we expect the type II alignment of the 

energy levels relative to each other to remain similar. On the basis of these results we 

expect the TP-Por COF to facilitate photoinduced charge transfer, resulting in the 

formation of Por‒ and TP+ radical ions that can be traced via photoinduced absorption 



4.2 Results and Discussion 
 
 

91 

 

Figure 4.4. (a) Current density−voltage curves for the photovoltaic device under chopped white-light 
illumination. (b) Bias-dependent EQE spectra illustrating the greatly enhanced charge collection efficiency 
under reverse-bias conditions. 

 

spectroscopy (PIA). Indeed, the PIA spectrum of a TP-Por COF thin film exhibits two 

characteristic absorption bands centered at 700 and 960 nm (Figure 4.3c). These signals 

are very similar to the sum of the absorption spectra of the free radical ions of the 

electron acceptor (Por–)38 and donor (TP+)39, indicating efficient electron transfer within 

the framework. Deviations of our experimental spectrum from those in the literature 

might stem from the different environment of the radical ion species inside the COF. 

Growing the COF as a vertically oriented thin film on a suitable electrode and applying 

an electronically different top contact should enable us to extract photogenerated 

charge carriers (Experimental, Figure 4.6 and Figure 4.7). Thus, we constructed a 

photovoltaic device with the TP-Por COF as the active layer, sandwiched between 

indium tin oxide (ITO)/MoOx and ZnO/Al electrodes. Vacuum-deposited, slightly sub-

stoichiometric molybdenum trioxide is commonly used as a hole extraction layer in 

high-efficiency organic solar cells.40 Its high work function provides excellent coupling to 

the HOMO of common donor materials, whereas electron transfer from the LUMO of the 

acceptor phase is blocked. Zinc oxide has found wide application in organic 
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photovoltaics as an electron-selective contact because of its low work function and good 

conductivity.4 For the photovoltaic device, the ~50 nm thick TP-Por COF layer was 

grown (as described above) on patterned ITO substrates coated with a 10 nm MoOx 

layer. Subsequently, a 20 nm thick ZnO layer was deposited by spincoating a solution of 

pre-synthesized ZnO nanoparticles. The COF film remained unchanged upon the 

addition of the ZnO layer, as confirmed by UV-Vis spectroscopy (Experimental, Figure 

4.11). The devices were completed by thermal evaporation of 70 nm Al electrodes 

(Figure 4.3d). 

When illuminating the device with simulated solar light we measured an open-circuit 

voltage of 312 mV and a short-circuit current density of 44.6 µA cm‒2 (Figure 4.3e). To 

the best of our knowledge, this is the first report of a photovoltaic device utilizing the 

inherent donor‒acceptor structure of a COF for photocurrent generation. The 

importance of the structural precision given by the unique COF geometry is evidenced 

by a comparison of this device with a reference device based on a randomly intermixed 

blend of the two building blocks (Experimental, Figure 4.13). At similar thickness and 

optical absorption of the active layer, the COF-based device is capable of producing a 

more than 30 times higher short-circuit current and exhibits an about doubled open-

circuit voltage. 

In order to further characterize the device, we measured the external quantum 

efficiency (EQE) under short-circuit conditions (Figure 4.3f). The EQE spectrum is in 

excellent agreement with the absorption spectrum of the COF layer, which further 

confirms the TP-Por COF to be the origin of the observed photoresponse. When the EQE 

spectrum is plotted on a logarithmic scale, we observe a distinct feature at around 

1.55 eV (Experimental, Figure 4.12). Such sub-bandgap features are commonly observed 

in organic bulk‒heterojunction solar cells and are ascribed to direct photoexcitation of 



4.3 Conclusion 
 
 

93 

the charge-transfer state. Compared to common polymer‒fullerene mixtures this feature 

is remarkably sharp, which could be an indication of a more defined charge‒transfer 

state in our morphologically well-defined COF compared with the disordered nature of 

bulk heterojunctions that are formed through spinodal decomposition. 

Although the photocurrent at 0 V bias is promising, the external quantum efficiency is 

below 1 %, indicating the presence of strong loss mechanisms. Sweep-out times of 

mobile charge carriers as well as the generation of free charge carriers from bound 

polaron pairs can be greatly enhanced upon application of an electric field having the 

same direction as the built-in field. Indeed, we observed a dramatically enhanced 

photocurrent (i.e., the difference between the current under illumination and the dark 

current) under strong reverse bias. This effect is illustrated by the data in Figure 4.4a, 

which we obtained by using chopped simulated solar illumination to continuously 

switch between the dark and illuminated current density‒voltage curves. At Vappl = ‒2 V 

we observe a difference of about 2 mA cm‒2 when the light is switched on, which is 

orders of magnitude higher than the previously reported photoconductivity values for 

other COFs.19, 36 The EQE under reverse bias can be boosted to more than 30 % at 

350 nm and well above 10 % up to 450 nm, which renders this COF-based device 

concept a promising alternative to small molecule/fullerene‒containing devices.  

4.3 Conclusion 

We have developed a new porphyrin- and triphenylene containing COF featuring 

ordered columns of donor and acceptor moieties within its framework. The inherent 

interdigitated heterojunction of this COF was found to promote charge separation upon 

photoexcitation of either building block. We applied oriented films of this COF in the 
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construction of the first photovoltaic device in which the COF itself provides the 

photoactive junction. The structural precision of COF-based heterojunctions presents an 

opportunity to study charge carrier generation and extraction in well-defined model 

systems. Quantum efficiency measurements in the presence of an external collection 

field show the potential of this novel device concept, provided that recombination losses 

can be minimized. Enhancement of the carrier collection yield that might ultimately lead 

to competitive device efficiencies is expected from further improvements in the electron 

and hole transport properties of these materials, a goal we are currently pursuing. 

4.4 Experimental 

Materials and methods  

Unless stated otherwise, all reactions were performed in oven-dried glassware under a 

positive pressure of Ar. Commercial reagents and solvents were used as received with 

the exception of pyrrole, which was distilled prior to use using a rotary evaporator. 

Reactions were stirred magnetically and monitored by NMR spectroscopy or analytical 

thin-layer chromatography (TLC) using E. Merck 0.25 mm silica gel 60 F254 pre-coated 

glass plates. TLC plates were visualized by exposure to ultraviolet light (254 nm). Flash 

column chromatography was performed employing silica gel (60 Å, 40–63 µm, Merck).  

Nuclear magnetic resonance (NMR) spectra were recorded on Varian VNMRS 300, 

VNMRS 400, INOVA 400 or VNMRS 600 spectrometers. Proton chemical shifts are 

expressed in parts per million ( scale) and are calibrated using residual undeuterated 

solvent peak as an internal reference (CDCl3:  7.26; THF-d8:  1.72, 3.58). Data for 1H 

NMR spectra are reported as follows: chemical shift ( ppm) (multiplicity, coupling 

constant/Hz, integration). Multiplicities are reported as follows: s = singlet, d = doublet, t 
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= triplet, q = quartet, m = multiplet, br = broad, or combinations thereof. Carbon 

chemical shifts are expressed in ppm ( scale) and are referenced to the carbon 

resonances of the solvent (CDCl3:  77.16; THF-d8:  67.21, 25.31). 

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum BX II FT-IR system and 

a Thermo Scientific Nicolet™ 6700 FT-IR spectrometer in transmission mode. IR data is 

reported in frequency of absorption (cm–1).  

Mass spectrometry (MS) experiments were performed on a Thermo Finnigan MAT 95 

(EI) or on a Thermo Finnigan LTQ FT (ESI) instrument. 

The nitrogen sorption isotherm was recorded on a Quantachrome Autosorb 1 at 77.35 K 

in a pressure range from p/p0 = 0.001 to 0.98. Prior to the measurement of the sorption 

isotherm the sample was heated for 24 h at 120°C under turbomolecular pump vacuum. 

For the evaluation of the surface area the BET model was applied between 0.05 and 0.2 

p/p0. The calculation of the pore size distribution was done using the QSDFT equilibrium 

model with a carbon kernel for cylindrical pores. 

The permanent porosity of COF films was assessed by a krypton sorption measurement 

of degassed films (24 h at RT in vacuo). The isotherm was recorded at 77 K on a 

Quantachrome autosorb iQ instrument in a pressure range from p/p0 = 0.002 to 0.95 

using a vacuum volumetric technique.  

X-ray diffraction (XRD) measurements were performed using a Bruker D8 Discover with 

Ni-filtered Cu Kα radiation and a LynxEye position-sensitive detector. 

Transmission electron microscopy was performed on an FEI Titan 80-300 equipped 

with a field emission gun operated at 80 kV. Scanning electron microscopy (SEM) images 

were recorded with a JEOL 6500F field emission microscope operated at 5 kV using a 

secondary electron detector.  
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UV-Vis spectra were recorded using a Perkin-Elmer Lambda 1050 spectrometer 

equipped with a 150 mm integrating sphere. Absorbance spectra of COF thin films were 

corrected for the transmission of the substrate and reflection losses. 

Photoluminescence (PL) measurements were performed using a home-built setup 

consisting of a Horiba Jobin Yvon iHR 320 monochromator equipped with a 

photomultiplier tube and a liquid N2-cooled InGaAs detector. The samples were 

illuminated with a pulsed (83 Hz) 405 nm LED at a light intensity of 500 mW cm‒2. 

Differential pulse voltammetry (DPV) was measured using 50 μM solutions of 1 and 

HHTP in acetonitrile or a 3:5 mixture of acetonitrile/1,4-dioxane, respectively, with 

0.1 M tetrabutylammonium hexafluorophosphate as electrolyte and 0.1 mM ferrocene as 

internal reference. Measurements were performed with a Metrohm Autolab 

PGSTAT302N potentiostat, using Pt wires as the working electrode and counter 

electrode and a saturated Ag/AgCl reference electrode (Sigma Aldrich, 0.197 V vs. SHE).  

Photovoltaic devices were tested under illumination from an AM1.5G solar simulator 

(Solar Light Model 16S), which was calibrated to 100 mW cm‒2 using a Fraunhofer ISE 

certified KG5 filtered silicon cell. Current-voltage (J-V) curves were recorded with a 

Keithley 2400 source-measure unit.  

External quantum efficiency (EQE) measurements were performed at short circuit 

unless stated otherwise, and referenced to a Si photodiode with NIST traceable 

calibration. The device under test was illuminated with chopped (f = 7 Hz) 

monochromatic light. The current response was detected via a lock-in amplifier (Signal 

Recovery SR7230) with a low-noise pre-amplifier. 

Photoinduced absorption measurements were carried out in transmission geometry 

using a stabilized continuum white light source in combination with a chopped 
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excitation laser (fchop = 1 kHz, λexc = 470 nm). Photoinduced changes in transmission 

through the thin film were recorded by a photodiode via lock-in detection (SRS 830). 

Photoinduced absorption spectra in the transparency range of the film were recorded by 

selecting different detection wavelengths using narrow bandpass filters each having a 

FWHM of 10 nm. 

Synthesis  

The synthesis of boronic acid porphyrin 1 started with preparation of dipyrromethane 

242 from pyrrole (3) and paraformaldehyde (4) (Scheme S1). Then, in a procedure 

adapted from the literature,43 boronic ester-bearing aldehyde 5, previously obtained by 

protection of boronic acid 6, was reacted with dipyrromethane to yield porphyrin 7 in 

30 % yield. Finally, acidic deprotection of the boronic ester moieties gave access to 

porphyrin 1 in 77 % yield. 

 

Scheme 5.1. Synthesis of boronic acid porphyrin 1. 
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5,15-Bis(4-boronophenyl)porphyrin (1) 

 

Porphyrin 7 (1.08 g, 1.71 mmol, 1 equiv.) was stirred in a mixture of THF (450 mL) and 

aq. HCl solution (450 mL, pH = 1) in the dark at RT for 24 h. Then, CH2Cl2 (650 mL) was 

added, and the precipitated product collected by filtration. The solid was suspended in 

MeOH, centrifuged, and MeOH was decanted off. The procedure was repeated three 

times to give 1 (640 mg, 77 %) as purple solid.  

Mp > 305 °C (decomp); 1H NMR (400 MHz, THF-d8+3 drops of D2O): 8.20 (d, J = 8.1 Hz, 

4H), 8.30 (d, J = 8.1 Hz, 4H), 9.03 (d, J = 4.6 Hz, 4H), 9.47 (d, J = 4.6 Hz), 10.42 (s, 2H); 13C 

NMR (100 MHz, THF-d8): 106.2, 111.1, 120.1, 131.5, 132.7, 133.9, 134.9, 143.9 (2 signals 

invisible); IR (ATR): 3282, 1604, 1577, 1471, 1395, 1321, 1236, 1197, 1145, 1103, 1008, 

973, 954, 850, 786, 745, 732, 718, 688; HR-ESI-MS: m/z: 551.2048 ([M+H]+, calculated 

for C32H25B2N4O4+: 551.2057). 

 

Di(1H-pyrrol-2-yl)methane[1] (2) 

 

A suspension of paraformaldehyde (4) (1.63 g, 54.4 mmol, 1 equiv.) in pyrrole (3) 

(350 mL, 5040 mmol, 93 equiv.) was degassed with Ar for 15 min. The mixture was 

heated to 55 °C for 10 min before the addition of InCl3 (1.19 g, 5.38 mmol, 0.1 equiv.). 

The mixture was stirred at 55 °C for 3 h, cooled down, and treated with powdered NaOH 

(7.20 g, 180 mmol, 3.3 equiv.). After 1 h at RT, the mixture was filtered over celite, 

washed with pyrrole, and evaporated to dryness. Purification by CC (SiO2; packed with 

isohexane, elution isohexane/EtOAc 9:1) gave 2 (6.15 g, 77 %) as off-white solid. 
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Rf = 0.57 (isohexane/EtOAc 2:1); 1H NMR (600 MHz, CDCl3): 3.97 (s, 2H), 6.05 (dddt, J = 

3.3, 2.5, 1.6, 0.8 Hz, 2H), 6.16 (q, J = 2.9 Hz, 2H), 6.64 (td, J = 2.6, 1.6 Hz, 2H), 7.78 (br s, 

2H); 13C NMR (150 MHz, CDCl3): 26.5, 106.5, 108.5, 117.4, 129.2; HR-EI-MS: m/z (%): 

146.0837 (100, [M]+, calculated for C9H10N2+: 146.0844). 

 

4-(1,3,2-Dioxaborinan-2-yl)benzaldehyde44 (5) 

 

In a flask equipped with a Dean-Stark trap, a suspension of 4-formylphenylboronic acid 

(6) (10.2 g, 68.0 mmol, 1 equiv.) and 1,3-propanediol (5.20 mL, 72.4 mmol, 1.1 equiv.) in 

toluene (510 mL) was heated at 135 °C for 5 h. The mixture was evaporated to dryness 

to give 5 (13 g, quant.) as white solid. 

Mp = 60–62 °C; 1H NMR (300 MHz, CDCl3): 2.05–2.12 (m, 2H), 4.19 (t, J = 5.5 Hz, 4H), 

7.84 (d, J = 8.3 Hz, 2H), 7.92 (d, J = 8.1 Hz, 2H), 10.04 (s, 1H); 13C NMR (75 MHz, CDCl3): 

27.5, 62.3, 128.8, 134.3, 137.9, 193.0 (1 signal invisible); IR (ATR): 2976, 2949, 2897, 

2823, 2731, 1695, 1658, 1564, 1505, 1486, 1477, 1429, 1386, 1340, 1308, 1296, 1268, 

1207, 1175, 1153, 1126, 1104, 1001, 921, 852, 826, 727, 672; HR-EI-MS: m/z (%):  

189.0717 (100, [M–H]+, calculated for C10H10BO3+: 189.0723). 
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5,15-Bis(4-(1,3,2-dioxaborinan-2-yl)-phenyl)porphyrin (7) 

 

Compounds 2 (1.66 g, 11.4 mmol, 1 equiv.) and 5 (2.14 g, 11.2 mmol, 1 equiv.) were 

dissolved in anhydrous CHCl3 (1 L) under Ar, and the mixture was degassed with Ar for 

15 min. The reaction mixture was cooled to 0 °C, BF3•OEt2 (320 µL, 2.53 mmol, 

0.2 equiv.) was added, and the mixture was stirred for 3 h at RT. Then, DDQ (4.16 g, 

18.3 mmol, 1.6 equiv.) was added in one portion, and the mixture was stirred overnight 

at RT. The mixture was filtered over celite, and poured on to a column of silica (CH2Cl2; 

elution CH2Cl2/MeOH 100:1). The collected purple solid was recrystallized from CHCl3 to 

give 7 (1.08 g, 30 %) as dark purple solid. 

Rf = 0.44 (CH2Cl2/MeOH 95:5); Mp = 370 °C (decomp); 1H NMR (600 MHz, CDCl3): –3.10 

(s, 2H), 2.25 (quintet, J = 5.5 Hz, 4H), 4.37 (t, J = 5.6 Hz, 8H), 8.21–8.28 (m, 8H), 9.07 (d, J 

= 4.5 Hz, 4H), 9.39 (d, J = 4.5 Hz, 4H), 10.31 (s, 2H); 13C NMR (150 MHz, CDCl3): 27.8, 

62.4, 105.4, 119.4, 131.2, 131.7, 132.4, 134.5, 143.7, 145.3, 147.2 (1 signal invisible); IR 

(ATR): 2935, 2884, 1603, 1579, 1546, 1478, 1417, 1389, 1334, 1302, 1272, 1209, 1150, 

1123, 1053, 1005, 992, 986, 972, 955, 864, 855, 795, 751, 735, 718, 693, 664; HR-EI-MS: 

m/z (%): 630.2613 (100, [M]+, calculated for C38H32B2N4O4+: 630.2610). 

 

  



4.4 Experimental 
 
 

101 

TP-Por COF 

For the synthesis of TP-Por COF 11.5 mg of compound 1 (0.02 mmol, 3 equiv.) and 

4.5 mg of HHTP (0.014 mmol, 2 equiv.) were added to a Teflon-lined steel autoclave and 

dispersed in a solvent mixture of acetonitrile and mesitylene (7:3 v:v, 1 mL). The 

autoclave was placed in an oven at 120 °C for 72 h. After the time had elapsed, the 

reaction mixture was allowed to cool down to room temperature and the resulting 

powder was then collected by filtration through a Hirsch funnel. After washing the 

product three times with dry toluene it was left under dynamic vacuum to come to 

complete dryness. 

 

 

TP-Por COF films 

11.5 mg of compound 1 (0.02 mmol, 3 equiv.) and 4.5 mg HHTP (0.014 mmol, 2 eq) were 

added to a 100 mL Schott flask and dissolved in a solvent mixture of acetonitrile and 

mesitylene in a 7:3 v:v ratio (30 mL). The substrates (fused silica or ITO-covered glass), 

covered with a 10 nm layer of vacuum-deposited MoOx, were placed face down in the 

reaction solution. The flask was heated in an oven at 120 °C for 18 h. After the reaction 

mixture had cooled down to room temperature, the films were removed from the flask 

and washed by a short sonification treatment (2 s) in toluene. The obtained films were 

dried under a nitrogen flow prior to characterization.  
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Device fabrication 

A stock solution of 5‒6 nm ZnO nanocrystals in n-BuOH/MeOH/CHCl3 88:6:6 v:v:v was 

prepared following literature procedures.45 This solution was sonicated for 15 min prior 

to use. 

The COF-based device was prepared on ITO-coated glass (VisonTec, 12‒15 ohms/sq) 

slides. A 10 nm thick MoOx electron blocking layer was deposited by thermal 

evaporation. A COF thin film was subsequently grown on this substrate as described 

above. An electron-selective contact was applied by spin-coating a dispersion of ZnO 

nanocrystals, resulting in a layer thickness of about 20 nm. The device was completed by 

thermal evaporation of 80 nm thick Al contacts in high vacuum through a shadow mask, 

thus defining an active area of 3×3 mm2 for each device. 

For the reference device based on a blend of the building blocks, 1.65 mg (3.0 µmol) of 

compound 1 and 0.65 mg (2.0 µmol) HHTP were dissolved in 200 µL 1,3-dioxolane and 

100 µL MeOH. This solution was spin-cast onto a MoOx-coated ITO substrate, yielding an 

active layer of ~40 nm thickness. Subsequently, a 10 nm layer of poly[(9,9-bis(2,2’-N,N’-

dimethylaminopropyl)fluorenyl-2,7-diyl)-alt-co-(9,9-dioctylfluorenyl-2,7-diyl)] (PFN), 

serving as an electron selective contact, was spin-coated from a 2 mg  mL-1 methanol 

solution containing 5 µL acetic acid. The device was completed by thermal evaporation 

of 120 nm Al contacts. 
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Simulation of the TP-Por COF crystal structure 

To determine the crystal structure of the obtained product, a powder diffraction pattern 

was calculated based on a simulated crystal structure. The unit cell was constructed 

using the Materials Studio software and optimized by force field calculations. Due to the 

non-planar porphyrin building block, the unit cell is limited to a trigonal P3 symmetry in 

the case of an eclipsed stacked structure and P63 symmetry for a staggered arrangement. 

The comparison of the calculated pattern with the experimental data identified the 

obtained structure as AA stacked TP-Por COF.  

 

Table 4.1. Refined crystal data. 

Formula C132 H72 B6 N12 O12 

Formula weight 2082.96 g mol‒1 

Crystal system trigonal 

Space-group P3  

Cell parameters a = b = 52.2 Å, c = 3.8 Å 

Cell volume 8977 Å3 

 

Table 4.2. Fractional atomic coordinates. 

Atom Wyck. x y z 
 

Atom Wyck. x y z 

C1 3d 0.91955 0.94724 -0.01394 
 

C28 3d 0.38765 0.72147 0.03575 

N2 3d 0.69905 0.87622 -0.01391 
 

C29 3d 0.36045 0.6946 0.02411 

C3 3d 0.72863 0.88841 0.02061 
 

C30 3d 0.91949 0.97347 -0.03042 

C4 3d 0.742 0.91883 0.06597 
 

N31 3d 0.69904 0.82386 0.02666 



4.4 Experimental 
 
 

104 

C5 3d 0.71977 0.92569 0.05331 
 

C32 3d 0.69399 0.79595 0.0092 

C6 3d 0.82388 0.9315 -0.21349 
 

C33 3d 0.72858 0.84119 -0.01499 

C7 3d 0.793 0.91588 -0.21168 
 

C34 3d 0.74185 0.82408 -0.06292 

C8 3d 0.9457 1.00046 -0.03098 
 

C35 3d 0.71962 0.795 -0.04449 

C9 3d 0.97289 1.00079 -0.02418 
 

C36 3d 0.82426 0.89354 0.189 

C10 3d 0.4139 0.72073 0.03347 
 

C37 3d 0.79337 0.87827 0.19712 

N11 3d 0.63444 0.79159 0.03275 
 

O38 3d 0.89131 0.96966 -0.04227 

C12 3d 0.63945 0.76894 0.08877 
 

C39 3d 0.94583 0.94658 -0.01434 

C13 3d 0.60489 0.77964 0.06862 
 

C40 3d 0.66674 0.89724 -0.03767 

C14 3d 0.59155 0.74965 0.15129 
 

C41 3d 0.66672 0.77056 0.05815 

C15 3d 0.61379 0.74277 0.16147 
 

C42 3d 0.83951 0.92024 -0.01474 

C16 3d 0.50943 0.73532 -0.15931 
 

B43 3d 0.87376 0.9374 -0.01955 

C17 3d 0.54032 0.75089 -0.16343 
 

C44 3d 0.5895 0.79531 0.01666 

O18 3d 0.44211 0.74513 0.04853 
 

C45 3d 0.49401 0.74759 0.02058 

C19 3d 0.38758 0.66751 0.00825 
 

C46 3d 0.55629 0.77871 0.01841 

C20 3d 0.36041 0.66725 0.02005 
 

B47 3d 0.45971 0.73047 0.02151 

C21 3d 0.41387 0.69447 0.01038 
 

C48 3d 0.69406 0.89911 0 

C22 3d 0.63943 0.87159 -0.06308 
 

O49 3d 0.89142 0.9228 0 

C23 3d 0.60486 0.82636 -0.03735 
 

N50 3d 0.63444 0.84395 0 

C24 3d 0.59148 0.843 -0.11765 
 

O51 3d 0.44205 0.69821 0 

C25 3d 0.61372 0.8721 -0.13138 
 

C52 3d 0.744 0.87249 0 

C26 3d 0.50951 0.77532 0.19948 
 

C53 3d 0.77723 0.8891 0 

C27 3d 0.54041 0.79061 0.20144 
 

C54 3d 0.97284 0.97363 -0.02418 
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Figure 4.5. Simulation of the crystal lattice of TP-Por COF. a) Top view on the AB plane of 4 unit cells in an 
eclipsed stacking arrangement with P3 symmetry, b) view along the c-axis of this fragment with an 
interlayer distance of 3.8 Å, c) view on the AB plane of 4 calculated unit cells of the TP-Por COF in a 
(hypothetical) staggered arrangement with P63 symmetry, and d) view along the c-axis with an interlayer 
distance of 6.5 Å. 
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X-ray diffraction analysis of TP-Por COF thin films 

To confirm the successful formation of TP-Por COF films on the conductive substrates 

they were analyzed by XRD in a detector scan mode. The XRD pattern shows a broad 

reflection at 24° 2θ, indicating oriented film growth with an interlayer distance of 3.8 Å 

(Figure 4.6). 

 

Figure 4.6. X-ray diffraction pattern of a TP-Por COF film measured in detector scan mode. 

 

Krypton sorption on COF thin films 

The accessibility of the open pore system of TP-Por COF films was confirmed by krypton 

sorption measurements. The obtained type IV isotherm, which is characteristic for 

mesoporous materials, exhibits a sharp jump from 0.33 to 0.47 P/P0, indicating a narrow 

pore size distribution. 
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Figure 4.7. Krypton sorption isotherm of a TP-Por COF thin film measured at 77 K.  
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IR spectroscopy 

The successful formation of the boronate ester ring between HHTP and 1 was indicated 

by Fourier transform infrared (FTIR) spectroscopy through the appearance of the 

characteristic B‒C stretching modes at 1333 cm‒1 and 1261 cm‒1 (Figure 4.8).46 

 

Figure 4.8. IR spectra of a TP-Por COF powder sample and the porphyrin diboronic acid 1. a) Full range 
spectrum and b) enlargement of the region below 2000 cm

‒1 showing the characteristic signals of the B‒C 
stretching modes at 1333 and 1261 cm

‒1. The spectra were offset for clarity. 

Table 4.3. Assignment of the most important IR-bands of TP-Por COF and Compound 1. 

Wavenumber / cm‒1 Assignment 

1343 asymmetric B‒O stretching mode (-B(OH)2) 

1333 “breathing” motion within the C2O2B ring 

1315 symmetric B‒C stretching mode(-B(OH)2) 

1261 coupled B‒C and C=C stretching mode 

1213 symmetric C‒O stretching mode  

1062 symmetric B‒O stretching mode 

972 coupled B‒O stretch and O‒H in plane bend(-B(OH)2) 

918 symmetric, in plane O‒H bending (-B(OH)2) 
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UV-Vis spectroscopy 

 

Figure 4.9. a) Absorption (black, gray) and photoluminescence emission spectra (brown, red) of a TP-Por 
COF thin film (solid line) and a 50 µM 1,4-dioxane solution of the porphyrin diboronic acid 1 (dashed line). 
b) Comparison of the UV-Vis spectra of the TP-Por COF film (black) with spin-coated thin films of its 
precursors (purple and red for HHTP and 1, respectively) and a 2:3 mixture of these precursors (blue). 

 

 

Differential pulse voltammetry and optical band gap of the COF building blocks 

 

Figure 4.10. a) Differential pulse voltammograms of HHTP (purple) and 1 (red), measured towards more 
positive potentials (oxidation) and referenced to ferrocene. b) Corresponding UV-Vis spectra of the 
precursor solutions. The optical band gap is determined from the maximum of the lowest-energy optical 
transition. 
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Additional optoelectronic characterization of the photovoltaic devices 

 

Figure 4.11. Transmission absorption spectra of a TP-Por COF thin film before (black) and after addition of 
the ZnO electron-selective layer. The additional feature at 347 nm can be ascribed to the ZnO nanocrystals. 

 

 

 

Figure 4.12. External quantum efficiency spectrum of a TP-Por COF-based photovoltaic device in semi-
logarithmic representation. The defined feature at 1.55 eV might indicate the formation of a well-defined 
charge-transfer state inside the donor‒acceptor framework. 
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Figure 4.13. Comparison of a) the J-V curves recorded at 100 mW cm-2 AM1.5G illumination and b) EQE 
spectra of the TP-Por COF device (black) and the reference device based on a blend of the COF building 
blocks (red). The inset shows a magnified representation of the EQE spectrum of the TP/Por blend device. 

 

  



4.4 Experimental 
 
 

112 

NMR spectra 

Compound 1 

400 MHz, THF-d8+3 drops of D2O 

 

 

100 MHz, THF-d8+3 drops of D2O 
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Compound 2 

600 MHz, CDCl3 

 

 

150 MHz, CDCl3 
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Compound 5 

300 MHz, CDCl3 

 

 

75 MHz, CDCl3 
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Compound 7 

600 MHz, CDCl3 

 

 

150 MHz, CDCl3 
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5. Tuning Photoluminescent Lifetimes within Metal-Free 

Porphyrin Covalent Organic Frameworks 

This chapter is based on work in collaboration with Niklas Keller and Florian Auras.  

 

 

Abstract 

Covalent organic frameworks (COFs) have attracted interest for many applications such 

as gas storage, photo-catalysis and optoelectronics. Their potential for tailoring pore 

space on a molecular level combined with the robust network and structural order of a 

crystalline material has caught much attention. Two-dimensional COFs allow for the 

tuning of their properties by choosing the building units accordingly. The π-π 

interactions between adjacent layers can thereby facilitate charge carrier migration 

along the stacking direction. These unique properties motivate new research on COFs as 

active materials for photovoltaic devices. Herein, we report the successful synthesis of a 

thienothiophene-porphyrin COF with high stacking order. A slight offset between 
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successive layers in a preferred direction leads to a reduction in symmetry of the unit 

cell, causing a splitting of the reflections in the diffraction pattern. Furthermore, the 

influence of the linear linker molecule within porphyrin COFs on the photo-luminescent 

decay lifetime was investigated. The lifetime can thereby be increased by electron 

deficient molecules, allowing for internal charge transfer from the porphyrin unit to the 

linear linker molecule. We anticipate that the new insights into the TT-Por COF stacking 

behavior and electronic properties can be transferred to other porphyrin-containing 

COFs and help to get a better understanding of the occurring electronic processes within 

these systems. 

5.1 Introduction 

The first report of covalent organic frameworks (COFs) in 2005 by Coté et al. initiated 

intense investigations on these unique materials. Two-dimensional (2D) COFs are 

crystalline porous networks formed by linking organic molecules via covalent bonds to 

form two-dimensional sheets. These sheets are able to stack in the third dimension by π-

π interactions to form porous networks with a defined pore size and shape.1  

COFs have attracted increasing attention as promising materials for gas storage2-3, 

catalysis4-5 and optoelectronic devices6-7. The π-stacking between the adjacent layers 

can thereby facilitate charge-carrier transport along the columns of the self-assembled 

COF structure.  

This exceptional type of materials allows for tuning its properties by selecting the 

molecular building blocks accordingly. Porphyrins, with their extended π-electron 

system and semi- and photo-conducting capabilities, have been in the focus of many 

investigations.8-12 They exhibit very high extinction coefficients in the visible and near 
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infrared (IR) region where the maximum of the solar flux occurs, which makes them 

interesting candidates for harvesting light in solar cell devices.13 

Porphyrins have been integrated into various COF structures. Those COFs were 

characterized to have an eclipsed structure, meaning that the 2-D sheets are lying on top 

of each other in an AA-stacking arrangement.14-19 However, density functional theory 

calculations performed by different groups suggest that true eclipsed structures are 

energetically unfavored and that COFs rather adopt structures with slightly offset 

layers.20-22 In principle, the offset can occur with the same probability in all 

symmetrically equivalent directions. As it is very likely that the layers will stack in a 

random order, without any preferred direction, the offset is difficult to observe via X-ray 

powder diffraction. Only a prevalence of distinctive patterns such as serrated, helical or 

staircase arrangements would be observable via X-ray diffraction, but this has not been 

observed experimentally thus far.20 

In this work we developed a COF consisting of two photoactive units, an electron rich 

tetragonal amine porphyrin linked to an electron deficient thieno[3,2-b]thiophene-2,5-

dicarboxaldehyde (TT) to form a new electroactive material. With the combination of 

these two molecules, ordered in a COF structure, we were able to extend the 

fluorescence lifetime by allowing internal charge transfer compared to the molecular 

building blocks. Furthermore, we observed a reduction in symmetry, which could be 

caused by a staircase-like stacking behavior of this porphyrin COF, producing a splitting 

of reflections in the X-ray diffraction pattern. 
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Figure 5.1. (a) Co-condensation reaction of 5,10,15,20–tetrakis(4-aminophenyl)porphyrin (1) and 
thieno[3,2-b]thiophene-2,5-dicarboxaldehyde (TT) in a 1:2 molar ratio to form the TT-Por COF, featuring 
tetragonal pores with a diameter of 2.5  nm. (b) Illustration of the TT-Por COF, showing the extended, 3 
dimensional structure, formed by π-π interacting 2D COF sheets. 

 

5.2 Results and Discussion 

The new 2D TT-Por COF was synthesized by combining 5,10,15,20–tetrakis(4-

aminophenyl)porphyrin (1) with thieno[3,2-b]thiophene-2,5-dicarboxaldehyde (TT) in 

a 1:2 molar ratio. The solvothermal reaction was carried out in a solvent mixture of 

benzyl alcohol, dichlorobenzene and 6 molar acetic acid (30:10:4, v:v:v) for 3 days at 

120 °C (Figure 5.1a; for experimental data, see the experimental section). The porphyrin 

units, located at the corners, are linked by the linear TT to form an ordered structure 

with open channels (Figure 5.1b). 

Powder X-ray diffraction (PXRD) measurements of the synthesized bulk material 

confirmed the formation of a crystalline material. To identify the structure, the 

calculated pattern of an eclipsed AA-stacking formation was compared to experimental 

data, but did not match (Figure 5.2a-b). The size of the unit cell, given by the position of 

the 100 reflection, however, is in good agreement with the measured pattern, suggesting 

only slight deviations in the unit cell. A shoulder arising on the 100 reflection as well as  
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Figure 5.2. (a) Experimental PXRD data (blue) vs. simulated patterns (red and black) for an eclipsed (b) 
and staircase (c) arrangement of the 2D layers. The theoretical patterns were simulated for a crystallite 
size of 50 nm. (d) Transmission electron micrograph of TT-Por COF bulk material showing the rectangular 
pore structure with defined crystal facets (bottom left), straight channels (top right) and the staircase 
arrangement of the COF with an angle between adjacent layers of 111° (bottom right). (e) Nitrogen 
sorption isotherm of a TT-Por COF powder sample measured at 77 K. (f) Corresponding pore size 
distribution with an average pore size of 2.4 nm obtained by fitting the experimental data using a QSDFT 
adsorption kernel with a fitting error of 0.7 % (inset).  
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a splitting of the 110 reflection into two new reflections indicates a reduction in 

symmetry of the unit cell. Performing a geometry optimization using force-field 

methods by enabling all unit cell parameters to float yielded a simulated pattern that 

matches the experimental one. In order to produce the experimental pattern without 

neglecting the symmetry of the starting materials, the unit cell parameter γ has to 

differ from 90°, resulting in an offset of the adjacent layers (Figure 5.2a and c). This 

offset results in a staircase-like stacking behavior of this COF, which is so prevalent in 

one direction that it can be seen in the PXRD pattern. The transmission electron 

microscopy (TEM) image of the newly synthesized COF confirmed the successful 

formation of a crystalline and ordered material. Domain sizes of up to 100 nm and the 

formation of defined rectangular crystal facets could be observed (Figure 5.2d).  

Depending on the orientation of the crystallites, the rectangular porous network can be 

seen from the top, or the porous channels can be observed from the side. Some facets 

are oriented such that one can see an angle between the sheets (Figure 5.2d, bottom 

right). The measured angle between the adjacent layers is 111°, which is in excellent 

agreement with the theoretical angle from the simulated structure (112 °). This highly 

suggests a staircase-like arrangement of the 2D layers (compare Figure 5.2c and d). 

Nitrogen sorption measurements revealed the typical shape of a type IV isotherm with a 

sudden increase in adsorbed volume at 0.09 p/p0 (Figure 5.2e) indicative of a uniform 

pore size. The calculated Brunauer Emmett Teller (BET) surface area is 1000 m2 g-1 with 

a pore volume of 0.6 cm3 g-1. The pore size, calculated using quenched solid density 

functional theory (QSDFT) with a carbon kernel for cylindrical pores on the adsorption 

branch, shows a very narrow distribution with an average pore size of 2.4 nm (Figure 

5.2f) with a fitting error of only 0.7 %. This is in good agreement with the theoretical  
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Figure 5.3. (a) Absorption (blue) measured as diffuse reflectance of the solid and converted with the 
Kubelka Munk equation and PL (λexc = 365 nm, black) spectra of TT-Por COF. (b) Photoluminescence (PL) 
decay curve for TT-Por COF. The sample was illuminated at 403 nm with a pump fluence of ~0.3 μJcm-2; 
the emission was monitored at the first peak of the PL emission at 700 nm. (c) PL decay curve for TT-Por 
COF. The sample was illuminated at 403 nm with a pump fluence of ~0.3 μJcm-2; the emission was 
monitored at the maximum of the PL emission at 800 nm. (d) Absorption (green) measured as diffuse 
reflectance of the solid and converted with the Kubelka Munk equation and PL (λexc = 365 nm, black) 
spectra of 1P-Por COF. (e) PL decay curve for 1P-Por COF. The sample was illuminated at 403 nm with a 
pump fluence of ~0.3 μJcm-2; the emission was monitored at the first peak of the PL emission at 700 nm. 
(f) PL decay curve for 1P-Por COF. The sample was illuminated at 403 nm with a pump fluence of ~0.3 
μJcm-2; the emission was monitored at the maximum of the PL emission at 736 nm. 
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pore size of 2.5 nm, determined from the simulated structure. 

The absorbance spectra of all materials were collected from solid samples in reflection 

mode and converted by applying the Kubelka Munk equation . The newly synthesized 

TT-Por COF shows a strong absorbance throughout the UV and visible spectrum, tailing 

far into the infrared region with distinct features (Figure 5.3a, blue). By comparing the 

absorption spectra of the starting materials with the one of the COF structure all 

features can be attributed to the integrated components (Figure 5.6a). When excited 

with 365 nm light, pronounced photoluminescence occurs with two distinct signals at 

700 and 800 nm (Figure 5.3a, black). 

Recent work has shown that photoluminescence (PL) dynamics carry important 

information about diffusion lengths of photo excited species in photovoltaic devices. 

Here, the lifetime is related to the charge diffusion length of free charge carriers.23-24 To 

determine the photoluminescence dynamics, TT-Por COF was excited with 405 nm 

radiation and the photoluminescence decay was measured over time at the two PL 

signals. The resulting histograms were exponentially fitted, revealing 3 different 

lifetimes. At 700 nm, the fit of the PL decay reveals that 79 % of the excited species has a 

very fast decay lifetime of 0.08 ns, followed by a second species with a decay lifetime of 

0.51 ns (12 %), and a long living species with lifetimes of 3.17 ns (8.3 %) (Figure 5.3b). 

When measuring the PL decay lifetime at 800 nm, where the maximum of PL occurs, 

lifetimes of 0.15 ns (80.6 %), 0.55 ns (18.5 %), and 4.90 ns (16.4 %) for the excited 

species were found (Figure 5.3c). These results signify an increase in lifetimes of the 

excited species compared to the neat starting materials TT with 2.3 ns (9.7 %) and 0.42 

ns (90.3 %) and 1 with 1.00 ns (100 %) at 700 nm and 0.37 ns (52 %) and 1.01 ns (48 

%) at 800 nm, respectively (Figure 5.8, see below).  

To investigate the influence of the TT building block on the decay lifetimes, a porphyrin 



5.3 Conclusion 
 
 

127 

COF was synthesized build from compound 1 and terephthal aldehyde forming 1P-Por 

COF (for more details see experimental section and Figure 5.4 and Figure 5.6b). The 

absorbance of 1P-Por COF occurs in the region from 250 – 720 nm with a tail reaching to 

1000 nm (Figure 5.3d, green). When excited with 365 nm light, PL occurs at 700 and 

736 nm (Figure 5.3d, black). The PL decay was measured at 700 nm and bi-

exponentially fitted to reveal two different photoluminescent species with lifetimes of 

0.13 ns (80.3 %) and 1.04 ns (19.64 %) (Figure 5.3e). Measuring the PL decay at the PL 

maximum at 736 nm reveals lifetimes of 0.11 ns (80.5 %) and 0.92 ns (19.5 %) for 1P-

Por COF (Figure 5.3f). These values are very similar to those of the neat starting 

materials, suggesting analogical occurring processes leading to the decay of the excited 

species without any beneficial effects from the order of the COF structure. The electron 

rich porphyrin unit, coupled to the electron rich phenyl group does not allow for internal 

charge transfer and delocalization of the electrons, resulting in fast decays of the excited 

species. In contrast, when conjugated to electron deficient TT building blocks, electrons 

are enabled to delocalize from the porphyrin units throughout the COF structure. This 

internal charge transfer allows for a stabilization of generated electrons leading to 

prolonged lifetimes of the excited species. 

5.3 Conclusion 

Herein, we have developed a new imine-linked COF, comprising two photoactive sub-

units, an electron rich tetragonal porphyrin and electron deficient linear 

thienothiophene linker. The symmetry of the new material was found to not match a 

simulated eclipsed structure, but to rather adopt a staircase-like stacking arrangement. 

PXRD data confirmed a splitting of reflections, caused by a reduction in symmetry. For 

the first time it was able to observe this prevalence of patterns in a preferred direction 
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of the adjacent layers to form this staircase like structure. 

Furthermore, the new TT-Por COF was found to stabilize photoluminescent dynamics, 

resulting in prolonged lifetimes compared to the starting materials or 1P-Por COF. The 

combination of electron rich and deficient sub-units to construct a COF framework 

facilitates internal charge transfer, which leads to a delocalization of electrons 

throughout the framework and thus a stabilization of the excited species. 

The high structural order of COFs enables a unique chance to investigate the occurring 

processes upon excitation on the nanoscale. We believe that the insights gained from 

these well-defined model systems can be transferred to the currently used organic 

photovoltaic devices, and help to understand and optimize these systems. 
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5.4 Experimental 

Materials and methods  

Unless stated otherwise, all reactions were performed in oven-dried glassware under a 

positive pressure of Ar. Commercial reagents and solvents were used as received. 

Thieno[3,2-b]thiophene-2,5-dicarboxaldehyde and the 5,10,15,20-(tetra-4-

aminophenyl) porphyrin were acquired from Sigma Aldrich and PorphyChem. The 

solvents were purchased from Sigma-Aldrich in the common purities. All materials were 

used without further purification.  

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum BX II FT-IR system and 

a Thermo Scientific Nicolet™ 6700 FT-IR spectrometer in transmission mode. IR data are 

reported in wavenumbers (cm–1).  

The nitrogen sorption isotherm was recorded on a Quantachrome Autosorb 1 at 77.35 K 

in a pressure range from p/p0 = 0.001 to 0.98. Prior to the measurement of the sorption 

isotherm, the sample was heated for 24 h at 120°C under turbomolecular pump vacuum. 

For the evaluation of the surface area, the BET model was applied between 0.05 and 0.2 

p/p0. The calculation of the pore size distribution was done using the QSDFT equilibrium 

model with a carbon kernel for cylindrical pores. 

X-ray diffraction (XRD) measurements were performed using a Bruker D8 Discover with 

Ni-filtered Cu Kα radiation and a LynxEye position-sensitive detector. 

Transmission electron microscopy was performed on an FEI Titan 80-300 equipped 

with a field emission gun operated at 80 kV. Scanning electron microscopy (SEM) images 

were recorded with a JEOL 6500F field emission microscope operated at 5 kV using a 

secondary electron detector.  
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UV-Vis spectra were recorded using a Perkin-Elmer Lambda 1050 spectrometer 

equipped with a 150 mm integrating sphere.  

Photoluminescence (PL) measurements were performed using a home-built setup 

consisting of a Horiba Jobin Yvon iHR 320 monochromator equipped with a 

photomultiplier tube and a liquid N2-cooled InGaAs detector. The samples were 

illuminated with a pulsed (83 Hz) 405 nm LED at a light intensity of 500 mW cm‒2. 

Time-resolved PL measurements were acquired using a time correlated single photon 

counting (TCSPC) setup (FluoTime 300, PicoQuant GmbH). The samples were photo-

excited using a 507 nm laser head (LDH-P-C-510, PicoQuant GmbH) pulsed at 500 kHz, 

with a pulse duration of 117 ps and fluence of ~300 nJcm-2/pulse. The samples were 

exposed to the pulsed light source set at 3 μJcm-2/pulse fluence for ~10 minutes prior to 

measurement to ensure stable sample emission. The PL was collected using a high-

resolution monochromator and hybrid photomultiplier detector assembly (PMA Hybrid 

40, PicoQuant GmbH). 
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Synthesis  

TT-Por COF 

For the synthesis of TT-Por COF 13.5 mg of compound 1 (0.02 mmol, 1 equiv.) and 

7.9 mg of TT (0.04 mmol, 2 equiv.) were added to a 10 mL Schott culture tube with 

screw cap and dispersed in a solvent mixture of benzyl alcohol, o-dichlorobenzene and 

6M acetic acid (30:10:4 v:v:v, 550 µL). The tube was placed in an oven at 120 °C for 72 h. 

After the time had elapsed, the reaction mixture was allowed to cool down to room 

temperature and the resulting powder was then collected by filtration through a Hirsch 

funnel. After washing the product three times with dry 1,2-dioxane it was left under 

dynamic vacuum to come to complete dryness. 

 

1P-Por COF 

13.5 mg compound 1 (0.02 mmol, 1 equiv.) and 5.36 mg of terephthal aldehyde 

(0.04 mmol, 2 equiv.) were dispersed in a solvent mixture of benzyl alcohol, mesitylene 

and 6M acetic acid (10:20:3 v:v:v, 550 µL) in a 10 mL Schott culture tube with screw cap. 

The tube was heated in an oven to 120 °C for 72 h. After cooling down, the product was 

isolated by filtration, followed by three washing cycles with 1,4-dioxane. The dark 

purple product was brought to complete dryness under reduced pressure. 
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Simulation of the TT-Por COF crystal structure 

To determine the crystal structure of the obtained product, a powder diffraction pattern 

was calculated based on a simulated crystal structure. The unit cell was constructed 

using the Materials Studio software and optimized by force field calculations. Due to the 

non-planar porphyrin building block, the unit cell is limited to a triclinic P1 symmetry in 

the case of a stacked staircase structure and to P4 symmetry for an eclipsed 

arrangement. The comparison of the calculated pattern with the experimental data 

identified the obtained structure as staircase stacked TT-Por COF.  

 

Table 5.1. Refined crystal data. 
 

Formula C60 H42 N8 S4 

Formula weight 2082.96 g mol‒1 

Crystal system triclicinc 

Space-group P1  

Cell parameters a = 27.96 Å 

b = 27.92 Å,  

c = 4.51 Å  

α = 113.8 

β = 80.0 

γ = 96.0 
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XRD spectroscopy  

1P-Por COF was analyzed via PXRD revealing a crystalline network.  

 

Figure 5.4. (a) PXRD pattern of 1P-Por COF. (b) Simulated crystal structure of 1P-Por COF. 

  



5.4 Experimental 
 
 

134 

IR spectroscopy 

The successful formation of the imine-linked TT-Por COF was confirmed by Fourier 

transform infrared (FTIR) spectroscopy. Consistent with previously reported COFs, the 

appearance of the characteristic C=N stretching mode at 1585 cm-1 indicates the 

coupling of the monomers via an imine bond (Figure 6.4). The lack of the aldehyde 

Fermi double resonance at 2841 and 2755 cm-1 as well as the aldehyde C=O stretching 

vibration at 1700 cm-1 suggests the complete consumption of the starting material TT-

dialdehyde. Furthermore, the attenuation of the characteristic C-N stretching mode at 

1284 cm-1 indicates the absence of the second starting material porphyrin-

tetraphenylamine.25-26 

 

Figure 5.5. (a) IR spectra of TT-Por COF (black), thienothiophene monomer (dark yellow) and porphyrin 
monomer (blue), measured as powder. (b) Enlargement of the region of interest. 
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UV-Vis / photoluminescence spectroscopy 

Absorption spectra of the starting materials, TT-Por COF, and 1P-Por COF were collected 

from solid samples in diffuse reflection mode and transferred into absorption spectra by 

applying the Kubelka Munk equation: 

𝐾

𝑆
=

(1 − 𝑅∞)2

2𝑅∞
 

with K = Absorption Coefficient, S = the Scattering Coefficient, R∞ = reflectance of sample 

with infinite thickness.
27

 

 

 

Figure 5.6. (a) UV-Vis spectra of TT-Por COF (blue) and the corresponding starting materials compound 1 
(Por, purple) and thienothiophene (TT, orange). (b) UV-Vis spectra of 1P-Por COF (green) and the 
corresponding starting materials compound 1 (Por, purple) and terephthal aldehyde (TA, gray). 

 

 

Figure 5.7. (a) ) Absorption (orange) and PL (λexc = 365 nm, black) spectra of the TT starting material. (b) 
Absorption (purple) and PL (λexc = 365 nm, black) spectra of the compound 1. 
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Time Correlated Single Photon Counting 

The PL lifetime was measured of the two starting materials TT and (1) by illumination at 

405 nm with a pump fluence of ~0.3 μJcm-2; the emission was monitored at the 

maximum of the PL emission at 510  nm for TT and at 700 nm and 800 nm for (1). 

 

Figure 5.8. (a) PL decay of TT linker (black dots), bi-exponential fit of the decay (red) and instrument 
response function (gray) excited with 405 nm and measured at the PL maximum at 510 nm. (b) PL decay 
of compound (1) (black dots) measured at the first PL maximum at 700 nm, bi-exponential fit of the decay 
(red) and instrument response function (gray). (c) PL decay of compound (1) (black dots) measured at the 
second PL maximum at 800 nm, bi-exponential fit of the decay (red) and instrument response function 
(gray). 
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6. Development of an Asymmetric Linker as Key for the 

Construction of Extended Covalent Organic Frameworks 

This chapter is based on the work in collaboration with Niklas Keller and Florian Auras.  

 

 

 

Abstract 

Covalent organic frameworks (COFs) have evoked much interest as they offer the 

possibility to fine-tune the properties of periodic porous systems on the nanoscale. 

Their pore geometry, pore size and shape are determined by the constituent organic 

building blocks. In two-dimensional (2D) COFs, the two dimensional sheets stack 

through π-π interactions to form 3D materials that can enable charge transport along 

the stacked columns. 

In order to achieve a better understanding of the influence of the chosen molecular 

building blocks on the properties of the resulting frameworks, a variety of possible 

building units and the corresponding COFs need to be developed and investigated. 
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Herein, we report the synthesis of an asymmetric molecule as building block for the COF 

synthesis and the successful formation of a new COF. The resulting pyrene-

tetrathiophene (Pyr-4T) COF is based on imine-linked tetrathiophene and pyrene linker 

molecules, and adopts a layered structure with tetragonal pores that are decorated with 

butyl chains. This Pyr-4T COF exhibits crystallinity with a high degree of order. Initial 

measurements of its photoluminescence (PL) and the lifetime of the photoluminescent 

species reveal its high potential as photoactive material. We anticipate that the 

introduction of asymmetric solubilizing chains offers great potential to synthesize new 

extended functional linkers and thus is the key to create functional COFs constructed 

from extended linker molecules. 
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6.1 Introduction 

Since the development of covalent organic frameworks in 2005, many efforts have been 

made to understand and enhance the properties of these unique materials.1-6 One focus 

of research lies on the development of highly functional building blocks. COFs are light-

weight materials assembled through strong covalent bonds between organic linker 

molecules. In 2D COFs, the emerging 2-dimensional layers stack via π-π-interactions to 

form an extended porous framework. The geometry and size of the pore system 

strongly depend on the length and shape of the building units, as well as their 

connectivity. Moreover, the properties of the resulting materials can be influenced by 

integrating photoactive and/or photoluminescent units.7-9  

Oligo- and polythiophenes can feature electrical conductivity and have attracted much 

attention as photoconductive materials.10-11 For example, so-called double cable 

polymers with polythiophene as backbone component have been reported in 1996 by 

Benincori et al.12 Their outstanding conductivity led to the development of highly 

efficient bulk heterojunctions based on poly(3-hexylthiophene) (P3HT) and fullerene 

derivatives such as P3HT:PCBM.13 Moreover, integrated into a COF structure, thiophenes 

were found to enable and conduct light-induced charges to be collected within the first 

COF:PCBM solar cell device.8  

In contrast to kinetically controlled polymer synthesis based on irreversible covalent 

bond formation, the synthesis of crystalline COFs requires slight reversibility of the 

polymerization reaction.14 The reversibility of the bond formation allows the system to 

form, break and re-form covalent bonds, which provides a “self-healing” feedback 

mechanism. The difficulty in synthesizing a new COF lies in the adjustment of the 

building block reactivity and of the solvent mixtures to find the optimum ratio between 
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condensation and dissociation of the starting materials. Moreover, the solubility of the 

building blocks in the solvent mixture should enable sufficient polymerization rates.  

In this work a new linker molecule was developed by coupling multiple thiophene units 

to extend the π-system and thus the optical absorption in the visible. To tune its 

solubility, alkyl groups were installed in an asymmetric fashion. We anticipate that the 

asymmetric nature of the building block leads to an enhancement in crystallinity of the 

resulting network, as a possible alternating stacking of those units can reduce steric 

repulsion during stacking. 

6.2 Results and Discussion 

The new Pyr-4T COF was synthesized by combining 4,4',4'',4'''-(1,8-dihydropyrene-

1,3,6,8-tetrayl) tetraaniline (pyrene) and 3,3''-dibutyl-[2,2':5',2'':5'',2'''-

quaterthiophene]-5,5'''-dicarbaldehyde (4T) in a 2 : 1 molar ratio in a solvent mixture of 

benzyl alcohol and 6M acetic acid (10 : 1, v : v) (Figure 6.1a; for experimental data, see 

the experimental section). The synthesis strategy for the 4T units is described in the 

experimental section. The resulting anticipated framework exhibits an average 

theoretical pore size of 3.7 nm (Figure 6.1a and b). 

The successful formation of a crystalline material was confirmed by powder X-ray 

(PXRD) diffraction, revealing a highly ordered system with even high angle reflections 

visible (Figure 6.2a). To identify the structure of the newly synthesized material, the 

crystal structure was simulated using the Materials Studio software. As the 4T building 

units exhibit substantial asymmetry, a precise determination of the location of the alkyl 

groups was not possible. Therefore, the structure was simulated assuming all 

thiophenes bearing a butyl chain, each with an occupancy of 50 %. The experimental 
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Figure 6.1. (a) Co-condensation reaction of 4T and pyrene in a 1:2 molar ratio to form the Pyr-4T COF, 
featuring tetragonal pores with a diameter of 3.7 nm. (b) Illustration of the Pyr-4T COF, showing the 
extended, 3 dimensional structure of a 2x2 unit cell, formed by π-π interacting 2D COF sheets. 
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data agree very well with the simulated pattern for a tetragonal unit cell with an 

eclipsed stacking arrangement (Figure 6.2a and b). At higher angles the typical 001 

reflection is observed. The position of this reflection indicates the distance between 

adjacent layers. The maximum of the 001 reflection arises at 23.7 2θ, thus the interlayer 

distance can be calculated to be 3.75 Å by applying the Scherrer equation. 

Pyr-4T COF was further characterized by electron microscopy. Transmission electron 

microscopy (TEM) images show the porous channels of the extended COF structure in 

side view, with crystal domains sized up to about 100 nm (Figure 6.2c). The scanning 

electron micrograph (SEM) reveals a cauliflower-like macrostructure with intergrown 

spherical particles ranging from 100 – 250 nm in size (Figure 6.2d).  

The successful formation of the imine-linkage between the pyrene and 4T units within 

the Pyr-4T COF was confirmed by Fourier transform infrared (FTIR) spectroscopy 

(experimental section, Figure 6.4). The missing vibrational modes for the characteristic 

aldehyde C=O stretching vibration at 1676 cm-1 as well as the C-N stretching mode at 

1270 cm-1 and the N-H wagging vibration at 766 cm-1, typical for primary amines, are 

indicative for the absence of all starting materials. The appearance of the characteristic 

C=N stretching mode at 1575 cm-1 suggests the successful formation of the Pyr-4T COF 

through the formation of imine bonds.15  

Pyr-4T COF exhibits a maximum in the optical absorbance at 465 nm with a shoulder 

reaching far into the visible and near IR region of the spectrum (Figure 6.2e). When 

excited with 455 nm light, the COF shows a distinct photoluminescence (PL), red-shifted 

to the absorbance by 161 nm with a maximum at 626 nm (Figure 6.2e). The absorbance 

and PL spectra are broadened and red shifted compared to the corresponding spectra of 

the 4T monomer (experimental section, Figure 6.5). This can be attributed to the larger  
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Figure 6.2. (a) Experimental PXRD data (red) vs. simulated patterns (black) for an eclipsed (b) 
arrangement of the 2D layers. The theoretical patterns were simulated for a crystallite size of 50 nm. (c) 
Transmission electron micrograph of Pyr-4T COF bulk material showing the straight porous channels in 
side view. (d) Scanning electron micrograph of a Pyr-4T COF powder sample revealing the intergrowth of 
smaller COF domains. (e) Transmission absorption (blue) and normalized PL (λexc = 455 nm, black) 
spectra of Pyr-4T COF. (f) Tauc plot of the absorption spectrum with a linear fit to estimate the optical 
band gap, resulting in 2.04 eV. 
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conjugated system of pyrene moieties coupled to the 4T within the COF. The 

experimental data of the absorbance were used for bandgap calculations by applying the 

Tauc plot assuming a direct bandgap. 

The steep increase in absorbance which can be seen in Figure 6.2e signifies the bandgap 

for the Pyr-4T COF where photons with energy corresponding to the bandgap are 

absorbed. The distinct linear section in the Tauc plot indicates this onset of absorption 

and by extrapolating this section to the abscissa with a linear fit the energy of the optical 

bandgap of Pyr-4T COF can be estimated to be 2.04 eV (Figure 6.2). The enlargement of 

the molecular crystal to a 2D COF network with an extended electronic system leads to a 

significant decrease in energy compared to the 4T monomer with a HOMO-LUMO energy 

difference of 2.63 eV (experimental section, Figure 6.5b). The conjugation of the two 

monomers pyrene and 4T within the Pyr-4T COF enables internal charge transfer, 

resulting in a beneficial shifting of the absorption spectrum in the visible region. 

Furthermore, the photoluminescent lifetime of the excited species was measured using 

time correlated single photon counting (TCSPC). In order to ensure that the observed 

signals in the PL spectrum belong to the same species and do not implicate the presence 

of another species or impurities, the measurements were performed for both the global 

(626 nm) and local maxima (660 nm). The results show that the measured lifetimes 

coincide and thus no impurities are the source of the PL signal but both maxima 

correspond to one system, the Pyr-4T covalent organic framework (experimental 

section, Figure 6.6a). Applying a bi-exponential decay fit revealed the photoluminescent 

lifetimes for the Pyr-4T COF to be 1.07 ns and 0.05 ns. The PL lifetime of the 4T 

monomer exhibits a lifetime of only 0.58 ns (experimental section, Figure 6.6b) 
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6.3 Conclusion 

In this work we successfully synthesized a new linker molecule composed of 4 

thiophene units with 2 alkyl chains, installed in an asymmetric fashion. These 

asymmetrically arranged alkyl chains not only tune the solubility such that a successful 

synthesis of the COF can be achieved but also offer the possibility of alternating their 

position and thus reducing steric repulsion between adjacent layers.  

The newly formed Pyr-4T COF exhibits high crystallinity, indicated by the diffraction 

pattern showing even high angle reflections with narrow peak widths.  

The incorporation of the 4T monomer within an ordered COF structure broadened and 

extended the absorption and photoluminescent spectra to lower energy compared to 

those of the monomers. This corresponds to a decrease in the optical bandgap energy of 

about 20 %. 

The introduction of alkyl chains in an asymmetric fashion enables the construction of 

linkers with extended π-systems while retaining their solubility to construct COFs. The 

asymmetry of the solubilizing groups thereby does not hinder the crystallization as the 

linker molecules can reduce steric strain by alternating within the crystalline 

framework. We anticipate that this approach for the design of large linker molecules will 

offer new opportunities for the construction of novel COF structures comprising large 

and complex building blocks. 
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6.4 Experimental 

Unless stated otherwise, all reactions were performed in oven-dried glassware under a 

positive pressure of Ar. Commercial reagents and solvents were used as received. 

Reactions were stirred magnetically and monitored by NMR spectroscopy or analytical 

thin-layer chromatography (TLC) using E. Merck 0.25 mm silica gel 60 F254 pre-coated 

glass plates. TLC plates were visualized by exposure to ultraviolet light (254 nm). Flash 

column chromatography was performed employing silica gel (60 Å, 40–63 µm, Merck).  

Nuclear magnetic resonance (NMR) spectra were recorded on Varian VNMRS 300, 

VNMRS 400, INOVA 400 or VNMRS 600 spectrometers. Proton chemical shifts are 

expressed in parts per million ( scale) and are calibrated using residual undeuterated 

solvent peak as an internal reference (CDCl3:  7.26; THF-d8:  1.72, 3.58). Data for 1H 

NMR spectra are reported as follows: chemical shift ( ppm) (multiplicity, coupling 

constant/Hz, integration). Multiplicities are reported as follows: s = singlet, d = doublet, t 

= triplet, q = quartet, m = multiplet, br = broad, or combinations thereof.  

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum BX II FT-IR system and 

a Thermo Scientific Nicolet™ 6700 FT-IR spectrometer in transmission mode. IR data is 

reported in frequency of absorption (cm–1).  

Mass spectrometry (MS) experiments were performed on a Thermo Finnigan MAT 95 

(EI) or on a Thermo Finnigan LTQ FT (ESI) instrument. 

X-ray diffraction (XRD) measurements were performed using a Bruker D8 Discover with 

Ni-filtered Cu Kα radiation and a LynxEye position-sensitive detector. 

Transmission electron microscopy was performed on an FEI Titan 80-300 equipped 

with a field emission gun operated at 80 kV. Scanning electron microscopy (SEM) images 

were recorded with a JEOL 6500F field emission microscope operated at 5 kV using a 
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secondary electron detector.  

UV-Vis spectra were recorded using a Perkin-Elmer Lambda 1050 spectrometer 

equipped with a 150 mm integrating sphere. Absorbance spectra of COF thin films were 

corrected for the transmission of the substrate and reflection losses. 

Photoluminescence (PL) measurements were performed using a home-built setup 

consisting of a Horiba Jobin Yvon iHR 320 monochromator equipped with a 

photomultiplier tube and a liquid N2-cooled InGaAs detector. The samples were 

illuminated with a pulsed (83 Hz) 405 nm LED at a light intensity of 500 mW cm‒2. 

The substituted tetrathiophene synthesized in this work will be referred to as 4T in the 

following sections due to its four thiophene groups.  
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Figure 6.3: Successful synthesis route of 4T (8) with by-product 6 that was reintroduced into the synthesis 
cycle. 

 

The synthesis of the 4T-linker was started by activating 1-bromobutane with 

magnesium in THF, followed by a Grignard-reaction of butylmagnesium bromide (1) 

with 3-bromothiophene to obtain 3-butylthiophene(2)16 in fair yields. (2) was then 

easily brominated with NBS in a mixture of CHCl3 1:1 conc. AcOH to provide (3) in very 

good yields.17 After activating (3) with magnesium in a solvent mixture of THF and 1,2-

dibromoethane to furnish (3-butylthiophen-2-yl)magnesium bromide (4), 2,5-

dibromothiophene was added in a Ni-catalyzed Grignard-reaction to obtain 

terthiophene (5).18 The aldehyde (6) was formed by formylating (5) with one 

equivalent of the Vilsmeier reagent and was brominated following the same procedure 

as described above, furnishing (7) in excellent yields. The Pd-catalyzed coupling of (7) 

with 5-bromo-2-thienylboronic acid in water-spiked 1,4-dioxane was accomplished with 

yielding the desired product (8).19 As a by-product compound 6 was obtained, which 

was then recycled through bromination to achieve total yields of up to 60 %. 

 

Butylmagnesium bromide (1) 

 

A dispersion of magnesium (1.97 g, 81.0 mmol, 1.35 eq.) in 100 mL anhydrous THF was 

prepared in a 250 mL three-necked round bottom flask, equipped with a magnetic 

stirring bar. A mixture of 1-Brombutane (8.6 mL, 80.4 mmol, 1.34 eq) and 40 mL 

anhydrous THF were added dropwise under Ar. The mixture was kept at ambient 

temperature by a water bath until the magnesium was dissolved. The solution 

containing compound 1 was used without further purification.  
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3-Butylthiophene (2) 

 

Ni(dppp)Cl2 (650.4 mg, 1.2 mmol, 0.02 eq.) was added to the solution containing 1 in a 

three necked 250 mL round bottom flask, and 3-bromothiophene (5.6 mL, 60 mmol, 

1 eq.) was added slowly while the reaction was cooled with a water/ice mixture under 

Ar. The reaction was allowed to warm to ambient temperature and stirred for 16 h. 1 mL 

1 M HCl was added to quench the reaction and the aqueous mixture was extracted with 

Et2O (50 mL) three times. The combined organic layers were washed with H2O (50 mL) 

for three times and dried over MgSO4 (3 g) filtered and concentrated in vacuo. The crude 

product was purified by distillation to provide 2 (5.264 g, 63 %) as colorless oil.16 

1H NMR (400 MHz, Chloroform-d) δ: 7.24 (dd, J = 4.9, 2.9 Hz, 1H), 6.97 – 6.89 (m, 2H), 

2.63 (t, J = 7.5 Hz, 2H), 1.66 – 1.56 (m, 2H), 1.42 – 1.31 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H). 

 

2-Bromo-3-butylthiophene (3) 

 

Compound 2 (5.264 g, 37.5 mmol, 1 eq.) was dissolved in 38 mL CHCl3 and 38 ml conc. 

acetic acid under Ar in a 250 mL three-necked round bottom flask, equipped with a 

magnetic stir bar. N-Bromosuccinimide (7.015 g, 39.4 mmol, 1.05 eq.) was added to the 

solution in the dark and the solution was stirred for 17 h. The reaction was quenched by 

adding 130 mL H2O, and the aqueous mixture was extracted with CHCl3. (50 mL) three 

times. The combined organic layers were washed with saturated NaHCO3-solution 
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(50 mL) for three times and H2O (50 mL) for three times before they were dried over 

MgSO4 (3 g) filtered and concentrated in vacuo. Purification of the crude product by 

distillation furnished the desired compound 3 (6.806 g, 83 %) as colorless oil.17 

1H NMR (400 MHz, Chloroform-d) δ: 7.18 (d, J = 5.6 Hz, 1H), 6.80 (d, J = 5.6 Hz, 1H), 

2.57 (t, J = 7.6 Hz, 2H), 1.61 – 1.52 (m, 2H), 1.42 – 1.31 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). 

 

(3-Butylthiophen-2-yl)magnesium bromide (4) 

 

Compound 3 (3.92 g, 17.8 mmol, 3 eq.) and 1,2-dibromoethane (1.534 mL, 17.8 mmol, 

3 eq.) were placed to a 50 mL round bottom flask. 18 mL anhydrous THF were added 

dropwise over a time range of 1.5 h (1/3 per 30 min) to magnesium (865 mg, 35.6 mmol, 

6 eq.) in 60 mL THF under sonication under ambient temperature. After further 

sonication until the magnesium did not react anymore, the solution was used for the 

next step without further purification. 

 

3,3''-Dibutyl-2,2':5',2''-terthiophene (5) 

 

Solution (4) was transferred into a mixture of 2,5-dibromothiophene (0.667 mL, 

5.9 mmol, 1 eq.) and Ni(dppp)Cl2 (320 mg, 0.59 mmol, 0.1 eq.) in 60 mL anhydrous THF, 

prepared in a 250 mL three-necked round bottom flask. The reaction mixture was 
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stirred with a magnetic stir bar at 35 °C for four days (forming a greenish mixture) and 

then quenched by adding 100 mL HCl (1 M) and 100 g ice. The aqueous mixture was 

extracted with Et2O (70 mL) three times, dried over MgSO4 (3 g) filtered and 

concentrated in vacuo. The crude product was purified by flash chromatography (SiO2, 

60 Å, 40–63 µm, Merck, heptane) to obtain 5 (1.59 g, 75 %) as orange oil.18 

1H NMR (400 MHz, Chloroform-d) δ: 7.18 (d, J = 5.2 Hz, 1H), 7.06 (s, 1H), 6.94 (d, J = 

5.2 Hz, 1H), 2.79 (t, J = 7.8 Hz, 2H), 1.69 – 1.59 (m, 2H), 1.46 – 1.35 (m, 2H), 0.94 (t, J = 

7.3 Hz, 3H). 

 

3,3''-Dibutyl-[2,2':5',2''-terthiophene]-5-carbaldehyde (6) 

 

Compound 5 (1.59 g, 4.4 mmol, 1 eq.) was dissolved in 1,2-dichloroethane under Ar in a 

250 mL three-necked round bottom flask, equipped with a stir bar. The Vilsmeier 

reagent was prepared by adding POCl3 (0.602 mL, 6.6 mmol, 1.5 eq.) into 4.172 mL 

anhydrous DMF, measured with an eppendorf pipette. After a few minutes the reagent 

turned red and was then added to the solution containing 5. The reaction mixture was 

stirred at 70 °C for 17 h, quenched by adding 100 mL H2O, and 10 mL 1 M NaOH was 

added to increase the pH-value to 9-11. The aqueous mixture was extracted with DCM 

(40 mL) three times, dried over MgSO4 (3 g) filtered and concentrated in vacuo. 

Purification of the crude product by flash chromatography (SiO2, 60 Å, 40–63 µm, Merck, 

EtOAc 1:5 heptane) furnished compound 6 (1.431 g, 84 %) as orange oil. 
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1H NMR (400 MHz, Chloroform-d) δ: 9.83 (s, 1H), 7.60 (s, 1H), 7.24 (d, J = 3.8 Hz, 1H), 

7.22 (d, J = 5.2 Hz, 1H), 7.11 (d, J = 3.8 Hz, 1H), 6.96 (d, J = 5.2 Hz, 1H), 2.84 (t, J = 7.7 Hz, 

2H), 2.79 (t, J = 7.8 Hz, 2H), 1.74 – 1.60 (m, 4H), 1.49 – 1.36 (m, 4H), 0.96 (t, J = 7.3 Hz, 

4H), 0.93 (t, J = 7.4 Hz, 2H). 

 

5''-Bromo-3,3''-dibutyl-[2,2':5',2''-terthiophene]-5-carbaldehyde (7) 

 

Compound 6 (978.3 mg, 2.51 mmol, 1 eq.) was dissolved in 24 mL CHCl3 and 24 mL 

concentrated acetic acid under Ar in a 250 mL three-necked round bottom flask. The 

solution was then cooled to 0 °C, and N-bromosuccinimide (492.9 mg, 2.77 mmol, 

1.1 eq.) was added in the dark. After the reaction mixture stirred at ambient 

temperature for two days, 125 mL H2O was added and the aqueous mixture was 

extracted with DCM (50 mL) three times. The combined organic layers were dried over 

MgSO4 (3 g), filtered and concentrated in vacuo. The crude product was purified by flash 

chromatography (SiO2, 60 Å, 40–63 µm, Merck, n-hexane 1:3 DCM) yielding compound 7 

(1119.1 mg, 95 %) as orange oil which crystallized as orange solid.17 

1H NMR (400 MHz, Chloroform-d) δ: 9.83 (s, 1H), 7.60 (s, 1H), 7.22 (d, J = 3.8 Hz, 1H), 

7.05 (d, J = 3.8 Hz, 1H), 6.92 (s, 1H), 2.82 (t, J = 7.8 Hz, 2H), 2.73 (t, J = 7.7 Hz, 2H), 1.72 – 

1.56 (m, 5H), 1.49 – 1.34 (m, 5H), 0.97 (t, J = 7.3 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H). 
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3,3''-Dibutyl-[2,2':5',2'':5'',2'''-quaterthiophene]-5,5'''-dicarbaldehyde (8) 

 

Compound 7, (837.4 mg, 1.79 mmol, 1 eq.), 5-formyl-2-thienylboronic acid (307.3 mg, 

1.97 mmol, 1.1 eq.), Pd(PPh3)4 (207.0 mg, 0.18 mmol, 0.1 eq.) and K2CO3 (495.1 mg, 

3.58 mmol, 2 eq.) were placed in a 100 mL three-necked round bottom flask, equipped 

with a magnetic stir bar. After adding 9 mL 1,4-dioxane and 2.5 mL H2O (under Ar) the 

mixture was stirred at 110 °C for 2 d. After two days the mixture was quenched by 

adding 50 mL H2O and extracted with DCM (20 mL) for three times. The combined 

organic layers were dried over MgSO4 (3 g), filtered and concentrated in vacuo. The 

crude product was purified by flash chromatography (SiO2, 60 Å, 40–63 µm, Merck, 

DCM) to provide compound 8 (224.2 mg, 25 %) as red solid.19 

1H NMR (400 MHz, Chloroform-d) δ: 9.87 (s, 1H), 9.84 (s, 1H), 7.68 (d, J = 4.0 Hz, 1H), 

7.61 (s, 1H), 7.27 (s, 1H), 7.25 (d, J = 4.0 Hz, 1H), 7.21 (s, 1H), 7.17 (d, J = 3.9 Hz, 1H), 2.84 

(t, J = 8.1 Hz, 2H), 2.80 (t, J = 7.9 Hz, 3H), 1.76 – 1.62 (m, 4H), 1.45 (h, J = 7.4 Hz, 5H), 0.97 

(td, J = 7.3, 1.7 Hz, 7H). 

13C NMR (101 MHz, Chloroform-d) δ: 182.68, 182.57, 146.73, 141.94, 141.60, 140.78, 

140.70, 140.65, 139.14, 137.47, 137.38, 135.46, 134.28, 131.95, 129.29, 128.05, 126.94, 

124.38, 32.77, 32.60, 29.42, 29.35, 22.81, 22.75, 14.08, 14.06. 

HR-EI-MS: m/z (%): 498.0811 (100, [M]+, calculated for C26H26O2S4+: 498.0810). 
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4T-Pyrene-COF 

Compound 8 was then used as a building block in the synthesis of a covalent organic 

framework with the second building block 4,4',4'',4'''-(pyrene-1,3,6,8-

tetrayl)tetraaniline synthesized following the procedure described in literature.20 The 

solvents were purchased from Sigma-Aldrich and used without further purification. 

For the preparation of the reaction 5.66 mg 4,4',4'',4'''-(pyrene-1,3,6,8-

tetrayl)tetraaniline (0.01 mmol, 1 eq.) and 9.96 mg 4T (0.02 mmol, 2 eq.) were added to 

500 μL benzyl alcohol and 50 μL 6 M acetic acid in a small Schott tube (culture tube with 

screw cap, air-tight sealing under Ar, 5 mL). The reaction mixture was heated at 120 °C 

for three days, cooled down to ambient temperature and filtered. The obtained reddish 

dark precipitate was characterized by powder diffraction.   



6.4 Experimental 
 
 

157 

IR Spectroscopy 

 

Figure 6.4 (a) IR spectra of Pyr-4T COF (black), pyrene monomer (dark yellow), and 4T monomer (red) 
measured as solids. (b): Enlargement of IR spectra of Pyr-4T COF (black), pyrene monomer (dark yellow), 
and 4T monomer (red) measured as solids. 

 

UV-Vis/Photoluminescence 

 

Figure 6.5.(a) The photoluminescence spectrum (black) compared with the absorption spectrum (red) of 
the 4T monomer 8 measured as a 50 µM solution in 1,4-dioxane. (b) Tauc plot for the 4T monomer 8 
(black) absorption spectrum and the linear fit (blue). 
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Time correlated single photon counting 

 

Figure 6.6. (a) TCSPC histograms of fluorescence (black) and exponential decay fit (red) in log scale for the 
Pyr-4T COF (with τ1 = 1.07 ns and τ2 = 0.05 ns) and (b) for the 4T monomer 8 (τ = 0.57853 ns). 
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7. Hand-Tailoring the Properties of a Covalent Organic 

Framework by the Integration of a Push-Pull Building 

Block 

 

This chapter is based on work in collaboration with: Florian Auras, Simon Herbert, 

Laura Ascherl, and Markus Döblinger. 

 

Abstract 

Organic polymer- and small molecule-based solar cells have reached impressive power 

conversion efficiencies during the past years; however, the precise design and control of 

the nanoscale morphology of the photoactive material remains a major challenge. 

Covalent organic frameworks (COFs) offer a strategy to integrate functional groups 

within a crystalline network to precisely control the position of the moieties on a 

nanoscale level. π-π Interactions between the layers of two dimensional (2D) COFs 
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enable the formation of aligned columns, which can facilitate charge carrier transport 

along the stacking direction. The properties of COFs can be tuned by integrating 

appropriate linker molecules. Here, we report the development of a new push-pull 

linker that comprises electron-rich and -deficient moieties within its structure. This 

design promotes internal charge transfer, resulting in the reduction of the band gap 

energy. Integrated within a COF structure, the push-pull linker was found to increase the 

absorption spectrum such that light can be harvested efficiently throughout almost the 

complete visible region. The energy levels of the push-pull linker are thereby finely 

tuned to align with those of a fullerene acceptor and to eventually function as donor 

material in a COF-based ordered bulk heterojunction solar cell device. 

7.1 Introduction 

Coté et al. have initiated intensive investigations on covalent organic frameworks (COFs) 

after they introduced this new class of materials in 2005.1 2D COFs are light-weight 

materials consisting of organic linker molecules linked by covalent bonds to form two 

dimensional (2D) sheets, which are able to stack and form an extended 3D network by 

π-π interlayer interactions. This unique class of materials offers the possibility to tune 

its properties by integrating appropriate linker molecules with desired functionality. 

The shape and size of the resulting porous channels strongly depend on the linker 

geometry and length, and by integrating functional moieties the optical and 

electrochemical properties can be tuned. With appropriate linkers and stacking 

interactions, charge transport along the stacked columns becomes possible, making 

COFs promising candidates to serve as active materials in solar cell devices.2-11 

In this context, the focus of research lies on the development of new electroactive linker 
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molecules to form the corresponding electroactive COFs and to take advantage of these 

crystalline materials to construct ordered bulk heterojunctions (BHJ).12-13 For example, 

the COF framework can act as electron donor material that can be infiltrated with an 

electron acceptor such as a fullerene derivative, to construct a highly ordered and 

defined BHJ.12  

In order for a COF to efficiently function within such device, besides close contact 

between the electron donor and acceptor phase, the energy levels of these phases have 

to be aligned to promote electron transfer from the donor to the acceptor phase. An 

established strategy for polymer solar cell devices is the use of “push-pull” structures to 

modulate the energy level of the highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) in such a way to properly match the energy levels 

of the fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM), which is 

commonly used in BHJ devices.14-19 

These “push-pull” systems consist of π-conjugated linkers that exhibit electron rich und 

electron deficient areas within their structure. The difference in electronegativity causes 

intramolecular charge transfer which reduces the band gap energy and thus results in a 

broadening of the optical absorption spectrum towards lower energy.18 

In this work we developed a new push-pull linker composed of an electron rich 

benzodithiophene (BDT) unit coupled to two electron deficient benzothiadiazoles(BT). 

We anticipate that the integration of this linker will form a COF with strong absorption 

throughout the visible spectrum that could ultimately function as photoactive material 

within a solar cell device. 
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Figure 7.1. Co-condensation reaction of 7,7'-(4,8-diethoxybenzo[1,2-b:4,5-b']dithiophene-2,6-
diyl)bis(benzo[c][1,2,5]thiadiazole-4-carbaldehyde) (PP) and 1,1,2,2-tetrakis(4-aminophenyl)ethene 
(ETTA) in a 2:1 molar ratio to form the PP-ETTA COF, featuring hexagonal pores with a diameter of 4.9 nm 
and trigonal pores with 1.95 nm. 

 

7.2 Results and Discussion 

The newly synthesized push-pull linker 7,7'-(4,8-diethoxybenzo[1,2-b:4,5-

b']dithiophene-2,6-diyl)bis(benzo[c][1,2,5]thiadiazole-4-carbaldehyde) (PP) was 

integrated within a COF structure via a co-condensation reaction with 1,1,2,2-tetrakis(4-

aminophenyl)ethene (ETTA) in a 2 : 1 molar ratio to form PP-ETTA COF (Figure 7.1). To 

ensure the reversibility of the bond formation, catalytic amounts of 6 molar acetic acid 

were added to a solvent mixture of benzyl alcohol and mesitylene (BzOH : Mes : AcOH, v 

: v : v, 20 : 10 : 3) (for further experimental data see the experimental section). 

The crystallinity of the PP-ETTA COF was confirmed by powder X-ray (PXRD) diffraction 

(Figure 7.2a). In order to determine the structure of PP-ETTA COF, two different 

crystalline arrangements were simulated using the Materials Studio software and  
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Figure 7.2. (a) Experimental PXRD data (blue) vs. simulated patterns (red and gray) for an orthorhombic 
(b) and hexagonal (c) arrangement of the linker molecules. The theoretical patterns were simulated for a 
crystallite size of 50 nm. (d) Transmission electron micrograph of PP-ETTA COF bulk material showing the 
hexagonal pore structure in top view and straight porous channels in side view. (e) Nitrogen sorption 
isotherm of a PP-ETTA COF powder sample measured at 77 K. (f) Corresponding pore size distribution 
with two different pore sizes of 1.9 nm and 4.2 nm, obtained by fitting the experimental data using a 
QSDFT adsorption kernel with a fitting error of 1.3 % (inset). 
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Figure 7.3. Transmission absorption spectrum of the PP linker (black) measured in a 1 cm quartz cuvette 
as a 50 µM solution in 1,4-dioxane and PP-ETTA COF (blue), measured as diffuse reflectance of the solid 
and converted with the Kubelka Munk equation. (b) Absorbance (blue) and PL (λexc = 455 nm, magenta) 
spectra of PP-ETTA COF. (c) Energy levels of PCBM and the naked PP linker (without aldehyde groups) 
obtained with DPV. 

 

compared to the experimental data. The diffraction pattern of a possible orthorhombic 

arrangement of the linker molecules does not match the experimental data (Figure 7.2a 

and b). However, when compared to the pattern of a simulated hexagonal structure the 

reflection positions and intensities agree very well with the experimentally obtained 

data (Figure 7.2a and c). 

The successful formation of the PP-ETTA COF was further confirmed by transmission 

electron microscopy (TEM). The micrograph of the bulk material reveals the hexagonal, 

honeycomb-like structure of the COF, which can be seen in top view (Figure 7.2d). The 

expected channels are also visible, with crystalline domains sized up to about 100 nm. 

The permanent porosity of the PP-ETTA COF was elucidated via nitrogen sorption 

measurements. The isotherm adopts a type IV shape, typical for mesoporous materials. 

Additionally, an increased uptake can be observed in the microporous region (Figure 

7.2e). The Brunauer Emmett Teller (BET) surface area was calculated to be 400 m2 g-1. 

This rather modest surface area could be attributed to the large number of ethoxy 

groups decorating the internal pore surface. The pore size distribution was obtained by 
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applying a kernel for carbon materials using quenched solid density functional theory 

(QSDFT) for cylindrical pores on the adsorption branch of the isotherm; it reveals two 

different pore sizes with a fitting error of only 1.3 % (Figure 7.2f). The first pore size, 

attributed to the trigonal pores within the COF structure, has an average size of 1.9 nm, 

which is in excellent agreement with the theoretical pore size of 1.95 nm. The second 

pore was calculated to have an average size of 4.2 nm, which is smaller than the 

expected pore size of 4.9 nm. The decreased surface area as well as the smaller average 

pore size of the hexagonal pores is tentatively attributed to the presence of the ethoxy 

groups at the pore walls.  

The PP linker was found to have a strong absorption spectrum reaching into the visible 

region with distinct absorption features (Figure 7.3a, black). When integrated within the 

COF structure, the spectrum retains all optical features, while the signals broaden and 

red-shift, covering now almost the whole visible absorption spectrum by reaching from 

400 to 700 nm. When the COF is excited with laser light at 455 nm, a distinct 

photoluminescence occurs with a maximum intensity at 800 nm (Figure 7.3b). 

The HOMO-LUMO energy levels of the naked PP linker were determined by differential 

pulse voltammetry (DPV) and compared to those of PCBM (Figure 7.3c). The PP LUMO 

level thereby has an energy of -2.94 eV, which offers a sufficient driving force for excited 

electrons to be transferred to the PCBM LUMO level with its smaller energy of -3.82 eV. 

Also, photo-generated holes have a preferred direction to travel from the PCBM HOMO (-

6.01 eV) to the PP HOMO (-5.29 eV). 
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7.3 Conclusion 

In this study we have developed a push-pull linker molecule for the construction of 

novel covalent organic frameworks, consisting of an electron rich BDT moiety linked to 

two electron-deficient BT units. This push-pull linker was successfully integrated within 

a COF structure by coupling to ETTA molecules through imine formation. The new PP-

ETTA COF was found to adopt a hexagonal symmetry creating a star shaped, dual pore 

system. The crystalline structure could be confirmed via TEM, showing the hexagonal 

arrangement of the mesoporous channels. 

The integration of the PP linker within the PP-ETTA COF through conjugation with the 

ETTA building block shifted its absorbance deep into the visible such that it spreads 

throughout the ultra-violet and almost the complete visible region. This renders the new 

COF a promising candidate as active material in a solar cell device as it efficiently 

harvests light in the region where most of the solar flux occurs. Furthermore, the energy 

levels of the HOMO and LUMO are well-aligned to enable electron transport to the 

commonly used PCBM acceptor phase. 

We anticipate that the development of finely tuned push-pull linkers such as the one 

described here will allow for the construction of covalent organic frameworks with the 

appropriate properties to be used as active materials in ordered BHJ solar cell devices.  
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7.4 Experimental 

Methods 

Unless stated otherwise, all reactions were performed in oven-dried glassware under a 

positive pressure of Ar. Commercial reagents and solvents were used as received. 

Reactions were stirred magnetically and monitored by NMR spectroscopy or analytical 

thin-layer chromatography (TLC) using E. Merck 0.25 mm silica gel 60 F254 pre-coated 

glass plates. TLC plates were visualized by exposure to ultraviolet light (254 nm). Flash 

column chromatography was performed employing silica gel (60 Å, 40–63 µm, Merck).  

The nitrogen sorption isotherms were recorded on a Quantachrome Autosorb 1 at 

77.35 K in a pressure range from p/p0 = 0.001 to 0.98. Prior to the measurement of the 

sorption isotherm the sample was heated for 24 h at 120°C under turbomolecular pump 

vacuum. For the evaluation of the surface area the BET model was applied between 0.05 

and 0.2 p/p0. The calculation of the pore size distribution was done using the QSDFT 

adsorption model with a carbon kernel for cylindrical pores. 

X-ray diffraction (XRD) measurements were performed using a Bruker D8 Discover with 

Ni-filtered Cu Kα radiation and a LynxEye position-sensitive detector. 

Transmission electron microscopy was performed on an FEI Titan 80-300 equipped 

with a field emission gun operated at 300 kV. Scanning electron microscopy (SEM) 

images were recorded with a JEOL 6500F field emission microscope operated at 5 kV 

using a secondary electron detector.  

UV-Vis spectra were recorded using a Perkin-Elmer Lambda 1050 spectrometer 

equipped with a 150 mm integrating sphere. Absorbance spectra of COF thin films were 

corrected for the transmission of the substrate and reflection losses. 
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Photoluminescence (PL) measurements were performed using a home-built setup 

consisting of a Horiba Jobin Yvon iHR 320 monochromator equipped with a 

photomultiplier tube and a liquid N2-cooled InGaAs detector. The samples were 

illuminated with a pulsed (83 Hz) 405 nm LED at a light intensity of 500 mW cm‒2. 

Differential pulse voltammetry (DPV) was measured using 50 μM solutions of PP in 

acetonitrile or a 3:5 mixture of acetonitrile/1,4-dioxane, respectively, with 0.1 M 

tetrabutylammonium hexafluorophosphate as electrolyte and 0.1 mM ferrocene as 

internal reference. Measurements were performed with a Metrohm Autolab 

PGSTAT302N potentiostat, using Pt wires as the working electrode and counter 

electrode and a saturated Ag/AgCl reference electrode (Sigma Aldrich, 0.197 V vs. SHE). 
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Synthesis 

 

 

4,8-Diethoxybenzo[1,2-b:4,5-b`]dithiophene (1) 

A mixture of benzo[1,2-b:4,5-b′]dithiophene-4,8-dione (2.0 g, 4.55 mmol) and Zn dust 

(660 mg, 1.01 mmol) were placed in a 500 mL round bottom flask equipped with a 

magnetic stir bar. EtOH (2 mL) and an aqueous solution of NaOH (20 %, 15 mL) were 

added and the mixture was heated to reflux at 100 °C for 1 h. Ethyl-p-toluenesulfonate 

(3.41 g, 4.00 mL, 17.0 mmol) was added dropwise over 12 min and the reaction mixture 

was stirred at 100 °C for an additional 1 h. After cooling to RT the brown precipitate was 

filtrated and washed with a saturated boiling aqueous solution of Na2S2O5. The residual 

yellow material was dissolved in 50 mL diethyl ether (Et2O), filtrated and the separated 

organic phase was dried over anhydrous MgSO4 (3 g). After filtration, the solvent was 

removed by rotary evaporation and the crude product was purified by column 

chromatography on silica gel with isohexane / ethyl acetate (98:2) to yield (1) as 

colorless crystalline solid (1.05 g, 83 %). M.p.:95-96 °C; IR(ATR) ν [cm-1] = 3101, 2911, 

2873, 1515, 1476, 1436, 1373, 1349, 1200, 1106, 1084, 1031, 979, 874, 811, 7366, 695; 

1H-NMR (CDCl3, 300.06 MHz) δ = 1.49 (t, 3JHH = 7.1 Hz, 6H); 4.38 (m, 4H); 7.37 (d, 

3JHH = 5.6 Hz, 2H); 7.48 (d, 3JHH = 5.6 Hz, 2H). 
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7,7'-(4,8-dipropoxybenzo[1,2-b:4,5-b']dithiophene-2,6-

diyl)bis(benzo[c][1,2,5]thiadiazole-4-carbaldehyde) (PP) 

A solution of pre-dried compound (1) (100 mg, 0.3 mmol) in anhydrous tetrahydrofuran 

(THF) (5 mL) was stirred and cooled to -78 °C (dry ice, acetone) under an argon 

atmosphere. A solution of n-butyllithium in hexane (2.5 M, 0.24 mL, 0.61 mmol) was 

added slowly over 5 min. The reaction mixture was allowed to warm up to room 

temperature and continuously stirred for an additional 1 h. Bu3SnCl (283 mg, 

0.87 mmol) was added to yield (4,8-diethoxybenzo[1,2-b:4,5-b']dithiophene-2,6-

diyl)bis(tributylstannane) (2). 660 mg (0.72 mmol) of compound (2) and 370 mg 

(1.5 mmol) 7-bromo-2,1,3-benzothiadiazole-4-carboxaldehyde were added to a 500 mL 

round bottom flask, equipped with a magnetic stir bar. The reagents were dissolved in 

30 mL dry toluene, 20 mg (0.035 mmol) bis(dibenzylideneacetone)palladium(0) and 

20 mg (0.08 mmol) tri(2-furyl)phosphine were added before heating the reaction 

mixture at 80 °C for 12 h. After the time had elapsed, the mixture was allowed to cool 

down to room temperature. The product was isolated by filtration and purified by 3 

washing steps with 20 mL Et2O to yield 300 mg (0.45 mmol, 0.63 %) (PP). M.p. 121-

127 °C; IR (ATR) ν [cm-1] = 2972, 2928, 2861, 1686, 1535, 1519, 1440, 1374, 1349, 1261, 

1165, 1084, 1043, 1012, 838, 802; HRMS (DEI+) m/z: [M]+ Calc. for C28H18N4O4S4 

602.0216, found 602.0216. 
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For detailed characterization purpose the corresponding dime of PP. 

 

(1E,1'E)-1,1'-((4,8-diethoxybenzo[1,2-b:4,5-b']dithiophene-2,6-

diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(N-hexylmethanimine) (3) 

PP (10 mg, 0.02 mmol) and excess of hexylamine (28 mg, 0.28 mmol) were placed in a 

50 mL round bottom flask and sonicated and stirred in anhydrous THF (1.5 mL) under 

argon atmosphere for 1 h. CDCl3 (0.3 mL) was added and the reaction mixture was 

heated to reflux at 80 °C for 5 h. The stirring was continued overnight and the solvent 

was removed in vacuo to afford (3) as beige solid. IR (ATR) ν [cm-1] = 295, 2925, 2856, 

1632, 1540, 1526, 1491, 1449, 1376, 1351, 1309, 1264, 1170, 1051, 900, 841, 829; 1H-

NMR (CDCl3, 598.97 MHz) δ = 0.91 (m), 1.35 (m), 1.42 (m), 1.61 (t, 3JHH = 7.0 Hz), 1.78 

(quin, 3JHH = 7.2 Hz), 3.76 (t, 3JHH = 7.2 Hz), 4.52 (q, 3JHH = 7.0 Hz), 7.96 (d, 3JHH = 7.2 Hz), 

8.21 (d, 3JHH = 7.2 Hz), 8.73 (s), 9.05 (s); 

PP-ETTA COF 

For the synthesis of PP-ETTA COF, 6.59 mg of compound PP (0.01 mmol, 2 equiv.) and 

1.96 mg of 1,1,2,2-tetrakis(4-aminophenyl)ethene (ETTA) (0.005 mmol, 1 equiv.) were 

added to a Schott tube with pressure-sealing screw cap and dispersed in a solvent 

mixture of benzyl alcohol, mesitylene, and 6 molar acetic acid (10 : 20 : 3,  v : v : v, 

1.1 mL). The tube was placed in an oven at 120 °C for 72 h. After the time had elapsed, 
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the reaction mixture was allowed to cool down to room temperature and the resulting 

powder was then collected by filtration through a Hirsch funnel. After washing the 

product three times with 20 mL dry toluene it was left under dynamic vacuum to come 

to complete dryness. 
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UV-Vis spectroscopy 

Absorption spectrum of PP-ETTA COF was collected from a solid sample in diffuse 

reflectance mode and transferred into absorption spectra by applying the Kubelka Munk 

equation: 

𝐾

𝑆
=

(1 − 𝑅∞)2

2𝑅∞
 

with K = Absorption Coefficient, S = the Scattering Coefficient, R∞ = reflectance of sample 

with infinite thickness.
20
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NMR spectra 
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IR Spectra 
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8. Conclusion 

In this work, a modulation strategy was developed for the growth of highly crystalline 

COFs with large domains and very high porosity. The competition between the bridging 

COF building block and the terminating modulation agent was found to influence the 

dynamic equilibrium during framework formation, slowing down the COF growth and 

supporting the self-healing of crystal defects. Under optimized conditions, the crystal 

domains of the boronate ester-linked COF-5 reached several hundreds of nanometers. 

The pores of the framework were found to be open and fully accessible even without any 

activation procedure, which is reflected by a surface area close to the theoretical 

maximum and a very narrow pore size distribution. 

Compositional analysis via NMR revealed that the COF-5 structure forms over a wide 

range of molecular compositions, from highly diboronic acid-deficient frameworks to 

networks comprising an excess of the linear building block. 

The use of functionalized modulating agents furthermore provides a new strategy for 

functionalizing the outer surface of COF crystallites. These functional groups were found 

to be accessible for the subsequent covalent attachment of molecules or polymers, 

allowing for further modification of the chemical, physical, or electronic properties of 

the COF.  

The combination of an enhanced degree of crystallinity and the option for an outer 

surface post-modification of COF domains might prove beneficial for a range of 

applications, such as gas separation, catalysis, super resolution imaging, and 

optoelectronics. 

In a second project, a new porphyrin- and triphenylene containing COF was developed 

featuring ordered columns of donor and acceptor moieties within its framework. The 
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inherent interdigitated heterojunction of this COF was found to promote charge 

separation upon photoexcitation of either building block. Oriented films of this COF 

were applied in the construction of the first photovoltaic device in which the COF itself 

provides the photoactive junction. The structural precision of COF-based 

heterojunctions presents an opportunity to study charge carrier generation and 

extraction in well-defined model systems. Quantum efficiency measurements in the 

presence of an external collection field show the potential of this novel device concept, 

provided that recombination losses can be minimized. Enhancement of the carrier 

collection yield that might ultimately lead to competitive device efficiencies is expected 

from further improvements in the electron and hole transport properties of these 

materials. 

The development of a novel thienothiophene-porphyrin (TT-Por) COF suggested 

evidence for a preferred stacking behavior of porphyrin-containing COFs. The symmetry 

of the new material was found to not match a simulated eclipsed, but to rather adopt a 

staircase-like stacking arrangement. PXRD data confirmed a splitting of reflections, 

caused by the reduction of symmetry. The new TT-Por COF was found to stabilize 

photoluminescent dynamics, resulting in prolonged lifetimes compared to the starting 

materials or 1P-Por COF. The use of the electron rich porphyrin coupled to the electron 

deficient TT to construct a COF framework facilitates internal charge transfer, which 

allows for a delocalization of electrons throughout the framework and thus a 

stabilization of the excited species. The high structural order of COFs thereby enables a 

unique chance to investigate the occurring processes upon excitation on the nanoscale. 

Additionally, a new strategy was developed to integrate large, light-harvesting linker 

molecules within COF structures. The newly developed linker molecule composed of 4 

thiophenes with an asymmetric attachment of alkyl chains was successfully integrated 
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within a COF structure. These alkyl chains not only tune the solubility such that COF 

formation can be achieved but also offer the possibility of alternating within the COF 

structure and thereby reducing steric repulsion between adjacent layers.  

The new Pyr-4T COF exhibits exceptionally high crystallinity, indicated by the diffraction 

pattern showing sharp high angle reflections with good intensity. The incorporation of 

the 4T monomer within an ordered COF structure broadened the absorption and 

photoluminescence spectra compared to those of the monomer, suggesting conjugation 

between the building blocks. This corresponds to a decrease in the optical bandgap 

energy of 20 %.  

Another strategy to enhance the optical properties of linker molecules and therefore of 

the resulting COF is the use of “push-pull” systems. A new linker molecule was 

developed, consisting of an electron-rich benzodithiophene (BDT) unit linked to two 

electron deficient benzothiadiazole (BT) units. This push-pull (PP) linker was 

successfully integrated within a COF structure by coupling to 1,1,2,2-tetrakis(4-

aminophenyl)ethene (ETTA) molecules. The new PP-ETTA COF was found to adopt a 

hexagonal symmetry creating a dual pore system.  

The integration of the PP linker within the PP-ETTA COF caused a significant shift in the 

optical absorbance, such that it spreads throughout the ultra-violet and almost the 

complete visible region. This renders the new COF an attractive candidate as active 

material in a solar cell device, as it efficiently harvests light in the region where most of 

the solar flux occurs. Furthermore, the energy levels of the HOMO and LUMO of the 

linker molecule are well-aligned to enable electron transport to the commonly used 

PCBM acceptor phase. We believe that the development of finely tuned push-pull linker 

molecules allows for the construction of covalent organic frameworks with favorable 

properties to be used as active material in ordered BHJ solar cell devices.  


