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Abstract

There is a growing interest in the foundations as well as the application of im-
precise probability in contemporary epistemology. This dissertation is concerned
with the application. In particular, the research presented concerns ways in which
imprecise probability, i.e. sets of probability measures, may helpfully address cer-
tain philosophical problems pertaining to rational belief. The issues I consider are
disagreement among epistemic peers, complete ignorance, and inductive reasoning
with imprecise priors. For each of these topics, it is assumed that belief can be
modeled with imprecise probability, and thus there is a non-classical solution to
be given to each problem. I argue that this is the case for peer disagreement and
complete ignorance. However, I discovered that the approach has its shortcomings,
too, specifically in regard to inductive reasoning with imprecise priors. Neverthe-
less, the dissertation ultimately illustrates that imprecise probability as a model of
rational belief has a lot of promise, but one should be aware of its limitations also.
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Chapter 1

Introduction

The present dissertation concerns the use of imprecise probability, or generalized
Bayes, as a formal tool in an attempt at addressing a class of philosophical problems
relating to rational belief. Of course, it would be practically impossible to offer
up anything near a comprehensive study covering every epistemological problem
of interest in contemporary circles. With that said, the following philosophical
questions have been chosen as the main focus of the dissertation.

• How should equally competent peers respond to a disagreement?

• Can a state of complete ignorance be represented probabilistically?

• When is a theory or hypothesis confirmed by evidence if prior opinion is im-

precise?

While the respective chapter devoted to each of these questions may constitute a
stand-alone essay, the dissertation is unified by a recurring application of imprecise
probability for modeling rational belief, thus resulting in a cohesive project.

The formal nature of analysis to be given on each subject matter places the
philosophical work under the heading of formal epistemology, a small yet growing
and lively field in philosophy. Its growth has resulted from an increasing number of
philosophers who regard mathematical theories as invaluable tools for addressing
contemporary philosophical issues, especially in epistemology. The non-standard
attitude is embraced in this collection of essays by focusing particularly on ways a
theory of imprecise probability can or at least attempt to lend a helping hand in the
process of engineering solutions to various epistemic challenges.



2 1. Introduction

1.1 A Brief History of a Formal Epistemology

Formal methods in 20th century analytical philosophy were primarily confined to
the fields of logic, philosophy of language, philosophy of mathematics, philoso-
phy of science(s), and to some extent analytical metaphysics. Epistemology, on the
other hand, proceeded with a fixation on Cartesianism, which resulted in refutations
of skepticism and conceptual accounts of knowledge that were largely influenced
by G.E. Moore (1939). To this day, conceptual analysis remains the dominant
method of epistemology celebrated in almost all Western analytic philosophy de-
partments and typically involves little to no engagement with formal methods.

The closest attempt at developing a formal epistemology arose in mid-20th

century philosophy of science led by Carnap, Hempel, and Popper who put to
use deductive logic and probabilistic methods in studying scientific reasoning (see
Horsten & Douven 2008). While Hempel’s (1945) notable logic of confirmation
relied on a set of deductive principles for assessing the plausibility of scientific
theories and hypotheses, Carnap (1962) focused his attention on an inductive logic
involving logical probability in which the logical relation between a statement and
evidence is the degree to which the evidence (objectively) confirms the statement.1

Looking back, Carnap seemed to be on the right track given the many difficulties
that would soon appear with Hempel’s deductive method.2 What is more, a proba-
bilistic rather than deductive theory of confirmation boldly made an attempt at re-
solving Hume’s (1888) problem of induction, which has worried many for so long.
But despite the program’s boldness, logical probability received little endorsement,
even though it appeared to be in the right arena (see Hájek 2011).

Meanwhile, decision theorists in the post-war era were working on von
Neumann-Morgenstern (1944) expected utility theory together with a subjective
theory of probability developed earlier by Frank Ramsey (1926) and Bruno de
Finetti (1931/1989). This effort ultimately led to what is known as Bayesian De-

cision Theory. The most notable explication was that of Savage’s (1954) in The

Foundations of Statistics. Although statisticians and economists were those mainly
interested in the mature subjective Bayesian method at the time, some philosophers
also had taken notice of its virtues, particularly in providing an inductive logic that
avoids interpretational issues associated with logical probability and the neglect of
prior opinion in a frequentist account of probability (though, not everyone thought

1An earlier development of logical probability is found in Keynes (1921).
2See Crupi (2015) for a general discussion on the problems with Hempelian confirmation.
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the absence of prior opinion was such a bad thing).
Moreover, early endorsement of Bayes appeared in Isaac Levi’s (1961) “De-

cision Theory and Confirmation” where he advanced a skeptical attitude to-
wards there being a non-pragmatic account of “accept/reject” in inductive infer-
ence, which aimed at softening the resistance against subjectivity in the Bayesian
method. A few short years later, a more comprehensive Bayesian view material-
ized in Richard Jeffrey’s (1965) The Logic of Decision that was much inspired by
Ramsey and de Finetti. In it, Jeffrey gave a philosophical theory of Bayesian be-
lief, decision, and induction that has had a long-lasting effect on the subsequent
generations of philosophers of science and decision theorists.

As Levi and Jeffrey continued promoting Bayesianism quite generally for
decades, the mainstream tended specifically toward its application in the logic of
confirmation. In fact, an entire industry devoted to Bayesian confirmation theory
(a topic that will later be picked up in the dissertation) emerged and attracted much
support, but the theory had also faced some tough challenges culminating from crit-
ics like Clark Glymour (1980) and Deborah Mayo (1996).3 Despite the problems
raised against probabilistic confirmation theory, however, the Bayesian method re-
mained alive and well in the philosophy of science and decision theory, but it still
had made relatively little impact on epistemology proper even through the ‘90s,
decades after Jeffrey’s book was published. It was not until the turn of the century
that Bayesianism successfully infiltrated epistemology proper.

At the turning point, much of the inspiration for the movement in the current
century, at least I think, emerged from Luc Bovens and Stephan Hartmann’s (2003)
Bayesian Epistemology. The significance of the book lies in the demonstration of
how Bayesian probability can be successfully employed in the study of epistemo-
logical problems relating to the mainstream interests including coherence (see e.g.
Bonjour 1985), reliability (see e.g. Goldman 1979), and testimony (see e.g. Gra-
ham 1997; Goldman 1999; Lackey 1999; Goldberg 2001). Shortly after its publi-
cation, many had recognized that a formal epistemology—that is, an epistemology
employing formal methods in the broadest sense—could very well be a successful
field of research, and the newly developed interest led to a flood of articles in top
ranking journals tackling new and old problems using formal techniques. (The em-
pirical claim can be verified by searching digital archives.4) Moreover, the field of

3See Norton (2011) for a recent and substantial critical analysis of a Bayesian confirmation
theory.

4To get a sense of how influential Bayes is in philosophy nowadays, the recent philpapers.org
archive returned 1000+ results for a query with an exact phrase match “Bayesian” and dates ranging
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formal epistemology has garnered much support in recent years, and by the looks
of things, it is not going away anytime soon.

1.1.1 Motivation

Skipping ahead now to more recent times and the point where my story begins. I
was brought to Munich by one of the movement’s architects, Stephan Hartmann,
who has guided me every step of the way in completing this dissertation. When
I first arrived in Munich, Stephan suggested early on to undertake a project that
would further the field. The suggestion was quite intimidating at first since I had
come to Munich with a background in traditional epistemology. But at the same
time, I was excited to have the opportunity to learn a different and fascinating way
of doing philosophy in a recently established center specializing in mathematical
and scientific approaches, the Munich Center for Mathematical Philosophy.

Once I got started, the learning of formal methods quickly led to exploration
in research outside of philosophy, which provided new opportunities to attend con-
ferences and engage with academics in other fields such as computer science, eco-
nomics, and statistics. Beforehand, I had very little connection to such fields since
‘skepticism’, ‘infallibilism’, ‘epistemic luck’, and the like attracted very little in-
terest beyond the philosophy seminar room. The lack of interest from researchers
in other fields was neither surprising nor unreasonable provided that such concepts
fail to be well-defined, and some may even think that contemplation might do more
harm than good by hindering scientific progress. However, I quickly discovered
that a lack of interest in mainstream epistemology does not prevent philosophical
inquiry from having a place in other disciplines. It does indeed have a place.

For instance, there are many outside of the philosophy profession who of-
ten admit to the conceptual and practical limitations of modeling, which has led
to theorizing about extensions or new approaches altogether for solving complex
problems. Behavioral economics is an exemplary field, and it became the focus
of my minor study at LMU Munich. Behavioral economists recognized that the
principles of classical decision theory often tend to be violated, so they invented
new empirically-informed theories, e.g. prospect theory, regret theory, reference-
dependent utility, etc. The latter theories are capable of accommodating prefer-
ences under the influence of cognitive biases that ordinary people regularly face.

from 2000 to 2016, while only 338 results were returned for the same exact phrase match but with
dates ranging from 1950 to 1999. Granted, technological advancements may have contributed to
such disparity, but the difference is quite significant regardless.
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While studying some of these theoretical innovations in behavioral economics, a
particular cognitive phenomenon caught my attention and would ultimately influ-
ence my PhD research, namely ambiguity aversion that was pointed out by Daniel
Ellsberg (1961). From a pair of experiments, he concluded that the preferences of
actual decision-makers tend to be inconsistent with Savage’s axioms when facing
ambiguous prospects. Decades later, Gilboa & Schmeidler (1989) developed an ax-
iomatized theory explaining the results of Ellsberg’s experiments through maximin
expected utility and imprecise probabilities.

Before the reader becomes confused by my tangential discussion of behavioral
economic theory, I bring it to attention, especially the part about Ellsberg, mainly
because my early days exploring other fields with a newly cultivated understanding
and appreciation of formal methods in philosophy led me to conclude early on that
formal epistemology would benefit from approaches beyond Bayes. Exposure to
behavioral economics, in particular, provided the realization that a variety of belief
models could and should be deployed under different circumstances, and one that I
found quite attractive for addressing a class of problems was an imprecise probabil-
ity model similar to that described by Gilboa and Schmeidler in their representation
of ambiguity aversion.

Luckily for me, I was not the only one at the Center with an interest in the
framework. Seamus Bradley, Jake Chandler, and Greg Wheeler were working on
philosophical problems relating to imprecise probability such as dilation and se-
quential decision-making while Stephan had previously done some work on im-
precise probability in quantum physics. Needless to say, I had much support in
pursuing the topic. But it became apparent not too long afterward that the idea
of employing imprecise probability in philosophy was not novel. In retrospect, I
was very late to the party since a lot of work had already been done by Isaac Levi
(1974), Richard Jeffrey (1983), Bas van Fraassen (1990), Teddy Seidenfeld and
Larry Wasserman (1993), James Joyce (2005; 2010), Scott Sturgeon (2008), Roger
White (2009), Stephan (2010), Greg (2014), and Seamus (2014) among others.

However, what I noticed to be missing in all of the work done up to that point
were specific applications of imprecise probability to the mainstream problems dis-
cussed in epistemology and philosophy of science. This revelation came as a sur-
prise since orthodox Bayes has been extensively applied by philosophers to epis-
temological problems. Nevertheless, it was an opportune moment for me. Like an
engineer, I had little interest in contributing to the foundations, but instead I aimed
at discovering ways the formal theory might be applied. So I began thinking seri-
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ously about difficult problems in epistemology that might be better addressed using
imprecise probability rather than classical Bayes.

In the spring of 2014, the Center hosted a conference, Imprecise Probabilities

in Statistics and Philosophy, which supplied me with a better understanding of the
foundations and formal structures. However, my ideas on how the theory might
be applied to philosophical problems were still very muddy at that time. On the
traditional side, I was thinking about the problem of peer disagreement in social
epistemology for quite some time, and then the “Ah, ha!” moment came when
I realized that imprecise credences as a way of resolving disagreement made the
most sense from an evidentialist standpoint. The idea was sharpened through many
discussions with Greg and fully developed when we joined together in proposing
an imprecise probability solution to peer disagreement, which has formed the basis
of the third chapter of this dissertation.

The other substantive work making up the remainder of the dissertation seemed
to come more naturally once I got going with the project on peer disagreement.
Having interest in general philosophy of science, and scientific reasoning in partic-
ular, it seemed appropriate for me to look in that direction next. And since Bayesian
confirmation theory still rates highly among the candidate theories in the literature
on scientific inference, I had an opportunity to explore a generalized Bayesian con-
firmation theory with imprecise priors. What was interestingly learned early on
in my research is that many confirmation theories could be constructed upon in-
troducing sets of probabilities. After some helpful discussions and guidance from
Stephan and Branden Fitelson, I went on to detail plausible candidates for a gener-
alized Bayesian confirmation theory, but ultimately I arrived at the conclusion that
each candidate theory suffers from substantive problems, which is discussed fully
in the fifth chapter. Although imprecise probability has much to offer in philosoph-
ical analysis, it appears to have limitations like any other method.

As for the remaining work, a final project targeting the epistemic state of com-
plete ignorance emerged from a discussion I had with John Norton after presenting
an early version of the confirmation paper in 2015. Although showing enthusiasm
for a non-classical Bayesian approach to confirmation at first, he was quick to re-
ject the idea that imprecise probability would provide a suitable inductive logic.
Pointing me towards a collection of his papers, I learned of John’s critical views
on probability as a logic for inductive inference. While I grew sympathetic toward
his criticisms aimed at the orthodox Bayesian method, I was not at all convinced
that imprecise probability could do no better. So I took on some of the challenges
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laid out by him in the series of papers, which led to the fourth chapter on complete
ignorance. I am grateful for John pushing me in such a direction since in the end, I
arrived at a view of ignorance that, at least in my mind, is the most compelling and
no better represented by any model other than imprecise probability.

In summary, the described sequence is essentially how the present dissertation
had come about, and I am indebted to those mentioned for helping me to develop
the project and discover new and interesting things.

1.2 Outline of the Intended Project

With the background and motivation for the dissertation out of the way, let us turn
now to the particular details of the research project. There are three philosophical
topics of special interest: peer disagreement, complete ignorance, and confirma-

tion. The first is considered a “newer” topic in epistemology while the latter two
are old hat. What each has in common is a classical Bayesian solution. However, I
recognize and hope to convince the reader that each epistemological problem might
also be described, in some situations, in the language of imprecise probability when
a belief or credence is imprecise. Here is what the reader has to look forward to in
the subsequent chapters of the dissertation.

• The question of how epistemic peers—individuals who are equally competent
and share the same information—should respond to a disagreement has recently
invited equal weight (Christensen 2007; Elga 2007) and steadfast (Kelly 2011)
responses. To simplify the problem, suppose that epistemic peers, 1 and 2, disagree
about a proposition A such that p1(A) 6= p2(A) where p1 and p2 are probability
measures representing 1 and 2’s credences or beliefs, respectively. What is the
rational reaction to their disagreement? An equal weight view seemingly suggests
that 1 and 2 both should adopt a middle ground, p∗(A) = 1

2
p1(A) + 1

2
p2(A).

Alternatively, a steadfast view demands, at least in some instances, that each peer
stands their ground such that p∗1(A) = p1(A) and p∗2(A) = p2(A).

In Chapter 3, both of the proposed views are challenged. Against an equal
weight view, an argument from sure loss (in expectation) is given for when two
or more disputes are held over propositions that are epistemically irrelevant to one
another. A novel view is then detailed, which introduces set-based credences mod-
eled by imprecise probability. Simply put, the common ground recommended by
this account is the full set of peer opinions, P, that induces lower and upper prob-
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abilities. This alternative approach generates a strong argument against a steadfast
view. It is based on an aversion to the risk of regret and exploits the fact that oppos-
ing opinions signal that each peer may have miscalculated the appropriate buying
and selling rates for a gamble on the disputed proposition(s). Towards the end of
the chapter, a qualitative account is given in which agreement, disagreement, or
indeterminacy among the group opinions can similarly be modeled.

• It has become clear that Bayesians are troubled by the epistemic state of complete
ignorance, which has been sufficiently demonstrated in a series of papers by John
Norton (2007a; 2007b; 2008; 2010). In particular, Norton points out that a theory
of additive measures representing belief and disbelief fails to satisfy a desirable
duality principle relating to ignorance. The failure to satisfy the duality principle is
what prevents a representation of the epistemic state in Bayesian epistemology.

The technical idea is that if p is interpreted as a belief measure and its dual M
a disbelief measure, then belief and disbelief should be interchangeable in a sim-
ilar vein as True and the dual False are interchangeable in Boolean algebra. But
this is not the case, for the dual M does not obey the same axioms constraining p
unlike how the dual of True does obey the axioms of Boolean logic. This technical
flaw together with the additivity property of the measures is where the problem be-
gins as they entail that an increase in belief entails a decrease in disbelief and vice

versa. Additivity ultimately excludes ignorance such that either belief or disbelief
in a proposition is had. After laying out concrete examples illustrating the conse-
quences of additivity, Norton goes on to say that a generalized Bayes model does
not do any better. Admitting that there are self-dual sets of probability measures,
he points out that it remains unclear which set represents the state of complete
ignorance and further claims that such representation is unintuitive.

In Chapter 4, I find myself in agreement about Bayes’ failure. However, I dis-
agree that imprecise probability suffers the same fate. I suggest that the epistemic
state is best captured by a vacuous prior, {0, 1}, for such representation expresses
no opinion at all. Next, I demonstrate that the set of measures is self-dual. Actually,
it is a lower probability P = 0 yielding duality given that it automatically defines an
upper probability P = 1 through conjugacy, relative to contingent propositions A
and ¬A. For any contingent propositions A and ¬A, a lower probability 0 associ-
ated with both propositions trivially induces vacuous priors. Afterward, I illustrate
that imprecise probability is an extension of an inductive logic that Norton envis-
ages followed by an interpretation of the representation that is seemingly intuitive.
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In the end, I respond to the challenge of updating vacuous priors and propose an al-
ternative method of credal set replacement that circumvents the inductive learning
problem or belief inertia.

• In the study of confirmation, Bayes has been placed at center stage and reigns
supreme in the philosophy of science. With an ability to simply capture the con-
firmation relation between hypotheses/theories and evidence, and an ability to ac-
commodate surprising new evidence, there is no mystery for why Bayesian confir-
mation theory has had much influence on philosophers of science. The final chapter
explores an extension of the theory that addresses situations in which prior judg-
ment regarding a scientific theory or hypothesis is imprecise as a result of limited
or unspecific background information. Introducing imprecise priors to the game,
however, radically changes our understanding of confirmation from what Bayesians
have become so acquainted with. Confirmational relations are no longer based on
a comparison of a single posterior probability and prior probability as they are in
ordinal Bayesian confirmation theory. So what are the relations based on, then?

In Chapter 5, I give four possible answers. First, a theory or hypothesis H
is confirmed by evidence E if every conditional probability in a set P(H|E) is
larger than every corresponding unconditional probability in the set P(H). This
view is referred to as extremity, which yields something like a supervaluationist
theory of confirmation. Second, H is confirmed by E upon an individual’s lower
and upper conditional previsions exceeding the corresponding unconditional pre-
visions. This view gives confirmation a behavioralist reading and is referred to
as previsions-based confirmation. Third, a more complex theory may be needed,
for the previsions theory leaves out alternate possibilities like an increase in upper
probability and a decrease in lower probability, i.e. dilation. An all-encompassing
theory of confirmational sensitivity accounts for each possible outcome in lower
and upper probability. Finally, one might choose instead an absolute theory of
confirmation to prevent confirmational relations obtaining when “belief intervals”
overlap, e.g. P(H) = [0.4, 0.5] and P(H ′) = [0.45, 0.55]. A theory or hypothesis
H is confirmed by E just in case P(H|E) interval-dominates P(H ′|E) for all H ′.

I go on to discuss the details of each candidate for a confirmation theory with
imprecise probabilities, but ultimately I arrive at the conclusion that they all suf-
fer from substantive problems, which generates a skeptical outlook as to whether
a plausible confirmation theory with imprecise probabilities is at all possible. Al-
though the classical model (or special case in imprecise probability) is fairly simple
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and intuitive, we learn that a non-singleton set of probability measures creates quite
some difficulty in defining confirmation.



Chapter 2

Subjective Probability: The Bayesian
Paradigm

Before turning to the analyses outlined in the first chapter, it will be helpful for
the reader to have some background (or review) in Bayesian probability since the
dissertation will revolve around a formal account of belief grounded in the subjec-
tive Bayesian tradition. This chapter will serve a purpose throughout, especially
in thinking about how the orthodox model compares to a non-classical, imprecise
probability model that is of primary interest. So let me take the time now to re-
hearse the probabilistic approach often adopted in formal epistemology.

The story begins with a subjective interpretation of probability due to Ramsey
(1926) and de Finetti (1931/1989), which has given rise to a formalized image of
belief and rationality that so many are now familiar with, especially in the domains
of computer science, decision and game theory, philosophy, and statistics. In sim-
ple terms, subjective probability is a theory of “orderly opinion” (Edwards, Lind-
man, & Savage 1963) in which (prior) belief formation and inference are governed
mathematically by a set of axioms and rule(s) for conditional reasoning, respec-
tively. This particular theory of probability has led to what is now widely known
as Bayesian epistemology.

Those unfamiliar with this tradition might wonder what probabilities and be-
liefs have to do with one another. On the de Finetti-Ramsey view, probabilities
are reflections of a rational individual’s beliefs, or more specifically, grades of cre-
dence invested in a set of events or propositions.1 We must be clear, though, that

1I loosely switch between terms ‘belief’ and ‘credence’ throughout. While some may consider
the oscillation to be confusing since the term ‘belief’ is typically reserved for an all-or-nothing
epistemic attitude, I make no distinction here and do not wish to engage in the debate between full
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credences need not be probabilities, for one can believe however they wish. But
if credences are probabilities, those credences are considered to be optimal or ra-
tional. Starting with the assumption, then, that probabilities are rational credences,
credences that are not probabilities must ultimately suffer from some defect. Cre-
dences are said to be defective if they violate at least one of the axioms of (finite)
mathematical probability, hence the relation between rational credence and proba-
bility. To make the picture precise, we are in need of some basic notation.

Let F be an algebra over a finite set of worlds W = {w1, w2, ..., wn} closed
under complementation, union, and intersection. A function p fromF into the reals
of the unit interval [0,1], i.e. p : F → [0, 1], is a probability measure satisfying:

• p(W ) = 1;

• p(A) ≥ 0 for all A ∈ F ;

• p(A ∪B) = p(A) + p(B) for all A,B ∈ F if A ∩B = �.

The first of these axioms states that W should be assigned maximum probability
supposing that one of the worlds in W is the actual world. The second states
that the value assigned to any element in F is non-negative. The first and second
axioms then entail that p(A) ∈ [0, 1] for all A ∈ F since no set in F is assigned
a negative value and no set is more probable than W . The third, and a bit more
controversial, is an additivity axiom (finite additivity axiom, to be precise). It states
that the probability of the actual world being either in A or in B is the sum of
their individual probabilities. The axiom should seem acceptable, though, since
the union of any two sets is at least as probable as one of the sets individually.
For instance, if A and B are disjoint and exhaustive, then A ∪ B = W and thus
p(A) ≤ p(A ∪B) and p(B) ≤ p(A ∪B).

The basic axioms above give rise to some useful mathematical consequences
that one should keep in mind. They include:

• p(A ∩B) ≤ p(A) for all A,B ∈ F ;

• p(A) = p(B) if A = B, for all A,B ∈ F ;

• p(A) = 1− p(A).

Opposite of union, the probability of intersecting sets, A and B, is no greater than
the probability of either individual set. This is quite intuitive, logically speaking.

and partial beliefs. The reader may assume that ‘belief’ means the same thing as ‘credence’ or
‘degree of belief’ unless otherwise noted.
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If ϕ ∧ ψ is true, then ϕ is guaranteed to be true. Provided that ϕ is a deductive
consequence of ϕ ∧ ψ, ϕ must be at least as likely to be true as the sentence ϕ ∧ ψ
entailing it. That is the idea expressed in the first consequence (but in set-theoretic
terms). The second consequence straightforwardly says that equivalent sets should
be treated the same and thus given the same probability. Finally, the last conse-
quence defines the probability of complementary sets where A = W\A is the set
of worlds not in A, and its probability, 1− p(A), is implied by the basic axioms.

The elementary details of mathematical probability suffice for providing us
with machinery from which a formal theory of rational credence may be con-
structed. In our formal theory, we will say that the measure p represents an in-
dividual’s belief or credal state that is relativized to a finite structure, (W , F).2

Within the canonical language of subjective probability, an individual has beliefs
or credences toward events, i.e. elements of F , and a set of events typically under
consideration is a partition Θ of W . Accordingly, if A ∈ Θ, then an individual is
opinionated with respect to A, i.e. p(A). Keep in mind that a partition is dependent
on W , which we will assume to be finite throughout for the sake of ease.

While the axioms of finitely additive probability and their consequences pur-
portedly provide rationality constraints on credences, they only tell one how their
credences should be at a fixed time. But of course, an individual will often learn
new information in a dynamic world. To accommodate learning, many adopt a di-
achronic updating rule of conditionalization. First, one employs Thomas Bayes’
(1764) celebrated rule (hence the name ‘Bayesian’)

p(A|B) =
p(B|A) p(A)

p(B)
(2.1)

for determining the conditional probability of A given B for some A, B ∈ F
where p(B) > 0, followed by the individual adopting a new level of credence
p′(A) = p(A|B). The procedure is continued upon learning the results of subse-
quent experiments until it turns out that p′(A) = 1 or p′(A) = 0.

In a nutshell, that is the Bayesian theory of credence in its most basic form.
What constitutes a theory of Bayesian credence is considerably broad these days
given that ‘Bayesian’ has become an umbrella term for probabilistic theories of
credence in general. Over many decades, a variety of interpretations and rationality
constraints have been imposed on Bayesian epistemologies.

2In case the context is clear, I will omit reference to the structure (W , F) when talking about an
individual’s credences determined by p.
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Regarding interpretation, the logical view from earlier was a featured contender
for representing rational credence, but the program faced difficulty as noted in the
introduction. The objective attempt, contra the view to be sketched and endorsed
later, had received a liking, but in a different fashion by Jaynes (1957), Rosenkrantz
(1977), and Williamson (2010) where they invoked objective criteria for rational
credence to evade equating rational credence with pure opinion that has tended to
be the Achilles heel of subjective Bayesianism. Despite an attempt to find a middle
ground between Bayesians and frequentists, however, objectivists also receive a fair
amount of criticism just the same as subjectivists. Still, to this day, there remain
tensions between these two camps of Bayesians.

As for rationality constraints imposed on credences (objective or evidential),
the most notable include the principle of indifference (Keynes 1921) or MAXENT

(Jaynes 1957), principal principle (Lewis 1986) or calibration (Williamson 2010),
and the reflection principle (van Fraassen 1984), just to name a few. Each princi-
ple is an advisement stating what an individual’s credences should look like when
the individual is either in a state of ignorance (indifference and maxent) or pos-
sesses statistical information about physical phenomena (principal principle and
calibration) or thinking about their future mental state (reflection). Depending on
the author, there are different ways of justifying each principle, and the various
justifications have been subjected to scrutiny in the philosophical literature.

Moreover, the belief updating rule that depends on a theorem derived by the
person who the theory is named seems to be the only uncontroversial feature of
the theory. But it turns out that conditionalization has not gone unchallenged. As
an alternative to conditionalization, for example, probability kinematics or Jeffrey
conditioning (Jeffrey 1965) was proposed in order to overcome the unrealistic as-
sumption of an individual having credence one in an evidential statement through
simple conditional probability. Minimizing Kullback-Leibler divergence between
prior and posterior probability distributions has been proposed for valid reasoning
with uncertain premises (Hartmann & Eva, ms.). And as the reader will learn later,
a generalized belief updating method of credal set replacement is given. So we see
that conditionalization might not be a pillar of the theory after all.

I leave it to the reader, however, to explore the discussed controversies sur-
rounding “Bayesian” theories of belief as a comprehensive survey on Bayesianism
is beyond the scope of the current project.
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2.1 Pragmatic Justification of Probabilism

So far, I have maintained without justification that the axioms of finite probabil-
ity (and their consequences) along with conditionalization are the core Bayesian
rationality constraints on credences. But for what reason should one think that cre-
dences need to be constrained in such ways? Simply because an artificial system
happens to nicely describe an individual believing to some degree that a partic-
ular event will occur? No. Subjective Bayesians have a much more compelling
justification for the probabilistic view of credence.

The long-standing tradition has been to defend the view by illustrating that an
individual’s credences regarding a set of events should obey the axioms of prob-
ability and be updated via conditionalization or else the individual ought to be
willing to face a synchronic and/or diachronic Dutch book (de Finetti (1974); see
Teller (1973) for a diachronic Dutch book argument). What this means is that a
clever party would be in a good position to take advantage of the individual (prior
to and/or after learning new information) by using a system of bets on the relevant
events, which the individual considers to be fair, but ensures a monetary loss come
what may. Accepting a set of sure-loss bets is clearly irrational. The argument
concludes with a recommendation that one should form probabilistically coherent
credences and update them by means of conditionalization in order to avoid being
booked in a sure loss.

The pragmatic justification of what some refer to as probabilism—rational cre-
dences are probabilities—nicely unifies behavioral dispositions with an individ-
ual’s epistemic attitudes. In addition, the justification yields a method of practical
value, namely a way to determine what an individual believes and predict how they
might behave. Specifically, we can learn about an individual’s credences regarding
a partition Θ = {A,A}, for example, through their previsions for a special type
of gamble on the events (or learn about an individual’s committed previsions for
special gambles through their credences). To see this, let us introduce an indicator
IX(w) on a subset X ⊆ W that takes a world w ∈ W as its argument and returns
1 if w ∈ X and 0 otherwise. We will let IX denote a special gamble that pays $1 if
the event X obtains and $0 otherwise. With respect to Θ, an individual is expected
to announce fair prices, x and y, their previsions, for gambles IA and IA.

In the de Finetti-Ramsey tradition, an individual’s prevision or fair price for
the gamble IA is two-sided, meaning that they would be willing to take either side
of the gamble at a price x. To illustrate, suppose that an individual is willing to pay
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a maximum of $.50 for the gamble IA. Accordingly, they should also be willing to
sell the gamble to another for as low as $.50—that is what it means to take the other
side. If the individual avoids a Dutch book, then their fair price for IA is $.50 as this
is implied by the infimum selling price of IA. Now, what are we able to infer from
the stated prices? Knowing the individual’s fair prices, we infer that their credence
in A is 1/2 and likewise for A. As we observe at this moment, the individual’s
epistemic state is coherent, and more importantly we have demonstrated that the
epistemic state is determinable through the individual’s behavioral dispositions:
what they are disposed to risk on uncertain events.

The previsions game just described is the subjective Bayesian’s belief elici-

tation method. Using this approach, we may learn whether or not an individual is
rational in what they believe by how they are disposed to act, which leads us toward
an operational epistemology. The method makes clear why the study of epistemic
and practical rationality is a worthy endeavor, for an operationalized epistemology
illuminates the role of belief in ordinary and scientific reasoning among value-

driven human agents, namely serving as an instrument in the process of fulfilling
practical goals. But not everyone agrees that the epistemic and the practical need
to be so closely tied as we will see next.

2.2 A Non-Pragmatic Justification of Probabilism

Pragmatism is not the only road one can take in justifying probabilism. Since
Joyce’s (1998) seminal paper “A Nonpragmatic Vindication of Probabilism,” there
has been much thought given to the value of belief states independent of their role
in practical reasoning. Specifically, the accuracy of belief has long been regarded
as epistemically valuable since James (1896) forcefully demanded that we “believe
truth!” A recent revival and lure towards veritism, or avoidance of inaccuracy in
belief, has birthed a lively field of accuracy-first epistemology. Although my pre-
ferred justification for probabilism is the pragmatic one (as it will be made clear
throughout), it is worth discussing the accuracy-based Bayesian movement pro-
vided its relative merits, in addition to it being a fascinating project overall.3

Accuracy-first epistemology draws heavily from decision theory, invoking
measures of (epistemic) utility and dominance principles, which is why it has also

3See e.g. Joyce (1998), Greaves & Wallace (2006), Leitgeb & Pettigrew (2010a,b), Moss (2011),
Pettigrew (2012), Easwaran & Fitelson (2015), Levinstein (2015), Pettigrew (2016), and Konek
(forthcoming).
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earned the title epistemic decision theory. Following Pettigrew’s (2013) approach,
there are a number of steps involved in vindicating probabilism in a non-pragmatic
fashion. The first step is to accept that credences do indeed have epistemic value,
and their accuracy is but one property making them valuable. I will not go through
the arguments that attempt to support this assumption as it is highly contentious
and would require more work than I can provide here, but since it is key to getting
the project off the ground, we will take it for granted.

Next, the formal steps come. The first is to identify the ‘vindicated’ credence
function for each world w ∈ W . We define the vindicated credence function at a
world w as follows

vw(A) =

1 if w ∈ A;

0 otherwise.

An individual is awarded maximal epistemic value for having credence 1 in A

when w ∈ A or credence 0 in A when w /∈ A. The individual receives maximal
epistemic disvalue if the reverse. What is taken to be epistemically valuable is
an accurate belief, and one can see that an individual’s belief is perfectly accurate
when they have maximal credence in the event that obtains relative to a world w
and perfectly inaccurate when they have maximal credence in the event that does
not obtain relative to w.

On the assumption that credences vary by degree between 0 to 1, the next step
involves constructing a distance measure that captures the proximity of a credence
function from the vindicated or ideal credence function, which will ultimately get
us closer to a proper scoring rule for credence functions. Let us define the following
distance measure:

d(vw, c) =
∑
A∈Θ

| vw(A)− c(A) |2 .

(To reiterate, we will only be concerned with finite sets of events, and this allows
the distance measure to be well-defined.)

As Pettigrew states, once we put the above two formal steps together with the
thesis that the epistemic utility of a credence function at a world is its proximity to
the vindicated credence function at that world (pg. 900), we end up with a variant
of the Brier score
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B(c, w) = 1− d(vw, c) = 1−
∑
A∈Θ

| vw(A)− c(A) |2

that was originally proposed by Glenn Brier (1950) and is well-known for its use
in scoring weather forecasts. For our purposes, the presented version of the Brier
score is a proper scoring rule that provides us with a measure of epistemic value.

The final step involves tying in components of decision theory where talk of
epistemic value is replaced by talk of epistemic utility, and we introduce a utility
function U : O → R that maps options from a set O into the reals. Next, we state
a general dominance principle:

DOMINANCE: For some options, o, o′ ∈ O, o is strongly dominated by o′ rela-
tive to U if

• U(o′, w) > U(o, w) for all worlds w ∈ W ,

OR o is weakly dominated by o′ if

• U(o′, w) ≥ U(o, w) for all w ∈ W ,

• U(o′, w) > U(o, w) for at least one w ∈ W .

If o is dominated by o′ and there is no o′′ that dominates o′, then o is said to be an
irrational option for an individual with utility function U .

Now, let us think of the set of options as a set of credence functions, C, available
for one to choose from, relative to some finite structure (W,F), and the measure
of epistemic utility as B replacing U . Then, one can prove that for any credence
function c ∈ C, if c violates the axioms of finite probability, then there is a credence
function c′ satisfying the axioms and c′ strongly Brier-dominates c. And if the
credence function c does satisfy the axioms, then there is no credence function c′

that weakly Brier-dominates c (Pettigrew 2014).
Another way to put it, a credence function that is a probability measure is

strictly less inaccurate than a credence function that is not. Let I be a measure
of inaccuracy such that I(c, w) = 1 − B(c, w). The inaccuracy score has a ceil-
ing of 1 (maximum inaccuracy) and a floor of 0 (minimum inaccuracy) where,
like in golf, the lower the score the better. If c′ is a probability measure and c

is not, then accordingly B(c′, w) > B(c, w) for all w ∈ W , which entails that
I(c′, w) < I(c, w) for all w ∈ W . Furthermore, there is no credence function c′′

such B(c′′, w) > B(c′, w) for some world w ∈ W . So c′ is strictly less inaccurate
than c. According to I, any credence function c that is not a probability measure is
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strictly worse in terms of epistemic utility than a credence function c′ that is a prob-
ability measure, and thus c is irrational. These arguments suffice for establishing
probabilism without appeal to the practical interests of an individual.4

In summary, there are at least two ways to justify a probabilistic account of ra-
tional credence. The justifications differ with each relying on contentious assump-
tions. On the pragmatic view, some worry that rational credence without further
constraints is pure opinion based only on avoiding a sure loss. In the context of
scientific reasoning, such view has not been entirely welcomed given a clash with
the objective character of inquiry demanded within scientific methodology. While
some who think practical values are indispensable from science may concede to a
pragmatic view of belief, they are still likely to claim that pragmatic Bayesianism
is insufficient without further rationality constraints imposed. As for the accuracy
approach, a fetish toward truth makes for a more compelling story in selling a prob-
abilistic view of rational credence, especially for those who think pragmatic Bayes-
ianism’s only place is in a gambling parlor. But the accuracy view faces a difficult
conceptual challenge, namely justifying epistemic utility. From psychological and
sociological viewpoints, it is difficult to see how any ordinary individual can sep-
arate practical interests and societal influences from human reasoning. Thus, it is
unclear whether epistemic utility really exists or is a seductive fiction.

Regardless of the chosen justification, neither attempt is perfect. I do not wish
to enter the debate in this project, just merely point out some issues already known
to many. As I mentioned earlier, my preference is for the pragmatic view. While
I do not give any meaningful defense beyond what has already be discussed, the
reader may ultimately see some of its advantages in the chapters to come. With that
said, we turn now to rational credences in less-than-optimal evidential situations.

2.3 Imprecision in Belief

Although orthodox Bayesianism has enjoyed much attention in addition to boast-
ing a number of success stories scientifically and technologically, its inadequacy
in certain situations has been brought to attention, which prevents it from serv-
ing as an all-encompassing formal method for modeling credences and admissible
choices. The most illuminating instances of failure are those involving “Knightian

4While I have only described an epistemic utility-based justification for the basic probability
axioms, others have proved that conditionalization, too, increases epistemic utility. See Greaves &
Wallace (2006).
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Red Black Y ellow

Bet I $100 $0 $0

Bet II $0 $100 $0

Red Black Y ellow

Bet III $100 $0 $100

Bet IV $0 $100 $100

Table 2.1: Ellsberg Experiment: Three-Color

Uncertainty” or unmeasurable ‘risk’ (Knight 1921).5

In common parlance of the present day, some might call Knightian uncertainty
ambiguity. Either way, one should quickly notice that ambiguity is not a property
that can be modeled with precise Bayesian probabilities, for any classical (subjec-
tivist) assessment of ambiguity will ultimately return known risks, but the Bayes-
ian clearly has missed the aim of the exercise at that point. However, one might
insist, like Savage did, that Knightian uncertainty or ambiguity may be manifested
at times, but imprecise or vague probabilities have no role in a theory of rational
choice. Followers of this line have a difficult time arguing the point, though, given
particular empirical findings such as those found by Allais and Ellsberg.

Consider the two sets of bets in Table 2.1. Here is the relevant information you
are given. There are 90 balls total in an urn. Of the 90, 30 of them are red and the
remaining 60 are either black or yellow. The urn is well-mixed and you are offered
bets on blindly drawing a ball of a specific color from the urn. In Bet I, you receive
a $100 reward if you draw a red ball and $0 otherwise. In Bet II, you receive a $100

reward if you draw a black ball and $0 otherwise. In Bet III, you receive a $100

reward if you draw either a red or yellow ball and $0 if the ball drawn is black. In
Bet IV, you receive a $100 reward if you draw a black or yellow ball and $0 if the
ball drawn is red. There are two decision problems presented: the first consists in
choosing between bets I and II and the second consists in choosing between bets
III and IV. For the first problem, which bet do you prefer, or are you indifferent?
For the second, which bet do you prefer, or are you indifferent?

Daniel Ellsberg (1961) developed the above test and surveyed his fellow deci-
sion theorists on the pair of problems. He reported the following: most surveyed
had a preference for I to II, but in the second problem, most preferred IV to III.
Interestingly, the reported preferences are inconsistent. This can be seen by decom-
posing the preference orderings. If I is (strictly) preferred to II, then the decision
maker must consider a red ball being drawn more probable than a black ball being

5Frank Knight called for a distinction between risk and uncertainty where the former is a mea-
surable quantity, or risk proper, while the latter he claimed is not able to be measured.
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drawn. Yellow is irrelevant. In the second problem, the option of red or yellow
should be strongly preferred to the option of black or yellow provided that red is
considered to be more probable than black in the first problem, but this is not what
has been observed. One conclusion we may draw from Ellsberg’s experiment is
that Bayes cannot always explain the preferences of real-world decision makers.6

Let us consider one more instance. You are given the following choices:

O1 :
{

1.0 ∗ $1, 000, 000; O2 :


0.1 ∗ $5, 000, 000;

0.89 ∗ $1, 000, 000;

0.01 ∗ $0;

and then another two choices,

O3 :

 0.1 ∗ $5, 000, 000;

0.9 ∗ $0;
O4 :

 0.11 ∗ $1, 000, 000;

0.89 ∗ $0.

The test presented generates the so-called Allais paradox (Allais 1990). In the first
problem, most subjects have reported a preference for O1 to O2, but in the second,
most prefer O3 to O4. Given the reported preferences, it is clear that they are, in
total, inconsistent with the expected utility hypothesis. But the preferences reveal
another inconsistency, particularly in appetite for risk. The common preference of
O1 to O2 is risk averse based on opting for a sure thing instead of an option with
a higher expected reward, but a small probability of receiving nothing, while the
common preference of O3 to O4 is risk seeking, for the probability of receiving
nothing is greater in option 3. Since expected utility theory usually presumes risk
neutrality, it does not account for the changes in an individual’s risk attitudes. But
these results indicate that risk is indeed a relevant factor, and so Bayesian decision
theory comes up short once again.

Despite the empirical findings of Allais and Ellsberg pertaining to the psychol-
ogy of decision makers that cast doubt on Bayesian decision theory, proponents of

6Ellsberg’s experiment is not what many would consider as a scientific experiment. However, the
effect of pairing known risks with ambiguous prospects, i.e. ambiguity aversion, has been observed
in other empirical work. See Camerer & Weber (1992) who provide psychological evidence for the
phenomenon.
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Bayesianism might suggest that normative theories of credence are in focus rather
than descriptive. However, economists have a tough time persuading firms, policy-
makers, and even peers that the field of economics is a normative enterprise, espe-
cially since textbook definitions emphasize the descriptive character of the social
science. Philosophers, on the other hand, have more leniency in regard to this
matter. Since much of philosophy is centered on normative issues, the response is
welcomed based on an ideal theory of credence and decision being delivered. But
a shift toward normativity does not safeguard Bayesians, for some have notably
disputed the optimality of Bayes.

One example is Isaac Levi (1974) who proposed that credences should be mod-
eled with sets of probability measures instead of a single, point-valued probability
measure. Of course, Levi was not the first to have such an idea, and he cites pre-
ceding proposals by I.J. Good (1952), C.A.B. Smith (1961), and Arthur Dempster
(1967) to be similar to his own position he calls revisionism. But unlike the “inter-
valists” (Dempster, Good, and Smith), Levi claims that his view differs primarily
with the introduction of S-admissibility—a decision rule that permits choosing an
option O if and only if the minimum utility for possible outcomes w of O is max-
imum with respect to all options O′ that maximize expected utility according to at
least one credence function in an individual’s set of credence functions (Levi 1974,
411). At first, one may judge Levi’s view to be quite a distinct departure from
orthodoxy, but the belief model and decision rule are consistent with the classical
theory when a set of credence functions is a singleton, risk-averse otherwise.

After Levi made such a radical proposal, Bayesians not only were divided into
objectivist and subjectivist camps, but they became divided on precision and impre-
cision. The precisionists did not seem to be impressed by his proposal, however,
and one reason I suspect for why they were not moved is because Levi’s initial
work on the subject lacked a compelling justification for the epistemic rationality
of credal sets. For those with an interest in inductive reasoning in science and the
epistemic justification of credal attitudes, Levi’s analysis left a gap to be filled and
“obscure[d] the fact Bayesianism is...an epistemology” (Joyce 2005, 153), not just
a theory of rational choice. Joyce, however, made an attempt at filling the gap
through arguments in support of imprecise probabilities that rely on correctness in
epistemic reaction, which I will briefly turn to.

The key for making imprecise probability an essential tool in the toolbox of
methods is to illuminate the distinction between characteristics of evidence. In
particular, evidence distinctively varies in balance and what Keynes (1921) called



2.3 Imprecision in Belief 23

weight. The former refers to how decisively data stands in favor or against some
event. The latter refers to how much data is given. While balance and weight may
already be familiar properties, there is yet another salient property of evidence,
namely specificity, which is often overlooked. Information, for example, might be
fully specific or unspecific. The Ellsberg example illustrates both. On one hand, the
individual is supplied with fully specific statistical information about the chance of
drawing a red ball from the urn. On the other hand, the individual has highly un-
specific information about the chance of drawing a black ball or a yellow ball.7 We
thus see that specificity of information may vary, and it is this particular dimension
of evidence that does quite a bit of work in motivating imprecise probabilities.

To eliminate confusion induced by mixing precise and imprecise information
à la Ellsberg, consider a simpler exercise.

BLACK & GREY COINS: A large number of coins have been painted black on one

side and grey on the other. They are placed in an urn that is mixed well. The coins

were made by a machine that may produce any bias β where β ∈ (0, 1). You have

no information about the proportion of coins of various biases that appear in the

urn. How confident should you be that a coin drawn at random will come up black

if tossed? (Joyce 2010, 283)

It does not seem at all correct to respond in an orthodox fashion for the reason
that the unspecific information is consistent with a whole lot of unique, precise
probability distributions. So one must tread carefully here in foregoing the pain of
irrationality. The least risky option—risky in the sense of excluding a supported
opinion—is to take the total set of probability distributions consistent with the ev-
idence as one’s credence regarding the matter.8 While the reader may not be fully
convinced yet that variation in specificity supplies a sufficient reason for consider-
ing the use of imprecise probability theory in modeling rational credences, the goal
is to make the case in the subsequent chapters that draws on particular situations.

One final remark in regard to the formalism of imprecise probability. The
reader may be curious as to why the mathematical notation of imprecise probability
is not laid out in this section. The reason is that there is no one theory of imprecise
probability. The term extends to a broad class of models with different properties,

7Joyce runs his own Ellsberg-style example to push the point. See pg. 168 in his (2005).
8One may see the risk as a kind of ‘inductive risk’ (Hempel 1965; Douglas 2000), but with

respect to accepting or rejecting sharp credal attitudes modeled by probabilities rather than theories
or hypotheses. Ruling out or rejecting a probability estimate from one’s credal state runs the risk of
error. What exactly the risk is relativized to remains open.
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some subtle but crucially important. Furthermore, their interpretations vary also,
but there is a parallel account inspired by the pragmatic tradition as the reader
will become intimately familiar with throughout the dissertation. Scoring rules,
however, are much more controversial and appear to have little hope given a no-
go result by Seidenfeld, Schervish, and Kadane (2012) showing that there is no
proper scoring rule for imprecise probabilities. But as I am most lured toward the
pragmatic view, the outcome is not a disappointment. As I tend to hover around a
particular style throughout, differences are noted when appropriate and the chosen
framework for each philosophical problem is explicated. With that said, we are
now ready to move forward.



Chapter 3

Ambiguity Induced by Peer
Disagreements

You and a colleague believe differently about the proposition that it will rain in
London tomorrow. You are optimistic, i.e. you assign a probability greater than 1/2

to the proposition, while your colleague is pessimistic, i.e. they assign a probability
less than 1/2 to the proposition. Neither you nor they are able to claim an epistemic
advantage on the matter. You both have the same evidence, the same level of ex-
pertise, and the same cognitive skill. Needless to say, you are epistemic peers. You
and your colleague thus find yourselves in a peer disagreement.1

The issue of peer disagreement has received much attention in social episte-
mology over recent years. The question causing excitement: what is the rational
response to a disagreement with an epistemic peer? In providing an answer, a now
widely influential view in the literature asserts that you and your peer should re-
spond to a disagreement on a particular matter by giving the same weight to each
opinion (Elga 2007, 484). Upon following this recommendation, however, neither
you nor your peer are permitted to maintain your originally held beliefs, but instead
you both are required to revise by splitting the difference (Christensen 2007, 203).

EQUAL WEIGHT: If epistemic peers believe differently about a proposition, A,
then, upon learning of their disagreement, the peers should give the same weight
to each opinion and revise by splitting the difference.

There are at least three ways one can understand the equal weight response,
which ultimately engender different assumptions about the nature of the evidence a

1This chapter is largely based on a forthcoming article, “Resolving Peer Disagreements Through
Imprecise Probabilities,” that is expected to appear in Noûs.
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peer disagreement supplies, and how that evidence should guide a peer in changing
their opinion. On one understanding, a peer disagreement provides evidence that
either you or your peer is mistaken about the proposition in dispute. Such evidence
is undermining in character. Your reaction to a peer disagreement ought to be the
same as your reaction to receiving any other new but conflicting piece of evidence:
you ought to suspend judgment on the proposition until more evidence becomes
available (Feldman 2011). The suspension response is especially compelling if
one accepts the following evidentialist thesis.

UNIQUENESS: An individual’s evidence, on balance, supports at most a single,
unique epistemic attitude towards a proposition A, for all propositions A.

Richard Feldman (2009, 2011) has defended the thesis at length insofar as a
tripartite interpretation of belief is concerned—that is, you either believe, disbe-

lieve, or suspend judgment on a proposition. The gist of his view is this. A body of
evidence cannot reasonably support a categorical belief in both a proposition and
its negation. In case of peer disagreement, shared evidence cannot reasonably sup-
port opposing views, and so one of the peers is mistaken. Without any indication of
which peer made a mistake in their reasoning, the correct response is for both peers
to suspend judgment until further notice as this response is uniquely determined by
the evidence. Suspending judgment amounts to neither believing a proposition nor
its negation. This move effectively respects the evidence (Feldman 2005).

If instead belief is viewed partially where an individual issues grades of cre-
dence to propositions that are represented mathematically by a unique, real-valued
probability measure, p, then the suspension approach might entail each peer re-
vising to a credence of 1/2 for the disputed proposition. This way an individual is
indifferent with respect to the truth of the proposition and its negation. Regardless
of the interpretation of belief, however, the motivation for suspending judgment
turns out to be the same on either account, namely that the evidence an individual
receives from a peer disagreement undermines their current view. The suspension
proposal is guided by the idea that one ought to respond to a peer disagreement by
increasing one’s uncertainty about the proposition(s) in dispute.

On another understanding of the view, a peer disagreement supplies you with
a range of informed opinions, including your own, and so you ought to exploit this
information. This assumption is widely held in the wisdom of crowds literature,
for example (see Surowiecki 2005; Golub & Jackson 2010). By following such
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line of thought, you might infer that the evidence obtained from a peer disagree-
ment is ameliorative in character, and your judgment can be improved by adopt-
ing an equally-weighted average of the opposing opinions as your new credence
rather than naı̈vely suspending judgment.2 Evidence suggesting that judgments are
improved, relative to how accurate they are, has recently been obtained through
simulation results illustrating that a collective opinion improves in accuracy upon
splitting the difference (Douven 2010).

A further way to understand the equal weight view is by forming a hybrid ac-
count that combines the first two understandings, entailing that a peer disagreement
is undermining in character, but the judgments of peers ought to be improved by
taking into account the new information and adopting some belief revision strategy,
like equally-weighted averaging, i.e. split the difference. Peers effectively become
conciliatory with one another by adopting the middle ground (literally) in opinion.
This interpretation makes equal weight a compelling response to peer disagree-
ment, for peers acknowledge the fact that each is equally likely to be mistaken and
they respond in a way that improves their collective judgment about a proposition,
thereby forcing conciliation. The intuitiveness and practicality of such strategy has
attracted philosophers and social scientists alike toward an equal weight view.

3.1 Splitting the Difference

Much ink has already been spent on problems associated with an equal weight (or
conciliatory) view. Let us set those matters to the side and focus our attention
instead on the belief revision method that tends to be accepted in the literature
as a representation of splitting the difference. One preliminary, though. Since
philosophers are typically fixated on proposition talk rather than the conventional
language of events in probability theory, I accommodate this habit by extending the
standard probability framework for an arbitrary propositional language.

2Equally weighted averaging typically is assumed to be the belief revision method of the equal
weight view, but whether it is representative of the philosophical view is up for debate (see Chris-
tensen 2011; Kelly 2013). Reasons for doubting the revisionary mechanism have surfaced from a
list of problems brought against it in the literature (see e.g. Jehle & Fitelson 2009; Wilson 2010;
Lasonen-Aarnio 2013). This list will be extended later on. Nevertheless, weighted averaging is
the natural method for splitting the difference and has a long history in opinion aggregation trac-
ing back to Stone (1961) who proposed weighted averaging to resolve group disagreements among
Bayes agents with a common utility function. Stone used the phrase opinion pool to describe this
general scenario, and democratic opinion pool for the special case when all opinions are equally
weighted.
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Let V be an interpretation for an arbitrary propositional language L that asso-
ciates all worlds w ∈ W and primitive propositions of the language with a truth
assignment such that for any world w and primitive proposition A, V (w,A) = 1

or V (w,A) = 0. With the introduction of an interpretation, V , we call a model
M = (W,F , p, V ) a probability structure, whereby (M,w) |= A if and only if
V (w,A) = 1, for all worlds w and primitive propositions A.

The correspondence between propositions and events is established through
identifying [[A]]M as the set of worlds of W in which the proposition A is true. The
following illustrate the correspondences for connectives ∨, ∧, and ¬.

[[A ∨B]]M = [[A]]M ∪ [[B]]M (Disjunction)

[[A ∧B]]M = [[A]]M ∩ [[B]]M (Conjunction)

[[¬A]]M = W \ [[A]]M (Negation)

With respect to a finite probability structure, an individual’s credence towards either
A or B being true, for example, is represented as p([[A ∨ B]]M), but for simplicity,
reference toM will be omitted and I will abuse notation by dropping [[·]]. So an indi-
vidual’s credence towardsA orB will instead be denoted as p(A∨B). Throughout,
we will generally be concerned with propositions, unless otherwise noted, and so
an underlying probability structure will be assumed in the background.

Preliminaries aside, we turn our attention to a standard opinion pooling model
representing the revisionary proposal for splitting the difference. For i, j =

1, 2, ...n, let {pj} be a set of probability distributions and {wij} be a set of weight-
ing assignments where ‘wij’ is read as ‘the weight that individual i assigns to prob-
ability distribution j’. In other words, weights are estimates for the reliability of the
group members’ opinions, and the estimates are determined by a function w that is
(i) a mapping of opinions {pj} into the reals of the unit interval [0,1], (ii) additive,
and (iii) normalized to one relative to the set of opinions under consideration.

Now, for each member of the group, they revise by adopting a pooled opinion.
A well-known model for opinion pooling due to Stone (1961) is the following

p∗i =
n∑

j=1

wijpj. (3.1)

The model has generally been praised for its achievement of aggregating beliefs.
However, it is difficult to see how the piece of mathematics represents the step-
by-step procedure in resolving disagreement. A more natural pooling method in-
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tuitively capturing the deliberation process, and yielding a consensus, has been
shown by DeGroot (1974), Lehrer (1976), and Wagner (1978).

The road to achieving consensus described by DeGroot, Lehrer, and Wagner
brings to use stochastic matrices. Let each member of a finite group of individuals
form a profile of weight assignments, {wij}, for all opinions held by the group,
including their own, that indicate the subjective estimate of reliability i assigns to
j. The profiles are then bound together by row forming an n× n stochastic matrix.

In the simple case of two individuals, we are given the following matrix.

M =

 w1 1 w1 2

w2 1 w2 2

 (3.2)

If members of the group happen to disagree in their forecasts, then they are able to
resolve their differences through an iterative process.

Let P be a column vector of opinions relative to individuals 1 and 2.

P =

 p1

p2

 (3.3)

In the first round of deliberation, each member updates their opinion such that
P(1) = MP, and then continuing on to P(2) = MP(1) until a consensus P(k) =

MP(k−1) is reached at the kth deliberation.
Using the collection of methods laid out, we are able to simply state that

a group resolves a disagreement when individual members’ opinions p∗i =∑n
j=1wijpj agree, or collectively, P(k) = MP(k−1). As already mentioned, the

latter appears to be a more natural representation of the procedure, for one can
think of (k) as the number of deliberations needed for the group to resolve their
disagreement once and for all. The success of the general model is driven by sta-
tionary probabilities and a one-step transition matrix M of a Markov chain with k
states (DeGroot 1974, 119).

Turning now to a group of epistemic peers, splitting the difference entails the
following special case of the model (3.1)

p∗i =
1

n

n∑
j=1

pj (3.4)

where the weight distributed to the opinions is uniformly 1/n, and we simplify as
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written. The equal-weighting case is the most ideal scenario provided that the group
resolves their disagreement in the first round of deliberation, which is not often the
case when weighting assignments are not uniform among the groups’ profiles.

Using the DeGroot, Lehrer, and Wagner setup, we have in the two-peer prob-
lem

M1/n =

 1/2 1/2

1/2 1/2

 (3.5)

and

P =

 p1

p2

 . (3.6)

The result of M1/nP is the equally weighted opinions that peers now adopt, and
consensus is obtained in a single deliberation. We therefore state that a set of epis-
temic peers split the difference just in case P(1) = M1/nP. As long as the balance
in respect is maintained by the group, members continue assigning equal weight to
the opinions under varying conditions (Hartmann, Martini, & Sprenger 2009). So
stably balanced respect will ultimately lead to an equally-weighted consensus.

Luckily for us, the peer disagreement problem typically focuses on the spe-
cial case of two peers disputing a single proposition, and so splitting the difference
becomes elementary without the need of generality (though, the general model,
the Markov model in particular, is nice to have available for complex cases). To
demonstrate, suppose in the example given at the beginning that you, py, and your
colleague, pc, have the following opinions regarding rain in London tomorrow:
py(Rain) = 0.4 and pc(Rain) = 0.6. The revised (collective) opinion accord-
ing to the equal weight view is p∗(Rain) = 1/2 (py(Rain) + pc(Rain)) = 0.5,
simply yielded by the model (3.4). The solution to a two-peer disagreement is
easy to calculate with either method, but the general model powerfully captures the
deliberation process in which peers establish a middle ground in opinion.

3.1.1 A Positive Consequence of Linear Pooling

One advantage opinion pooling strategies have over the naı̈ve suspension of judg-
ment approach is that pooling strategies in general, and equally-weighted averaging
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in particular, yield a new credence that is guaranteed to fall within the reasonable

range of informed opinions.

REASONABLE RANGE: For any group of peers, P, whose credences in a propo-
sition A range from x, the lowest credence in A, to y, the highest credence in
A, a new credence is said to be within the reasonable range for members of P if
and only if its value is within the closed interval [x, y].

To motivate why the Reasonable Range principle is indeed reasonable and a
strict policy to suspend judgment is not, suppose that your credence for rain in
London tomorrow is 8/10 and your epistemic peer’s is 9/10. Upon learning of this
disagreement, it would be unwise to advise either you or your peer to naı̈vely sus-
pend judgment by revising to a credence of 1/2. If the point is not immediately
obvious, notice that you both judge it to be more likely to rain in London tomor-
row than not, and so no strategy to resolve a disagreement among peers should
mandate that each ought to suspend judgment on a proposition they both believe is
overwhelmingly more likely to be true than false. Whatever uncertainty the peer
disagreement may introduce, it should not destroy shared points of agreement.

Nevertheless, some may worry that certain disagreements do indeed support
adopting a new opinion outside the range prescribed by the Reasonable Range prin-
ciple. If you discover that you are party to a disagreement, which introduces you to
variance where there was comparatively little or none before, then sometimes the
reasonable response to a channel of information that increases your variance is to
fault the channel rather than submit to constraints imposed by the information it de-
livers.3 For example, Christensen (2009, 759) devises an example of an individual
who is confident that a treatment dosage for a patient is correct (0.97) and takes the
opinion of a colleague who is slightly less confident in the same treatment dosage
(0.96) as confirming evidence that warrants a confidence boost.

It is not at all obvious for why one ought to respond in such a way, however.
While the individual in Christensen’s example expresses low credence in the ad-
ministered treatment being the incorrect dosage, the colleague has a slightly higher
credence that the dosage is incorrect. Yet if the confidence-boost response were
right, the individual would be licensed to infer from their colleague’s judgment
that the prospect of administering the incorrect dosage is even lower than one origi-
nally believed, which seems to be false unless the individual views their colleague’s
judgment to be biased away from the truth in a way that one’s own judgment is not.

3Thanks to Richard Dawid for pushing this point.
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Responding to a disagreement by adopting a judgment that falls outside the
range of group opinion is reasonable only if your colleagues are not your epistemic
peers. Otherwise, if every party to the disagreement is a peer and each peer’s cre-
dence in A is between x and y, where [x, y] is the smallest span covering the set
of credences, then a response violating the Reasonable Range principle denies that
the disagreement is in fact among epistemic peers or licenses one to deliberately
move away, without reason, from the considered opinions of one’s peers. In either
case, individuals or factions of the group may be enticed to strengthen their view
upon having a disagreement, leading to belief polarization. The evidence obtained
through a peer disagreement, however, is not in any way suggestive of belief polar-
ization, but rather a contraction in the group opinion if there is to be any movement
at all. Even non-conciliationists, such as steadfasters, reject polarization.

On that note, equally weighted averaging is not the only response to a peer
disagreement that satisfies the Reasonable Range principle. This is fortunate since
there are instances when it is unreasonable to resolve a disagreement among peers
by taking some or another non-extreme weighted average of peer opinions.4 If,
for example, you are party to a peer disagreement in which nine out of ten agree
yet one outlier does not, the rational response may be for the outlier to fall in line
with the majority rather than for the majority to move partway to meet the outlier,
especially once all of the evidence is considered, which includes the nine expert
opinions that are in unison. Peerage does not confer infallibility after all.

In certain cases, what a peer learns in a disagreement with their equals is that
they are in the wrong. For the time being, I only wish to point out that allowing
a single peer to change their view to join a steadfast majority is an instance when
the Reasonable Range principle is satisfied, but non-extreme weighted averaging
is not. (I will consider issues with the steadfast view (Kelly 2011) in detail later
on.) Moreover, any ‘permissive’ response to peer disagreement that allows a party
to a disagreement to stick to their guns will trivially satisfy the Reasonable Range
principle.5

4A weighted average is non-extreme just in case every peer’s opinion takes values in the open
interval (0, 1), excluding 0 and 1.

5Permissive views suggest that a fixed body of evidence does not necessarily determine a
uniquely rational judgment (Rosen 2001; Douven 2009; Kelly 2011; Schoenfield 2014; Kopec
2015), and thus Uniqueness is false. In a credal setting, where credences are represented by a prob-
ability measure, a trivial version of permissivism has been acknowledged since Savage’s remark
that theories of subjective probability “postulate that the individual concerned is in some ways ‘rea-
sonable,’ but they do not deny the possibility that two reasonable individuals faced with the same
evidence may have different degrees of confidence in the truth of the same proposition” (Savage
1954, 3). Non-trivial versions of permissivism arise when peers are presumed to share the same
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Even though the Reasonable Range principle is satisfied by a variety of com-
peting peer disagreement strategies—including Savage’s Minimax, calibrated max-
imum entropy, Maximax, and Levi’s E-admissibility—classical Bayesian methods
that satisfy the Reasonable Range principle nevertheless appear to rule out an im-
portant insight from the suspension of judgment approach, namely that at least
some peer disagreements increase one’s uncertainty. It is unlikely that evidence
from every peer disagreement will turn out to be ameliorative in character. Some-
times the correct response to a peer disagreement is to become uncertain about the
proposition in dispute. If true, how can one’s newfound uncertainty from a peer
disagreement be reconciled with the Reasonable Range principle? That is one of
the questions to be addressed in the positive proposal of this chapter.

Another issue to be addressed concerns a problem that conciliatory Bayesian
views have in preserving some shared points of agreement among peers, which
arises from the belief revision mechanism itself. It is this latter issue I turn to next,
which ultimately gives way to the positive proposal in the subsequent sections.

3.1.2 Irrational Consequences of Linear Pooling

It has become common to discuss peer disagreement exclusively in terms of the
special case of two peers disputing a single proposition,6 thereby neglecting other
forms a peer disagreement may take and the different responses each form may
warrant. For instance, a single outlier disagreeing with nine other peers illustrates
how the distribution of group judgments may yield evidence warranting some mem-
bers of the group to respond differently than others. One motivation for restricting
attention to two-peer disagreements, however, is precisely to set aside disagree-
ments like the one described that are easily defused by ‘swamping’ higher-order
evidence (Kelly 2011). The restriction to two peers helps to bring the problem of
peer disagreement into sharper focus by balancing the total evidence.7

The same, however, cannot be said for restricting attention to a single propo-
sition. Any proposal for resolving a peer disagreement involving one proposition

values and same goals of inquiry, where it is a standard assumption in the judgment aggregation
and opinion pooling literatures to fix such conditions by, for instance, stipulating a single, shared
utility function. Because the plausibility of permissivism varies wildly depending both on how one
models peer disagreement and how one formulates ‘permissivism’ in a particular model, a general
discussion of permissivism goes beyond the scope of the current chapter.

6For example, see Christensen (2007, 2009), Elga (2007), Feldman (2011), Kelly (2011), Bal-
lantyne & Coffman (2011), Schoenfield (2014), and Levinstein (2015).

7For discussions on high-order evidence in peer disagreements, see Christensen (2010), Kelly
(2011), and Lasonen-Aarnio (2014).
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should be able to handle a disagreement involving two or more. Yet, two peers
disagreeing over two or more propositions puts pressure on non-extreme weighted
averaging strategies. To see why, consider the following example.

HEADS AND RAIN: Forecaster One and Forecaster Two share the same data

provided by the European Center for Medium Range Weather Forecasting and

they each use this data to forecast rain in London for the following day (R).

Forecaster One’s credence in R is 0.4 while Forecaster Two’s credence is 0.6.

Included in their shared knowledge is information about a biased coin to be

tossed today and the two forecasters disagree about that outcome, too. One’s

credence in the coin landing heads today (H) is 0.2 while Two’s credence is 0.8.

Despite their disagreements, both agree that rain in London tomorrow and the

coin landing heads today are epistemically irrelevant to one another. So, while

the forecasters disagree on rain tomorrow and they disagree on the coin landing

heads today, both agree that there is no value in knowing the outcome of the

coin toss for forecasting rain in London tomorrow.

In the given example, what Forecaster One and Forecaster Two particularly agree
on is that rain in London tomorrow and the coin landing heads today are stochas-

tically independent: that is, both p1(R ∧ H) = p1(R)p1(H) and p2(R ∧ H) =

p2(R)p2(H), where p1 and p2 represent the credences of Forecaster One and Fore-
caster Two, respectively. So, however they decide to resolve their disagreements
about today’s coin toss and tomorrow’s weather, their response should preserve the
judgment that heads today yields irrelevant evidence for predicting rain tomorrow.
Since the judgment of irrelevance given seems quite intuitive, strategies purporting
to resolve peer disagreements ought to abide by the following principle.

PRESERVATION OF IRRELEVANCE IN EVIDENCE (PIE): If every member of a
group of peers, P, judges that their credence in a proposition A should remain
unchanged whether or not another proposition B is true, and no member of the
group changes their mind about the irrelevance of B to A after the disagreement
becomes common knowledge to the group, then the resolution should preserve
the judgment that B is irrelevant evidence to A.

A significant problem arising with any non-extreme weighted average of p1

and p2 that forecasters One and Two might propose to resolve their disagreement
is that it will violate the PIE principle. Without loss of generality, consider the
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p1(· ∧ ·) p2(· ∧ ·) p∗(· ∧ ·) p∗(·)p∗(·)

H R 0.08 0.48 0.28 0.25

H ¬R 0.12 0.32 0.22 0.25

¬H R 0.32 0.12 0.22 0.25

¬H ¬R 0.48 0.08 0.28 0.25

Table 3.1: Forecasters p1 and p2 and Equally Weighted Average p∗

specific case of p∗ in Table 3.1, which is the equally weighted average of p1 and
p2, i.e. p∗ = 1/2p1 + 1/2p2. The ‘middle-ground’ determined by p∗ fails to preserve
independence between the coin toss today and the weather tomorrow as one can
see from columns four and five,8 so resolving the forecasters’ disagreements by p∗

does not satisfy the PIE Principle.
Although the PIE principle is seemingly compelling, not everyone agrees, and

some nevertheless are unfazed by the violation. Lehrer and Wagner (1983), for
instance, have argued that violations of the PIE principle are of “negligible epis-
temic significance.” Even critics of weighted averaging schemes, like Williamson
(2015), would argue that the PIE principle should not constrain rational belief. The
problem with flouting the PIE principle, though, is that a non-mandatory stance is
not only unintuitive, but practically irrational. For according to p∗, heads today
is epistemically relevant to forecasting rain tomorrow. Yet if Forecaster One and
Forecaster Two adopt p∗ while maintaining that heads today is irrelevant to rain
tomorrow, they become vulnerable to suffering a sure loss.

To see the practical irrationality involved with violating the PIE principle, sup-
pose that forecasters One and Two reconcile their disagreement by p∗, yet they
continue believing that the coin landing heads today is irrelevant to rain in London
tomorrow. A clever gambler may then compel them to accept a contract consist-
ing of the following bets. The first stipulates that the gambler buys from the peers
Ticket 1 for $28 that pays $100 if the coin lands heads today and it rains in London
tomorrow, and pays nothing otherwise. The second stipulates that the gambler buys
a second ticket, Ticket 2, for $22 that pays $100 if the coin lands tails today and it
rains in London tomorrow, and pays nothing otherwise.9

8For example, to verify the first row of Table 3.1, p1(R ∧ H) = p1(R)p1(H) =
(0.4)(0.2) = 0.08, and p2(R ∧ H) = p2(R)p2(H) = (0.6)(0.8) = 0.48, yet p∗(R ∧ H) =
p1(R)p1(H)+p2(R)p2(H)

2 = 0.28 6= 0.25 = p1(R)+p2(R)
2 × p1(H)+p2(H)

2 = p∗(R)p∗(H).
9The betting argument is a variation of one that Henry Kyburg and Michael Pittarelli (1996)

made against Levi’s E-admissibility decision rule, which, in Levi’s original form, presupposes non-
extreme weighted averaging. Also, for the sake of the argument, it is assumed throughout that the
utility of money for peers is linear.
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Ticket 3 Ticket 4 Net

H ∧R $72 − $25 $47
H ∧ ¬R − $28 − $25 − $53
¬H ∧R − $28 $75 $47
¬H ∧ ¬R − $28 − $25 − $53

Table 3.2: Forecaster One and Forecaster Two’s Payoff

According to p∗, the bundle of tickets, Ticket 1 and Ticket 2, is fair according
to the gambler—that is, $50(0.28) + $50(0.22) − $50(0.22) − $50(0.28) = 0.
Now, suppose that the clever gambler gives the peers a seemingly advantageous
opportunity to hedge by offering two more called-off bets similar to the first pair,
only now the bets are arranged for the peers to judge as fair a pair of bets that swaps
one of the values under the equally-weighted joint distribution with a value under
the product of the equally-weighted marginal distributions.

For instance, suppose that the gambler sells to the peers Ticket 3 for $28 that
pays $100 on heads and rain and $0 otherwise, and he also sells to them Ticket 4
for $25 that pays $100 on tails and rain and $0 otherwise. With this contract of
four bets, Tickets 1-4, the peers are booked in an expected sure loss. (See Table 3.2
for the peers’ payoffs and specifically the sum of the last column.) While the peers
maintained that heads today is irrelevant to rain in London tomorrow after resolving
their disagreement, the gambler cleverly chose to determine the payoff for Ticket 4
using the value of p∗(¬H)p∗(R), which exposes the peers to a sure loss.

One way around the problem is to double-down on linear pooling by adopt-
ing the new betting odds given by p∗ as rational and come to accept that the coin
and weather are in fact not independent in the reconciled judgment as originally
thought. However, this response will enjoin the peers to place some value in the
information provided by today’s coin toss to further their epistemic goal of fore-
casting tomorrow’s weather. So, according to this line, it would be rational for the
peers to pay a fee, even if only a fraction of a cent, to learn the outcome of today’s
coin flip in order to better forecast tomorrow’s weather. This is clearly absurd.
While the move closes off the possibility of suffering a sure loss, it opens another
for fortune tellers to sell to the peers epistemically useless information.

The result of the given argument is a challenge for conciliatory Bayesians. On
the one hand, the measure p∗, which is the most intuitive credence for the Bayesian
version of the equal weight view, cannot preserve epistemic irrelevance. Conse-
quently, the Bayesian equal weight view does not abide by the PIE principle. This
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argument applies generally to any conciliatory Bayesian who adopts a non-extreme
weighted averaging of probabilities, and it extends to other conciliatory methods
that fail to preserve independence.10 On the other hand, a conciliatory Bayesian
who rejects the PIE Principle is committed to the view that a shared judgment of
irrelevance among peers cannot, and should not, be preserved by any resolution
strategy. But then the Bayesian without PIE becomes a mark for swindlers.

A way to escape the problem is simply to permit extreme weighted averag-
ing. But this amounts to conciliation by ultimatum: you can hold any opinion
you like so long as it is mine. A dictatorial response is hardly a conciliatory strat-
egy. Without a principled reason for choosing one peer’s judgment over another,
there is little support for recommending the ultimatum strategy for resolving a dis-
agreement among peers. An alternative response is simply to leave the set of peer
judgments unchanged in which case everyone holds steadfast. Each peer in the set
would satisfy the PIE principle by sticking to their guns and rejecting any change
to their views. However, there are reasons for thinking that sticking to one’s guns is
not always the rational response either, namely because peers exposes themselves
to a risk of regretting, a problem that will be discussed in detail in this chapter.

But before considering an argument against non-conciliatory responses to peer
disagreements, a natural question to ask is whether there is some other view for
reconciling the PIE principle with the demands of being conciliatory. In short, the
answer is yes. It is straight-forward to formulate conciliatory responses to peer
disagreements within the language of imprecise probability that satisfy both the
Reasonable Range principle and the PIE principle. The first conclusion to draw
from the proposed approach, which is introduced in the next section, is that one
should question belief models that mandate a single, determinate subjective prob-
ability long before calling into question conciliatory responses that satisfy the PIE
principle.

3.2 Set-Based Credences

What I will call set-based credence is a straightforward extension of numerically
determinate credence pioneered by Ramsey (1926) and de Finetti (1931/1989) that
was described in Chapter 2. A set-based credence, to be explained in this section, is

10See Dietrich & List (2016) and Stewart & Quintana (forthcoming) for thorough reviews of
Bayesian linear pooling methods and their properties along with Wheeler (2012) for an objection to
Williamson’s objective Bayesian approach.
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represented in terms of a (non-empty) set of probability measures, P, each defined
with respect to a finite probability structure, (W,F ,P, V ). For the moment, one
may think of P as a set of Bayes agents, or set of peers, each with their own opinions
about a fixed set of propositions.

For example, P = {p1, p2} represents the precise credal distributions of Fore-
caster One and Forecaster Two for all the relevant propositions in the HEADS AND

RAIN example. Accordingly, the reasonable range in opinion for rain in London
tomorrow is 0.4 to 0.6, and 0.2 to 0.8 for today’s coin toss coming up heads, which
are both given by P. Observe that for any set of Bayes agents, P, there is a prob-
ability measure p ∈ P whose value is the smallest, which is a lower probability,
and a probability measure p ∈ P whose value is the largest, which is an upper

probability, for all propositions A. Formally, a lower probability is represented
by P and an upper probability represented by P such that for any proposition A,
P(A) = min{p(A) : p ∈ P} and P(A) = max{p(A) : p ∈ P}.

To accommodate conditional probability, for some proposition B and P(B) >

0, there is a conditional lower probability, P(A|B) = min{p(A|B) : p ∈ P}, and
a conditional upper probability, P(A|B) = max{p(A|B) : p ∈ P}, relative to a set
P(A|B). If B is a logical truth, then conditional lower probability and conditional
upper probability reduce to unconditional lower probability and unconditional up-
per probability, respectively. For the remainder of the chapter, assume that all lower
and upper probabilities are defined with respect to a finite set of propositions, and
I omit reference to the underlying probability structure when the context is clear.

In case the lower and upper probabilities (conditional or unconditional) are the
same for all propositions in a set Θ, we say that the peers (so represented) are in
perfect agreement. If a set of peers are in perfect agreement, the set P is a singleton
set consisting of a unique probability measure, p, realizing the upper and lower
probabilities for every proposition.

PERFECT AGREEMENT: If P = P, then {p} = P and p = P = P.

If instead a peer disagreement occurs, then there is at least one proposition for
which the upper and lower probabilities are not equal.

PEER DISAGREEMENT: A peer disagreement among P occurs if and only if
there is some A ∈ Θ such that P(A) 6= P(A).

As one should observe from our newly extended theory, lower and upper prob-
abilities provide a more informative approach to framing peer disagreements. How-
ever, they are not novel inventions. The idea traces back at least to Bernoulli (1713)
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and Boole (1854), and developed further by Koopman (1940) and Halmos (1950).
It was later observed that the language of events or propositions and lower proba-

bilities is more limited in expressive capacity than the language of random variables
and (lower) expectations or lower previsions (Smith 1961; Williams 1975; Walley
1991), an observation that has several far-ranging consequences. It is worth men-
tioning this point, but for the purposes of this chapter, I will set those developments
to the side and restrict the discussion to a simple lower probability model, for lower
probability is expressive enough to capture the central idea.

A lower probability model is commonly known as a type of imprecise proba-
bility model, which provides a general framework that we may use in representing
and evaluating a variety of responses to peer disagreements. Every probabilistic
account for peer disagreement satisfying the Reasonable Range principle can be
represented and compared within this setting. As indicated above, a singleton set
of probability measures is equivalent to a standard, numerically determinate prob-
ability model. In the imprecise probability setting, this model is the model of full
agreement, and the Bayesian view of reconciling peer disagreement is simply one
of specifying the method whereby a new model of full agreement is selected.

Although the proposal in general is not novel (see Walley 1981; Levi 1990),
the basic approach detailed above ultimately pays particular attention to the subtle
structural properties of the underlying set of probabilities that form the basis for
lower and upper probability assessments. As it will be argued, this basis for upper
and lower probability judgments plays a crucial role in modeling group opinions.
Unlike a classical Bayes model, where all of the epistemically relevant information
about an individual’s credal commitments is allegedly captured by a single, nu-
merically precise probability measure, lower and upper probabilities alone do not
capture all epistemically relevant information about an individual’s commitments.
This subtly is a key difference from the likes of Levi (1980) and Walley (1991)
who are committed to closed, convex sets of probabilities either as a consequence
of rationality principles (Levi) or for mathematical expediency (Walley). The view
given here is that convex bases ought to be permitted but not mandated.

Those remarks aside, a set-based credence for a proposition A induces a lower
and upper probability onA relative to a base, P. To see why the reasonable range as
an interval determined by lower and upper probabilities, i.e. [minP,maxP], fails to
capture all the information relevant to a peer disagreement, consider again the heads
and rain example. The precise credences of Forecaster One and Forecaster Two are
presented in the top two rows of Table 3.3 labeled (a). The bottom two rows, labeled
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H R R | H R ∧H R ∧H

(a)
p1 0.2 0.4 0.4 0.08 Pa[0.08, 0.48]
p2 0.8 0.6 0.6 0.48

(b)
p3 0.2 0.4 0.6 0.12 Pb[0.12, 0.32]
p4 0.8 0.6 0.4 0.32

Table 3.3: Reasonable Ranges and Loss of Independence

(b), list the credences for a different pair of forecasters, Three and Four. Notice the
symmetries between the two groups where One and Three hold identical views on
heads today and on rain tomorrow and so do Two and Four. It appears that Three
and Four are just duplicates of One and Two, respectively. However, group (a)
differs from group (b) in the conditional judgments they endorse.

For group (a), the observation of heads today is irrelevant information to fore-
casting rain in London tomorrow. For group (b), though, heads today does provide
relevant information to forecasting rain in London tomorrow, but Three and Four
disagree with one another over how: Three believes that heads and rain are posi-
tively correlated, whereas Four believes they are negatively correlated. Despite this
difference between group (a) and group (b), all four have the same reasonable range
for the conditional judgment of rain given heads: Pa∪ b(R | H) = [0.4, 0.6]. We
see in the final column of Table 3.3, however, that the reasonable range of One and
Two’s set-based credence on the joint of heads and rain, Pa(R ∧H) = [0.08, 0.48],
and Three and Four’s for the same joint, Pb(R ∧H) = [0.12, 0.32], differ.11

Although the reasonable ranges for each individual proposition regarding heads
and rain and the reasonable range of the conditional judgment of rain given heads
does not distinguish group (a) from group (b), the reasonable ranges for the joint of
rain and heads do reveal a difference between the two groups—that is, Pa(R∧H) 6=
Pb(R ∧ H). So far, so good. However, if we were to pool (a) and (b) into a
single group, the reasonable range for Three and Four on heads would be properly
included in the reasonable range for One and Two. We then would be unable to
distinguish between the merged group and the original pair by the reasonable range
of opinions alone. The point generalizes such that R is irrelevant to H just in case
both P(R | H) = P(R | ¬H) = P(R) and P(R | H) = P(R | ¬H) = P(R), where
P(R) and P(H) are greater than 0. This means that H and R are epistemically

independent when both H is irrelevant to R and R is irrelevant to H . In general, if

11Thanks to Jennifer Carr for pointing this out.
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H is epistemically independent of R under P, it does not follow that H and R are
stochastically independent under every p in P.12

Fortunately, the converse holds. That is, if R and H are stochastically indepen-
dent under every p in P, then R and H are epistemically independent under P. In
the language of imprecise probability theory, P defined in this way is an indepen-

dent lower envelope (Walley 1991, 446). Notice that in the initial example where
P consists of just p1 and p2, P is an independent lower envelope, but adding either
p3 or p4 to Pa destroys this property. While the reasonable ranges for P on Pa∪ b

are the same as the reasonable ranges for P on Pa, not every p in Pa∪ b judges the
two propositions independent. Intuitively, if One and Two agree that heads today
and rain tomorrow are irrelevant to one another, adding someone else to the group
who believes otherwise ends the consensus. So the notation, as laid out, allows for
specifying a variety of commitments that a group of peers may have, and to work
out the sometimes subtle consequences that follow from them.13

For instance, return to the initial heads and rain example. Forecaster One and
Forecaster Two each judge that the coin landing heads today and rain in London
tomorrow are independent, and their shared judgment of irrelevance becomes com-
mon knowledge to them upon learning of their disagreement. That is to say, since
every p in Pa—hereafter I will return to writing P instead of Pa—renders R inde-
pendent of H , the basis set P satisfies the conditions of an independent lower enve-
lope. So the peers’ individual ex ante judgments of epistemic irrelevance between
H and R in P ensure that their (shared) ex post set-based credences determined by
P and P renderH epistemically irrelevant toR andR epistemically irrelevant toH .

By contrast, if we replaced the two-element set P by its convex hull, Co(P),14

then P based on Co(P) would not be an independent lower envelope, even though
the probability measures in Co(P) realizing P and P satisfy epistemic indepen-
dence. If this is not obvious, notice that (1/2p1 + 1/2p2) ∈ Co(P), which does
not preserve independence. The point here really is a familiar one given an ear-
lier discussion, but just expressed in different terms, for the difference between the

12Even thought irrelevance, epistemic independence, and stochastic independence (factorization)
are logically equivalent for a single probability measure, assuming some regularization condition to
avoid conditioning on propositions with probability 0, these three concepts are logically distinct for
lower and upper probabilities. See Pedersen & Wheeler (2014) for discussion.

13See Walley (2000), de Cooman et al. (2011), Cozman (2012), and Pedersen & Wheeler (2014)
for discussions on structural judgments in imprecise probability, and the differences between per-
mutability and exchangeability (Walley 1991; de Cooman & Miranda 2007).

14In particular, replace P with the set of probability measures constructed by all possible linear
combinations of p1 and p2—that is Co(P) = {p′ : p′ = λp1 + (1− λ)p2, for all 0 ≤ λ ≤ 1}.
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original set P and its convex hull Co(P) is precisely the open set of all possible
non-extreme weighted averages of p1 and p2.

As a terminological aside, but one that helps connect together some of the work
on imprecise probability, the convex hull of P corresponds to Walley’s natural ex-

tension of P (1991), Levi’s credal set (1980), and Joyce’s credal committee (2010).
From one point of view, the natural extension is the most naı̈ve approach for rep-
resenting credal judgments and conditional credal judgments because it ignores
various structural judgments that may be in the original set P. Walley discusses
different extensions that incorporate different structural judgments yielding what
Haenni et al. (2011) call different parameterizations of a set of probabilities. The
independent lower envelope is but one.

With the technical remarks out of the way and an understanding of a probability
model to be used throughout the chapter, we are now in a position to say what it
means to have credence determined by P and P based on a set P.

SET-BASED CREDENCE: A set-based credence in a proposition A is an individ-
ual’s epistemic attitude determined by P and the pair P(A) and P(A)—that is, P
is the credal basis for A determined by P and P.

The point of describing set-based credences in the above way is the following.
When assessing credences determined by P and P in the manner introduced, one
must bear in mind the underlying probability structure, including the structure of P
itself.15 Fortunately, peer disagreements as described above supply the information
necessary to specify each component of a probability structure, including the struc-
ture of P, too. And these features allow one to work out subtle differences among a
variety of judgments peers might have with respect to the considered propositions.

As further illustration of the value in identifying subtle features of set-based
credences, suppose a group of peers disagree over judgments of evidential rele-
vance. An instance of such disagreement occurred upon adding forecasters Three
and Four to the original group of peers. In that case, a unanimous ex ante judgment
of independence should not be preserved in the group’s ex post judgments provided
that the disagreement leads to uncertainty on the relevance of the disputed proposi-
tions. There are also cases where a group of peers is initially in agreement that two
propositions are stochastically independent, but learning they are in disagreement
over some probability judgment destroys this consensus and permits the peers to
reject their initial judgments of independence and to affirm that one proposition is

15See Joyce (2010, 287).
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relevant to the other. This possibility is the reason why the PIE principle includes
the caveat that no member of the group changes their mind once the disagreement
becomes common knowledge.

To see how common knowledge of a disagreement can undermine a prior judg-
ment of irrelevance, consider the following example

FROM INDEPENDENCE TO DEPENDENCE: There are two urns that both con-

tain the same number of red and white balls. There are 99 balls of one color and

a single ball of the other color in both urns, and this is common knowledge to

two peers named Five and Six. Peer Five believes that both urns contain 99 red

balls and 1 white ball, whereas peer Six believes that both urns contain 99 white

and 1 red. Both Five and Six believe (falsely) that they are in agreement about

the composition of the two urns; neither considers it ex ante to be a serious pos-

sibility that they may disagree. So each peer’s ex ante belief about the urns is

that a randomly drawn ball from the first urn is evidentially irrelevant for esti-

mating the probability of drawing a red ball from the second urn. Now suppose

the peers discover their disagreement with one another. Then, each peer will

believe ex post that a randomly drawn ball from the first urn is highly relevant

for estimating the probability of drawing a red ball from the second urn.

In this example, the peers’ ex ante judgments of independence should not be pre-
served in their ex post judgments.

The difference between the original heads and rain example and the two urns
example is that in the former no member of the group changes their mind about
any structural judgment of irrelevance upon discovering their disagreement, but in
the latter everyone changes their mind about relevance upon discovering their dis-
agreement. Notice, however, that the bases for the heads and rain example and for
the two urns example both generate independent lower envelopes. What differenti-
ates the original heads and rain example from the two urns example is that One and
Two in the original example maintain the judgment that the marginal probabilities
of heads and rain are independent, whereas this condition is not applicable to the
two urns example and thus not binding on Five and Six.

In the language of imprecise probability theory, these two examples illustrate
the difference between strong independence and independent lower envelopes (Mi-
randa & de Cooman 2014). An independent lower envelope satisfies strong inde-
pendence if the marginal distributions are stochastically independent. So, while the
representations of the original heads and rain example and the two urns example
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Figure 3.1: Reasonable Range

both satisfy the conditions for an independent lower envelope, only the representa-
tion of the heads and rain example satisfies the additional condition necessary for
strong independence.

3.2.1 Why Set-Based Credences?

A set-based credence, as a representation of an individual’s credal commitment to-
wards a propositionX , induces a lower and upper probability representation of that
commitment. The last section was meant to cash out the nuances of such represen-
tation and also to caution against the mistake of simply identifying an individual’s
credal commitment with the interval induced by P and P for some proposition,
i.e. the reasonable range as an individual’s credal commitment. One must also
attend to the parameterization of P, which is reflected both in the original topolog-
ical structure of P and by judgments made about properties of an extension that
should or should not be preserved in light of a disagreement. Although the choice
of extension for P is unfamiliar to the classical Bayesian, the flexibility is merely a
consequence of the increased expressive capacity of imprecise probability.

With that said, set-based credences typically do yield something resembling
an interval of credal opinion. The lower probability and upper probability for rain
tomorrow in London induced by p1 and p2 from our original example yields an
interval constraint (of some kind) as depicted in Figure 3.1. The interval [0.4, 0.6]

is the reasonable range of opinion, but others have called the representation a credal

committee (Joyce 2010; Bradley 2014) or mental committee (Moss 2015), which
are simply alternative names for a credal set (Levi 1980). The idea is that the
span between 0.4 and 0.6 captures some important features of indeterminacy in
opinion, or imprecision in elicitation, that cannot be expressed by a determinate
probability. In the peer disagreement problem, an indeterminate judgment for some
proposition is imposed on each peer after they learn of equally credible estimates
that nevertheless differ from their own. But again, one should not confuse set-based
credences with interval-valued probabilities for the mentioned reasons.
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Moreover, since the issue of peer disagreement is typically assumed to involve
a group of Bayes agents, each peer’s original credal judgment is a precise cre-
dence.16 To rehearse the de Finetti-Ramsey conception of credences, this means
that each peer has a fair price for the proposition in question. In other words, if
Forecaster One has a credence 0.4 for the proposition that it will rain tomorrow in
London, then they are indifferent to engaging in two types of transactions. The first
transaction calls on the forecaster to buy a gamble for $.40 that pays $1 if it rains
in London and nothing otherwise. The second transaction calls on the forecaster to
sell a gamble for the same price.

When an individual agrees to buy the gamble, they are agreeing to surrender
a sure $.40 to acquire the uncertain reward of $1 on the condition that it rains in
London tomorrow. Similarly, when the individual agrees to sell the gamble, they
are agreeing to surrender an uncertain reward of $1 on the condition that it rains
to acquire a sure $.40. In this tradition, an individual’s credences can be identified
with their commitment to a system of fair prices for buying and selling any finite
number of gambles. The individual’s commitment is rational if and only if the
resolution of the bets behind such contracts does not result in a sure loss—that is,
the prices committed satisfy the axioms of finitely additive probability.

The canonical subjective Bayesian view is rehearsed here to provide an illus-
tration of the advantage that set-based credences have over the so-called steadfast

response to peer disagreement, which proclaims that it is sometimes reasonable for
you and your peer to maintain your original opinions (Kelly 2011). The argument
to be given relies on what is learned by each peer in a disagreement from the per-
spectives of buyers and sellers. In particular, upon announcing a fair price of 0.4

for R, Forecaster One is unwilling to pay more than $.40 for a gamble that returns
$1 if R is true, and Forecaster Two learns from this signal that Two’s fair price for
R may have been overestimated.

Think about how the forecasters One and Two would respond to gambles on
R offered to them for less than $.40. Both would see the gambles as bargains. So
the span from 0 to 0.4 may be viewed as the range of agreement on buying prices
for gambles on R. Each peer would respond to offers within this range in exactly
the same way since each judges the expected value of (R− α) to be greater than 0

16The assumption can be relaxed permitting some or all agents having credal commitments that
are indeterminate or to consider iterative peer disagreements that start with a group of standard
Bayes agents but where indeterminacy is introduced by the resolution of a sequence of disagree-
ments. We may even dispense with probabilities altogether and give a general qualitative account
in terms of desirable gambles (Williams 1975; Walley 2000).
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for buying prices α ≤ $.40. The two peers differ, however, in how they respond to
offers for gambles on R that are priced between $.40 and $.60. Forecaster One will
refuse to buy a gamble on R in this price range, but Forecaster Two will find any
price up to $.60 acceptable. However, the disagreement should signal to Two that
$.60 may be too high of a price to pay for a gamble on R. Therefore, Two’s buying
price for a gamble on R should change to agree with One’s. This is simply what
it means for Forecaster Two to change their original buying price expressed by the
initial credence of 0.6 for R to a lower probability of 0.4 for R.

The roles are reversed upon turning to the selling price for R. In such case,
Forecaster Two will not surrender a gamble on R that pays $1 if R is true, $0

otherwise, to acquire in exchange a sure reward of any amount less than $.60 while
Forecaster One is willing to sell the gamble onR for as low as $.40. Forecaster One
therefore is committed to unloading gambles on R for a price that Forecaster Two
would never agree to match. The standpoints of the two peers are now reversed.
Whereas both One and Two would agree to sell a gamble returning the uncertain
reward of $1 for a sure reward of $.60 or more since both judge the expected value
of (β−R) to be greater than 0 for selling prices β ≥ $.60, Forecaster Two’s refusal
to sell for any price less than $.60 signals to Forecaster One that $.40 is too low
of a price to sell a gamble on R to another. Therefore, Forecaster One’s selling
price should change to agree with Forecaster Two’s. This is simply what it means
for Forecaster One to change their original selling price expressed by the initial
credence of 0.4 for R to an upper probability of 0.60 for R.17

The span between lower and upper probabilities for some proposition is deter-
mined by the range of credences expressed by a group of peers. As argued, there
is no good reason to adopt an opinion outside of this range. Recall also that the
discussion of the PIE principle knocked out conciliatory Bayes responses but left
open the option of remaining steadfast in one’s opinion. Kelly, for instance, ar-

17The assumption that the currency of trading is linear is important for pinning down an estimate
of an individual’s strength of belief in a proposition, and the operational details of the procedure
for eliciting such credences are likewise important for making sense of such numbers. When those
conditions are clearly specified and met, and strategic considerations are safe to leave aside, the talk
of pricing the value of gambles translates directly to an individual’s epistemic commitments.

What is novel about a theory of lower previsions, which the lower probability model belongs to,
is that it allows an individual to commit to different buying and selling prices for a gamble. The
theory of linear previsions, which standard precise Bayesian probability models belong to, does not
allow an individual to commit to different buying and selling prices for a gamble, but instead takes
for granted that there is a single number, the individual’s fair price. There is nothing imprecise or
indeterminate about the highest price you are willing to pay for a gamble or the lowest selling price
you are willing to accept for it, regardless of whether those values are different or the same. So, the
behavioral interpretation clarifies what set-based credences are meant to represent.
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gues that sufficient ‘higher-order’ evidence is not always generated by two-person
disagreements to warrant either peer to change their view (Kelly 2011). So peers
in those situations are reasonable to remain steadfast. However, the steadfast re-
sponse ignores the significance of the evidence supplied by a peer disagreement,
essentially making it epistemically irrelevant to each peer’s credal commitment(s).

To remain steadfast in a peer disagreement is to ignore evidence that one should
change their view. Suppose Forecaster One adopts a lower probability of 0.4 and
an upper probability of 0.6 for reasons spelled out above, but Forecaster Two sticks
to their guns and persists in viewing 0.6 as a fair price for R. Then, Forecaster
Two would discover that Forecaster One refuses to pay more than $.40 for a gam-
ble on R but also refuses to sell the gamble to Two for less than $.60. What Two
learns from One is that One judges the expected value of (R − α) to be negative

for prices α greater than $.40, whereas Two judges their expected loss to remain at
zero. Conversely, both Two and One judge One’s commitments to be non-negative
in expectation. So the outcome of the disagreement is that Two receives evidence
that they may be exposed to a loss whereas One receives no such evidence. This
difference in judgment between One and Two may be defensible if Forecaster Two
thought Forecaster One a fool or lacking information that Two had about rain to-
morrow in London, but these differences are explicitly ruled out by the conditions
of a peer disagreement.18 By remaining steadfast, then, Forecaster Two embraces
an exposed risk of loss that Forecaster One does not without having a countervail-
ing reason to persist in doing so.

The badness of such approach can be illuminated further by considering an-
other intuitive principle.

MINIMAL RISK OF REGRETTING (MRR): For a set of peers, P, each member
minimizes the risk of regretting upon engaging in one of the two types of trans-
actions described just in case each revises their lower and upper probabilities to
the group’s min buying price and max selling price, respectively, for a gamble
on A that pays $1 if A is true, $0 otherwise.19

18And the assumptions about a shared linear scale of value rule out differences in utility functions.
19The idea is partly inspired by Savage’s (1951) minimax regret criterion, Loomes & Sugden’s

regret theory (1982), and Filiz-Ozbay & Ozbay’s (2007) anticipated regret. One thing to keep in
mind here is that ‘regret’ is taken to be relative instead of absolute. If I agree to buy a gamble on a
proposition A at any amount of money, I may experience a feeling of regret if A is false given my
loss. The latter case is what I mean by absolute regret. I am instead considering a notion of regret
that is relative to the steps taken prior to learning whether a proposition is true or not, and those
steps are reflected upon after the fact, similar to the individual’s situation in the REGRET example.
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A ¬A

Steadfast (1− p) −p

SB Credence (1− P) −P

A ¬A

Steadfast (p− 1) p

SB Credence (P− 1) P

Table 3.4: Buy-side Payoffs (left) and Sell-side Payoffs (right)

To see why this principle is indeed reasonable, consider the following example.

REGRET: You are looking to purchase a new TV. In your mind, your max price

is $500. You and a friend go to a local electronics shop to look at TVs and you

come across a display with a nice, high-definition TV priced at $500. You and

your friend have similar knowledge about the model, but neither you nor your

friend know the competitive market price. You say, “I think it’s worth $500 and

I’m going to buy it.” Your friend, however, disagrees thinking that the price is

too high and that you could get it for a lower price elsewhere. They effectively

signal that you may end up paying too much for the TV. Ignoring your friend,

you buy the TV and walk out a happy customer. But your happiness is short-

lived, for when you get home, you check Amazon and find that the same TV is

selling for $400 with free next day shipping.

Excluding post-purchase rationalization of your consumer decision, you are
likely to experience a negative feeling of regret for buying the TV at the price you
considered acceptable prior to and after learning your friend’s opinion. Taking
your friend’s opinion under advisement instead may have saved you up to $100,
but the refusal to count their opinion as evidence against your own, and ultimately
persisting in maintaining your initial opinion, is directly linked to your suffering.
Analogously, the situation described corresponds to peers buying gambles on dis-
puted propositions, and of course, we can just as easily concoct a scenario for the
selling side, too, e.g. selling a used vehicle.

The point to be made is that remaining steadfast in the face of a peer disagree-
ment exposes one to a risk of regretting. To what degree? The maximal risk of
(relative) regret, r, one faces is the absolute difference of the group’s min buying
and max selling prices, i.e. |P−P|. If one has a non-extreme opinion p ∈ (P,P), the
non-maximal risk of regret on the buy-side is |p− P| and |p− P| on the sell-side.20

Upon |P − P| = 0, the group is not exposed to a risk of regretting, at least not to

the best of their knowledge. In case P 6= P for at least one A ∈ Θ, it is easy to

20Notice that any opinion taken to be a non-extreme weighted average has some exposure.
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see that members of the group may become exposed to a risk of regretting r, i.e.
|P(A)− P(A)| ≥ r > 0, when agreeing to buy or sell gambles on A. For what rea-
son would one embrace a non-zero risk of regretting, especially upon being tipped
off by a peer that one might be mistaken? I see no good reason at all.

Furthermore, the degree to which the steadfaster might end up regretting (in
a two-peer case) is made explicit in Table 3.4. Notice in the left table that p is
an individual’s initial fair price for a gamble on A that pays $1 if A is true and $0

otherwise. If p = P, then there is no difference between the rows. But if p 6= P, then
|p − P| > 0, and so one is exposed to a risk of regretting after consulting with the
group given a willingness to buy a gamble on A at their fair price p. In particular,
if one pays p for the gamble and A is true, then the gain (1 − p) is smaller than
(1−P), and ifA is false, the loss−p is bigger than−P. In comparison to one’s peer
who engaged in a similar transaction but for a price P, the buyer should experience
a negative feeling of regret. So, revising to the lower probability appears to be the
rational move here.

In addition, a similar argument can be made on behalf of the selling side. If an
individual’s selling price p = P, then there is no difference between the rows in the
right side of Table 3.4. But if the individual’s selling price p 6= P, then |p− P| > 0,
and so one is exposed to a risk of regretting after consulting with the group given
a willingness to sell a gamble on A for as little as p. In particular, if one sells the
gamble for a price p and A is true, then the loss (p− 1) is bigger than (P− 1), and
if A is false, the gain p is smaller than P. Likewise, the seller should experience a
negative feeling of regret, especially when comparing their behavior to their peers’
behavior given that the peers would not sell the gamble for less than P. So, revising
to the upper probability appears to be the rational move here.

As it should be clear now, it is rational on two further dimensions for peers
to adopt set-based credences in light of a peer disagreement: (1) to minimize a
potential feeling of regret and (2) to maximize potential gains while minimizing
potential losses. It is therefore irrational for peers to discount evidence indicating
that they may have mis-priced gambles on the proposition(s) in dispute as those
inclined persist in maintaining their originally held views.

3.3 Summary Thus Far

In Table 3.5, the results for each approach are given with respect to the desiderata
put forth in this chapter. Of course, the set of principles is not exhaustive, but the
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Reasonable Range Pres. Irrel. Evidence Min. Risk of Reg.

Equal Weight X X X
Steadfastness X X X
S-B Credences X X X

Table 3.5: Checklist

three constraints nevertheless are plausibly within the realm of what one should
consider desirable properties expected to be obtained by any strategy purporting to
resolve peer disagreements. Clearly, set-based credences fare well in comparison
to its rivals, equal weight and steadfastness, for they satisfy all the principles.

In review, set-based credences trivially satisfy the Reasonable Range princi-
ple in which the lower P and upper P are the minP and maxP relative to a set of
propositions Θ. They abide by the Preservation of Irrelevant Evidence (PIE) prin-
ciple when necessary. In particular, if two peers judge propositions A and B to be
stochastically independent and they maintain this judgment after resolving disputes
on each of these propositions, then P is an independent lower envelope in which A
and B are epistemically independent according to each p ∈ P. However, the PIE
principle’s caveat that no peer changes their mind about the irrelevance once the
disagreement becomes common knowledge does not require independence to be
maintained after resolving a peer disagreement, and this is a good thing provided
the instances when it is intuitive to break the consensus. So set-based credences
adhere to the PIE principle on the right occasions, but do not force unanimity when
there is genuine dispute over the epistemic relevance of propositions.

Set-based credences also obey the Minimal Risk of Regretting (MRR) princi-
ple given that a revision of each peer’s lower and upper probabilities to the group’s
min buying and max selling prices for gambles on the relevant propositions in dis-
pute minimizes the risk (at least to the best of the group’s knowledge). Any opinion
amounting to a proper subset P ⊂ [P,P] does not minimize the risk as much as set-
based credences. And so with the MRR principle on the table now, a set-based
credal approach is the dominating strategy covered in this chapter. Satisfying the
latter principle, at least to me, is one of the biggest advantages of the proposed ap-
proach, especially given the significant role that epistemic attitudes play in guiding
action. As Savage notes,

...it can be argued that all problems of statistics, including those of inference,
are problems of action, for to utter or publish any statement is, after all, to take
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a certain action. (1951, 55)

The point that Savage makes is that the epistemic realm is not cutoff or divorced
from the practical realm: the two work in tandem. So an evaluation of peer
disagreement-resolving strategies solely on epistemic merits is not well-grounded,
for the practical consequences of reasoning from such newly found credences are
non-negligible. Provided that a peer disagreement increases one’s uncertainty with
regard to the truth of a proposition, it is unwise to give a resolution that only takes
into account the evidential import while writing off the practical risks of reasoning
from increased uncertainty. The MRR principle is a safeguard against such neglect,
illuminating those strategies with exposure to risk and those without.

An additional bonus yielded by the proposed view is a unique set-based cre-
dence for all parties to a peer disagreement. So the proposal may be viewed as
embracing a central tenet of UNIQUENESS discussed earlier that reconciles a seem-
ingly intractable conflict over the nature of the evidence that a peer disagreement
generates. For those who prefer the tripartite view of believe, disbelieve, and sus-

pend judgment, the conciliatory response to suspend judgment still has its appeal.
But such response, given the limited options, forces an overestimation of the ev-
idence from a peer disagreement, leading to maximal uncertainty. On the other
hand, conciliatory Bayesians who restrict themselves to a single determinate prob-
ability measure interpret the evidence from a peer disagreement as being ameliorat-
ing. The set-based credence account embraces the insight from traditional suspen-
sion of judgment views that peer disagreements do not generate purely ameliorative
evidence.21 But unlike the naı̈ve suspension of judgment approach, the proposed
view preserves ranges of agreement and comparative judgments that are lost by
naı̈vely adopting a credence of 1/2 for representing maximal uncertainty. For those
who still have their doubts about numerical credences, whether precise or impre-
cise, a corresponding qualitative approach may be given, which I turn to next.

3.4 A Qualitative Account

An inclination towards the traditional, tripartite interpretation of belief remains
quite common, and in some cases, there is good reason for not parting ways. In
particular, talk of categorical or all-or-nothing belief plays a central role in ordi-

21Scott Sturgeon (2010) and Haenni et al. (2011) each consider interpreting the span between a
lower and upper probability the degree to which an agent suspends judgment.
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nary discourse since individuals very often admit only to either believing or not be-
lieving some proposition. The concept also plays an important part in heuristically
describing practical reasoning in the following form: ‘S desires x’, ‘S believes that
ϕ-ing will satisfy S’s desire’, ‘So, S ought to ϕ’ (Williams 1979). The familiarity of
categorical belief talk in explanations of practical reasoning makes the convention
difficult to eliminate from daily life. So why are we talking about credence, then?

Though I have no doubts about the conventionality of traditional belief talk, I
also have little doubt that pressing one harder will reveal more specific epistemic
attitudes. What I am getting at are comparative judgments. In serious discourse,
ordinary individuals tend to reveal their uncertainty after being interrogated, and
they make their position on some matter clear through comparisons of the relevant
possibilities. Some think of the attitudinal state in terms of comparative confi-

dence judgments (Hawthorne 2009; Fitelson ms.). As a representation of belief,
an ordinal, comparative confidence model finds a place between categorical belief
and numerical credence.22 Specifically, comparative confidence is more expressive
than categorical belief, yet it maintains a qualitative character, unlike the unrealistic
view that human agents have sharp numerical credences in their head.

On the issue of peer disagreement, some have returned to framing the problem
in the language of categorical belief to circumvent various issues with conciliatory
Bayesian views (Christensen 2011; Kelly 2013). A mere appeal to the fact that
ordinary people talk in terms of categorical belief, and thus their disagreements are
likely to be framed in the same way, may suffice as a reason for not acknowledging
the failures of conciliatory Bayes. In other words, if ordinary individuals are not
talking in terms of credences, why should we? But as Kelly (2011) argues, categor-
ical belief’s simplistic structure only admits to there being strong disagreements—
one believesX while another believes ¬X . However, disagreements are not always
in fact extreme. So it would be unreasonable to evaluate the problem in such simple
terms given the many disagreements that get excluded.

The back and forth oscillation in framing peer disagreements has mounted ten-
sion in choosing an appropriate interpretation of belief where categorical belief is
held to be too simple of a model for appropriately addressing the philosophical
problem, yet the alternative approach, i.e. numerical credences (precise or impre-
cise), expels a qualitative characterization of ordinary epistemic attitudes. Luckily,

22The idea very much resembles comparative probability (Keynes 1921; Koopman 1940; Savage
1954; de Finetti 1974), but I will leave it loosely associated with the term ‘confidence’ to avoid any
need to reduce the theory to additive probability.



3.4 A Qualitative Account 53

however, the tension can be somewhat alleviated by using a qualitative comparative
confidence model, which may also provide a viable response to Kelly’s argument
against a qualitative notion of belief.

In this section, I will adopt the language of relative likelihood, which yields a
comparative confidence model that retains gradability, but in qualitative terms. The
proposed framework will be nearly the same as described in Halpern (2003). In
relating set-based credences to comparative confidence judgments, we will see that
there are similar corresponding judgments. However, it is made clear that neither
set-based credal judgments nor comparative confidence judgments are defined by
the other due to the axioms of finitely additive probability conflicting with the rela-
tive likelihood constraints. Despite the misfortune, I briefly describe an alternative
account of possibility theory that coheres with relative likelihood and resembles
imprecise probability at least insofar as we are concerned.

To begin, let� be a relation on a finite set of possible worldsW that is reflexive

and transitive— that is, for all w ∈ W , w � w, and for all w,w′, w′′ ∈ W , if
w � w′ and w′ � w′′, then w � w′′. The relation � is a partial preorder as that
there may be at least two worlds, w and w′, that are not comparable: w 6� w′ and
w′ 6� w. In addition,� is not a partial order given that the relation is not necessarily
anti-symmetric (Halpern 2003, 45). Note, however, that � can be a total preorder
if all worlds are comparable, but it need not be total.23 Given these details, we will
regard a statement pw �S w

′ & w′ 6�S wq as expressing that world w is (strictly)
more likely than world w′ from the perspective of an individual S. A statement
pw �S w

′ & w′ �S wq expresses that worlds w and w′ are equally likely from the
perspective of an individual S. And a statement pw 6�S w

′ & w′ 6�S wq expresses
that worlds w and w′ are incomparable from the perspective of an individual S.24

So far, we have defined a partial (possibly total) preorder on a finite set of pos-
sible worldsW , but for the moment we are unable to say anything about comparing
subsets of W , i.e. propositions. To accommodate propositions, we introduce a re-
lation �p on 2W (where p stands for propositions). In comparing sets of possible
worlds or propositions, an individual S regards a proposition X at least as likely
as a proposition Y , i.e. X �p

S Y , just in case for all w ∈ Y , there is at least one
w′ ∈ X such that w′ �S w. If pw′ �S w & w 6�S w

′q for some w′ ∈ X and all

23In such case, reflexivity is superseded by completeness, which says that all worlds w,w′ ∈ W
are comparable—that is, either w � w′ or w′ � w (see Hawthorne 2009).

24Usually, � is used for representing instances of strict confidence and ∼ for instances of equiv-
alence, but I will maintain use of the single relation � throughout and write out the longhand
expressions when called for.
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w ∈ Y , it follows that X �p
S Y but Y 6�p

S X . In that instance, S regards X to be
(strictly) more likely than Y . On the other hand, if for all w′ ∈ X and all w ∈ Y it
is neither true that pw′ �S w & w 6�S w

′q nor pw � w′ & w′ 6� wq, then X �p
S Y

and Y �p
S X . In that instance, S regards X and Y to be equally likely.

Moreover, the relation �p is an extension of � and abides by the following
constraints.

• If X ⊆ Y , then Y �p X (Respect for Subsets).

• For all finite index sets I , if X �p Yi for all i ∈ I , then X �p ∪iYi (Union

Property).

• If X �p {w′}, there is a w ∈ X such that {w} �p {w′} (Determination by

Singletons).

• � 6�p X where X 6= � (Conservativity).

Some of the constraints should be intuitive. For example, Respect for Subsets says
that a set is at least as likely as any of its subsets. Conservativity is fairly straight-
forward, too, as it implies that non-empty sets should be considered possible. The
other two constraints may be unfamiliar and seem a bit strange. The Union Prop-
erty states that if some set X is at least as likely as all other considered sets Yi, then
X is at least as likely as the union of all other considered sets Yi. The Determina-
tion by Singletons constraint states that a setX is at least as likely as a singleton set
{w′} if a singleton subset ofX is at least as likely as {w′} (ibid. 46). As advertised,
the likelihood of propositions is determined purely by singleton sets.25

Furthermore, the Union Property and Determination by Singletons yield a
qualitative property if �p is total. A relation �p is qualitative just in case for
disjoint sets X1, X2, and X3, if (X1 ∪ X2) �p X3 and (X1 ∪ X3) �p X2, then
X1 �p (X2 ∪ X3). Essentially, the bulk of ‘likeliness’ is placed on X1 if �p

is qualitative, and the property happens to nicely accord with the intuitive notion
of ‘qualitative’ belief in that a qualitative belief places most confidence in some

25The Union Property is contentious for those who have probability on the mind since it does not
necessarily hold in classical probability theory. For instance, suppose that W = {w1, w2, w3} and
p({w1}) = 0.45, p({w2}) = 0.25, and p({w3}) = 0.30. It is clear, on a probabilistic interpretation
of �p, that {w1} �p {w2} and {w1} �p {w3}, but {w1} 6�p ({w2} ∪ {w3}). Additivity of
probability measures prevents the singleton, {w1}, from being at least as likely as the union of
remaining singleton sets in the example, and so it turns out that the Union Property is not consistent
with finite additivity. Thus, we encounter a problem in reducing �p to probability.
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proposition while relatively less confidence in logically incompatible propositions.
But note that even if�p is total, the relation is not necessarily qualitative (ibid. 47).

With the relevant details for modeling comparative confidence judgments laid
out, we now turn to peer disagreement. In making things simple, consider a vari-
ation of the rain example where the set of propositions in which our peers, Fore-
caster One and Forecaster Two, are opinionated is A = {>, R,¬R,⊥}. To model
our peers’ judgments, let �p

1 and �p
2 represent the relative likelihood relations of

forecasters One and Two, respectively. Following the original example, One is
pessimistic about rain in London tomorrow while Two is optimistic. It is obvious,
then, that each hold at least the following judgments:

One: ¬R �p
1 R & R 6�p

1 ¬R || R �p
1 ⊥ & ⊥ 6�p

1 R || > �p
1 ¬R &

¬R 6�p
1 >.

Two: R �p
2 ¬R & ¬R 6�p

2 R || ¬R �p
2 ⊥ & ⊥ 6�p

2 ¬R || > �p
2 R &

R 6�p
2 >.

A disagreement manifest simply by ¬R �p
1 R & R 6�p

1 ¬R and R �p
2 ¬R &

¬R 6�p
2 R—that is, One regards no rain in London to be more likely than rain, while

Two regards rain in London tomorrow to be more likely than no rain. Both, how-
ever, are in agreement that neither of the propositions are logical falsehoods pro-
vided that One judges that R �p

1 ⊥ & ⊥ 6�p
1 R (and given ¬R �p

1 R & R 6�p
1 ¬R,

then ¬R �p
1 ⊥ & ⊥ 6�p

1 ¬R by transitivity) and Two judges that ¬R �p
2 ⊥ &

⊥ 6�p
2 ¬R (and given R �p

2 ¬R & ¬R 6�p
2 R, then R �p

2 ⊥ & ⊥ 6�p
2 R by transitiv-

ity). Thus, the collections of judgments manage to capture the peers’ “qualitative”
uncertainty, yet they are expressive enough to capture strength in confidence in the
propositions.

The upshot of the relative likelihood model is that it preserves points of agree-
ment from a coarse-grained perspective even when there is an underlying fine-
grained dispute. The Bayesian suspension model is not so fortunate. Specifically,
imagine from a fine-grained perspective that a dispute occurs between One and
Two over R, and we model the dispute with precise probabilities. For instance,
suppose that p1(R) = 0.9 and p2(R) = 0.85. A suspension view entails a belief re-
vision yielding p1(R) = p2(R) = 0.5. That response is absurd, however, given the
expression of high confidence in R by both peers. From a coarse-grained perspec-
tive, the peers are in agreement. The agreement can be easily shown in the model
for relative likelihood: R �p

1 ¬R & ¬R 6�p
1 R and R �p

2 ¬R & ¬R 6�p
2 R. Or
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we might define a collective judgment. Let �p
G be a collective, relative likelihood

relation for a group G. In the above case, R �p
G ¬R & ¬R 6�p

G R.
Although a categorical approach is not bound to run afoul like the Bayesian

suspension approach provided that one might insist that both peers flat-out believe
R, and therefore they are in agreement, the categorical model does not have enough
structure to satisfactorily capture an individual’s epistemic attitudes when the set
of logically incompatible propositions has cardinality greater than two with respect
to contingent propositions, e.g. {A,B,C,D}. In such case, the categorical model
requires an individual to either believe one proposition in the set while disbelieving
all the others or suspend judgment on every proposition. But this representation is
not very informative. Using relative likelihood, on the other hand, we are able to at
least provide a partial if not total preorder on the set of propositions, thereby leading
to a more informative representation. So a comparative confidence model resolves
the mounted tension with choosing a model of belief in the effort of framing peer
disagreements, that is, if one considers there to be a tension at all.

Where do set-based credences fit in? Set-based credences appear to correspond
with relative likelihood similar to precise credences. In the special case where
P = {p}, the model reduces to classical Bayes, and corresponding representations
in relative likelihood are constructed accordingly.26 If, however, P is not a singleton
set, then for all propositions X , Y ∈ 2W , judgments like pX �p Y & Y 6�p Xq

correspond to set-based credences if and only if P(X) > P(Y ). This should be
intuitive, for regarding X to be (strictly) more likely than Y requires a minimum
credence in X to be greater than the maximum credence in Y . As for indifference,
judgments like pX �p Y & Y �p Xq correspond to set-based credal judgments
if and only if P(X) = P(Y )—that is, X and Y have the same lower and upper
probabilities induced by P.27 Again, this should be rather intuitive.

Distinct from the Bayesian model, though, there are instances involving in-
comparable propositions in credence and relative likelihood alike. If set-based cre-
dences in X and Y overlap, i.e. neither strictly dominates or one properly contains
the other, then the propositions X and Y are incomparable in which case X 6�p Y

and Y 6�p X . Fortunately for us, as defined above, a total preorder on sets of
propositions is not mandated, only a partial preorder. So correspondence between
imprecise probability and relative likelihood is not lost upon finding incomparable

26Note that correspondence does not entail equivalence. See footnote 25 demonstrating that
relative likelihood is not reducible to probability.

27Note that P(X) and P(Y ) might differ structurally, which may not be straightfowardly recog-
nized in the relative likelihood model.
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sets. With that said, I want to emphasize that I am not advocating a reduction of
any kind here, which I will explain why in a moment, but merely pointing out that
in many cases, there are seemingly corresponding judgments between models.

A limitation on the theory of relative likelihood lies with comparative judg-
ments, as represented by a partial preorder, not being reducible to credences (pre-
cise or imprecise). As already noted in footnote 25, the finite additivity constraint
in classical probability theory is inconsistent with the Union Property. And given
that any non-empty set, P, is comprised of additive probability measures, then set-
based credences do not necessarily satisfy the Union Property. The irreducibility
of relative likelihood to probability is not so much a problem in simple cases of
peer disagreement, though, for in many instances there are seemingly correspond-
ing judgments. But if one is interested in the determination of credence rather than
mere correspondence between different models, then one may find possibility the-
ory (DuBois & Prade 1988) to be a better option over imprecise probability, which
similarly captures the imprecision in belief expressed by set-based credences.

In possibility theory, we introduce an underlying, real-valued possibility dis-
tribution over a finite set of possible worlds W . The function π : W → [0, 1] is a
mapping fromW to the unit interval [0, 1], and at least onew ∈ W is assigned max-
imum possibility, i.e. π(w) = 1. With an underlying possibility distribution, we
are able to construct a possibility measure Π : 2W → R for sets of possible worlds,
i.e. propositions, that maps W to 1 and � to 0. For all other propositions X ∈ 2W ,
their degree of possibility is Π(X) = supw∈X π(w). An epistemic interpretation
given to Π yields a degree of possibility for a proposition, from an individual S’s
perspective, ranging from 0, i.e. impossible, to 1, i.e. maximally possible.

Similar to imprecise probability, the credal model is bounded where Π is the
upper bound or maximal degree of credence in a proposition X . Like upper proba-
bility P, Π defines a conjugate lower bound, N : 2W → R, the necessity measure.
The necessity measure indicates, like its name suggests, how necessary or epistem-
ically supported a proposition is whereW is completely necessary or supported, i.e
1, and � is completely unnecessary or impossible, i.e. 0. For all other propositions
X ∈ 2W , their degree of necessity is N (X) = infw∈X π(x). Together with Π, a
necessity measure provides a representation of imprecise belief when N 6= Π.

A significant difference between possibility theory and probability theory re-
sides in the definition for the possibility of the union of logically incompatible
propositions. Specifically, Π(X ∪ Y ) = max{Π(X),Π(Y )} (Maxitivity). Notice
that for a finite W , Π(X) = maxw∈Xπ(w) and Π(Y ) = maxw∈Y π(w) for any
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X, Y ∈ 2W . For all finite index sets I , if Π(X) ≥ Π(Yi) for all i ∈ I , then
Π(X) ≥ Π(∪iYi). This is not hard to show. Suppose that Π(X) ≥ Π(Yi) for all
i ∈ I . Since Π(∪iYi) = max{Π(Yi)} for all i ∈ I and assuming there is no Y
such that Π(Y ) > Π(X), then Π(X) ≥ Π(∪iYi). As a result of this, Π obeys an
analogue to the Union Property. Relatedly, if Π(X) ≥ Π({w}), then it must be the
case that there is a world w′ ∈ X such that π(w′) ≥ π(w), otherwise Π(X) would
not be at least as great as Π({w}). Thus, Π obeys an analogue to Determination by
Singletons. As it turns out, relative likelihood reduces to possibility theory, at least
when W is assumed to be finite.28

In case one is interested in a unified theory bringing together fine-grained judg-
ments and equivalent relative likelihood judgments, then possibility theory is a
more suitable framework for modeling credence.29 Furthermore, the close resem-
blance to imprecise probability allows for the same conceptual advantages of set-
based credences to be had, namely the representation of increased uncertainty, at
least with respect to disagreement. Possibility measures may also satisfy the pro-
posed desiderata in the earlier sections if epistemic peers respond to a disagreement
by adopting the min and max necessity and possibility measures, respectively, rel-
ative to a group of peers, P. Of course, there is much more work to be done, which
would be quite interesting, but such work is beyond the scope of this discussion.

However, we might make a few naı̈ve observations without going into too much
detail. A possibility approach will satisfy the Reasonable Range principle. Possi-
bility measures also satisfy the Minimal Risk of Regretting principle if the group’s
min and max are adopted and treated as betting rates for gambles. The PIE prin-
ciple, however, is a little more controversial since independence is a complicated
notion in possibility theory. Like imprecise probability, conditional independence
is not necessarily symmetric, where symmetry is reserved for epistemic indepen-
dence, which is not the same as stochastic independence. With some fancy foot-
work, though, like in the earlier discussion on parametrizing P, the PIE principle
may be said to be satisfied on the occasions when all members of a group initially
agree that some propositions are independent and maintain the judgment through-
out. Based on these naı̈ve observations, it looks like possibility theory is a potential
option for modeling a resolution to peer disagreements, too.

28I leave it to the reader to uncover analogues for the other two constraints.
29My own preference is toward set-based credences, at least insofar as peer disagreement is con-

cerned, but for those who want to retain a qualitative image in addition to a fine-grained credal
picture, relative likelihood and possibility theory is a viable approach, especially since the two
frameworks can be unified, which leads to a comprehensive theory.



Chapter 4

Complete Ignorance in Imprecise
Probability Theory

In a series of papers, John Norton (2007a, 2007b, 2008, 2010), a notable critic of
the Bayesian program, has adamantly argued that the probability calculus is insuf-
ficient for modeling epistemic states, and as a result Bayesian epistemology turns
out to be a failed attempt. One issue with a Bayesian theory in particular is that
it is not fully encompassing of the possible epistemic states one might experience
as it cannot capture the unique state of complete ignorance. According to Norton,
this is because a probability measure generally fails to satisfy a desirable duality
principle regarding invariance in belief and disbelief.

While an omission of ignorance from a Bayesian representation of an individ-
ual’s epistemic attitudes poses a significant problem, those willing to deviate from
the classical framework might insist instead that imprecise probability provides a
better representation of epistemic states including states of ignorance (partial or
complete).1 Imprecise probability after all aims at modeling a wider range of be-
lief states. However, Norton is unmoved by this alternative strategy of generalizing
Bayes with sets of probability measures, for he claims there are many self-dual sets,
but it remains unclear which set non-trivially captures the unique epistemic state.

Although I am sympathetic towards his contentions with classical Bayesian
approaches, I beg to differ on the charge against imprecise probability. While
it is not my intention to give a complete philosophical defense for a generalized
Bayesian epistemology (see Joyce 2010), my aim in this chapter is to provide par-
tial support for such a theory, at least in regard to having the ability to represent

1See Benétreau-Dupin (2015) for a recent account.
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complete ignorance. The strategy for addressing Norton’s contentions begins with
equating the unique epistemic state with a vacuous prior, i.e. {0, 1}. I then go
on to systematically demonstrate that the representation trivially satisfies a cen-
tral desideratum regarding duality, particularly through conjugacy relations held
between lower and upper probability. However, these details alone are seemingly
not enough to convince him, for Norton suggests that imprecise probability faces a
problem of interpretation. After the discussion on the formal proposal, I show how
one might interpret the representation, highlighting similarities with three-valued
logics and Norton’s envisaged logic of belief. I then provide what I find to be a
more compelling interpretation of the {0, 1} model through the theory of coherent
lower previsions, which dispenses with belief and disbelief talk.

Of course, I am not the first to propose the {0, 1} model as a representation
of ignorance (see Walley 1991). Once the representation of belief is extended to
sets of probability measures, it is quite natural for one to think about the state of
complete ignorance in terms of vacuous priors. However, those familiar with the
statistical and philosophical literature on imprecise probability know that the trivial
model of uncertainty is not widely adopted, mainly because of a lurking problem
associated with it. In particular, the adoption of vacuous priors exposes an indi-
vidual to the problem of belief inertia (Walley 1991; Joyce 2010; Rinard 2013;
Bradley 2014). To simply describe the problem, vacuous priors yield vacuous pos-
teriors, and thus learning becomes impossible. If this challenge is left unresolved,
then all of the effort put forth in representing complete ignorance with a vacuous
prior is for nothing provided that the proposed account condemns an individual to
an eternal state of complete ignorance.

To resolve the inductive learning problem, I propose an alternative updating
method of credal set replacement towards the end of the chapter. But before re-
vealing the magician’s secret, let us first turn our attention to what started this
whole investigation in the first place. In particular, let me motivate the challenge of
representing complete ignorance probabilistically through a reconstruction of Nor-
ton’s systematic arguments against a Bayesian epistemology, supplementing the
arguments here and there.

4.1 Exiling Ignorance

Central to his complaint against Bayesian epistemology, Norton (2007a) claims
that any formal theory of belief (and disbelief) should be self-dual, but a theory of
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additive measures obeying Kolmogorov’s axioms (1933/1956) is not self-dual.2 In
explicating the charge against a Bayesian theory of belief, we begin with the stip-
ulation that an additive measure m representing belief has a dual additive measure
M representing disbelief. Analogous to Boolean algebra, disbelief is the dual of
belief similar to how False (0) is the dual of True (1). Unlike Boolean algebra,
however, the additive measures are not exchangeable in a similar way the pair of
Boolean operators ∧ and ∨ and the pair of values 0 and 1 are exchangeable with
one another, respectively, while still obeying the axioms of the algebra. In a theory
of additive measures including the dual M , the dual measure maps back axioms
that are entirely foreign to probability theory. To see this, let us first state some
relational properties of these additive measures.

As Norton shows, there is a one-to-one correspondence betweenM andmwith
respect to a pair of contingent propositions A and ¬A,

m(A)→M(A) = m(¬A), M(A)→ m(A) = M(¬A). (4.1)

Supposing that m is a probability measure, the axioms of finitely additive proba-
bility imply that m(A) = 1−m(¬A) and m(¬A) = 1−m(A), which induce dual
measurements M(A) = 1−M(¬A) and M(¬A) = 1−M(A). The additive mea-
sure m, and subsequently the dual additive measure M , span the range from 0 to 1

with any high degree of belief in A yielded by m entailing a low degree of disbelief
in A yielded by M . For example, if m(A) = 1, then m(¬A) = 0. We derive from
(4.1) the dual measurements, M(A) = m(¬A) = 0 and M(¬A) = m(A) = 1. In
this particular instance, there is an absence of disbelief in A and complete disbelief

in ¬A. The reciprocity of decreasing disbelief in A to increasing disbelief in ¬A is
a consequence of the additivity of the dual measure (2007a, 247).

The example just described suffices to show that the theory of additive mea-
sures is not self-dual for the reason that the axioms of finitely additive probability
are not obeyed by the dual measure M , but instead, the dual measure obeys the
following axioms:

(M1) M(W ) = 0 for a finite set of worlds W ;

(M2) M(A) ≥ 0 for all A ∈ F over W ;

(M3) M(A ∧B) = M(A) +M(B) if A ∧B = ⊥.3 (see 2007a, 234)

2For our purposes, we restrict ourselves to finite additivity.
3Like in the previous chapter, I will abuse notation by writing expressions like A ∧B, which is
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The unfamiliar axioms are sensible if M is interpreted as a measure of the strength

of disbelief in propositions. Axiom M1 says that there should always be an absence
of disbelief in logical truths and consequently there should always be full disbelief
in logical falsehoods, i.e. M(⊥) = 1. Axiom M2 is straightforward and is equiv-
alent to the non-negativity axiom of standard probability. Axiom M3 implies that
disbelief does not decrease upon conjoining logically incompatible propositions.

By quick observation, we find that the peculiar axioms M1-M3 are jointly in-
consistent with the finite probability axioms and thus the set of dual axioms lies
beyond the axiomatic system of standard probability theory. As a consequence, a
theory of additive measures representing belief and disbelief is not self-dual. The
lack of self-duality poses a problem for Bayesian epistemology since a plausible
representation of belief ought to respect interchangeability with its dual of disbelief,
at least on Norton’s view, just the same as True (1) respects it interchangeability
with its dual False (0) in Boolean algebra.

Moreover, the Bayesian faces a further problem arising from a lack of self-
duality, namely the inability to represent complete ignorance provided that mea-
sures m and M only yield degrees of belief and disbelief by their additivity, which
subsequently sends ignorance into exile. Although not entirely explicit, Norton’s
claim is true if complete ignorance is reasonably assumed to be represented by a
low value i ∈ (0, 1). I say ‘reasonably assumed’ here since a mid or high value
would conflict with the very notion of ignorance if m is an increasing function
representing the strength of belief. At this juncture, though, it is hard to identify a
value that i could take on for i ≈ 0 implies nearly complete disbelief in a proposi-
tion. The only way to strike a balance between belief and disbelief in propositions
A and ¬A is by assigning each proposition a value i = 1/2, but again, i cannot be
1/2 as such value indicates a high grade of belief in m’s range. We thus encounter a
technical difficulty in defining i.

The problem is actually more troubling than it may seem given the formal
assumptions held with respect to m and M . In particular, it turns out to be
impossible to give a representation of complete ignorance relative to some con-
tingent propositions A and ¬A if an ignorance value i < 1/2 is uniformly as-
signed. We would end up with m(A ∨ ¬A) = 1 > m(A) + m(¬A) and
M(A ∧ ¬A) = 1 < M(A) + M(¬A), where the former statement is inconsis-

short hand for [[A ∧ B]]M := [[A]]M ∩ [[B]]M where M is a probability structure. As a reminder to
the reader, a probability structure is a model M = (W,F ,m, V ) where V is an interpretation for
a propositional language L that associates all worlds w and primitive propositions X with a truth
assignment such that for any world w and primitive proposition X , V (w,X) = 1 of V (w,X) = 0.
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tent with the finite probability axioms and the latter statement is inconsistent with
the mirroring axioms. In order for the measures to satisfy the respective set of
axioms, some i < 1/2 may be assigned to A (or ¬A), but then so must 1 − i be
assigned to ¬A (or A), which entails that a more favorable degree of belief is given
to ¬A (or A) and a more favorable degree of disbelief is given to A (or ¬A). While
the latter is necessarily required by the simple mathematical systems, the additivity
property of both m and M precludes a representation of complete ignorance (or in
the confirmational sense, neutral support).

Elsewhere, Norton (2008) has stipulated that a proper representation of com-
plete ignorance should preserve what he calls invariance under negation—that is,
there is no disproportional support (or belief) for a contingent proposition A over
¬A or vice versa. But as we saw above, probability measures cannot satisfy the cri-
terion if the numerical value representing ignorance is assumed to be a low value
in (0, 1). So the representation of complete ignorance with additive measures does
not satisfy the following desideratum.

SELF-DUALITY FOR COMPLETE IGNORANCE (SD): An epistemic state of
complete ignorance is invariant in its contingent propositions under the dual
map given by [(4.1)]—that is, the epistemic state is self-dual in its contingent
propositions, so that m(A) = M(A) = m(¬A) for all contingent A. (2007a,
247)

If (SD) is a required constraint on a formal representation of complete ignorance,
the immediate thought that comes to mind is to abandon the idea that there is some
low, fixed ignorance value i and instead adopt the principle of indifference (Keynes
1921), for in the simple case of contingent propositions A and ¬A, the principle
entails equivalence: m(A) = M(A) = m(¬A). Intuitively, the principle of indif-
ference is the seemingly natural way of representing a lack of belief by m, relative
to contingent propositions A and ¬A. And so it appears that a Bayesian theory is
able to satisfy (SD) after all upon supplementing with the principle of indifference.

Not so fast. Norton has stirred up trouble for this maneuver and suggests that
the principle of indifference faces difficulty in providing a viable representation of
the epistemic state sought. For one thing, he points out that the additivity of prob-
ability measures gives rise to the long-standing principle of indifference paradoxes
(e.g. Keynes’ countryman, Bertrand’s paradox, von Mises’ wine-water paradox).
He insists that representing belief with a non-additive measure instead may resolve
the paradoxes of indifference (see Norton (2008) for further details on his analysis
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of the paradoxes, which I will leave to the reader).
A further issue with the principle of indifference is that a uniform prior fails

to distinguish between disbelief and ignorance upon considering a fine-grained set
of logically incompatible propositions with cardinality n and n > 2 (Norton 2010,
504). To see this, consider a set of propositions {A1, A2, ..., An} with each propo-
sition Ai denoting a singleton set {w} for all corresponding worlds w in a finite
W . Additivity normalizes the marginal probabilities to unity:

∑
{w}⊂W p({w}) =

p(W ) = 1. But additivity implies that the equal probabilities assigned to singleton
sets {w1}, {w2} ,..., {wn} approach 0 as n increases, which, by the argument from
above, entails that the attitude toward each proposition is on the side of disbelief
given the dual additive measure—that is,M(Ai) = 1−1/n > 1/n = m(Ai) if n > 2.
So the indifference device fails to distinguish between ignorance and disbelief.

Let me demonstrate the point through an example. In a simple case where an
individual considers only contingent propositions A and ¬A, ‘¬A’ is typically re-
garded as the “catch-all” term, which is the set of worlds not in [[A]]. Now, consider
throwing a normal die. Only one of the six sides of the die will show face-up,
and so we can reasonably say that there are six possible worlds. If we consider
the proposition that an even number will come up on a random throw, call it E,
assign to it probability p(E) = p({w2, w4, w6}) = 1/2. The opposite in this case is
¬E = {w1, w3, w5} and the proposition is also assigned probability 1/2. It appears
that we have a case of complete ignorance regarding the propositions E and ¬E
based on there being equal support for and against each proposition.

Suppose instead that we consider a different set of propositions {A,B,C}
relative to the same set of worlds such that A = {w1, w2}, B = {w3, w4}, and
C = {w5, w6}. We abide by the principle of indifference and so each proposition
is assigned probability 1/3. With a focus on any single proposition in the set, the
the dual measurment is (1 − 1/3) > 1/2. Specifically, M(A) = 2/3, M(B) = 2/3,
and M(C) = 2/3. The difference between the two cases described is that the equal
probabilities assigned by m in the latter case yield fairly high degrees of disbelief
by the dual measure M , whereas in the former instance there is equal belief and
disbelief provided that m(E) = M(E) = m(¬E) = 1/2. The point to be made
is that the principle of indifference is not always a principle of indifference, but
sometimes it is a principle of (uniform) disbelief, at least in a theory that invokes
an additive measure m and its dual additive measure M .

Since there can be any number of logically incompatible propositions or hy-
potheses (possibly infinite) to be considered when performing an experiment, the
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number of propositions in a set under consideration may often exceed two. By en-
tertaining a set of logically incompatible propositions whose number of elements
is greater than two, the principle of indifference implies that p(A) = 1/n for all
A in the set and 1/n < 1/2. It follows from a theory of belief and dual disbelief
measures that each proposition is disbelieved to a specific degree rather than being
epistemically neutral, which is illustrated through the dual measurements.

The problems discussed in this section, I think, pose a serious challenge for
Bayesians in attempting to capture a state of complete ignorance. It is quite unfor-
tunate that belief and dual disbelief measures banish ignorance from the kingdom
of probability, but apparently, there is not much one can do given the additivity
requirement, which is unable to be straightforwardly abandoned. An alternative
strategy to circumvent the issue is to look beyond classical probability and turn to
a more expressive framework for modeling belief, which we turn to next.

4.2 Vacuous Priors

Retreating from a Bayesian approach to representing complete ignorance, we con-
sider a less-than-conventional method of imprecise probability here. The idea is to
capture one’s ignorance through a set of probabilities. But this attempt is also un-
satisfying from Norton’s perspective. Generally speaking, sets of probability mea-
sures violate (SD). However, there are some sets that satisfy the desideratum, and
one in particular that I think is a viable candidate. In what is to follow, I propose
a specific, though obvious, approach and demonstrate that imprecise probability
provides a proper representation of complete ignorance after all. But before we
get to the positive account, let us consider Norton’s contention with the proposed
method. Here is one passage illuminating a central concern.

Let the set of measures {mi}, where i varies over some index set, be a candidate
representation of complete ignorance. Under the dual map given by [(4.1)] this
set is not mapped back to itself. Instead it is mapped to the corresponding set
of additive dual measures {Mi}. That is, a set of additive measures fails to be
self-dual, whether the set is convex or not. (2007a, 248)

From this passage, perhaps we should be skeptical as to whether imprecise
probability can adequately represent ignorance given the violation of the duality
principle. Let us make Norton’s point vivid with a non-convex set of probabil-
ity measures {p1, p2} whose numerical values for some contingent proposition A
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we suppose are {0.33, 0.55}. The formula for determining the dual measure from
above is applied to each individual probability measure yielding a set of dual mea-
sures {M1,M2} with values {0.67, 0.45}, i.e. M1 = 1 − p1 and M2 = 1 − p2.
Notice in this example that the set of additive probability measures is not self-dual.

Despite the many sets of additive measures failing to be self-dual, implying
that imprecise probability theory is not self-dual, we do get the following acknowl-
edgment from Norton of there being sets that are indeed self-dual.

While sets of additive measures are not self-dual, we can readily define sets
of measures that are self-dual. The simplest is just the set consisting of some
additive measure m and its dual M, that is {m, M}...Clearly many such sets are
possible. (2007a, 248)

Norton, however, is not convinced that a subclass of probability sets obtaining the
property of self-duality is good enough for modeling ignorance with imprecise
probability, mainly because self-duality alone does not determine the correct set
(and dual set) that uniquely represents the epistemic state of complete ignorance.

However, it seems that he has overlooked what is seemingly the most plausible
set capturing the unique state, namely a vacuous prior, {0, 1}, where the upper
bound is the dual of the lower bound and the lower the dual of the upper. Although
this suggestion may be intuitive to some, the model has very little appeal from
Norton’s perspective. One reason that will be touched on later is that he finds there
to be a difficulty in interpreting sets of probabilities, but more on this contention in
the coming sections. For the moment, I only wish to claim that the duality principle
is satisfied by the {0, 1} model.

How exactly does {0, 1} as a representation of the epistemic state satisfy the
(SD) desideratum? To illustrate, let us define a finite lower probability structure
(W,F ,P,P, V ), in relation to a propositional language L, whereW is a finite set of
worlds, F is an algebra over W , P is a non-empty set of probability measures (not
necessarily convex) with each measure defined on F , and P is a special functional
representing lower probability that is inf{p(A) : p ∈ P}. For propositions A and
¬A that partitionW such that neither proposition is equal toW nor⊥, suppose that
the lower probability, relative to P, for each proposition is the smallest admissible
value, i.e. P(A) = 0 and P(¬A) = 0. Accordingly, these values imply complete
disbelief in each of the propositions based on the earlier discussion, but one need
not to worry as we only have a partial picture at this point.

Uncovering the rest, we look to the conjugacy relations of lower and upper
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probabilities, i.e. P(A) = 1 − P(¬A) and P(A) = 1 − P(¬A), where P represents
upper probability, which is sup{p(A) : p ∈ P}. Through conjugacy, we automat-
ically obtain upper bounds, P(A) = 1 and P(¬A) = 1, which these values imply
complete belief in each of the propositions given the earlier discussion. The set
of probabilities, P, assigned to A is thus P(A) = {P(A), P(A)} = {0, 1}.4 Let
M(A) be the dual set of P(A), which, if decomposed, is the set {M(A),M(¬A)}
containing each individual dual measure of each probability measure of P(A). Ac-
cordingly,M(A) = P(¬A) = {P(¬A), P(¬A)} = {0, 1}. Thus, the values con-
tained in P(A) are equivalent to those ofM(A). We now have the full picture of
an individual’s state of complete ignorance regarding the contingent propositions
A and ¬A, clearly indicating that the individual is entirely un-opinionated on the
matter, which is consistent with the very idea of complete ignorance.

Provided the analysis so far, a lower probability P and its conjugate upper prob-
ability P are important features to the demonstration, and imprecise probability
theory in general. The special functionals P and P are non-additive in the way that
additivity is understood in classical probability—the property that Norton takes se-
rious issue with. Rather, P is super-additive and P is sub-additive. This is made
obvious upon summing the lower and upper probabilities for A and ¬A, yield-
ing P(A) + P(¬A) = 0 and P(A) + P(¬A) = 2, whereas P(A ∨ ¬A) = 1 and
P(A ∨ ¬A) = 1, for it is certain that one of the propositions is true. The upshot of
non-additivity with respect to P is that assigning probability zero to both A and ¬A
is possible. The rest of the epistemic picture is then easily uncovered. Specifically,
if the infimum probability for both A and ¬A is 0, then the supremum probability
for each proposition is necessarily 1 as determined by the conjugacy relations.

To summarize the formal argument for the {0, 1} ignorance model thus far,
the first condition to be met for ensuring duality is that each contingent propo-
sition in {A,¬A} obtains a lower probability 0. Then, we stipulate that M is
the dual set or mirror image of P. Through the conjugacy relations of lower
and upper probability for contingent propositions A and ¬A, P satisfies (SD):
P(A) = M(A) = P(¬A) = {0, 1}. That is to say that P here is self-dual as it
fulfills the invariance under negation condition. Without mandating convexity, it is
actually P = 0 for both A and ¬A that (trivially) satisfies (SD) given that the lower
probability automatically defines a conjugate upper P = 1. Thus, the base, P, is set

4The set is not convex. If it were, then for any probability p ∈ [0, 1], 1− p also lies in the linear
span—that is, for each real-valued function in the convex hull, its dual is also in the space. It follows
that the dual of every measure p is in the closed, convex set [0, 1]. I will not assume convexity as a
necessary requirement, however, since it can lead to unintuitive consequences.
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of probabilities equivalent to its dual set for propositions A and ¬A.
The point generalizes to n logically incompatible propositions where 2 <

n < ∞. Let Θn = {A1, A2, ..., An} be a fine-grained partition of a finite set
of worlds W . Suppose that the supremum probability measure for all propo-
sitions in Θn is equal to 1.5 We automatically obtain an infimum probability
of 0 through conjugacy for each proposition in Θn. So, P(A1) = P(A2) =

, ...,= P(An) = M(A1) = M(A2) =, ...,= M(An) = P(¬A1) = P(¬A2) =

, ...,= P(¬An) = {0, 1}. To show that this is the case, let there be a set of
probability distributions Pn = {p1, p2, ..., pn} such that p1 assigns probability
1 to A1 ∈ Θn, p2 assigns probability 1 to A2 ∈ Θn,..., pn assigns probabil-
ity 1 to An ∈ Θn. Notice that p1(A1) = p2(A2) =, ...,= pn(An) = 1 im-
plying that M1(A1) = M2(A2) =, ...,= Mn(An) = 0. Next, observe that
for i, j, k = 1, 2, 3, ..., n and epistemic state P determined by P and P, we have
P(Ai) = inf Pn(Ai) = pj(Ai) and P(Ai) = supPn(Ai) = pk(Ai) and j 6= k, rela-
tive to the set of probability distributions Pn. With no other distributions specified
in the set Pn, then P(Ai) = {P(Ai),P(Ai)} = {0, 1} for all Ai ∈ Θn. Accordingly,
the dual set M(Ai) = {M(Ai),M(Ai)} = {0, 1} for all Ai ∈ Θn. Therefore, P
here satisfies (SD) with respect to Θn. In this case, it is actually P = 1 for all
Ai ∈ Θn that (trivially) satisfies (SD) with respect to the set of n logically incom-
patible propositions under consideration.

From the discussion just had, we see that the imprecise probability approach
maintains a distinction between ignorance and disbelief in addition to fulfilling the
duality principle, unlike Bayesian approaches. So there are two conclusions we
may draw: (i) imprecise probability has more expressive capabilities with respect
to epistemology than Bayes and (ii) Norton’s proposed desideratum is satisfied by
the selected model. The latter does not seal the deal by Norton’s lights, however,
since he claims that the representation gives rise to a muddied interpretation.

4.2.1 Interpreting Vacuous Priors

Although a vacuous prior (trivially) satisfies the duality principle, the representa-
tion is subject to a problem of interpretation. In particular, Norton claims that a
set of additive measures cannot totally represent an epistemic state once the dual

5For this demonstration, I go the opposite way starting with the upper probability instead of the
lower probability. But since each defines the other through conjugacy, then it does not matter which
one we initially specify. I do it this way in the general case, though, for it seems slightly easier, I
think, to walk through the steps in proving the point.
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measures are included. This is because probability measures and their duals be-
have differently where an additive measure m is a non-decreasing monotonic func-
tion while the dual measure M is a non-increasing monotonic function. The total
representation, then, combines opposing epistemic notions, which becomes clear
once one thinks about how m and M behave as belief and disbelief measures, re-
spectively, over propositions and their logical consequences. As a reminder to the
reader, the measures act in opposition to one another.

One way to sidestep the conceptual confusion pointed out is through devising
some sort of classification scheme that separates the additive probability measures
and the dual additive measures, similar to the way P andM were described. While
the additive probability measures in the set P are not individually self-dual, I have
shown that the set P = {0, 1} is self-dual—that is, the set is invariant under nega-
tion with respect to contingent propositions. But even so, we still cannot escape
the problem of interpretation provided that M(·) = p(¬·), and thus M contains
the dual of every p ∈ P. There is no clear way of interpreting the sets of addi-
tive measures if they behave in opposing ways provided that one has a distinctive
mark of belief while the other a distinctive mark of disbelief (2007a, 248). At this
point, it seems tempting to give up on a probabilistic representation of belief alto-
gether considering the trouble encountered. We might instead search for a formal
framework that does not rely on combining belief and disbelief measures.

A plausible alternative is Norton’s own envisaged non-additive schema for a
logic of belief or degrees of support, which seemingly does the trick in accommo-
dating complete ignorance (or neutral support in a confirmational sense).

[T |B] = 1, for all propositions T deductively entailed by B;

[A|B] = I , for all contingent propositions A;

[F |B] = 0, for all propositions F that logically contradict B. (2010, 505)

The values 1 and 0 yielded by the measure are meant to represent maximal and
minimal support, respectively, and I a neutral or ignorance value. The conditional
measure, [·|·], presented above has its purpose in developing a non-probabilistic
confirmation theory, but for our purposes, I will simply write the unconditional
measure, [·], and omit B. This move, however, should not be problematic since we
are primarily focused on complete ignorance as opposed to the evidential support
for contingent propositions.6

6The conditional form [A|B] is thought of as the degree that B confirms A with the exception
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Moreover, in the instance that a proposition A = >, then [A] = 1, and con-
sequently [¬A] = 0. Or, if A = ⊥, then [A] = 0, and consequently [¬A] = 1.
On the assumption that an individual is completely ignorant toward A and ¬A,
then we have the special case of [A] = [¬A] = I . Given the latter, it should be
easy to see now that [·] is self-dual with respect to ignorance where contingent
propositions that are not determined to be better supported than their negations (or
alternatives) are assigned the value I . In general, for a set of n logically incom-
patible propositions {A1, A2, ..., An}, none of which are better supported than any
other, [A1] = [A2] =, ...,= [An] = I . So far, so good.

In addition, the proposed representation does not face the interpretational prob-
lem brought against sets of probability measures provided that each contingent
proposition is just assigned the neutral or ignorance value I by [·], thereby avoid-
ing combined belief and disbelief when both belief and dual disbelief measures are
invoked in the logic. To see the difference, let [A] = I , which indicates that one is
categorically ignorant towardsA (and ¬A), while P(A) = {0, 1} indicates that one
holds both complete belief and complete disbelief in A (and ¬A) given that each
precise value is the dual of the other. Comparatively, the former proposal is actually
quite elegant, and seemingly more so than the latter. For [·], as a type of epistemic
valuation, tends to resemble a type of valuation familiar within non-classical logics
for vagueness and indeterminacy. One may regard this new logic of belief, then, as
sufficient for representing epistemic indeterminacy broadly construed.

To see the family resemblance with non-classical logics, let the propositions of
an arbitrary propositional language L either be true (1), false (0), or indeterminate
(#) like in Łukasiewicz’s (Ł3) and Kleene’s (K3) three-valued logics (see Gottwald
2015). The logical connectives ¬, ∧, and ∨ are defined in Ł3 by the truth-tables in
Table 4.1 (Note: the truth-tables for ¬, ∧, and ∨ are the same in K3, but the systems
differ on→, which is omitted here). Now, let us introduce a Łukasiewicz valuation

that if B = ⊥, then [A|B] is undefined. Furthermore, Norton extends the model with a qualitative
support relation ≤ that is reflexive, antisymmetric, and transitive, yielding a partial order. For
propositions A, B, C, and D, if [A|B] ≤ [C|D], then D confirms C at least as strongly as B
confirms A, and if [A|B] < [C|D], then D confirms C more strongly than B confirms A where <
is the strict partial order. Accordingly, the relation ≤ is said to obey the following axioms:

[⊥|W ] ≤ [A|B] ≤ [W |W ];
[⊥|W ] < [W |W ];
[A|A] = [W |W ] and [⊥|A] = [⊥|W ];
[A|B] ≤ [C|D] or [C|D] ≤ [A|B] (universal comparability);
[A|B] ≤ [B|C] if A→ B and B → C (monotonicity). (2008, 68)

(Note that for all contingent propositions, universal comparability entails completeness.)
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¬
1 0
# #
0 1

∧ 1 # 0
1 1 # 0
# # # 0
0 0 0 0

∨ 1 # 0
1 1 1 1
# 1 # #
0 1 # 0

Table 4.1: Truth-tables for NOT, AND, and OR in Ł3

on L. For all atomic propositions A ∈ L,

ŁV (A) =


1 if A is true;

# if A is indeterminate;

0 otherwise.

Upon considering an atomic proposition A of L, suppose that ŁV (A) = #.
Then, ŁV (¬A) = # according to the truth-table for negation. What this means
is that A is neither true nor false, and likewise for ¬A, or that the truth-values for
A and ¬A are yet to be determined. Such valuation is seemingly accurate in some
situations, particularly when a sentence is semantically indeterminate. Notably, Ł3

has in the past been applied to semantic vagueness for borderline cases where a
proposition is seemingly neither determinately true nor determinately false. Now,
if we were to relate the two frameworks, then notice an obvious parallel here to
propositions that are indistinguishable with respect to their levels of support. For
example, it is classically undetermined whether the sentence ‘John is tall’ is true
or false (absent of some contextual factor). An individual, then, is not permitted to
believe or disbelieve the proposition expressed by the sentence given that neither
the proposition nor its negation is better supported. Observe that similar valuations
are given in this particular case within each theory described. The motivation for
each approach seems to be quite clear from this example.

In comparing the formal systems, there is a striking resemblance structurally
between Norton’s [·] and ŁV for atomic propositions of a propositional language
L closed under ¬. In particular, for all atoms A ∈ L, both functions are similar in
their formal semantics with the only difference lying in the interpretations where
[·] is epistemic and ŁV is truth-oriented. Although it was not described above,
Norton’s logic of belief also extends to ∧ and ∨ (see 2008, 67-69), with very similar
structures to that of Ł3, which makes his proposed framework equally expressive.
(I leave it to the read to check.) As it turns out, Norton’s proposed logic of belief
that accommodates complete ignorance is a three-valued logic assigning 1 to all
truths, 0 to all falsehoods, and I to all neutrally supported contingent propositions
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whose classical truth values are unknown. While simple and elegant, the logic,
however, comes at a price that is especially expensive in comparison to the price of
the alternative imprecise probability model.

One cost associated with a three-valued logic in epistemology is a loss of gen-
erality. Although there is a seamless connection between [·] and a traditional inter-
pretation of belief where belief is assigned 1, disbelief 0, and suspended judgment
I , the gradability of belief, disbelief, and suspension of judgment is removed from
the picture, at least in the special case outlined. While categorical belief plays an
important role in everyday reasoning, so too does partial belief, especially in situ-
ations involving calculative reasoning. In order to maintain partial belief, a model
more general than the three-valued logic is needed. Imprecise probability is such
a model, which allows for the gradability of judgments. An imprecise probability
model also preserves a type of categorical model, for the three-valued approach is
a limiting case. Specifically, all propositions that are deductively true have a lower
probability 1, all propositions that are necessarily false have an upper probability 0,
and all contingent propositions that are neutrally supported have a value of {0, 1},
which replaces I . Given the choice between the three-valued logic of belief and
imprecise probability, the latter should be preferred on the grounds of expressive-
ness. But Norton might point to the partial order ≤ as an extension (see footnote
6), which differentiates the strength of belief.

Even so, there is a further cost with the simplistic model, and one that is com-
mon among three-valued logics. It is identified in the truth-tables above. In par-
ticular, Ł3 generates absurd consequences. For one, suppose that ŁV (A) = # for
some contingent A. The proposition A ∧ ¬A is assigned the value # according to
the truth-tables for negation and conjunction. Whether the formal logic is meant
to supply laws of correct inference or epistemic norms of belief, on neither view
does it seem correct to say that A ∧ ¬A is indeterminate. One may be ignorant of
which proposition is true or at least better supported, but surely one knows a priori

that A ∧ ¬A = ⊥. A similar absurdity arises when ∧ is replaced by ∨. Holding
the same values fixed for contingent A and ¬A, the truth-table for disjunction tells
us that A ∨ ¬A = #. Again, one might be ignorant as to whether A or ¬A, but
surely one knows a priori that A∨¬A = >. These absurdities arise from the logic
itself, for we have just seen that the laws of excluded middle and non-contradiction
are neither guaranteed by ŁV (·) nor by [·], laws that most, I think, find desirable.
It is only when all atomic propositions in the language have classical truth-values
that the laws are upheld. Classicality in the epistemic sense, however, fails to ac-
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commodate ignorance, so a three-valued system is needed. But then a three-valued
logic for belief gives rise to the above absurdities.

While it is reasonable to think that Norton would attempt to escape these absur-
dities in describing a logic for belief, he instead doubles down on giving up maxi-
mal belief or support for the logical truth A ∨ ¬A. Specifically, if [A] = [¬A] = I ,
then [A ∨ ¬A] = I on his approach. Norton suggest that the representation is
feasible since it avoids what he calls the inductive disjunction fallacy. In short,
the inductive disjunction fallacy is where a (large) disjunction of neutrally sup-
ported propositions yields a strongly believed or supported proposition (2010, 309).
We can easily gather that his target is the probability calculus. To see this, let
Θn = {A1, A2, ..., An} be a set of logically incompatible propositions each having
equal belief or support 1/n. Using a probability measure p to represent belief, dis-
junctions get more support: p(A1) = 1/n < p(A1 ∨ A2) < p(A1 ∨ A2 ∨ A3) <

p(A1 ∨ A2∨, ...,∨An) = 1. Additivity is the culprit once again, and it leads to the
so-called inductive disjunction fallacy.

It is not clear, however, why Norton considers an increase in belief or an ac-
cumulation of support for disjunctions of logically incompatible propositions to be
fallacious. In the simple case of A and ¬A, an individual knows a priori that
w ∈ A ∨ w ∈ ¬A, where w is the actual world, or in the general case that
w ∈ A1 ∨ w ∈ A2 ∨, ...,∨ w ∈ An. So it seems obvious that the proposition
A ∨ ¬A (or A1 ∨ A2 ∨, ...,∨ An) should be more strongly believed (or supported)
by an individual than any single contingent proposition, and thus the disjunction
fallacy does not seem to be a fallacy at all.

Things continue only to get worse for Norton’s three-valued approach when
assigning contingent propositions A and ¬A a value I and consequently assigning
A ∨ ¬A a value I as this is inconsistent in the proposed framework. Proposi-
tions that are known to be logical truths should be assigned maximum value 1, i.e.
[T ] = 1, on Norton’s account, but it turns out that there are logical truths that end up
being assigned an alternative value, i.e. I . So the system itself produces inconsis-
tency. Despite the attractiveness and simplicity of the proposed logic together with
the measure [·] stably maintaining self-duality, the endorsement of the inductive
disjunction fallacy over the preservation of logical truths and rejection of logical
falsehoods costs the approach reasonably desirable properties, and ultimately leads
to an inconsistent system, while the purported fallacy is not a very convincing rea-
son for throwing out logical truths to begin with. Therefore, Norton’s three-valued
approach to representing complete ignorance is implausible.
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Imprecise probability, on the other hand, avoids the described absurdities pro-
vided that the conjunction of contingent propositionsA and ¬A is contradictory (or
the intersection is empty). Therefore, P(A∧¬A) = {p(A∧¬A)} = P(A∧¬A) = 0.
(The dual set is oppositeM(A ∧ ¬A) = {M(A ∧ ¬A)} = M(A ∧ ¬A) = 1, in-
dicating complete disbelief.) We also find that P(A ∨ ¬A) = {p(A ∨ ¬A)} =

P(A ∨ ¬A) = 1. (The dual set is opposite M(A ∨ ¬A) = {M(A ∨ ¬A)} =

M(A ∨ ¬A) = 0, indicating complete lack of disbelief.) This ought to be clear, for
the mathematical statements are implied by the axioms of finitely additive proba-
bility. Specifically, A ∧ ¬A = ⊥ and A ∨ ¬A = W where W is finite. Since nor-
malization requires that p(W ) 6< 1 and that p(W ) 6> 1 for any p, then P(W ) = 1.
Consequently, p(A ∨ ¬A) = P(A ∨ ¬A) = 1. Moreover, p(⊥) = 1 − p(W ),
and so p(A ∧ ¬A) = P(A ∧ ¬A) = 1 − p(W ) = 0. Thus, we have shown that
the absurdity of being less than certain in logical truths is rendered unacceptable
in this framework. It seems to me, then, that imprecise probability is still our best
representation, at least with respect to a viable, non-classical system.

Finally, I would like to return to an earlier point about the categorical approach
to representing belief as a special case in imprecise probability. As a reminder,
[·] = I (and ŁV (·) = #) is somewhat analogous to {0, 1} in imprecise probability,
at least insofar as our interest in a formal representation of ignorance is concerned.
Actually, Norton’s basic schema is closely related to a special case of imprecise
probability such that for all proposition A, either P(A) = {1}, P(A) = {0}, or
P(A) = {0, 1}, where {0, 1} replaces I . Imprecise probability generally, not just
the special case, conforms to almost all of the axioms of the system in footnote
6 (in an unconditional form): for all propositions A, B, P(⊥) ≤ P(A) ≤ P(W ),
P(⊥) < P(W ), P(A) ≤ P(B) if A → B. The only axiom that is not necessarily
satisfied, however, is universal comparability, i.e. P(A) ≤ P(B) or P(B) ≤ P(A),
namely because there are instances where imprecise probabilities for contingent
propositions are incomparable, and so ≤ is not necessarily total. But it is unclear
why universal comparability is proposed as a necessary requirement anyway since
Norton states that ≤ partial. Nevertheless, by replacing I with the self-dual set
{0, 1}, we end up with a logic of belief that conforms to an axiomatic system
similar to Norton’s, but imprecise probability does not throw out logical truths.

While imprecise probability models are quite powerful, the problem of inter-
pretation introduced at the beginning of this section still lingers as I have yet to
provide a feasible answer, and it is not one that can simply be shrugged off. Those
who are familiar with the philosophical literature on imprecise probability should
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not be surprised that Norton has taken issue given the common parlance. Starting
with van Fraassen (1990), sets of probability measures compatible with one’s opin-
ion or judgment received the name ‘representor’. More recently, Joyce (2010) has
continued with the metaphor by dubbing an imprecise probability as an individual’s
‘credal committee’ that personifies probability measures as individual committee
members holding definite opinions on a proposition. And in decision situations,
Moss (2015) uses the term ‘mental committee’ referring to a set of precise opin-
ions about how one ought to act. When you hear these kind of metaphors, it is
hard not to immediately strip imprecise probabilities down to their parts—that is,
decompose them into their individual measures.

The “reductive” interpretation of imprecise probabilities opens the door to the
conceptual concern, I think, namely because the attention is turned toward classify-
ing each additive measure either as a belief or disbelief measure. However, decom-
posing the representation into individual probability measures and dual measures á
la mental or credal committees is not the right way to think about imprecise prob-
abilities, at least not in the case of ignorance. Possibly a better way to understand
the representation is by taking the set itself, not the measures of which it is com-
posed, as a representation of suspended judgment on a proposition (see Sturgeon
2008; Haenni et al. 2011). In case suspension of judgment is maximal, an indi-
vidual has a vacuous prior, otherwise they suspend judgment to a degree—that is,
P,P ∈ (0, 1). The ability to represent grades of suspended judgment is quite fortu-
nate, for such capability is not one available to alternative three-valued approaches
or any traditional conception of belief for that matter.

Furthermore, the suspension interpretation is consistent with having both belief
and dual disbelief measures in a set of measures since the notion of suspended judg-
ment after all implies an equal balance between belief and disbelief—that is, the
scale is not tipped one way or the other. But this explanation is still on the reduc-
tive track. One should realize, however, that the sets themselves represent generic
epistemic attitudes in contingent propositions A and ¬A. In case of complete igno-
rance, the support for A is absolutely minimal, likewise for ¬A, but alongside the
lack of evidence against A is absolutely maximal, likewise for ¬A, which implies
that there is no favoring of A or ¬A, and hence it is a state of complete ignorance.

By putting the focus on the set itself rather than individual measures, we
“blackbox” the representation (Good 1962), thereby closing off the view except
for the outer dimensions that provide a general indication of the support and lack
of evidence against. Intuitively, complete ignorance is just like a blackbox, and
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so the metaphor is rather fitting. Furthermore, the latter reading of vacuous pri-
ors is more compelling, I think, than a metaphorical committee since a conflicted
committee betters accords with conflicting evidence rather than no evidence at all.
Although some may remain unconvinced by the given interpretation, I turn now
to a different way of thinking about the representation, one that emphasizes the
importance of the dimensions of the blackbox rather than its contents.

4.2.2 A Behavioral Interpretation

Following de Finetti (1974), Williams (1975), and Walley (1991), let us move for-
ward with the language of previsions. I have already introduced the idea earlier in
Chapter 2, and briefly touched on it again in Chapter 3. Recall that the type of pre-
vision or fair price we considered before is the amount of money that an individual
is willing to spend or accept for a special kind of gamble IA(w) with an uncertain
reward where I is an indicator of A ⊆ W such that

IA(w) =

1 if w ∈ A;

0 otherwise.

In earlier discussions, a probability was considered to be an individual’s prevision
for a gamble IA(w), which depended on the truth of a proposition A. The price one
gives effectively represents how likely the individual considers the proposition in
question to be true.

Up until this point, however, we have started with an epistemic notion of prob-
ability and moved in the direction of linear previsions, followed by lower and up-
per previsions, essentially giving precise probabilities, along with lower and up-
per probabilities, behavioral interpretations. Starting with a theory of previsions
instead, lower previsions in particular, is simpler for the reason that a lower prob-
ability model is subsumed by it. The purpose of introducing a more expressive
language in this subsection is to (a) emphasize that rationality is grounded in some-
thing that each one of us is familiar with, namely acting under uncertainty, and (b)
subsequently making clear what a rational individual’s behavioral commitments
are in a state of ignorance formally represented by a vacuous prior, {0, 1}, which,
in short, is abstention. Ultimately, I aim at providing an intuitive interpretation of
{0, 1}, or at least extending its interpretation from the epistemic to the practical.

In adopting a theory of lower previsions as described by Miranda & de Cooman
(2014, 28-34), we begin by defining a gamble f , which is a function from a finite
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set of worlds W to the reals R, i.e. f : W → R. The gamble f , with value f(w)

when world w ∈ W is actual, represents an uncertain reward expressed in units
of a linear utility scale, and serves as the underlying asset involved in two types
of transactions. First, one may decide to buy f for a price x, indicating that the
individual finds the uncertain reward (f − x) desirable. Second, one may decide to
sell f for a price y, indicating that the individual finds the uncertain reward (y− f)

desirable. An individual’s lower prevision P (f) = sup{x ∈ R : f − x ∈ D}7 is
the supremum buying price for f , implying that they also find acceptable P (f)− ε
for all ε > 0. On the other hand, an individual’s upper prevision P (f) = inf{y ∈
R : y − f ∈ D} is the infimum selling price for f , implying that they also find
acceptable P (f) + ε for all ε > 0. In simple terms, an individual finds a gamble
f acceptable to buy for any price up to P (f), while the individual also finds the
gamble f acceptable to sell for any price as low as P (f).

Equivalently, selling f for a price y amounts to buying −f for a price −y,
and therefore if an individual is willing to accept one of the transactions, then
they should also be willing to accept the other under the same conditions. This
fact establishes conjugacy relations between lower and upper previsions such that
P (−f) = −P (f). It is fortunate that we are able to define lower and upper pre-
visions in terms of one another, for we only need to primitively specify one of the
functionals in a model, which a lower prevision is often chosen, hence the theory
of lower previsions. Much of this should ring a bell from previous discussions,
but notice that the language introduced is quite general where probabilities are not
the only things we can model within the framework. For instance, P and P may
represent the bid and ask prices, respectively, for a contract in a futures or options
market. Considering the latter example, notice the general target a prevision aims
at modeling, namely a behavioral disposition.

Moreover, now that we have a handle on lower and upper previsions, let us
turn to a coherence property in order to identify (minimally) rational behavior
involving the two types of transactions. To begin, suppose that an individual has
a lower prevision on a subset X of the set of all gambles L(W ) on a finite set of
worlds W—that is, the individual has a lower prevision P : X → R. Provided
an obvious desire to avoid sure losses in either of the two types of transactions
described, one’s lower previsions for a subset of gambles X ⊆ L(W ) should never
result in the loss of utiles. Formally,

7D is the set of gambles found desirable by an individual.
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sup
w∈W

n∑
i=1

[fi(w)− P (fi)] ≥ 0 for all natural n ≥ 0 and all f1, ..., fn ∈ X . (4.2)

If the condition is not satisfied, then there are gambles f1, ..., fn ∈ X and ε > 0

such that
∑n

i=1(fi − (P (fi) − ε)) ≤ −ε. This means that the sum of desirable
transactions leads to a loss of at least ε no matter the outcome. This is assuming that
a positive linear combination of acceptable transactions is considered acceptable.

More strongly, though, rational lower previsions are constrained by coherence,
whereby an individual’s supremum acceptable buying price for f is not raised upon
considering a positive linear combination of other acceptable (finite number of)
gambles. For all n,m ≥ 0 and f0, f1, ..., fn ∈ X ,

sup
w∈W

n∑
i=1

[fi(w)− P (fi)]−m[f0(w)− P (f0)] ≥ 0. (4.3)

If m = 0, then it follows that a lower prevision avoids a sure loss—that is, (4.3)
reduces to (4.2) when m = 0.

If the domain of a lower prevision P is a linear space, i.e. X is closed under
linear combinations, then the coherence property may be described in another way.
In particular, P is coherent upon satisfying:

• P (f) ≥ inff for all f ∈ X (accepting sure gains);

• P (f + g) ≥ P (f) + P (g) for all f, g ∈ X (super-linearity);

• P (λf) = λP (f) for all f ∈ X and real λ > 0 (positive homogeneity).

As Miranda and de Cooman state, a lower prevision on an arbitrary domain is
coherent only if it is extended to a lower prevision on a linear space, and so a
coherent lower prevision will consequently satisfy the above conditions.

Now, consider a special case where the domain X of a lower prevision is a set
of indicators of propositions, relative to some structure (W,F), each being bounded
by 0 and 1. A lower prevision P on X is a lower probability. In particular, P (IA)

is an individual’s supremum buying price for a gamble I on a proposition A that
pays $1 if w ∈ A and $0 otherwise. Alongside, a lower prevision P (IA) defines
a conjugate upper prevision −P (−IA) or the infimum selling price for the gamble
−IA. And lastly, the lower prevision P obeys the above conditions and therefore
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avoids sure losses. Observe that we have started with a theory of lower previsions
and deduced lower probabilities rather than going in the other direction using some
expectation operator (Miranda 2008), which makes for a smooth transition on the
technical front. More important to the story, coherent lower previsions is a theory
of rational behavior under uncertainty. Thus, the special case of lower probability
is a model of an individual’s behavioral dispositions for specific transactions. The
common parlance of epistemology is absent from the theory, and so the earlier
confusion about what the imprecise probability model represents is eliminated.

Although we need not rely on the formal notation for lower previsions since
the thing that we care most about is the pragmatic interpretation of lower proba-
bilities, a detailed discussion of the theory of lower previsions helps make clear
what lower probabilities actually are, at least according to those inclined toward a
subjectivist view. So we can stay the course with the original notation for impre-
cise probability now that we are provided with a better understanding of what the
mathematical model is supposed to represent. Fixing our attention on the pragmatic
interpretation of imprecise probabilities results in a loss of interest in the individu-
ally precise measures of a set of probability measures, which were of prior concern.
Our interest is now shifted to an individual’s determinate behavioral dispositions
and indecision with respect to accepting gambles, which may be said to reflect their
epistemic state. As a consequence, the (self-dual) sets of probabilities are no longer
in focus. Let us consider an example to demonstrate the point.

Suppose that a cutting machine at a coin making factory is not well-calibrated.
It tends to cut heads and tails evenly sometimes, producing a fair coin, but it also
sporadically shaves too much off the side to be heads on some coins and tails on
others. The unbalanced coins have at most a 10% bias towards heads or tails. We
enter the factory just as the machine has got done cutting, and a mixed lot is put
into a box. I randomly select a coin from the box. Before, I would have asked
you what your credence is that the coin will land heads up if I toss it. Your answer
should be P(H) = {0.4, 0.6}. If rational belief is determined by evidential support,
then this is the correct belief model, for your evidence supports a credence in H up
to 0.4, but the evidence against H is no less than a credence of 0.6. If evidentialism
(Conee & Feldman 2004) is true, then it suggests imprecise probability in this case.

But we have given up the purely epistemic talk in this section in favor of the
pragmatic interpretation of the lower probability model. To better understand your
epistemic state, I ought to ask you a different question. If I were to offer you
a gamble on H prior to the toss that will pay $1 if heads lands face up and $0
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otherwise, what is the maximum amount of money you are willing to pay for the
gamble? Assuming that rational decisions are influenced by one’s beliefs, whatever
they may be, then your supremum buying price should not be any more than $.40

for the gamble. Let us go to the other side now. If I ask you to sell the gamble to
me, what is the minimum amount of money that you are willing to accept? From
a recollection of information provided to you about the coin, your infimum selling
price should not be any less than $.60.

Let us alter the example to accommodate a state of complete ignorance. Sup-
pose we walk into the coin factory and the floor man tells us that the coin cutting
machine is exhibiting extremely erratic behavior. Because there is no accurate es-
timation of potential bias due to the machine’s behavior, the factory will have to
throw out the batch. I quickly snatch a random coin out of the box before the batch
is taken to the dump. I ask you how much you would pay for the opportunity to win
$1 if the coin lands head and $0 otherwise? Since you have no idea what the actual
chance of the coin landing heads is, you should not pay anything for the gamble.
Otherwise, you put yourself at risk of paying too much for it. More precisely, you
cannot rule out the possibility that the coin is completely biased toward tails based
on what you have learned, and so any positive amount exchanged for the gamble
may result in an unecessary loss for you.

If, instead, I wanted you to sell me the gamble, what is the smallest amount
you would let it go for? Without further information, you should not let it go for
less than $1, which just amounts to an even swap whatever the outcome is. Why
be so risk-averse in this instance? Because you could easily sell the gamble for too
small of a price. More precisely, you cannot rule out the possibility that the coin
is completely biased toward heads based on what you have learned, and so any
amount less than $1 exchanged for the gamble may result in a loss for you. If this
story is consistent with your inclinations, then your behavior is indicative of your
epistemic state, which in a lower probability model implies P(H) = {0, 1} and
P(T ) = {0, 1}. There is nothing unclear nor unintuitive about one refraining from
taking any action as a result of being in a state of ignorance. The behavioral theory
described in this section suggests just that, and so we end up with a compelling
interpretation of the {0, 1} complete ignorance model without reference to beliefs,
representors, or credal committees.
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4.3 Belief Inertia

In response to Norton, Benétreau-Dupin (2015) has recently developed a simi-
lar defense of imprecise probabilities for representing ignorance. What divides
Benétreau-Dupin and I on the matter, however, is the permissible sets of probabil-
ity measures we consider for representing ignorance. On his view, he excludes the
closed, convex set [0, 1] (and ultimately the subset {0, 1} ⊂ [0, 1]) in order to avoid
the inductive learning problem or belief inertia (Rinard 2013). He says,

There is however a good reason not to be content with such an extreme rep-
resentation of ignorance. Indeed, in that set I of all possible probability dis-
tributions will be extremely sharp probability distributions that require an un-
reasonably large—or even infinite—number of updatings before they can yield
posteriors distributions that are significantly different...Such distributions in I
are said to be dogmatic, and consequently the whole set I is dogmatic. A
representation of complete ignorance I, and generally any vacuous prior, en-
tails a vacuous posterior. This should prevent such a set from being used in
an inferential process in which we may hope to move away from a state of
ignorance after a certain number of iterations of Bayesian updating. This rep-
resentation of ignorance by means of a family of credal functions, although it
satisfies Nortons criteria for ignorance, is incompatible with learning. (2015,
1534)

On the view I have proposed, however, {0, 1} is said to be the proper represen-
tation of ignorance, and I would go as far as saying that the vacuous prior is the
only intuitive representation, which should be clear from the discussion on how to
bet when in a state of complete ignorance. Although convexity is not mandated on
the account I have laid out, {0, 1} is still a dogmatic prior. As Rinard (2013, 4)
writes:

On the set of [probability] functions model, updating proceeds by individually
conditionalizing each function in your representor on your new evidence. Each
function in your representor will have its posterior probability for H1 deter-
mined by Bayes rule as follows: Pr(H1|E) = Pr(E|H1)Pr(H1)/ [Pr(E|H1)Pr(H1)
+ Pr(E|H2)Pr(H2)]. In this case, all the functions in your representor agree
on the likelihoods, as they are fixed by objective chances in accordance with
the Principal Principle: Pr(E|H1) = 1 and Pr(E|H2) = 1/10. Substituting 1 –
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P(H1) for P(H2) and simplifying yields Pr(H1|E)=Pr(H1)/[1/10+9/10Pr(H1)].
Pr(H1|E)=1 when Pr(H1) = 1, and Pr(H1|E) = 0 when Pr(H1) = 0.

Rinard has thus shown that a vacuous prior is dogmatic and an unsuitable model for
ignorance. Or maybe it is the case that canonical Bayesian updating has a problem?
As Benétreau-Dupin and Rinard seem to suggest, the vacuous prior has to go, not
conditionalization.

However, we need not buy into the false dilemma, and instead we might look
for a different solution in which an alternative belief updating rule is made available
just in case an individual is in a state of complete ignorance while still maintain-
ing conditionalization for inductive inference when priors are imprecise yet non-
extreme. A proposal has been systematically detailed by Nic Wilson (2001), which
is driven by a notion of implausibility. The idea is intuitive: reject all (precise)
probability distributions that are implausible in light of new information. I might
offer a simple updating procedure here motivated by the same idea.

Let us consider a simple set of propositions, Θ = {A,¬A}, relative to a set
of worlds W . Suppose an individual is completely ignorant as to whether A or
¬A. So the individual adopts vacuous priors, P(A) = P(¬A) = {0, 1}. Then,
they learn some new evidence E and no longer are completely ignorant toward A
and ¬A. To escape what is seemingly an eternal state of ignorance, the individual
successfully updates their beliefs through credal set replacement:

P(A || E) = (P \ {pi}) ∪ {pj} such that pj ∈ (0, 1), for all i and j. (4.4)

In plain terms, the updated set of probability measures is the union of the remaining

set (P \ {pi}) and a set of plausible probability measures {pj} such that no pj is
extreme.8 The set {pi} contains all probability measures in P(A) that are rendered
implausible by the recently learned information. As a result, the set P(A || E) con-
tains the remaining probability measures not rendered implausible along with any
new probability measure(s) that the information makes plausible. If there are no
new additions, then the joining set is empty and replacement just becomes reduc-

tion. In the case of complete ignorance, however, the original set P(A) = {0, 1}
is effectively replaced by a non-empty P(A || E) = {pj}. If {pj} = {0, 1}, then
P(A || E) = P(A), otherwise, P(A || E) 6= P(A), which the latter suggests that

8The idea for the belief update method is inspired by the AGM belief revision function (∗)
(Alchourrón, Gärdenfors, & Makinson 1985). In the future, it would be fruitful to explore a stronger
connection, but I leave that for another day.
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the information learned does indeed bear evidential relevance to the propositions
under consideration. (I am being cautious here since credal set replacement can
preserve independence as we will see later.)

How is it that one can non-arbitrarily justify replacing {0, 1}? This will depend
on the information that an individual receives. Initially, the individual has no clue
whether A or ¬A is true, hence the vacuous priors {0, 1}. But upon acquiring E,
if they learn that neither A nor ¬A are logically implied by the evidence E, then
any probability p warranted by the evidence is non-extreme such that p(A) < 1 and
p(¬A) < 1 provided that the evidence reduces the degree of ignorance, but they
now are aware that neither A nor ¬A are deductively true given E. As a result,
probability 1 assigned to both A and ¬A ought to be considered implausible, at
least at the current time, and removed from one’s set of probabilities. The conjugate
lower probabilities, i.e. 0, also get removed, so the set (P(A)\{pi}) is empty. The
union of the empty set with a non-empty set of probability measures {pj} given the
evidence E is just the set of plausible probability measures given the evidence E.

But how do we determine what the set of plausible probability measures is
relative toE? There is no precise rule that I am aware of for determining such set at
this moment, but I might say that the set can sometimes be determined fairly easily.
With that said, the evidence itself might uniquely determine the set of plausible
probability measures. Consider, for example, a coin toss. Let W = {w1, w2},
H = {w1}, and ¬H = (W\{w1}) = {w2}, where H stands for the proposition
that a coin lands heads and ¬H stands for the proposition that a coin does not land
heads. Suppose that our individual has no clue whether the given coin is fair or
biased and consequently has vacuous priors, P(H) = P(¬H) = {0, 1}. Then,
they learn that the coin is fair. How should the individual revise their beliefs in
light of learning the new information? For one thing, the information rules out
that H is deductively true given the evidence and the same goes for ¬H . So the
vacuous priors get extinguished, but what replaces them? Since the expectation
for a fair coin landing heads is 1/2, the individual should consider p(H) = 1/2 to
be a plausible probability. Thus, 1/2 ∈ P(H || E) and 0, 1 /∈ P(H || E). This
example illustrates a successful credal set replacement and so learning is possible
after all with vacuous priors. Of course, a more systematic rule for determining
{pj} is desirable, which may come in time. For the moment, though, I only wish
to propose a rule that avoids inertia while capturing intuitive belief change.

Is this alternative approach meant to displace conditionalization? Not at all.
In fact, the two might work nicely together, especially in assessing whether two
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propositions, X and Y , are independent. Suppose that P(X) contains a finite num-
ber of probabilities including the extremes 0 and 1. Conditioning on Y , however,
will not affect the dogmatic probability measures assigning either 0 or 1 come what
may, but the interior probabilities between the lower and upper probabilities might
have better luck. Nevertheless, whether X and Y are actually stochastically inde-
pendent cannot be determined in the lower and upper conditional probabilities in
this case, for they will always come out to be the same as the prior lower and upper
probabilities, which is just a forced consequence of conditional probability.

In order to assess whether X and Y are epistemically independent (though, not
necessarily stochastically independent), X may be conditioned on Y together with
a credal set replacement that rids the dogmatic (conditional) probability measures.
If X and Y are probabilistically correlated for at least one p in the remaining set
(P \ {0, 1}), then X and Y are not said to be epistemically irrelevant. In this case,
the joining set {pj} may be non-empty. On the other hand, if p(X|Y ) = p(X) for
all p ∈ (P \ {0, 1}), then X and Y are at least epistemically irrelevant, whereas X
and Y are epistemically independent just in case p(X|Y ) = p(X) and p(Y |X) =

p(Y ) for all p ∈ (P \ {0, 1}). The subsets X and Y are said to be stochastically
independent if and only if p(X ∧ Y ) = p(X)p(Y ) for all p ∈ (P \ {0, 1}).9 If
X and Y are either epistemically independent or stochastically independent, then
the joining set in credal set replacement is { } provided that no new probability
distributions are rendered plausible by learning an irrelevant proposition Y .

We see now that credal set replacement need not be in competition with condi-
tionalization, for replacement (or reduction) and Bayesian conditioning work well
together in providing an individual with an informative belief state in light of ob-
taining some new piece of information. Credal set replacement eliminates dogma-
tism while Bayesian conditionalization illuminates more precise credal commit-
ments in the process of learning.

4.4 Summary

In summarizing this chapter, if (SD) is a necessary condition for a proper repre-
sentation of complete ignorance as Norton proclaims, then by the formal analysis
provided above, the imprecise probability method of assigning the set {0, 1} to con-
tingent propositions is a sufficient approach to representing an epistemic state of

9For discussions on independence in imprecise probability, see Cozman (2012) and Pedersen &
Wheeler (2014).
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complete ignorance regarding those propositions. The crucial properties of impre-
cise probability that allow the argument to go through are the conjugacy relations of
lower and upper probability since these properties trivially guarantee vacuous pri-
ors {0, 1} for a contingent proposition and its negation if the smallest admissible
probability is set as the lower bound on each proposition.

Furthermore, I have compared the approach with Norton’s seemingly plausible
account of a non-additive schema, but showed that the former maintains desirable
properties for a logic of belief that the latter forfeits. The imprecise probability
model has also been given a plausible behavioral interpretation in which common
epistemic parlance is made irrelevant, and so the conceptual confusion is put to rest.
Finally, I offered a novel response to the inductive learning problem where an indi-
vidual revises vacuous priors through credal set replacement and more extensively
credal set replacement with conditioning.
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Chapter 5

Probabilistic Confirmation Theory
with Imprecise Probabilities

Reasoning correctly about propositions whose truth values are uncertain can be
challenging, especially if the evidence available distracts one from the truth by in-
ducing imprecision in belief. This may happen when a body of evidence contains
conflicting peer opinions (Chapter 3; Elkin & Wheeler forthcoming), unspecific
statistical information (Ellsberg 1961; Joyce 2005), or indeterminate chance hy-
potheses (Fine 1988; Hájek & Smithson 2012). If an individual is unfortunate
enough to find oneself in such a scenario, how should they react?

To reiterate the ongoing line throughout the dissertation, an evidentialist, like
Joyce (2005), claims that one should adjust their attitude accordingly, which
amounts to adopting an opinion matching the character of the evidence. However,
in representing a less-than-precise epistemic state formally, the canonical tool, i.e.
Bayesian probability, falls short as we already know, for Bayes is capable of repre-
senting known uncertainty, but it cannot model ranges of uncertainty. Overcoming
this limitation can be attained upon adopting a formal theory of imprecise prob-
ability once again, and one in which beliefs are represented with convex sets or
interval-valued probabilities instead of single, point-valued probabilities.1

In the previous chapters, we have seen how imprecise probability may be of
service in modeling a plausible solution to peer disagreement and accommodating
the epistemic state of complete ignorance. But to be a successful epistemology
matching up to Bayes, imprecise probability is in need of a story about confirma-

1See Levi (1974), Gilboa & Schmeidler (1989), van Fraassen (1990), Walley (1991), Sturgeon
(2008), Joyce (2010), Bradley (2014), Augustin et al. (2014), and Benétreau-Dupin (2015) who
assume or discuss imprecise probabilities as closed, convex sets of probability measures.



88 5. Probabilistic Confirmation Theory with Imprecise Probabilities

tion or inductive support. In an attempt to extend the epistemology, proponents
might naı̈vely propose a theory of confirmation resembling ordinal Bayesian con-
firmation. However, I illustrate in this chapter that the task is not that simple, for
a number of ordinal confirmation theories in imprecise probability theory can be
stated, each having merits but problems, too. As we will come to see, the problems
are non-trivial, and so we should be skeptical as to whether there is such a confir-
mation theory sufficient for scientific reasoning and epistemology in general. The
conclusion may come as a surprise to the reader, but like any responsible philoso-
pher, scientist, or engineer, one should admit to any methodological shortcomings,
and it appears that confirmation is but one of imprecise probability’s limitations.

This chapter will proceed in the following way. Section 5.1 introduces what
has become the canonical theory of imprecise probability in which the beliefs of
an individual are represented by convex sets of probability measures bounded by
lower and upper probabilities. The subsequent subsection 5.1.1 explicates a partic-
ular advantage that the model enjoys over orthodox Bayes. In section 5.2, I briefly
rehearse the specifics of ordinal Bayesian confirmation theory along with accom-
panying background details that provide a template for constructing a confirmation
theory in imprecise probability. In section 5.3, I return to imprecise probability and
consider ways of defining confirmational relations within the framework through a
number of candidates: extremity, previsions-based, sensitivity, and interval domi-

nance. Following each theory’s description, I highlight its unique merits and limi-
tations. Finally, I conclude briefly in section 5.4 on the prospects of a probabilistic
confirmation theory with imprecise probabilities.

5.1 Imprecise Probability Revisited

In adhering to the apparent tradition of the philosophical literature, let P be a non-
empty set of probability measures with each measure p ∈ P defined on an algebra
F over a finite set of worlds W .2 For all elements X ∈ F , there is a probability
measure with the smallest point-value and a probability measure with the largest
point-value relative to {p(X) : p ∈ P}. The probability measures with the smallest
and largest point-values for every X ∈ F realize a lower and an upper probabil-
ity, P(X) and P(X), respectively. Provided that a lower probability automatically
induces a conjugate upper probability (and vice versa), we may primitively spec-

2See Levi (1974), Sturgeon (2008), and Joyce (2010).
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ify a lower probability structure (W,F ,P ,P, V ) or an upper probability structure
(W,F ,P ,P, V ) in relation to a propositional language L. By convention, lower
probability is commonly taken to be primitive,3 but nothing in our discussion sig-
nificantly depends on which side is to be taken.

The formalism laid out is enough to provide us with a framework for repre-
senting static imprecise credences throughout this chapter. In particular, an in-
dividual’s credence in a proposition A, relative to a lower probability structure
(W,F ,P ,P, V ), is represented by the non-empty set of probability measures P(A)

called a credal set (Levi 1980). Credal sets are assumed to be closed under convex
combinations—that is, for any λ ∈ [0, 1] and p1, p2 ∈ P , λp1 + (1 − λ)p2 ∈ P .
Closure under convex combinations induces intervals, P = [P, P], and so as things
stand, the representation of credence is interval-valued.4 Everything described here
should be familiar with the exception of convexity. In earlier chapters, we con-
sidered non-convex sets, P, but now we will look at a generalization, P , for the
purpose of examining the most general probabilistic confirmation theory later on.

At this point, we have established an imprecise probability representation for
a static belief state, but how does the theory accommodate learning? The com-
mon belief updating proposal of imprecise probability is generalized Bayesian
conditionalization. Since the probability measures in a credal set, P , are indi-
vidually precise, then a proposition A is conditioned on some newly acquired ev-
idence E where P(E) > 0 for every p ∈ P(A), which yields a closed, convex
set of conditional probabilities, P(A|E), bounded by lower and upper conditional
probabilities, P(A|E) and P(A|E). The individual then adopts a new credal set
P ′(A) = P(A|E) = [P(A|E), P(A|E)] until P′(A) = 1 or P

′
(A) = 0.

The basic theory is now complete, but how should the belief model be inter-
preted? To jog the reader’s memory, imprecise probabilities may be regarded as
guides to one’s previsions and elicited via a betting scheme the same as before.
The key difference, however, is that we no longer require fair prices since one may
have one-sided lower and upper previsions, or in the language of British sports
books, ‘back’ and ‘lay’ rates. To demonstrate the point, let us consider a set of
hypotheses Θ = {H,¬H}, which partitions W with respect to a lower probabil-
ity structure (W,F ,P ,P, V ). We may now determine an individual’s imprecise
credences regarding Θ through identifying their betting rates for a gamble IH that
rewards them $1 if hypothesis H is true, $0 otherwise, and likewise for I¬H .

3See Williams’ (1975) theory of previsions that takes the upper to be primitive.
4Convexity is a requirement held by Levi (1974), Walley (1991), and Joyce (2010).
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Suppose that IH is a gamble that pays $1 if ocean heat is a cause of increasing
global temperatures. Imagine now that a scientific observer is inclined to exchange
up to $.45 for the gamble. The maximum buying price is one’s lower prevision or
the highest amount that they will back IH . On the other side, though, it turns out
that they refuse to sell the gamble for less than $.60. The minimum price is one’s
upper prevision or the lowest amount that they will lay IH . Like before, previsions
reflect an individual’s credences, but in this case, the observer has an imprecise
credence in H where the back price corresponds to the lower probability of their
credal set while the lay price corresponds to the upper probability, and we find that
P(H) 6= P(H). Similarly, if the observer were offered the gamble I¬H instead
(where ¬H denotes ‘ocean heat is not a cause of increasing global temperatures’),
then they should have a back price of $.40 and a lay price of $.55 (determined
by conjugacy), which correspond to the coherent lower and upper probabilities for
¬H , respectively, and again, P(¬H) 6= P(¬H). If any price in ($.45, $.60) is
asked or offered for IH and any price in ($.40, $.55) is asked or offered for I¬H , the
observer rejects the gambles, thereby revealing their range of uncertainty.

Because an individual might have different reactions toward contingent propo-
sitions due to epistemic imprecision or maybe cognitive susceptibility to loss aver-
sion5, imprecise probability provides a more suitable framework for modeling cre-
dence than Bayes, and there ought to be a general inclination toward it since, after
all, there is little if anything to be lost methodologically by adopting the model and
much more to be gained.

5See Kahneman, Knetsch, & Thaler (1990) and Tversky & Kahneman (1991) on differences in
‘willingness to pay’ (WTP) and ‘willingness to accept’ (WTA). Their empirical findings suggest
that there is often a gap between WTP and WTA, which plausibly stems from an endowment effect
(Thaler 1980)—that is, some good increases in value once it is owned or added to one’s endowment.
Kahneman & Tversky (1979) explained the phenomenon on the basis that many individuals are loss
averse when an expected loss looms large in comparison to an equal-sized expected gain relative to
a reference point e.g. current state of wealth. This idea might provide a plausible explanation for
why an individual has non-equal buying (WTP) and selling (WTA) prices for risky contracts.

For our purposes, we can capture a similar idea in the language of lower previsions. On the
buy side, suppose that one has a maximum buying price of x < $1 for an asset IH and surrenders
x for the chance to increase their wealth w by $1 − x. On the sell side, the individual’s selling
price for the asset is y where x ≤ y ≤ $1. The selling price is strictly greater just in case the
individual values the $1 to be surrendered with the contract IH more than before it became part of
her endowment. Of course, the difference here between the buying and selling prices will depend
on the individual’s degree of loss aversion determined by the ratio WTA

WTP . The explanation may
breakdown when introducing other factors, however, but loss aversion is one way to account for
differences in lower and upper previsions in certain instances.
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5.1.1 Rejection of Indifference From an Aversion to Regret

Before turning to Bayesian confirmation, I would like to first discuss an advantage
of imprecise probability. We will begin by imagining that you are almost fully
ignorant with respect to some contingent propositions A and ¬A. How should you
respond to any minimal and equally balanced background information relating to
the propositions? A typical solution involves constraining your credences in A and
¬A by the principle of indifference (POI) (see Keynes 1921; White 2009; Pettigrew
2014). The principle is motivated by the intuition that an individual should have
uniform credences if, in the general case, no proposition in a set of n <∞ logically
incompatible propositions is favored more than any other.

While we have already considered technical arguments against the principle
in the previous chapter, there is a pragmatic argument to be given against it. The
purpose of introducing the pragmatic argument is to illustrate why an imprecise
prior in reasoning, ordinary or scientific, is reasonable at times and a uniform prior
motivated by the principle of indifference or maximum entropy is not, which may
be shown through the following example. Suppose that an experimenter presents
you with two urns, A and B, containing 100 balls each. Here is your information:

• Urn A contains a mixture of 50 red and 50 black balls.
• Urn B contains some unknown mixture of red and black balls.

You are asked the following questions. What is your expectation for blindly draw-
ing a red ball from Urn A? It is obvious that your expectation should be 1/2 based
on the statistical information provided. Next question, what is your expectation for
blindly drawing a red ball from Urn B?6 The answer is not immediately clear.

LetRed denote ‘a red ball is drawn from Urn B’ andBlack denote ‘a black ball
is drawn from Urn B’. As an (objective) Bayesian, you adhere to POI with respect
to the set of propositions {Red,Black} and arrive at credences p(Red) = 0.5

and p(Black) = 0.5. This is the usual story. Here is one explanation for having
these credences toward the propositions. You have no evidence indicating that
there are more red balls than black or more black than red in Urn B. Thus, you
are only in a position to believe that a randomly drawn ball from Urn B will be
red or a randomly drawn ball will be black. Representing your belief state by a
probability measure p, the above probability distribution (allegedly) accommodates
your epistemic ignorance on the matter correctly.

6This example was constructed by Ellsberg (1961).
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Supposing that you take your epistemic position to be properly accounted for
in this instance, you might reconsider when facing risks associated with acting
on such credences. In particular, your fair prices for gambles on Red and Black
increase a risk of regretting, for they might be too high or too low. Your fair prices
therefore leave you exposed to being swindled by a clever party. To illustrate,
let IRed and IBlack be regarded as the same kind of gambles described previously
with one of them paying out $1 and the other paying out $0, depending on which
proposition is true. By adhering to POI, your prices turn out to be coherent given
that you do not expect a sure loss come what may. So far, so good. Now suppose
that a gambler is willing to sell you one of the above gambles at your fair price,
either IRed or IBlack, but not both. Since you are indifferent towardRed andBlack,
it does not matter to you which gamble you choose, so you agree to IRed at a price
of $.50. Here is where things could go wrong. Even though you are not booked in
sure loss, $.50 would be an unfavorable price to pay for the gamble if it turns out
that there are less than 50 red balls in the urn, which is unknown to you.

Let us develop the situation to make things clear. After agreeing to the ar-
rangement, the seller tells you that they will announce the number of red balls in
the urn, which is known to them, after the draw. The seller then gives you the op-
tion to void the contract and get your money back or stay the course. Since the new
information has no bearing on your beliefs at this moment in time, you might as
well stay the course—that is, the new information does not improve your epistemic
situation with respect to the color of the ball to be blindly drawn. So on we go. A
red ball is drawn! Your wealth is now guaranteed to increase by $.50. The seller,
although disappointed in the outcome, announces that there were only a total of 5

red balls in the urn. Once the excitement of winning settles, you realize that you
should have paid a lot less, especially because you could have very easily been
$.50 poorer given an objective probability 0.95 that a black ball would be drawn.
Despite the investment turning out to be profitable for you, it is certain that you
would have preferred to pay less now that you know the objective probability of a
red ball being drawn, which ultimately reveals how fortunate you were.

As the agreement was initially setup, the seller conned you by offering the gam-
ble at your fair price. They benefited from your ignorance and made you overpay
for the gamble—things just did not go their way. Of course, though, the gambler
would always sell the bet for $.50 to anyone willing since they would profit in the
long run. Black is significantly favored to Red on every random draw from the
mixed urn. Realizing this, you may be left in a state of regret when reflecting on



5.1 Imprecise Probability Revisited 93

the agreement at the fair price determined by POI.7 The point is that adopting a uni-
form prior in the face of ignorance can inadvertently expose one to practical risks
of regretting. Even though adhering to the principle of indifference seemed optimal
in the above scenario at first, it turns out that it was not. The possibility that the
proportion of red balls in the urn is less than 1/2 was not one that you could have
ruled out given your information. So, a uniform prior fails at times in appropriately
accounting for one’s epistemic ignorance.

Consider an alternative to the current case that puts pressure on precise cre-
dences in general, not just uniform priors. Suppose that you agree to IRed at the
price of $.50 under the original conditions. Then, the seller generously and truth-
fully tells you that your estimate is off—black is favored to red. The seller gives
you the option to void the contract and get your money back or revise your fair
price and take a rebate. You now have good reason to abandon the principle of
indifference and revise your fair price, but how are you to adjust your credences in
light of the new information? You might try conditioning on the new information,
but it does not seem like your epistemic situation will improve a whole lot. This
is because the seller has supplied you with fairly unspecific information, and any
precise probability estimate favoring Black will ultimately amount to a guess.

Just like in the first scenario, it is possible that you do not overpay for the
gamble since if, for example, the undisclosed number of red balls in the urn is 30

and you revise your price to $.x < $.30, then you are getting a bargain. But of
course, the clever gambler did not set things up in your favor. Instead, they offer
you IRed at the price of $.40 and will return to you a $.10 rebate. The price that

7See Loomes & Sugden (1982) for a theory of regret in decision making. More recently, some
economists (e.g. Filiz-Ozbay & Ozbay 2007) have studied the anticipation of regret, particularly in
first price sealed bid auctions, which bears relevance to the discussion here. In first price sealed bid
auctions, bidders hold private values v for an object at auction. The bidders’ values are indepen-
dently and identically drawn from [v, v] with bidder i having a bidding strategy bi : [v, v]→ [0,∞)
and bi ≤ vi. The winning bid is bw > bj for all j 6= w and the winner pays bw for the item
auctioned. If bi = bj = bw for any i and j, then the object is randomly awarded to either i or j.
At the conclusion of the auction, ex post winner regret may be felt by i if i wins the object with a
bid bi, but could have won with a lower bid b∗ < bi. For instance, if i values an item at $100, bids
value vi, wins the item, but learns afterward that the second highest bid was only $5, then i will
experience a feeling of regret since if bids increase incrementally by $1, then bw = $6 yielding a
profit of vi − bw = $94. If i anticipates winner regret prior to bidding, then i may lower the bid
bi in order to minimize the risk of regretting. Similarly, an individual placed in our scenario above
lacks information regarding Urn B’s composition, which may induce an anticipation of regret in
exchanging $.50 for IRed. Again, the proportion of red balls in the urn may very well be less than
1/2 and so one may anticipate such possibility leading to a refusal of paying the asked priced. Un-
fortunately, you, the objective Bayesian, neglected such possibility upon adopting a uniform prior
and paid the price (literally).
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the seller offers is consistent with the announcement that black is favored to red,
and so the gamble might appear attractive. From your perspective, things seem to
be going all right at this stage and so you agree to take the rebate, but once again,
you pay too much for the gamble given that there are only 30 red balls in the urn.
As a result, you will regret agreeing to the contract, win or lose, after the final
announcement is made even though you thought you reasoned well on the matter.

The take home message is that ignorance, full or partial, subjects an individ-
ual to unwanted risk associated with acting on precise judgments. An individual
would be rational to minimize the risk by better accommodating their epistemic
position just in case they are in a state of ignorance.8 Considerations of regret
may nudge one along by inducing an aversion to willingly take the risk, and the
individual might then adopt imprecise credences that match the available evidence
if any. In the first case, for example, one’s evidence at the very best warrants
P(Red) = (0, 1) and P(Black) = (0, 1). In the second case, P(Red) = (0, 0.5)

and P(Black) = (0.5, 1). Although these imprecise credences could require re-
fraining from taking action, one is better off refraining rather than embracing an
opportunity of being swindled by another party, or by nature while it refuses to
fully reveal itself.

5.2 Bayesian Confirmation Theory

In determining whether evidence stands in favor of a scientific theory or hy-
pothesis, Bayesian confirmation theory provides an answer, and that answer has
had much influence in the philosophy of science for several decades.9 There
is very little mystery surrounding its prominence based on how well Bayesian
confirmation captures the relation between theory and evidence and also its ability
to accommodate surprising new evidence. The ordinal version of the theory clearly
illustrates this and is simply written in the following way.

BAYESIAN CONFIRMATION THEORY:

8Pettigrew (2014) has developed an argument from risk (of epistemic disutility) but in defense
of POI. The difference between the conclusions we draw is forced by presuppositions on both sides,
as I see it, where he is interested in minimizing the risk of epistemic disutility resulting from a
non-uniform prior with greater expected inaccuracy than a uniform prior, while I am interested in
minimizing the risk of unnecessary loss in utility resulting from acting on one’s precise judgments.

9Some notable figures who endorse the method include Bovens & Hartmann (2003), Howson &
Urbach (2005), and Fitelson & Hawthorne (2010) just to name a few. However, Bayesian confirma-
tion has its notable critics also including Glymour (1980), Mayo (1996), and Norton (2011).
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• p(H|E,K) > p(H|K) (Confirmation)

• p(H|E,K) < p(H|K) (Disconfirmation)

• p(H|E,K) = p(H|K) (Irrelevance).10

In plain terms, Bayesian confirmation theory states that a theory or hypothesis H
is (i) confirmed if evidence E increases the probability of H conditional on back-
ground knowledge K, (ii) disconfirmed if E decreases the probability of H condi-
tional onK, or (iii) neither confirmed nor disconfirmed if E makes no difference to
H conditional on K. On the face of it, the theory is minimal and elegant, but there
are some important details associated with the theory, which I will now discuss.

The irrelevance condition is a fundamental concept in classical probability the-
ory, and it implies that H and E are stochastically independent. Leaving K in the
background, ifH and E are stochastically independent, then the following equality
obtains

p(H ∧ E) = p(H)p(E), (5.1)

which implies
p(E|H) = p(E). (5.2)

In case a theory or hypothesisH and evidence E are stochastically independent, by
symmetry, E is not evidentially relevant to H and H is not evidentially relevant to
E. It is thus intuitive that no confirmation or disconfirmation occurs upon learning
some irrelevant piece of information.11

Moreover, if H and E are not independent, then H may either be confirmed or
disconfirmed by E, depending on whether Bayesian confirmation is given a strong
or weak interpretation. On a strong interpretation, a theory or hypothesis H is
(dis)confirmed just in case p(H|E,K) > t (or p(H|E,K) < 1 − t) where t is
some threshold typically above 1/2. On a weak interpretation (the version pre-
sented above), a theory or hypothesis H is (dis)confirmed as long as E increases
(or decreases) the probability of H given K. The former is referred to as abso-

lute confirmation and the latter incremental confirmation. Of the two, Bayesians
typically prefer the incremental version, for it was I.J. Good who remarked that if

10Assuming regularity—that is, p(E) > 0 for all propositions E.
11It is important to keep this property in mind since confirmational irrelevance in imprecise prob-

ability does not necessarily imply stochastic independence.
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p(H|E,K) is close to unity (and above t) but less than p(H|K), one should not
claim that the evidence is confirming (1968, 134).12

Furthermore, notice that Bayesian confirmation theory as described above is
qualitative provided that there is no mention of numerical degrees of confirmatory
support that some evidence lends. Instead, confirmation, disconfirmation, and irrel-
evance are defined above in terms of ordinal relations over posterior and prior cre-
dences. In the literature, however, one can find a variety of quantitative measures of
support, and there has been much discussion devoted to figuring out which measure
is sufficient for determining the degree to which some evidence E (dis)confirms a
theory or hypothesis H .13 For the purposes of this chapter, I will leave numer-
ical degrees of support out of the picture and focus strictly on ordinal Bayesian
confirmation theory to keep things simple.

Now that we have a handle on the basic details of Bayesian confirmation, in-
terpretations and caveats aside, what benefits are enjoyed by adopting the proba-
bilistic approach in scientific reasoning? One benefit of Bayesianism is a capa-
bility of ranking theories and hypotheses from the best to least supported, which
is absent from deductive accounts of confirmation. As a result, the assessment of
scientific theories and hypotheses is no longer an all-or-nothing or “yes/no” mat-
ter. Instead, the status of theories and hypotheses may vary by incremental support
yielded through the available evidence. Secondly, confirmational relations in the
Bayesian framework are not determined purely by syntax, which is a good thing
as some of the philosophical puzzles associated with deductive accounts of confir-
mation are avoided. Meanings of terms turn out to be relevant in the probabilistic
confirmation theory (Hájek & Joyce 2008).

Beyond its theoretical advantages over competing approaches, Bayesian confir-
mation has purported success stories, and proponents continue finding novel appli-
cations in science. A recent example is the Bayesian No Alternatives Argument put
forth by Dawid, Hartmann, and Sprenger (2014). Using the formal machinery, they
have shown that a failure to find an alternative theory T ′ in scientific inquiry pro-
duces (non-empirical) support for the default theory T under consideration, which
ultimately is said to confirm T . The NAA argument has positive implications for
scientific theories that are unable to be empirically tested in theoretical physics, for
example, such as string theory and the multiverse (Dawid 2013).

12Philosophically, I will remain neutral on this point, primarily because an exploration of both
interpretations in imprecise probability will be fruitful later on.

13See Fitelson (1999) for a nice overview of confirmation measures.
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While a Bayesian approach to scientific reasoning offers various benefits,
Bayesian confirmation theory by no means comes out fully unscathed in philo-
sophical analysis. Despite the problems that have been raised in the literature,
though, one would be hard-pressed in denying that Bayesianism in general has had
significant influence on the philosophy of science.

5.3 Ways of Describing Confirmation in Imprecise
Probability Theory

With an understanding of the most influential theory of confirmation in the phi-
losophy of science, let us attempt to make sense of probabilistic confirmation for
when prior credences are imprecise. In moving forward, it may seem natural to
generalize the Bayesian definitions already given, resulting in generalized Bayes-
ian confirmation. But an immediate problem surfaces with such a naı̈ve maneuver.
Specifically, the required class of probability measures satisfying each ordinal con-
dition is undefined.

The hope of easily constructing a suitable ordinal confirmation theory with
imprecise probabilities in the image of Bayes turns out to be short lived, and I will
demonstrate just how difficult it is to adequately define confirmation in imprecise
probability theory through an examination of four candidate theories. I do not
claim, however, that the compiled list is complete, for there may be some plausible
theory overlooked. But the explication will suffice to show that it is far from clear
whether there is a unique theory of confirmation that is sufficient for inductive
reasoning with imprecise probabilities.

5.3.1 Confirmational Extremity

I will begin by introducing the strongest account of (incremental) confirmation
in imprecise probability, which we might call extremity. It is simply written as
follows.

EXTREMITY:

• P(H|E,K) > P(H|K) (Confirmation)

• P(H|E,K) < P(H|K) (Disconfirmation)
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• P(H|E,K) = P(H|K) (Irrelevance).14

In plain terms, a theory or hypothesis H is said to be (i) confirmed if E increases
the probability of H conditional on K for every probability measure p ∈ P , (ii)
disconfirmed if E decreases the probability of H conditional on K for every prob-
ability measure p ∈ P , or (iii) neither confirmed nor disconfirmed if E makes no
difference to H conditional on K for any one probability measure p ∈ P .

Without much consideration, one should quickly recognize that these condi-
tions are awfully demanding based on the initial assumption that credal sets in-
clude the convex hull between the minimum and maximum probabilities. The span
between lower and upper probabilities contains an incredibly vast set of points (in-
finite), which makes any one of the confirmational conditions extremely difficult
to satisfy upon theoretically calculating each conditional point-valued probability
measure relative to H given some new evidence E and background knowledge K.

In an attempt to skirt the problem, we could relax the convexity assumption
and instead adopt the following.

WEAK EXTREMITY:

• P(H|E,K) > P(H|K) (Confirmation)

• P(H|E,K) < P(H|K) (Disconfirmation)

• P(H|E,K) = P(H|K) (Irrelevance).15

The weak extremity theory employs a bounded set of probability measures, P, that
is not necessarily convex. On conceptual grounds, one may regard P as the set of
plausible probability measures from an individual’s perspective.

Opting for a non-convex set, P, is reasonable in certain cases like the Ells-
berg experiment discussed earlier. Considering such task, a probability p(Red) =

0.25816 is in the set P(Red) = (0, 1), but an individual may rule out that prob-
ability given the possible compositions of the urn and corresponding probability
distributions. Specifically, one might reason that it is possible for 25 balls in the
urn to be red or 26, but surely it is not the case that the number of red balls is 25.816.
A degree of belief 0.25816 inRed does not track any objective chance related to the
problem (assuming that chances are mapped to the unit interval). Thus, it appears

14Assuming P(E) ≥ P(E) > 0.
15Assuming P(E) ≥ P(E) > 0.
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unnecessary from the individual’s perspective to include the above probability in
their set, which breaks convexity.

There is another reason, too, for relaxing the convexity assumption, namely to
obtain flexibility in parameterizing P in such a way that structural judgments, like
independence, are preserved, which vanish with closed, convex credal sets (Haenni
et al. 2011).16 Interval-valued credal sets seem intuitive when characterizing im-
precision in belief by spanning the gap from the minimum to maximum level of
confidence, but they tend to mask more subtle credal commitments one might hold
as discussed in the third chapter.

Putting the differences between belief models aside, either approach to the
issue at hand enjoys the advantage of engendering a novel perspective on proba-
bilisitic confirmation, distinct from the classical Bayesian theory. This is done by
working an old and familiar idea into the picture to make a brand new one. In par-
ticular, we may call upon supervalutionism to enhance our understanding of con-
firmation from these theories and add new notions to the repertoire: superconfirm,
superdisconfirm, and superirrelevant.17

Imprecise probability and supervaluationism seem to relate nicely, and the
overlap has recently been highlighted by Rinard (2015), describing the connection
as follows.

We can apply this supervaluationist strategy to doxastic imprecision by see-
ing each function in your [credal] set as one admissible precisification of your
doxastic state. Functions excluded from your set are inadmissible precisifica-
tions. Whatever is true according to all functions in your set is determinately

true; if something is true on some, but not all functions in your set, then it’s
indeterminate whether it’s true. For example, if all functions in your set have
Pr(A) > Pr(B), then it’s determinate that you’re more confident in A than B.
If different functions in your set assign different values to some proposition P,
then for each such value, it’s indeterminate whether that value is your credence

16As a reminder, irrelevance does not necessarily entail stochastic independence in imprecise
probability as it does in classical probability. There is a vast literature dedicated to the issue (e.g.
Walley 1991; Cozman 2012; Augustin et al. 2014; Pederson & Wheeler 2014). I will not dwell
on the point, but it is important to know that propositions X and Y are completely stochastically
independent when ∀p ∈ P , p(X ∧ Y ) = p(X)p(Y ) (Pederson & Wheeler 2014, 1325). There
will be times, however, when the joint is not factorizeable with respect to at least one probability
measure in the set. As a consequence, E might be confirmationally irrelevant to H in imprecise
probability theory without the propositions being stochastically independent. If the independence
property is desired for certain judgments, it is optimal to adopt P instead of P .

17Thanks to Branden Fitelson and Matt Kotzen for suggesting similar ideas in discussion.
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in P. (Rinard 2015, 2)

Tailoring the idea to confirmation, a supervaluationist interpretation of the extrem-
ity theories supplies us with the following definitions: E superconfirms H given
K just in case P(H|E,K) > P(H|K) (or P(H|E,K) > P(H|K)), E superdis-
confirms H given K just in case P(H|E,K) < P(H|K) (or P(H|E,K) <

P(H|K)), or E is superirrelevant to H given K just in case P(H|E,K) =

P(H|K) (or P(H|E,K) = P(H|K)).
A benefit of the extremity theory of confirmation with a supervalutionist in-

terpretation is in confirming that confirmation, disconfirmation, or confirmational
irrelevance determinately obtains. To demonstrate the difference between classi-
cal and supervaluationist probabilistic confirmation, suppose that one has a pre-
cise subjective probability distribution p regarding a finite set of logically incom-
patible theories or hypotheses. The individual acquires new evidence and up-
dates their credences such that they have a new credence p∗ in some H where
p∗(H) = p(H|E,K) > p(H|K). The new evidence confirms H according classi-
cal Bayesian confirmation theory. But since precise numbers are sensitive to Bayes-
ian conditioning (even more so as numbers are sharpened), the outcome could have
been different had the individual’s prior credence been different.

For instance, suppose that one’s prior credence is instead p′(H|K) and the dif-
ference is |p′(H|K)− p(H|K)| = ε where ε is small. Nothing guarantees that the
same confirmational verdict is given if likelihoods are very sharp. The posterior
probability p′(H|E,K) may come out less than or equal to the prior probabil-
ity p′(H|K), entailing either disconfirmation or irrelevance according to Bayesian
confirmation theory. In contrast to orthodoxy, if a credence is represented by a set
of probability measures like in the extremity approaches, the confirmational rela-
tion is better confirmed the coarser the set becomes, i.e. confirmational relations
hold over a neighborhood (or a finite set) of probability measures. Assuming that
any one of the confirmational conditions of extremity (or weak extremity) is sat-
isfied with non-singleton sets, a supervaluationist interpretation suggests that the
new evidence is determinately confirming, disconfirming, or irrelevant, whereas
the Bayesian has no such reassurances. In some sense, we have added a coun-
terfactual element for a Bayes agent where evidence is said to confirm H if the
positive condition were to be satisfied had the precise Bayes agent’s prior been
different, relative to a particular region of the unit interval.

While this is all well and good, the extremity accounts face substantial prob-
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lems. The most glaring issue concerns the stipulation that either positive, negative,
or zero probabilistic correlation uniformly obtains over credal sets. To illustrate the
difficulty, here is just one example where we end up with mixed results, assuming
fixed, almost equal, and extremely precise likelihoods.

A counterexample to extremity was computed using SageMathCloud. First,
a “Bayes” function is defined for computing posterior probabilities. Next, a
simple algorithm is written that computes posterior probabilities for 1000
random prior probabilities and determines whether each posterior is strictly
smaller than the corresponding random prior (note: the < confirmation
relation for comparison was arbitrarily chosen, which can be changed
unproblematically). All posteriors are calculated with arbitrary fixed and al-
most equal likelihoods l1 and l2. If a posterior probability is smaller than the
corresponding random prior probability, then “Yes” is printed along with the
prior probability, 1 minus the prior probability, and the posterior probability,
otherwise “No” and the respective data. Below is the code written in Python.

def Bayes(a, b, c):

return (a * b) / ((a * b) + ((1 - a) * c))

for i in range(0,1000):

l1 = 0.499999999999998

l2 = 0.499999999999999

x = RealField().random element(0, 0.99)

if Bayes(x, l1, l2) < x:

print ‘‘Yes’’, x, (1 - x), Bayes(x, l1, l2)

else: print ‘‘No’’, x, (1 - x), Bayes(x, l1, l2)

p1(H|E,K) =

(0.499999999999998)(0.0741474379509381)

(0.499999999999998)(0.0741474379509381) + (0.499999999999999)(0.925852562049062)

= 0.0741474379509379

(5.3)
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p2(H|E,K) =

(0.499999999999998)(0.987310939847310)

(0.499999999999998)(0.987310939847310) + (0.499999999999999)(0.0126890601526900)

= 0.987310939847310

(5.4)

In an extreme case of having a near uninformative credal set P(H|K) = (0, 1),
conditioning on new evidence leads to the above opposing confirmational verdicts
at the very least. Equation 5.3 shows that E lowers the probability of H given
K according to p1 ∈ P , precisely disconfirming H . Equation 5.4, however, shows
thatE is precisely irrelevant toH givenK according to p2 ∈ P . As a consequence,
no extremity confirmational condition is satisfied in this instance. Although this is
a trivial example with high precision, it does point out a significant problem for
extremity.

Moreover, the above pair of confirmationally-opposing outcomes is one exam-
ple from several generated by updating 1000 random priors falling within (0, 1).
Imagine how often we obtain mixed results by conditioning each point-valued
measure in just a small convex region of a credal set. With a very high chance
of obtaining mixed results, we come to realize that extremity is silent when there is
no single comparative relation for all precise posterior probabilities of credal sets.
One might be tempted to say that when none of the confirmational conditions are
satisfied, then it is confirmationally indeterminate as to whether the new evidence
confirms a theory or hypothesis. Reflecting on the supervaluationist discussion, the
suggestion seems correct as we might demand that a single confirmation relation
holds for every precisification. By adopting this line, however, we permit even a
single probability measure to tyrannically undermine a strong majority, thus giving
the first to revolt the keys to the city. The weak extremity theory is not immune
to the problem either, and the vulnerability increases as the cardinality of a non-
convex set, P, increases.

In the event that there is a lack of unanimity on the confirmational verdict of a
theory or hypothesis H , an inquirer may be kept waiting for an eternity by demand
of the extremity theories prior to making a judgment. Ultimately, scientific progress
will come to a halt if inquirers are constrained in such a way, for many will be long
dead before there is a verdict on which theory or hypothesis is best supported by the
evidence. This consequence makes extremity in imprecise probability implausible.
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5.3.2 A Behavioral Confirmation Theory

Instead of holding such strict standards for confirmation in imprecise probability,
we might follow the subjectivist tradition and leave the confirmational status of a
theory or hypothesis to be determined by the behavioral reactions of an individual
in response to new evidence. In particular, we might say that evidence confirms
or disconfirms a theory or hypothesis just in case an individual is disposed to act
differently in response to the evidence, otherwise the evidence is irrelevant if one is
disposed to act in the same way as they would have prior to learning the evidence.

Some might be alarmed by a highly subjective interpretation of confirmation
like this one, but it is doubtful that one can successfully separate intellectual
interests from practical interests for value-driven individuals. So let us at least
entertain the possibility of such kind of confirmation theory, which is written in
the following way.

PREVISIONS-BASED CONFIRMATION:

• P (H|E,K) > P (H|K) & P (H|E,K) ≥ P (H|K) (Confirmation)

• P (H|E,K) ≤ P (H|K) & P (H|E,K) < P (H|K) (Disconfirmation)

• P (H|E,K) = P (H|K) & P (H|E,K) = P (H|K) (Irrelevance).18

In plain terms, a theory or hypothesis H is said to be (i) confirmed by E if an
individual would now pay more for the gamble H but would not sell the same
gamble for any less than before, (ii) disconfirmed by E if an individual would not
pay any more for H than before but would sell the gamble now for less, or (iii)
neither confirmed nor disconfirmed by E if an individual would maximally buy
and minimally sell H at the same prices as before.

How is it that adjustments in previsions correlate with judgments of confir-
mation and disconfirmation? Suppose that an individual’s lower prevision for a
gamble H is marked up from $.50 to $.60 upon learning E—that is, one is now
willing to pay a maximum of $.60, compared to a previous maximum price of $.50,

18I use the italic P and P to denote lower and upper previsions. A linear prevision P is defined
as a function on a set of gambles G to the reals R. Lower and upper previsions are one-sided
supremum buying and infimum selling prices, respectively. Given the focus on a special kind of
gamble, IX , coherent previsions are bounded by 0 and 1—that is, an individual’s supremum buying
rate and infimum selling rate for a special gamble IX are neither negative nor exceed 1. Also, I
abuse notation here, using the variable H to represent the special gamble instead of IH . It should
be assumed that H is shorthand for IH throughout this subsection.
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to win $1 if H is true, $0 otherwise. Assume in this instance that there is not a
decrease in the individual’s upper prevision. Moreover, an increase in one’s supre-
mum buying price implies an increase in credence in the theory or hypothesis under
consideration since the individual’s lower prevision for the gamble corresponds to
their lower probability for the theory or hypothesis. Thus, we say that a theory or
hypothesis is confirmed by E if the highest price one is willing to buy the gamble
H increases (and the lowest selling price does not decrease). A positive adjustment
in the lower prevision (and non-decreased adjustment in upper prevision) signals
that the individual finds the theory or hypothesis to be more plausible, hence why
they would pay more for the gamble but not sell it for any less than before.

Imagine instead that an individual’s upper prevision for a gamble H is dis-
counted from $.70 to $.60 upon learning E, implying that one would now sell the
gamble H for as low as $.60. Assume in this instance that there is not an increase
in the individual’s lower prevision. Moreover, the individual is willing to exchange
the gamble H for a smaller fee than previously. A decrease in the infimum selling
rate implies a decrease in credence in the theory or hypothesis under consideration
since the individual’s upper prevision for the gamble corresponds to their upper
probability for the theory or hypothesis. Thus, we say that a theory or hypothesis
is disconfirmed by E if the lowest price that one is willing to part ways with the
gamble H decreases (and the highest buying price does not increase). A downward
change in the upper prevision (and non-increased adjustment in lower prevision)
signals that the individual finds the theory or hypothesis to be less plausible, hence
why they would sell the gamble to another for a smaller fee but not buy it for any
more than before.

With respect to irrelevance, suppose that neither the individual’s lower previ-
sion, i.e. $.50, nor their upper prevision, i.e. $.70, for the gamble H changes after
learning E. Then, the individual’s lower and upper probabilities for the theory or
hypothesis under consideration are not at all affected by learning evidence E and
so it is irrelevant. From the individual’s point of view, the theory or hypothesis
is neither confirmed nor disconfirmed by E. The irrelevance condition is fairly
straightforward in the previsions-based theory.

Now that an explanation of confirmation in terms of adjustments to previsions
has been provided, there are some advantages that come with the proposed theory.
First, it is more relaxed than the extremity theories and consequently makes for a
palatable theory of confirmation in imprecise probability where confirmation and
disconfirmation become realistically obtainable. Second, with the theory being
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motivated by behavior, it is easy to see how it can be adopted in practice. Of course,
many will likely be averse to adopting such a theory because of the subjectivity
involved. But methodologically, the behavioralist approach can be quite useful for
eliciting judgments of confirmation and disconfirmation held by inquirers. The
betting scheme is merely a device for identifying the opinions of experts.

Despite the theory’s promise, there are specific confirmationally-relevant in-
stances that are not accounted for. Two instances that come to mind are attraction

and repelling of lower and upper previsions. Let us call the first precision since
an individual’s credence becomes more precise as the lower and upper previsions
converge. In regard to the second, it has been named dilation (Seidenfeld & Wasser-
man 1993; White 2009; Bradley & Steele 2014; Pederson & Wheeler 2014). Check
these instances against the confirmational criteria for the previsions-based account.
You will find that such instances are not subsumed by any of the confirmational
categories given by the theory. Again, we might admit that deviant instances fall
under a category of confirmational indeterminacy. In regard to dilation, the cate-
gorization seems apt, for dilation maintains imprecision with respect to credence
in a theory or hypothesis. Precision, however, is not very fitting. As an individ-
ual becomes more precise on some matter, one dimension of their uncertainty is
lessened. In such case, it is unintuitive to describe the epistemic state as ‘confirma-
tionally indeterminate’.

A way around the mis-categorization of precision is to place the instances un-
der confirmation. However, doing so calls for a revision to the theory where the
condition P (H|E,K) ≥ P (H|K) in the confirmation definition is dropped, but the
revision exposes it to an unusual problem. For example, suppose that P(H|K) =

[a, b] and P(¬H|K) = [1− b, 1− a] where a, b ∈ (0, 1). Upon conditioning on E,
suppose thatP(H|E,K) = [a+ε, b−ε′] andP(¬H|E,K) = [1−(b−ε′), 1−(a+ε)]

where ε and ε′ are greater than 0, but (ε + ε′) ≤ |a − b|. Conditioning both H and
¬H on E and K leads to instances of precision. Notice, though, that H and ¬H
both are confirmed simply by the lower conditional previsions being larger than
the respective lower unconditional previsions. A theory of confirmation that simul-
taneously confirms logically incompatible theories or hypotheses spells disaster.

5.3.3 Confirmational Sensitivity

To follow up on the deficiencies of the previsions-based theory, I introduce what we
might call the sensitivity theory. This account is by far the most complex given its
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extension to the various instances described earlier, many of which are unfamiliar
to classical Bayesians.

Remaining neutral on the interpretation of lower and upper probabilities in
this section, the theory is written in the following way.

SENSITIVITY:

• P(H|E,K) > P(H|K) & P(H|E,K) ≥ P(H|K) (Confirmation)

• P(H|E,K) = P(H|K) & P(H|E,K) > P(H|K) (U-Confirm)

• P(H|E,K) ≤ P(H|K) & P(H|E,K) < P(H|K) (Disconfirmation)

• P(H|E,K) < P(H|K) & P(H|E,K) = P(H|K) (L-Disconfirm)

• P(H|E,K) = P(H|K) & P(H|E,K) = P(H|K) (Irrelevance)

• P(H|E,K) > P(H|K) & P(H|E,K) < P(H|K) (Precision)

• P(H|E,K) < P(H|K) & P(H|E,K) > P(H|K) (Dilation).19

There is little surprise here provided the previous discussion. And it should be
clear that the sensitivity theory inherits all of the benefits of the previsions-based
theory along with accounting for fine-tuning and coarse-graining of credences by
new evidence, i.e. precision and dilation.

Additionally, two new definitions have been introduced, U-Confirm and L-
Disconfirm. The former is satisfied just in case the evidence increases the upper
side of a credal set while the lower side remains unfazed. The latter is satisfied
just in case the evidence decreases the lower side of a credal set while the upper
side remains unfazed. In a confirmational sense, U-Confirm signals that evidence
partially confirms a theory or hypothesis H and L-Disconfirm signals that evidence
partially disconfirms a theory or hypothesis H , where credal sets are anchored by
the opposite end in either instance. These additions to a theory of probabilistic
confirmation capture partiality and allow it to “cover all of the bases.”

Clearly, though, the sensitivity theory does not inherit the simplicity of
previsions-based confirmation. Of course, it is desirable to have something said
about the confirmational status of a theory or hypothesis when an unfamiliar sit-
uation arises, i.e. precision, dilation, U-confirm, L-disconfirm, but satisfying this
desire comes at a price. Although some might not be so concerned with the lack

19Assuming P(E) ≥ P(E) > 0.
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of simplicity, the trade-off can be made apparent by comparing sensitivity with or-
dinal Bayesian confirmation theory. Bayesian confirmation theory is quite simple
and elegant with its tripartite division accounting for every possible posterior state.
Sensitivity on the other hand surely is neither simple nor elegant. By Occam’s
razor, why not Bayes, then?

Simplicity might not be a compelling reason to reject sensitivity, but there
are further problems with pieces of the theory. Specifically, U-Confirm and L-
Disconfirm do not accord with the conceptual notions of confirmation and dis-
confirmation. To see this, let us treat a credal set as an individual’s metaphorical
credal committee (Joyce 2010). If upon obtaining new evidence, the pessimistic
voting committee members remain steadfast while the optimistic voting committee
members further their optimism, it is incorrect to say that some kind of confirma-
tion took place, for the disagreement has been exacerbated. L-Disconfirm faces a
similar worry.

To make the point clear, suppose that P(H|K) = [a, b], where a, b ∈ (0, 1),
and upon obtaining new evidenceE, P(H|E,K) = [a, b+ε], where ε > 0. The op-
timists of the credal committee are positively swayed by the new evidence, but the
pessimists refuse to budge. Notice that epistemic imprecision increases such that
|a − b| < |a − (b + ε)|. Since the inquirer’s epistemic imprecision increases upon
learning E, it is counterintuitive to claim that E is partially confirming evidence.
Similarly, if instead P(H|E,K) = [a− ε, b], then again epistemic imprecision in-
creases such that |a − b| < |(a − ε) − b|. One should feel reluctant in calling E
partially disconfirming evidence. The notions of (subjective) probabilistic confir-
mation and disconfirmation typically imply an increase and decrease in belief in
a theory or hypothesis H , not an increase in epistemic imprecision. However, I
have just shown that U-Confirm and L-Disconfirm uniquely increase an individ-
ual’s epistemic imprecision towards a theory or hypothesis. Thus, U-Confirm and
L-Disconfirm fail to accord with the conceptual notions of probabilistic confirma-
tion and disconfirmation. Unlike dilation, though, the movement in credal com-
mittees is lopsided. So what do instances fitting the U-Confirm and L-Disconfirm
patterns express? It is not so clear. Despite confirmational sensitivity in impre-
cise probability theory covering all of the bases, there are trade-offs and unintuitive
notions that one must accept if adopted.
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5.3.4 Interval Dominance Confirmation

The final candidate I will consider is interval dominance confirmation. Unlike the
others, interval dominance entails an absolute confirmation theory. To see this, let
us begin by defining a strict interval dominance criterion.

Strict Interval Dominance (SID): For any propositions A,B and closed convex
credal set P , A strictly interval dominates B if and only if P(A) > P(B). Other-
wise, B is interval undominated.

In the conditional case, A given E will be strictly more probable than B given E
or vice versa if SID is satisfied. Otherwise, neither proposition interval dominates
the other upon learning E.

We will use SID as the criterion for defining confirmation in imprecise
probability and propose the following.

INTERVAL DOMINANCE:

• P(H|E,K) > P(¬H|E,K) (Confirmation)

• P(H|E,K) < P(¬H|E,K) (Disconfirmation)

• P(H|E,K) = P(H|K) & P(H|E,K) = P(H|K) (Irrelevance).20

In plain terms, a theory or hypothesis H is said to be (i) confirmed if E increases
the lower probability of H conditional on K above the upper probability of ¬H
conditional on K or (ii) disconfirmed if E decreases the upper probability of H
conditional on K below the lower probability of ¬H conditional on K. Irrelevance
is held to be the same as in the previsions-based and sensitivity theories.

The requirement for confirmation is stronger than in the previous confirma-
tion theories we have seen and entails an absolute confirmation condition where
the lower probability for H conditional on E and K satisfies a threshold t such
that t = inf( P(¬H|E,K), 1). Notice also that under certain conditions, absolute
Bayesian confirmation theory is just a special case of the interval dominance the-
ory when P = {p}, for p(H|E,K) ≥ t and t > 1

2
provided that p(H|E,K) =

P(H|E,K) > p(¬H|E,K) = P(¬H|E,K) if and only if p(H|E,K) is at least
t = inf( P(¬H|E,K), 1), which must be a value greater than 1/2.

20Assuming P(E) ≥ P(E) > 0.
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What is significantly different about the interval dominance theory compared
to the other confirmation theories that turn out to be incremental is that the latter
have no stipulation on a minimum lower probability required for confirmation and
disconfirmation whereas the former does. If, for example, P(H|E,K) = [a, b],
P(H|K) = [c, d], b ≥ d, a > c, and a, b, c, d ∈ (0, 1), then E confirms H given K
according to the previsions-based and sensitivity theories (possibly the extremity
theories as well). On the other side, if P(¬H|E,K) = [1− b, 1− a], P(¬H|K) =

[1 − d, 1 − c], (1 − b) ≤ (1 − d), and (1 − a) < (1 − c), then ¬H given K is
disconfirmed by E on the previsions-based and sensitivity theories (possibly the
extremity theories as well). In the interval dominance theory, however, E does not
necessarily confirm H given K (or disconfirm ¬H) unless if a > (1 − a). Thus,
the interval dominance confirmation theory may deliver a different confirmational
verdict than the incremental confirmation theories in imprecise probability.

From one perspective, the interval dominance theory seems the most plausible.
If we consider three disjoint theories, A, B, and C, and are able to determine a
ranking of theories conditional on E and K, then we obtain a total preorder of
theories by how well they are confirmed. For example, suppose that A is strictly
more probable than B and B is strictly more probable than C conditional on E and
K. Then, P(A|E,K) > P(B|E,K) and P(B|E,K) > P(C|E,K). In this case,
it is intuitive that A is better confirmed than B and B is better confirmed than C.
An incremental theory, on the other hand, will supply confirmational verdicts even
when imprecise probabilities “overlap” while theories or hypotheses in actuality
turn out to be incomparable in support. It is hard to say which candidate is the
most likely to be true when none dominate. The interval dominance theory gives
confirmational verdicts only when at least one theory or hypothesis is dominating.
It therefore avoids confirmational ambiguity in assessment.

However, the interval dominance confirmation theory runs afoul in certain in-
stances, namely when

P(H|E,K) = [a+ ε, b+ ε′]

>

P(H|K) = [a, b],

P(¬H|E,K) = [1− (b+ ε′), 1− (a+ ε)]

<

P(¬H|K) = [1− b, 1− a],
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and (1 − (b + ε′)) > (b + ε′), where ε and ε′ are both greater than 0. In this
example, ¬H given E and K strictly interval dominates H given E and K. But
since b+ ε′ > b, E decreases the lower probability of ¬H given K, yet the interval
dominance theory classifies the instance as confirmation of ¬H given K. The
outcome is quite unusual since E incrementally reduces the support for ¬H , but
the verdict is that E confirms ¬H . Here is where the absolute theory seemingly
goes wrong, and this point against the interval dominance theory is a generalization
of the point made by Good against absolute Bayesian confirmation theory.

One way out might be to say that such instance leads to confirmational in-

determinacy. The addition of a confirmational indeterminacy category might also
subsume non-domination by any candidate (full incomparability) noted above. But
in adopting the go-to confirmational indeterminacy category, however, the theory is
in need of revision since it accommodates too few confirmational notions. Further-
more, formal amendments to the theory, like confirmational indeterminacy, are not
obvious on conceptual grounds, for in the above example, ¬H reigns supreme as
the most well confirmed theory, despite a slight evidential setback. Without there
being a quick fix in sight, we find that an interval dominance theory of confirmation
falls short of being sufficient.

5.4 Summary

To rehearse the main findings in this chapter, we have learned of ways in which
Bayesian confirmation theory may be extended by imprecise probability theory.
However, we lose sight of confirmation, for it remains entirely unclear on how
confirmation should be defined when imprecise probabilities are deployed in an
epistemology. Although each candidate theory examined above has some benefit,
we have also observed that each faces serious challenges.

So where do we go from here? As I mentioned earlier, the four candidate the-
ories do not exhaust the space of possibilities, and so there may be some plausible
definition of confirmation in imprecise probability theory that has not been consid-
ered here. However, at this time, the challenges associated with each theory suffice
to show that there is no obvious plausible confirmation theory with imprecise prob-
abilities for scientific reasoning or epistemology in general. As a result, imprecise
probability theory has so far failed to accommodate a central epistemic notion that
is familiar in Bayesian circles. Interestingly, a non-singleton set of probability mea-
sures can make all the difference with respect to probabilistic confirmation theory.
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Of course, my judgment may be premature since an entirely plausible theory
may be discovered. But even if there is no other plausible theory left to consider,
a positive stance on the matter could be embraced. In particular, one of the men-
tioned theories may be adopted, despite there being limitations, for each theory
does have unique advantages after all. Or one might instead adopt a pluralistic at-
titude and employ different definitions of confirmation in different contexts. Nega-
tively, however, one may admit that (ordinal) confirmational relations are unlikely
to be defined in a satisfactory way in imprecise probability theory anytime soon
and eschew the idea altogether. Regardless of the route taken, we have discovered
that making sense of confirmation in imprecise probability is not at all an easy task.
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Conclusion
Throughout the dissertation, I suggested ways that imprecise probability might be
applied in epistemology and philosophy of science. On the issues of peer disagree-
ment and ignorance, the use of imprecise probability is justified. Confirmation, on
the other hand, turned out be troublesome. But I recommend not giving up hope
and furthermore encourage the pursuit of a probabilistic confirmation theory with
imprecise probabilities. If no plausible theory should exist, that, however, does
not mean we should be quick to abandon imprecise probability. Such a discovery
would only indicate that the model(s) has limitations like any other. That is not
very troubling, at least insofar as I am concerned. Anyhow, it would be nice to end
on a positive note about imprecise probabilities, and this final discussion provides
a prime opportunity to do so by describing future work.

There are a number of issues that would be interesting to analyze with sets of
probabilities beyond the present dissertation. I will describe just two here. The
first can be seen as a relative to the problem of peer disagreement. In particular,
the coherence of multiple witness reports has become an important issue in so-
cial epistemology, especially in gauging the epistemic contribution that eyewitness
reports make in legal cases, for example. Bovens & Hartmann (2003) studied the
issue from a purely traditional Bayesian perspective, and their account is a powerful
one indeed. Furthermore, the proposal simplifies the issue by encoding reliability
in likelihoods and precludes collusion or tainted testimonies through an indepen-
dence assumption regarding reports Ri where i = 1, 2, 3..., n. While the suggested
approach is normative, psychologists have recently found evidence in support of
sensitivity towards Bayesian aggregation of information (Harris & Hahn 2009).

The successful Bayesian analysis of testimony provides legal experts with a
unique way of aggregating information. However, in considering the chapter on
peer disagreement, it is entirely possible for a group of experts to arrive at a collec-
tive estimate that is imprecise, i.e. P(H) = {x1, ..., xn} such that x1 6= xn. Forget
peerhood, this is quite common in legal cases given different individual information
sets, bias, and ulterior motives. Unfortunately, the latter cannot be extinguished in
the real world. So to safeguard against adopting a misleading opinion, the asses-
sors of H should adopt the whole lot of opinions. In doing so, the conditional
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judgments (witness reports factored in) are likely to come out imprecise assuming
an imprecise prior. The story becomes more complicated at this point beyond the
simple assessment yielded by Bovens and Hartmann. Studying the complications
might result in novel insights on the mess trial by jury leads to.

The second issue I will mention is very recent and has attracted significant
attention. It is the idea of transformative experience (Paul 2014). L. A. Paul
describes the notion through two key factors.

EPISTEMIC TRANSFORMATIVE EXPERIENCE: An experience is epistemically
transformative if the only way to know what it is like to have the experience is
to actually have it yourself.

PERSONAL TRANSFORMATIVE EXPERIENCE: An experience is personally trans-
formative if it changes your point of view, including your core preferences.

A transformative experience is the conjunction of the above two types of experi-
ences.1 Drawing on this interesting notion, Paul argues that it would be extremely
difficult for an individual to make an informed choice if one lacks the relevant
experience, epistemic or personal, that is salient to a decision problem. Her two
popular examples are choosing between becoming a vampire or remaining human,
and more realistically, choosing between having a child or not.

One would think that classical decision theory would have something to say
on this matter, but classical decision theory is exactly what she targets as a failure
in these kinds of situations. Without having the appropriate experience, she says,
one would be challenged in assigning cardinal utilities to outcomes. To complicate
matters even further, Paul illuminates a concern about personal identity, namely
whether one’s current self will be identical to the future self. Based on the definition
of transformative experience, it seems that there will be differences between the
future and current self. So how could one possibly know in the present moment
what utilities the future person would assign to possible outcomes?

Metaphysics aside, there is a way to sensibly analyze the choice problems
raised by Paul. On the epistemic issue, one ought to admit to being completely
ignorant about what a particular experience is like if they never had such an expe-
rience. From Chapter 4, we saw how the state can be modeled. As for the personal

1These definitions are taken directly from Paul’s “Teaching guide for transformative experience”
<http://www.lapaul.org/papers/teaching-guide-for-transformative-experience.pdf>.
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issue, utilities could, in fact, be imprecise the same way credences can be impre-
cise (see Levi 1974). Combining the two, an individual ends up with indeterminate
preferences. So in taking a step back from the classical notions that are targeted
by Paul, we may broaden the framework to accommodate choice problems where
one lacks the necessary experiences for making a rational decision. Now, I do not
suggest that the proposal eliminates the philosophical problem. Instead, the pro-
posal is meant to clarify what the problem is. The real problem is in justifying a
decision rule. On one extreme, a rule for choosing based on indeterminate prefer-
ences might make all options permissible while on the other extreme, all options
might be made impermissible. It is not clear what the right decision rule is in cases
pertaining to transformative experience, and thus it would be a very fruitful avenue
of research to explore, which may even be transformative.

Again, there are quite a number of philosophical questions that may be help-
fully addressed by using imprecise probability as a formal tool. Those mentioned
above are nowhere near exhaustive, and so further investigation of a generalized
Bayesian epistemology should be warmly welcomed in future research.
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