
HAL Id: hal-01632907
https://hal.archives-ouvertes.fr/hal-01632907

Submitted on 14 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classification of Multisensor and Multiresolution
Remote Sensing Images through Hierarchical Markov

Random Fields
Ihsen Hedhli, Gabriele Moser, Sebastiano Serpico, Josiane Zerubia

To cite this version:
Ihsen Hedhli, Gabriele Moser, Sebastiano Serpico, Josiane Zerubia. Classification of Multisensor
and Multiresolution Remote Sensing Images through Hierarchical Markov Random Fields. IEEE
Geoscience and Remote Sensing Letters, IEEE - Institute of Electrical and Electronics Engineers,
2017, 14 (2), pp.2448-2452. �10.1109/LGRS.2017.2768398�. �hal-01632907�

https://hal.archives-ouvertes.fr/hal-01632907
https://hal.archives-ouvertes.fr


IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1

Classification of Multisensor and Multiresolution
Remote Sensing Images through Hierarchical

Markov Random Fields
Ihsen Hedhli, Member, IEEE, Gabriele Moser, Senior Member, IEEE,
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Abstract—This letter proposes two methods for the supervised
classification of multisensor optical and SAR images with possibly
different spatial resolutions. Both methods are formulated within
a unique framework based on hierarchical Markov random fields.
Distinct quad-trees associated with the individual information
sources are defined to jointly address multisensor, multiresolu-
tion, and possibly multifrequency fusion, and are integrated with
finite mixture models and the marginal posterior mode criterion.
Experimental validation is conducted with Pléiades, COSMO-
SkyMed, RADARSAT-2, and GeoEye-1 data.

Index Terms—Multisensor, multiresolution, multifrequency fu-
sion, quad-tree, hierarchical Markov random field (MRF), mar-
ginal posterior mode (MPM), finite mixture models.

I. INTRODUCTION

G IVEN the current amount and variety of data from high
or very-high resolution (HR/VHR) satellite missions,

a major challenge is to develop classifiers that can benefit
from multiresolution, multisensor, and multifrequency input
imagery [1]–[3]. The use of multiband and multiresolution
data has been shown to favor accuracy and spatial precision of
the classification maps [2]. Furthermore, the use of multisensor
data generally allows complementary properties, such as those
of SAR and optical imagery, to be exploited [1]. Hence, there
is a definite need for classification methods that can fuse
images taken on the same area both by different sensors and
at different resolutions. One way to address multisensor data
classification is to compute joint class-conditional distributions
given the marginal probability density function (PDF) of the
data collected by each sensor. Meta-Gaussian [4], copula [5],
or non-parametric models [6] can be used for this purpose.
However, finding such joint statistical models is generally
complex, time-demanding, and possibly prone to over-fitting.

In this paper, we build on the theory of hierarchical Markov
random fields (MRFs) [7] to address the challenging problem
of the supervised classification of data that are both mul-
tiresolution and multisensor (and possibly multifrequency).
The rationale is to benefit from the fusion capabilities of
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hierarchical MRFs and avoid the computation of joint statistics
of multisensor data. Inference is accomplished by extending
the approach that was previously developed in [8] for multi-
temporal fusion and is based on the marginal posterior mode
(MPM) criterion. PDF estimation is addressed using mixtures
of Gaussian and generalized Gamma distributions.

Two methods are proposed in this framework. In the case of
the first one, the image acquired by each sensor is associated
with a separate quad-tree according to its resolution. In regard
to the second method, the focus is on the specific case of the
fusion of multifrequency X-band COSMO-SkyMed (CSK) and
C-band RADARSAT-2 (RS2) SAR data together with optical
visible and near-infrared (VNIR) Pléiades data. Distinct quad-
trees are used again, but here, optical and SAR data are both
included in each quad-tree to benefit from the finest resolution
available from each sensor. While the first technique addresses
the fusion of data from generally arbitrary SAR and optical
sensors, the second method focuses on the synergy among
three specific and topical satellite data sources. The main novel
contribution of the proposed framework is the formalization
of the joint problem of multisensor, multiresolution, and
possibly multifrequency fusion in terms of a multiple quad-
tree topology and of hierarchical MRFs.

The letter is organized as follows. Section II-A describes the
proposed framework and the quad-tree structures of the two
methods. Sections II-B and II-C discuss the MPM inference
and PDF estimation issues. Experimental results are presented
in Section III and conclusions are drawn in Section IV.

II. PROPOSED MULTISENSOR HIERARCHICAL APPROACH

A. Overview of the proposed methodology
To address multisensor and possibly multifrequency fusion,

the proposed framework extends and adapts the approach de-
veloped in [8] for multitemporal fusion and based on multiple
quad-trees in cascade and on hierarchical MRFs (Fig. 1).
This hierarchical formulation also allows multiresolution data
to be naturally incorporated. In particular, a pair of quad-
trees in cascade is constructed using the input multisource
imagery. Given a training set for M thematic classes, infe-
rence can be efficiently formulated on this topology using
MPM (see Section II-B), while the statistics of the data
from each sensor are modeled using finite mixtures and the
stochastic expectation-maximization (SEM) algorithm [9] (see
Section II-C). In this framework, two methods, which differ
in how data are incorporated in the quad-trees, are defined.
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Fig. 1. Multisensor hierarchical structure.

1) Quad-trees of the first proposed method: Let an optical
and a SAR image, acquired at the same time over the same
area, be given. In the first method, these images are included in
the finest-scale levels (the leaves) of two quad-trees. Coarser-
scale levels of each quad-tree are filled in using wavelet
transforms of the finest-scale level [10]. The roots of the
quad-trees are assumed to have the same spatial resolution.
Hence, there generally are different numbers of levels in the
quad-trees, from the roots at a common resolution to the
input resolutions of the optical and SAR data. The quad-tree
topology also implies that the resolutions of the two input
images are in a power-of-2 relation. With current HR satellite
sensors, this condition is easily met up to minor resampling.

2) Quad-trees of the second proposed method: The second
method is aimed at classifying multisensor, multifrequency (X-
band radar, C-band radar, VNIR optical), and multiresolution
data from CSK, RS2, and Pléiades. These prominent sensors
support multiple resolutions, up to 0.5 m for Pléiades and
approximately 1 m for CSK and 1-2 m for RS2. Given input
CSK, RS2, and Pléiades images acquired on the same area
at the same time, case-specific quad-trees are constructed
to classify at the finest of the input resolutions. Each SAR
image is inserted in a separate quad-tree according to its
own resolution. These resolutions are expected to be coarser
than the finest resolution achieved using Pléiades. Therefore,
the input Pléiades image is embedded in the finest-resolution
levels of both quad-trees. Empty levels are filled in using
wavelet transforms of the Pléiades data. The comment on the
power-of-2 relation among the input resolutions holds again.

B. Multisensor hierarchical formulation of MPM

Owing to the quad-tree structure, a hierarchical MRF model,
which consists of a series of random fields linked, at various
scales, by suitable transition relations, can be defined (Fig. 1).
The formulation of MPM proposed in [8] for multitemporal
classification is extended here to multisensor fusion. MPM
is used instead of the maximum a-posteriori (MAP) rule
because MAP formulations on quad-trees, although they are
feasible [11], [12], are affected by underflow and penalize
errors regardless of the scale at which they occur – an
undesired behavior for multiscale classification [8], [12], [13].

Collecting all the (optical, SAR, and wavelet) features
of both quad-trees in the vector y, the posterior marginal
p(xs|y) of the label xs of each site s in the second quad-
tree is expressed, under suitable conditional independence
assumptions, as a function of the posterior marginals p(xs− |y)

and p(xs= |y) of the parent node s− in the same quad-tree and
the parent node s= in the first quad-tree, i.e. [8]:

p(xs|y) =
∑

xs− ,xs=

p(xs, xs− , xs= |yd(s))p(xs− |y)p(xs= |y)∑
xs
p(xs, xs− , xs= |yd(s))

, (1)

where it is proven in [8] that, under appropriate assumptions:

p(xs, xs− , xs= |yd(s))p(xs) = (2)
= p(xs|xs− , xs=)p(xs− |xs=)p(xs=)p(xs|yd(s)),

and where yd(s) collects the features of all descendants of s,
p(xs) is the prior probability, p(xs|xs− , xs=) is the parent-
child transition probability, p(xs− |xs=) is the transition pro-
bability between sites at the same scale, and p(xs|yd(s)) is
the partial posterior marginal. While these quantities are made
available, (1) and (2) recursively calculate p(xs|y) on each site
s of the second quad-tree. This is obtained using one bottom-
up and two top-down recursive passes, which are described
in the next subsections. Note that, by (1), the quad-trees are
ordered. In the first proposed method, SAR and optical data
are related to the first and second quad-trees, respectively. In
the second method, two options are possible, i.e., CSK in the
first quad-tree and RS2 in the second one or vice versa.

1) Initialization on the first quad-tree: First, classification
is performed only on the first quad-tree using a traditional
MPM on a single quad-tree [11]. As in [8] (to which we refer
for details), the prior distribution at the root is modeled using a
Potts MRF to favor spatial consistency. After the initialization
stage, p(xf |y) is known for each site f of the first quad-tree
and p(xf |yd(f)) is derived as a by-product.

2) First top-down pass on the second quad-tree: The first
top-down pass proceeds from the root to the leaves of the
second quad-tree to recursively compute p(xs). As in [8], this
prior is initialized in each site s of the root of the second quad-
tree as p(xs) = p(xf |yd(f)), where f is the site of the root
of the first quad-tree with the same location as s. Then, the
recursion proceeds along the other levels down to the leaves:

p(xs) =
∑
xs−

p(xs|xs−)p(xs−). (3)

This favors the same parent-child labeling and characterizes
the statistical interactions between consecutive levels. We mo-
del the parent-child transition probability p(xs|xs−) through
the parametric form in [14]. As a result of this top-down pass,
p(xs) is derived on each site s of the second quad-tree.

3) Bottom-up pass on the second quad-tree: A bottom-
up recursion is performed to compute p(xs, xs− , xs= |yd(s))
starting from the leaves of the second quad-tree and using
(2) until the root is reached. In addition to p(xs), three sets
of probabilities are required: (i) the transition probabilities
at the same scale p(xs− |xs=); (ii) the parent-child transition
probabilities p(xs|xs− , xs=); and (iii) the partial posterior
marginals p(xs|yd(s)). Details of the modeling of (i) and
(ii), which is performed parametrically, can be found in [8].
Concerning (iii), it has been proved that [11]:

p(xs|yd(s)) ∝ p(ys|xs)p(xs)
∏
u∈s+

∑
xu

p(xu|yd(u))p(xu|xs)
p(xu)

(4)
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where s+ and ys are the set of four children and the feature
vector of site s, respectively. First, p(xs|yd(s)) is initialized
on the leaves of the second quad-tree with p(xs|yd(s)) =
p(xs|ys) ∝ p(ys|xs)p(xs). Then, p(xs|yd(s)) is recursively
estimated with (4) up to the root. This recursion involves the
pixelwise class-conditional PDF p(ys|xs) (see Section II-C).
After the bottom-up pass, p(xs, xs− , xs= |yd(s)) is computed
on each site s of the second quad-tree.

4) Second top-down pass on the second quad-tree and
output labeling: First, the posterior marginal is initialized at
the root of the second quad-tree as p(xs|y) = p(xs|yd(s)).
Then, given the quantities computed by the previous stages,
p(xs|y) is derived on all sites s of all other levels of the
second quad-tree in a top-down pass using the recursion (1).
Then, in principle, the class label xs that maximizes p(xs|y)
over the set of M classes could be assigned to s directly.
This approach is often avoided in the literature of hierarchical
MRFs because of its computational burden and of possible
blocky artifacts [5], [11]. As an alternate approach, the case-
specific formulation of the modified Metropolis dynamics
algorithm [15] that was combined in [8] with MPM is extended
here as well. The labeling result on the leaves of the second
quad-tree represents the output classification map.

C. PDF estimation through finite mixtures
For each class m ∈ {1, 2, . . . ,M} and each level n between

the leaves and the root of each quad-tree q ∈ {1, 2}, we use
a finite-mixture model for the pixelwise PDF p(ys|xs = m).
This choice is explained by the flexibility of finite mixtures
in characterizing heterogeneous statistics such as those of
HR imagery [8]. If the data at level n of quad-tree q are
optical, then a multivariate Gaussian mixture is used [6]. The
same model is used for wavelet transforms of optical data,
because of the linearity of the wavelets. If the data at level
n of quad-tree q are SAR, a mixture of generalized Gamma
distributions is used. The generalized Gamma model has been
found accurate for HR SAR [16], [17]; here, it is also extended
as an empirical model for wavelet transforms of SAR data.

The mixture parameters are estimated using SEM, which is
an iterative stochastic algorithm developed for problems cha-
racterized by data incompleteness. SEM generates a random
sequence of estimates, which does not converge almost surely
but, under suitable assumptions, forms an ergodic homogene-
ous Markov chain converging to a unique stationary distribu-
tion, which is expected to concentrate around the global log-
likelihood maxima [9]. Hence, initialization is not critical and
is usually performed randomly with uniform distribution [9],
[18]. The number of mixture components is also automatically
estimated using the specific SEM formulation in [19]. For each
scale n of each quad-tree q, SEM is separately applied to
the training samples of each class m. For generalized Gamma
mixtures, it is also combined with the method of log-cumulants
(details can be found in [18], [19]).

III. EXPERIMENTAL RESULTS

A. Results of the first proposed method
An HR dataset collected in 2010 over Port-au-Prince, Haiti,

and composed of an HH-polarized single-look CSK stripmap

image with 2.5-m pixel spacing (325× 400 pixels; Fig. 2(a))
and of a GeoEye-1 RGB image resampled at 2.5-m resolution
(Fig. 2(b)), was used to experimentally validate the first
proposed method. 2D Daubechies wavelets of order 10 were
used. Five land cover classes were considered (see Table I and
Fig. 2(c)). We compared the result of the proposed method
(Fig. 2(i)) with those of: (i) the single-sensor multiscale
classification of the image of each sensor, obtained by applying
the original MPM to a single quad-tree [11] with Gaussian or
generalized Gamma mixtures for the class-conditional PDFs
of optical and SAR data, respectively (Figs. 2(d) and (e));
(ii) the multisensor multiresolution method in [5], in which a
hierarchical MRF on a single quad-tree is used and multisensor
fusion is addressed through copulas (Fig. 2(f)); (iii) the mul-
tisensor single-resolution approach in [4], in which the joint
class-conditional PDFs of multisensor data are modeled with
meta-Gaussian distributions and combined with the maximum
likelihood rule (Fig. 2(g)); and (iv) a support vector machine
(SVM) applied to the stacked optical-SAR data as a nonpara-
metric pixelwise benchmark (Fig. 2(h)). The Gaussian radial
basis function kernel was used and the SVM parameters were
optimized using the method in [20].

A visual analysis of the classification maps suggest that the
first proposed method led to rather accurate results, especially
as compared to the separate hierarchical classifications of the
images of the two sensors. The results obtained using only
SAR data accurately detected roads and poorly discrimina-
ted most other classes, while the map generated using only
optical data better discriminated classes that were spatially
homogeneous. The proposed method took benefit from both
sources and generated a result that visually discriminated quite
well most classes. Compared to the multisensor single-scale
method in [4], the proposed algorithm provided a spatially
more regular map thanks to MRF modeling and wavelets.

Quantitative analysis on the test set confirmed that the
proposed method provided quite high overall accuracy (OA)
and Cohen’s κ, and improved as compared to the method in [4]
(Table I). Poor discrimination was obtained by all techniques
for “containers,” because of its large overlapping with “urban”
in the multisensor or multispectral feature space. To improve
the accuracy for this class, texture features could be integrated
as an extension of the proposed method. The multisensor
multiscale method in [5] also provided high accuracies, similar
to those of the proposed algorithm, with slightly lower OA
and higher κ. However, as compared to this technique, the
proposed method improved in terms of spatial detail (Figs. 2(f)
and (i)) and computation time (Table I). The approach to multi-
sensor fusion based on distinct quad-trees related to individual
sensors avoids the difficult and possibly time-expensive task
of estimating the joint optical-SAR PDFs, whereas copula and
meta-Gaussian models are used for this task in [5] and [4],
respectively. The SVM provided lower accuracy than the
other considered methods, which was expected because of
its noncontextual formulation. The values of McNemar’s Z
statistics of the maps of the benchmark methods with respect
to the map of the proposed method are all much larger than
the 5% significance threshold (|Z| > 1.96), which confirms
that the differences among these results are significant.
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TABLE I
FIRST PROPOSED METHOD, CSK-GEOEYE-1 DATASET: TRAINING AND TEST SAMPLE SIZES; CLASSIFICATION ACCURACIES AND κ; MCNEMAR’S Z

WITH RESPECT TO THE PROPOSED METHOD; AND COMPUTATION TIMES (INTEL I7 QUAD-CORE, 2.40 GHZ, 8 GB RAM, 64 BIT LINUX SYSTEM).

water urban vegetation bare soil containers OA κ Z computation time [s]
Proposed method 100% 78.12% 89.46% 98.78% 47.12% 82.69% 0.76 – 254

Method in [4] 99.95% 97.32% 90.81% 96.22% 37.25% 79.44% 0.68 1843.7 298
Method in [5] 100% 75.24% 87.16% 98.89% 49.31% 82.12% 0.79 89.6 668

SVM 96.52% 70.31% 44.28% 78.15% 43.20% 66.49% 0.57 2298.3 372
Training samples 50043 79492 51312 11667 38936

Test Samples 49057 75508 50688 10333 31064

TABLE II
SECOND PROPOSED METHOD, CSK-RS2-PLÉIADES DATASET: TRAINING AND TEST SAMPLE SIZES; CLASSIFICATION ACCURACIES AND κ; AND

MCNEMAR’S Z WITH RESPECT TO THE PROPOSED METHOD.

water urban vegetation bare soil containers OA κ Z
Pléiades only 100% 61.66% 81.69% 82.82% 56.72% 76.57% 0.63 1361.7

Pléiades + CSK 100% 44.32% 83.54% 74.75% 49.12% 70.34% 0.58 2102.7
Pléiades + RS2 92.56% 44.85% 79.85% 78.62% 42.15% 67.60% 0.57 2163.7

Proposed method (Pléiades + RS2 + CSK) 90.79% 91.45% 82.59% 81.02% 54.85% 80.14% 0.78 –
SVM 92.86% 92.56% 61.86% 69.91% 56.64% 74.76% 0.61 2302.9

Training samples 12943 15492 10312 8667 6016
Test samples 12057 14508 9688 6333 5984

B. Results of the second proposed method

A challenging VHR dataset, collected again over Port-au-
Prince and composed of a Pléiades pansharpened image at 0.5-
m resolution (1000×1000 pixels; Fig. 3(a)), an HH-polarized
CSK spotlight image at 1-m resolution (Fig. 3(b)), and an
HH-polarized RS2 ultrafine image with 1.56-m pixel spacing
(Fig. 3(c)), was used for experiments. The same five classes
of the previous section were considered (Table II). Given the
0.5-m resolution of the Pléiades data, we slightly resampled
the RS2 image to obtain 2-m pixel spacing and fit with the
power-of-2 constraint implied by the quad-tree. Downsampling
from 1.56 to 2 m is expected to have a minor impact on the
classification map, because the resampling ratio is quite close
to 1. Preliminary experiments (not shown for brevity) indicated
that the order in which CSK and RS2 data were inserted in
the quad-trees did not significantly affect the results.

The second proposed method obtained rather high OA and
κ on the test set (Table II) and remarkable spatial regula-
rity (Fig. 3(h)). Again, poor discrimination was obtained for
“containers.” To investigate the capability of the method to
exploit the synergy among X-band, C-band, and VNIR data,
comparisons with the results obtained by using the Pléiades
image only by itself or together with either SAR image
(Table II and Figs. 3(d), (e), and (f)) were conducted. In
all these comparisons, the same quad-tree, MPM, and finite-
mixture formulations as in the proposed method were used.
The results obtained using only SAR data poorly discriminated
the classes and are not reported for brevity. A comparison with
a nonparametric pixelwise benchmark was performed by res-
ampling the CSK and RS2 images on the 0.5-m grid, stacking
them together, and applying an SVM with the same model
selection strategy as in Section III-A (Fig. 3(g)). Quantitative
analysis on the test set confirmed that the joint use of all three
sensors led to substantially higher accuracies as compared to
the use of a subset of the input data sources. The use of only
the Pléiades image allowed “water,” “vegetation,” and “bare
soil” to be effectively discriminated but led to poor detection
of “urban.” The joint use of this VNIR image and of X-

band and C-band SAR through the second proposed method
allowed improving the discrimination of “urban” of nearly
30% and outperformed the results obtained using the Pléiades
data together with only one of the two SAR images. These
results suggest the potential of the second proposed method in
exploiting the complementarity of multisensor, multifrequency,
and multiresolution data from current VHR satellite sensors.
In this case as well, the noncontextual SVM obtained lower
test-set accuracy and a more noisy map than the proposed
method. McNemar’s test indicates that the differences between
the results of the proposed method and of each benchmark are
again significant. A shortcoming of the proposed technique
was the lower accuracy for “water” than when only Pléiades
or Pléiades and CSK data were used. Indeed, “water” appears
highly textured in the RS2 image (Fig. 3(c)), whereas the
proposed technique uses no texture features. On one hand, the
accuracy of the proposed method for “water” is still around
91%. On the other hand, incorporating texture features could
be a feasible extension of the second proposed method as well.

IV. CONCLUSION

A hierarchical MRF approach to multisensor and multire-
solution optical-SAR image classification has been formula-
ted, extending inference procedures originally introduced for
multitemporal fusion and incorporating suitable finite mixture
models. Two classification methods have been developed in
this framework. Experimental results on challenging HR/VHR
data sets have suggested the effectiveness of this approach to
data fusion and the improvement of the two proposed me-
thods as compared to single-sensor, single-resolution, and/or
previous techniques in terms of accuracy, spatial precision,
or computational burden. A further advantage of the proposed
approach to fusion is its flexibility. While multitemporal fusion
was already formalized in this framework in [8], the multiple
quad-tree structure could be extended to also incorporate
data from further sensors or feature extraction stages (e.g.,
textures or morphological profiles). This extension will be
pursued in the near future. Moreover, alternate wavelet de-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. First proposed method: (a) CSK ( c©ASI 2010) and (b) GeoEye-
1 ( c©GeoEye 2010; R-band display) images; (c) ground truth (training and
test areas); results of the hierarchical MRF-based classifications of (d) the
GeoEye-1 and (e) the CSK image; and (f) results of the techniques in [5] and
(g) in [4], (h) SVM, and (i) the proposed method. Color legend: see Table I.

compositions [10] will also be investigated, including wavelet
packets, with which the number of transformed samples in the
quad-tree is increased, and undecimated stationary wavelets,
which preserve image size along different levels and could be
incorporated into a multisource MRF energy as in [21].
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[2] L. Gómez-Chova, D. Tuia, G. Moser, and G. Camps-Valls, “Multimodal
classification of remote sensing images: a review and future directions,”
Proceedings of the IEEE, vol. 103, no. 9, pp. 1560–1584, 2015.

[3] M. Schmitt and X.-X. Zhu, “Data fusion and remote sensing: An ever-
growing relationship,” IEEE Geosci. Remote Sensing Magazine, vol. 4,
no. 4, pp. 6–23, 2016.

[4] B. Storvik, G. Storvik, and R. Fjortoft, “On the combination of multi-
sensor data using meta-Gaussian distributions,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 47, no. 7, pp. 2372–2379, 2009.

[5] A. Voisin, V. Krylov, G. Moser, S. Serpico, and J. Zerubia, “Supervised
classification of multi-sensor and multi-resolution remote sensing images
with a hierarchical copula-based approach,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 52, no. 6, pp. 3346–3358, 2014.

[6] D. Landgrebe, Signal theory methods in multispectral remote sensing.
John Wiley & Sons, 2003.

[7] S. Li, Markov random field modeling in image analysis. Springer, 2009.
[8] I. Hedhli, G. Moser, J. Zerubia, and S. B. Serpico, “A new cascade

model for the hierarchical joint classification of multitemporal and
multiresolution remote sensing data,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 54, no. 11, pp. 6333–6348, 2016.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3. Second proposed method: (a) Pléiades ( c©CNES distribution Airbus
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