
HAL Id: hal-01633724
https://hal.inria.fr/hal-01633724

Submitted on 30 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of Triangular and Banded Matrix
Operations Using 2d-Packed Layouts
Toufik Baroudi, Rachid Seghir, Vincent Loechner

To cite this version:
Toufik Baroudi, Rachid Seghir, Vincent Loechner. Optimization of Triangular and Banded Matrix
Operations Using 2d-Packed Layouts. ACM Transactions on Architecture and Code Optimization,
Association for Computing Machinery, 2017, 14 (4), pp.1 - 19. �10.1145/3162016�. �hal-01633724�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132795503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01633724
https://hal.archives-ouvertes.fr

55

Optimization of Triangular and Banded Matrix Operations
Using 2d-Packed Layouts

TOUFIK BAROUDI, Department of Computer science, University of Batna 2

RACHID SEGHIR, LaSTIC Laboratory, University of Batna 2

VINCENT LOECHNER, ICube Laboratory, University of Strasbourg, and INRIA

Over the past few years, multicore systems have become more and more powerful, and thereby very useful

in high-performance computing. However, many applications, such as some linear algebra algorithms, still

cannot take full advantage of these systems. This is mainly due to the shortage of optimization techniques

dealing with irregular control structures. In particular, the well-known polyhedral model fails to optimize

loop nests whose bounds and/or array references are not affine functions. This is more likely to occur when

handling sparse matrices in their packed formats. In this paper, we propose to use 2d-packed layouts and

simple affine transformations to enable optimization of triangular and banded matrix operations. The benefit

of our proposal is shown through an experimental study over a set of linear algebra benchmarks.

Additional Key Words and Phrases: Polyhedral Model, Code optimization and parallelization, Sparse matrices,

2d-packed layouts.

ACM Reference Format:
Toufik Baroudi, Rachid Seghir, and Vincent Loechner. 2017. Optimization of Triangular and Banded Matrix

Operations Using 2d-Packed Layouts. ACM Transactions on Architecture and Code Optimization 14, 4, Article 55
(December 2017), 19 pages.

https://doi.org/10.1145/3162016

1 INTRODUCTION
Multicore systems have been drastically improved in the last few years. Therefore, they have

gained a large ground in the high-performance computing world [7, 28, 32]. But in practice, many

applications fail to take full advantage of the multicore architecture power. This issue can be

addressed by using suitable automatic code transformation techniques in order to generate an

optimized parallel code, without any effort from the programmer. Obviously, the new generated

code has to fit, as much as possible, the architectural specificities of the target multicore system.

One of the well-known approaches having this ability is the polyhedral model, which is born with

the seminal work of Karp, Miller and Winograd on systems of uniform recurrence equations [26],

and made widely applicable to static control programs by Feautrier [10, 21, 22]. Based on this

powerful model, several optimization and parallelization techniques have been proposed since the

early nineties.

Optimizing linear algebra programs is one of the issues that have attracted the attention of the

code optimization research community for many years. Almost all the state-of-the-art optimization

techniques target operations on dense matrix structures, in which array references and loop-index

bounds are affine functions. However, operations on sparse matrices are the key computational

kernels in many scientific and engineering applications [9, 15, 31, 37]. It is well known that dense

matrix structures and algorithms are very inefficient when applied to sparse matrices, since they

© 2017 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in ACM Transactions on Architecture and Code Optimization, https://doi.org/10.1145/3162016.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

https://doi.org/10.1145/3162016
https://doi.org/10.1145/3162016

55:2 Toufik Baroudi, Rachid Seghir, and Vincent Loechner

use a large amount of memory to store zero elements and perform useless computations on them.

Therefore, many alternative storage formats have been proposed in order to store and compute only

non-zero elements. Among these formats, we can cite for example: (a) Linear Packed Format (LPF)

where the matrix is stored in a single-dimensional array [18] used in the LINPACK Library [20]

-the drawback of using this format is that the array references are no longer affine functions, and

therefore the polyhedral model no longer applies on them; (b) Rectangular Full Packed Format

(RFPF) [24] where a symmetric or triangular matrix is saved in rectangular format and alternative

cholesky-factorization routines have been proposed in the LAPACK Library [4].

In this work, we propose a new approach to optimize triangular and banded matrix operations

by using a dense 2-dimensional data structure for sparse-matrix storage. The basic idea is that the

matrix operations using these data structures can be automatically optimized and parallelized by

means of the polyhedral model. On one hand, triangular and banded matrix are compressed, which

leads to significant savings in memory usage, and on another hand, the underlying code can be

optimized and parallelized using existing polyhedral optimizing tools in order to achieve the best

performance.

We demonstrate through experimental results the effectiveness of our approach by parallelizing

and optimizing several matrix computation kernels using the state-of-the-art polyhedral compiler

Pluto [12, 14], and comparing their performance to non-dense sequential and parallel versions, to

the LPF version, and to the MKL library.

The remainder of the paper is organized as follows: in Section 2, a motivating example is given.

Section 3 presents the state of the art: a background on the polyhedral model, some definitions on

sparse matrices, and related work. Section 4 describes our proposed optimization technique for

triangular and for banded matrices. Our experimental results are presented in Section 5. Finally,

this work is concluded in Section 6.

2 MOTIVATING EXAMPLE
In this motivating example, we are interested in the automatic optimization and parallelization of

the sspfa routine (see Figure 1) from the LINPACK Library [20]. The basic datatype is double. In
this example, complex data dependences prevent standard compilers automatic optimization and

parallelization, thus the need of a polyhedral compiler: complex loop transformations are required

in order to expose tiling and coarse-grain parallelism.

When a matrix of order N is triangular, it is obviously not appropriate to store it in a structure

of N 2
elements, since there will be N (N − 1)/2 zero elements which are not required. Existing

solutions usually utilize a linear packed layout, where the non-zero elements are stored in a single

dimension array (a vector) of size (N (N + 1)/2). The corresponding sspfa code for such a structure

is shown in Figure 2a.

One can notice that the array access functions in Figure 2a are not affine, and thereby not

supported by the polyhedral model. Hence, static polyhedral compilers, such as Pluto [14], can

not automatically optimize and parallelize matrix computations using this one-dimensional data

structure to store non-zero elements. However, we would like to run a polyhedral compiler on this

code, since complex data dependences prevent it from being easily parallelized, tiled, vectorized,

and optimized for memory locality.

In our work, we have introduced a simple conversion from a square (unpacked) triangular

matrix into a 2d-packed format, and affine transformations that fit the polyhedral model. Using our

approach (as described below in Sect. 4), the sspfa routine is rewritten as shown in Figure 2b. In

the transformed code all the array references, loop bounds and tests are affine, which means that

this new code can be automatically optimized and parallelized by polyhedral compilers.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts 55:3

1 for (j = 0; j < n; j++)
2 for (k = 0; k < j; k++)
3 for (i = 0; i < k; i++)
4 A[j][k] -= A[j][i] * A[k][i];
5

Fig. 1. Code from the sspfa routine.

1 // moving A to AP
2 ii=0;
3 for(i=0; i< N; i++){
4 ii+=i;
5 for (j=0; j<i; j++){
6 AP[ii+j] = A[i][j];
7 }
8 }
9 // computing
10 jj=0;
11 for (j=0; j<N; j++){
12 kk=0;
13 jj+=j;
14 for (k=0; k<j; k++){
15 kk+=k;
16 for (i=0; i<k; i++){
17 AP[jj+k]-=AP[jj+i]*AP[kk+i];
18 }
19 }
20 }

(a) Linear Packed Format.

1 // moving A to A2
2 for(i=0; i< N; i++){
3 for (j=0; j<=i; j++){
4 if (2*i>N && 2*j>N)
5 A2[N-i-1][N-1] = A[i][j];
6 else
7 A2[i][j] = A[i][j];
8 }
9 }
10 // computing
11 for (j=0; j<N; j++){
12 for (k=0; k<j; k++){
13 for (i=0; i<k; i++){
14 if (2*i>N && 2*k>N)
15 A2[N-j-1][N-1]-=A2[N-j-1][N-i]
16 *A2[N-k-1][N-i];
17 if (2*i<=N && 2*k>N)
18 A2[N-j-1][N-k]-=A2[j][i]*A2[k][i];
19 if (2*i<=N && 2*k<=N)
20 A2[j][k]-=A2[j][i]*A2[k][i];
21 }
22 }
23 }

(b) 2d-packed format.

Fig. 2. sspfa routine in linear and in 2d-packed formats.

To emphasize the effectiveness of the new 2d-packed version of the code, we have run Pluto

on it (with options --tile --parallel), then we have compiled the resulting code using icc

(version 18.0.0, with options -O3 -march=native) and executed it on a 20-cores Intel processor.

For N = 4000, we measured that the execution time of the new version is about twelve times

faster than the LPF version: it drops from 11.28 seconds to 0.95 seconds. The icc compiler could

not auto-parallelize the LPF version -it has the same performance as the sequential one- neither

could Pluto. The Pluto output from the 2d-packed code (not given here) is 140 lines long: the code

was skewed, tiled (using the default tile size: 32 × 32 × 32), and parallelized using OpenMP; no

extra vectorization was detected by Pluto. The icc compiler could not auto-parallelize the original

code, nor the 2d-packed code, so we need a polyhedral compiler to transform this code. Other

measurements for this example are reported in the experimental section, column sspfaTri of

Figure 12b.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

55:4 Toufik Baroudi, Rachid Seghir, and Vincent Loechner

3 STATE OF THE ART
3.1 Automatic Parallelization
Automatic parallelization is the process of automatically generating parallel codes from sequential

algorithms [27, 29]. The resulting parallel code can be executed on parallel architectures without

altering the semantics of the original code. The main advantage of such a process is that it does

not require any effort of the programmer. The compiler takes as an input a sequential program

and analyzes it in order to extract its dependences. Then, based on this information, the compiler

generates a new optimized and parallel program that is semantically equivalent to the input

program. This entire process is transparent from the programmer’s point of view. But, of course, it

requires lots of efforts from the compiler designers. More precisely, they usually deal with a formal

mathematical model known as the polyhedral model.

3.2 The Polyhedral Model
Almost all scientific and engineering applications spend most of their execution time in small

parts of their code, which are loop nests. These iterative structures have therefore attracted the

attention of many researchers from the code optimization community, and have lead to the birth

of the well-known polyhedral model [8, 21–23, 34]. The basic idea of this formalism is that each

instance or iteration of a statement can be represented by an integer point within a convex region,

called a polyhedron, defined by the statement enclosing loop bounds. These bounds have to be

affine (linear functions with a constant part), and so have the data accesses, in order to fit the

model. Once the different instances of all loop-nest statements are transformed into polyhedra, it

is possible to compute inter and intra-statement dependences. This information is then used to

produce legal program transformations that preserve the semantics of the original program. The

new transformed code is more suitable and efficient for parallel execution and to better preserve

spatial or temporal data locality. The polyhedral model may be viewed in terms of three phases: (a)

static dependence analysis of the input program, (b) transformations in the polyhedral abstraction,

and (c) generation of code for the transformed program.

3.3 Pluto
Pluto is a fully automatic polyhedral source-to-source transformation framework that can optimize

regular programs for parallelism and data locality simultaneously [6, 12–14]. The basic idea of this

framework is to transform an input C source code into a semantically equivalent output C code that

achieves better parallelism and data locality. The targeted source codes are sequences of possibly

imperfectly nested loops, and the transformations are affine functions that fit the polyhedral

model. Pluto implements loop tiling, which is known by its good performance on large data arrays

for both parallelism and locality. It also achieves SIMDization, by inserting compiler directives

enabling vectorization of the inner loops. Other transformations include: scalar privatization,

array contraction and many other loop transformations, such as loop fusion, reversal, interchange,

skewing and unroll [12]. Furthermore, Pluto is able to automatically generate an optimized OpenMP

parallel code for multicore architectures.

3.4 Triangular and Banded matrices
3.4.1 Triangular matrices. In the mathematical discipline of linear algebra, a triangular matrix is

a special kind of square matrix. A square matrix is called lower triangular if all the entries above

the main diagonal are zero. Similarly, a square matrix is called upper triangular if all the entries

below the main diagonal are zero [2, 5]. There are two kinds of lower triangular matrices:

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts 55:5

A00 0 0 0 0

A10 A11 0 0 0

A20 A21 A22 0 0

A30 A31 A32 A33 0

A40 A41 A42 A43 A44

*..........
,

+//////////
-

A00 0 0 0 0 0

A10 A11 0 0 0 0

A20 A21 A22 0 0 0

A30 A31 A32 A33 0 0

A40 A41 A42 A43 A44 0

A50 A51 A52 A53 A54 A55

*.............
,

+/////////////
-

Fig. 3. Example of even and odd triangular matrices.

A00 A01 A02 0 0 0

A10 A11 A12 A13 0 0

0 A21 A22 A23 A24 0

0 0 A32 A33 A34 A35

0 0 0 A43 A44 A45

0 0 0 0 A54 A55

*.............
,

+/////////////
-

Fig. 4. Example of a banded matrix.

• odd triangular matrix: a matrix is said odd triangular if all the non-zero elements are below

the diagonal of the matrix, and the order of the matrix is an odd number N (N = 2k + 1).
• even triangular matrix: in the case of an even triangular matrix, we have the same definition

as before, but the order of the matrix is an even number N (N = 2k).

Figure 3 illustrates two instances of triangular matrices with even, respectively odd, orders.

3.4.2 Banded matrices. A banded matrix A is a matrix whose non-zero elements are located in a

band centered along the principal diagonal. For such matrices only a small proportion of the N 2

elements are non-zeros. A square matrix A has lower bandwidthWl < N and upper bandwidth

Wu < N ifWl andWu are the smallest integers such that:

Ai j = 0 ∀i > j +Wl , and Ai j = 0 ∀j > i +Wu

respectively. The maximum number of non-zero elements in any row isW = Wl +Wu + 1 [2].

Figure 4 shows a banded matrix of order N = 5 with a lower bandwidthWl = 1 and an upper

bandwidthWu = 2.

The triangular and banded matrices require to be handled in a special fashion because they

contain a large number of useless zero elements. Indeed, there are (N (N −1)/2) zeros in a triangular

matrix of order N , and ((N −Wu)
2 + (N −Wl)

2 − 2N −Wu −Wl)/2 zeros in a banded matrix of

order N withWu andWl as upper and lower bandwidths, respectively. In particular, it is more

efficient to store only non-zero elements in order to save memory space.

3.5 Other related work
Matrix computations are the cornerstone of numerous scientific and engineering applications, and

the performances of almost all matrix-based applications are depending on those of matrix compu-

tations. Therefore, a huge interest of researchers has been directed towards matrix-computation

optimization. However, most of the optimization research community has been targeting compu-

tations on dense matrices because of the regularity of their data storage layouts and underlying

computations, in addition to their wide utilization [19]. Over the past three decades, many manual
and automatic optimization techniques have been proposed.

Manual optimization techniques rely on the effort of the expert programmer, after a deep analysis

of a given problem, to propose a manually tuned program whose performance is the best he can

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

55:6 Toufik Baroudi, Rachid Seghir, and Vincent Loechner

achieve. Many manual matrix-computation optimizing techniques have been designed [16, 25, 35].

Alternatively, the automatic optimization techniques consist of designing and implementing tools

and compilers that are able to translate a given program into an optimized and parallelized code.

The programmer does not need to worry about the optimization process, all he needs to know is

how to use these tools. Automatic optimizing techniques applied to matrix computations on dense

matrices include Pluto [14], EPOD [17], ROSE [36], and PHiPAC [11].

The optimization techniques targeting matrix computations on sparse matrices, such as triangular
and banded matrices, are rare and almost all of them are manual optimizing techniques applied to

specific problems [1, 3, 30]. Among those works, Gustavson et al. [24] target Cholesky’s algorithm

on triangular matrices, by separating the sparse matrix computations in a set of computation

on half-sized dense matrices, calling the Level 3 BLAS routines. Our representation format for

triangular matrices is inspired by this work, where the matrix is cut into two parts, the small

triangle being displaced to cover the zeros in the other part (as presented hereunder in Figure 7).

We improved their storage format, in order to perform the same data transformation for both odd

and even ordered matrices: in their proposal, odd and even ordered matrices are stored differently,

which requires the programmer to distinguish between those two cases. Compared to their work,

we also propose a new banded storage format.

Recently, Cui et al. [18] proposed an automatic layout-oblivious optimization technique for matrix

computations. To the best of our knowledge, their work is the only one using a polyhedral compiler

to optimize banded and triangular matrix computations. Their main idea is the isolation of the

high-level semantics of operations from the organization details of compound data structures. This

way, a simplified abstract specification of operations can be derived, and then accurately analyzed

and optimized using the state-of-the-art optimizing compilers such as Pluto [14] and EPOD [17].

More precisely, their approach consists of three steps: matrix normalization, optimization and

matrix denormalization. The fist step seeks to isolate the high-level semantics of matrix operations

from the internal implementation of the data structures. This in turn consists of deriving a new

abstract code handling unpacked data structures (dense matrices) from the original code handling

packed data structures. In the second step, the resulting abstract code is fed to the source-to-source

compiler to generate an optimized parallel code. This optimized code is then converted through the

denormalization step in order to fit the original data structure organization. This mainly consists of

converting back the two dimensional dense array accesses into one dimensional packed accesses.

The authors propose an annotation language that the programmer has to use to define the intended

semantics of data structures in their matrix computations, for performing steps 1 and 3 of their

algorithm. Even if Cui et al.’s framework is well designed and proved to be effective in many cases,

we believe that the programmers might have some difficulties when using their framework. On one

hand, because they have to write the banded and triangular matrix computations in packed format

(see Figure 2b for example), which they may not be familiar with. And on the other hand, because

they have to express the intended semantics of data structures of their matrix computations in

the annotation language, which may lead to errors. The authors indeed claim in their article that

the optimized code is guaranteed to be correct if the user-supplied annotations can be assumed to
be correct. They also mention that their approach is effective in optimizing only packed matrix

computations where the matrix layout can be easily expressed with their annotation language. In

our proposal, all the programmers have to do is to write the matrix computations in unpacked

matrix format (two-dimensional arrays) and to declare them as triangular or banded. The entire

optimization process is totally transparent and automatic from this point. In addition, Cui et al.

point out that some layout-sensitive optimizations, e.g. SSE vectorization, need to be turned off

at the optimization step and should be applied after the oblivious-layout optimization, while our

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts 55:7

square

triangular/banded

matrices

Original codeInput

New Storage Affine transformation

Transformed

code for

2d packed

structure

Pluto

Optimized and

parallelized code

Output

Fig. 5. Overview of the 2d-packed optimization technique.

proposal lets the optimizing polyhedral compiler take the right decisions for efficient data locality

and vectorization.

Very recently, Sampaio et al. [33] suggested to use a complex hybrid (static and dynamic)

framework in order to overcome the limitations of purely static dependence-analysis techniques.

Unlike our approach, in which we propose changing the data layout for specific cases so that

the underlying codes are easy to analyze, Sampaio et al.’s work tries to optimize more general

non-affine programs. But it is focusing in its current form, on demonstrating the feasibility and

potential impact of using polyhedral transformations on non-affine programs. The evaluation

of their approach for the polynomial access resulting from the compacted storage of triangular

matrices is left to a future work.

4 THE 2D-PACKED FORMAT OPTIMIZATION TECHNIQUE
In this section, we describe our 2d-packed format optimization technique. It takes as input the

sparse matrices to be handled and an original dense code. At first, our technique will define the

sparse matrices in 2d-packed formats, where only non-zero elements are stored (2d-packed matrices

are dynamic allocated). Then, the original code for dense matrices is transformed into a new code

using the 2d-packed structures. The resulting code is finally parallelized and optimized by the Pluto

source-to-source parallelizer and optimizer. An overview of our approach is shown in Figure 5.

4.1 2d-packed format optimization technique for triangular matrices
Gustavson et al. [24] propose to use rectangular full packed format to store a triangular matrix of

order N . The size of the rectangle is N × (N + 1)/2 when N is odd, and (N + 1) × N /2 otherwise

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

55:8 Toufik Baroudi, Rachid Seghir, and Vincent Loechner

A00 0 0 0 0

A10 A11 0 0 0

A20 A21 A22 0 0

A30 A31 A32 A33 0

A40 A41 A42 A43 A44

*...........
,

+///////////
-

A00 A33 A43

A10 A11 A44

A20 A21 A22

A30 A31 A32

A40 A41 A42

*...........
,

+///////////
-

(a) Even triangular matrix.

A00 0 0 0 0 0

A10 A11 0 0 0 0

A20 A21 A22 0 0 0

A30 A31 A32 A33 0 0

A40 A41 A42 A43 A44 0

A50 A51 A52 A53 A54 A55

*..............
,

+//////////////
-

A33 A43 A53

A00 A44 A54

A10 A11 A55

A20 A21 A22

A30 A31 A32

A40 A41 A42

A50 A51 A52

*.................
,

+/////////////////
-

(b) Odd triangular matrix.

Fig. 6. Storage in Rectangular Full-Packed Format.

(a) Odd triangular matrix. (b) Even triangular matrix.

Fig. 7. Matrix storage in 2d-packed format.

(see Figure 6). Even if this representation guarantees to obtain a full rectangular structure in both

cases, it has the disadvantage of adding an extra row in case N is even. This leads to write two

versions of the code using two distinct transformation functions, depending on whether N is odd

or even. Gustavson et al. also propose matrix transformations for the Cholesky factorization to fit

the new data structure and their implementation in the LAPACK Library [4].

In our work, we propose to use the exact same data structure when N is odd. That is to say, a

matrix of size N × (N + 1)/2 (N rows and (N + 1)/2 columns) is required. When N is even, we

propose a different data structure where a matrix of size N ×N /2 (N rows and N /2 columns) and an

extra column of size N /2 are used to store the non-zeros values (see Figure 7). This new structure

has the advantage to preserve the same code as in the odd case and only one transformation

function is required. Algorithm 1 shows the way we store a triangular matrix in the 2d-packed

format. In order to be able to use the new 2d-packed structure, we have proposed a piecewise

unimodular transformation function, which one can use to transform anymatrix operation handling

triangular matrices. In our work, we have applied this transformation to many matrix computation

benchmarks. The resulting codes are afterwards optimized and parallelized by means of the Pluto

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts 55:9

automatic parallelization and optimization tool. Algorithm 2 illustrates the code transformation,

using the unimodular function, of all statements in which a triangular matrix is referred to. For

simplicity, we suppose without loss of generality that the statement contains only one reference

(x ,y) to a triangular matrix. This reference is transformed in 2d-packed format as follows:

ft (x ,y) =

{
(−x + N − 1,−y + N) if x > N

2
∧ y > N

2

(x ,y) else

(1)

This piecewise unimodular transformation function can be rewritten in the matrix representation

as:

ft (x, y) =




(
−1 0

0 −1

)
·

(
x
y

)
+

(
N − 1
N

)
if x > N

2
∧ y > N

2(
1 0

0 1

)
·

(
x
y

)
+

(
0

0

)
else

ALGORITHM 1: Storage in 2d-packed format for triangular matrices.

Input: Triangular matricesMati of size N

1 for RowInd ← 0 to N − 1 do
2 for ColInd ← 0 to RowInd − 1 do
3 if RowInd > N

2
and ColInd > N

2
then

4 StorMati (N − RowInd − 1,N −ColInd) ← Mat (RowInd,ColInd);

5 else
6 StorMati (RowInd,ColInd) ← Mat (RowInd,ColInd);

7 end
8 end
9 end

ALGORITHM 2: Triangular-matrix code transformation for the 2d-packed storage format.

Input: Triangular matricesMati of order N

1 for any statement containing referencesMati (x j ,yj) to triangular matrices do
2 replace any referenceMati (x j ,yj) with StorMati (zj ,w j) where:
3 if x j > N

2
and yj > N

2
then

4 (zj ,w j) = (N − x j − 1,N − yj);

5 else
6 (zj ,w j) = (x j ,yj);

7 end
8 end

Proof. In order to prove that our transformation function for triangular matrices ft is valid,
we need to demonstrate that it is a bijection: any element belonging to the lower right triangle in

Figure 8 has one and only one image belonging to the upper triangle. The other non zero elements

of the matrix stay untouched. Since the transformation of the first elements is unimodular, it suffices

to prove that the images of the vertices of the lower triangle are exactly the vertices of the upper

triangle (see Figure 8), where the coordinates of the vertices are the indices of the corresponding

matrix elements.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

55:10 Toufik Baroudi, Rachid Seghir, and Vincent Loechner

 V1=((N+1)/2, (N+1)/2) V2=(N-1, (N+1)/2) V3=(N-1, N-1)

A00 A (N-1) (N-1) A(N-1) (N+1)/2

A10 A11

 A(N+1)/2 (N+1)/2

A(N-1)/2 0 A(N-1)/2 (N-1)/2

A(N+1)/2 0 A(N+1)/2 (N+1)/2

A(N-1) 0 A(N-1) (N+1)/2 A (N-1) (N-1)

A

f(v3)= (0,1) f(v2)= (0,(N-1)/2) f(v1)=((N-3)/2,(N-1)/2)

(a) Transformation for odd triangular matrices.

 V1=(N/2+1, N/2+1) V2=(N-1, N/2+1) V3=(N-1, N-1)

A00 A (N-1) (N-1) A(N-1) (N/2+1)

A10 A11

 A(N/2+1) (N/2+1)

A(N/2-1) 0 A(N/2-1) (N/2-1)

AN/2 0 AN/2 N/2

A(N/2+1) 0 A(N/2+1) (N/2+1)

A(N-1) 0 A(N-1)(N/2+1) A (N-1) (N-1)

A

f(v3)=(0,1) f(v2)=(0,N/2-1) f(v1)=(N/2-2,N/2-1)

(b) Transformation for even triangular matrices.

Fig. 8. Matrix transformation for triangular matrices.

When N is odd, the vertices of the lower triangle are: V1 = (N+1
2
, N+1

2
), V2 = (N − 1, N+1

2
)

and V3 = (N − 1,N − 1). The transformation of the vertices V1,V2 and V3 using the unimodular

function (1) are given by ft (V1), ft (V2) and ft (V3), respectively:

ft (V1) = (−N+1
2
+ N − 1,−N+1

2
+ N) = (N−3

2
, N−1

2
)

ft (V2) = (−(N − 1) + N − 1,−N+1
2
+ N) = (0, N−1

2
)

ft (V3) = (−(N − 1) + N − 1,−(N − 1) + N) = (0,1)

One can notice that these are exactly the vertices of the upper triangle (Figure 8a), which is

disjoint from the other non zero elements, so the odd case is proven.

When N is even, the vertices of the lower triangle are: V1 = (N
2
+ 1, N

2
+ 1), V2 = (N − 1, N

2
+ 1)

andV3 = (N − 1,N − 1). The transformation of these vertices using the same function (1) are given

by ft (V1), ft (V2) and ft (V3), respectively:

ft (V1) = (−(N
2
+ 1) + N − 1,−(N

2
+ 1) + N) = (N

2
− 2, N

2
− 1)

ft (V2) = (−(N − 1) + N − 1,−(N
2
+ 1) + N) = (0, N

2
− 1)

ft (V3) = (−(N − 1) + N − 1,−(N − 1) + N) = (0,1)

Again, we can see that they are the vertices of the upper triangle (Figure 8b), which is disjoint

from the other untouched non-zero elements. □

Fig. 9. Banded matrix storage in 2d-packed format.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts 55:11

4.2 2d-packed optimization technique for banded matrices
We propose a similar optimization approach to be applied to banded matrices. In this case, we

store the N 2 − ((N −Wu)
2 + (N −Wl)

2 − 2N −Wu −Wl)/2 non-zero elements of a square banded

matrix of order N in a 2d-packed data structure ofWl +Wu + 1 rows, and rows of different sizes (see

Figure 9). This structure is slightly different from the one implemented in the LAPACK library [4].

Indeed, all the upper-band elements are shifted to the left in order not to store any zero element

(using dynamic allocation). Figure 10 shows a C code dynamically allocating memory for this

new 2d-packed data structure. Algorithms 3 and 4 illustrate, respectively, the way the non-zeros

elements of banded matrices are stored in 2d-packed format, and the code transformation for all

statements in which the banded matrices are referred to.

ALGORITHM 3: Storage in 2d-packed format for banded matrices.

Input: Banded matricesMati of order N and Upper bandwidthWu and Lower bandwidthWl

1 for RowInd ← 0 to N − 1 do
2 for ColInd ← 0 to N − 1 do
3 if ColInd <= (RowInd +Wu) and ColInd >= (RowInd −Wl) then
4 if RowInd > ColInd then
5 StorMati (Wu + RowInd −ColInd,ColInd) ← Mat (RowInd,ColInd);

6 else
7 StorMati (Wu + RowInd −ColInd,RowInd) ← Mat (RowInd,ColInd);

8 end
9 end

10 end
11 end

ALGORITHM 4: Banded-matrix code transformation for the 2d-packed storage format.

Input: Banded matricesMati of order N and Upper bandwidthWu and Lower bandwidthWl

1 for any statement containing referencesMati (x j ,yj) to banded matrices do
2 replace any referenceMati (x j ,yj) with StorMati (zj ,w j) Where:
3 if x j > yj then
4 (zj ,w j) = (Wu + x j − yj ,yj);

5 else
6 (zj ,w j) = (Wu + x j − yj ,x j)

7 end
8 end

Once again, we consider (without loss of generality) that we are given a statement containing

only one reference (x ,y) to a banded matrix. This reference is transformed as follows:

fb (x ,y) =

{
(Wu + x − y,y) if x > y
(Wu + x − y,x) else

(2)

The matrix representation of this piecewise unimodular transformation is:

fb (x, y) =




(
1 −1

0 1

)
·

(
x
y

)
+

(
Wu
0

)
if x > y(

1 −1

1 0

)
·

(
x
y

)
+

(
Wu
0

)
else

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

55:12 Toufik Baroudi, Rachid Seghir, and Vincent Loechner

1 double **allocBandMat(int n, int Wu, int Wl){
2 double **mat; int i;
3 mat= malloc((Wu+Wl+1)*sizeof(int *));
4 for (i=0; i<=Wu; i++)
5 mat[Wu-i]=calloc((n-i),sizeof(double));
6 for(i=1; i<= Wl; i++)
7 mat[Wu+i]=calloc((n-i),sizeof(double));
8 return mat;
9 }

Fig. 10. Dynamic allocation for banded-matrices in 2d-packed format.

 V1=(0,0) V5=(0,1) V6= (0,Wu) V7=(N-1-Wu ,N-1)

V2=(Wl,0) V3= (N-1,N-1-Wl) V4=(N-1 ,N-1) V8=(N-2 ,N-1)

(a) Original banded matrix.

 f(V5)=(Wu-1,0) f(V6)=(0,0) f(V7)=(0,N-1-Wu) f(V8)=(Wu-1,N-2)

 f(V1)=(Wu,0) f(V2)=(Wu+Wl,0) f(V3)=(Wu+Wl,N-1-Wl) f(V4)=(Wu,N-1)

(b) Banded matrix in 2d-packed format.

Fig. 11. Matrix transformation for banded matrices.

Proof. Similarly to triangular matrices case, we can prove the validity of our transformation

for banded matrices fb by demonstrating that any element belonging to the upper (respectively

lower) trapezoid of Figure 11a has one and only one image belonging to the upper (respectively

lower) trapezoid of Figure 11b. Because of the unimodularity of our two transformations, it suffices

to prove that the images of the two trapezoids are disjoint, or equivalently, that the vertices of

the upper and lower trapezoids of Figure 11a correspond exactly to the vertices of the upper and

lower disjoint trapezoids of Figure 11b, which is done in the same way as in the previous proof.

The coordinates of the vertices are given in Figure 11. □

5 EXPERIMENTAL RESULTS
To evaluate our approach, we have combined the new 2d-packed format transformation with the

Pluto source-to-source compiler. Pluto is used in order to automatically parallelize and vectorize

programs, in addition to memory accesses optimization through data locality improvement.We have

applied our approach to optimize and parallelize six double-precision linear algebra computation

kernels with the different matrix types shown in Table 1. Notice that some matrix computations,

such as Cholesky and sspfa, cannot be applied to non-triangular matrices, and thus do not appear in

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts 55:13

Table 1. Matrix computation kernels

Computation Matrix Type Designation
Cholesky Factorization Banded Triangular choleskyBT

Triangular choleskyTri
Matrix Matrix Multiplication Banded Triangular matmulBT

Banded matmulBand
Triangular matmulTri

Matrix Vector Multiplication Banded Triangular mvBT
Banded mvBand
Triangular mvTri

Matrix Matrix Solver Banded Triangular solvematBT
Triangular solvematTri

Matrix Vector Solver Banded Triangular solvevectBT
Triangular solvevectTri

sspfa Factorisation Banded Triangular sspfaBT
Triangular sspfaTri

Table 2. Code versions

Code version Description
Original Original sequential code handling full square matrices

Original + Pluto The original code automatically optimized and parallelized by Pluto

LPF The sequential code handling sparse matrices in Linear Packed

Format

2d-packed The sequential code handling sparse matrices in 2d-packed format

2d-packed + Pluto The 2d-packed code automatically optimized and parallelized by

Pluto

Parallel MKL The icc parallellized and optimizedMKL routine handling full square

matrices

this table. Those kernels are the same than the ones evaluated by Cui et al. [18], plus the Cholesky

factorization that was evaluated by Gustavson et al. [24]. To show the effectiveness of our approach,

we have compared its performance against a set of existing methods and libraries dealing with linear

algebra computations. The comparisons have been performed between different, but semantically

equivalent, code versions as shown in Table 2. All programs were first tested for checking the

output matrices correctness, before being run for execution time measurements (without printing

out large amounts of data).

For all our experiments, we have used a dual socket 2x10 cores (and 40 threads) Intel
®
Xeon

®

CPU E5-2650 v3 @ 2.30 GHz running Linux 4.4.0. We have compiled our programs using icc 17.0.0

and gcc 5.4.0, with options -O3 -march=native. The programs calling MKL routines are compiled

using icc with the additional flags -mkl -parallel. In addition, Pluto version 0.11.4, with options

--parallel --tile has been called to automatically parallelize, tile and optimize the original and

the 2d-packed codes. The LPF (Linear Packed Format) codes are sequential, since they cannot be

automatically parallelized by Pluto, because in LPF storage the access functions are non-linear. Each

program has been run five times and the execution times of the computation kernels measured

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

55:14 Toufik Baroudi, Rachid Seghir, and Vincent Loechner

Table 3. MKL routine calls

name of MKL Percentage of data processed
Benchmark routine by the 2d-packed version
choleskyBT LAPACKE_dpotrf 44%

choleskyTri LAPACKE_dpotrf 100%

matmulBT cblas_dgemm 22%

matmulBand cblas_dgemm 19%

matmulTri cblas_dgemm 50%

mvBT cblas_dgemv 22%

mvBand cblas_dgemv 19%

mvTri cblas_dgemv 50%

solvematBT cblas_dtrsm 44%

solvematTri cblas_dtrsm 100%

solvevectBT cblas_dtrsv 44%

solvevectTri cblas_dtrsv 100%

using gettimeofday(). The two extremal measurements have been eliminated and the average of

the three remaining ones is reported.

Figures 12 and 13 show the execution times obtained using the icc and gcc compilers, respectively.

The icc runtime figures plot six bars corresponding to the six code versions shown in Table 2, except

for sspfa which has no equivalent routine in the MKL Library. The gcc runtime figures plot only

five bars: there is no MKL library provided with gcc. All the Y-axes are in logarithmic scale because

of the important variation in their values. In both figures, subfigures (a), (b) and (c) illustrate the

runtime of the different benchmarks for small (N=2000 or 4000), medium (N=4000 or 8000) and

large (N=8000 or 16000) matrices, respectively. The first value of N is used for allO (N 3) algorithms,

the second one for the two O (N 2) algorithms: matrix-vector product and matrix-vector solver.

In all figures, one can notice that the highest times are those corresponding to the original and

2d-packed codes. This is because they were not parallelized and tiled, and because of the storage of

a large amount of unneeded zeros in the first case, and to the tests and extra-arithmetic operations

in the array subscripts in the second case. When these two codes are optimized and parallelized by

Pluto, their performances are significantly enhanced. They are also better compared to the LPF

code, which cannot be automatically parallelized. Notice that, in addition to their low memory

storage benefit, the performances of our 2d-packed optimized codes (2d-packed + pluto) are better

or equivalent to those of the original optimized codes (original + pluto) for almost all of them. The

reason behind this delta is that, first, the 2d-packed codes access globally less memory, and as a

consequence there is less pressure on the memory hierarchy and on the caches in particular; second,

some of the original codes perform computations on unneeded zeros, that have been removed

in the 2d-packed codes. On average over all those experiments, the 2d-packed parallelized codes

perform better than the original parallelized codes with a ratio of:

• 1.64x for gcc,

• 1.78x for icc.

The comparison of the 2d-packed optimized codes against icc parallelized non-packed MKL

routines (Figure 12) shows that our method outruns the handwritten routines from MKL in ten

out of twelve cases for small matrices, and for medium and large matrices the performances are

similar, with a high variance. The MKL routines are consuming more memory than our parallelized

2d-packed codes, since they handle matrices in their full square format. On the other hand, since

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts 55:15

(a) Small matrices (N=2000; 4000 for O (N 2) benchmarks).

(b) Medium matrices (N=4000; 8000 for O (N 2) benchmarks).

(c) Large matrices (N=8000; 16000 for O (N 2) benchmarks).

Fig. 12. Execution time using the ICC Compiler.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

55:16 Toufik Baroudi, Rachid Seghir, and Vincent Loechner

(a) Small matrices (N=2000; 4000 for O (N 2) benchmarks).

(b) Medium matrices (N=4000; 8000 for O (N 2) benchmarks).

(c) Large matrices (N=8000; 16000 for O (N 2) benchmarks).

Fig. 13. Execution time using the GCC compiler.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts 55:17

they perform computations on full or triangular matrices, we have to report the amount of extra

data that is not processed by the 2d-packed version, but is processed by the MKL routines. This is

summarized in Table 3, along with the routine name that was used for each benchmark. Notice

that we report 100% of data processed by the 2d-packed triangular version in some cases, when

the input of the MKL routine is a triangular or a symmetric matrix; 50% in the other cases, when

the input is a full square matrix. The outcome of this experiment is that the 2d-packed codes often

compete against the non sparse optimized by hand MKL code.

We also ran the three kernels proposed by Gustavson et al. [24] for triangular matrices (cholesky

fatorization: LAPACKE_dpftrf, inverse: LAPACKE_dtftri, and solve cholesky: LAPACKE_dpftrs),
and observed that they perform about the same as the ones using the full matrix format in MKL

(LAPACKE_dpotrf, LAPACKE_dpotri, LAPACKE_dpotrs). Since we compare to the latter directly for

the cholesky factorization, we did not present a further comparison to Gustavson et al.’s three

kernels.

Not reported in those figures, we have also tried to parallelize the LPF codes using the icc

auto-parallelizer (with options -parallel -O3 -march=native), and it comes out that icc is not able to

parallelize those codes, most probably because of the non-linear accesses to the linear packed arrays

and the resulting complex dependence analysis. The execution times using the -parallel option are

the same than the reported sequential execution times, except for two very short matrix-vector

product codes (mvBT and mvBand).

According to the above set of experiments, we conclude that our 2d-packed format transformation

combined with Pluto is able to significantly enhance the performances of those sparse matrix

computations. This is not the case for the linear packed format, whose automatic optimization and

parallelization is quite difficult.

6 CONCLUSION
In this paper, we have introduced new data structure storage schemes for triangular and banded

matrices, which allow to optimize matrix computations and achieve better runtime performance on

multicore architectures. The access functions to the new 2d-packed format structures are piecewise

affine functions. As a consequence, the transformed code can be optimized and parallelized through

automatic polyhedral tools, such as the Pluto source-to-source compiler. Our experimental results

show a great performance enhancement for triangular and banded matrix computation benchmarks,

compared to the LPF storage scheme typically used for sparse matrices storage.

Our approach is more general than the state-of-the-art since it can be applied to any matrix

computation. It could be implemented as an automatic tool that transforms programs handling

banded and triangular matrices into programs handling 2d-packed format structures, which allows

to take full advantage of the well-established polyhedral compilers. Our goal in this paper was to

show that a standard out-of-the-box polyhedral compiler enhances the performance of banded and

triangular 2d-packed matrix computations. But a future improvement could be to fine-tune Pluto

in order to further improve the performance of the generated codes, and in particular to achieve

better SIMDization since those codes are very sensitive to tiling and to vectorization.

REFERENCES
[1] Ramesh C. Agarwal, Fred G. Gustavson, Mahesh V. Joshi, and Mohammad Zubair. 1995. A Scalable Parallel Block

Algorithm for Band Cholesky Factorization. In Proceedings of the Seventh SIAM Conference on Parallel Processing for
Scientific Computing, PPSC 1995, San Francisco, California, USA, February 15-17, 1995. 430–435.

[2] Äke Björck. 2015. Numerical Methods in Matrix Computations. Springer International Publishing.
[3] Bjarne Stig Andersen, Jerzy Waśniewski, and Fred G. Gustavson. 2001. A Recursive Formulation of Cholesky Factor-

ization of a Matrix in Packed Storage. ACM Trans. Math. Softw. 27, 2 (June 2001), 214–244. https://doi.org/10.1145/
383738.383741

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

https://doi.org/10.1145/383738.383741
https://doi.org/10.1145/383738.383741

55:18 Toufik Baroudi, Rachid Seghir, and Vincent Loechner

[4] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum,

A. McKenney, and D. Sorensen. 1999. LAPACK Users’ Guide (Third Ed.). Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA.

[5] Howard Anton and Chris Rorres. 2014. Elementary Linear Algebra: Applications Version (eleventh ed.). Wiley.

[6] Athanasios Athanasios Konstantinidis and Paul H. J. Kelly. 2011. More Definite Results from the PluTo Scheduling

Algorithm. In 1st International Workshop on Polyhedral Compilation Techniques (IMPACT), C. Alias and C. Bastoul (Eds.).
Chamonix, France. http://perso.ens-lyon.fr/christophe.alias/impact2011/impact-02.pdf

[7] Muthu Manikandan Baskaran, Nagavijayalakshmi Vydyanathan, Uday Kumar Reddy Bondhugula, J. Ramanujam,

Atanas Rountev, and P. Sadayappan. 2009. Compiler-assisted Dynamic Scheduling for Effective Parallelization of

Loop Nests on Multicore Processors. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’09). ACM, New York, NY, USA, 219–228. https://doi.org/10.1145/1504176.1504209

[8] Cedric Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier Than You Think. In Proceedings of the 13th
International Conference on Parallel Architectures and Compilation Techniques (PACT ’04). IEEE Computer Society,

Washington, DC, USA, 7–16. https://doi.org/10.1109/PACT.2004.11

[9] Nathan Bell and Michael Garland. 2008. Efficient Sparse Matrix-Vector Multiplication on CUDA. NVIDIA Technical

Report NVR-2008-004. NVIDIA Corporation.

[10] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul. 2010. The Polyhedral

Model is More Widely Applicable Than You Think. In Proceedings of the 19th Joint European Conference on Theory
and Practice of Software, International Conference on Compiler Construction (CC’10/ETAPS’10). Springer-Verlag, Berlin,
Heidelberg, 283–303. https://doi.org/10.1007/978-3-642-11970-5_16

[11] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. 2014. Optimizing Matrix Multiply Using PHiPAC: A

Portable, High-performance, ANSI C Coding Methodology. In ACM International Conference on Supercomputing 25th
Anniversary Volume. ACM, New York, NY, USA, 253–260. https://doi.org/10.1145/2591635.2667174

[12] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A Practical Automatic Polyhedral

Parallelizer and Locality Optimizer. SIGPLAN Not. 43, 6 (June 2008), 101–113. https://doi.org/10.1145/1379022.1375595
[13] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. 2007. PLuTo: A Practical and Fully Automatic Polyhedral

Parallelizer and Locality Optimizer. Technical Report OSU-CISRC-10/07-TR70. The Ohio State University.

[14] Uday Kumar Reddy Bondhugula. 2008. Effective Automatic Parallelization and Locality Optimization Using the Polyhedral
Model. Ph.D. Dissertation. Ohio State University, Columbus, OH, USA. Advisor(s) Sadayappan, P. AAI3325799.

[15] Aydin Buluc and John R. Gilbert. 2008. Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication.

In Proceedings of the 2008 37th International Conference on Parallel Processing (ICPP ’08). IEEE Computer Society,

Washington, DC, USA, 503–510. https://doi.org/10.1109/ICPP.2008.45

[16] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. 2009. A Class of Parallel Tiled Linear Algebra

Algorithms for Multicore Architectures. Parallel Comput. 35, 1 (Jan. 2009), 38–53. https://doi.org/10.1016/j.parco.2008.
10.002

[17] Huimin Cui, Jingling Xue, Lei Wang, Yang Yang, Xiaobing Feng, and Dongrui Fan. 2012. Extendable Pattern-oriented

Optimization Directives. ACM Trans. Archit. Code Optim. 9, 3, Article 14 (Oct. 2012), 37 pages. https://doi.org/10.1145/
2355585.2355587

[18] Huimin Cui, Qing Yi, Jingling Xue, and Xiaobing Feng. 2013. Layout-oblivious Compiler Optimization for Matrix

Computations. ACM Trans. Archit. Code Optim. 9, 4, Article 35 (Jan. 2013), 20 pages. https://doi.org/10.1145/2400682.
2400694

[19] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. 1990. A Set of Level 3 Basic Linear Algebra

Subprograms. ACM Trans. Math. Softw. 16, 1 (March 1990), 1–17. https://doi.org/10.1145/77626.79170

[20] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G.W. Stewart. 1979. LINPACK Users’ Guide. pub-SIAM. 320 pages.

[21] P. Feautrier. 1992. Some efficient solutions to the affine scheduling problem, Part 1 : one dimensional time. Int. J. of
Parallel Programming 21, 5 (October 1992), 313–348.

[22] P. Feautrier. 1992. Some efficient solutions to the affine scheduling problem, Part 2 : multidimensional time. Int. J. of
Parallel Programming 21, 6 (December 1992).

[23] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler, and Olivier Temam. 2006.

Semi-automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies. Int. J. Parallel
Program. 34, 3 (June 2006), 261–317. https://doi.org/10.1007/s10766-006-0012-3

[24] Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou. 2010. Rectangular Full Packed Format for

Cholesky’s Algorithm: Factorization, Solution, and Inversion. ACM Trans. Math. Softw. 37, 2, Article 18 (April 2010),
21 pages. https://doi.org/10.1145/1731022.1731028

[25] Ziang Hu, Juan del Cuvillo, Weirong Zhu, and Guang R. Gao. 2006. Optimization of Dense Matrix Multiplication
on IBM Cyclops-64: Challenges and Experiences. Springer Berlin Heidelberg, Berlin, Heidelberg, 134–144. https:

//doi.org/10.1007/11823285_14

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

http://perso.ens-lyon.fr/christophe.alias/impact2011/impact-02.pdf
https://doi.org/10.1145/1504176.1504209
https://doi.org/10.1109/PACT.2004.11
https://doi.org/10.1007/978-3-642-11970-5_16
https://doi.org/10.1145/2591635.2667174
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1109/ICPP.2008.45
https://doi.org/10.1016/j.parco.2008.10.002
https://doi.org/10.1016/j.parco.2008.10.002
https://doi.org/10.1145/2355585.2355587
https://doi.org/10.1145/2355585.2355587
https://doi.org/10.1145/2400682.2400694
https://doi.org/10.1145/2400682.2400694
https://doi.org/10.1145/77626.79170
https://doi.org/10.1007/s10766-006-0012-3
https://doi.org/10.1145/1731022.1731028
https://doi.org/10.1007/11823285_14
https://doi.org/10.1007/11823285_14

Optimization of Triangular and Banded Matrix Operations Using 2d-Packed Layouts 55:19

[26] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. 1967. The Organization of Computations for Uniform

Recurrence Equations. J. ACM 14, 3 (July 1967), 563–590. https://doi.org/10.1145/321406.321418

[27] H. T. Kung and Jaspal Subhlok. 1991. A New Approach for Automatic Parallelization of Blocked Linear Algebra

Computations. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing ’91). ACM, New

York, NY, USA, 122–129. https://doi.org/10.1145/125826.125898

[28] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, Alan J. Miller, and Michael Upton. 2002.

Hyper-Threading Technology Architecture and Microarchitecture. Intel Technology Journal 6, 1 (01 Feb. 2002), 4–15.
[29] G. M. Megson and X. Chen. 1997. Automatic parallelization for a class of regular computations. World Scientific.

[30] A. P. Mullhaupt and K. S. Riedel. 2001. Banded matrix fraction representation of triangular input normal pairs. IEEE
Trans. Automat. Control 46, 12 (Dec 2001), 2018–2022. https://doi.org/10.1109/9.975512

[31] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2016. Adaptive Multi-level Blocking Optimization for Sparse

Matrix Vector Multiplication on GPU. Procedia Computer Science 80 (2016), 131 – 142. https://doi.org/10.1016/j.procs.

2016.05.304

[32] Jeff Parkhurst, John Darringer, and Bill Grundmann. 2006. From Single Core to Multi-core: Preparing for a New

Exponential. In Proceedings of the 2006 IEEE/ACM International Conference on Computer-aided Design (ICCAD ’06).
ACM, New York, NY, USA, 67–72. https://doi.org/10.1145/1233501.1233516

[33] Diogo N. Sampaio, Louis-Noël Pouchet, and Fabrice Rastello. 2017. Simplification and Runtime Resolution of Data

Dependence Constraints for Loop Transformations. In Proceedings of the International Conference on Supercomputing
(ICS ’17). ACM, New York, NY, USA, Article 10, 11 pages. https://doi.org/10.1145/3079079.3079098

[34] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira Rosen. 2009. Polyhedral-Model Guided Loop-Nest

Auto-Vectorization. In Proceedings of the 2009 18th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’09). IEEE Computer Society, Washington, DC, USA, 327–337. https://doi.org/10.1109/PACT.2009.18

[35] Vasily Volkov and James W. Demmel. 2008. Benchmarking GPUs to Tune Dense Linear Algebra. In Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing (SC ’08). IEEE Press, Piscataway, NJ, USA, Article 31, 11 pages.

http://dl.acm.org/citation.cfm?id=1413370.1413402

[36] Qing Yi. 2011. Automated Programmable Control and Parameterization of Compiler Optimizations. In Proceedings of
the 9th Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO ’11). IEEE Computer

Society, Washington, DC, USA, 97–106. http://dl.acm.org/citation.cfm?id=2190025.2190057

[37] Ling Zhuo and Viktor K. Prasanna. 2005. Sparse Matrix-Vector Multiplication on FPGAs. In Proceedings of the 2005
ACM/SIGDA 13th International Symposium on Field-programmable Gate Arrays (FPGA ’05). ACM, New York, NY, USA,

63–74. https://doi.org/10.1145/1046192.1046202

Received May 2017; revised November 2017; accepted November 2017

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 55. Publication date: December 2017.

https://doi.org/10.1145/321406.321418
https://doi.org/10.1145/125826.125898
https://doi.org/10.1109/9.975512
https://doi.org/10.1016/j.procs.2016.05.304
https://doi.org/10.1016/j.procs.2016.05.304
https://doi.org/10.1145/1233501.1233516
https://doi.org/10.1145/3079079.3079098
https://doi.org/10.1109/PACT.2009.18
http://dl.acm.org/citation.cfm?id=1413370.1413402
http://dl.acm.org/citation.cfm?id=2190025.2190057
https://doi.org/10.1145/1046192.1046202

	Abstract
	1 Introduction
	2 Motivating Example
	3 State of the art
	3.1 Automatic Parallelization
	3.2 The Polyhedral Model
	3.3 Pluto
	3.4 Triangular and Banded matrices
	3.5 Other related work

	4 The 2d-packed format optimization technique
	4.1 2d-packed format optimization technique for triangular matrices
	4.2 2d-packed optimization technique for banded matrices

	5 Experimental results
	6 Conclusion
	References

