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WEIGHTED INEQUALITIES FOR COMMUTATORS
OF FRACTIONAL AND SINGULAR INTEGRALS

CARLOS SEGOVIA AND JOSE L. TORREA

Introduction

We dedicate this paper to the memory of José Luis Rubio de Francia, who de-
veloped the theory of extrapolation and gave beautiful applications of vectorial
methods in harmonic analysis.

Through this paper we shall work on R®, endowed with the Lebesgue mea-
sure. Given a Banach space E we shall denote by LT.(R"*) or L% the Bochner-
Lebesguce space of E-valucd strongly measurable functions such that

/Hﬂ@%ﬂw<+w‘

Given a positive measurable funetion a(x) we shall denote by L%(«) the space
of E-valued strongly measurable functions such that [ | f{z))ba(z)dr < oo
and we shall denote by BMOEg({«) the space of strongly measurable functions
b such that

émm—%magcéq@m

where

by = [Q|_ILb(x)dr.

Given two Banach spaces E and F, we shall denote by L(E, F') the Banach
space of all continuous linear operators from F into F.

By a Banach lattice we mean a partislly ordered Banach space F over the
reals such that
(i) z <yimpliesa + 2z <y + z for every z,y,2 € F,
(i1) ez > Qforevery > 0 in Fand ¢ 2 Cin R.
(ii) for every z,y € F there exists a least upper bound (L.u.b.} and a greatest
lower bound (glb.}, and
{iv) if || is defined as x| = Lu.b. (z,—z) then {iz|| € ||y|| whenever |z] < [y].
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We shall say that a positive function o belongs to A{p, ¢} if

1
19l Je

1

o (a)da)' 7 (o
Q

( a¥(z)dz)'/? < C,

holds for any cube @ C R™ and p’ + p = p’p, the constant C not depending on
0.

QObserve that if we denote by 4, the Muckenhoupt’s class, then, for p > 1,
w € A(p,p) if and only if w? € 4,.

Finally we shall say that a Banach space E is U.M.D. if the Hilbert transform
is bounded from L% into L%, see [2].

The paper is organized as follows: in section 1 we state and prove the extrap-
olation results, in section 2 we state the commuiator theorems, these theorems
are proved in section 4, we give several applications in section 3.

1. Two extrapolation results

Le

o

0 be & measurable funciion , ] < p < g < og, 1 < A £ oo and

v
= 1. We shall say that a weight w helongs to the class A()(p q) if

2
1
1.

L™
oy e

we A(pv q} a.nd v € A(p'.! q}‘

Let p > 1, we shall say that w belongs to the class A;") f w e A, and
vhw € A,.

Observe that 1 = )A'(ﬁ + i), then it is clear that w € A¥){p, ¢} if and only if

- e 4leT oy
wP € Al+p’/q 4g/p't
the class AEV), see [T], the class A(”j{p,q) is not empty if and only H v* € A,.

,\')

and if and only f wf € A therefore by the properties of

We shall use the following lemma, due to Rubio de Francia for the classes

A

»» whose proof for the classes Ag,") can be found in [7].

{1.1} Lemma. Assume v € 4, let 1l < r < o0 and w € Afr"). Then, for
uny posttive u with u € L7 {w) there exists U € L™ (w) such that
(6} u=sUae
(b)) Wy € Cllulty -, and

fe}) Uwe A{lv}.
Now wa state the main results of this paragraph.
(1.2} Theorem. Let T be o sublinear operator defined on C§° and satisfying

WT flleo < Collwfllec. »
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for every w such thatw ™! € A, and (vw)_] ¢ A;. Then
N ety < Collfllze (e
holds for everyw € AE,”) and p > 1.

(1.3) Theorem. Let1 < A < oo and T be a sublinear operator defined on
CF° end salisfying
T flloo < Coll fllLaquny s

or cvery w such thatw > € A, end (vw)™* € Ay, Themif l <p < A, 21—
| P
% the tnequality
1T Nlzegwny £ Collflzeur)

kolds for every w € A¥)(p,q).

The proof of Theorem (1.2} can be found in [7], we shall reproduce it here
for the sake of completeness.

Lot f € LP(w), w € A 1 < p. We define

o = O potle ([ i) if e 40

and
g=w!PE DTl et — g,

Then, g > 0 a.e., ¢Pw* /7 <2 and
£ 72 oo = ( [ 1Pz,

Now, by the properties of the classes A&”), see [7], WP e Ag,”)‘ therefore
we can apply lemma (1.1} and we obtain a function G > g a.e., Guw! ™ € Af(:.’),
and satisfying

fGPwl_P'dx < c/g”wl*’?”dw < 2.

Then,
(f|f|”wd¢f)”” > Ch? G flloo.

Since (w? "1G1)7! and (1w ~1G-1)71 belong to 4,, we get
( f fPwdz)? > el T G flleo
> c’||wpx_1G_1Tf||m(/‘ GFL =P dz ) ir

> f |TfPwdz)!/?,
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as we wanted to show, K

Proof of Theorem (1.3): Let w € A)(p, g}, % _
Since

é = 1 and f € LP(w?).

(f|f|Pude)3fP = (f(lfw”f|*)P""w""a‘x)(”f’)m’\),

there exists ¢ > 0 such that

(1.4) f g WP dr = 1
and
15) (f tfraraeyte = ([ 17 Do day

Let h = g*'/*. Then (1.4) is equivalent to

fh""ww =1

L v_’\' . L3
Since w € A"Np,¢) we have w™ € A(l'*'P'fl'; seiting r =1+ %‘ we can apply

lemma {1.1}, observing that r' = %, to obtain a function # > h such that

(1.8} fH'?’u’w_P'dx <c and Hw™™ ¢ Aﬁ"d Y

Therefore the weight v = H~V/Y /X is such that v™* € 4, and (vu)™* €
A

Then, returning to (1.5) and vsing the hypothesis we have

([ 1rrorasyte = (PG Py

2 ([ U W X P > T FE Y Y
Taking (1.6) into account, this is bigger than

T HIH Y0 ool / HYN w7 dg ) o f \Tf|Pwidz)/s. m

Note. The theorems of this section are heavily inspired in [10].
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2. Commutators for fractional and singular integrals

(2.1) Definition: we shall denote by BMUg(a) the space of strongly mea-
surable functions b such that

[ 1)~ ballode < C | etz

where

bQ=|Q|"1£b(z)dL

{2.2) Definition: We shall say that a positive function o belongs to A(p,q)
if

1 o~ P {2)de /P 1 2 zYdz Ve
(lQIfQ (2)dz) (IQ‘/Qqua) <c

holds for any cube @ C R™ and p' + p = p'p, the constant € not depending on
Q.

Now we state the theorems of this section.

(2.3) Theorem. Let £ F be Banach spaces. Let T be a bounded lincar
operator from LL(R"™) into LLI(R") for 1 < p € g < 00,0 < v < n and

% — % = X Assume that there ezisis an L{(E, F)-valued kernel satisfying:

(K.1) for any compactly supported f,

T(z) = ] e, y)f(y)dy,  for =g suppf,
(K.2) #f |z —y| > 2|z — 2’| then

Clr — 77|
— Kz <

fet £ — ¢ be o bounded kinear operator from L{E,E} into L{F, F) such
that

ITf(z) =T{f)z) and
Bz, y) = fk(z,y) .
(2.4) Given o, 3 € Alp,q), v= af™! and b an L{E, E)-valued function such
that b € BMOs(e £)(v) and b€ BMOyp py(v), then, the operator Cy defined

by .
Cof(x) = Ma)Tf(z) - T(bf )z},

15 bounded from L%{aP) inte LL(A?) for 1 < p < g < 00 end % -
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(2.5) Given a,f € Ap,q), u* = af™!, a and b L(E, E)-valued functions
such that a,b € BMOs g, 5){;1) and @, be BMO,:(F (@), moreover, for every
v and y, a{z)b(y) = b(y)z(a) and &(z}b(z) = b(z)a(z). Then, the operator Cas
defined by y

Copflz) = b(a)Ca f(x) — Calbf )z},

is bounded from Lh{aP} inte LL(F7) for l<p<g< o0 {md - % =21

(2.8) Theorem. Lei F be o Banach lattice and V o bounded linear operator
from LP(R") into LL(R™) forl<p<g<o0o, 0<y<nand 2 -1 =1
Assume that there exists an F-valued kernel W(z,y) salisfying
(W.1) W{z,y) is positive for every = end y,

(W.2} for any f with compact support

Vi) = [ Wiy, end
(W.3) of v —y| > 2z — '], then

WGz ) ~ Wit )l € el

{2.7) Given a,f € Alp,q), v = af? and b € BMO(v), then the operator
V¥ defined by

Vit 1@) = [ 1) - )W )i,

i3 bounded from LP{aP) inio LY (B for 1< p< g < o0 and i_1_21

P n
(2.8} Given o, 8 € A(p,q), #* = af ™}, a and b functions in BM’O(p,}, then,
the operator V:b defined by

v f(z) = f laz) ~ a()lIbz) — )Wz, ) Flv)dy,

is bounded from L*{aP) inlo LL (B9 for 1< p < g < o0 {md i % =1

(2.8) Remark. If v? € A; then b € BMO{v) if and only if

CHQ)

1 2) — b 2da)i/?
(IQlwi() bltdsy/* < S5

To sce this it is encugh to observe that if v? € A; then v satisfies a reverse
Holder condition with exponent 2, see [9].
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{2.10) Remark. The theory of vector-valued Calderén-Zygmund operators,
see [5], and potential operators, see [6], can be applied in both theorems despite
of the fact that smoothness is required only on the first variable of the kernel.
Thus the operator I' {respectively V') turns out to be a bounded operator from
Jlf%(ci:”) igto L% {a?) {respectively from L?{a?) into L%(a%)) for @ € A(p,q),
r ¢ n

{2.11) Remark. Let v? € A;, and &, such that a8~ = v2. It is easy to
check that if § = o!/281/2, then 6! belongs to 4, if a~* and §~! belongs to
Ay and § € Alp,q) if « and 3 belong to Ap, g).

3. Applications

A Tet @ <4 < n Let T be a bounded linear operator from LP(R") into
n 1_1_x
LiR ) for 5 — 0 = 7.
Assume that there exists a kernel k({z,y) that salisfies

(1) for any compactly supported f,
Tf(a)= [Me)fy  if ¢ suppf, and

(i) i |z — y| > 2Jz — '), then

, jz =
|k(z, ) — k{z', y)| < Cm:‘;‘

Given % —1 =2 gandbin BMO(v), we have,

q n
(3.1) for any pair «, f € A(p,q), v = a7}, the commutator

(T, M)/ (2) = &(z)T f(z) — T(bf)(=)

is bounded from LP{a”} into L7597},
(3.2) for any pair a, 2 € A(p,q}, v? = o7}, the commutator

([T, M), Ma) f(=2) = a(2)[T, Ms| f(2) — [T, M)(af)z)

is bounded from LP{aF) into LI{f9).

In particular, the commutator of any Calderén-Zygmund operator with stan-
dard kernel will be bounded from LP(a) into LP(8) for a,f € A, and af~! =
v?. Also the commutator of the fractional integral of order 4 will be bounded
from LP{aF) into L2(F9}, :l) — % =2, a8 € Alp,q) and aff~! = v, Analogous
results are true for the second commutator assuming v = p2. For the case of
the Hilbert transform see [1], for the case of singular integrals with unbounded
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kernel see [7], and for the case of fractional integrals, see [3] for an unweighted
version.

B. Let T, k, &, 3,v,a and b as in application A; and assume that in addition
k satisfies

(111) |k{z,y)| < W and
{iv) p.ufr’c(m,y)f(y)dy exists a.e.
We define

A= [ Kewnfwi,
lz—yl>e
Ci1(z) = sup =T /() - Tu(bf)(a)
and
C16f(2) = sup la(2)H2)T. £(2) ~ (@) T (35 )(@) ~ He)T(f)(2) + Telabf) @)
Then

(3.3) for any pair &, 8 € A(p,q), v = a~", the operator C} is bounded from
LP{oP) into L9(F7), and the operator

po. f (8(z) — by )z, 1) (3)dy,

exists a.e, for f € LP{a?} and it is bounded from L?{a?) into L5},

(3.4) for any pair a,f € A(p,q}, v* = af~!, the operator C5 » is bounded
from L?(o”) into L%(a?}, and the operator

pv. f(a(x) — a(y) Xb(z) - b{y))k(z, y) f(v)dy,

exists a.e. for f € LP{a?) and it is bounded from L?{a?) into L4(f3%).

The proof of {3.3} in the case p = ¢ can be found in [8] here we shall give a
sketch for the case (3.4},

Let ¢, € C*([0, 00)) such that, |¢'(¢)] < Ct7?, |¢'(#)| < Ct+! and

X[2,00) S @ < X[1,000 X[12] S ¥ S X[us2,9)

We consider the operators

8(2) = (4o nn = { [ Moy}

301
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and

Tf(z) = {$e ()} n0 = { JI yl)f(y)dy} ,

>0

with kernels given by

e, 9), = {k(x yyele=Yl y’)} .

and

{belz, 1)}, = {u(z Iz ')} R

The kernel of ® as £*°(R} -valued function satisfies {I{.2} of Theorem (2.3).
Analogously, it can be shown that the kernel of ¥ satisfies (W.3) of Theorem
{2.6).

By the vector valued Calderdn- Zygmund thcory, see [5] and [6], @ and ¥ are
bounded linear operators for LP into L., ; - E = I, Therefore © satisfies the

hypotheses of Theorem (2.3} and ¥ the hypothcses of Theorem (2.6},
Let &(z) = (b(z),b(z),...,b{z),...), it is clear that b € BM U (v), and
therefore by Theorem {2.3} and Theorem (2.6) the operators
Do f(z) =
{a(2)b(2)¢: f(z) — alz)d(bf)(z) - b(z)¢e(af) ) + be(abf}2)]os0

and

¥, f(z) = { [ 1) - atwit) - b(y)lwe(x,y)f(y)dy}

are bounded from LP{a®) into L{.(f7) for «, 8 € A(p,q) and af~* = v?
Now, we consider the operator

Tapfle) =
{a(2)b(z)Tc (=) = a(2)T(bf}(z) — (=) Te(af) () + Teabf)(2)} 50

The difference operator

[

Uapf(2) = Popf(2) ~ Tupf(2) =
{ fratey = atwpyote) - v o) - g B ke s} s

satisfies, for a certain ¥ as above, that
(U5 F(2) e <
sup [ (@) = a(u)lz) - alikCe, B0l = 123 @l
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and therefore U, 5 is bounded from L?(a?} into Li..($%) and, consequently,
T, 5 is bounded from LP{aP) into L. (57, that is to say Cm':‘b is bounded from
L?(aP) into Le(fA7).

C. Let p,1 < p < o0; wand § € A,, v¥ =af™?, a,b € BMO(v), then the
operator

Sapf(z) = sup

[ )= M) =) i

-y

is bounded from LP{a} into LP{f). '

To prove this it is enough to observe that, by the Carleson-Hunt theorem,

see [4], the operator
sfer={ [ S}

is bounded from LP{R) into Li.(R)}, for any p,1 < p < oc. The kernel of
this operator satisfies (K.1} and (K.2), see [5], therefore it is enough to apply
theorem 1 with b(z) = (¥(z),b(z),. .., b{z),...)-

D. Let H be the Hilbert transform

Hf{z) =puv. / j(—_yidy,

and let E be a UM.D. Banach space, see [2]. Let p, 1 < p < oo, @ and
B € Ay, vF = (af")/P and a,b € BMOyg p)(v). Moreover, we assume
that «{z)6(y) = b{y)a(z) holds for every z,y € R™. Then the operator

. / (a(z) — e{y))(b(z) — B(y))

r—y

fly)dy,

is bounded from Lf{e) mto L{:J(ﬁ}
E. Let I, be the fractional integral, of order 4,

f.,f{::}:]l_j-—_%dy, U <y <n

It is known, sce [6), that [, i beunded from LT{R™) into LL{R"), for
any Banach space E and 111 — ;i_ = I Let o, fi € Alp,g), v? = «ff~! and
ah € BMO g py(v). Moreover, we assumne that a{z )y} = b{y)a{x) holds for
cvery £,y € R®. Then the operators

TR TR LOELOLOE ) £y

|z — y[*=7
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I-:—,a,bf(z) = / Ia{x) _Ia(y)“b(‘r) . b(y)lf(y)dy,

— In—-y
are bounded from L%{a?} into LE(§7) for any Banach space E.

F. Maximal operators. Let 0 < vy < n. Suppose that ¢ € L= (R") and
verifies
|¢(z — y) = #(z)] < Clyllz]™" 7'+, when |z| > 2}y}.

Set @e(z) = e~ V¢(c™1z}). Then the operator
Myf(z)) = {f * de(z)}es0,

can be viewed as a vector- valued Calderén-Zygmund operator, bounded from
LP{R") into LEM(R“) 1 1= 2 see (5] and [6]. Therefore proceeding as in
application C we have that the operators

Mgpf(z) = {Hz)f * de(z) — (bF) * de(z)}e0
and

M, () = { f Ib(2) — 6(u)|e(z ~ 9)f(@)du}eso,

are bounded from LP(oP) into L <,q,(ﬂ‘i*) 1 l = 2, where o and f# € A(p, g},
af~! = v and b€ B.M.O(v); also we have t.ha.t the operators

Mg o sf(z) ={a{2)b(z)[f * del(z) — a(z)I(bf) * ¢:](z}
— &z)(af) * de](z) + [(adf} * de)(z}}

and
MY, f(z) =1 f Ib(z) — b(y)lla(z) — a(y)ibe(z — v)F(u)dyeso

are bounded from L*(aF) into Li.(57), % - % = I, where o and g € A(p, ¢},
afi™! = 1%, b and a belong to BMO(v).

It is clear that choosing ¢ as above and such that xj_;,; < ¢ we can deduce
that the operators

5t e) = sup oy [ )~ ML)
1
Suf(e) = sup iy [ (062) - M,
SEof(e) = sup o [ 1a(2) = awlIe) — b))y, e

Saf(e) = sup i [ a2) = aly)) () — KA1

satisfy the analogous boundedness properties. In fact we have the following
theorem



220 C. SEgovia, J.L.. TORREA

(3.5) Theorem. Let v be a weight in As such that v7=3 € Ay, Then ihe
following conditions are equivalent

(a) For L 5— E =21 o and B € Alp,q) and v = afi™", the operator SF maps
LP{ap) mto Lq(,@q}

{b} Fori .~ E =32, aand § € Alp,q) and v = off” ! the operator Sb maps
LF{a?) inio L‘?(,B'i‘)

{(c) If— =%, v?/% = youst with vy and vy € Ay, then S, maps
L”“{{z/gv_l)m”") into LP(vg ' vy) for 2 Pl % =1,

(d) & belongs to B .M.O.(v).

Proof- We have secen that (d) = (@) and it is obvious that {a) = (b).

To see that (b) => (c) observe that with this election of go we have pj = g0
and 8 = (5 11)H/7 € A(p,g), a = (ory )1/® € Alp,q), and ™! = v
Now we prove {c} = {d).

1) — bolee = 101" /Q |z JRCOR T

<tor ([ e ACCEL e, )

(/ (w(x)v;‘(z)ww)”qa

< cleI (L(”ﬂ(x)vf](ﬁ))”"”“dx)lm (L(vo(x)yl‘l(x))qéhndx) Mo
= (f (v(w)*wﬁ)wwdm)””" <cier ([ y(x),,.,,z)%o

< ||/ ([Q u(z)dz) |Q|(2/ped/2/pe) — (/Q u(z)d'c) . N

4, Proofs of the commutator theorems

/4o
vﬁ_l(:c)vl(at)d.r)

{4.1) Definition . Let 1 < s < oo, E be a Banach space, v € 4g, 0,0
positive functions, a and b functions belonging to BM Oy gy(v) and f be an
E-valued function. We definc the following maximal functions.

i
(4.2) M f(z) = swpr ]Q (6y) — ba) F(w)ldy

lfs
(4.3) M;f(:c)mpmrf“(m f (b - b) FI dy) ,
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49  Muf(z) = sup (inf (v, )*(y)) (|Qrff“~1— IO )
. 3 YEQ Q |Q‘ o Y ¥ *
(4.5) Maf(z) = sup—= f l(aly) — ag)f(¥)lldy
@l Jo ’

(4.6)
l/s
M; f(z) = supl@|" [E}‘ fQ l(a(y) - aa)f(y)!!’a“(y)dy]

i _ aa—sﬁ? e
[IQI L lé(y) - Bol (J)@J ,
l/s
(47 MZf(z) = suplQ/" [ﬁ [Q Il(a(y)—ace)(b(y)—bre)f(y)ll“dy] ,

t/r
48 Mafie) = sup (st otay)) (90 [ 10t ~ seprtar)

49) 1(a) = sup (jnt o2y ) (90 | ato) — aerrints)

(410)  Mof(z) = sup (32%(%)*@})2 (%’i /Q nf(y)udy) ,

(4.11)

o) = sup (o JAZOR solltr) (5 JALOR boley )

aicyfn
(—I Igi;’l 2J_Qﬂf(y)lldy) ,

(4.12)
Miufa) = sup (inf (200 ) (157 . 1) ~ ol

O
(55 zjquf(y)udy) ,
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(413) M f(z) =

oup ([ 1) el ) (22T [ g — ety |
12l Jo 122Ql Jaiq

(4.14) A»flsf(z)=sup(rjzl /Q ub(y)—bqudy) (ﬁ fQ nf(y)udy) ,

(4.15)
M3 f(s) = sup (Tclé"l JACOR bqudy) Qi (Téﬂ / uf<y)||*a=f2(y)dy)m

(Téﬁ fQ ﬁﬂ“(y}dy)m'

In all the cases the supremum is taken over all cubes in R™ with sides par-
alell to the axes and centered in x. (vAg)* stands for the Hardy-Littlewood
maximal function of vig.

(4.16) Proposition. Let E be a Banach space. Lei 0 < 4 < n, assume
a1 gnd B/ € Ay, v =B and b€ BMOgg,py(v). Then
{4.17) 1BM fllz= = Cllfelry,

(4.18) There ezists € > 0 sueh that f 1 <5 < (1 4+ ¢} then

183 fllue < Clfell s amd

(4.19) 18Ms fiiree < Clfacl| s -

(4.20} Proposition. Let E be a Banach spuce. Lel 0 £ v < n, assume
a =) genin=y gnd T € A vt = af T, v =afT! = 8671, and
a,b€ BMOs (g gy Then

L

(4.21) 18M;fllre < Cllfailpzre, =789, and

(4.22) 183} fllz < Cllfallynrr, = 10,11,12. 521,
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— _in
(4.28) Ifu = 22

1835 flico < Cllfall o
(4.24) There exists € > 0 such that if 1 <5 < (1 +¢) then

I8ME fllzw < Cllfaliynsn  and

{4.25) B2 iflleoe < CllFSllLg,i =4,13.

(4.26) ffu = 2o
18M flL= < Clifall gare-

We postpone the proofs of these Propositions. Now we state and prove the
following Corollaries.

(4.27) Corollary. Let v™ 7% € A;, 0 <y < n. Then in the hypothesis
of Propostiion {4.16) we have thai

{4.28) sf 0, B € Ap, 1 < p < 00, end afi™? = uP then

WM flleresy < Cllf ey

(4.29) if o, B € Ap,q), =1 and o™t = v then

1_1
Foq

M3 fllzogsey € Cllflleearyy 1 €5 < {1 +¢)

and
25 fllLocaey < CllFllis oy -

{4.30) Corollary. Let »TE € Az, 0 € 4 < n. Then in the hypothesis of
Proposition ({.20) we have thal

(4.31) of o, 8 € Alp, g}, i - % =1 and af7 =2, then

“Ml'f"-ﬂq(ﬁq) = G“f"L%(aP) t = ?1 8! gv

137 il ocsey € CfMligqary i = 10,11,02., j > 1,

2n .
IE flison € CUlzgonys = s, i = 5,14

and

"Mgfllfﬂfﬁﬁ’) < C"f"i’.ps(cr?) + 1<s<« (1 + E) ¥
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(4.32) if 6,8 € Ay, 1 < p< oo and 8871 = v?, then
I1M:fllry < Clfhezis, i = 4,18

For the proof of these Corollarics it is enough to cbserve that for a sublinear
operator S, the inequality

I5Fleo(ay < Cllflzr(ey @, B € Ay and o™ =P

is equivalent to the inequality
1)y £ Clgllzrwys w € AL
U being the operator U{g) = S{gv™1).
Analogously, observe that the Inequality
"Sf”L?(ﬁ') S C"f"LF(QP) 1 O.‘,ﬁ S A(ps Q) and ar@_l =v,

is equivalent to the inequality

1T7(a) Loquny € CligllLsiwryy @ € Ao, 9),

U being the operator U(g) = 5 (gu‘l).
With these two observations the corollaries (4.27) and (4.30) are direct con-
sequences of Theorems (1.2) and (1.3}.

{4.33) Proposition, There exsis ¢ > 0, such that if

2n
n+7’

1<s<{l+¢), andu =

then the operators considered in Theorem (2.3) and in Theorem (2.6} satisfy
the following inegqualities

(4.34) (CofV*(2) < C{M(TF)(a) + M3 () + Maf(z)} ,
(4.35) (ViF fy#(z) < C{MI(V f)(z) + M3 F(z) + Maf(2)}
(4.36)

(CapH)#(z) € C{MACs) (@) + Miz(Caf)z)
+ M flz)+ M f(z) + M f(z) + My f(z) + My f(z)
+ 3727 M f(2) + M () + Y527 MY, f(=)
i=1 =1

FMEf())  and
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(4.37)
(VEH (=) € C MV £)(=) + Mua(ViE (=)
+ M2 f(z) + MEf(2) + My f(z) + My f(z) + Mo f(z)
+ ) 2T ML f(e) + ML () + 527 M) f(x)

j=1 =1

+Miy f(2)}.

Assuming this Proposition (4.33) we can give the proof of Theorem (2.3} and
Theorem (2.6). We prove Theorem {2.3) only, since the proof of Theorem (2.6)
is similar.

In fact, we shall give only the proof of (2.5) assuming that (2.4) is true. The
proof of (2.4} is similar using remark (2.10}).

By {4.36) and Corollary (4.30) we have

([(Cﬂ,bf)#(z)qﬁq(r)dx)”q < C{(f ”be(x)“qéq(x)dx)”q
+([esensa) " v (i) ”p} ‘

Then by (2.4) and the vector-valued version of the sharp function theorem, see
[5], we have

( / IICa,af(x)llqﬂq(I)dI) Vse (/ {Oa,bf)#(z)qﬁq(x)dx) )
<o [

This ends the proof of section {2.5) in Theorem (2.3).
Now we give the proofs of the technical propositions (4.16), {4.20) and (4.33).
We shall need the following lemmas.

(4.38) Lemma. Let E be o Banach space. Let @} be a cube and Q = 2FQ.
Then if b€ BMOg{v), v € Ay, it follows that

"bQ —bo, |l < CkyQ.‘{t) < kC inf (VXQE}‘(y) s
yEQ)
where Qiqry 13 the cube such that YQuuy = JDAX VG, and {vX g, )" is the Hardy-
<<
Litilewood mammal function of vXg, .

(4.39) Lemma, Ifw™' € A, there exists € > 0 such that for every 1 <r <
2(1 +€)‘ w_‘" € Al.
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{4.40) Lemma. If w™ € A;, there ezists € > 0 such that w' € A gy for
every L < r <{1+¢).

{(4.41) Lemma. Let E be a Banach space, if b € BMOg(v) and o/ =
a1, a~t € Ay, Bt € A, then there emisis £ > O such that

(]%i fQ I8} - bQIIITQ_r(I)d-"C)”r < Ch(zo)™!

1

holds for l<r<t(l+e)andmg€ @, =12
The proof of these lemmas can be found in [1].

(4.42) Lemma, Let E be o Banach space; 0 < v < n, a T BTN €A,
v=af"? and b € BMOgg,g){v). Then for any function f we have,

if
(443)  if 15p<§men,(ﬁ [2 Ilfall”dw> " < Fallapl@r

{4.44} there extsts € > 0 suck thet if 1 s <« {1+ ¢}, then,

1}’.9
(ﬁ Luw- bQ)f"’d-?-‘) < Cllfellas Q17" (infreeB ™ (2))

(4.45) there ezists € > 0 such thel f 1 < s < -,:1_'—;(1 +¢€), then,

T jQ (b — bg) fldz < (%I fQ ||b—bq||’a—’dz)m fallon
<c (i) Mol and

1

(4.46) "1Q| ;

fdzl} < Cl|fallayl@I7 " (infreqa™ () -

Proof: (4.43) is obvious by using Holder’s inequality. Lemma {4.41) and
Hilder's inequality give (4.45). In order to prove {4.46) observe that

1 1 e p oy A
. d — rd — a P .
"IQILf x"s(m/q"f“" ) <|Q|/Q )
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Choosing p, 1 £ p < 7';, such that p' < (n%,«) (1 +¢) and a=? € A, then
{4.43) gives the result. Finally by Hélder's inequality we have in {4.44) that

G bQ)fH’dI)m

1 st ;4 ) /st
< —_ b— b at —xld - st d ]
< (IQI /Q e — bo)["a ) (fQI L Ifal )

i

Now if we choose ¢ such that st < ;2-(1+¢) and st' « =, where ¢ is the
one which appears in lemma (4.41}, we get that the last product is less than

ClifallzQ " infcqf ™ (z). ®

(4.47) Lemma. Lett > 1, and w™' € A;, then w'/2 € A((2t),2t).

Proof of Proposition (4.16): Through this proof “sup "always shall mean the
supremum over the cubes centered at . The proof of (4.17} and (4.18) are
direct applications of (4.45) and {4.44). B

k4

To show (4.19}, choose r such that 2= <7 < 725(1+¢) ,7" < 2 and
a~" € A; then by {4.43}, A3 f(z) is less than

sup (jgg(vfe)‘(y))lQ!”“(ﬁ L IIf(y)ﬂf(y)Il"dy)W (@ /Q a”(y}dy)”r
< Caup (iof (v20)" (1)) ey (infyeqa™(v)

< caplifol jnf { (5,07 - %)W) < Cllfall3 (o)

Proof of Proposition (4.20): Through this proof the word “sup "always shall
mean the supremun over the cubes centered at z. Let aé™! = v = 6371,

¥
Ifu= nzan! we have that u (59) = %f‘ then by Hélder's inequality, we

have

(r=v)/2n
Mg f(z) < sup || forl|nyy ( /Q flaly) - aQIIQ“’"_"’ﬂ_"""_”’(y)dL’)

R
12

L ) — bellFa= ()
(7@ A )
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Observe that § < 2=, then applying lemma (4.41) we get

M3 f(z) < Cllfallnp 8715 (2)87 % (2) = Cllfallug, 7' (2).
1< s <(1+¢), then by Hélder's inequality, we have

, , lfst'
M F(z) < sup |QI" ( fQ () — ag)(b(y) — b e (y}dy)

1
12

(|"617| ]Q ilf(y)ll“asf(y)dyym |

Now if we choose ¢ such that st’ < -ri_-r(l + e} and st < %, whetre £ is the
one which appears in lemma (4.41} we get

[ ifst'
Miste) < s | (I(ets) = aQbs) ~ bl &~ @) " fales
Now by Hélder's inequality and lemma (4.41), we have,

17382
Mg (2) < sup ( / lla(y) - o]l o= (y)a'y)
Q

1L
12
1 ’ 1/2st’
(@ fQ lo(y) — bolf**" &~ (y)dy) Ifellnsy < CBT @S llnsy-
Using {4.44) we get,
M7 f(z) < Csup (;gg(y;(q)*(y)) ||fu||_;az‘nfy€Q5-l(y)

<C inf (inf 67 Xo)* a

< Coup { uf i 57 ()(%0)"() ) Wl

<C inf A7'(y P |

< Csup (;ggﬁ (y)) I/l 2
The proof for My f is pararell to the proof for M.

For M7, we use Holder's inequality with r’ < 2 and 7 < 325(1 +¢) such
that o™7 € Ay getting

Mioste) <o (5 [ ts) =bali) (17 [, Nets) - aallty) oy

< Alfa|z sup (]22—|L116(y) - bQ”dy)(I%_IL lla(y) — GQ"dy) 6t e ga(4)

< Cllfallzsup (|_5121 L 1)~ bl ) (17121 ]Q Jo(w) - aqlla™(s)ds ) .
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Now applying Remark (2.11} and Lemma (4.41) twice we obtain the desired
result for M{,, We don’t give the proof for M}, which is a mixture of the proofs
for Mfo and for My, Analogously the proof of M’lj? is a mixture of the proofs
for M7 and Mlja.

Since §7! € A we have by Lemma (4.41)

Mis f(z) < C[|f6]]oosup (ré,l /Q le(y) - bqndy) (gg 5*@))
< C||fbleo - 5 (z).

Finally, if u = f;‘?, then by Holder’s inequality and lemma (4.43), we have,

M}, f(z) < sup (ﬁ jQ Ib(y) bQIIdy) 1l

LI EUTR )(n“?mn (L —u/2 1)”"
(a7 [/ wpay a1 o

<o (i e - solla™ )y ) Ul (o fq a-“f%y)dy)”u‘

172

Then, applying lemma (4.41) to v = &'/2371/2, we have,

ifu
M f(2) < sup B2 Fallays (ﬁ fQ ﬂ“‘""’(y)dy) -

Since § < n%r then 8~ %*/% ¢ A4; and then we get the desired result. B

Proof of Proposition (4.33):
We shall prove (4.34) and (4.37), the other cases can be proved analogously.

Let @ be a cube in R" with center ar z¢. Given a function f with compact
support, we define

fi{z) = fle)Xag(z),  falz) = f(=) - fil=).

Let
eQ = T((bg = b)fa}(zo).

Then if z € @, we have
Cof(2) = b(z)T f(z) - T(bf)(z) = (¥(x) - bo)T (=)

+ T(bo f)(z) — T(bf)(z) = (b(z) ~ bg)T f(z)
+ T((bg — b)f)(z) .
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Therefore, for z € @, we have

ICsf(2) = callr < N(b(z) — ba)Tf(x)lir
+1T({3q - 0)i)=)lF
+HIT((bq — b)f2)(=) — T((bg - ) f2)(=o)lir
= a1(z) + aa{z) + oa(z) .

We shall estimate {(Cy f)¥(zp) in terms of the o;{z). Obviousty
1
—/ or(@)dz < MyTF)(zo) .
1@l Jo

Now, for g5(z) choose r such that 2 — % = X and s < (1 +¢). Then using

a r

the boundedness properties of T, we have,

G fQ oa(z)d < (@ L ||T<(b—bq)fl){wnr’dz)w

1 1fa
< (g [ 10 - r)seras ) 1@ < M fzo)
On the other hand, by using hypotheses {(K.1) and (K.2), we have,
o3(z) € / ho(y) ~ belll 2K (=, 9) — K(zo,y)lldy

bl 1f/n
el N OB LI LY

i=1 |2JQI-}‘+1_%

e | 1
<Ly { i || 1o 180 ~ taralllf @l

1
+ gt J, I = bollls )l }

< c;% { Ma(ao) + s = bel gz | . Il ).

Using (4.38), we get

o3(z) €
022, {sz(xe>+:( i (o) (y)) (I2’Ql‘ — ]j ||f{y3ndy)}

Z M f(2o) + jMs f(z0)} .

¥
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This finishes the proof of (4.34). &

In order to prove {4.37}, given a cube (} and a positive compactly supported
function f, we decompose f into f; and f; as before and we consider

we = f lag — a(y)llbo — B(u)W (zo,4)folu)dy.

We observe that wg is finite since bg — b and ag — a belongs to L*{Q).
H z € @ and | - | is the absolute value in F, standard computations give

[Vt fz) —wel < / l{a(z) — a(y))(&(=) - Hy )Wz, y)f(v)
— (aq — a(¥)}bq — by))W(zo, v} f2(y)ldy
< lafz) - aql [ I6(z) — bW (z,y)f (y)dy

+ Jb(z) - bol / lag — a(u)|W (2, 9)f1(y)dy
+1b(z) - bl / la — ()W (e, 5} faly)dy
+ [ lao = atv)libg — M)W (=, ) rlw)dy

+ / lag — a(y)lldg — YW {z, v} — W (ze, y)l fo(v)dy
= A;(z) + )iz(x) + )\3(1‘) + /\4{5.") + /\5(1’)‘

For As, and since gg = ﬁ fQ afz)dz we have

(@) = =)~ bol [ I5 /Q (a(z) — a(w))W (2, 1) foly)deldy
Then,

As(z) < b(z) - bq}ﬁ [Q [ la(z) — a(y) W (z,v) — Wz, 9)lfaly)dydz

¥ b(z) - bl (Téﬂ L v:(fxz)dz) +15(z) — o (ﬁll fQ mfl)(z}dz)
= Asa(a) + As e} + A a{z) .

It is clear that

ﬁ fQ X (e)lde € Ma¥;t F)zo) -
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u

Choose u = %, then % -4 = 1. Therefore by the hypothesis on V, we
have, '

TIARCE
< (% fowear-varas) " (G [ wtiee - asconas)”

<0 (g [ -torae) 1@ [ (aq - atostopras)
< CMy f(zo).

1fu

In order to handle A3 1{z) we observe that

réﬂ L (la(z) — a(W)||W{z,y) — W(z,v}| f2(y)dy) dz

= é?ifq; (ZW f?*‘o ez} — a(y)lf(y)dy) dz

|2}.Q|1 1 — an — g Aoin — 4
52 5 0] (l2jQ|f2jQ|a(z) g+ ag QT+ g (y)lf(y)) dz

Z'Q’QI“"’" 1 1
2 1Ql Joo 1€l Jug
127Q*/" 1 1 ]

+ ; vyl : g — Qi dydz

2 Tl o T g 0

lnglﬂﬂL 1 -
+; 27 |Q| Q|23'QF/;,.Q|&?’Q a(y)|f (y)dydz.

la(z) — ag|f(y)dydz

By Lemma (4.38) this is less than or equal to

Z |23Q|wn (IaIJL|a(z)~aQ|dz) <I2’_1QI qu(ym')

ro v (i wxerm) (g [, /94)
+35 'm' (01 [, o love —ertw)as)
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Therefore,

sup IQrf ||)n31(:c)||pdz<cz:{ 277 M, f(o)

+ 327 M f(wo) + 2"’Mnf(zo)} :
Tt is clear that

X £ 13 + I
01 L, Poa(elds < CMiv, f)ea)

On the other hand if v = n+ , we have = — & = X then by lemma (4.47)
and Theorem (2.7) for the case «?/28~1/2 = 4, we ha.ve

1 st < (g [ 1) - ot )
(ﬁ fQI|V:h(:)ﬂ"’ﬁ"'n(z)dz)W (51' /Q ge2(2) dz)uu
) <ﬁ/ b)) Q17 GT&LH::)“M@)@)W

(IQI f 5y " < ot

We handle A4(z) as follows. Choose 1 — & = X and 1 < s < (1 +¢), then
by the hypotheses on ¥V, we have,

1 1 . /e
@L"M(x)"dx < (@/Q”V(!GQ — al|bg — blf1)2)] dz)

1fs
< clQp (ﬁ L (2@ — a()bo — 5(ar)ff(z))’dr) < OMZ f(z0).

Finally we cbserve that by {(W.3), we have,

||As(z)||scz_';f§!@ [ Jee - elsdliio ~ by, and
}

/ ' lag - a(y)llbg — b(y)| F(y)dy
28

<

_f_ lezi g — a{y)ibai @ — (W) (y)dy + leq — azquf_ b2: @ — (g )| f(v)dy
2Q 27 Q

+ b — b gl /20 [azi g — a{y)f{y)dy + |bg — bai gllag — azigl /_Q F(y)dy.
H 24
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By lemma (4.38), this is less than
[, e = alibn g ~ b))y

+3 (g ey ) [ ua - slry
+5 (it ey ) ([ lewe ~atillstvr)

et (gt oawer@) ([ o).
Therefore

()il € € ¢ ST M} f(zo) + 1277 M f(30)

=t

+§277 My f(zo) + 57277 Mo f(zo) } -

Then, we have,

As{2)[| < € { ML f(zo) + M7 f(zo) + Ms f(20) + Msf(zo}}
ending the proof of (4.37) &
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