
Publicacions Matemátiques, Vol 35 (1991), 141-153 .

WEIGHTED INEQUALITIES
THROUGH FACTORIZATION

EUGENIO HERNÁNDEZ

1 . Introduction and results
In [4] P . Jones solved the question posed by B . Muckenhoupt in [7] con-

cerning the factorization of Ap weights . We recall that a non-negative mea-
surable function w on R" is in the class Ap , 1 < p < oo if and only if the
Hardy-Littlewood maximal operator is bounded on LP(R',w) . In what fol-
lows LP(X, w) denotes the class of all measurable functions f defined on X for
which Ilfwl/P II Lo(X) < oo, where X is a measure space and w is a non-negative
measurable function on X.

It has recently been proved that the factorization of Ap weights is a particular
case of a general factorization theorem concerning positive sublinear operators .
The case in which the operator is bounded from LP(X, v) to LP(Y, u),1 < p <
oo, for u and v non-negative measurable functions on X and Y respectively,
is treated in [8] . The case in which the operator is bounded from LP(X, v) to
L9(X, u), 1 < p < q < oo is treated in [3] .

Our first result is a factorization theorem for weights u and v associated to
operators bounded from LP(X, v) to L9(Y, u), where X and Y are two, possibly
different, measure spaces, and p and q are any index between 1 and oo .

Let X and Y be two measure spaces and let M(X), M(Y) be the class of
measurable functions defined in X and Y respectively . An operator T defined
on a subset of M(X) with values in M(Y) is called sublinear if I T(f + g) I <
IT(f)I + IT(g)I and is called positive if If1 < g ~--> IT(f)I < T(g), for all
f, g E M(X) which belong to the domain of T .

Theorem 1 (Factorization) . Let T and T' be two positive sublinear op-
erators defined on subsets of M(X) and M(Y) respectively. Let v E M(X)
and u E M(Y) be non-negative functions and 1 < p, q < oo . Suppose that T
is bounded from LP(X, v) to L9(Y, u) with norm IITII and T' is bounded from
L9'(Y,u-9'/q) to LP'(X,v-p'/p) with norm IIT'II . Then there exist non-negative
functions uo E M(X), vo E M(Y), ul E M(Y) and vi E M(X) such that
v = uO

p/P,VI, u = �
O
q/q'ul,

IIuovIIILI(X) < 1, IIVOUIIIL~(Y) < 1, T(uo ) _< IITIlvo

and T'(u l ) < 2p/p'IIT'Ilvl .

This theorem can be applied to a large class of operators to obtain the fac-
torization of therr associated weights . The reader can find several examples in
[8] and [3] .
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For integral operators with non-negative kernel, the factorization theorem has
a converse for some particular cases ofp and q. Let k(x, y) be a measurable non-
negative function on X x Y. Let us denote by K and K* the transformations :

(Kf)(y) = f k(x,y)f(x)dx,

	

(K*g)(x) = f
k(x,y)g(y)dy,

X

	

Y

the domain of K being the set of all functions f E M(X) such that the first
integral exists and is finite for almost all y, and the domain of K* being anal-
ogously defined .

Theorem 2 . Leí 1 < q < p < oo andv E M(X), u E M(Y) be non-negative .

A necessary and sufcient condition for K ío be bounded from LP(X, v) to
Lq(Y, u) is thai Mere exist non-negative functions uo E M(X), vo E M(Y), u l E
M(Y), vi E M(X) and finite constants Co, Cl such that Iluov1IILl(X) < 1, v =
u0PIP'vl, u = vo

g1q' u,, K(u0 ) < Covo and K*(ul) < Clvl . Moreover IIKII <
Colq'Cilq .

The case p = q is simpler :

Theorem 3. Leí v E M(X) and u E M(Y) be non-negative . A necessary
and sufcient condition for K lo be bounded from LP(X, v) to LP(Y, u) is that
there exisi non-negative functions uo E M(X), vo E M(Y), u 1 E M(Y), vi E

M(X) andfinite constants Co, Cl such that v = uoPIP' vl, u = voPIP'ul K(u0)
< Covo and K*(u l ) < Clvl . Moreover IIKII < Co lIP'C1IP,

The case v - u - 1 of theorems 2 and 3 is proved in [1] . Our proof of
these theorems is an adaptation of the proof of the corresponding results in
[1] . In the case p < q the conditions of theorem 2 are not sufficient for the
boundedness of K from LP(X, v) to Lq(X, u) even in the case v - u - 1 (see
[1]) . Observe that in theorem 2 we only need the condition Iluov1IIL'(X) <_ 1
while the "symmetric" condition IIUIv0IIL1(Y) < 1 is not needed . Neither of
these is needed in theorem 3 .
For some applications it is better to replace the sufficient condition of theorem

2 by the following one, whose statement is a generalization of the sufficient
condition of theorem 3 :

Theorem 4. Le¡ 1 < q < p < oo and v E M(X), u E M(Y) be non-negative .
Suppose that there exist non-negative mesurable functions uo , vo , u,, vi such that
v = uo PIP ' v l q' IP' u = u,vo -PIq' K(uo)vo 1 E L''(u) (with L'(u) norm equal

to Co ) and K*(ul)v1 1 E L''(v-P'IP) (with L''(v-P'IP) norm equal to Cl ), where

r - 9 - r .

	

Then, K is a bounded operator from LP(X,v) to Lq(Y,U) with

norm less than or equal to Co r I q,
C1

,IP .

For the cases q = 1 or p = oo, which are not covered by the above theorems,
we have the following satisfactory result :
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Theorem 5. (A) If 1 _< p < oo, a necessary and sufcient condition for K
to be bounded from LP(X,v) to L1 (Y,u) with norm IIKII is

11
JY

k(x, y)u(y)dylI LP'(X,v-n'ln) :5 IIKII

(B) If 1 <_ q < oo, a necessary and sufcient condition for K to be bounded
from L'(X, v) to L9(Y, u) with norm IIKII is

11
JX

k(x,y)v-1(y)dylIL9(Y,«) ~ IIKII

In this theorem L'(X,v) = {f E M(X) : Ilfvll . < oo} .

Examples of operators to which these theorems can be applied are the fol-
lowing : the Hardy operator

and its dual

x

the fractional integral operator

Tf(x)=101 f(y)dy

	

,x>0,

T*f(x) =
J
~f(y)dy

	

,x>0;

(Iaf)( x) = I n f ( x - y)lyl`dy,

	

x E Rn, 0 < a < n
R

which is self-adjoint ; the Riemann-Liouville operator

1

	

j'

	

f(Y)

	

« dy,(Taf)(x) =
Ir(-)

	

(x - Y) ,-C,
Laplace transform

00

£f(x) =

	

e-yf(y)dy
0

and the multidimensional Hardy operator

x>0,a>0 ;

x~ x n
T.Ax11 . . . , xn )

	

f(yl, . . . , yn)dyn . . . dyl .

The proofs of theorems 1 to 5 will be given in section 2 . Applications will be
given in section 3 . These are concerned with weighted inequalities for some of
the above operators .

I would like to thank B. Jawerth for calling my attention to [1], which turned
out to be the starting point of this research .
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2 . Proofs of Theorems 1 to 5

To prove theorem 1 we need the following lemma which can be found in [1] .

Lemma 2 .1 . Let B be a Banach space and P a convex cone in B . By
calling this cone "positive", B will be taken as an ordered Banach space. Let us
suppose for B and P that every bounded increasing sequence in P converges,
more precisely:

{fn} C P, fn+l - fn E P, Ilfnll < M < oo => fn - f E P

Le¡ S be a transformation defined in B such that S(P) C P, S is nondecreasing
(that is, f, g, g - f E P => Sg - Sf E P), S is continuous and 11f II < 1 =>

Ilsfll<Co<oo .

Then there exists a E P, a 7É 0, llall < 1 such that

2Co a - Sce E P

To prove theorem 1 we take B = LP(X ), P such that f E P <=> f(x) > 0a .e .
and

S

	

-

	

T'

	

T(fv-1/P)

	

qlq'
u

	

]
P'/p

v-P1/P2

(f)
[ (C IITII

	

)

and apply lemma 2.1 . Observe that the boundedness of T and T' implies

IISflILD(X) < IIT'IIP'/PILfIILP(X)

so thatIlf1I < 1 => IISf1I < JIT'l1P'/P . Hence there exists a qÉ 0, a >_ 0, a E
LP(X) with norm less than or equal to 1 and S(a) < 2l1T'1IP /P a . The proof of
theorem 1 is finished by taking

and v l = uó /P' v .

uo = av -1 /P, vo = T(uo)/IITII, ul = (T(uo)/IITII)1/1'u

Theorems 2 and 3 will be established once we prove the sufficiency of the
conditions, since the necessity follows immediately from theorem 1 . To prove
theorem 2 take f E LP(X, v), g E Lq'(Y, u-q'/q) and use Holder's inequality
with r, p and q', where r = 1 - r to obtain
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1/T

~X Y
k(x,y)f(x)9(y)dxdyl C (L

1Y
k(x,y)u1(y)uo(x)dxdyl

1/p

. (f /
k(x,y)u1(y)uo(x)-pl"If(x)Ipdxdy/

X Y
1/q'

. ~f /
k(x,y)uo(x)u1(y)-q'lglg(y)Iq~dxdy)

X Y

Using K*(u 1 ) _< C 1 v 1 and Iluov1IIL1(X) < 1 the first factor en the right hand
side of the above inequality is bounded by Cl/r . Using K*

op/p'

	

(u 1 ) < C1v 1 and
v = u

	

v1 we deduce that the second factor is bounded by Cl /p llfJI Lv(X,v)-
Finally, using K(u0) _< Covo and u = vo'/"u, the third factor can be majo-
rated by Cólq

II9I6'(Y,.-199) . Putting these estimates together we obtain

JXfYk(-,y)f(x)g(y)dxdy <Có/q'Cl/gliflILP(X ;v)IIgIIL

From here the desired result follows .
The same argument applies for p = q, that is for theorem 3, except that

in this case 1 -- 1 - ñ = 0, and hence the first factor on the right hand
side of (2.2) does not appear . Thus theorem 3 does not require the condition
IIuov1IIL1(X) < 1 .
To preve theorem 4 let f E LP(X, v) and g E L9 (Y, u -q'1q) . From r = g-v

we deduce v, -{- ñ = r, so that we can apply Holder's inequality with indices
p/r' and q'/r' to obtain

I f
k(x,y)f(x)9(y)dxdy

X Y
T /p

< CJxJYk(x,y)u1(y)uo(x)-plq'If(x)Ip/r'dxdy)

l r'/q'

. CJx /Y k(x, y)uo(x)u1(y)-q'lpl9(y)I
q'lr dxdy'

	

= (I).(II) .

Using Holder's inequality with index r, together with v = uoplp' vq
' lp' and

K*(u1)v1 1 E Lr(v-p ' 1p) we obtain

r'/rp

(I)
< Cfx_

	

[K*u1)(x)]rv1 r(x)v-p'1p(x)dx)
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1/p

'

	

If(x)Ipv1(x)r'*)p,r
/pruo(x )-pr lq'dx)

x

Using again Holder's inequality with the same index, together with u
u l vop/q' and K(uo)vo1 E L'(u) we obtain

(B) The proof is analogous .

1/p
=

C1'/p

(L If(x)Ipv(x)dx\
)

r' /rg,

(II) < (f [K(uo)(y)]r vo(y)`u(y)dy)

1/q'

' (l
Y
Ig(y)I9 u1(Y)

-q,r'lpvo(y)r u(y)-r
/rdy)

1 /q~
= Co'/q,

(/
Ig(y)Iq'u(y)

-q'lg dy)

Y

The desired result follows by putting these two estimates together . This
finishes the proof of theorem 4 .
We now prove theorem 5 .
(A) Sufciency . For f E LP(X, v) and g E L'(Y, u-1 ) we have

k(x, y)f(x)g(y)dxdy
_< IIglIL-(Y,u-1) ix

	

Y/ k(x, y)I f(x)I u(y)dxdy
~ x Y

IIgIIL-(Y,u-1)
{f u k(x,y)u(y)dy) pl v(x) -p'lpdx
X Y

Necessity . The boundedness of K implies

for all f E LP(X, v), g E L'(Y,u-1 ). With g - u we obtain

f(x) (/ k(x,y)u(y)dy) dx

	

<_ IIKIIIIflILD(X,v)
~ X

	

Y

for all f E LP(X, v) . Thus the result follows .

1/p'

1/p

If(x)Ipv(x)dx}

	

_< IIsIIL~(Y,u-1)IIh~~IIfIILy(X,v) .
X

L
lyk(x,y)f(x)g(y)dydx1 `IIhIIIIfilLD(X,v)II9IIL-(Y,u-1)



3. Applications

Consider the integral transformations

(3.2) Bl =

(3.3)

	

Bz =
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x

(Kf)(x) = f

	

k(x,y)f(y)dy, (h *f)(x) =
J

	

k(y,x)f(y)dy
0o

	

x

defined on the real line, where k(x, y) is a nonnegative measurable function
defined on A = {(x, y) E R2 : y < . x} . Given two non-negative measurable
functions u and v defined on the real line, we write (u, v) E Wl (K, p, q), 1 <
q<p<ooif

{1-00 I~ / OOk(x,y)u(x)dx)1/q
00 y -00

and (u, v)EW2(K,p,q),1<q<p<ooif

y

	

1/q r

	

1/r
,

k(y, z)v(z)-P 1Pdz)

	

] v(y)-PIPdy l

00

y

00

	

\~
k(x, y)u(x)dx

	

1/P

	

y

J

	

CJ-

	

k(y, z)v(z)-P'1Pdz

	

1/P

	

r

~

	

u(y)dy

1/r

j
J

< +oo

where r = 1 - P . Observe that in the limiting case p = q, (3.2) and (3.3)
become

\~/P y

	

i/P,
(3.4)

	

B = supo ~~

	

k(x, y)u(x)dx p

	

(f

	

k(y, z)v(z)-P'1Pdz~

	

< +oo
yY>

	

00

Proposition 3 .1 . Let K be the integral transformation defined by (3.1),
where k(x, y) >_ 0 is nondecreasing in y and nonincreasing in x . If (u, v) E
W; (Is,p, q), 1 < q <_ p < oo, j = 1, 2, then

(~~
I(hf)(x)Iqu(x)dxlllq _< C

	

If(x)IPV(x)dx~1/P

< +oo
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where C <_ (gB1)TI/P(pT2 )r /v',

Proof. Since t > y implies k(x, t) > k(x, y) the norm of the function

00

	

00

	

1/9 ' 1 y

	

, 1/9'
k(t, y) ~~

	

k(x, t)u(x)dx~

	

u(t)dt' ~~

	

k(y, z)v(z)-P 1Pdz)
y

	

t

	

j 0o

in LT(v-P'1P) is bounded by the norm of the function

~o(Y) =
00

	

00

	

1/9 '

	

1

	

y

	

,

k(t, y)

	

k(x, y)u(x)dx~

	

u(t)dt l ~~

	

k(y, z)v(z)-P 1Pdzl
y

	

t

	

/

	

l00

in the same space . Integrating by parts we obtain

Taking

the above inequality can be written as K*(ul )v1 1 E Lr(v -P'/P) with norm not
exceeding qBl .

Since t < y implies k(t, z) > k(y, z), the norm of the function

/ wk(x, y)u(x)dx l
1/P

(I-Y.

k(y, t)v(t)-P'1P
~,1y

in L''(u) is bounded by the norm of the function

WP11U(v-v9P) < qBl .

ul (t) =

	

k(x,t)u(x)dx~ -1/v u(t),
t
y

v1(y) _
~~

	

k(y, z)v(z)_P'lndzl
_

1/P
k(t, z)v(z)-P'1Pdzl

	

dt

00

	

\ 1/P y

	

t

	

\ 1/P

k(x, y)u(x)dx l

	

k(y, t)v(t)-P'1 P	k(y,z)v(z)-P' 1Pdz'

	

dt
y

	

00 V00



in the same space . Integrating by parts we obtain

11011U(u) < p'B2 .

Taking

the above inequality can be written as K(uo)v.-1 E L'(u) with norm not ex-
ceeding p'B2 . The proof of proposition 3 .1 is finished by applying theorem 4 if
q < p and theorem 3 if q = p .

Remarks .

	

1. For the case q = 1, (u, v) E W, (K, p,1) is an equivalent
condition for the boundedness of the operator K defined by (3.1) from LP(X, v)
to L1(Y,u). This follows from part (A) of theorem 5 .
2 .

	

For the case p = oo, (u, v) E W2(K, oo, q) is an equivalent condition for
the boundedness of K from L'(X, v) to L9(Y, u) . This follows from part (B)
of theorem 5 .

3 . A result similar to proposition 3 .1 . can be obtained for K* . Details are
left to the interested reader .

4 . The operators defined by (3.1) have been studied in [2] ; the conditions
imposed on the weights u and v to obtain weighted inequalities for K are
different from those used here .

For the particular case of the Hardy operator Tf(x) = fo f(y)dy, NTi (T, p, q)
becomes

(3.5) Bi

	

00

~

	

y0

	

00

0 U) 1/9

(,y
v-P,/P

	

1/9'
j

r

v

	

1/r

< +00=

	

,~f

	

)

	

(y)-P./Pdyl
0

W2(T, p, q) becomes
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(3 .6)

	

B2 = {f
00

	

1 /P

	

y

v-P,
/P)

1/P'

j

r

u(y)dy

	

1/r

[(

	

(1

	

}

	

< + oo,
0

y00

	

00

and when p = q we have

(t)
= (1-t

	

k(y, z)v(z)-P'1Pdz)

	

v(t)
-P

, /P

o(t) = (100 k(x, t)u(x)dx)
t

ilP

Y>. (u)

	

y

fU
In this case we shall show that the condition W2 (T,p, q) is implied by W1

(T, p, q) and that this condition is also necessary for the boundedness of T .
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Proposition 3.2 . Let 1 < q <_ p < oo .

	

A necessary and sufcient con-
dition for the Hardy operator Tf(x) = fo f(y)dy to be bounded from LP(v)
to L9(u) with norm C is (u, v) E W, (T, p, q) .

	

Moreover 2-P/P'qB, < C <

2r'/rq'B,(p
(pi)11q'ql/q,

Proof. Sufflciency . Reducing the interval of integration and using the con-
dition Wl (T,p, q) we deduce

(3 .8)

	

(,,U)

l/q

(1z
v-P'lP)

l/P'

(P/)

l/r
< Bl

z

	

o

	

r
for all z E (0, oc) . Integrating by parts in (3 .5) and using (3.8) we obtain

Bi = ¿ (~~
u)rlq

(fy
v-P'/p)

rlP' J

	

+
r y

	

o

	

0
~~ ~~ (~~

u)

rlP

(f y
v-P'lP)

r/P'
u(y)dy ? -Bi + q,-B2-q,

B2 < 2Bi- and the result now follows from proposition 3.1 .
Necessity . Since we are assuming that T is bounded from LP(v) to Lq(u),

we can apply theorem 1 to find uo , v o , u l , vi satisfying

(3.9)

	

lluovlllLl < 1

and
v = Uop/P'vl u

Therefore

- vo q/q' ul	T(uo)< Cvo, T*(u l ) < 2P/P'Cvl .

00

	

9/9/
rl9 y

	

P'lP
rlq'

P'lP
Bl

-

	

(°°

volt)

	

ul(t)dt)

	

(

	

u0(t)vl(t)

	

dt)

	

v(y)

	

dy .
0 ,

	

0

From Tuo < Cvo and T*(ul ) < 2P/P'Cvl we deduce that Bi is bounded by

2rl9'CrPnl9n

	

(Joyuo)

-r/q'

(1.ul)

r/q

0o

	

rP ' lPq ' (,y

	

rlq'

uo)
uo(y)vl(y)-P'/Pdy

(Iy

< 2r/P'Cr-l
{10 00 (Iyul)

u0(y)dy l

< 2(r+P)/P'Cr %w vl(y)uo(y)dy < 2(r+p)/p'Cr,
J0
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where the last inequality is due to (3.9) . This finishes the proof of proposition
3.2 .
Remarks. 1 . The limiting cases q = 1 and p = o0 of proposition 3.2 are

also true ; they can be deduced directly from theorem 5 .
2 .

	

There is a similar result for the dual of the Hardy operator, T*f(x) _
f°° f(y)dx ; details are left for the interested reader .x
3 . Proposition 3.2 can be found in [6] for the case p = q and in [5] for q < p.

We feel that our proof is easier than that given in [5], page 45 .
To end this section we use theorems 2 and 3 to find particular weights for

the Laplace transform ,C and the Riemann-Liouville operator Ta , a > 0.

Corollary 3.3 . Let 1 < p < oo and a > -1. Then

l

	

l
gf)(x)jPxadx

1/P
}

	

< C
{o0

jf(x)jpx-a+P-2dx

	

1/P
}

0

	

00

and C < 1(/i + 1)1/P'r'(a - /ip -}- 2 - p)1/P for all -1 < ¡i < Pa + P - 1 .

Proof.. Since a > -1 we can choose ,C3 such that -1 < 0 < ñ a + ñ - 1 . Let
u o (x) = xQ and v1(x) = x-a+P-2+0 n' so that uoP/P' v1 = x-a+P-2 . We have

(£uo)(x) = r(O + 1)/x0+1 . Let vo(x) = x-(R+1) and u1(x) = xa-(R+1)Dr so
that v -P/P , u1 = xa . Moreover (Cu 1 )(x) = I'(a-(p+1)P +1)/xa-(R+1)p,+1 =

I'(a - (f -1- 1)L+ 1)v1 (x) . Hence the result follows by theorem 3 .

Corollary 3.4 . Let a > 0, 1 < p < oo and b < p - 1 . Then

00

l1

I(Taf)(x)IPxb_aPdx

1/P

~

	

< C{l

	

If(x)~Pxbdx

	

/P
)

0

	

00

and C < B(a,P+1)1/P'B(a,-b-ñ q)1/Pr(a)-1 for all -1 <p< -v b, where

B is ¡he beta function, B(s, r) = fo (1 - x)9-1xr-ldx.

Proof.. Since b < p-1 we can choose P so that -1 < /i < -
P
b. Let n o (x) _

xQ and v1(x) = xb+Rpr so that u oP/P' v1 = xb . A simple calculation shows
(Tau0 )(x) = x«+PB(a,,3+1)/1'(a) . Let vo(x) = x«+R and u1 = xb_aP+yp-r(-+R)

so that v-P/P'u 1 = xb-'P, Again a calculation shows

(7,«u1)(x) = xb+ p-rRB(a -~ - Z/j)/j, (a) =
v1(x)B(a, -Q - Z,3)1r(a) .

The result follows from theorem 3 .
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Corollary 3.5 . Leí 1 < q < p < oo and leí a be such that (q/p) - (q/q') <
a < 1 - (qlq') (if q = 1, ñ < a < 1) .

	

Then

\ ¡~

(
I£f(x)19x-adx

1/9
/

	

<C
(J

	

If(x)IP(1+x2)P-1dx
1/P

)
0

	

0

Proof.. Suppose 1 < q < p < oo . Choose,3 so that P(-L, - q) = a-~- 9 -1 . The

conditions on a imply -ñ < A < 0 . Let uo(x) = x0(1+x2 ) -1 and v 1 (x) = x#4

so that uoP/P'v1 = (1 + x2)P-1 . Observe that

2tw1 =J. x0P(1 + x2)-1dx < oo
0

	

0

since /dp + 1 > 0 and Pp - 1 < 0 . Now .

(£uo)(x) = 100 e - xtt0(1 + t2 )-1 dt <_ 100 e-xttfldt = x -0-1 r(a + 1) .
0

	

0

Let vo(x) = x-0-1 and u1 (x) = x-a-(R+1)-q$ so that vo9/9' u1 = x-a . More-
over (Cu1 )(x) = v1(x)I(-/3p ) . The result follows by applying theorem 2.

The case q = 1 follows from part (A) of theorem 5 .

Corollary 3.6 . Leí 1 < q < p < oo and leí a be such that -1 -f-
p - aq <

a < -aq where a > 0. Then

(
IT"f(x))I9xadx

1/v
~

	

<C(~
IAX)IPexbdx

1/n
~

	

5 b > 0.
0

	

0

Proof. Suppose 1 < q < p < oo . Choose P such that 3(P - 9) = a -}- qce .

The conditions on a imply -v < 3 < 0 . Let uo(x) = x0epx6 and v1(x) = x 0P

so that uoP/p,v1 = ex' . Observe that

uovl =

	

-xnR ePxndx = CI'(pa + 1) < 00
0

	

0

since pQ + 1 > 0 . Now

tRe -ñ tb

	

1

	

x

	

tR
(Tau0)(x)

	

-Jo

	

(x -t)1-a dt <-
r(a) l

	

(x -t)1-a dt

= xO+aB(a, fl + 1)/P(a).

Let v o (x) = x0+« and u1(x) = xa+4(R+a) so that vo e/q'u1 = xa . Moreover
(Táu1)(x) = vi (x)B(a, -a - q(Q + a) - a)/P(a) and the results follow from
theorem 2.
The case q = 1 follows from part A of theorem 5.
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