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WEIGHTED INEQUALITIES
THROUGH FACTORIZATION

EUGENIO HERNANDEZ

1. Introduction and results

In [4] P. Jones solved the question posed by B. Muckenhoupt in 7] con-
cerning the factorization of A, weights. We recall that a non-negative mea-
surable function w on R® is in the class 4,, 1 < p < co if ard only if the
Hardy-Littlewood maximal operator is bounded on LP{R"™ w). In what fol-
lows LP{X,w) denotes the class of all measurable functions f defined on X for
which || fw!/?||s(x; < oo, where X is a measure space and w is a non-negative
measurable function on X.

It has recently been proved that the factorization of A, weights is a particular
case of a general factorization theorem concerning positive sublinear operators.
The case in which the operator is bounded from LP{X,v) to LP(Y,u),l < p <
oo, for u and v non-negative measurable functions on X and V respectively,
is treated in [8]. The case in which the operator is bounded from LP(X,v) to
LU X, u},1 < p < g < oo is treated in {3].

Cur first result is a factorization theorem for weights v and v associated to
operators bounded from LP(X v} to LI(Y,u), where X and Y are two, possibly
different, measure spaces, and p and ¢ are any index between 1 and oo.

Let X and Y be two measure spaces and let M{X), M(Y) be the class of
measurable functions defined in X and Y respectively. An operator T defined
on a subset of M{X) with values in M(Y') is called sublinear if |T{f + ¢)| <
[T{H) + |T(g)| and is called positive if |f] < ¢ — |T(f} < T(g), for all
f,9 € M{X) which belong to the domain of 7.

Theorem 1 (Factorization). Let T and T' be twe positive sublinear op-
erators defined on subsets of M(X) and M(Y) respectively. Let v € M{X)
and u € M(Y') be non-negative functions and 1 < p,g < 0o. Suppese that T
13 bounded from LF(X v} to L(Y,u) with norm ||T|| and T’ is bounded from
L"“(Y,u'?'f'?) to LP'(X,v_p'-’P) with norm || T')|. Then there ezist non-negative
functions uo € M(X), vo € M(Y), uy € M(Y) end vy € M(X) such that
v =1"" v, w = 07wy, luoviflrxy <1, [lwousliziyy < 1, T(uo) < || Tilva
and T'{uy) < 28/%'|| T, .

This theorem can be applied to a large class of operators to obtain the fac-
torization of their associated weights. The reader can find several examples in

[8] and [3].
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For integral operators with non-negative kernel, the factorization theorem has
a converse for some particular cases of p and ¢. Let k(z,y) be a measurable non-
negative function on X x Y. Let us denote by K and K* the transformations:

(KO = | kzu)f(x)dz,  (K'g)(z)= | k(= y)e(y)dy,
_ X Y

the domain of K being the set of all functions f € M{X) such that the first
integral exists and is finite for almost all y, and the domain of K7 being anal-
ogously defined.

Theorem 2. Letl < g <p < coandv € M{X), u € M(Y) be non-negative.
A necessary and sufficient condition for K to be bounded from LP{X,v) to
L(Y,u} is that there ezist non-negative functions wg € M{X), vo € M{Y), w1 €
M(Y), v1 € M{X) and finite constants Cy, Cy such thai lwowi|lerixy S 1, v=

ug”p,vl, u = vg_q‘;q'u.l, K(ug) € Cavg end K*{wy) < Civy. Moreover || K||
c;f‘}’cli}'ﬁ_

The case p = ¢ is simpler:

Theorem 3. Let v € M{X) end u € M(Y') be non-negative. A necessary
and sufficient condition for K to be bounded from LP(X,v) to LP(Y,u) is thet
there ezist non-negative functions ug € M(X), vo € M{Y),ur € M(Y), v €
M(X) and finite constanis Cy, C; such thetv = u, ”P'vl, u= vo_”’”u], K(ug)
< Covo and K*(u1) < Cyvy. Moreover | K|| < Co /7' C}/P,

The case v = v = 1 of theorems 2 and 3 is proved in [1]. Our proof of
these theorems is an adaptation of the proof of the corresponding results in
[1). In the case p < ¢ the conditions of theorem 2 are not sufficient for the
boundedness of K from LP{X,v) to L¢(X,u) even in the case v = u = 1 (see
[1]}. Observe that in theorem 2 we only need the condition Juem|lrx) < 1
while the “symmetric” condition ||ujv]lpr¢yy € 1 is not needed. Neither of
these is needed in theorem 3.

For some applications it is better to replace the sufficient condition of theorem
2 by the following one, whose statement is a generalization of the sufficient
condition of theorem 3:

Theorem 4. Letl < g <p < oo andv € M(X}, v € M(Y) be non-negative.
Suppose that there ezist non- negﬂ.iwe mesurable functions ug, vo, u1,v1 such that
v =ug PP o I u = uyu, -?ld K (g )og ! L'(u) (with L (u} norm equal
io Co} and f\’*(‘uxl)vI e L7(v? "'P) (with L™(»~% {7} norm equal to Cy ), where

L= i - %. Then, K is a bounded aperalor from LP(X v} to LI(Y,u} with

norm less than or equal 1o Co ™ /9 C7 r,

For the cases ¢ = 1 or p = co, which are not covered by the above theorems,
we have the following satisfactory result:
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Theorem 5. (4] If 1 < p £ 00, a necessary and sufficient condition for K
to be bounded from LP{X v} to LYY, u) with norm || K| is

I [_, e, e ()48l 1 xomrirey < UK

(B) If 1 < ¢ £ o0, & necessary and sufficient condition for K to be bounded
from L(X,v) to LU(Y,u} with norm || K| is

I/, e @l < K
In this theorem L™(X,v) = {f € M(X): | fo|le < oo}

Examples of operators to which these theorems can be applied are the fol-
lowing: the Hardy operator

Tf{z) = / flydy x>0,
)
and its dual

Tfe) = [ fds e >0

the fractional integral operator

(af)e)= [ fa=nlyl*"dy, ceR"0<a<n

which is self-adjoint; the Riemann-Liouville operator

1 I
@0 =5 |, s

the Laplace transform

dy, z20a20;

Liw) = [ T e i) dy

and the multidimensional Hardy operator

FS 1 In
T,.f(zl,...,xn)=] / Frsee s ya ) - dya.
[\] 1]

The proofs of theorems 1 to § will be given in section 2. Applications will be
given in section 3. These are concerned with weighted inequalities for some of
the above operators.

1 would like to thank B. Jawerth for calling my attention to (1], which turned
out to be the starting point of this research.
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2. Proofs of Theorems 1 o §

To prove theorem 1 we need the following lemma which can be found in [1].

Lemma 2.1. Let B be c Banach space and P a convez cone in B, By
calling this cone "positive”, B will be taken as an ordered Benach space. Let us
suppose for B and P that every bounded increasing sequence in P converges,
more precisely:

{fﬂ}cprfrl-i-l'“‘fneps"frt"SM<m:>fn_}f€P

Let § be o transformation defined in B such that S(P) C P, 5 is nondecreasing
(that is, f.g,6—f € P = Sg— Sf € P), § is continuous and il <1=>
IS£l € Ca < 0.

Then there exists o € P, a #90, |lafl €1 such that
20(}0,' — SCY = P

To prove theorem 1 we take B = LP(X), P suchthat f € P & f(z) > Ja.e.

and
-1/p afq’ #'lp 2
r ((T(ﬁﬁ'u; ) ’ ﬂ v

and apply lemma 2.1. Observe that the boundedness of T and T* implies

S(f)=

1S Fllzscxy < NP PNANG 57

so that [|f]l <1 = SF)l < JIT7)P'/?. Hence there exists @ £ 0, & 2 0, a €
LP(X) with norm less than or equal to 1 and S(a) < 2|77 '/Pe, The proof of
theorem 1 is finished by taking

ue = v 7, vy = T{(ua)/|Tl|, wi = (T{(ua)/{TI)? u

L
and v = u’;’p v.

Theorems 2 and 3 will be established once we prove the sufficiency of the
conditions, since the necessity follows 1mmed1a,tely from theorem 1. To prove
theorem 2 take f € LP(X v}, ¢ E LY {Y,u™% J"5') and use Holder’s inequality

with r, p and ¢/, where 1 = ;1;- - L to obtain
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(2.2)

UX /Y e y)f(m)g(y)dzdy| . (j;c /y k(z, y)ul(y)uo(:c)d:cdy) v

.([xLk‘(:r,y)u:(y)ﬂo(x)-ﬁp'|f($)|dedy)lip

- ( [ [ v y)uo(r)m(y)—q”ﬂg(yw'dxdy)w.

Using K*{uy) < Cyvy and |luewsllzyxy < 1 the first factor on the right hand
side of the above inequality is bounded by C]”r. Using K*(u,) £ Cyv, and
v =1y 57/ v, we deduce that the second factor is bounded by C} !p"f"Lp(X,v).

—a/q

Finally, usmg K{up) < Covg and u = v, *'* uy the third factor can be majo-

rated by C(i ||g||“ (v.u-v'/q) Dutting these estimates together we obtain

| [ [ anr@isteideds] < 6 Nl v

From here the desired result follows.

The same argument applies for p = ¢, that is for theoremn 3, except that

in this case £ = 1 — % = 0, and hence the first factor on the right hand

side of {2.2) does not appear. Thus theorem 3 does not require the condition
[ovnllzrexy < 1.

To prove theorem 4 let f € LP(X,v)and g € LY(Y,u"7/9). From 1= %—i
we deduce % + i = % so that we can apply Holder's inequality with indices

p/r’ and ¢ /r' to obtain

| [ Kewr@ate|
/e

< ([, | ewratu(a =/ 15@p! dsay
‘ ( /X L Kz, y)uo(z)ul(y)—q'/p|g(y)|q';r*dmy> e ().(IT).

Using Holder’s inequality with index r, together with v = uﬂ_p/p’vf /%" and
E*(us)oy* € L"{(v™P /) we obtain

'frp

(n< (f (K *uy )] o] " (z)v W(z)dx)
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! " o 1/p
. (/ |F(2)Poalz) o(z P P ug(z) P71 dz)
X

oyl ( /. If(w)lpv(x)dx)w ‘

Using again Holder’s inequality with the same index, fogether with u =

u;vo_p’!q, and K{ug)vg_l € L'{u) we obtain
v frg’
(11 < [ UeCualal” sotu) " utoe
, ., , , ifq'
' ([ lo()? wa(y) ™0 Poo{y) w(y) ™ "rdy>
¥

e o arg )
=G (/ lgCu)l® uly) ™ ""dy) :
¥

The desired result follows by putiing these two estimates together. This
finishes the proof of theorem 4.

We now prove theorem 5 .

{A) Sufficiency . For f € L?{X,v} and g € L™(Y,u™") we have

| [ | e ni@aist| < e [ [ He il

' 1/p
F
suguéww,u-x){ ] (/ k(z,y)u(y}dy) v(m)'-"fpd.r}
X Y
1fp
{/X lf(x)l”v(r)dr} < lgllzoogv.a- oy 1K || Al o x,)-

Necessity . The boundedness of K implies

S NEM AN zrex ey ligllocrumy

/x [,f k(z,y)f(z)g(y)dydz

for all f € LP{X, v}, ¢ € L=(Y,u'). With g = u we obtain

Ux He) (fy k(r'y)u(y)dy) de

for all f € LP(X,v). Thus the result follows.
(B} The proof is analogous.

S UK Az x,00
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3. Applications

Consider the integral transformations

G EN@= [ e e = [ Hunwiy

defined on the real line, where &{x,y) is a nonnegative measurable function
defined on A = {{z,y} € R? : y < z}. Given two non-negative measurable
functions u and v defined on the real line, we write (u,v) € W(K,p,q}, 1 <
g<p<ooif

oo oo ifg ¥ , ifg r , 1r
{ / [(/ Heputa)de) ([ ko ale) ) ] o(y)? fpdy}
—oo v -
< fod
and (u,v) € Wo{H,p, g}, 1 <¢<p<if
(3.3) By =
oo co i/p ¥ , 1’17 r
f (/ k(zy)u(r)dz) U Ky, 2)o(z) f?dz) w(y)dy
oo ¥ -0
< oo
where % = % - -;;‘ Observe that in the limiting case p = ¢, {3.2) and (3.3)
become

(3.4) B =sup (/:o k(z,y)u{x)da:) v (f_y k(y, z)v(z)hp,”pdz) 7 < 400

y>0 oo

Proposition 3.1, Let K be the iniegral transformation defined by (3.1},
where k(x,y) > 0 45 nondecreasing tn y and nonincreasing in 2. If {u,v) €
Wi(K,p,q),1<¢<Sp<oo,j=12 then

([snomen) " <o ([~ wopaw)”
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where C < (qB;)‘”’/P(p’Bg)"r"‘*".

Proof; Since 1 > y implies k(z,1) > k(z,y} the norm of the function

wly) = : '
(/:o k(t,v) ([Q :’c(z,t)u(x)dx) e u(t)a’.i) (/_‘; k(y,z)v(z)_”“{”dzjh

in L’"(U_P,h’) is bounded by the norm of the function

Hy) =
e oa -1/d v , 1/q'
[ ren ([ renterie) o) ([ ki)
¥ t — oo
in the same space. Integrating by parts we obtain
"‘P”L"{v-ﬂ'!p} < ¢B.

Taking

uy(t) = (/tw k(z,t)u(x)dr) e w(d),

ww = ([ o, z)v(z)“?’“’dz)_w

the above inequality can be written as K*(u1)v;’ € L™(v="'/P} with norm not

exceeding ¢,
Since ¢ < y implies &{t, ) 2 k(y, z), the norm of the function

#ly) =

in L(u)} is bounded by the norm of the function

8y) =
(/:ok(x, y)u(x)dx) ”‘”/‘y k(y, tyo(t) PP (/_;k{% z)v(z)_p,’,pd% —1/p 9

— o0
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in the same space. Integrating by parts we obtain

l8llzrquy € 7' Bs.

Taking

wi = k(y.z}v(zrp’“’dz)_”p o),

vo(t) = U,m Kz, t)u(x)dx) o

the above inequality can be written as K(ug)uy ' € L"(u) with norm not ex-
ceeding p' By, The proof of proposition 3.1 is finished by applying theorem 4 if
g < pand theorem3ifg=p. B

Remarks, 1. For the case ¢ = 1, (u,v} € Wi{K,p,1) is an equivalent
condition for the boundedness of the operator K defined by (3.1) from L?( X, v)
to L!(Y,u). This follows from part {A) of theorem 5.

2. For the case p = oo, {u,v} € Wy{H,o0,q) is an equivalent condition for
the boundedness of K from L*{X,v) to LYY, u). This follows from part (B)
of theorem 5.

3. A result similar to proposition 3.1. can be obtained for K*. Details are
left to the interested reader.

4. The operators defined by (3.1) have been studied in [2]; the conditions
imposed on the weights v and v o obtain weighted inequalities for K are
different from those used here.

For the particular case of the Hardy operator T'f(z) = f: fy)dy, W (T, p,q)
becomes

1fr

(35) By = { I [( I u)‘” ( /)’]Ud} < too,

WlT, p,q) becomes

s o= {7 [()" ([

and when p = g we have

so y Hp v, U
{(3.7) B =sup (/ u) (] v ? h’) < +00.
y>0 ¥ 0

In this case we shall show that the condition Wp(T,p, ¢) is implied by W,
(T,p,4) and that this condition is also necessary for the boundedness of T

r

ifr
u(y)dy} < 400,
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Proposition 3.2, Let 1 < ¢ < p < oo, A necessary and sufficient con-
dition for the Hardy operator Tf{z) = f; F{y)dy i be bounded from LP{v)
to LI(u) with norm C is (u,v) € Wi(T,p,q). Moreover 2P/t R < O <
2m/re By (p' )/ g

Proof: Sufficiency. Reducing the interval of integration and using the con-
ditien W (T, p, q} we deduce

b () ) e

for all z € (G, 00). Integrating by parts in (3.5) and using (3.8) we obtain

1 o0 riq ] vfp' &
Bl = P_ [ f U—p’,!p +
1 " y 5

5}

' o0 oo N T/P y , r/p’ '
Z / (/ u) (/ v P h’) uly)dy > —B] + p—B;.
4 Jo ] 0 q

Hence B < 2B7Z and the result now follows from proposition 3.1
2 i3

Necessity, Since we are assuming that T is bounded from LP{v) to L¥(u),
we can apply theorem 1 to find ug, ve, vy, vy satisfying

(3.9) fluowsf{pr <1

and

v = %—Pf?'vl, U= uo_q‘(q,m y T{ug) € Cug, T"(uy) & 2"'"”’001.

Therefore

oo o , rfq ¥ . r!q’ .
BY = f U wa(#)~4/9 u,(t)dt) U ug{t)oy ()77 h’di) v{y) " P dy.
0 ¥ O
From Tue < Cug and T*(u;) < 2°/7 Cvy we deduce that B] is bounded by
, . o0 v —-rid 0 v/q
orfe ore' fe / (] uu) (/ u;)
G 1] ¥
oo —rp'fpg v /e ,
( / ) ( / uo) wo(y)or ()" Py
] L]
< 2rfp’cr-—l {/ (/ u;) ua(y)dy}
Y ¥

< 2(‘”"'?””'0"/ vi{y)uo(y)dy < or+nMir or
0
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where the last ineguality is due to {3.9). This finishes the proof of proposition
32. =

Remarks. 1. The limiting cases ¢ = 1 and p = oo of proposition 3.2 are
also true; they can be deduced directly from theorem 5.

2. There is a similar result for the dual of the Hardy operator, T f{z) =
f:o f(y)dz; details are left for the interested reader,

3. Proposition 3.2 can be found in [§] for the case p = g and in [5] for ¢ < p.
We feel that our proof is easier than that given In [5], page 45.

To end this scction we use theorems 2 and 3 to find particular weights for
the Laplace transform L and the Riemann-Liouville operator T, @ > G.

Corollary 3.3. Letl < p< oo end a > —1. Then

{[” KU)(E)W‘{I}W =C {fom If(z}l”z‘”?—zdf}w

and C < T(B + 1)1/P' (a - BE+2 —pY? forall -1 < B < %a + %’ -1,

Proof: Since a » —1 we can choose 3 such that -1 < 4 < f;;a + % — 1. Let
ug{z} = z# and vi{z) = T HPTHAS oo that uo_p‘;p,v; = z7°tP-2  We have
(Lup)(z) = D(B + 1)/, Let vo(z) = z~¥* and u(z) = 2 ¥ 50
that vo_p}p’ul = z° Moreover {Lu; }(z) =T{e—(B+ 1) + 1}/xﬂ_{’3+”f’+l =
I{a = {8 +1)% + 1)vi(z). Hence the result follows by theorem 3. W

Corollary 3.4. Leta > 0,1 <p< oo andb<p—1. Then

([Cimararst-ma} <o { [Ciersn)”

and C < Ble, f+1)/7 B(a, hb—}%ﬁ)”ﬂ"(a)_l forell -1 < g <« —%b, where
B is the beta function, B(s,r) = fﬁl(l —zy a7 ids

Proof: Since b < p—1 we can choose § so that —1 < 8 < —%b. Let wo(z) =

z? and vy {z) = =95 s that w; PPy = 28 A simple calculation shows

(Twug)(z) = 2° M B(a, f+1}/T{a). Let vp(z) = z9+8 and uy = 2P+ o+

b

so that v™P/Pyy = 25~P_ Again a caleulation shows

(Truy)(z) = e 7P Bla, - — I%,@)/1‘({}) = v,(z)B(a, —B — 5;,8)/1“(0),

The result follows from theorem 3. W
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Corollary 3.5. Let 1 < ¢ < p < co and lei a be such that (¢/p) — (g/¢') <
e<1—{(gfg)(fqg= 1,% <a<1). Then

([ escmeae)™ s (e rera)”

Proof: Suppose 1 < ¢ < p < 00, Choose A so that ﬁ(-},—-q‘f;) = a+f,— —1. The

1

conditions on a imply w% < B < 0. Let up{z) = z%({1+2%)7" and vy{z) = 7
so that u[;p/p‘vl = (1 + z%)P~1. Observe that

oo [vv]
f Upyy = f x‘sp(l + xz)_ldm < 00
0 0

since 8p+ 1 >0and fp—1< 0. Now .

(cus@ = [y [T et = g 4,
o o

Let vo(z) = 277! and uy(2) = a *TFHIF oo that ve_q{q‘ul =z~ *. More-
over {Lu;}{z) = vj{m)l"(—ﬁi}). The result follows by applying theorem 2.

The case ¢ = 1 follows from part {A) of theorem 5. B

Corollary 3.6, Let 1 < g < p < oo and lel a be such thei -1 + f; —ag <
a < —aq where o > 0. Then

([ mspreas) " <o (([Tisepea) oo

Proof: Suppose 1 < ¢ < p < oo. Choose § such that ,8(;’7 - ;;7) = a + ga.
The conditions on ¢ imply —% < B < 0. Let up{z) = ePe’> 7" and vy{z) = 2P

_ '
so that ug vle vy = e*?, Observe that

o o0 L.p
f Ugty = f 2PBey Ty = CT{pf +1) < oo
0 o
smee pf 4+ 1 > 0. Now

1 TR L 1 z 8
(Tee) = 1755 || G S 7y |, G
=zt Bla, f + 1)/T(a).

Let vo(z) = z7** and u;(z) = 22t T o that va_q‘(q'ul = r®*. Moreover
(Tow )(z) = vi(z)B{a, —a — Z(f + a) — @)/T(a) and the results {ollow from
theorem 2.

The case g = 1 follows from part A of theorem 5. B
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