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Abstract—Botnets are one of the most dangerous and serious
cybersecurity threats since they are a major vector of large-scale
attack campaigns such as phishing, distributed denial-of-service
(DDoS) attacks, trojans, spams, etc. A large body of research
has been accomplished on botnet detection, but recent security
incidents show that there are still several challenges remaining to
be addressed, such as the ability to develop detectors which can
cope with new types of botnets. In this paper, we propose BotGM,
a new approach to detect botnet activities based on behavioral
analysis of network traffic flow. BotGM identifies network traffic
behavior using graph-based mining techniques to detect botnets
behaviors and model the dependencies among flows to trace-
back the root causes then. We applied BotGM on a publicly
available large dataset of Botnet network flows, where it detects
various botnet behaviors with a high accuracy without any prior
knowledge of them.

I. INTRODUCTION

Botnet detection and tracking has been a major research
topic in the last decade in the area of network security with
numerous surveys revealing the large range of techniques to
track and mitigate them [1], [2]. The evolving of botnets,
and the inability of traditional protection mechanisms to stop
them, has led security researchers and practitioners to de-
velop behavior-based techniques [3]-[6]. Unlike statistical or
signature-based techniques [7], [8] used for years to detect the
presence of known bots, behavior-based techniques observe
the actions of potential bots and attempt to match them against
pre-defined specifications of bots’ behaviors, or try to assess
how they differ from the normal behavior exhibited by other
hosts. However, the continuously apparition of new botnet
propagation and command-and-control (C&C) mechanisms
shows the limitation of those detection techniques, which
cannot cope with unknown and more and more complex
behaviors.

Rather than analyzing individual host behavior, our ap-
proach, named BotGM, considers multiple host behaviors to
represent dependencies among their flows which can be then
traced back in a comprehensive manner to investigate root
causes of the detected abnormal behaviors.

Our method relies on NetFlow because it is widely used in
security and monitoring of computer networks [9], [10]. On
one hand, it is considered privacy-preserving and scalable due
to the little information which has to be collected and stored

in comparison with full-packet capture. On the other hand,
a single flow information is rather limited, only providing
protocol, source and destination IP addresses, source and des-
tination ports, number of packets, number of bytes, timestamp
and duration. In order to work with this limited information,
we used a specific modeling method to reveal meaningful
knowledge, especially by merging multiple flow records in
a unique representation. We propose a new graph-based be-
havioral model which represents causal relations among flows
by automatically extracting frequent time-dependent relations
among similar ones. Using this model, efficient detection
is applied to extract malicious activities, especially those
exhibited by botnets. Instead of simply raising alerts, BorGM
identifies particular graphs whose the structure also eases the
root cause analysis.

This paper has the following major contributions:

1) We develop a graph-based models of NetFlow records
which, instead of focusing on spotting interactions
among hosts, focuses on modeling dependencies among
flows. The generic model can be finely tuned.

2) We apply an unsupervised graph mining approach to
track botnets with the ability to trace root causes.
Hence, no a-priori knowledge is assumed about botnet
communication models.

3) We instantiate and evaluate our method on a recent
dataset and assess its ability to detect individually in-
fected hosts as well as groups of them. We rely on
outlier detection and clustering techniques based off our
models. We also discuss the impact of model parameter
settings.

4) We compare our method detection accuracy with exist-
ing botnet detection techniques.

The rest of the paper is organized as follows. Section II
reviews and discusses related works. We detail our mining
approach in Section III. We then present the experimental
results on real botnet datasets in Section IV. Section V
concludes and gives some future research directions.

II. RELATED WORK

Unlike our method which relies on modeling dependencies
among flows, statistical analysis or machine learning algo-
rithms have been mainly applied on features available in flow



records or aggregated properties over a set of flows (duration,
number of packets, number of flow records towards each
destination, etc.). For example, in [5], the authors combined
Particle Swarm Optimization (PSO) and K-means algorithms
for botnet detection. In [11], the authors classified network
traffic properties based on time intervals using a decision tree
classifier. They mainly used as features the properties of a
flow in a given time window to evaluate how it evolves in
time. CAMNEP [12] combines results from several anomaly
detectors from state-of-the-art in order to improve accuracy. In
the same work, rather than focusing on the analysis of single
flow records, BClus first groups hosts based on their behavioral
similarity.

Although our approach does not consider any particular type
of botnet related traffic, the analysis of a specific traffic such
as DNS activity has been investigated in several works. In
particular by detecting co-occurrence of DNS requests from
numerous hosts [13], by tracking algorithmically generated
domain names [14] or by using signal processing techniques
over a large-scale and distributed dataset [15] for example.
Botnets can be also detected by correlating other types of
attacks (spam, denial-of-service, etc.) which can have been
triggered from infected hosts as highlighted in BotHunter [16].
In [3], the authors employed fuzzy pattern recognition and
combined DNS and TCP flow analysis by considering packet
counts and packet sizes

Graph-based methods have been used in many papers either
to model connectivity among hosts in the network [9], [17],
among flows [18], [19] or services [20], [21]. In [22], the
authors proposed a two steps approach which first detects po-
tential malicious traffic flows with methods mentioned before
and then correlate those ones in order to build a graph whose
topology is finally analyzed. In [23], the authors proposed
malware classification method based on maximal common
subgraph detection. Their behavioral graph is obtained by
collecting system call traces. However, their approach differs
from ours since we are focusing on the analysis of pas-
sively collected network flows. Recentlyy, HERCULE [24]
models heterogeneous log entries as vertices in the graph
and generates connections based on defined correlation rules.
The authors then applied graph analytics techniques to detect
attack communities inside these graphs. Similarly, the authors
in [25], mine network log data (e.g., syslog). They reconstruct
causality of network events from a set of the time series of
events and extract causal relations beyond co-occurrences in
log messages in order to identify important network events
and their causes.

Our approach BotGM 1is a passive traffic analysis method
modeling dependencies among flows as graphs. It differs from
aforementioned approaches because we do not focus on a
particular type of traffic such as DNS and we do not assume
any knowledge about bot behaviors, the detection of botnet-
related attacks or dependency rules among flows. In addition,
we built a database of graphs to be compared, instead of
a single mined graph, which allows to identify a sequence
of flows as abnormal and the root causes of the anomaly.

Our work is close to [26] which consider sequences of flows
to track botnets. In contrast, our method does not rely on
the assumption that a periodic behavior in the botnet exists.
Similarly, our work is close to [27] and [28], where statistical
relationships between flows are leveraged to obtain variants of
automata as fingerprints. Hence our approach, not relying on
periodicity or statistics of individual flow sequences, is more
generic.

III. SYSTEM DESIGN
A. Overview

Our goal is to establish probable causal relationships among
flow records which can be compared to track abnormal activ-
ities and their root causes. As a preliminary step, flow records
are divided into time windows. The size of time window is
controlled through a parameter w.

Then, the process consists of six components as illustrated
in Figure 1.

1) Event extraction. To build causal models, NetFlow
records are considered as events. Each individual flow
is transformed into an attribute-based event where each
attribute is directly derived from standard NetFlow fea-
tures such as IP addresses or ports. In addition, selected
attributes are divided in two categories: keys and values.
Fixing a key, values are then used for building a graph-
based fingerprint in the next processing steps. In the
example of Figure 1, keys are the source and destination
IP addresses while respective ports are the values.

2) Sequence extraction. Sets of sequences of states from
events are extracted to model the full behavior of
hosts. Events sharing the same key, such as source and
destination IP address, are used for building individual
sequences whose states are represented by the value
attributes. In Figure 1, sequences of pairs of source and
destination ports are built for each key (the couple source
and destination IP address).

3) Graph construction. This step allows us to construct a
graph from each sequence. This reduces the behavioral
representation from a long sequence to a graph that
aggregates redundant patterns while still keeping all
existing interactions. It is a primordial step for scala-
bility. As shown in Figure 1, the first sequence has been
reduced to three vertices.

4) Outlier detection. Through pair-wise comparisons
among graphs, the outliers are extracted. It is thus pos-
sible to track back to the associated keys. For example
in Figure 1, the couple of source and destination IP
addresses (147.32.84.138, 147.32.80.9) rep-
resents the outlier graph G;. As a result, the commu-
nication flows between these hosts are considered as
abnormal and e.g labeled as botnet communication.

B. Event extraction

Let F' = fo,...,fn be a set of flows where each f;
is described by a set of attributes as illustrated in Table I.
Each flow will be transformed into an event assuming a set



Flow Records

Timestamp,duration,proto,Sip,Sport,Dip,Dport,ToS, TotPkts, TotBytes
11:09:44,0.422243,udp,147.32.84.165,1025,147.32.80.9,53,2,182,71
11:09:49,0.201243,udp,147.32.84.165,1291,147.32.80.9,53,2,553,78
11:09:49,0.000185,udp,147.32.84.138,51724,147.32.80.9,53,2,214,81

11:09:49,0.000223,udp,147.32.84.138,51757,147.32.80.9,53,2,214,81
11:09:51,0.336250,udp,147.32.84.165,1025,147.32.80.9,53,2,215,71
11:10:38,0.131772,udp,147.32.84.165,1025,147.32.80.9,5634,2,283,71

11:09:49,30.08,udp,86.144.192.16,12365,147.32.84.229,13363,8,542,302

Key (sip,dip) Value (sport,dport)

(1) Event |e,={ 147.32.84.165,147.32.80.9} { 1025, 53 }
Extraction |e:={ 147.32.84.165 , 147.32.80.9 }  { 1291, 53 }
le,={ 147.32.84.138, 147.32.80.9 } {51724, 53 }

e,={ 86.144.192.16 , 147.32.84.229 } { 12365, 13363 }
e,={ 147.32.84.138 ,147.32.80.9 } {51757, 53 }
e.={ 147.32.84.165, 147.32.80.9} { 1025,53 }
es={ 147.32.84.165 , 147.32.80.9 } { 1025, 5634 }

Sequence database

(2) Sequence
Extraction

Key
S0(147.32.84.165, 147.32.80.9)

Sequence
(1025,53)»(1291,53)»(1025,53)»(1025,5634)

S1(147.32.84.138, 147.32.80.9)

(51724,53)»(51757,53)

S2(86.144.192.16, 147.32.84.229)

(12365,13363)

(3) Graph
Construction

Graph database

Key

(147.32.84.165, 147.32.80.9)

:
Gy (51724,53D—»(51757,53)

(147.32.84.138, 147.32.80.9)

(86.144.192.16, 147.32.84.229)

(4) Graph , Go G Gz (5) Outlier
Comparison . % %  Detection
1 6'70 G,
Y o

Fig. 1: Processing steps of NetFlow records in BortGM.

[ NetFlow attribute | Description |
ts Timestamp
dur Flow duration
proto Protocol
sip Source IP Address
sport Source Port
dip Destination IP Address
dport Destination Port
tos Type of Service
totpkts Number of packets
totbytes Amount of bytes

TABLE I: NetFlow attributes.

of selected attributes (keys and values as introduced in the
previous section). Let Att be the set of flow attributes. We
define:

o K C Att a set of attributes to be used as keys,
e V C Att a set of attributes to be used as values.

Regarding Table I, f; is defined as follows:

fi = {tsi, dur;, proto;, sip;, sport;, dip;, dport;, tos;, totpkts;,
totbytes; }

Such a representation can be extended depending on the data
sources.

Definition For each f;, the event e; is defined as e; =
(ts;, ki, v;) consists of a the same timestamp ts; of the flow
fi and a compound key k; and value v; composed respectively
from the set of attributes K and V' of the same flow f;.

As an example, having the flow:

fo=1{11:09:44,0.42, udp, 147.32.84.165, 1025,
147.32.80.9,53, 2,182, 71}

With K={sip,dip} and V={sport,dport}, We extract an
event eqg as follows:

{11:09 : 44, {147.32.84.165, 147.32.80.9}, {1025, 53} }

C. Sequence extraction

After the extraction of events, dependencies among events
are built based on keys and timestamps to identify successive
events which are part of a some global action (e.g. an attacker
performing multiple steps of an attack). To transform the set
of events into sequences, events are first grouped using shared
key attributes. For example, all events (i.e. flows) with same
source and destination IP addresses are merged into a single
sequence as previously illustrated in Figure 1. This sequence



representation allows to characterize the order of events of a
specific IP address connecting to a destination IP address.

Definition Assuming E = {eq,...,e_n} the set of events of
the considered time windows, a unique sequence S; is built

for each unique k;, k; € |J k; such that S; = [09,...,v"]
e;€EE
where:

skeF
V(et:vf ESi,euzvf € Sk = ky (1
V(er = vf € S, e, = vé € Si, k <ltsy < tsy

The first condition guarantees that a sequence is built from
extracted events. The second one guarantees that all events
of a sequence shared the same key and the last one ensure
that they are ordered by time using their respective timestamp
attribute t¢s. It is worth mentioning that events sharing both
keys and values will appear individually in the sequence.

D. Construction of behavioral graphs

A behavioral graph is constructed from a sequence S;, i.e.
originally extracted from flow records sharing the same user-
defined keys k, that occur in a given time window.

It is a directed graph that represents successive relationships
between events of an event sequence. Therefore, each unique
element of a sequence appears once while it can be observed
multiple times in the sequence. Thus, a cycle in the graph
indicates successive repetitive events.

Definition Assuming a given sequence S; = [v),...,v"], a
behavioral graph over a set of event values V is a labeled
directed graph G = (Vg, Eq):

o The vertex V(¢ is the set of vertex of unique events in the

sequence S; sharing the same values
_ .k
V= Yi {i:l...rn} (2)

« The edges F¢ are derived from dependency rules. Let v}
and v}’ two vertices of G, an edge exists, i.e, (v}, v}) €
FE, if and only if those events appear consecutively at

least once in S;:

JoF e S, e S k+1=1 (3)

By compressing sequence information, behavioral graphs
ease interpretation of long sequences of events. Intuitively,
considering a particular time window and K (as an example
source IP address), an edge between two vertices assumes a
causal dependency and a path between two nodes represents a
causal path among events where each of them is representative
of similar events (same values but at different time). Since the
flows of an host or an application can be intertwined, our built
causal dependency may seem unadapted. However, a good
tuning of the key K to be used allows to reduce the flows
used when building such relations and so limit this effect. In
addition, BotGM leverages a graph structural analysis based on

the edit distance (detailed in the next section) which actually
helps to reduce the impact of noise, i.e. incorrect dependencies.

E. Graph analysis

BotGM constructs and maintains a behavioral graph for each
unique keys (e.g. source and destination IP addresses in the
previous example). The challenge is to mine the graphs in each
time period in order to detect, find and quantify suspicious
behavior which deviated to another behavior.

1) Graph edit distance: Graph edit distance (GED) is
a flexible fault-tolerant similarity measure for graphs. The
fault-tolerant similarity means that the measure accounts for
noise, i.e. structural deformations. Exact approaches (subgraph
isomorphism) may not be adopted. The edit distance between
two graphs g; go is defined by the minimum set of edit
operations that are necessary to transform the graph g, into g,
using elementary edit operations [29], [30]. An edit operation
is either an insertion or deletion for both vertices and edges
as well as a relabelling of a vertex. A cost function ¢(o;)
associates a cost to each edit operation o; and the edit distance
between two graphs g; and g5 is then the minimum cost related
to the set of operations that transform g; into go.

n

) > (o) (4)

i=1

d(g1,92) = min
(01,..-,01)€7(91,92
where (g1, g2) is the set of edit operations that transform g,
into g2. In our case, without prior knowledge, each has a cost
of one, c(0;) =1

E. Outlier detection

We analyzed the pair-wise distances between the con-
structed graphs by means of a statistical outlier detection
technique. Let O denote all the average distances between a
given graph and all others. Assuming R, a set of all graph at a
particular time,the value of the average distance of the graph
gi; € Ris as follows:

ZngR,gjigi (i, 95)

Or = R[— 1

&)

A well used and simple statistical technique for outlier
detection is the inter-quartile method [31]. First the quartiles
of O are computed, 1, Q2 (median) and Q5.

Definition Assuming the average distance distribution O com-
puted at a given time t, a graph g; is related to a botnet activity
if O; > Qs+ axIQR

Usually, we set e = 1.5 but fine tuning of this parameter is ad-
dressed in section I'V. As a result, the outlier behavioral graphs
are thus considered as the abnormal behavioral graphs. They
show the infrequent and the uncommon behaviors of flows
belonging to the same keys (such as source and destination IP
addresses) in comparison with others.



IV. EXPERIMENTAL RESULTS
A. Dataset

We used the publicly available CTU-13 dataset of different
botnet families [12]. The NetFlow records include both normal
flows, C&C communication and attack traffic such as spam
or DDoS. The dataset contains 13 separate scenarios whose
general characteristics are described in Table II.

ID #flows Duration | #Bots | #Bot flows #unique
(hours) IP addresses
1 2,824,637 6.15 1 41,270 607,534
2 1,808,123 4.21 1 21,022 442,448
3 | 4,710,639 66.85 1 32,031 434,947
4 1,121,077 4.21 1 3,350 186,229
5 129,833 11.63 1 912 41,642
6 558,920 2.18 1 4,714 107,325
7 114,078 0.38 1 67 38,192
8 | 2,954,231 19.5 1 6,506 383,764
9 | 2,087,509 5.18 10 185,716 367,239
10 | 1,309,792 4.75 10 113,737 197,806
11 107,252 0.26 3 8,865 41,910
12 325,472 1.21 3 6,391 94,419
13 | 1,925,150 16.36 1 40,362 315,749

TABLE II: Datasets overview.

B. Parameter settings

Our proposed framework depends on three main parameters
which will vary over the next experiments in order to evaluate
the accuracy, the robustness and runtime performance of our
approach under their variations:

o w: The size of the time window is an essential parameter.
When it increases, sequences will be longer, emphasizing
the importance of transforming the latter in a reduced
representation, i.e. behavioral graphs. In our reported
experiments, this parameter ranges between 1, 5, 10, and
20 seconds.

o K: The set of flow record attributes defined as key guides
how to build behavioral graphs. Source and destination
IP addresses have been widely used in the intrusion
detection domain as being usually representative of the
attackers and the victims. For botnet detection [32], [33],
the primary value comes from the possibility to quantify
the number of distinct connections. In this paper, we
consider two cases. First, the global behavior of an
host can be investigated by only using the source IP
address (sip). Second, a more fine-grained approach will
assess the connection from one host to another one using
both source and destination IP address (dip). Finally, the
protocol (TCP, UDP), proto, is always used (event if
not mentioned) to avoid mixing TCP and UDP ports in
behavioral graphs.

e V: The set of flows record attributes defined as val-
ues to extract sequence and build graphs is primordial.
They represents attributes of the graph vertices. In this
work, we are particularly interested in dependencies of
services leveraged by the hosts. Hence, we propose to
use either both source (sport) and destination (dport)

ports, a single port, or the minimum value (minport =
man(sport, dport)). The rationale behind this second
choice is to potentially retrieve the most meaningful port
in most of cases, i.e. a reserved port for a well-known
and/or standard application.

C. Extracting abnormal behavioral graphs

Based on the example of dataset 13 (Virut botnet), this
section illustrates how an analyst can rely on outlier detection
and clustering to extract abnormal graphs. To perform this
extraction, we set K = (sip, dip, proto), V = (sport, dport),
and w = bs..
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Fig. 2: Outlier graphs marked with a dot in a set of selected
widows of size 5 seconds.

U

Figure 2 represents a box plot of outlier distances calculated
from Equation 5 in Section III-F with o = 1.5. In this figure,
dots represents the outliers. The figure represents a sample
of time windows (between 9 and 30) where the botnet is
active and have been identified over multiple time windows.
An expert can then analyze corresponding graphs and even sort
them regarding the distance of those outliers to prioritize his
analysis. Unlike using a fixed threshold, our outlier detection
method adapts dynamically the threshold, which is necessary
regarding the variation of the distance as depicted in Figure 2.

16459,36089 16459,24028 @ .

(a) Abnormal behavioral graph of the IP
147.32.84.165 targeting 123.126.51.33

botnet
scan)

address
(TCP

o
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(b) Abnormal behavioral graph of the bot 147.32.84.155 using UDP.

Fig. 3: Abnormal behavioral graphs of a bot performing a
vertical scan over TCP (a), and a bot DNS activity over UDP
(b).



As an illustrative example, Figure 3 highlights two outliers
which are true positive, i.e. represent botnet flows. In Fig-
ure 3(a) represents a bot performing a vertical scan on another
host, i.e. trying to discover open ports and therefore accessible
services. Although detecting such scans can be done using
dedicated and probably less complex methods, this shows the
generecity of our method to to be also applicable in this case.
At a first glance in Figure 3(b), the abnormal activity is not
so visible as it seems that a host is contacting DNS (e.g. to
request domain names). However, the same source ports are
re-used multiple times as highlighted by the loop in the graph,
which is highly improbable within a 5 seconds period. Hence,
the structure of the graph itself is discriminative in that case.

D. Automated detection of botnet

In one hand, the previous section shows the ability of
BotGM to extract abnormal graph candidates on specific
samples and show how an analyst can thus retrieve the graph
allowing her to analyze root cause. In the other hand, this
section is dedicated to assess how botnets can be automatically
detected. To achieve that, we employed the outlier method and
computed standard metrics (false positive rate, true positive
rate and accuracy).

However, it is worth to mention that the ground-truth is
composed of labeled NetFlow records while the output of our
method are supposedly abnormal graphs, potentially mixing
both normal and botnet flows. For labeling a graph, and for
validation purposes only, we have thus to traceback botnet
original flow records which have been used for sequence and
graph construction.

For a given time window, BotGM leads to the construction
of n graphs: {g1,...,gn}. For each g;, our method will assign
a class ¢; equal to 1 when the graph is an outlier (botnet) or
0 otherwise (benign). In addition, each g; is built based on an
original list of events created from flow records. If at least one
of them has been labeled as botnet in the original dataset, we
assign a label I; = 1, otherwise I; = 0. In fact, those labels
constitutes our ground-truth.

Relying on classes and labels, standard detection perfor-
mance metrics are computed:

o Accuracy:

_ Hgisei =l =1+ {gi,ci = ls = 0}
N

As highlighted by the formula, the accuracy indicates
within a single value the ability to classify properly the
graphs as normal or as benign. A bias may be however
introduced with unbalanced dataset similar to the one
we used. Indeed botnet is not the major activity that is
observed as highlighted in Table II and is representative
of the reality. That is why true and false positive rates
are important complementary metrics to consider.
e True Positive Rate (TPR):

{gi,ci = 1l; = 1}|
Hgi,li = 1}]

Ace

TPR =

o False Positive Rate (FPR):
{gi,ci = 1,1; = 0}
{gi,l;i = 0}

These metrics are computed per time window for all datasets
and then we compute their average.

FPR =

K=(sip, dip), V=(sport, dport) e
K=(sip, dip), V=(dport) = %=
K=(sip), V=(Min port)

f K=(sip), V=(sport, dport)
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Fig. 4: Detection performance of BotGM regarding (a) average
accuracy and (b) ROC curves measuring TPR against FPR.

Figure 4(a) shows how accuracy changes with varying
parameters: time window size (w) and attributes used to build
the graphs (K and V). When the time window is too small,
the captured activity is limited to a few sets of flow records
merging into a single graph which is not representative of the
activity of the IP addresses. For example, a botnet may open
multiple connections for C&C and attacks, but this may not be
observed at a very short time scale. However, even if observed,
the related activities can last for several seconds and longer,
partial representative behaviors can still be properly identified
by our method with an accuracy around 90% using five or
ten seconds. As an example, Acc = 0.923 when w = 10s,
K = (sip) and V = (sport,dport).

Differences can be noticed among the cases. On one hand,
using only the source IP addresses leads to better results. It
allows to represent 1-to-n interactions of a host which are
intuitively more significant to the behavior of a host or an
application in a today’s Internet. Actually, a bot usually opens
multiple connections to synchronize and perform malicious
activities. On the other hand, using both ports as values in



events is beneficial since they allow better characterization of
graphs.

We use a ROC (Receiver Operating Characteristic) curve
as depicted in Figure 4(b) to jointly evaluate the variation of
TPR and FPR according to the different configuration. The
results show that for false positive rate of less than 10%, the
detection rate is above 95% as the time window size increases.
Again, using both ports in values V' provides better results. As
highlighted in the plotted results, almost no false alarms are
raised while a TPR rate of 83% can be achieved in the best
cases.

E. Runtime evaluation

All experiments were conducted on a Intel(R) Xeon(R)
CPU E5-2420 v2 @ 2.20GHz with 62 GB main memory
running on Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-59-generic
x86_64). As depicted in Figure 5, the processing time logically
grows with increasing window width for two reasons. First, the
number of candidates keys (K) for constructing sequences and
graphs increases, leading to more pair-wise pattern matches.
Second, even if the graph representation avoids the drawback
of the expansion of dependency rules in the sequence, previ-
ously unseen values in values (V') create new vertices, thus
leading to larger graphs to analyze. Also, when selected keys
(K) or values (V) are more fine-grained, same phenomena
occurs with same consequences.

K=(sip, dip), V=(sport, dport) e
K=(sip, dip), V=(Min. port) = %=
K=(sip), V=(Min. port)

2 K=(sip), V=(sport, dport)
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b= 0.001

2 1 5 10 20

Window size w (Sec)

Fig. 5: Processing time in seconds for graph and sequence
construction while varying w. The y-axis is in log scale.

Assuming the particular cases of using the protocol and
IP addresses for keys, i.e. K = (proto, sip,dip), and both
ports as values, i.e. K = (sport,dport), or only destination
port as value, i.e. K = (dport), Figure 6(b) shows the
average number of graphs and vertices per graph in each time
window while varying the window size, w. It confirms the
two reasons mentioned above but highlights that the increase
of vertices in graphs is limited since set of values remains
stable when w > 5. Moreover, Figure 6(a) shows the number
of individual flow records (original data). In comparison with
Figure 6(b), our method greatly reduces the size of data
to handle for analysis and so helps to improve scalability.
Although the cost of preprocessing and comparing graphs has
to be considered, Figure 5 demonstrates that the processing

time is lower than the window size, w, when the latter is lower
than 10 seconds (w < 10). Assuming the best configuration
trade-off established in Section IV-D with w = 5, our approach
will be practicable to return results, and so raise alerts, in near
real-time.
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(a) Average number of flow records within a single time window
while varying window size (w).
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(b) Average number of graphs and vertices (per graph) within a
single time window while varying window size w.

Fig. 6: Volume of data while varying windows size w.

FE. Comparison with other detection methods

To evaluate our contribution better, we compared BotGM
with BClus, CAMNEP, and BotHunter described in Section II.
These algorithms are presented as the most promising ones
in [12]. The comparison is based on different dataset scenarios
(1, 2, 6, 8 and 9) whose the results have been reported in [12].

Scenario ID

1 2 6 8 9
BClus 0.5 0.5 0.4 0.3 0.4
CAMNEP 0.5 0.4 0.4 0.5 0.5
BotHunter 0.4 0.3 0.38 | 0.42 0.4
BotGM 0.95 | 0.89

Algorithm

TABLE III: Accuracy of different algorithms evaluated in [12]
and compared to BotGM.

As shown in Table III, the best accuracy among these
algorithms achieves 50% while ours achieves up to 95%.
For fairness, it is important to point out and emphasize that
BotGM classifies graphs rather than single flows like other
algorithms and, as explained in Section IV-D, a single graph
is considered as true positive while it have been inferred from



normal and botnet flows. Although fine-grained classification
(i.e. per individual flow record) is more prone to classification
errors (and so lower accuracy), results obtained with BotGM
are still very competitive.

V. CONCLUSION

This paper introduced BotGM, a new approach for tracking
botnet activities with passive network monitoring. It relies on
a behavioral graph modeling of NetFlow records. However,
rather than building a single massive graph being difficult to
analyze, BotGM creates a collection of smaller graphs for
comparison with each other and thus indirectly comparing
the behavior of end-hosts. The proposed approach combines
unsupervised techniques to detect outliers and to group similar
behaviors. Hence, in addition to detect botnet activity, BotGM
offers several advantages. Through our experiments, we illus-
trated how BotGM can raise alerts and extract relevant suspect
behavioral graphs. We compared our method with recently
proposed techniques on a public dataset and results underlined
its competitiveness and usability in a real-time manner.

Our future work consists in building signatures, a set of
single behavioral graph equivalent to a cluster of graphs, in
order to reduce the knowledge database. As a result, the time
complexity of BotGM will be reduced.
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