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ABSTRACT

In this paper, we address the problem of novelty detection, i.e recognizing at test
time if a data item comes from the training data distribution or not. We focus on
Adversarial autoencoders (AAE) that have the advantage to explicitly control the
distribution of the known data in the feature space. We show that when they are
trained in a (semi-)supervised way, they provide consistent novelty detection im-
provements compared to a classical autoencoder. We further improve their perfor-
mance by introducing an explicit rejection class in the prior distribution coupled
with random input images to the autoencoder.

1 INTRODUCTION

Supervised deep learning architectures have been successfully used in a wide range of object classifi-
cation tasks showing impressive results while discriminating between a lot different visual concepts.
However, as powerful as such models are, one issue is that they are optimized to predict from a
restricted set of categories. So that, if a new data item belonging to an unknown category comes
at the prediction phase, the model systematically predicts a known label with a possibly high con-
fidence. In a practical application, we rather would like to detect that the item does not belong to
any of the known classes so as to inform the user about this mismatch. This fundamental novelty
detection problem has received a lot of attention in the machine learning community (a comprehen-
sive review can for instance be found in (Pimentel et al., 2014)). Novelty detection methods can
be roughly classified into probabilistic approaches (parametric or nonparametric), distance-based
approaches (e.g. nearest neighbors-based or clustering-based), reconstruction-oriented approaches
(e.g. neural network-based or subspace-based) and domain-based approaches (e.g. one-class sup-
port vector machines). In this paper, we chose to investigate how unsupervised and semi-supervised
deep learning methods could help solving the novelty detection problem. Basically, such methods
(Hinton et al., 2006; Bengio & LeCun, 2007; Vincent et al., 2010; Rifai et al., 2011; Goodfellow
et al., 2014; Makhzani et al., 2015) aim at disentangling and capturing the explanatory factor of
variation of the data. This can be seen as modeling the data generating distribution/process. By
doing so, we expect the system to learn the manifold on which the training data lies and to gener-
alize on it. By extension, we expect that new data items belonging to unknown classes won’t be
well captured and that the generative model will fail to reconstruct them accurately. In this paper,
we focus in particular on Adversarial Autoencoders (AAE) (Makhzani et al., 2015) that have the
advantage to explicitly control the distribution of the known data in the feature space, so that it is
possible to quantify the likelihood that an image belongs to the manifold of the known training data.
We explore the use of both unsupervised and supervised prior distributions and we introduce a new
variant that explicitly models a rejection class in the latent space. Experiments on MNIST dataset
show that this variant provides better novelty detection performance than classical autoencoders and
adversarial autoencoders.

2 PROPOSED NOVELTY DETECTION METHODS

Baseline: reconstruction-based novelty detection through autoencoders: Using the reconstruc-
tion error of a generative model is a well known novelty detection method (Pimentel et al., 2014;
Thompson et al., 2002). The higher the reconstruction error of an item is, the farther from the man-
ifold of the known training data it is expected to be. As a baseline novelty detection method, we
thus suggest to use the reconstruction error of a (deep) autoencoder. The autoencoder we used in our
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experiment for evaluating this baseline is the one described in (Makhzani et al., 2015) with 3 fully
connected layers for both the encoder and decoder. The ReLU activation function is used for all
layers except for the last layer of the encoder that is linear and the last layer of the decoder that uses
a sigmoid activation function. The reconstruction error is the Euclidean distance between a sample
of the input space and its reconstruction and is directly used as the novelty detection criterion:

ρ1(x) = ||x− g(f(x))||22 (1)

where f(x) and g(x) are respectively the encoding and decoding function of the autoencoder.

Adversarial Autoencoders for Novelty Detection: An adversarial autoencoder (AAE) is a proba-
bilistic autoencoder that uses the recently proposed generative adversarial networks (GAN) to per-
form variational inference by matching the aggregated posterior of the hidden code vector of the
autoencoder with an arbitrary prior distribution (Makhzani et al., 2015). The decoder of the adver-
sarial autoencoder learns a deep generative model that maps the imposed prior to the data distribu-
tion. In this paper, we explore in what way AAEs might be useful for the novelty detection problem.
Therefore, we define a new novelty detection criterion based on the likelihood of a candidate sample
according to the imposed prior:

ρ2(x) = 1− p(f(x)) (2)

where p(z) is the imposed prior distribution, i.e. the higher p(f(x)) and the more likely x belongs
to the training data distribution. In our experiments, we focus on two prior distributions:

• Normal distribution: p(z) = N (0, I). This is the default distribution used in Makhzani
et al. (2015) to ensure that generating from any part of the prior space results in meaningful
samples.

• Gaussian mixture: p(z) =
∑

i p(z|Ci) with p(z|Ci) = N (µi,Σi). This is the prior dis-
tribution suggested in to handle supervision or semi-supervision. To ensure the mapping
between the labels of the training data items and the classes of the Gaussian mixture, it is
required to pass as input of the adversarial discriminator a one-hot vector coding the label
of z in addition to z itself. Complementary to this Supervised Gaussian mixture prior, in our
experiments, we also evaluated the case of an Unsupervised Gaussian mixture by removing
the label’s one-hot vector from the input of the adversarial discriminator. This allows us to
evaluate separately the benefit of the Gaussian mixture (over the normal distribution), and
the benefit of the supervision.

Adversarial Autoencoder with an explicit rejection class: It is important to notice that the like-
lihood p(f(x)) of an item x does not model the real probability that it belongs to the manifold of
the known data. Considering this likelihood as a probability is in fact a case of prosecutors fallacy
since p(f(x)) should be rather noticed p(f(x)|y(x) = 1) where y(x) is a binary function indicating
whether x belongs to one of the known classes or not. Then, what we would like to estimate is rather

ρ3(x) = p(y(x) = 0|f(x)) = p(f(x)|y(x) = 0).p(y = 0)

p(f(x)|y(x) = 1).p(y = 1) + p(f(x)|y(x) = 0).p(y = 0)
(3)

But since we don’t know anything about the conditional likelihood of the unknown data
p(f(x)|y(x) = 0) (and about the novelty rate p(y = 0)), we can not estimate that probability. To
try overcoming this issue, we propose to explicitly add a novelty class to the prior distribution
of the AAE. More precisely, we model the unknown data by a normal distribution at the center
of the latent space (i.e. p(f(x)|y(x = 0) = N (0, I)) and we still model the known data by a
mixture of non-centered Gaussian functions p(f(x)|y(x = 1) =

∑
i p(z|Ci). Then, we enforce the

autoencoder to map the unknown data space onto p(f(x)|y(x = 0) = N (0, I)) by adding to the
training set some random images and by passing the known/unknown label y(x) ∈ 0, 1 as input to
the discriminator as any other class label.

3 EXPERIMENTS

Protocol and settings: We evaluated the novelty detection methods described above on MNIST
handwritten digit dataset (LeCun et al., 1998) (10 classes, each with approximately 600 images for
training and validation and 100 images for testing). To fit with our novelty detection scenario, we
removed from the training set 3 of the 10 classes (the ’2’, ’5’ and ’7’ digits). We then computed
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our novelty detection criteria (ρ1, ρ2 and ρ3) on the entire test set and we measured the performance
through a Mean Average Precision (mAP). A mAP that is equal to 1 means that all the test images
of digits ’2’, ’5’ and ’7’ (unknown classes) have a higher ρ value than the images of the known
digits. All autoencoders have been trained through back-propagation using the Nesterov momemtum
solver (Sutskever et al., 2013) using a learning rate and a momentum parameter respectively set to
0.1 and 0.9. We iterated over 2000 epochs (without validation) using mini-batches of 128 images.
For the AAE, each epoch includes 3 steps: (i) reconstruction optimization phase, (ii) discriminator
optimization phase and (iii) generator optimization phase.

Results: Table 1 and Figures 1 and 2 provide the results of our experiments when using a 2-
dimensional latent space for the autoencoders. This is of course not an optimal feature dimension in
terms of performance but this allows visualizing how the known and unknown test samples are dis-
tributed in the latent space. The results first show that fully unsupervised Adversarial Autoencoders
do not perform better than baseline autoencoder (using the reconstruction error criterion ρ1). Look-
ing at Fig1 (b) and Fig1(c), the main reason is that the unknown samples are mapped according to
the same prior distribution than the known samples. As stated in section 2, it is actually not because
the known data items are enforced to lie in the dense regions of the prior, but that any data item in
such regions is belongs to the manifold of known data.
The second major conclusion is that the AAE using a supervised GMM prior clearly outperforms
the baseline autoencoder (contrary to the AAE using the unsupervised GMM prior). As shown in
Fig1 (d), the addition of the supervision enforces the encoder to map the unknown data items away
from the known classes, and, by default, at the center of the feature space. Actually, the center of
the latent space seems to act as an attractor of the default open space. This might be related to the
fact that, whatever the used prior distribution, randomly generated images are distributed according
to a normal distribution at the center of the feature space (because of the central limit theorem).
The third conclusion of this preliminary study is that the likelihood-based and posterior-based nov-
elty detection criteria are less effective than the reconstruction error criteria. But this has to be
mitigated for several reasons. First, this might be specific to the MNIST dataset for which the
original image space is already very well shaped so that the L2-distance between an image and its
reconstruction is semantically meaningful. But this might not be the case for more complex data
that would require to capture more invariance and spatial structures (e.g. using ConvNets). We can
expect that the likelihood-based and posterior-based criteria would be less sensitive to such higher
complexity than the reconstruction error. Another advantage is to enable a normalized and well
interpretable novelty score, in particular the posterior-based criterion that is a real probability.

Representation Learning Methods Novelty detection criterion
reconstruction

error (ρ1)
likelihood (ρ2)

or posterior (ρ3)
Figures

(Appendix)

autoencoder 0.71 - 1(a) and 2(a)

Adversarial
autoencoder

Normal distribution 0.68 0.35 (ρ2) Fig 1 (b)
Unsupervised GMM 0.64 0.41 (ρ2) Fig 1 (c)
Supervised GMM 0.82 0.82 (ρ2) Fig 1 (d)

Adversarial
autoencoder
+ rejection

Supervised GMM 0.89 0.83 (ρ3) Fig 1 (e)

Table 1: mAP of the different novelty detection methods

4 CONCLUSION

In this preliminary study, we investigated the use of Adversarial autoencoders for the hard problem
of novelty detection. We did show that imposing a supervised prior distribution can help mapping
the unknown items away from the known classes but that it is still theoretically not possible to
control their distribution in the feature space. Overall, we believe this remains an open question that
requires to first understand whether novelty should be conceptualized as unusual recombination of
elements of prior knowledge or not.

3



Workshop track - ICLR 2017

REFERENCES

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Large Scale Kernel Machines.
MIT Press, 2007.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information process-
ing systems, pp. 2672–2680, 2014.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18:1527–1554, 2006.
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APPENDIX

(a) Autoencoder (b) AAE Normal distribution (c) AAE unsupervised GMM

(d) AAE supervised GMM (e) AAE supervised GMM+reject

Figure 1: Visualization of the test samples in the latent space (unknown digits are ’2’ (dark blue),
’5’ (yellow) & ’7’ (green))
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(a) Autoencoder (b) AAE Normal distribution (c) AAE unsupervised GMM

(d) AAE supervised GMM (e) AAE supervised GMM+reject

Figure 2: Visualization of the reconstructed latent spaces plotted on Figure 1. Images were obtained
by uniformly sampling vectors in the latent space and by feeding them to the decoder function.
When no supervision is used, the whole test set is learned to be reconstructed as images coming
from classes of the training set. We can see in Fig (2e) that learning to reconstruct the noisy images
coming from the rejection class while using the supervision to shape the latent space allows us to
push the images of the novel classes toward the regions that are reconstructed as noisy images.
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