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Abstract

This article studies the evolution of opinions and in-
terpersonal influence structures in a group of agents
as they discuss a sequence of issues, each of which
follows an opinion dynamics model. In this work, we
propose a general opinion dynamics model and an
evolution of interpersonal influence structures based
on the model of reflected appraisals proposed by
Friedkin. Our contributions can be summarized as
follows: (i) we introduce a model of opinion dynam-
ics and evolution of interpersonal influence structures
between issues viewed as a best response cost mini-
mization to the neighbor’s actions, (ii) we show that
DeGroot’s and Friedkin-Johnsen’s models of opinion
dynamics and their evolution of interpersonal influ-
ence structures are particular cases of our proposed
model, and (iii) we prove the existence of an equilib-
rium. This work is a step towards providing a solid
formulation of the evolution of opinions and interper-
sonal influence structures over a sequence of issues.

1 Introduction

During the last few years, there has been an in-
creasing interest in understanding how individuals

∗Email: susana.iglesias rey@nokia.com
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spondence should be addressed.

form their opinion. Consequently, a lot of research
effort has been devoted to model the underlying
process of opinion formation of agents that interact
through a social network. In this respect, DeG-
root’s [1, 2] or Friedkin-Johnsen’s [3] models are
classic references on opinion formation processes.
Other works deal with more general frameworks as
nonlinear synchronous models like Krause model
[4] or [5, 6]; pairwise asynchronous models [7, 8, 9]
where opinions take discrete or continuous val-
ues, as well as multidimensional [10, 11, 12, 13]
and stochastic [14, 15] models or influences [16].
Usually, these models consider that the payoff of
each agent is a function of its own opinion and of
an aggregation function, whose value depends on
the opinions of an agent-dependent subset of the
population, which is defined by the network, usually
its neighborhood. Other works include applications
of biological systems to social networks, as in [17], or
the inclusion of random interactions between agents
[18]. Currently, there is an increasing literature
about social networks manipulation, as in [19, 20].
Concurrently with the study of opinion formation,
there has been an increasing interest in the literature
related to network formation and transformation
mechanisms [21], in particular in social networks of
agents and their interpersonal influence structures
[22, 23, 24]. Within this context, the aim of this
article is to study the evolution of opinions and
interpersonal influence structures over a sequence
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of issues in a group of individuals, which in partic-
ular generalizes DeGroot’s and Friedkin-Johnsen’s
models. In order to explain this in detail, let us
think about a particular issue domain (as politics,
statistics, environment, etc.) and a group of people
deliberating about a sequence of related issues in
that domain (as draft laws, reports, quality evalu-
ation of some new ideas or products, etc.) keeping
their relative interpersonal weights fixed and forming
their opinions with a particular model of opinion
dynamics. This repetitive deliberation across related
issues between the same agents allows us to study
the evolution of the group’s influence network [22].

As [23] notices, it may be possible to extend
any model of opinion dynamics fixed over a single
issue, to deal with the evolution of interpersonal
influence structures over a sequence of related issues.
As we may expect, the model of opinion dynamics
proposed will be affected and will affect the model
of evolution of the influence network [25]. This idea
of interconnection between opinion dynamics and
evolution of influence networks is based on the notion
of reflected appraisals [22, 26]. It is understood as
reflected appraisals the psychological phenomenon
that individuals’ self-appraisals in some dimension
(e.g., self-confidence, self-esteem, self-worth) are
influenced by the appraisals of other individuals on
them. Thus, the social power of an agent can define
its self-appraisal, understanding its social power
as the control it exerted over the final outcome
(the opinions of all the agents in the group over an
issue). Regarding this, [22] formalized the evolution
of interpersonal influences over a sequence of issues.
Recently, quite a few models have been proposed for
the evolution of social power. Based on DeGroot’s
model [1] combined with Friedkin’s [22], in [25, 23]
they constructed the DeGroot-Friedkin model of
opinion dynamics and influence networks. Moreover,
[27] proposed the modified DeGroot-Friedkin model
of opinion dynamics in order to allow the update of
self-appraisal levels in finite time. Last works include
the extension of Friedkin-Johnsen’s [3] model to the
evolution of social power [28] and the study of the
coevolution of appraisal and influence networks [24].

Motivated by these works, we propose a general
set of opinion dynamics models, based on network
aggregative games, which could be extended to deal
with the evolution of interpersonal influence struc-
tures. In particular, we restrict our attention to opin-
ion formation models in which each agent minimizes a
quadratic cost function that depends on its own opin-
ion, a convex combination of the opinions of its neigh-
bors and a convex combination of the initial opinions.
We assume that opinions take values between 0 and

1. For example, if agents are discussing about poli-
tics, 1 could be an extremely positive opinion about
a particular party and 0 an extremely negative one.
Agents do not want to withdraw from their own opin-
ion and at the same time they do not want to be
far away from the opinions of their neighbors. In
the interaction model, we incorporate stubbornness
of agents with respect to the initial opinions, in the
sense that agents do not want to withdraw from their
initial opinions. Therefore, at each time step, agents
update their opinion minimizing a cost that quantifies
the difference between the new opinion and its own
current opinion, a convex combination of the opin-
ions of its neighbors and a convex combination of the
initial opinions of the agents (it could include, e.g.,
only its own initial opinion, or its own initial opin-
ion and the initial opinion of its neighbors, but not
necessarily be limited to those).
Moreover, each agent updates synchronously its

opinion in response to the opinions of its neighbors.
We analyze the reflected appraisal mechanism on
the evolution of social power for the special case in
which the opinion formation process is described by
a model included in the general setting proposed,
achieving consensus on each of the issues over a
sequence. DeGroot’s and Friedkin-Johnsen’s models
of opinion dynamics and their extension to the
evolution of the influence network, are particular
cases of our setting.

Therefore, the main contribution of this paper is
the extension of the reflected appraisals dynamics
of influence structures for a set of opinion dynamic
models, viewed as a myopic cost minimization re-
sponse to the neighbor’s actions (i.e., best response).
We construct an equivalent function to the reflected



appraisal mechanism on the evolution of social
power, proving its continuity and the existence of an
equilibrium.

This paper is organized as follows. In the next
section, we introduce some preliminary notions and
the used notation. In Section 3, we propose a general
model of opinion dynamics, extension of DeGroot’s
and Friedkin-Johnsen’s models, as the minimization
of a quadratic cost. In Section 4, we describe the
evolution of influence structures between issues,
defined by a continuous dynamic model. We analyze
the existence of an equilibrium and conjecture the
existence of convergence. Finally, a discussion of
our results and further directions are presented in a
closing section.

2 Preliminaries and notation

In the following, given a set S the interior of S is
denoted by So. For a column vector x ∈ R

n, xT and
diag(x) are used to denote the transposed vector and
the diagonal matrix n× n whose diagonal elements
are x1, x2, . . . , xn, respectively. The shorthands 1n =
(1, . . . , 1)T and 0n = (0, . . . , 0)T are adopted. For
i ∈ {1, . . . , n}, ei ∈ R

n is the vector with 1 in the ith
entry and 0 for all other entries. The n-simplex ∆n

is the set {x ∈ R
n | x ≥ 0, 1

T
nx = 1} . To denote the

identity matrix in R
n×n we use In.

A directed graph is a pair G = (I, E), where I
stands for the finite set of nodes and E ⊆ I × I is
the set of edges. An edge (i, j) will be also denoted
as i → j. A walk from node i to j is a sequence
i → i1 → . . . → ir → j. Node j is reachable from
node i if there exists a walk from i to j. The graph
is strongly connected if each node is reachable from
any other node. A node i is said globally reachable if
there exist at least one walk from every node j to i.
A matrix M ∈ R

n×n is said row stochastic
(analogously, column stochastic) if

∑n

j=1 mij = 1

(
∑n

i=1 mij = 1). It is doubly stochastic if it is both
row and column stochastic. Moreover, ρ(M) denotes
the spectral radius of M. Furthermore, M is aMetzler
matrix if all its non diagonal entries are non-negative.

It is orthogonal if M is a square matrix with real
entries whose columns and rows are orthogonal unit
vectors, i.e., MMT = MTM = In. Finally, given a
complex number z ∈ C, z = x + iy, x, y ∈ R, the
real part of z, denoted by Re(z), is the real number x.

3 Model of Opinion dynamics

over a network

Following [25] and [23], the model of evolution of
influence structures is based on two basic ideas.
Firstly, we adopt an opinion dynamics model over
a single issue. Secondly, we adopt the Fried-
kin’s model [22] for the dynamics of self-weights
and social power over a sequence of issues. Specif-
ically, the first part of the model is defined as follows.

Consider a directed social network G = (I, E) with
n ≥ 2 agents indexed from 1 to n. Let I = {1, . . . , n}
be the set of agents. Each agent i ∈ I has an initial
opinion denoted by yi ∈ [0, 1]. Opinions take val-
ues between 0 and 1. For example, if agents are dis-
cussing about the environmental policy of their coun-
try, 1 could be extremely satisfied and 0 extremely
unsatisfied. In the following, the directed network
will be specified by the weighted adjacency matrix
P ∈ R

n×n, a row-stochastic matrix whose diagonal
elements are pii = 0 and pij ∈ [0, 1] i 6= j. Elements
pij denote the relative weight that agent i gives to
the opinion of agent j (see Figure 1).

i j

(...)

(...)

pij

Figure 1: Scheme of a directed network.

For simplicity, we suppose that the graph associ-



ated with P is strongly connected. Each agent i ∈ I
does not want to withdraw from his own opinion and
from the opinion of its neighbors. We also incorpo-
rate stubbornness of agents with respect to the ini-
tial opinions, in the sense that agents do not want to
withdraw from their initial opinions. Therefore, each
agent has a quadratic cost which wants to minimize
that quantify the difference between its own opinion,
yi ∈ [0, 1], a convex combination of the initial opin-
ions and a convex combination of the opinions of its
neighbors. The convex combination of the opinion
of its neighbors, σi(t) =

∑

j 6=i pijyj(t), is named the
neighbor’s aggregate state [12] at time t. At every
time step t ∈ N ∪ {0}, each agent i ∈ I updates
synchronously its opinion minimizing the cost:

J i(y,yi(t), σi(t)) = (1)

αy2 − 2

(

aiyi(t) + biσi(t) +

n
∑

i=1

cijyj(0)

)

βy + γ,

where ai ≥ 0, bi ≥ 0, y(0) is the vector of opinions
at time t = 0 and cij ∈ [0, 1] are the weights over the
vector of initial opinions, for all i, j ∈ I.
Thus, it is easy to check that the best response

strategy for agent i ∈ I is given by

yi(t+1) = aiyi(t)+bi
∑

j 6=i

pijyj(t)+
n
∑

j=1

cijyj(0), (2)

where the variables ai, bi and cij verify

ai + bi +

n
∑

j=1

cij = 1, ∀i ∈ I, (3)

to guarantee that the opinions are still in the domain
yi(t) ∈ [0, 1], for all i ∈ I and for all t ∈ N ∪ {0}.
This condition and the fact that we establish C as a
weight matrix, allows us to define it as the product of
a doubly stochastic and orthogonal matrix of weights
Z, and a diagonal matrix D, which ensures that the
previous condition is satisfied when ai 6= 0 or bi 6= 0.
Therefore, we have that C = DZ and (3) results in

ai + bi + di = 1, ∀i ∈ I,

where
∑n

j=1 zij = 1, which means thatD = In−A−B
and C = (In −A−B)Z.

Notice that DeGroot’s and Friedkin-Johnsen’s
models of opinion dynamics can be obtained as par-
ticular cases of our cost function:

• DeGroot’s model y(t + 1) = Wy(t), where W
is the network adjacency matrix, is obtained by
minimizing the cost given by (1) with ai = wii,
bi =

1
1−wii

and cij = 0 for all i, j ∈ I.

• Analogously, Friedkin-Johnsen’s model, which
extends the DeGroot’s model updating agents
opinions including their prejudices (initial opin-
ions) into every iteration, i.e., some of the agents
are stubborn in the sense that they are always
influenced by their prejudices,

y(t+ 1) = ΘWy(t) + (In −Θ)y(0),

is obtained minimizing the cost given by (1)
with ai = θiwii, bi = θi

1−wii

, cii = (1 − θi)
and cij = 0 for all i, j ∈ I, j 6= i; where
W is the network adjacency matrix and Θ a
diagonal matrix quantifying the extent to which
each individual is open to the influence of its
neighbors.

Regarding the evolution of opinion in (2), in matrix
notation, the best-response dynamics are given by

(I) y(t+ 1) = (A+BP ) y(t) + Cy(0),

where y(t) = (y1(t), . . . , yn(t))
T is the vector of

opinions at time t, A = diag(a1, . . . , an) and
B = diag(b1, . . . , b2).

The next step to construct the evolution of the
influence network is to compute the consensus
reached in one issue with the opinion dynamics
model I. In order to compute this consensus, two
scenarios have been studied: the case

∑n

j=1 cij 6= 0

and the case
∑n

j=1 cij = 0.

Suppose that
∑n

j=1 cij 6= 0. Then, given condition
(3) and the fact that P is a row stochastic matrix:

∑

j∈I

[A+BP ]ij = ai + bi
∑

j∈I\{i}

pij = ai + bi < 1,



and consequently A+BP is a row sub-stochastic ma-
trix. Then ρ (A+BP ) < 1, and we can compute the
limit applying the results relative to this kind of ma-
trices,

lim
t→∞

y(t) = lim
t→∞

[(A+BP ) y(t) + Cy(0)] =

= lim
t→∞

[

(A+BP )
t
y(0) +

t
∑

k=0

(A+BP )
k
Cy(0)

]

=

= (In − (A+BP ))
−1

Cy(0).

The solution is due to the fact that the first limit
satisfies

lim
t→∞

(A+BP )t = 0n,

and the second one

lim
t→∞

t
∑

i=0

(A+BP )
t
= (In −A−BP )

−1
,

see, e.g., Section 5 of [29].

Therefore, when
∑n

j=1 cij 6= 0, consensus takes the
form:

y(∞) = (In −A−BP )
−1

Cy(0),

which means that agents’ opinions converge to a
convex combination of their initial opinions weighted
by the matrix (In −A−BP )

−1
C.

Let us study the case when
∑n

j=1 cij = 0. Then
given condition (3), we have:

∑

j∈I

[A+BP ]ij = ai + bi
∑

j∈I\{i}

pij = ai + bi ≤ 1.

If the inequality is strict then limt→∞ y(t) = 0n which
is a trivial case. Therefore, we are interested in the
case:

∑

j∈I

[A+BP ]ij = ai + bi
∑

j∈I\{i}

pij = ai + bi = 1,

i.e., 1− ai = bi, ∀i ∈ I and therefore In −A = B, so
the model in I takes the form:

(II) y(t+ 1) = (A+ (In −A)P ) y(t),

where A+ (In −A)P is a row stochastic matrix.

Following the same steps as before, in order to ob-
tain a formulation of the consensus, the limit has been
computed

lim
t→∞

y(t) = lim
t→∞

[(A+ (In −A)P )y(t)] =

lim
t→∞

[(A+ (In −A)P )t]y(0) = vT y(0)1n.

The last limit is obtained using Perron-Frobenius
theorem [30] for irreducible matrices, which ensures
the existence and uniqueness of vT ∈ ∆n, left
eigenvector of A + (In − A)P associated to the
eigenvalue 1. Notice that if the graph associated to
P is strongly connected, then P is an irreducible
matrix. Therefore, given P , row-stochastic irre-
ducible matrix, and ai 6= 1 for all i ∈ I, we have that
A + (In − A)P has the same pattern of zeros and
positive entries as P , so it is an irreducible matrix
too, and we can apply the cited theorem. If ai = 1
for some i ∈ I then as in Lemma A.1. of [23], node
i is the only globally reachable node in the graph
associated to A+ (In −A)P , which leads to v = ei.

Consequently, when
∑n

j=1 cij = 0, consensus takes
the form

y(∞) = vT y(0)1n,

which means that agents’ opinions converge to a
convex combination of their initial opinions weighted
by the coefficients of v.

Having a formulation of the model of opinion
formation over one single issue and the consensus
reached, we can incorporate the evolution of the
influence structures over a sequence of related issues.

4 Evolution of social power

over a network

As said before, the model of evolution of influence
structures is based on two basic ideas. Firstly,
the model of opinion dynamics over a single issue
presented in the previous section. Secondly, the



Friedkin’s model [22] for the dynamics of self-weights
and power over a sequence of issues. The second
part of the model is defined as follows.

Consider a fixed directed social network G = (I, E)
with n ≥ 2 individuals who discuss a sequence of re-
lated issues s ∈ N∪ {0} according to the opinion for-
mation model I, a relative interaction matrix P and
a measure of the self-appraisals x(s) ∈ ∆n. Follow-
ing Friedkin’s model [22], in the context of opinion
dynamics over a network, we understand as the self-
appraisal of agent i the weight that the agent gives
to his own opinion. At each issue, agents interact
and reach a consensus. Then they update their self-
appraisals as a measure of the relative control they
had over the consensus [31] and discuss the next issue
with these updated new weights (Figure 2).

(...)

(...)

(...)

(...)

......

Issue s Issue s+ 1

x(s+ 1)

Figure 2: Scheme of the evolution of self-appraisal.

At fixed issue s and fixed self-weights x(s), the
vector of opinions about issue s is a trajectory from
time step t to y(s, t) ∈ [0, 1]n that evolves according
to the extension of model I. In the following, we
assume that the terms A, B and C depend on
the issue discussed s ∈ N ∪ {0}. Specifically, the
coefficients of model I in issue s + 1 depend on the
measure of the previous vector of self-appraisals
x(s), i.e., are functions of the vector of self-weights.

As in Section 2, we distinguish two models de-
pending on

∑n

j=1 cij .

If
∑n

j=1 cij 6= 0, then the extension of the model in
I in order to include the self-appraisals is:
(I’)
y(s, t+1) = (A(x(s))+B(x(s))P )y(s, t)C(x(s))y(s, 0).

Analogously, if
∑n

j=1 cij = 0 then the extension of
model in II is:

(II’) y(s, t+1) = (A(x(s))+ (In −A(x(s)))P )y(s, t)

where matrices A(x) and B(x) are defined as follows.
A(x) and B(x) are maps

A(·) : ∆n −→ [0, 1]n×n

(x1, . . . , xn)
T −→ diag(a1(x1), . . . , an(xn)),

B(·) : ∆n −→ [0, 1]n×n

(x1, . . . , xn)
T −→ diag(b1(x1), . . . , bn(xn)),

where ai(x) and bi(x) are analytic functions, for all
i ∈ I. Moreover, recalling that C = (In − A − B)Z,
we define Z(x) a doubly stochastic and orthogonal
matrix whose elements are continuous functions of x
in [0, 1].

These extensions lead to the consensus outcome of
the opinion formation process for model I’

y(s,∞) = (In −A(x(s)) −B(x(s))P )
−1

C(x(s))y(s, 0),

and for model II’

y(s,∞) = v(s)T y(s, 0)1n,

where v(x(s))T is the left eigenvector of

A(x(s)) + (In −A(x(s)))P,

associated to eigenvalue 1.

As it was said, the reflected-appraisal mechanism is
constructed as the relative social power faced by the
agent. For social power, we understand the control
exercised over the consensus reached [22]. This power
is measured depending on the consensus reached.
Comparing the two presented models, in model I’,
the relative control of each individual is measured
via the matrix

(In −A(x(s)) −B(x(s))P )−1C(x(s)),

thus the evolution of self-appraisals is:

x(s+1) = [(In −A(x(s)) −B(x(s))P )
−1

C(x(s))]T 1n/n.



Analogously for model II’, the relative control of
each individual is the corresponding coefficient of
v(x(s))T . Thus the vector of self-appraisals is:

x(s + 1) = v(x(s)),

where v(x(s))T is the left eigenvector of the matrix

A(x(s)) + (In −A(x(s)))P,

associated with eigenvalue 1.

To summarize, we give the following definition:

Definition 1 Consider a social directed network
G = (I, E) with n ≥ 2 agents discussing a sequence
of issues s ∈ N ∪ {0} with relative interaction matrix
P . The model of evolution of self-appraisals is

1. for model I’,
(I”)
x(s+ 1) =

[(In −A(x(s)) −B(x(s))P )
−1

C(x(s))]T 1n/n.

2. Analogously, for model II’,

(II”) x(s + 1) = v(x(s)),

where v(x(s))T is the left eigenvector of

A(x(s)) + (In −A(x(s)))P,

associated with eigenvalue 1.

Next, we present a theorem with equivalent ex-
pressions for the evolution of self-appraisals. Notice
that for the evolution given in I” with C = DZ, if
di(xi) = 0 for any i ∈ I we have that xi(s) = 0 for
all s ∈ N ∪ {0}. Thus, in the following we are going
to assume that di(xi) 6= 0 for all i ∈ I.

Theorem 1 (Evolution of Self-appraisals)
Consider a directed network G = (I, E) with n ≥ 2
agents:

1. (Generalization of Theorem III.2 in [25]) The
process I” is equivalent to x(s + 1) = F (x(s))
where the continuous map F : ∆n → ∆n is
u(x(s))Z(x(s)) where u(x(s)) is the left eigen-
vector of:

U(x(s)) = 1n1
T
n/n −

[In −A(x(s)) −B(x(s))]−1 B(x(s)) (In − P ) .

2. (Generalization of Lemma 2.2. in [23]) Analo-
gously, model II” is equivalent to

x(s+ 1) = F (x(s)),

where F : ∆n → ∆n is a continuous map defined
by:

F (x) =







ei, if ai(xi) = 1 for all i ∈ I,
(

p1
1− a1(x1)

, . . . ,
pn

1− an(xn)

)T

/
∑

i∈I

pi
1− ai(xi)

, o/w,

where pT is the dominant left eigenvector of the
relative interaction matrix P .

Proof. For statement 1, given the decomposition
C = (In−A−B)Z, the evolution of self-appraisals I”
can be rewritten as:

x(s+ 1)T ·
[

(Id−A(x(s)) −B(x(s))P )
−1

C(x(s))
]−1

= 1

T
n/n ⇔

x(s+ 1)T ·
[

C(x(s))−1 (Id−A(x(s)) −B(x(s))P )
]

= 1

T
n/n.

Then,

x(s+ 1)TZ(x(s))T [In −A(x(s)) −B(x(s))]−1 ·

(In −A(x(s)) −B(x(s))P ) = 1

T
n/n,

taking into account that Z is an orthogonal matrix
and the inverse of an orthogonal matrix is its trans-
pose.1

1Notice that another possibility is to define Z as a matrix
that satisfies that the product of a vector in ∆n and Z−1 has
positive elements. Then the result would be equivalent but
with Z(x(s))−1 instead of Z(x(s))T .



Moreover, the product,

[In −A(x(s))− B(x(s))]−1

· (In −A(x(s)) − B(x(s))P ) = 1

T
n/n,

can be rewritten as:

In + [In −A(x(s)) −B(x(s))]−1B(x(s))(In − P ).

Then,

x(s + 1)TZ(x(s))T = 1

T
n/n+ x(s + 1)TZ(x(s))T ·

[In −A(x(s)) −B(x(s))]
−1

B(x(s)) (In − P ) .

Z(x(s)) is a doubly stochastic matrix and therefore
Z(x(s))T is also doubly stochastic. Moreover, x(s +
1) ∈ ∆n, so we have that

x(s+ 1)TZ(x(s))T 1n1
T
n = 1

T
n .

Due to this,

x(s+ 1)TZ(x(s))T = x(s+ 1)TZ(x(s))TU(x(s)),

therefore x(s + 1)TZ(x(s))T is a left eigenvector of
U(x(s)). Moreover, x(s+1)TZ(x(s))T has all its en-
tries positive because x(s+ 1) ∈ ∆n and Z(x(s))T is
a stochastic matrix. It remains to prove that it is the
only left eigenvector of U(x(s)) with such character-
istic.
Notice that U(x) is a row stochastic matrix, there-

fore given Perron-Frobenius theorem [30], it exists a
left eigenvector associated to eigenvalue 1.
Moreover, using Gershgorin’s discs theorem [32]

and following the proof of Theorem III.2 in [28],
the eigenvectors of U(x) should be at least in one
of the Gershorin’s discs. In our case these discs are
characterized by its centers and radius:

• centers: uii(s) =
1
n
− bi(xi(s))

1−ai(xi(s))−bi(xi(s))
.

• radius:
∑

j 6=i uij(s) =
n−1
n

+ bi(xi(s))
1−ai(xi(s))−bi(xi(s))

.

Therefore, all the discs are at the left side of
Re(λ) = 1 on the complex plane. This means

that the real parts of U(x(s)) eigenvectors are less
or equal than 1. Moreover U(x(s)) is a Metzler
matrix. Consequently, it exists τ so that the en-
tries of U(x(s)) + τ In are strictly positive. Using
Perron-Frobenius theorem [30] for positive matrices,
ρ(U(x(s)) + τ In) is a simple real eigenvalue and it
exists an associated eigenvector whose entries are
strictly positive. Therefore, U(x(s)) has a simple
real eigenvalue equal to ρ(U(x(s)) + τ In) − τ , that
according to the previous discussion is equal to 1,
with a unique eigenvector u(x(s)) ∈ ∆o

n.

For statement 2, following [23], we are interested
in the equality:

[A(x(s)) + (In −A(x(s)))P ]T x(s+ 1) = x(s+ 1),

which can be rewritten as,

[In −A(x(s)) − PT (In −A(x(s)))]x(s + 1) = 0n.

Moreover,

(In − PT )(In −A(x(s)))x(s + 1) = 0n.

Then we have that,

[In −A(x(s))]x(s + 1) = PT [In −A(x(s))]x(s + 1).

Therefore x(s + 1)T [In − A(x(s))]T is the left eigen-
vector of P associated with eigenvalue 1. Then,

[In −A(x(s))]x(s + 1) = α(s)p,

where α(s) = 1/
∑n

i=1
pi

1−ai(xi(s))
is a scale factor in

order to guarantee that x(s+1) ∈ ∆n. Consequently,
we have that:

x(s+1) = α(s)

(

p1
1− a1(x1(s))

, . . . ,
pn

1− an(xn(s))

)T

.

It is easy to see that F (x) is the composition of
functions G(x) and A(x) where:

G(x) =

(

p1
1− x1

, . . . ,
pn

1− xn

)T

/

n
∑

i=1

pi
1− xi

,

is an analytic function in ∆n\{e1, . . . , en} and hence,
continuous in ∆n\{e1, . . . , en}. By definition, A(x) is



an analytic function and hence is continuous, which
means that the map F (x) = (G ◦A)(x) is a composi-
tion of continuous functions in ∆n\{e1, . . . , en}, i.e.,
it is continuous in ∆n\{e1, . . . , en}.

The rest of the proof of the continuity of F can be
found in Lemma 2.2. of [23]. �

The characterization of the evolution of the self-
appraisals provided in the previous theorem allows
us to formulate the following result, generalization
of the work of [28] and [23].

Theorem 2 (Equilibrium)
Given a directed network
G = (I, E) with n ≥ 3 agents:

1. Consider the dynamical system in Theorem 1.1
and assume that di(xi) 6= 0 for all i ∈ I. Then,
it exists x∗ equilibrium point of I” that belongs
to the interior of ∆n.

2. Assume the digraph associated to P does not
have a star topology and consider the dynamical
system in Theorem 1.2. Then, it exists x∗

equilibrium point of II” that belongs to the
interior of ∆n. Moreover, if A(x) = x then x∗

is unique, the ordering of the entries of x∗ is
equal to the ordering of p, and {e1, . . . , en} are
the only equilibrium points of F on the boundary
of ∆n [23].

Proof. For statement 1, notice that according to
Theorem 1. 1 the evolution of self-appraisals can
be represented by a function F that maps any self-
appraisal vector x ∈ ∆n to the product of the unique
positive dominant left eigenvector of U(x) and Z(x).
Following Lemma III.3 of [28] it can be proved that
if M(t) is a square matrix whose entries are analytic
functions of parameter t then it exists an eigenvector
whose entries are real analytic functions of t. The
entries of matrix U(x) are analytic functions. A and
B were defined as analytic functions and notice that
the sums and products of analytic functions and the
inverse of an analytic function whose derivative is

nowhere zero are analytic. Consequently, the entries
of u(x) are real analytic functions of x. Moreover, by
definition, the entries of Z(x) are continuous func-
tions of x. Thus F (x) is a continuous function of
x.

According to Brouwer fixed-point theorem, be-
cause F (x) is a continuous function that maps a
convex compact subset of an Euclidean space into
itself, it has at least one fixed point x∗ ∈ ∆o

n.

For statement 2, the evolution of self-appraisals
can be represented by a particular function F . We
can show, as in Theorem 4.1. in [23], that F is a
continuous map on a compact set, then the Brouwer
fixed-point theorem implies the existence of at least
one fixed point on the compact set. Moreover, if we
take A(x) = x the model is equal to [23] and hence
the statement. �

Previous results ([28, 25, 23]) illustrate that for
some values of A, B and C and network topologies,
the trajectories converge. Therefore, we formulate
the next conjecture that remains to be proven in fu-
ture work.

Conjecture 1 For the dynamical systems of the
evolution of social power I” and II” with ai 6= 1 for
all i ∈ I, the vector of self-appraisals x(s) ∈ ∆n

converges to an equilibrium configuration as s → ∞.

In order to check the previous conjecture we simu-
late a small example of a strongly connected network
with three agents that interact through a particular
opinion dynamics model of I. Selecting different maps
for A, B and C and different initial vectors of self-
appraisals x(0) ∈ ∆n, we simulate the evolution of
the social power.

We notice that our simulations (Figure 3) also
show the convergence of the systems of the evolution
of self-appraisals. Moreover, the values become
stable after a few interactions.



Figure 3: Evolution of self-appraisals with n = 3
agents, different variables and initial opinions.

5 Conclusions

In this paper, we have introduced a general model
of opinion dynamics in which each agent minimizes
a quadratic cost function that depends on its own
opinion, a convex combination of the opinions of its
neighbors and a convex combination of the agents’
initial opinions (it could include, e.g., only its own
initial opinion or its own initial opinion and the
initial opinion of its neighbors but not necessarily be
limited to those). We have analyzed the evolution
of interpersonal influence structures in a group
that discuss a sequence of related issues inspired
by Friedkin’s reflected appraisal mechanism. We
have developed a formulation of the dynamical
system for the evolution of self-appraisals which is a
generalization of the models of [25, 23] and proved
the existence of a fixed point in the interpersonal
influence structures. Many questions still remain

to be answered. Future work would be devoted to
demonstrate the uniqueness of the equilibrium and
the convergence of the evolution of self-appraisals.
This will lead to the mathematical characterization
of individuals final self-appraisal and their depen-
dence on the system’s parameters.
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