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ON THE HILBERT FUNCTION OF GENERAL FAT POINTS IN P1 × P1

ENRICO CARLINI, MARIA VIRGINIA CATALISANO, AND ALESSANDRO ONETO

ABSTRACT. We study the bi-graded Hilbert function of ideals of general fat points with same multiplicity in
P1 × P1. Our first tool is the multiprojective-affine-projective method introduced by the second author in
previous works with A.V. Geramita and A. Gimigliano where they solved the case of double points. In this way,
we compute the Hilbert function when the smallest entry of the bi-degree is at most the multiplicity of the
points. Our second tool is the differential Horace method introduced by J. Alexander and A. Hirschowitz to
study the Hilbert function of sets of fat points in standard projective spaces. In this way, we compute the entire
bi-graded Hilbert function in the case of triple points.

1. INTRODUCTION

Problems regarding polynomial interpolation are very classical and have been studied since the begin-
ning of last century. In the classic case, we consider a set of points on the projective plane and we want to
compute the dimension of the linear system of curves of given degree passing through the set of points with
prescribed multiplicity. Sometimes, the linear conditions imposed by the the multiple points on the space of
curves of given degree are not always independent. In these cases, we say that we have unexpected curves.
In the case of less than 8 points, these cases were explained by G. Castelnuovo [Cas91] and, more recently,
in the work of M. Nagata [Nag60]. In general, the situation is completely described by the famous SHGH
Conjecture which takes the name after the works of B. Segre [Seg61], B. Harbourne [Har85], A. Gimigliano
[Gim88] and A. Hirschowitz [Hir89].

In the language of modern commutative algebra, this means to compute the Hilbert function of the ideal
of fat points with prescribed multiplicity and look at its Hilbert function in a given degree. By parameter
count, we expect that such a dimension is the difference between the dimension of the space of curves of
the fixed degree and the number of conditions imposed by the fat points. If this is the actual dimension,
we say that the set of fat points impose independent conditions on the linear system of curves of the fixed
degree.

In this paper, we want to consider a multi-graded interpolation problem. We consider ideals of fat points
in P1×P1 with support in general position and we look at its bi-graded Hilbert function. The case of double
points has been settled by the second author together with A.V. Geramita and A. Gimigliano [CGG05]. They
introduced a method called multiprojective-affine-projective method which allows to reduce the multi-graded
problem to a question in the standard projective plane.

A milestone for polynomial interpolation problems is the work by J. Alexander and A. Hirschowitz in
which the authors considered ideals of double points in general position in the standard n-dimensional
projective spaces. Exceptional cases where ideals of double points fail to give independent conditions
on hypersurfaces of some degree were known since the beginning of last century, but we had to wait
until 1995 for a complete classification which is now the so-called Alexander-Hirschowitz Theorem. The
complete proof came after a series of enlightening papers where they developed a completely new method
of approach called méthode d’Horace différentielle [AH92b, AH92a, AH95, AH00].
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In our computations, we use the multiprojective-affine-projective method of [CGG05] to reduce the
problem to the study of fat points in P2, where we use the differential Horace method of [AH00].

Formulation of the problem and main results. Let S = C[x0, x1; y0, y1] =
⊕

i, j Si, j be the bi-graded coordi-
nate ring of P1 × P1, namely Si, j is the vector space of bi-homogeneous polynomials of bi-degree (i, j).

Definition 1.1. Let {P1, . . . , Ps} be a set of points in P1×P1. We will always assume, except when explicitly
mentioned, that they are in general position. Let ℘i ⊂ S be the prime ideal defining the point Pi , respec-
tively. The scheme of fat points of multiplicity m≥ 1 with support at the Pi ’s is the 0-dimensional scheme X
defined by the ideal IX,P1×P1 = ℘m

1 ∩ . . .∩℘m
s . If there is no ambiguity, we simply denote it by IX.

For any bi-homogeneous ideal I in S, we define the Hilbert function of S/I as

HFS/I(a, b) := dimC(S/I)(a,b) = dimC S(a,b) − dimC I(a,b), for (a, b) ∈ N2.

For short, we denote by HFX the Hilbert function of the quotient ring S/IX.

QUESTION. Let X be a scheme of fat points of multiplicity m in P1 × P1.
What is the bi-graded Hilbert function of X?

It is well-known that if a, b� 0, then the Hilbert function stabilize and is equal to degree of the scheme
X, i.e., if X is a scheme of s fat points of multiplicity m, HFX(a, b) = s

�m+1
2

�

.
In this paper, we study the Hilbert function in the case of general fat points of multiplicity m in P1 ×P1.

E. Guardo and A. Van Tuyl give a bound for the region where the Hilbert function of general fat points
becomes constant, see [GVT04]. Our first result is Theorem 3.10, where we compute the Hilbert function
for low bi-degrees, namely for bi-degrees (a, b) such that min{a, b} ≤ m.

Theorem 3.10. Let a ≥ b and assume m≥ b. Let X= mP1 + . . .+mPs ⊂ P1 × P1. Then,

HFX(a, b) =min
§

(a+ 1)(b+ 1), s
�

m+ 1
2

�

− s
�

m− b
2

�ª

,

except if s = 2k+ 1 and a = bk+ c + s(m− b), with c = 0, . . . , b− 2, where

HFX(a, b) = (a+ 1)(b+ 1)−
�

c + 2
2

�

.

Observe that, in all our formulas, we use the standard rule that
�i

j

�

= 0 if i < j.
Since in each row and column the Hilbert function is eventually constant and Theorem 3.10 gives us the

Hilbert function only for bi-degrees such that min{a, b} ≤ m, in general we are left with an intermediate
region where we cannot conclude our computations (see Example 3.13). However, in case of triple points,
we are able to give a complete description of the Hilbert function in Theorem 4.6.

Theorem 4.6. Let X= 3P1 + . . .+ 3Ps ⊂ P1 × P1. Then,

HFX(a, b) =min {(a+ 1)(b+ 1), 6s} ,

except for

(1) b = 1 and s < 2
5(a+ 1), where HFX(a, 1) = 5s;

(2) s odd, say s = 2k+ 1, and
(a, b) = (4k+ 1,2), where HFX(4k+ 1, 2) = (a+ 1)(b+ 1)− 1;
(a, b) = (3k, 3), where HFX(3k, 3) = (a+ 1)(b+ 1)− 1;
(a, b) = (3k+ 1,3), where HFX(3k+ 1, 3) = 6s− 1;
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(3) s = 5 and (a, b) = (5, 4), where HFX (5,4) = 29.

Structure of the paper. In Section 2, we explain our approach and we describe the main tools we are going to
use. In particular, we describe the multiprojective-affine-projective method, introduced by the second author
together with A.V. Geramita and A. Gimigliano [CGG05], and the differential Horace method of J. Alexander
and A. Hirschowitz [AH00]. In Section 3, we prove Theorem 3.10. In Section 4, by the differential Horace
method we compute the complete bi-graded Hilbert function in the case of triple points (Theorem 4.6). In
the Appendix, we implement our results with the algebra software Macaulay2 [GS].

Acknowledgements. The authors are grateful to R. Fröberg for suggesting the problem. The third author
thanks all the participants of the Problem Solving Seminar in Commutative Algebra at the Department of
Matematics of Stockholm University for useful discussions. The first author acknowledges the finacial sup-
port of the Politecnico di Torino (Italy) through the “Ricerca di Base" fund RDB_17. The second author was
supported by MIUR funds (PRIN 2010-11 grant 2010S47ARA-004 – Geometria delle Varietà Algebriche)
(Italy) and by the Università degli Studi di Genova through the “Progetti di Ateneo 2015".

2. APPROACH AND TOOLS

2.1. Multiprojective-affine-projective method. In [CGG05], the authors introduced a method to reduce
the multi-graded problem to the graded case. We describe this method in the case of P1×P1, which is the
one of our interest. We consider the following birational map

φ: P1 × P1 ¹¹Ë A2 −→ P2,

([a0 : a1], [b0 : b1]) 7→
�

a1
a0

, b1
b0

�

7→
�

1 : a1
a0

: b1
b0

�

.

This map is well-defined on the chart U = {a0 b0 6= 0}.
Given a set of fat points X = m1P1 + . . .+msPs in Pn defined by the ideal IX ,Pn = ℘m1

1 ∩ . . . ∩℘ms
s , we

denote by HFX (d) the standard graded Hilbert function in degree d of the corresponding quotient ring. In
case of no ambiguity about the ambient space, we simply denote the ideal as IX .

Lemma 2.1. [CGG05, Theorem 1.5] Let a, b be positive integers and let X be a 0-dimensional scheme with
support in (P1 × P1) \U . Let X = aQ1 + bQ2 +φ(X) ⊂ P2, where Q1 = [0 : 1 : 0], Q2 = [0 : 0 : 1]. Then,

dim(IX,P1×P1)(a,b) = dim(IX ,P2)a+b.

Notation. From now on, let X be a scheme of s fat points of multiplicity m in P1 × P1, i.e.,

X= mP1 + . . .+mPs;

let X be the scheme defined as in Lemma 2.1, i.e.,

X = aQ1 + bQ2 +mP1 + . . .+mPs,

where, with an abuse of notation, we denote by Pi both the point in P1×P1 and its image in P2. Moreover,
let La,b(X) be the linear system of curves in P1 × P1 of bi-degree (a, b) passing through X and let Ld(X )
be the linear system of curves in P2 of degree d passing through Z .

By Lemma 2.1, our original question is equivalent to the following.

QUESTION. Let X = aQ1 + bQ2 +mP1 + . . .+mPs ⊂ P2 be a scheme of fat points
in general position. What is the dimension of the linear system La+b(X )?
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The virtual dimension of the linear system La+b(X ), given by a parameter count, is

vir. dimLa+b(X ) =
�

a+ b+ 2
2

�

−
�

a+ 1
2

�

−
�

b+ 1
2

�

− s
�

m+ 1
2

�

,

which coincides with the virtual dimension of the linear system La,b(X)

vir. dimLa,b(X) = (a+ 1)(b+ 1)− s
�

m+ 1
2

�

.

The expected dimension is defined as the maximum between 0 and the virtual dimension. If the actual
dimension is equal to the virtual dimension, we say that X imposes independent conditions in degree
a + b. Similarly for X. If the actual dimension is bigger than the expected value, we say that the linear
system is defective and we call defect the difference between the expected dimension and the actual di-
mension. In these cases, we call algebraic defect the difference between the actual dimension and the
virtual dimension. Note that the algebraic defect might be bigger than the defect.

In case of small number of points, the dimension of linear systems of curves with multiple base points
of any multiplicity is known. This story goes back to the work of G. Castelnuovo [Cas91] and attracted a
lot of attention in the commutative algebra and algebraic geometry community. Just to mention some of
them, see [Nag60, Seg61, DG84, Har85, Gim88, Hir89, AH95, AH00].

2.2. Lemmata. The following results, are well-known facts for the experts in the area and can be found
in several papers in the literature. We explicitly recall for convenience of the reader.

Lemma 2.2. Let Z be a 0-dimensional scheme in P2. Then:

(1) if Z imposes independent conditions in degree d, then, it is true also for any Z ′ ⊂ Z;
(2) if Ld(Z) is empty, then Ld(Z ′′) is empty for any Z ′′ ⊃ Z.

Proof. (1) It is enough to consider the following chain of inequalities:
�

d + 2
2

�

− deg(Z ′)≤ dimLd(Z
′)≤ dimLd(Z) + deg(Z \ Z ′) =

=
�

d + 2
2

�

− deg(Z) + (deg(Z)− deg(Z ′)).

(2) If there are no curves of degree d through Z , then, there are no curves of degree d through Z ′′. �

Lemma 2.3. Let Z be a scheme of fat points in P2 in general position. If there exists a specialization eZ of Z
such that Ld(eZ) is non-defective, then it is true also for Ld(Z).

Proof. It follows by upper semicontinuity of the Hilbert function. �

Remark 2.4. The analogous of Lemma 2.2 and Lemma 2.3 also hold if we consider schemes of fat points
in P1 × P1. This tells us that, in order to prove that a scheme X of s fat points of multiplicity m in P1 × P1

imposes independent conditions in bi-degree (a, b) for any number of point s, it is enough to consider

s1 =

�

(a+ 1)(b+ 1)
�m+1

2

�

�

and s2 =

¢

(a+ 1)(b+ 1)
�m+1

2

�

¥

,

and to prove that:

• L(a,b)(X) has expected dimension for s = s1, i.e., equal to (a+ 1)(b+ 1)− s1

�m+1
2

�

;
• L(a,b)(X) is empty for s = s2.

Notation. Let Z be a scheme of fat points and r = {L = 0} be a line in P2. We denote:

Resr(Z): the residue of Z with respect to r is the scheme defined by the ideal IZ : (L);
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Trr(Z): the trace of Z over r is the scheme defined by the ideal IZ + (L).

More explicitly, if Z = m1P1+ . . .+msPs and the points P1, . . . , Ps′ have support on the line r, we have that

Resr(Z) = (m1 − 1)P1 + . . .+ (ms′ − 1)Ps′ +ms′+1Ps′+1 + . . .+msPs ⊂ P2;

Trr(Z) = m1P1 + . . .+ms′Ps′ ⊂ r.

Lemma 2.5. [CGG05, Lemma 2.2] Let Z ⊂ P2 be a 0-dimensional scheme, and let P1, . . . , Ps be general points
on a line r.

(1) If dimLd(Z+P1+ . . .+Ps−1)> dimLd−1(Resr(Z)), then dimLd(Z+P1+ . . .+Ps) = dimLd(Z)−s;
(2) if dimLd−1(Resr(Z)) = 0 and dimLd(Z)≤ s, then dimLd(Z + P1 + . . .+ Ps) = 0.

2.3. Horace method. The Horace method provides a very powerful tool to prove that a base-curve free
linear system has the expected dimension by using an inductive approach.

Let Z = m1P1 + . . .+msPs ⊂ P2 be a scheme with support in general points in P2. By parameter count,
we know that

(2.1) dimLd(Z)≥max

¨

0,
�

d + 2
2

�

−
s
∑

i=1

�

mi + 1
2

�

«

.

By Lemma 2.3, if we find a specialization eZ of our scheme such that dimLd(eZ) is as expected, we conclude
that the same is true for Z . We specialize some of the points to be collinear. Assume that P1, . . . , Ps′ lie on
the line r = {L = 0}. Then, we have Castelnuovo’s inequality,

(2.2) dim (I
eZ ,P2)d ≤ dim (IResr (eZ),P2)d−1 + dim (ITrr (eZ),r

)d .

This inequality allows us to use induction because on the right hand side we have the dimension of linear
systemLd−1(Resr(eZ)) of plane curves with lower degree and the dimension of the ideal of a 0-dimensional
scheme embedded in P1. Thus, if we can prove that the right hand side in (2.2) equals the right hand side
of (2.1), we can conclude. Unfortunately, sometimes the arithmetic does not allow this method to work
for any specialization. In order to overcome this problem, J. Alexander and A. Hirschowitz introduced in
a series of papers the so-called differential Horace method [AH92a, AH92b, AH95, AH00]. Here, we follow
the exposition of [GI04].

Definition 2.6. In the ring of formal functions S = C¹x , yº, we say that an ideal is vertically graded with
respect to y if it is of the form

I = I0 ⊕ I1 y ⊕ I2 y2 ⊕ . . .⊕ (ym), where the Ii ’s are ideals in C¹xº.

Let Z be a 0-dimensional scheme in P2 with support at a point P lying on line r. We say that Z is vertically
graded with base r if there is a regular system of parameters (x , y) at P such that r is defined by y = 0 and
the ideal of Z is vertically graded in the localization of the coordinate ring of P2 at the point P.

For any positive integer t, we define the (t+1)-th residue and trace of Z with respect to r by the ideals:

(t + 1)-th residue: IRest
r (Z)

:= IZ + (IZ : I t+1
r )I t

r ;

(t + 1)-th trace: ITrt
r (Z)

:= (IZ : I t
r )⊗Or ;

where Or denotes the structure sheaf of the line r. In Rest
r(Z), we remove the (t+1)-th slice of Z; in Trt

r(Z),
we consider only the (t + 1)-th slice of Z . If Z = Z1 + . . .+ Zs is a non-connected 0-dimensional scheme of
fat points, we denote by Rest

r(Z) = Rest
r(Z1) + . . .+Rest

r(Zs) and Trt
r(Z) = Trt

r(Z1) + . . .+ Trt
r(Zs).
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Example 2.7. Let Z = 3P be a triple point in P2. Let IP = (x , y) and r = {y = 0}. We have that Z is
vertically graded with base r because we can write IZ = I0⊕ I1 y ⊕ I2 y2⊕ (y3), where Ii = (x3−i) ⊂ C¹xº.
If t = 0, we obtain the usual residue and trace, i.e.,

IRes0
r (Z)

:= (x3, x2 y, x y2, y3) +
�

(x3, x2 y, x y2, y3) : (y)
�

=

= (x2, x y, y2) ⊂ C¹x , yº;

ITr0
r (Z)

:= (x3, x2 y, x y2, y3)⊗
C¹x , yº
(y)

= (x3) ⊂
C¹x , yº
(y)

.
f

If we consider other values of t, we consider different slices on the line r. If t = 1, we get

IRes1
r (Z)

:= (x3, x2 y, x y2, y3) +
�

(x3, x2 y, x y2, y3) : (y2)
�

(y) =

= (x3, x y, y2) ⊂ C¹x , yº;

ITr1
r (Z)

:=
�

(x3, x2 y, x y2, y3) : (y)
�

⊗
C¹x , yº
(y)

= (x2) ⊂
C¹x , yº
(y)

.
f

If t = 2, we get

IRes2
r (Z)

:= (x3, x2 y, x y2, y3) +
�

(x3, x2 y, x y2, y3) : (y3)
�

(y2) =

= (x3, x2 y, y2) ⊂ C¹x , yº;

ITr2
r (Z)

:=
�

(x3, x2 y, x y2, y3) : (y2)
�

⊗
C¹x , yº
(y)

= (x) ⊂
C¹x , yº
(y)

.
f

Lemma 2.8 ((Lemma d’Horace différentielle)). [GI04, Proposition 2.6] Let Z = R+ S ⊂ P2 be a scheme of
fat points where R is a 0-dimensional scheme of general fat points with support on a line r and S is a scheme
of general fat points with support on P2. If

(1) dim (IRest
r (R)+S,P2)d−1 =

�d+1
2

�

− deg(Rest
r(R) + S);

(2) dim (ITrt
r (R),r

)d = d + 1− deg(Trt
r(R));

then,

dimLd(Z) =
�

d + 2
2

�

− deg(Z).

3. HILBERT FUNCTION IN LOW BI-DEGREES

We are now ready to start our computations. We use the following notation. Let X denote a scheme of
s fat points of multiplicity m in P1 × P1, i.e.,

X= mP1 + . . .+mPs.

Let Z be the scheme of fat points in P2 constructed from X and a bi-degree (a, b), where we always assume
a ≥ b≥ 0, as described in Lemma 2.1, i.e.,

X = aQ1 + bQ2 +mP1 + . . .+mPs.

We can consider multiplicities m≥ 2 since the case of simple points is trivial.
Given two points A, B ∈ P2, we use the notation AB for the line passing through them.

3.1. The case m =min{a, b}. In this section, we start our computations by considering m = b. Since the
cases b = 0 is trivial, we may assume b ≥ 1.
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Let a = bk+ c, with 0≤ c ≤ b− 1. Then, as we mentioned in Remark 2.4, we consider

s1 =

�

(a+ 1)(b+ 1)
�b+1

2

�

�

=











2k for c < b−2
2 ;

2k+ 1 for b−2
2 ≤ c < b− 1;

2k+ 2 for c = b− 1.

s2 =

¢

(a+ 1)(b+ 1)
�b+1

2

�

¥

=

(

2k+ 1 for c < b−2
2 ;

2k+ 2 for c ≥ b−2
2 .

We first prove the following lemma that will be useful for our methods.

Lemma 3.1. Let X = aQ1+ bQ2+ bP1+ . . .+ bPs ⊂ P2 where a = bk+ c, with 0≤ c ≤ b−1, and s = 2k+1.
Then, the unique (irreducible) curve C ∈ Lk+1(kQ1 + Q2 + P1 + . . . + Ps) is contained in the base locus of
La+b(X ) with multiplicity at least b− c.

Proof. We proceed by induction on b− c. First, observe that, if C ′ is a general element inLa+b(X ), we have

deg(C ∩ C ′) = ak+ (s+ 1)b = deg(C)deg(C ′) + b− c;

then, by Bézout’s Theorem, C is contained inLa+b(X ). If b− c = 1, the claim is obvious. Let b− c ≥ 2. We
can remove the curve and we getLa′+b′(X ′), where X ′ = a′Q1+ b′Q2+ b′P1+ . . .+ b′Ps, with a′ = a−k and
b′ = b− 1. Now, a′ = b′k+ c where c ≤ b− 2 = b′ − 1. By inductive hypothesis, the curve C is contained
with multiplicity b′ − c = b− 1− c in La′+b′(X ′) and, consequently, the claim follows. �

Before the general case, we consider particular cases depending on the congruence class of a modulo b.

Lemma 3.2. [a ≡ 0 (mod b)] Let X = bkQ1 + bQ2 + bP1 + . . .+ bPs ⊂ P2. Then,

dimLb(k+1)(X ) =max
§

0,
�

b(k+ 1) + 2
2

�

−
�

bk+ 1
2

�

− (s+ 1)
�

b+ 1
2

�ª

.

except for s = 2k+ 1, where the defect is equal to 1.

Proof. [CASE s = 2k+ 1] In this case, we expect the linear system Lb(k+1)(X ) to be empty. The conclusion
follows because, by Lemma 3.1, the unique (irreducible) curve C in the linear system Lk+1(kQ1 +Q2 +
P1 + . . .+ P2k+1) is contained with multiplicity b in the base locus of Lb(k+1)(X ).

[CASE s > 2k+ 1] Since dimLb(k+1)(X ) = 1 for s = 2k+ 1, the linear system is empty for s > 2k+ 1.

[CASE s = 2k] We know that

dimLb(k+1)(X )≥
�

b(k+ 1) + 2
2

�

−
�

bk+ 1
2

�

− (2k+ 1)
�

b+ 1
2

�

= b+ 1.

Let eX be the specialized scheme where we assume that the points P1, . . . , Pk are collinear with Q2 and lie
on a line r (here, with an abuse of notation, we still call the specialized points by Pi ’s). By Lemma 2.3, it
is enough to prove the following.

Claim: dimLb(k+1)(eX ) = b+ 1.

We add an extra point A on the line r and consider the scheme eX + A. If we prove that

dimLb(k+1)(eX + A) = b,

we are done. The line r is a fixed component for Lb(k+1)(eX + A); hence, we can remove it and

dimLb(k+1)(eX + A) = dimLb(k+1)−1(Resr(eX + A)).

Now, we proceed by induction on b.
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If b = 1,

dimLk(Resr(eX + A)) =
�

k+ 2
2

�

−
�

k+ 1
2

�

− k = 1= b.

Now, let b ≥ 2. The lines Q1Pi are a fixed component of dimLb(k+1)−1(Resr(eX + A)), for i = k+ 1, . . . , 2k.
Hence, after removing them, we conclude by induction

(3.3) dimLb(k+1)−1)(Resr(eX + A)) = dimL(b−1)(k+1)(X
′) = b,

where X ′ = (b− 1)kQ1 + (b− 1)Q2 + (b− 1)P1 + . . .+ (b− 1)P2k. Now, the claim is proved. �

Lemma 3.3. [a ≡ b− 1 (mod b)] Let X = (bk+ b− 1)Q1 + bQ2 + bP1 + . . .+ bPs ⊂ P2. Then,

dimLb(k+2)−1(X ) =max
§

0,
�

b(k+ 2) + 1
2

�

−
�

b(k+ 1)
2

�

− (s+ 1)
�

b+ 1
2

�ª

.

Proof. In the notations of Remark 2.4, we have that s1 = s2 = 2k + 2. Hence, we just need to prove that
Lb(k+2)−1(X ) is empty in the case of 2k + 2 points. Let eX be the specialized scheme, where the points
Q2, P1, . . . , Pk+1 lie on a line r. By Lemma 2.3, it is enough to prove the following claim.

Claim: dimLb(k+2)−1(eX ) = 0.

The line r is a fixed component of the linear system Lb(k+2)−1(X ), hence

Lb(k+2)−1(eX ) =Lb(k+2)−2(Resr(eX )).

We proceed by induction on b. If b = 1,

dimLk+1(eX ) = dimLk(Resr(eX ) =
�

k+ 2
2

�

−
�

k+ 1
2

�

− (k+ 1) = 0.

Assume b ≥ 2. The lines Q1Pi are contained in the base locus ofLb(k+2)−2(Resr(eX )), for i = k+2, . . . , 2k+2,
and, after removing them, we conclude by induction

(3.4) dimLb(k+2)−2(eX ) = dimL(b−1)(k+2)−1(X
′) = 0,

where X ′ =
�

(b−1)(k+1)−1
�

Q1+(b−1)Q2+(b−1)P1+ . . .+(b−1)P2k+2. Now, the claim is proved. �

Proposition 3.4. Let X = aQ1 + bQ2 + bP1 + . . . + bPs ⊂ P2 where a = bk + c, with 0 ≤ c ≤ b − 1, and
s = 2k+ 1. Then,

dimLa+b(X ) =
�

a+ b+ 2
2

�

−
�

a+ 1
2

�

− (2k+ 2)
�

b+ 1
2

�

+
�

b− c
2

�

=
�

c + 2
2

�

.

In particular, for b− c ≥ 2, it is defective.

Proof. By Lemma 3.1, the unique (irreducible) curve C in the linear system Lk+1(kQ1+Q2+ P1+ . . .+ Ps)
is contained with multiplicity b− c in La+b(X ). Therefore, after removing it, we obtain

dimLa+b(X ) = dimLc(k+2)(X
′),

where X ′ = c(k+ 1)Q1 + cQ2 + cP1 + . . .+ cPs. Then, by Lemma 3.2, we get

dimLa+b(X ) =
�

c(k+ 2) + 2
2

�

−
�

c(k+ 1) + 1
2

�

− (2k+ 2)
�

c + 1
2

�

=
�

c + 2
2

�

.

�

Proposition 3.5. Let X = aQ1 + bQ2 + bP1 + . . . + bPs ⊂ P2 where a = bk + c, with 0 ≤ c ≤ b − 1, and
s = 2k+ 2. Then,

dimLa+b(X ) = 0.
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Proof. We proceed by induction on b − c. If b − c = 1, then the claim follows from Lemma 3.3. Then, we
assume b − c ≥ 2. The curve C ∈ Lk+1(kQ1 +Q2 + P1 + . . .+ Ps−1) is contained in the base locus of the
linear system. After removing it, we obtain that

dimLb(k+1)+c(X ) = dimLa′+b′(X
′),

where X ′ = a′Q1+ b′Q2+ b′P1+ . . .+ b′Ps−1+ bPs where a′ = a−k and b′ = b−1. Consider the subscheme
X ′′ = a′Q1 + b′Q2 + b′P1 + . . .+ b′Ps−1 + b′Ps. Since c ≤ b− 2= b′ − 1, we conclude by induction that the
linear system La′+b′(X ′′) is empty and, a fortiori, also La′+b′(X ′) is empty. �

Proposition 3.6. Let X = aQ1 + bQ2 + bP1 + . . . + bPs ⊂ P2 where a = bk + c, with 0 ≤ c ≤ b − 1, and
s = 2k. Then,

dimLa+b(X ) =
�

a+ b+ 2
2

�

−
�

a+ 1
2

�

− (2k+ 1)
�

b+ 1
2

�

= (b+ 1)(c + 1).

Proof. We proceed by induction on b− c. If b− c = 1, then a ≡ b− 1 (mod b) and the claim follows from
Lemma 3.3. Let b − c ≥ 2. We consider extra points A1, . . . , Ac+1 where A1 is general and A2, . . . , Ac+1 lie
on the unique curve in the linear system Lk+1(kQ1 +Q2 + P1 + . . .+ Ps +A1). Thus, by Bézout’s Theorem,
C is fixed component for the linear system of curves ofdegree a+ b through X + A1 + . . .+ Ac+1. Hence,

(3.5) dimLa+b(X + A1 + . . .+ Ac+1) = dimLa′+b′(X
′),

where X ′ = a′Q1 + b′Q2 + b′P1 + . . . + b′Ps, with a′ = a − k and b′ = b − 1. Now, a′ = b′k + c with
c ≤ b− 2= b′ − 1. By induction,

(3.6) dimLa′+b′(X
′) = (b′ + 1)(c + 1) = b(c + 1).

Since

(3.7) dimLa+b(X )≤ dimLa+b(X + A1 + . . .+ Ac+1) + (c + 1)

and by (3.5) and (3.6), we get

dimLa+b(X )≤ (b+ 1)(c + 1).

Since the expected dimension is always a lower bound for the actual dimension, we conclude. �

Summarizing all previous results, we obtain the following result.

Theorem 3.7. Let X = aQ1 + bQ2 + bP1 + . . .+ bPs ⊂ P2 with a ≥ b. Then,

HFX (a+ b) =min
§�

a+ b+ 2
2

�

,
�

a+ 1
2

�

+ (s+ 1)
�

b+ 1
2

�ª

,

except for s = 2k+ 1 and a = bk+ c, with 0≤ c ≤ b− 2, where

HFX (a+ b) =
�

a+ b+ 2
2

�

−
�

c + 2
2

�

.

Remark 3.8. In the case b = 2, this result was already proved in [CGG05, Proposition 2.1].
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3.2. The case m > min{a, b}. Let X = aQ1 + bQ2 +mP1 + . . .+mPs ⊂ P2 with a ≥ b and m > b. First,
note that if the linear system La+b(X ) is not empty, then, by Bézout’s Theorem, we have that all the lines
Q1Pi are contained in the base locus with multiplicity at least m− b. If a− s(m− b)≥ b, we have that

dimLa+b(X ) = dimLa′+b(X
′),

with X ′ = a′Q1 + bQ2 + bP1 + . . .+ bPs, where a′ = a − s(m− b). Therefore, this case can be reduced to
the case m= b that we treated in the previous section. Here, we consider the case a− s(m− b)< b.

Proposition 3.9. Let X = aQ1+ bQ2+mP1+ . . .+mPs ⊂ P2 with a ≥ b, m> b and a− s(m− b)< b. Then,
La+b(X ) is empty, except for s = 1, with 0≤ a+ b−m< b, where dimLa+b =

�a+b−m+2
2

�

.

Proof. Assume that a−s(m−b)< 0. Let s′, m′ be the quotient and the reminder, respectively, of the division
between a and m− b, i.e., a = s′(m− b) +m′, with s′ < s and 0≤ m′ < m− b. Then,

dimLa+b(X ) = dimLb(X
′),

where X ′ = 0 ·Q1 + bQ2 + bP1 + . . . + bPs′ + (m − m′)Ps′+1 + mPs′+2 + . . . + mPs. Since m − m′ > b, we
conclude that Lb(X ′) is empty.

Now, we are left with the cases 0≤ a− s(m− b)< b.
If s = 1, we have m ≤ a + b and a < m. By Bézout’s Theorem, we can remove all the lines Q1P1 with

multiplicity m− b and Q2P1 with multiplicity m− b. Then, we get

dimLa+b(X ) = dimL2(a+b−m)((a+ b−m)Q1 + (a+ b−m)Q2 + (a+ b−m)P).

This is non-defective and we get dimLa+b(X ) =
�a+b−m+2

2

�

.
If s ≥ 2, we remove the lines Q1Pi , for i = 1, . . . , s, with multiplicity m− b and we get

La+b(X ) =La′+b(X
′′),

where X ′′ = a′Q1+ bQ2+ bP1+ . . .+ bPs and a′ = a− s(m− b)< b. Since s ≥ 2, it is enough to show that
La′+b(X ′′′), where X ′′′ = a′Q1 + bQ2 + bP1 + bP2, is empty. Assume dimLa′+b(X ′′′) 6= 0. Since the lines
Q2P1,Q2P2 and P1P2 are in the base locus of La′+b(X ′′′) with multiplicity at least b− a′, we need to have
a′ + b ≥ 3(b− a′). Let

b− a′ =

(

2t if b− a′ is even;

2t + 1 if b− a′ is odd.

We remove the lines Q2P1,Q2P2 and P1P2 with multiplicity t and we get

dimLa′+b(X
′′′) = dimLa′+b−3t(X ),

where X = a′Q1 + b′Q2 + b′P1 + b′P2 where b′ = b − 2t. Note that, since a′ + b ≥ 3(b − a′), then
a′ + b− 3t ≥ 0. If b− a′ = 2t, we have a′ = b′ and, since t ≥ 1, dimL2b′−t(X ) = 0. If b− a′ = 2t + 1, we
have a′ = b′ − 1 and dimL2b′−t−1(X ) = 0. This concludes the proof. �

3.3. Bi-graded Hilbert function in extremal bi-degrees. By Lemma 2.1, we can translate our previous
computations to get the expressions for the bi-graded Hilbert function of schemes of general fat points in
P1 × P1 in extremal bi-degrees.

Theorem 3.10. Let a ≥ b and assume m≥ b. Let X= mP1 + . . .+mPs ⊂ P1 × P1. Then,

HFX(a, b) =min
§

(a+ 1)(b+ 1), s
�

m+ 1
2

�

− s
�

m− b
2

�ª
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except if s = 2k+ 1 and a = bk+ c + s(m− b), with c = 0, . . . , b− 2, where

HFX(a, b) = (a+ 1)(b+ 1)−
�

c + 2
2

�

.

Proof. By using the multiprojective-affine-projective method, we need to look at the linear systemLa+b(X )
with X = aQ1 + bQ2 +mP1 + . . .+mPs.

Let a− s(m− b)< b. If s ≥ 2, by Proposition 3.9, dimLa+b(X ) = 0. Since in this case the inequality

(3.8) (a+ 1)(b+ 1)≤ s
�

m+ 1
2

�

− s
�

m− b
2

�

,

holds, we conclude. If s = 1 and a − s(m− b) < 0, again by Proposition 3.9, dimLa+b(X ) = 0. Since the
inequality (3.8) is still true, we conclude. If 0≤ a+ b−m< b, by Proposition 3.9, we have that

dimLa+b(X ) =
�

a+ b−m+ 2
2

�

=
�

c + 2
2

�

.

Now, assume a − s(m− b) ≥ b. As explained in Section 3.2, we may reduce to the case where m = b,
namely,

dimLa+b(X ) = dimLa′+b(X
′),

where X ′ = a′Q1+ bQ2+ bP1+ . . .+ bPs, with a′ = a−s(m− b)≥ b. Hence, by Theorem 3.7, the dimension
of La′+b(X ′) is the maximum between 0 and

�

a− s(m− b) + b+ 2
2

�

−
�

a− s(m− b) + 1
2

�

− (s+ 1)
�

b+ 1
2

�

=

=
�

a+ b+ 2
2

�

−
�

a+ 1
2

�

−
�

b+ 1
2

�

− s
�

m+ 1
2

�

+ s
�

m− b
2

�

=

= (a+ 1)(b+ 1)− s
�

m+ 1
2

�

+ s
�

m− b
2

�

,

except for s = 2k + 1 and a − s(m− b) = bk + c, with 0 ≤ c ≤ b − 1, where the dimension is
�c+2

2

�

. Since
by Lemma 2.1 we have dimL(a,b)(X) = dimLa+b(X ), we conclude. �

Remark 3.11. In [GVT04, Corollary 3.4], the authors proved that, for any row and column, in the notation
of the latter theorem, the bi-graded Hilbert function of X is constant for max(a, b) ≥ sm. Theorem 3.10
improves this result and tells us that the b-th column, for b ≤ m, becomes constant for a ≥ sm−

� sb
2

�

.

Corollary 3.12. Let X be a scheme of s fat points of multiplicity m and in general position in P1×P1. Assume
that a ≥ b and set k =

� s
2

�

. Then, for b ∈ {m−1, m}, the Hilbert function of X in the b-th column is constant
for a ≥ b(k+ 1) + s(m− b)− 1 and equal to the degree of X, i.e., HFX(a, b) = s

�m+1
2

�

.

Proof. It follows from 3.10 by computing the Hilbert function in bi-degrees ((m− 1)(k+ 1) + s− 1, m− 1)
and (m(k+ 1)− 1, m) and checking that it is equal to the degree of X. �

A nice property of 0-dimensional schemes is that their Hilbert function is eventually constant to the degree
of the scheme. Corollary 3.12 gives us lower bounds on the bi-degrees for which the Hilbert function gets
constant. Hence, we are left with a limited unknown region.

Example 3.13. We give an explicit example to describe the situation after Theorem 3.10. Here, we look at
the Hilbert function of 5 random points of multiplicity 5 in P1 × P1. The computation has been done with
the algebra software Macaulay2 [GS]. In the table we underline the defective cases. The shaded region
indicates the area that we are not yet able to compute with our result.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 45 45 45 45

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 59 60 60 60 60 60 60

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 67 69 70 70 70 70 70 70 70 70

5 10 15 20 25 30 35 40 45 50 55 60 65 69 72 74 75 75 75 75 75 75 75 75 75 75

6 12 18 24 30 36 42 48 54 60 65 69 72 74 75 75 75 75 75 75 75 75 75 75 75 75

7 14 21 28 35 42 49 56 63 69 72 74 75 75 75 75 75 75 75 75 75 75 75 75 75 75

8 16 24 32 40 48 56 64 71 74 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

9 18 27 36 45 54 63 71 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

10 20 30 40 50 60 69 74 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

11 22 33 44 55 65 72 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

12 24 36 48 60 69 74 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

13 26 39 52 65 72 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

14 28 42 56 69 74 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

15 30 45 60 72 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

16 32 48 64 74 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

17 34 51 67 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

18 36 54 69 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

19 38 57 70 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75









































































































































































































4. TRIPLE POINTS

In this section, we complete Theorem 3.10 in the case of triple points in P1 × P1. By Lemma 2.1, we want
to compute all the dimensions of the linear systems La+b(X ) where

X = aQ1 + bQ2 + 3P1 + . . .+ 3Ps ⊂ P2.

Accordingly with Remark 2.4, we first focus on the two extremal cases s = s1 and s = s2 where

s1 =
�

(a+ 1) · (b+ 1)
6

�

, s2 =
¡

(a+ 1) · (b+ 1)
6

¤

.

Considering the results of the previous section, we only have to consider the cases with a, b ≥ 4. Due to
technical reasons in our general argument, we prefer to separately consider the cases (a, b) = (4, 4), (5, 4).

Lemma 4.1 (Case (4,4)). Let X = 4Q1+ 4Q2+ 3P1+ . . .+ 3Ps ⊂ P2. Then, for any s, the Hilbert function of
X in degree 8 is as expected, i.e.,

HFX (8) =min {45, 20+ 6s} .

Proof. We need to prove that X imposes independent conditions in degree 8 for s = s1 = 4. Since, for s = 4,
dimL8(X ) = 1, we would have also that L8(X ) is empty for s > 4. Hence, by Lemma 2.2, we conclude.

Let s = 4. By Lemma 2.3, it is enough to prove that, for a generic point A, L8(X +A) is empty. Consider
the unique (irreducible) cubic in the linear system L3(2Q1+Q2+ P1+ . . .+ P4+A). By Bézout’s Theorem,
this cubic is a fixed component of the linear system and

dimL8(X + A) = dimL5(X
′),

with X ′ = 2Q1+3Q2+2P1+. . .+2P4. By Theorem 3.7, we have thatL5(X ′) is empty and we conclude. �

Lemma 4.2 (Case (5,4)). Let X = 5Q1+4Q2+3P1+ . . .+3Ps ⊂ P2. Then, the Hilbert function of X in degree
9 is as expected, i.e.,

HFX (9) =min{55,25+ 6s},
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except for s = 5 where HFX (9) = 54, instead of 55.

Proof. If s = s1 = s2 = 5, we consider the unique (irreducible) cubic C in L3(2Q1 +Q2 + P1 + . . .+ P5). By
Bézout’s Theorem, the curve is contained in the base locus of L9(X ). Then, by [CGG05, Proposition 2.1],
we have

dimL9(X ) = dimL6(3Q1 + 3Q2 + 2P1 + . . .+ 2P5) = 1.

Since the linear system has dimension 1 for s = 5, then L9(X ) is empty for s > 5.
Consider now s = 4. We need to show that dimL9(X ) = 6. Let A1, A2 be two points such that A1 is

general and A2 lies on the unique (irreducible) cubic in L3(2Q1 +Q2 + P1 + . . .+ P4 +A1). By Lemma 2.3,
it is enough to show that dimL9(X + A1 + A2) = 4. By Bézout’s Theorem, the cubic is in the base locus.
Then,

dimL9(X + A1 + A2) = dimL6(X
′),

where X ′ = 3Q1 + 3Q2 + 2P1 + . . .+ 2P4. By [CGG05, Proposition 2.1], we conclude. �

From now on, let a ≥ b ≥ 4 and a+ b ≥ 10. Our computations will be structured as follows.

Step 1: Let r be a general line. We specialize the scheme X to a scheme eX having some of the triple
points with support lying generically on r, but, with suitable degrees in such a way that, by
differential Horace method, the line r and the line Q1Q2 become fixed components and can
be removed. Let T := ResQ1Q2

(Resr(eX )) be the residual scheme.
Step 2: If necessary, we specialize another point Pi on the line r in such a way that the lines r and

Q1Q2 are again fixed components and we can remove them. Let eT such a specialization and
consider W := ResQ1Q2

(Resr(eT )) the residual scheme.
Step 3: The scheme W has a some of the points which are in general position over the line r. Then,

we use induction on b and Lemma 2.5 to conclude.
Our procedure will depend on the congruence class of a + b modulo 5. The reason of this dependency

will be clear during the proof and it will be caused by our particular approach.

Notation. Recalling the constructions of Section 2.3, we denote by D(i)r (P) the 0-dimensional scheme de-
fined by (x i , y), where {x , y} are a regular system of parameters at P such that r is the line y = 0. More in
general, let D(i1,...,im)

r (P) be the 0-dimensional scheme with support at P and such that Tr j
r

�

D(i0,...,im)
r (P)

�

=

D
(i j)
r (P), for any j = 1, . . . , m. We denote by Sr(3P) the slice of the triple point that we want to consider

on the line r.

Lemma 4.3. Let X = aQ1 + bQ2 + 3P1 + . . . + 3Ps ⊂ P2 with s ≥ s1, a ≥ b ≥ 4 and a + b ≥ 10. Let
a+ b = 5h+ c, with 0≤ c ≤ 4, and let

x =

(

h+ 1 for c = 0;

h+ 2 for c = 1,2, 3,4;
y =

(

h− 1 for c = 0;

h− 2 for c = 1,2, 3,4.
.

Let eX be a specialization of X having P1, . . . , Px+y lying generically on a line r and, in cases c = 2, 3,4, having
also Px+y+1 lying on the line r, with the following degrees

deg(Sr(3Pi)) =

(

3 for i = 1, . . . , x;

2 for i = x + 1, . . . , x + y;
deg(Sr(3Px+y+1)) =











1 for c = 2;

2 for c = 3;

3 for c = 4;

Then:

(1) x + y + 1≤ s1 =
�

(a+1)·(b+1)
6

�

;
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(2) dimLa+b(eX ) = dimLa+b−2

�

ResQ1Q2

�

Resr(eX )
�

�

.

(3) ResQ1Q2

�

Resr(eX )
�

= (a− 1)Q1 + (b− 1)Q2 +

+































































2P1 + . . .+ 2Ph+1 + D(3,1)
r (Ph+2) + . . .+ D(3,1)

r (P2h) + 3P2h+1 . . .+ 3Ps, for c = 0;

2P1 + . . .+ 2Ph+2 + D(3,1)
r (Ph+3) + . . .+ D(3,1)

r (P2h) + 3P2h+1 . . .+ 3Ps, for c = 1;

2P1 + . . .+ 2Ph+2 + D(3,1)
r (Ph+3) + . . .+ D(3,1)

r (P2h) + D(3,2)
r (P2h+1) + 3P2h+2 . . .+ 3Ps,

for c = 2;

2P1 + . . .+ 2Ph+2 + D(3,1)
r (Ph+3) + . . .+ D(3,1)

r (P2h) + D(3,1)
r (P2h+1) + 3P2h+2 . . .+ 3Ps,

for c = 3;

2P1 + . . .+ 2Ph+2 + D(3,1)
r (Ph+3) + . . .+ D(3,1)

r (P2h) + 2(P2h+1) + 3P2h+2 . . .+ 3Ps.

for c = 4.

Proof. (i) It is enough to show that (a+1)(b+1)
6 ≥ x + y + 1= 2h+ 1. Since

(a+ 1) · (b+ 1)
6

− (2h+ 1)≥
a(5b− 7)− 7b− 25

30
≥
(b− 4)(5b+ 6)− 1

30
,

then, in case b > 4, we are done. For b = 4, we have a ≥ 6, hence a(5b− 7)− 7b− 25= 13a− 53> 0.
(ii) First, by Bézout’s Theorem, we prove that r is a fixed component for La+b(eX ). Now, for a general

C ∈ La+b(eX ), we have

deg(r ∩ C) = 3x + 2y + deg(Sr(3Px+y+1)) = 5h+ c + 1= a+ b+ 1.

So, we remove the line r. Since in Resr(eX ) the points Q1 and Q2 have still multiplicity a and b, respectively,
the line Q1Q2 is a fixed component for La+b−1

�

Resr(eX )
�

, and we are done.
(iii) Easily follows from the definition of eX . �

Lemma 4.4. Notation as in Lemma 4.3. Denote by T := ResQ1Q2

�

Resr(eX )
�

. Let eT be a specialization of T

such that, in cases c = 1, eT has also Px+y+1 lying generically on the line r, and, in case c = 3,4, eT has also
Px+y+2 lying on the line r, with the following degrees

deg(Sr(3Pi)) =

(

2 for i = 1, . . . , x;

3 for i = x + 1, . . . , x + y;

deg(Sr(3Px+y+1)) =























2 for c = 1;

3 for c = 2;

3 for c = 3;

2 for c = 4.

deg(Sr(3Px+y+2)) =

(

1 for c = 3;

3 for c = 4.

Denote by W := ResQ1Q2

�

Resr(eT )
�

. Then:

(i) for c = 3, 4,

x + y + 2≤ s1 =
�

(a+ 1) · (b+ 1)
6

�

;

(ii) dimLa+b−2(eT ) = dimLa+b−4

�

ResQ1Q2

�

Resr(eT )
�

�

;
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(iii) W = (a− 2)Q1 + (b− 2)Q2 + P1 + . . .+ P2h+

+































3P2h+1 . . .+ 3Ps for c = 0;

D(3,1)
r (P2h+1) + 3P2h+2 . . .+ 3Ps for c = 1;

D(2)r (P2h+1) + 3P2h+2 . . .+ 3Ps for c = 2;

P2h+1 + D(3,2)
r (P2h+2) + 3P2h+3 . . .+ 3Ps for c = 3;

P2h+1 + 2P2h+2 + 3P2h+3 . . .+ 3Ps for c = 4;

and

Resr(W ) = (a− 2)Q1 + (b− 2)Q2 +































3P2h+1 . . .+ 3Ps for c = 0;

P2h+1 + 3P2h+2 . . .+ 3Ps for c = 1;

3P2h+2 . . .+ 3Ps for c = 2;

+D(2)r (P2h+2) + 3P2h+3 . . .+ 3Ps for c = 3;

P2h+2 + 3P2h+3 . . .+ 3Ps for c = 4.

Proof. (i) It is enough to prove that (a+1)(b+1)
6 ≥ x + y + 2= 2h+ 2. Since b ≥ 4,

(a+ 1) · (b+ 1)
6

− (2h+ 2)≥
a(5b− 7)− 7b+ 36− 55

30
≥

5b2 − 14b− 19
30

.

(ii) We prove that r is a fixed component for La+b−2(eT ). Now, for a general C ∈ La+b−2(eT ), we have

deg(r ∩ C) = 2x + 3y + deg(Sr(3Px+y+1)) + deg(Sr(3Px+y+2)) = 5h+ c − 1= a+ b− 1.

So, by Bézout’s Theorem, we may remove the line r. Since in Resr(eT ) the points Q1 and Q2 have multiplicity
a− 1 and b− 1, respectively, we have that the line Q1Q2 is a fixed component of La+b−3

�

Resr(eT )
�

.
(iii) Easily follows from Lemma 4.3(iii) and the definition of eT . �

We are ready to complete our computations in the case of triple points. The final result is the following.

Theorem 4.5. Let X = aQ1 + bQ2 + 3P1 + . . .+ 3Ps ⊂ P2, with a ≥ b ≥ 1. Then,

HFX (a+ b) =min
§�

a+ b+ 2
2

�

,
�

a+ 1
2

�

+
�

b+ 1
2

�

+ 6s
ª

,

as expected, except for

(1) b = 1 and s < 2
5(a+ 1), where HFX (a+ 1) =

�a+1
2

�

+ 1+ 5s;
(2) s odd, say s = 2k+ 1, and

(a) (a, b) = (4k+ 1,2), where HFX (4k+ 3) =
�a+b+2

2

�

− 1;

(b) (a, b) = (3k, 3), where HFX (3k+ 3) =
�a+b+2

2

�

− 1;

(c) (a, b) = (3k+ 1,3), where HFX (3k+ 4) =
�a+1

2

�

+
�b+1

2

�

+ 6s− 1;
(3) s = 5 and (a, b) = (5, 4), where HFX (9) = 54, instead of 55.

Proof. The cases b ≤ 3 and (a, b) = (4,4), (5,4) follow from Theorem 3.7, Theorem 3.10, Lemma 4.1 and
Lemma 4.2, respectively. Let b ≥ 4, a+ b ≥ 10 and set a+ b = 5h+ c, with 0 ≤ c ≤ 4. By Remark 2.4, we
need to show:

• for s = s1, La+b(X ) has dimension as expected, dimLa+b(X ) = (a+ 1)(b+ 1)− 6s1;
• for s = s2, La+b(X ) is empty.
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By the previous lemmas, we reduce to the linear system La+b−4(W ), where W := ResQ1Q2

�

Resr(eT )
�

is as
in Lemma 4.3 and Lemma 4.4. If we prove that, for s = s1, dimLa+b−4(W ) = (a+ 1)(b+ 1)− 6s1 and, for
s = s2, La+b−4(W ) is empty, then, by the semicontinuity of the Hilbert function, we are done.

[CASE s = s1] Recall that, by Lemma 4.3 and Lemma 4.4:

W = (a− 2)Q1 + (b− 2)Q2 + P1 + . . .+ P2h +











































3P2h+1 . . .+ 3Ps, for c = 0;

D(3,1)
r (P2h+1) + 3P2h+2 . . .+ 3Ps, for c = 1;

D(2)r (P2h+1) + 3P2h+2 . . .+ 3Ps, for c = 2;

P2h+1 + D(3,2)
r (P2h+2) + 3P2h+3 . . .+ 3Ps,

for c = 3;

P2h+1 + 2P2h+2 + 3P2h+3 . . .+ 3Ps, for c = 4.

The expected dimension of La+b−4(W ) is

exp. dimLa+b−4(W ) = (a− 1)(b− 1)− 2h− 6(s1 − 2h) + 2c =

= (a+ 1)(b+ 1)− 6s1 − 2(5h+ c) + 10h+ 2c = (a+ 1)(b+ 1)− 6s1.

Thus, we need to prove that, for s = s1, W imposes independent conditions to the curves of degree a+b−4.
We use Lemma 2.5(i). Let

W1 =

(

W − {P1, . . . , P2h} for c = 0, 1,2;

W − {P1, . . . , P2h+1} for c = 3, 4,

that is,

W1 = (a− 2)Q1 + (b− 2)Q2 +































3P2h+1 . . .+ 3Ps1
for c = 0;

D(3,1)
r (P2h+1) + 3P2h+2 . . .+ 3Ps1

for c = 1;

D(2)r (P2h+1) + 3P2h+2 . . .+ 3Ps1
for c = 2;

D(3,2)
r (P2h+2) + 3P2h+3 . . .+ 3Ps1

for c = 3;

2P2h+2 + 3P2h+3 . . .+ 3Ps1
for c = 4.

Claim 1. For s = s1,

• dimLa+b−4(W1 + P1 + · · ·+ P2h−1)> dimLa+b−5(Resr(W1)), for c = 0,1, 2;
• dimLa+b−4(W1 + P1 + · · ·+ P2h)> dimLa+b−5(Resr(W1)), for c = 3, 4.

Proof of Claim 1. By parameter count, we know that the left hand sides are always greater or equal than
(a+1)(b+1)−6s1+1 which is strictly positive, by definition of s1. Since the line Q1Q2 is a fixed component
for La+b−5(Resr(W1)), we also have

dimLa+b−5(Resr(W1)) = dimLa+b−6(ResQ1Q2
(Resr(W1))),

where

ResQ1Q2
(Resr(W1)) = (a− 3)Q1 + (b− 3)Q2 +































3P2h+1 . . .+ 3Ps, for c = 0;

P2h+1 + 3P2h+2 . . .+ 3Ps, for c = 1;

3P2h+2 . . .+ 3Ps, for c = 2;

D(2)r (P2h+2) + 3P2h+3 . . .+ 3Ps, for c = 3;

P2h+2 + 3P2h+3 . . .+ 3Ps, for c = 4.
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Now, we want to prove our claim by induction, but we need to be careful because we might fall in one
of the defective cases we have considered above.

(a) Non-defective case. If we do not fall in one of the defective cases, we have that, by induction and by
observing that general simple points, in the case c = 1, 4, and a general 2-jet, in the case c = 3, impose
independent conditions, we have

dimLa+b−6(ResQ1Q2
(Resr(W1))) =































max {0, (a− 2)(b− 2)− 6(s1 − 2h)} , for c = 0;

max {0, (a− 2)(b− 2)− 6(s1 − 2h) + 5} , for c = 1;

max {0, (a− 2)(b− 2)− 6(s1 − 2h) + 6} , for c = 2;

max {0, (a− 2)(b− 2)− 6(s1 − 2h) + 10} , for c = 3;

max {0, (a− 2)(b− 2)− 6(s1 − 2h) + 11} , for c = 4.

If La+b−6(ResQ1Q2
(Resr(W1))) is empty, the claim is trivial. Otherwise, for c = 0, 1,2,

dimLa+b−4(W1 + P1 + · · ·+ P2h−1)− dimLa+b−6(ResQ1Q2
(Resr(W1)))

≥ (a+ 1)(b+ 1)− 6s1 + 1− (a− 2)(b− 2) + 6(s1 − 2h)−











0 for c = 0;

5 for c = 1;

6 for c = 2;

= 3(a+ b)− 12h− 2−











0 for c = 0;

5 for c = 1;

6 for c = 2;

≥











4 for c = 0;

2 for c = 1;

4 for c = 2;

(4.9)

similarly, for c = 3,4, we obtain

(4.10) dimLa+b−4(W1 + P1 + · · ·+ P2h)− dimLa+b−6(ResQ1Q2
(Resr(W1)))≥

(

3, for c = 3;

5, for c = 4.

In particular, we obtain that the Claim 1 holds under the assumption (a).

(b) b− 3= 1. In this case, we know that we have defect; in particular, we have

dimLa+b−6(ResQ1Q2
(Resr(W1))) =































max {0, (a− 2)(b− 2)− 5(s1 − 2h)} , for c = 0;

max {0, (a− 2)(b− 2)− 5(s1 − 2h) + 4} , for c = 1;

max {0, (a− 2)(b− 2)− 5(s1 − 2h) + 5} , for c = 2;

max {0, (a− 2)(b− 2)− 5(s1 − 2h) + 8} , for c = 3;

max {0, (a− 2)(b− 2)− 5(s1 − 2h) + 9} , for c = 4.
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If La+b−6(ResQ1Q2
(Resr(W1))) is empty, the claim is trivial. Otherwise, for c = 0, 1,2,

dimLa+b−4(W1 + P1 + · · ·+ P2h−1)− dimLa+b−6(ResQ1Q2
(Resr(W1)))

≥ (a+ 1)(b+ 1)− 6s1 + 1− (a− 2)(b− 2) + 5(s1 − 2h)−











0, for c = 0;

4, for c = 1;

5, for c = 2;

= 3(a+ 4)− 10h− 2− s1 −











0 for c = 0;

5 for c = 1;

6 for c = 2;

= 5h−
5(a+ 1)

6
−











2 for c = 0;

3 for c = 1;

1 for c = 2;

≥
5h− 8

6
> 0;

similarly, for c = 3,4, we obtain

dimLa+b−4(W1 + P1+ · · ·+ P2h)− dimLa+b−6(ResQ1Q2
(Resr(W1)))

≥ 5h−
5(a+ 1)

6
−

(

1 for c = 3;

−1 for c = 4;
≥

5h− 6
6

> 0.

In particular, we obtain that the Claim 1 holds under the assumption (b).

(c) b − 3 6= 1 and algebraic defect (for the definition, see Section 2) equal to 1. In these cases, since the
algebraic defect is equal to 1, we may adapt the computations to obtain (4.9) and (4.10). In particular, we
obtain

dimLa+b−4(W1 + P1 + · · ·+ P2h−1)− dimLa+b−6(ResQ1Q2
(Resr(W1)))≥































3, for c = 0;

1, for c = 1;

3, for c = 2;

2, for c = 3;

4, for c = 4.

Hence, Claim 1 holds also in this case.

(d) b − 3 6= 1 and algebraic defect equal to 3. In this case, we cannot adapt the previous computations.
This defective case would appear only for (a − 3, b − 3) = (3k, 3), for some positive integer k, and if
(a+1)(b+1)−6s1+1= 1. Therefore, only if 7(3k+4) = 6s1. This is a contradiction, cause the left hand
side is clearly not divisible by 3.

Therefore, Claim 1 is proved.

Claim 2. For s = s1, W1 gives independent conditions to the curves of degree a+ b− 4.

Proof of Claim 2. Let

W 1 = (a− 2)Q1 + (b− 2)Q2 +

(

3P2h+1 . . .+ 3Ps for c = 0,1, 2;

3P2h+2 + 3P2h+3 . . .+ 3Ps for c = 3,4.

Since W 1 ⊃W1, by Lemma 2.3, it is enough to check that the claim holds for W 1.
Again, we need to be careful because we might fall in a defective case. We consider them separately.
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(a) (a − 2, b − 2) = (3k + 1, 3), for some positive integer k. In this case, we have that s1 = 3k + 4 and
3k+ 8= 5h+ c. Therefore, if c = 0,1, 2,

s1 − 2h< 2k+ 1⇐⇒ k >











1 for c = 0;

3 for c = 1;

5 for c = 2;

and, if c = 3, 4,

s1 − 2h− 1< 2k+ 1⇐⇒ k >

(

0 for c = 3;

2 for c = 4.

Therefore, for large values of k, we do not risk to fall in the defective cases. Hence, we are left with the cases
(a, b) = (6, 5), (9, 5), (12, 5) where it can be easily checked by specialization that W1 impose independent
conditions.

(b) (a− 2, b− 2) 6= (3k+ 1,3). In this case, observe that, if c = 0, 1,2,

(a− 1)(b− 1)− 6(s1 − 2h) = (a+ 1)(b+ 1)− 6s1 + 2h− 2c ≥ 2h− 2c ≥ 0;

and, if c = 3, 4,

(a− 1)(b− 1)− 6(s1 − 2h− 1) = (a+ 1)(b+ 1)− 6s1 + 2h− 2c + 6

≥ 2h− 2c + 6≥ 2.

Therefore, since in the defective cases, we have that the dimension of the linear system is equal to 1, then
we are left to only check the case where c = 2, h= 2 and (a+1)(b+1)−6s1 = 0. Since it has to be a+b = 12
and the defective cases (a− 2, b− 2) = (3k, 3), (5, 4) do not satisfy this condition, a fortiori, we have that
that b−2= 2 and, consequently, (a, b) = (8,4) with s1 = 7. However, in this case, (a+1)(b+1)−6s1 6= 0
and we obtain a contradiction.

Therefore, Claim 2 is proved.

Now by Lemma 2.5(i), with W1 = Z , and Claim 1 it follows that, for s = s1,

dimLa+b−4(W ) =

(

dimLa+b−4(W1)− 2h for c = 0, 1,2;

dimLa+b−4(W1)− 2h− 1 for c = 3, 4.

By Claim 2 and easy computation, it follows that dimLa+b−4(W ) = (a+ 1)(b+ 1)− 6s1.
Hence, CASE s = s1 is proved.

[CASE s = s2] We need to prove that, for s = s2, the linear system La+b−4(W ) is empty.
If s2 = s1 the conclusion follows from the previous case. So, assume that s2 > s1. We use Lemma 2.5(ii).

Let

W2 =

(

W − {P1, . . . , P2h} for c = 0, 1,2;

W − {P1, . . . , P2h+1} for c = 3, 4;

that is,

W2 = (a− 2)Q1 + (b− 2)Q2 +































3P2h+1 . . .+ 3Ps2
for c = 0;

D(3,1)
r (P2h+1) + 3P2h+2 . . .+ 3Ps2

for c = 1;

D(2)r (P2h+1) + 3P2h+2 . . .+ 3Ps2
for c = 2;

D(3,2)
r (P2h+2) + 3P2h+3 . . .+ 3Ps2

for c = 3;

2P2h+2 + 3P2h+3 . . .+ 3Ps2
for c = 4.
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Claim 3. For s = s2, the linear system La+b−5(Resr(W2)) is empty.

Proof of Claim 3. As in the proof of Claim 1, since the line Q1Q2 is a fixed component forLa+b−5(Resr(W2)),
we have

dimLa+b−5(Resr(W2)) = dimLa+b−6(ResQ1Q2
(Resr(W2))),

where

ResQ1Q2
(Resr(W2)) = (a− 3)Q1 + (b− 3)Q2 +































3P2h+1 . . .+ 3Ps2
for c = 0;

P2h+1 + 3P2h+2 . . .+ 3Ps2
for c = 1;

3P2h+2 . . .+ 3Ps2
for c = 2;

D(2)r (P2h+2) + 3P2h+3 . . .+ 3Ps2
for c = 3;

P2h+2 + 3P2h+3 . . .+ 3Ps2
for c = 4.

Note that in ResQ1Q2
(Resr(W2)) there are s′ triple points, where

s′ =











s2 − 2h for c = 0;

s2 − 2h− 1 for c = 1, 2;

s2 − 2h− 2 for c = 3, 4.

Again, we need to be careful to distinguish when we fall in the defective cases.

(a) (a− 3, b− 3) is not a defective case. In this case, we have (recall that a+ b = 5h+ c)

(a− 2)(b− 2)− 6s′ = (a+ 1)(b+ 1)− 3(a+ b) + 3− 6s′ =

= (a+ 1)(b+ 1)− 6s2 − 3h− 3c + 3+











0 for c = 0;

6 for c = 1,2;

12 for c = 3,4;

≤ −3h+











3 for c = 0;

6 for c = 1,2;

6 for c = 3,4.

Since h≥ 2, we have (a− 2)(b− 2)− 6s′ ≤ 0 and Claim 3 holds under assumption (a).

(b) b−3= 1. In this case, we know that triple points given 5 condition instead of 6. Since a+ b = 5h+ c,
we have s2 =

 

5(5h+c−3)
6

£

. Therefore,

2(a− 2)− 5s′ = −5
¡

5(5h+ c − 3)
6

¤

+ 10h+ 2c − 12+











10h for c = 0;

10h+ 5 for c = 1,2;

10h+ 10 for c = 3,4;

=































−5
�h+3

6

�

+ 3 for c = 0;

−5
�h+2

6

�

+ 5 for c = 1;

−5
�h+1

6

�

+ 2 for c = 2;

−5
�h

6

�

+ 2 for c = 3;

−5
�h+5

6

�

+ 6 for c = 4.

Since h≥ 2, we have (a− 2)(b− 2)− 5s′ ≤ 0 and Claim 3 holds under assumption (b).

(c) b− 3= 2. In this case, we have that s2 = s1 and it follows from CASE s = s1.
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(d) (a − 3, b − 3) = (3k, 3). If k = 1, we have (a, b) = (6, 6), s2 = 9 and s′ = 4 > 2k + 1. Hence, in this
case Claim 3 holds. Assume now k ≥ 2. Then, a + b ≥ 15 and h ≥ 3. Moreover, since a = 3k + 3 and
a+ b = 5h+ c, we obtain k = 5h+c−9

3 . Therefore,

s′ − (2k+ 1) =
¡

7(5h+ c − 5)
6

¤

− 2h−
10h+ 2c − 15

3
+











0 for c = 0;

−1 for c = 1,2;

−2 for c = 3,4;

≥
3h+ 3c − 5

6
+











0 for c = 0;

−1 for c = 1, 2;

−2 for c = 3, 4;

=

(

3h−5
6 for c = 0, 2,4;

3h−8
6 for c = 1, 3.

Hence, since h≥ 3, we have that s′ > 2k+ 1 and Claim 3 holds under assumption (d).

(e) b− 3= 3 and a− 3= 3k+ 1. Since a = 3k+ 4 and a+ b = 5h+ c, we get k = 5h+c−10
3 . Therefore,

s′ − (2k+ 1) =
¡

35h+ 7c − 35
6

¤

− 2h−
10h+ 2c − 17

3
+











0 for c = 0;

−1 for c = 1,2;

−2 for c = 3,4;

≥
3h+ 3c − 1

6
+











0 for c = 0;

−1 for c = 1, 2;

−2 for c = 3, 4;

=

(

3h−1
6 for c = 0, 2,4;

3h−4
6 for c = 1, 3.

Hence, since h≥ 2, we have that s′ > 2k+ 1 and Claim 3 holds under assumption (e).

(f) (a−3, b−3) = (5,4). In this case, we have h= 3, c = 0 and s2 = 12. Hence, s′ = s2−2h= 6, so we do
not fall in the defective case and Claim 3 holds under assumption (f).

Hence, Claim 3 is completely proved.

Claim 4. For s = s2,

dimLa+b−4(W2)≤

(

2h for c = 0,1, 2;

2h+ 1 for c = 3,4.

Proof of Claim 4. Since a+ b = 5h+ c, the expected dimension of La+b−4(W2) is

exp. dimLa+b−4(W2) =































max{0, (a− 1)(b− 1)− 6(s2 − 2h) + 0} for c = 0;

max{0, (a− 1)(b− 1)− 6(s2 − 2h) + 2} for c = 1;

max{0, (a− 1)(b− 1)− 6(s2 − 2h) + 4} for c = 2;

max{0, (a− 1)(b− 1)− 6(s2 − 2h) + 7} for c = 3;

max{0, (a− 1)(b− 1)− 6(s2 − 2h) + 9} for c = 4;

=

(

max{0, (a+ 1)(b+ 1)− 6s2 + 2h} for c = 0, 1,2;

max{0, (a+ 1)(b+ 1)− 6s2 + 2h+ 1} for c = 3, 4.

Now, if h> 2 or if h= 2 and c = 3,4, we have that (a+ 1)(b+ 1)− 6s2 ≥ −5. Therefore,

exp. dimLa+b−4(W2) = (a+ 1)(b+ 1)− 6s2 +

(

2h for c = 0,1, 2;

2h+ 1 for c = 3,4.
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If h = 2 and c = 0, 1,2, since we assume s2 > s1, we are left only with the following cases: (a, b) =
(6,4), (7,4), (6,6), (8,4). Among these cases, only for (a, b) = (4,4) we have that

(a+ 1)(b+ 1)− 6s2 + 4= 49− 54+ 4= −1< 0;

but, since (a−2, b−2) = (4, 4) is a non-defective case, we have dimLa+b−4(W2) = 0. Therefore, excluding
this case, we have

dimLa+b−4(W2)≤ exp. dimLa+b−4(W2)≤

(

2h for c = 0,1, 2;

2h+ 1 for c = 3,4;

because, since s2 > s1, we have (a+ 1)(b+ 1)− 6s2 ≤ −1. Hence, Claim 4 is proved.

Now, by Claim 3, Claim 4 and Lemma 2.5(ii), with W2 = Z , it follows that also CASE s = s2 is proved. �

Therefore, as a direct corollary of Theorem 4.5, we obtain the following formulas for the complete
bi-graded Hilbert function for schemes of triple points.

Theorem 4.6. Let X= 3P1 + . . .+ 3Ps ⊂ P1 × P1. Then,

HFX(a, b) =min {(a+ 1)(b+ 1), 6s} ,

except for

(1) b = 1 and s < 2
5(a+ 1), where HFX(a, 1) = 5s;

(2) s odd, say s = 2k+ 1, and
(a, b) = (4k+ 1,2), where HFX(4k+ 1, 2) = (a+ 1)(b+ 1)− 1;
(a, b) = (3k, 3), where HFX(3k, 3) = (a+ 1)(b+ 1)− 1;
(a, b) = (3k+ 1,3), where HFX(3k+ 1, 3) = 6s− 1;

(3) s = 5 and (a, b) = (5, 4), where HFX (5, 4) = 29.

Proof. It directly follows from Lemma 2.1 and Theorem 4.5. �

APPENDIX A. Macaulay2 CODE

In this appendix, we implement our results with the algebra software Macaulay2 [GS]. With the standard
tools of the software, we would need to first construct the ideal of fat points by using random coordinates
and then we would compute the Hilbert function with the implemented command hilbertFunction.
These computations, since they involve Gröbner basis, might not even finish in reasonable time. Here is a
possible code to try this.

-- INPUT: s = number of points;
-- m = multiplicity;
-- a,b = bi-degree;
S = QQ[x_0,x_1,y_0,y_1, Degrees => {{1,0},{1,0},{0,1},{0,1}}]
I = intersect for i from 1 to s list

(ideal(random(QQ)*x_0 + random(QQ)*x_1,
random(QQ)*y_0+random(QQ)*y_1))^m;

hilbertFunction({a,b},I)
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Our main results Theorem 3.10 and Theorem 4.5 allow us to give a numerical function which computes
the Hilbert function of schemes of general fat points in P1 × P1 very quickly, even for large numbers,
where the usual functions cannot be efficient due to the Gröbner basis computation. Here is a possible
implementation of this in the language of the algebra software Macaulay2 [GS].

-- Function which returns
-- the binomial coefficient (m choose k) if m is greater or equal
-- than k and 0 otherwise;
Bin = method();
Bin (ZZ,ZZ) := (m,k) -> (if m >= k then return binomial(m,k) else return 0)

-- INPUT: s = number of points;
-- m = multiplicity;
-- a,b = bi-degree
-- OUTPUT: (if m >= b or m <= 3) Hilbert function in bi-degree (a,b) of
-- a scheme of s general fat points of multiplicity m
multiFatPoints = method()
multiFatPoints (ZZ,ZZ,ZZ,ZZ) := (m,s,a,b) -> (

if (m < min(a,b) and m > 3) then (
return "ERROR: multiplicity has to be m >= min(a,b) or m <= 3");

A := max(a,b); B := min(a,b);
if (m >= B) then (

if s % 2 == 1 then (
k := s // 2;
if (0 <= A-B*k-s*(m-B) and A-B*k-s*(m-B) <= B-2) then (

c := A - B*k - s*(m-B);
return ((A+1)*(B+1) - Bin(c+2,2))

) else (
return min((A+1)*(B+1) , s*Bin(m+1,2) - s*Bin(m-B,2)))

) else (
return min((A+1)*(B+1) , s*Bin(m+1,2) - s*Bin(m-B,2)))

) else (
if ( s == 5 and A == 5 and B == 4) then (

return 54
) else (

return min((A+1)*(B+1) , s*Bin(m+1,2) - s*Bin(m-B,2)))
)

)

APPENDIX B. OTHER DEFECTIVE CASES

We give an infinite family of defective cases for any multiplicity that is not covered from our previous
computations.

Proposition B.1. Let X = aQ1+ bQ2+mP1+ . . .+mPs, where a = (2m−1)(m−2), b = m+1, m≥ 2, and
s = 4m− 7. Then, we have that La+b(X ) is defective with defect 1.

Proof. The expected dimension is

exp. dimLa+b(X ) = (a+ 1)(b+ 1)− s
�

m+ 1
2

�

=
(m− 3)(m− 4)

2
.
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Now, consider the unique curve C of degree 2m−3 passing simply through all the points Q2, P1, . . . , Ps and
with multiplicity 2m− 4 at Q1. Then, for a general C ′ ∈ La+b(X ), we have

deg(C ∩ C ′) = (2m− 1)(m− 2)(2m− 4) + (m+ 1) + (4m− 7)m,

deg(C)deg(C ′) = ((2m− 1)(m− 2) + (m+ 1))(2m− 3).

Hence, we get that the curve C is contained in the base locus of La+b(X ) because

deg(C ∩ C ′)− deg(C)deg(C ′) = (4m− 7)m− (m+ 1)(2m− 4)− (2m− 1)(m− 2) = 2.

Then, we can remove it and we obtain

dimLa+b(X ) = dimLa′+b′(X
′),

where X ′ = a′Q1 + b′Q2 + (m− 1)P1 + . . .+ (m− 1)Ps, with a′ = a− (2m− 4) = 3m− 6+ (m− 3)(2m− 4)
and b′ = m. The expected dimension is

(a′ + 1)(b′ + 1)− s
�

m
2

�

=
(m− 3)(m− 4)

2
+ 1.

Therefore, it is enough to prove the following claim.

Claim. Let m ≥ 3. Consider X i = aiQ1 + biQ2 +mi P1 + . . .+mi Ps, where ai = 3m− 6+ i(2m− 4), bi =
3+ i, mi = 2+ i and s = 4m− 7, for any 0≤ i ≤ m− 3. Then, Lai+bi

(X i) has dimension as expected.

In particular, this concludes the proof because we have that X ′ coincides with Xm−3.

Proof of Claim. We proceed by induction on i. If i = 0, we conclude by [CGG05, Proposition 2.1]. Let
0 < i ≤ m− 3. Consider again the curve C and let eX i = X i + A1 + . . .+ Am−3−i , where the points Ai ’s are
general on the curve C . The expected dimension of Lai+bi

(eX i) is still positive. In fact, since m≥ i + 3,

exp. dimLai+bi
(eX i) = exp. dimLai+bi

(X i)− (m− 3− i) =

=
�

1+ i(m−
7
2
)−

1
2

i2
�

− (m− 3− i)≥
�

i
2

�

+ 1.

Now, for a general element C ′ ∈ Lai+bi
(eX i).

deg(C ∩ C ′) = ai(2m− 4) + bi + (4m− 7)mi +m− 3− i =

= (2m− 3)(ai + bi) + 1= deg(C)deg(C ′) + 1.

Hence, the curve C is a fixed component and can be removed. Then, by induction, we have

dimLai+bi
(X i)≤dimLai+bi

(eX i) + (m− 3− i) = dimLai−1+bi−1
(X i−1) + (m− 3− i) =

= (ai−1 + 1)(bi−1 + 1)− (4m− 7)
�

mi−1 + 1
2

�

+ (m− 3− i) =

= exp. dimLai+bi
(X i).

This concludes the proof. �
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