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Automating Sized-Type Inference for Complexity Analysis
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This paper introduces a new methodology for the complexity analysis of higher-order functional programs,

which is based on three ingredients: a powerful type system for size analysis and a sound type inference

procedure for it, a ticking monadic transformation, and constraint solving. Noticeably, the presented method-

ology can be fully automated, and is able to analyse a series of examples which cannot be handled by most

competitor methodologies. This is possible due to the choice of adopting an abstract index language and index

polymorphism at higher ranks. A prototype implementation is available.
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1 INTRODUCTION
Programs can be incorrect for very different reasons. Modern compilers are able to detect many

syntactic errors, including type errors. When the errors are semantic, namely when the program is

well-formed but does not compute what it should, traditional static analysis methodologies like

abstract interpretation or model checking could be of help. When a program is functionally correct

but performs quite poorly in terms of space and runtime behaviour, even defining the property of

interest is very hard. If the units of measurement in which program performances are measured are

close to the physical ones, the problem can only be solved if the underlying architecture is known,

due to the many transformation and optimisation layers which are applied to programs. One then

obtains WCET techniques [Wilhelm et al. 2008], which indeed need to deal with howmuch machine

instructions cost when executed by modern architectures (including caches, pipelining, etc.), a task

which is becoming even harder with the current trend towards multicore architectures.

As an alternative, one can analyse the abstract complexity of programs. As an example, one can

take the number of evaluation steps to normal form, as a measure of the underlying program’s

execution time. This can be accurate if the actual time complexity of each instruction is kept low, and
has the advantage of being independent from the specific hardware platform executing the program

at hand, which only needs to be analysed once. A variety of verification techniques have indeed

been defined along these lines, from type systems to program logics, to abstract interpretation,

see [Aspinall et al. 2007; Albert et al. 2013; Sinn et al. 2014; Hoffmann et al. 2017].

If we restrict our attention to higher-order functional programs, however, the literature becomes

sparser. There seems to be a trade-off between allowing the user full access to the expressive

power of modern, higher-order programming languages, and the fact that higher-order parameter

passing is a mechanism which intrinsically poses problems to complexity analysis: how big is a

certain (closure representation of a) higher-order parameter? If we focus our attention on automatic

techniques for the complexity analysis of higher-order programs, the literature only provides very
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43:2 Martin Avanzini and Ugo Dal Lago

few proposals [Vasconcelos et al. 2008; Avanzini et al. 2015; Hoffmann et al. 2017], which we will

discuss in Section 2 below.

One successful approach to automatic verification of termination properties of higher-order

functional programs is based on sized types [Hughes et al. 1996], and has been shown to be quite

robust [Barthe et al. 2008]. In sized types, a type carries not only some information about the

kind of each object, but also about its size, hence the name. This information is then exploited

when requiring that recursive calls are done on arguments of strictly smaller size, thus enforcing
termination. Estimating the size of intermediate results is also a crucial aspect of complexity analysis,

but up to now the only attempt of using sized types for complexity analysis is due to Vasconcelos

et al. [2008], and confined to space complexity. If one wants to be sound for time analysis, size

types need to be further refined, e.g., by turning them into linear dependently types [Dal Lago et al.

2011].

In this paper, we take a fresh look at sized types by introducing a new type system which is sub-

stantially more expressive than the traditional one. This is possible due to the presence of arbitrary
rank index polymorphism: functions that take functions as their argument can be polymorphic in

their size annotation. The introduced system is then proved to be a sound methodology for size
analysis, and a type inference algorithm is given and proved sound and relatively complete. Finally,

the type system is shown to be amenable to time complexity analysis by a ticking monadic trans-

formation. A prototype implementation is available, see below for more details. More specifically,

this paper’s contributions can be summarized as follows:

· We show that size types can be generalised so as to encompass a notion of index polymorphism,

in which (higher-order subtypes of) the underlying type can be universally quantified. This

allows for a more flexible treatment of higher-order functions. Noticeably, this is shown to

preserve soundness (i.e., subject reduction), the minimal property one expects from such a type

system. On the one hand, this is enough to be sure that types reflect the size of the underlying

program. On the other hand, termination is not enforced anymore by the type system, contrarily

to, e.g., the system of Hughes et al. [1996]. In particular, we do not require that recursive calls

are made on arguments of smaller size. All this is formulated on a language of applicative

programs, introduced in Section 4, and will be developed in Section 5. Nameless functions (i.e.,

λ-abstractions) are not considered for brevity, as these can be easily lifted to the top-level.

· The type inference problem is shown to be (relatively) decidable by giving in Section 6 an

algorithm which, given a program, produces in output candidate types for the program, together

with a set of integer index inequalities which need to be checked for satisfiability. This style

of results is quite common in similar kinds of type systems. What is uncommon though, at

least in the context of sized types, is that we do not restrict ourselves to a particular algebra

in which sizes are expressed. Indeed, many of the more advanced sized type systems are

restricted to the successor algebra [Blanqui et al. 2005; Abel et al. 2016]. This is often sufficient

in the context of termination analysis, where one is interested in determining which recursion

parameters decrease. Here, the programs runtime will be expressed in this algebra, and thus a

more expressive algebra is required.

· The polymorphic sized type system, by itself, does not guarantee any complexity-theoretic

property on the typed program, except for the size of the output being bounded by a function

on the size of the input, itself readable from the type. Complexity analysis of a program P can

however be seen as a size analysis of another program P̂ which computes not only P, but its
complexity. This transformation, called the ticking transformation, has already been studied

in similar settings [Danner et al. 2015], but this study has never been automated. The ticking

transformation is formally introduced in Section 7.
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· Contrarily to many papers from the literature, we spent considerable efforts on devising a

system that is susceptible to automation with current technology. Moreover, we have taken care

not only of constraint inference, but also of constraint solving. To demonstrate the feasibility of

our approach, we have built a prototype which implements type inference, resulting in a set of

constraints. To deal with the resulting constraints, we have also built a constraint solver on top

of state-of-the-art SMT solvers. All this, together with some experimental results, are described

in detail in Section 8.

An extended version with more details is available as supplementary material.

2 A BIRD EYE’S VIEW ON INDEX-POLYMORPHIC SIZED TYPES
In this section, we will motivate the design choices we made when defining our type system through

some examples. This can also be taken as a gentle introduction to the system for those readers

which are familiar with functional programming and type theory. Our type system shares quite

some similarities with the seminal type system introduced by Hughes et al. [1996] and similar ones

[Vasconcelos et al. 2008; Barthe et al. 2008], but we try to keep presentation as self-contained as

possible.

Basics. We work with functional programs over a fixed set of inductive datatypes, e.g. Nat for

natural numbers and List α for lists over elements of type α . Each such datatype is associated

with a set of typed constructors, below we will use the constructors 0 :: Nat, Succ :: Nat → Nat for

naturals, and the constructor [ ] :: ∀α . List α and the infix constructor (:) :: ∀α . α → List α →
List α for lists. Sized types refine each such datatype into a family of datatypes indexed by

natural numbers, their size. E.g., to Nat and List α we associate the families Nat0, Nat1, Nat2, . . .
and List0 α , List1 α , List2 α , . . . , respectively. An indexed datatype such as Listn Natm then

represents lists of length n, over naturals of sizem.

A function f will then be given a polymorphic type ∀α⃗ . ∀⃗i . τ → ζ . Whereas the variables α⃗

range over types, the variables i⃗ range over sizes. Datatypes occurring in the types τ and ζ will be

indexed by expressions over the variables i⃗ . E.g., the append function can be attributed the sized

type ∀α . ∀ij . Listi α → Listj α → Listi+j α .
Soundness of our type-system will guarantee that when append is applied to lists of length n and

m respectively, it will yield a list of size n +m, or possibly diverge. In particular, our type system is

not meant to guarantee termination, and complexity analysis will be done via the aforementioned

ticking transformation, to be described later. As customary in sized types, we will also integrate a

subtyping relation τ ⊑ ζ into our system, allowing us to relax size annotations to less precise ones.

This flexibility is necessary to treat conditionals where the branches are attributed different sizes,

or, to treat higher-order combinators which are used in multiple contexts.

Our type system, compared to those from the literature, has its main novelty in polymorphism,

but is also different in some key aspects, addressing intensionality but also practical considerations

towards type inference. In the following, we shortly discuss the main differences.

Canonical Polymorphic Types. We allow polymorphism over size expressions, but put some

syntactic restrictions on function declarations: In essence, we disallow non-variable size annotations

directly to the left of an arrow, and furthermore, all these variables must be pairwise distinct.

We call such types canonical. The first restriction dictates that e.g. half :: ∀i .Nat2·i → Nati
has to be written as half :: ∀i .Nati → Nati/2. The second restriction prohibits e.g. the type

declaration f :: ∀i .Nati → Nati → τ , rather, we have to declare f with a more general type

∀ij .Nati → Natj → τ ′. The two restrictions considerably simplify the inference machinery when

dealing with pattern matching, and pave the way towards automation. Instead of a complicated

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 43. Publication date: September 2017.



43:4 Martin Avanzini and Ugo Dal Lago

1 rev :: ∀α . ∀ij . Listi α → Listj α → Listi+j α
2 rev [] ys = ys
3 rev (x : xs) ys = rev xs (x : ys)
4 reverse :: ∀α . ∀i . Listi α → Listi α
5 reverse xs = rev xs []

Fig. 1. Sized type annotated tail-recursive list reversal function.

unification based mechanism, a matching mechanism suffices. Unlike in [Hughes et al. 1996], where

indices are formed over naturals and addition, we keep the index language abstract. This allows for

more flexibility, and ultimately we can capture more programs. Indeed, having the freedom of not

adopting a fixed index language is known to lead towards completeness [Dal Lago et al. 2011].

Polymorphic Recursion over Sizes. Type inference in functional programming languages, such

as Haskell or OCaml, is restricted to parametric polymorphism in the form of let-polymorphism.

Recursive definitions are checked under a monotype, thus, types cannot change between recursive

calls. Recursive functions that require full parametric polymorphism [Mycroft et al. 1984] have to

be annotated in general, as type inference is undecidable in this setting.

Let-polymorphism poses a significant restriction in our context, because sized types considerably

refine upon simple types. Consider for instance the usual tail-recursive definition of list reversal

depicted in Figure 1. With respect to the annotated sized types, in the body of the auxiliary function

rev defined on line 3, the type of the second argument to rev will change from Listj α (the

assumed type of ys) to Listj+1 α (the inferred type of x : ys). Consequently, rev is not typeable
under a monomorphic sized type. Thus, to handle even such very simple functions, we will have to

overcome let-polymorphism, on the layer of size annotations. To this end, conceptually we allow

also recursive calls to be given a type polymorphic over size variables. This is more general than

the typing rule for recursive definitions found in more traditional systems [Hughes et al. 1996;

Barthe et al. 2008].

Higher-ranked Polymorphism over Sizes. In order to remain decidable, classical type inference

systems work on polymorphic types in prenex form ∀α⃗ .τ , where τ is quantifier free. In our context,

it is often not enough to give a combinator a type in prenex form, in particular when the combinator

uses a functional argument more than once. All uses of the functional argument have to be given

then the same type. In the context of sized types, this means that functional arguments can be

applied only to expressions whose attributed size equals. This happens for instance in recursive

combinators, but also non-recursive ones such as the function twice f x = f ( f x ). A strong

type-system would allow us to type the expression twice Succ with a sized type Natc → Natc+2.
A (specialised) type in prenex form for twice, such as

twice :: ∀i . (Nati → Nati+1) → Nati → Nati+2 ,

would immediately yield the mentioned sized type for twice Succ. However, we will not be able to
type twice itself, because the outer occurrence of f would need to be typed as Nati+1 → Nati+2,
whereas the type of twice dictates that f has type Nati → Nati+1.

The way out is to allow polymorphic types of rank higher than one when it comes to size variables,

i.e. to allow quantification of size variables to the left of an arrow at arbitrary depth. Thus, we can

declare

twice :: ∀i . (∀j .Natj → Natj+1) → Nati → Nati+2 .

As above, this allows us to type the expression twice Succ as desired. Moreover, the inner quantifier

permits the two occurrences of the variable f in the body of twice to take types Nati → Nati+1
and Nati+1 → Nati+2 respectively, and thus twice is well-typed.
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1 foldr :: ∀αβ . ∀jkl . (∀i . α → Listi β → Listi+j β ) → Listk β → Listl α → Listl ·j+k β
2 foldr f b [] = b
3 foldr f b (x : xs) = f x (foldr f b xs)

4 product :: ∀αβ . ∀ij . Listi α → Listj β → Listi ·j (α × β )
5 product ms ns = foldr (λ m ps. foldr (λ n. (:) (m,n)) ps ns) [] ms

Fig. 2. Sized type annotated program computing the cross-product of two lists.

A Worked Out Example. We conclude this section by giving a nontrivial example. The sized

type annotated program is given in Figure 2. The function product computes the cross-product

[ (m,n) | m ∈ ms,n ∈ ns ] for two given listsms and ns . It is defined in terms of two folds. The

inner fold appends, for a fixed elementm, the list [ (m,n) | n ∈ ns ] to an accumulator ps , the outer
fold traverses this function over all elementsm fromms .
In a nutshell, checking that a function f is typed correctly amounts to checking that all its

defining equations are well-typed, i.e. under the assumption that the variables are typed according

to the type declaration of f, the right-hand side of the equation has to be given the corresponding

return-type. Of course, all of this has to take pattern matching into account. Let us illustrate this on

the recursive equation of foldr given in Line 3 in Figure 2. Throughout the following, we denote by

s :τ that the term s has type τ . To show that the equation is well-typed, let us assume the following

types for arguments: f :∀i . α → Listi β → Listi+j β , b : Listk β , x :α and xs : Listm α for

arbitrary size-indices j,k,m. Under these assumptions, the left-hand side has type List(m+1) ·j+k β ,
taking into account that the recursion parameter x : xs has sizem + 1. To show that the equation is

well-typed, we verify that the right-hand side can be attributed the same sized type.

1. We instantiate the polymorphic type of foldr and derive

foldr : (∀i . α → Listi β → Listi+j β ) → Listk β → Listm α → Listm ·j+k β ;

2. from this and the above assumptions we get foldr f b xs : Listm ·j+k β ;
3. by instantiating the quantified size variable i in the assumed type of f with the index term

m · j + k we get f :α → Listm ·j+k β → List(m ·j+k )+j β ;
4. from the last two steps we finally get f x (foldr f b xs ) : List(m+1) ·j+k β .
We will not explain the type checking of the remaining equations, but revisit this example in

Section 8.

3 ON RELATEDWORK
Since the first inception in the seminal paper of Hughes et al. [1996], the literature on sized types

has grown to a considerable extent. Indeed, various significantly more expressive systems have

been introduced, with the main aim to enlarge the class of typable (and thus proved terminating)

programs. For instance, Blanqui et al. [2005] introduced a novel sized type system on top of the

calculus of algebraic construction.
Notably, it has been shown that for size indices over the successor algebra, type checking is

decidable [Blanqui et al. 2005]. The system is thus capable of expressing additive relations between

sizes. In the context of termination analysis, where one would like to statically detect that a

recursion parameter decreases in size, this is sufficient. In this line of research falls also more recent

work of Abel et al. [2016], where a novel sized type system for termination analysis on top of Fω is

proposed. Noteworthy, this system has been integrated in the dependently typed language Agda.
Type systems related to sized types have been introduced and studied not only in the context of

termination analysis, but also for size and complexity analysis of programs. One noticeable example

is the series of work by Shkaravska et al. [2009], which aims at size analysis but which is limited to

first-order programs. Also Crary et al. [2000] use types, like here, to express the runtime of functions.
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However, the system is inherently semi-automatic. Related to this is also the work by Danielsson

et al. [2008], whose aim is again complexity analysis, but which is not fully automatable and limited

to linear bounds. If one’s aim is complexity analysis of higher-order functional programs, achieving

a form of completeness is indeed possible by linear dependent types [Dal Lago et al. 2011, 2014].

While the front-end of this verification machinery is fully-automatable [Dal Lago et al. 2013], the

back-end is definitely not, and this is the reason why this paper should be considered a definite

advance over this body of work. Our work is also related to that of ?, which uses a combination

of runtime and size analysis to reason about the complexity of functional programs expressed as

interaction nets.

Our work draws inspiration from Danner et al. [2015]. In this work, the complexity analysis of

higher-order functional programs, defined in a system akin to Gödel’s T enriched with inductive

types, is studied. A ticking transformation is used to instrument the programwith a clock, recurrence

relations are then extracted from the ticked version that express the complexity of the input program.

Conceptually, our ticking transformation is identical to the one defined by Danner et al., and differs

only in details to account for the peculiarities of the language that we are considering. In particular,

our simulation theorem, Theorem 7.3, has an analogue in [Danner et al. 2015]. The proof in the

present work is however more delicate, as our language admits arbitrary recursion and programs

may thus very well diverge. To our best knowledge, no attempts have been made so far to automate

solving of the resulting recurrences.

In contrast, Hoffmann et al. refine in a series of works the methodology of Jost et al. [2010]

based on Tarjan’s amortised resource analysis. This lead to the development of RAML [Hoffmann et al.

2012], a fully fledged automated resource analysis tool. Similar to the present work, the analysis is

expressed as a type system. Data types are annotated by potentials, inference generates a set of
linear constraints which are then solved by an external tool. This form of analysis can not only deal

with non-linear bounds [Hoffmann et al. 2011], but it also demonstrates that type based systems are

relatively stable under language features such as parallelism [Hoffmann et al. 2015] or imperative

features [Hoffmann et al. 2015]. In more recent work [Hoffmann et al. 2017], the methodology

has been lifted to the higher-order case and RAML can now interface with Inria’s OCaml compiler.

Noteworthy, some of the peculiarities of this compiler are taken into account. The overall approach

is in general incomparable to our methodology. Whilst it seems feasible, our method neither takes

amortisation into account nor does our prototype interface with a industrial strength compiler. On

the other hand, our system can properly account for closures, whereas inherent to the methodology

underlying RAML, closures can only be dealt with in a very restricted form. We return to this point

in Section 8 within our experimental assessment.

There are also connections to the work of Avanzini et al. [2015], where a complexity preserving

transformation from higher-order to first-order programs is proposed. This transformation works

by a form of control-flow guided defunctionalisation. Furthermore, a variety of simplification

techniques, such as inlining and narrowing, are employed to make the resulting first-order program

susceptible to an automated analysis. The complete procedure has been implemented in the tool

HoCA, which relies on the complexity analyser TCT [Avanzini et al. 2016] to analyse the resulting

first-order program. Unlike for our system, it is unclear whether the overall method can be used to

derive precise bounds.

4 APPLICATIVE PROGRAMS AND SIMPLE TYPES
We restrict our attention to a small prototypical, strongly typed functional programming language.

For the sake of simplifying presentation, we impose a simple, monomorphic, type system on

programs, which does not guarantee anything except a form of type soundness. We will only later

in this paper introduce sized types proper. Our theory can be extended straightforwardly to an
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ML-style polymorphic type setting. Here, such an extension would only distract from the essentials.

Indeed, our implementation (described in Section 8) allows polymorphic function definitions.

Statics. Let B denote a finite set of base types B, C, . . . . Simple types are inductively generated

from B ∈ B:

(simple types) τ , ρ, ξ ::= B | τ × ρ | τ → ρ .

We follow the usual convention that→ associates to the right. Let X denote a countably infinite

set of variables, ranged over by metavariables like x, y. Furthermore, let F and C denote two

disjoint sets of symbols, the set of functions and constructors, respectively, all pairwise distinct
with elements from X. Functions and constructors are denoted in teletype font. We keep the

convention that functions start with a lower-case letter, whereas constructors start with an upper-

case letter. Each symbol s ∈ X ∪ F ∪ C has a simple type τ , and when we want to insist on that,

we write sτ instead of just s . Furthermore, each symbol sτ1→···→τn→ρ ∈ F ∪ C is associated with a

natural number ar(s ) ≤ n, its arity. The set of terms, patterns, values and data values over functions
f ∈ F , constructors C ∈ C and variables x ∈ X is inductively generated as follows. Here, each term

receives implicitly a type, in Church style. Below, we employ the usual convention that application

associates to the left.

(terms) s, t ::= xτ variable
| fτ function
| Cτ constructor
| (sτ→ρ tτ )ρ application
| (sτ , t ρ )τ×ρ pair constructors
| (let (xτ , yρ ) = sτ×ρ in t ξ )ξ pair destructor;

(patterns) p,q ::= xτ | Cτ1→···τn→B pτ1
1
· · ·pτnn ;

(values) u,v ::= Cτ1→···→τn→τ uτ1
1
· · ·uτnn

| fτ1→···→τm→τm+1→τ uτ1
1
· · ·uτmm

| (uτ ,vρ )τ×ρ ;

(data values) d ::= CB1→···→Bn+1 d1 · · ·dn .

The presented operators are all standard, except the pair destructor let (x, y) = s in t which binds

the variables x and y to the two components of the result of s in t . The set of free variables FVar(s )
of a term s is defined in the usual way. If FVar(s ) = ∅, we call s ground. A term s is called linear, if
each variable occurs at most once in s . A substitution θ is a finite mapping from variables xτ to

terms sτ . The substitution mapping x⃗ = x1, . . . , xn to s⃗ = s1, . . . , sn , respectively, is indicated with

{s1, . . . , sn/x1, . . . , xn } or {⃗s/x⃗} for short. The variables x⃗ are called the domain of θ . We denote by

sθ the application of θ to s . Let-bound variables are renamed to avoid variable capture.

A program P over functions F and constructors C defines each function f ∈ F through a finite

set of equations lτ = rτ , where l is of the form f p1 · · ·par(f ) . We put the usual restriction on

equations that each variable occurs at most once in l , i.e. that l is linear, and that the variables of the
right-hand side r are all included in l . To keep the semantics short, we do not impose any order on

the equations. Instead, we require that left-hand sides defining f are all pairwise non-overlapping.

This ensures that our programming model is deterministic.

Some remarks are in order before proceeding. As standard in functional programming, only

values of base type can be destructed by pattern matching. In a pattern, a constructor always needs

to be fully applied. We deliberately disallow the destruction of pairs through pattern matching.
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43:8 Martin Avanzini and Ugo Dal Lago

This would unnecessarily complicate some key definitions in later sections. Instead, a dedicated

destructor let (x, y) = s in t is provided. We also excluded λ-abstractions from our language, for

brevity, as these can always be lifted to the top-level. Similarly, conditionals and case-expressions

would not improve upon expressivity.

Dynamics. We impose a call-by-value semantics on programs P. Evaluation contexts are defined
according to the following grammar:

E ::= 2τ | (Eτ→ρ sτ )ρ | (sτ→ρ Eτ )ρ | (Eτ , sρ )τ×ρ | (sτ ,Eρ )τ×ρ | (let (xτ , yρ ) = Eτ×ρ in sξ )ξ .

As with terms, type annotations will be omitted from evaluation contexts whenever this does not

cause ambiguity. With E[sτ ] we denote the term obtained by replacing the hole 2τ
in E by sτ .

The one-step call-by-value reduction relation −→P, defined over ground terms, is then given as the

closure over all evaluation contexts, of the following two rules:

f p1 · · · pn = r ∈ P

(f p1 · · · pn ){u⃗/x⃗} −→P r {u⃗/x⃗} let (x, y) = (u,v ) in t −→P t {u,v/x, y}

We denote by −→
∗
P the transitive and reflexive closure, and likewise, −→

ℓ
P denotes the ℓ-fold composi-

tion of −→P.

Notice that reduction simply gets stuck if pattern matching in the definition of f is not exhaustive.
We did not specify a particular reduction order, e.g., left-to-right or right-to-left. Reduction itself is

thus non-deterministic, but this poses no problem since programs are non-ambiguous: not only
are the results of a computation independent from the reduction order, but also reduction lengths

coincide.

Proposition 4.1. All normalising reductions of s have the same length and yield the same result,
i.e. if s −→m

P u and s −→n
R v thenm = n and u = v .

To define the runtime-complexity of P, we assume a single entry point to the program via a first-
order function mainB1→···→Bk→Bn

, which takes as input data values and also produces a data value

as output. The (worst-case) runtime-complexity of P then measures the reduction length of main in

the sizes of the inputs. Here, the size |d | of a data value is defined as the number of constructor in d .
Formally, the runtime-complexity function of P is defined as the function rcP : N × · · · × N→ N∞:

rcP (n1, . . . ,nk ) := sup{ℓ | ∃d1, . . . ,dk . main d1 · · · dk −→
ℓ
P s and |di | ⩽ ni } ..

We emphasise that the runtime-complexity function defines a cost model that is invariant to

traditional models of computation, e.g., Turing machines [Dal Lago et al. 2009; Avanzini et al. 2010].

5 SIZED TYPES AND THEIR SOUNDNESS
This section is devoted to introducing the main object of study of this paper, namely a sized type

system for the applicative programs that we introduced in Section 4. We have tried to keep the

presentation of the relatively involved underlying concepts as simple as possible.

5.1 Indices
As a first step, we make the notion of size index, with which we will later annotate data types,

precise. Let G denote a set of first-order function symbols, the index symbols. Any symbol f ∈ G is

associated with a natural number ar(f), its arity. The set of index terms is generated over a countable
infinite set of index variables i ∈ V and index symbols f ∈ G .

(index terms) a,b ::= i | f (a1, . . . ,aar(f) ) .
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We denote by Var(a) ⊂ V the set of variables occurring in a. Substitutions mapping index variables

to index terms are called index substitutions. With ϑ we always denote an index substitution. We

adopt the notions concerning term substitutions to index substitutions from the previous section.

Throughout this section,G is kept fixed.Meaning is given to index terms through an interpretation
J , that maps every k-ary f ∈ G to a (total) and weakly monotonic function JfKJ : Nar(f) → N.
We suppose that G always contains a constant 0, a unary symbol s, and a binary symbol + which

we write in infix notation below. These are always interpreted as zero, the successor function and

addition, respectively. Our index language encompasses the one of Hughes et al. [1996], where

linear expressions over natural numbers are considered. The interpretation of an index term a,
under an assignment α : V → N and an interpretation J , is defined recursively in the usual way:

JiKα
J

:= α (i ) and Jf (a1, . . . ,ak )KαJ := JfKJ (Ja1KαJ , . . . , Jak K
α
J
). We define a ≤J b if JaKα

J
≤ JbKα

J

holds for all assignments α . The following lemma collects useful properties of the relation ≤J .

Lemma 5.1.

1. The relation ≤J is reflexive, transitive and closed under substitutions, i.e. a ≤J b implies aϑ ≤J
bϑ .

2. If a ≤J b then c{a/i} ≤J c{b/i} for each index term c .
3. If a ≤J b then a{0/i} ≤J b.
4. If a ≤J b and i < Var(a) then a ≤J b{c/i} for every index term c .

5.2 Sized Types Subtyping and Type Checking
The set of sized types is given by annotating occurrences of base types in simple types with index

terms a, possibly introducing quantification over index variables. More precise, the sets of (sized)
monotypes, (sized) polytypes and (sized) types are generated from base types B, index variables i⃗ and
index terms a as follows:

(monotypes) τ , ζ ::= Ba | τ × ζ | ρ → τ , (polytypes) σ ::= ∀⃗i . ρ → τ , (types) ρ ::= τ | σ .

Types Ba are called indexed base types. We keep the convention that the arrow binds stronger than

quantification. Thus in a polytype ∀⃗i . ρ → τ the variables i⃗ are bound in ρ and τ . We will sometimes

write a monotype τ as ∀ϵ . τ . This way, every type ρ can given in the form ∀⃗i . τ . The skeleton of

a type ρ is the simple type obtained by dropping quantifiers and indices. The sets FVar+ (·) and
FVar− (·), of free variables occurring in positive and negative positions, respectively, are defined
in the natural way. The set of free variables in ρ is denoted by FVar(ρ). We consider types equal

up to α-equivalence. Index substitutions are extended to sized types in the obvious way, using

α-conversion to avoid variable capture.

We denote by ρ ·⩾ τ that the monotype τ is obtained by instantiating the variables quantified in

ρ with arbitrary index terms, i.e. if ρ = ∀⃗i .ζ then τ = ζ {a⃗/⃗i} for some index terms a⃗. Notice that by
our convention τ = ∀ϵ . τ , we have τ ·⩾ τ for every monotype τ .

The subtyping relation ⊑J is given in Figure 3a. It depends on the interpretation of size indices,

but otherwise is defined in the expected way. Subtyping inherits the following properties from the

relation ≤J , see Lemma 5.1.

Lemma 5.2.

1. The subtyping relation is reflexive, transitive and closed under index substitutions.
2. If a ≤J b then ρ{a/i} ⊑J ρ{b/i} for all index variables i < FVar− (ρ).

We are interested in certain linear types, namely those in which any index term occurring in

negative position is in fact a fresh index variable.
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a ≤J b

Ba ⊑J Bb
(⊑B)

τ1 ⊑J τ3 τ2 ⊑J τ4

τ1 × τ2 ⊑J τ3 × τ4
(⊑×)

ρ2 ⊑J ρ1 τ1 ⊑J τ2

ρ1 → τ1 ⊑J ρ2 → τ2
(⊑→)

ρ2 ·⩾ τ2 τ1 ⊑J τ2 i⃗ < FVar(ρ2)

∀⃗i .τ1 ⊑J ρ2
(⊑∀)

(a) Subtyping rules.

ρ ·⩾ τ

Γ, x : ρ ⊢J x : τ
(Var)

s ∈ F ∪ C s :: ρ ρ ·⩾ τ

Γ ⊢J s : τ
(Fun)

Γ ⊢J s : τ1 × τ2 Γ, x1 :τ1, x2 :τ2 ⊢J t : τ

Γ ⊢J let (x1, x2) = s in t : τ
(Let)

Γ ⊢J s1 : τ1 Γ ⊢J s2 : τ2

Γ ⊢J (s1, s2) : τ1 × τ2
(Pair)

Γ ⊢J s : (∀⃗i .ζ1) → τ Γ ⊢J t : ζ2 ζ2 ⊑J ζ1 i⃗ < FVar(Γ↾FVar(t ) )

Γ ⊢J s t : τ
(App)

(b) Typing rules

Fig. 3. Typing and subtyping rules, depending on the semantic interpretation J .

Definition 5.3 (Canonical Sized Type, Sized Type Declaration).
1. A monotype τ is canonical if one of the following alternatives hold:

· τ = Ba is an indexed base type;

· τ = ζ1 × ζ2 for two canonical monotypes ζ1, ζ2;
· τ = Bi → ζ with i < FVar− (ζ );
· τ = σ → ζ for a canonical polytype σ and canonical type ζ with FVar(σ ) ∩ FVar− (ζ ) = ∅.

2. A polytype σ = ∀⃗i .τ is canonical if τ is canonical and FVar− (τ ) ⊆ {⃗i}.
3. To each function symbol s ∈ F ∪ C, we associate a closed and canonical type ρ whose skeleton

coincides with the simple type of s . We write s :: ρ and call s :: ρ the sized type declaration of s .

Canonicity ensures that pattern matching can be resolved with a simple substitution mechanism,

rather than a sophisticated unification based mechanism that takes the semantic interpretation J

into account. Canonical types enjoy the following substitution property.

Lemma 5.4. Let ρ be a canonical type and suppose that i < FVar− (ρ). Then ρ{a/i} is again canonical.

In Figure 3b we depict the typing rules of our sized type system. A (typing) context Γ is a mapping

from variables x to types ρ so that the skeleton of ρ coincides with the simple type of x. We denote

the context Γ that maps variables xi to ρi (1 ≤ i ≤ n) by x1 : ρ1, . . . , xn : ρn . The empty context is

denoted by ∅. We lift set operations as well as the notion of (positive, negative) free variables and

application of index substitutions to contexts in the obvious way. We denote by Γ↾X the restriction
of context Γ to a set of variables X ⊆ X. The typing statement Γ ⊢J s : τ states that under the

typing contexts Γ, the term s has the monotype τ , when indices are interpreted with respect to J .

The typing rules from Figure 3b are fairly standard. Symbols s ∈ F ∪ C ∪ X are given instance

types of their associated types. This way we achieve the desired degree of polymorphism outlined

in Section 2. Subtyping and generalisation are confined to function application, see rule (App).

Here, the monotype ζ2 of the argument term t is weakened to ζ1, the side-conditions put on index

variables i⃗ allow then a generalisation of ζ1 to ∀⃗i .ζ1, the type expected by the function s . This way,
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f :: ∀⃗i .τ

∅ ⊢FP f : τ
(FpFun)

Γ ⊢FP t : ρ → τ

Γ ⊎ {x : ρ} ⊢FP t x : τ
(FpAppVar)

(FVar(Γ1) ∪ FVar(τ )) ∩ (FVar(Γ2) ∪ FVar(Ba )) = ∅
Γ1 ⊢FP s : Bi → τ Γ2 ⊢FP t : Ba s < X

Γ1 ⊎ Γ2 ⊢FP s t : τ {a/i}
(FpAppNVar)

Fig. 4. Rules for computing the footprint of a term.

the complete system becomes syntax directed. We remark that subtyping is prohibited in the typing

of the left spine of applicative terms.

Since our programs are equationally-defined, we need to define when equations are well-typed.

In essence, we will say that a program P is well-typed, if, for all equations l = r , the right-hand side

r can be given a subtype of l . Due to polymorphic typing of recursion, and since our typing relation

integrates subtyping, we have to be careful. Instead of giving l an arbitrary derivable type, we will

have to give it a most general type that has not been weakened through subtyping. Put otherwise,

the type for the equation, which is determined by l , should precisely relate to the declared type of

the considered function.

To this end, we introduce the restricted typing relation, the footprint relation, depicted in Figure 4.

The footprint relation makes essential use of canonicity of sized type declaration and the shape

of patterns. In particular, x1 : ρ1, . . . , xn : ρn ⊢FP s : τ implies that all ρi and τ are canonical. The

footprint relation can be understood as a function that, given a left-hand side f p1 · · · pk , results
in a typing context Γ and monotype τ . This function is total, for two reasons. First of all, the

above lemma confirms that the term s in rule (FpAppNVar) is given indeed a canonical type of

the stated form. Secondly, the disjointness condition required by this rule can always be satisfied

via α-conversion. It is thus justified to define footprint(f p1 · · · pk ) := (Γ,τ ) for some (particular)

context Γ and type τ that satisfies Γ ⊢FP f p1 · · · pk : τ .

Definition 5.5. Let P be a program, such that every function and constructor has a declared sized

type. We call a rule l = r from P well-typed under the interpretation J if

Γ ⊢FP l : τ =⇒ Γ ⊢J r : ζ for some monotype ζ with ζ ⊑J τ ,

holds for all contexts Γ and types τ . The program P is well-typed under the interpretation J if all its

equations are.

5.3 Subject Reduction
It is more convenient to deal with subject reduction when subtyping is not confined to function

application. We thus define the typability relation Γ ⊢Je s : τ . It is defined in terms of all the rules

depicted in Figure 3b, together with the following subtyping rule.

Γ ⊢Je s : ζ ζ ⊑J τ

Γ ⊢Je s : τ
(SubType)

As a first step towards subject reduction, we clarify that the footprint correctly accounts for pattern

matching. Consider an equation l = r ∈ P from a well-typed program P, where Γ ⊢FP l : ζ . If
the left-hand side matches a term s of type τ , i.e. s = lθ , then the type τ is an instance of ζ , or a
supertype thereof. Moreover, the images of θ can all be typed as instances of the corresponding

types in the typing context Γ. More precise:
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Lemma 5.6 (Footprint Lemma). Let s = f p1 · · · pn be a linear term over variables x1, . . . , xm ,
and let θ = {t1, . . . , tm/x1, . . . , xm } be a substitution. If ⊢Je sθ : τ then there exist a context Γ =
x1 : ρ1, . . . , xm : ρm and a type ζ such that Γ ⊢FP s : ζ holds. Moreover, for some index substitution ϑ
we have ζϑ ⊑J τ and ⊢Je tn : τnϑ , where ρn = ∀⃗i .τn (1 ⩽ n ⩽m).

The following constitutes the main lemma of this section, the substitution lemma:

⊢Je sn : τn (1 ≤ n ≤ m) and x1 :τ1, . . . , xm :τm ⊢
J
e s : τ ⇒ ⊢Je s{s1, . . . , sm/x1, . . . , xm } : τ .

Indeed, we prove a generalisation.

Lemma 5.7 (Generalised Substitution Lemma). Let s be a term with free variables x1, . . . , xm ,
let Γ be a context over x1, . . . , xm , and let ϑ be an index substitution. If Γ ⊢Je s : τ for some type τ and
⊢
J
e xnθ : τnϑ holds for the type τn with Γ(xn ) = ∀⃗i .τn (1 ⩽ n ⩽m), then ⊢Je sθ : τϑ .

The combination of these two lemmas is almost all we need to reach our goal.

Theorem 5.8 (Subject Reduction). Suppose P is well-typed under J . If ⊢Je s : τ and s −→P t then
⊢
J
e t : τ .

But what does Subject Reduction tells us, besides guaranteeing that types are preserved along

reduction? Actually, a lot: If ⊢
J
e s : Ba , we are now sure that the evaluation of s , if it terminates,

would lead to a value of size at most JaKJ . Of course, this requires that we give (first-order) data-
constructors a suitable sized type. To this end, let us call a sized type additive if it is of the form
∀⃗i . Bi1 → · · · → Bik → Bs(i1+· · ·+ik ) .

Corollary 5.9. Suppose P is well-typed under the interpretation J , where data-constructors are
given an additive type. Suppose the first-order function main has type ∀⃗i .Bi1 → · · · → Bik → Ba . Then
for all inputs d1, . . . ,dn , if main d1 · · · dk reduces to a data value d , then the size of d is bounded by
s ( |d1 |, . . . , |dk |), where s is the function s (i1, . . . , ik ) = JaKα

J
.

As we have done in the preceding examples, the notion of additive sized type could be suited

so that constants like the list constructor [ ] are attributed with a size of zero. Thereby, the sized

type for lists would reflect the length of lists. Note that the corollary by itself, does not mean much

about the complexity of evaluating s . We will return to this in Section 7.

6 SIZED TYPES INFERENCE
The kind of rich type discipline we have just introduced cannot be enforced by requiring the

programmer to annotate programs with size types, since this would simply be too burdensome.

Studying to which extent types can be inferred, then, is of paramount importance.

We will now describe a type inference procedure that, given a program, produces a set of first-

order constraints that are satisfiable iff the term is size-typable. At the heart of this procedure lies

the idea that we turn the typing system from Figure 3 into a system that, instead of checking, collects

all constraints a ≤ b put on indices. These constraints are then resolved in a second stage. The so

obtained solution can then be used to reconstruct a typing derivation with respect to the system

from Figure 3. As with any higher-ranked polymorphic type system, the main challenge here lies in

picking suitable types instances from polymorphic types. In our system, this concerns rules (Var)

and (Fun). Systems used in practice, such as the one of Peyton Jones et al. [2007], use a combination

of forward and backward inference to determine suitable instantiated types. Still, the resulting

inference system is incomplete. In our sized type system, higher-ranked polymorphism is confined

to size indices. This, in turn, allows us to divert the choice to the solving stage, thereby retaining

relative completeness. To this end, we introduce meta variables E in our index language. Whereas
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in the typing system from Figure 3 index variables i are instantiated by concrete index terms a,
our inference system uses a fresh meta variable E as placeholder for a. A suitable assignments to E
will be determined in the constraint solving stage. A minor complication arises as we will have

to introduce additional constraints i <sol E on meta variables E that condition the set of terms E
may represent. This is necessary to deal with the side conditions on free variables, exhibited by the

subtyping relation as well as in typing the rule for application. All of this is made precise in the

following.

6.1 First- and Second-order Constraint Problems
As a first step towards inference, we introduce metavariables to our index language. Let Y be

a countably infinite set of second-order index variables, which stand for arbitrary index terms.

Second-order index variables are denoted by E, F , . . . . The set of second-order index terms is then
generated over the set of index variables i ∈ V , the set of second-order index variables E ∈ Y and

index symbols f ∈ G as follows.

(second-order index terms) e, f ::= i | E | f (e1, . . . , ear(f) ) .

We denote by Var(e ) ⊂ V the set of (usual) index variables, and by SoVar(e ) ⊂ Y the set of

second-order index variables occurring in e .

Definition 6.1 (Second-order Constraint Problem, Model). A second-order constraint problem Φ
(SOCP for short) is a set of (i) inequality constraints of the form e ≤ f and (ii) occurrence constraints
of the form i <sol E. Let υ be a substitution from second-order index variables to first-order index

terms a, i.e. SoVar(a) = ∅. Furthermore, let J be an interpretation of G . Then (J ,υ) is a model of
Φ, in notation (J ,υ) ⊨ Φ, if (i) eυ ≤J f υ holds for all inequalities e ≤ f ∈ Φ; and (ii) i < Var(υ (E))
for each occurrence constraint i <sol E.

We say thatΦ is satisfiable if it has a model (J ,υ). The termυ (E) is called the solution of E. We call

Φ a first-order constraint problem (FOCP for short) if none of the inequalities e ≤ f contain a second-

order variable. Note that satisfiability of a FOCP Φ depends only on the semantic interpretation J

of index functions. It is thus justified that FOCPs Φ contain no occurrence constraints. We then

write J ⊨ Φ if J models Φ.
SOCPs are very much suited to our inference machinery. In contrast, satisfiability of FOCPs is a

re-occurring problem in various fields. To generate models for SOCPs, we will reduce satisfiability

of SOCPs to the one of FOCPs. This reduction is in essence a form of skolemization.

Skolemization. Skolemization is a technique for eliminating existentially quantified variables

from a formula. A witness for an existentially quantified variable can be given as a function in the

universally quantified variables, the skolem function. We employ a similar idea in our reduction

of satisfiability from SOCPs to FOCPs, which substitutes second-order variables E by skolem term
fE (⃗i ), for a unique skolem function fE , and where the sequence of variables i⃗ over-approximates the

index variables of possible solutions to E. The over-approximation of index variables is computed

by a simple fixed-point construction, guided by the observation that a solution of E contains wlog.

an index variable i only when (i) i is related to E in an inequality of the SOCP Φ and (ii) the SOCP

does not require i <sol E. Based on these observations, skolemization is formally defined as follows.

Definition 6.2. Let Φ be a SOCP.

1. For each second-order variable F of Φ, we define the sets SV
Φ,≤
F ⊂ V of index variables

related to F by inequalities as the least set satisfying, for each (e ≤ f ) ∈ Φ with F ∈ SoVar( f ),
(i) Var(e ) ⊆ SVΦ,≤

F ; and (ii) SV
Φ,≤
E ⊆ SV

Φ,≤
F whenever E occurs in e . The set of skolem

variables for F is then given by SV
Φ
F := SV

Φ,≤
F \ {i | (i <sol F ) ∈ Φ}.
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2. For each second-order variable E of Φ, let fE be a fresh index symbol, the skolem function for

E. The arity of fE is the cardinality of SV
Φ
E . The skolem substitution υΦ is given by υΦ (E) :=

fE (i1, . . . , ik ) where SV
Φ
E = {i1, . . . , ik }.

3. We define the skolemization of Φ by skolemize(Φ) := {eυΦ ≤ f υΦ | e ≤ f ∈ Φ}.

Note that the skolem substitution υΦ satisfies by definition all occurrence constraints of Φ. Thus
skolemization is trivially sound: J ⊨ skolemize(Φ) implies (J ,υΦ) ⊨ Φ. Concerning completeness,

the following lemma provides the central observation. Wlog. a solution to E contains only variables

of SV
Φ
E :

Lemma 6.3. Let Φ be a SOCP with model (J ,υ). Then there exists a restricted second-order substi-
tution υr such that (J ,υr ) is a model of Φ and υr satisfies Var(υr (E)) ⊆ SVΦ

E for each second-order
variable E of Φ.

Proof. The restricted substitution υr is obtained from υ by substituting in υ (E) zero for all

non-skolem variables i < SVΦ
E . From the assumption that (J ,υ) is a model of Φ, it can then be

shown that eυr ≤J f υr holds for each inequality (e ≤ f ) ∈ Φ, essentially using the inequalities

depicted in Lemma 5.1. As the occurrence constraints are also satisfied under the new model by

definition, the lemma follows. □

Theorem 6.4 (Skolemisation — Soundness and Completeness).

1. Soundness: If J ⊨ skolemize(Φ) then (J ,υΦ) ⊨ Φ holds.
2. Completeness: If (J ,υ) ⊨ Φ then ˆJ ⊨ skolemize(Φ) holds for an extension ˆJ of J to skolem

functions.

Proof. It suffices to consider completeness. Suppose (J ,υ) ⊨ Φ holds, where wlog. υ satisfies

Var(υ (E)) ⊆ SVΦ
E for each second-order variable E ∈ SoVar(Φ) by Lemma 6.3. Let us extend

the interpretation J to an interpretation
ˆJ by defining JfEK ˆJ

(i1, . . . , ik ) := Jυ (E)K
J
, where

SV
Φ
E = {i1, . . . , ik }, for all E ∈ SoVar(Φ). By the assumption on υ, ˆJ is well-defined. From the

definition of
ˆJ , it is then not difficult to conclude that also ( ˆJ ,υΦ) is a model ofΦ, and consequently,

J is a model of skolemize(Φ). □

6.2 Constraint Generation
We now define a function obligations that maps a program P to a SOCP Φ. If (J ,υ) is a model

of Φ, then P will be well-typed under the interpretation J . Throughout the following, we allow

second-order index terms to occur in sized types. If a second-order variable occurs in a type ρ, we
call ρ a template type. The function obligations is itself defined on the two statements Φ ⊢ST τ ⊑ ζ
and Φ; Γ ⊢I s : τ that are used in the generation of constraints resulting from the subtyping and

the typing relation, respectively. The inference rules are depicted in Figure 5. These are in one-

to-one correspondence with those of Figure 3. The crucial difference is that rule (⊑B-I) simply

records a constraint a ≤ b, whereas the corresponding rule (⊑B) in Figure 3a relies on the semantic

comparison a ≤J b. Instantiation of polytypes is resolved by substituting second-order variables, in

rule (Var-I) and (Fun-I). For a sequence of index variables i⃗ = i1, . . . , im and sequence of monotype

τ⃗ = τ1, . . . ,τn , we use the notation i⃗ <sol τ⃗ to denote the collection of occurrence constraints

ik <sol E for all 1 ≤ k ≤ m and E ∈ SoVar(τl ), 1 ≤ l ≤ n. Occurrence constraints are employed in

rules (⊑∀-I) and (App-I) to guarantee freshness of the quantified index variables also with respect

to solutions to second-order index variables.

Notice that the involved rules are again syntax directed. Consequently, a derivation of Φ; Γ ⊢I s : τ
naturally gives rise to a procedure that, given a context Γ and term s , yields the SOCPΦ and template
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{a ≤ b} ⊢ST Ba ⊑ Bb
(⊑B-I)

Φ1 ⊢ST τ1 ⊑ τ3 Φ2 ⊢ST τ2 ⊑ τ4

Φ1,Φ2 ⊢ST τ1 × τ2 ⊑ τ3 × τ4
(⊑×-I)

Φ1 ⊢ST ρ2 ⊑ ρ1 Φ2 ⊢ST τ1 ⊑ τ2

Φ1,Φ2 ⊢ST ρ1 → τ1 ⊑ ρ2 → τ2
(⊑→-I)

E⃗ fresh Φ ⊢ST τ1 ⊑ τ2{E⃗/j⃗} i⃗ < FVar(∀j⃗ .τ2)

Φ, i⃗ <sol τ1, i⃗ <sol τ2 ⊢ST ∀⃗i .τ1 ⊑ ∀j⃗ .τ2
(⊑∀-I)

(a) Subtyping rules.

E⃗ fresh

∅; Γ, x : ∀⃗i .τ ⊢I x : τ {E⃗/⃗i}
(Var-I)

x ∈ F ∪ C s :: ∀⃗i .τ E⃗ fresh

∅; Γ ⊢I s : τ {E⃗/⃗i}
(Fun-I)

Φ1; Γ ⊢I s : τ1 × τ2 Φ2; Γ, x1 :τ1, x2 :τ2 ⊢I t : τ

Φ1,Φ2; Γ ⊢I let (x1, x2) = s in t : τ
(Let-I)

Φ1; Γ ⊢I s1 : τ1 Φ2; Γ ⊢I s2 : τ2

Φ1,Φ2; Γ ⊢I (s1, s2) : τ1 × τ2
(Pair-I)

Φ1; Γ ⊢I s : (∀⃗i .ζ1) → τ Φ2; Γ ⊢I t : ζ2 Φ3 ⊢ST ζ2 ⊑ ζ1 i⃗ < FVar(Γ↾FVar(t ) )

Φ1,Φ2,Φ3, i⃗ <sol ζ1, i⃗ <sol Γ↾FVar(t ) ; Γ ⊢I s t : τ
(App-I)

(b) Typing rules

Fig. 5. Type inference rules, generating a second-order constraint solving problem.

monotype τ , modulo renaming of second-order variables. By imposing an order on how second-

order variables are picked in the inference of Φ; Γ ⊢I s : τ , the resulting SOCP and template type

become unique. The function infer(Γ, s ) := (Φ,τ ) defined this way is thus well-defined. In a similar

way, we define the function subtypeOf (τ , ζ ) := Φ, where Φ is the SOCP with Φ ⊢ST τ ⊑ ζ .

Definition 6.5 (Constraint Generation). For a program P we define

obligations(P) = {check(Γ, r ,τ ) | l = r ∈ P and footprint(l ) = (Γ,τ )} ,

where check(Γ, s,τ ) = Φ1 ∪ Φ2 for (Φ1, ζ ) = infer(Γ, s ) and Φ2 = subtypeOf (ζ ,τ ).

6.3 Soundness and Relative Completeness
We will now give a series of soundness and completeness results that will lead us to the main

result about type inference, namely Corollary 6.9 below. In essence, we show that a derivation of

Φ ⊢ST τ ⊑ ζ (and Φ; Γ ⊢I s : τ ) together with a model (J ,υ) ⊨ Φ can be turned into a derivation of

τυ ⊑J ζυ (and Γυ ⊢J s : τυ), and vice versa.

Lemma 6.6. Subtyping inference is sound and complete, more precise:
1. Soundness: If Φ ⊢ST τ ⊑ ζ holds for two template types τ , ζ then τυ ⊑J ζυ holds for every model

(J ,υ) of Φ.
2. Completeness: If τυ ⊑J ζυ holds for two template types τ and ζ and second-order index substi-

tution υ then Φ ⊢ST τ ⊑ ζ is derivable for some SOCP Φ. Moreover, there exists an extension ν of
υ, whose domain coincides with the second-order variables occurring in Φ ⊢ST τ ⊑ ζ , such that
(J ,ν ) is a model of Φ.

Proof. Concerning soundness, we consider a derivation of Φ ⊢ST τ1 ⊑ τ2, and fix a second-order

substitution υ and interpretation J such that (J ,υ) ⊨ Φ holds. Then τ1υ ⊑J τ2υ can be proven

by induction on the derivation of Φ ⊢ST τ1 ⊑ τ2. Concerning completeness we fix a second-order

substitution υ and construct for any two types τ1,τ2 with τ1υ ⊑J τ2υ an inference of Φ ⊢ST τ1 ⊑ τ2
for some SOCP Φ together with an extension ν of υ that satisfies (J ,ν ) ⊨ Φ. The construction is
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done by induction on the proof of τ1υ ⊑J τ2υ. The substitution ν extends υ precisely on those fresh

variables introduced by rule (⊑∀-I) in the constructed proof of Φ ⊢ST τ1 ⊑ τ2. □

Lemma 6.7. Type inference is sound and complete in the following sense:
1. Soundness: If Φ; Γ ⊢I s : τ holds for a template type τ then Γυ ⊢J s : τυ holds for every model

(J ,υ) of Φ.
2. Completeness: If Γ ⊢J s : τ holds for a context Γ and type τ then there exists a template type ζ

and a second-order index substitution υ, with ζυ = τ , such that Φ; Γ ⊢I s : ζ is derivable for some
SOCP Φ. Moreover, (J ,υ) is a model of Φ.

Proof. Concerning soundness, we fix a model (J ,υ) of Φ and prove then Γυ ⊢J s : τυ by

induction on Φ; Γ ⊢I s : τ . Concerning completeness, we prove the following stronger statement.

Let υ be a second-order index substitution, let Γ be a context over template schemas and let τ be

a type. If Γυ ⊢J s : τ is derivable then there exists an extension ν of υ together with a template

type ζ , where ζν = τ , such that Φ; Γ ⊢I s : ζ holds for some SOCP Φ. Moreover, (J ,ν ) is a model of

Φ. The proof of this statement is then carried out by induction on the derivation of Γυ ⊢J s : τ .
Strengthening of the hypothesis is necessary to deal with let-expressions. □

Theorem 6.8 (Inference — Soundness and Relative Completeness). Let P be a program and
let Φ = obligations(P).
1. Soundness: If (J ,υ) is a model of Φ, then P is well-typed under the interpretation J .
2. Completeness: If P is well-typed under the interpretation J , then there exists a second-order

index substitution υ such that (J ,υ) is a model of Φ.

Proof. Concerning soundness, let (J ,υ) be a model of Φ. Fix a rule l = r of P, and let (Γ,τ ) =
footprint(l ). Notice that (J ,υ) is in particular amodel of the constraintΦ1∪Φ2 = check(Γ, r ,τ ) ⊆ Φ,
where Φ1; Γ ⊢I r : ζ and Φ2 ⊢ST ζ ⊑ τ for some type ζ . Using that the footprint of l does not contain
second-order index variables, Lemma 6.7(1) and Lemma 6.6(1) then prove Γ ⊢J s : ζυ and ζυ ⊑J τ ,
respectively. Conclusively, the rule l = r is well-typed and the claim follows. Completeness is

proven dually, using Lemma 6.7(2) and Lemma 6.6(2). □

This, in conjunction with Theorem 6.4, then yields:

Corollary 6.9. Let P be a program and let Φ = obligations(P).
1. Soundness: If J is a model of skolemize(Φ), then P is well-typed under the interpretation J .
2. Completeness: If P is well-typed under the interpretation J , then ˆJ is a model of skolemize(Φ),

for some extension ˆJ of J .

7 TICKING TRANSFORMATION AND TIME COMPLEXITY ANALYSIS
Our size type system is a sound methodology for keeping track of the size of intermediate results a

program needs when evaluated. Knowing all this, however, is not sufficient for complexity analysis.

In a sense, we need to be able to reduce complexity analysis to size analysis.

We now introduce the ticking transformation mentioned in the Introduction. Conceptually, this

transformation takes a program P and translates it into another program P̂ which behaves like P,
but additionally computes also the runtime on the given input. The latter is achieved by threading

through the computation a counter, the clock, which is advanced whenever an equation of P fires.

Technically, we lift all the involved functions into a state monad,1 that carries as state the clock.
More precise, a k-ary function f :: τ1 → · · · → τk → τ of P will be modeled in P̂ by a function

1
We could have achieved a similar effect via a writer monad. We prefer however the more general notion of a state monad,

as this allows us to in principle also encode resources that can be reclaimed, e.g., heap space.
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1 f x = let x1 = g in
2 let x2 = h in
3 let x3 = x2 x in
4 let x4 = x1 x3 in x4

1 ˆf1 x z = let (x1,z1) = ĝ0 z in

2 let (x2,z2) = ˆh0 z1 in
3 let (x3,z3) = x2 x z2 in
4 let (x4,z4) = x1 x3 z3 in (x4,T z4)

5 ˆf0 z = ( ˆf1, z)

Fig. 6. Equation f x = g (h x) in let-normalform (left) and ticked let-normalform (right).

ˆfk :: ⟨τ1⟩ → · · · → ⟨τk ⟩ → C → ⟨τ ⟩ × C, where C is the type of the clock. Here, ⟨ρ⟩ enriches
functional types ρ with clocks accordingly. The function

ˆfk behaves in essence like f, but advances
the threaded clock suitably. The clock-type C encodes the running time in unary notation using

two constructors ZC and TC→C
. The size of the clock thus corresponds to its value. Overall, ticking

effectively reduces time complexity analysis to a size analysis of the threaded clock.

Ticking of a program can itself be understood as a two phase process. In the first phase, the body

r of each equation f p1 · · · pk = r is transformed into a very specific let-normalform:

(let-normalform) e ::= x | let x = s in e | let x1 = x2 x3 in e ,

for variables xi and s ∈ F ∪C. This first step makes the evaluation order explicit, without changing

program semantics. On this intermediate representation, it is then trivial to thread through a global

counter. Instrumenting the program this way happens in the second stage. Each k-ary function f
is extended with an additional clock-parameter, and this clock-parameter is passed through the

right-hand side of each defining equation. The final clock value is then increased by one. This

results in the definition of the instrumented function
ˆfk . Intermediate functions

ˆfi (0 ≤ i < k) deal
with partial application. Compare Figure 6 for an example.

Throughout the following, we fix a pair-free program P, i.e. P neither features pair constructors

nor destructors. Pairs are indeed only added to our small programming language to conveniently

facilitate ticking. The following definition introduces the ticking transformation formally. Most

important, ⟨sτ ⟩zK simultaneously applies the two aforementioned stages to the term s . The variable
z presents the initial time. The transformation is defined in continuation passing style. Unlike a

traditional definition, the continuation K takes as input not only the result of evaluating s , but also
the updated clock. It thus receives two arguments, viz two terms of type ⟨τ ⟩ and C, respectively.

Definition 7.1 (Ticking). Let P be a program over constructors C and functions F . Let C < B be a

fresh base type, the clock type.
1. To each simple type τ , we associate the following ticked type ⟨τ ⟩:

⟨B⟩ := B ⟨τ1 × τ2⟩ := ⟨τ1⟩ × ⟨τ2⟩ ⟨τ1 → τ2⟩ := ⟨τ1⟩ → C → ⟨τ2⟩ × C

2. The set
ˆC of ticked constructors contains a symbol ZC , a symbol TC→C

, the tick, and for each

constructor Cτ1→···→τk→B
a new constructor Ĉ⟨τ1⟩→···→⟨τk ⟩→B

.

3. The set
ˆF of ticked functions contains for each sτ1→···→τi→τ ∈ F ∪ C and 0 ≤ i ≤ ar(s ) a new

function ŝ⟨τ1⟩→···→⟨τi ⟩→C→⟨τ ⟩×C
i .

4. For each variable xτ , we assume a dedicated variable x̂⟨τ ⟩.
5. We define a translation from (non-ground) values uτ over C to (non-ground) values û⟨τ ⟩ over

ˆC as follows.

û :=




x̂ if u = x ∈ X,
ŝk û1 · · · ûk if u = s u1 · · · uk , s ∈ F ∪ C and k < ar(s ),
Ĉ û1 · · · ûar(C) if u = C u1 · · · uar(C) .
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6. We define a translation from terms over F ∪ C to terms in ticked let-normalform over
ˆF as

follows. Let tick x z = (x, T z). For a term s and variable zC we define ⟨s⟩z := ⟨s⟩ztick, where

⟨sτ ⟩ziK :=




K ŝ zi if s is a variable,

let (x⟨τ ⟩, zCi+1) = ŝ0 zi in K x zi+1 if s ∈ F ∪ C,

⟨s
ρ→τ
1
⟩
zi
K1

if s = s
ρ→τ
1

s
ρ
2
,

where in the last clause, K1 x
⟨ρ→τ ⟩
1

zCj := ⟨s
ρ
2
⟩
zj
(K2 x1 )

and K2 x
⟨ρ→τ ⟩
1

x⟨ρ⟩
2

zCk := let (x⟨τ ⟩, zCl ) =
x1 x2 zk in K x zl . All variables introduced by let-expressions are supposed to be fresh.

7. The ticked program P̂ consists of the following equations:

1. For each equation f p1 · · · par(f) = r in P, the translated equation

ˆfar(f) p̂1 · · · p̂ar(f) z = ⟨r ⟩
z
,

2. for all s ∈ F ∪ C and 0 ≤ i < ar(s ), an auxiliary equation

ŝi x1 · · · xi z = (ŝi+1 x1 · · · xi , z) ,

3. for all C ∈ C, an auxiliary equation

Ĉar(C) x1 · · · xar(C) z = (Ĉ x1 · · · xar(C), z) .

If s −→P̂ t , then we also write s t
−→P̂ t and s a

−→P̂ t if the step from s to t follows by a translated

(case 1) and auxiliary equation (cases 2 and 3), respectively.

Our main theorem from this section states that whenever P̂ is well-type under an interpretation

J , thus in particular
ˆmaink receives a type ∀⃗ij .Bi1 → · · · → Bik → C j → Ba × Cb , then the running

time of P on inputs of size i⃗ is bounded by Jb{0/j}KJ . This is proven in two steps. In the first

step, we show a precise correspondence between reductions of P and P̂. This correspondence in
particular includes that the clock carried around by P̂ faithfully represents the execution time of P.
In the second step, we then use the subject reduction theorem to conclude that the index b in turn

estimates the size, and thus value, of the threaded clock.

7.1 The Ticking Simulation
The ticked program P̂ operates on very specific terms, viz, terms in let-normal form enriched

with clocks. The notion of ticked let-normalforms over-approximates this set. This set of terms is

generated from s ∈ F ∪ C and k < ar(s ) inductively as follows.

(clock terms) c ::= zC | Z | T c ,

(ticked let-normalform) e, f ::= (û, c ) | ŝk û1 · · · ûk c | let (x, z) = e in f .

Not every term generated from this grammar is legitimate. In a term let (x, z) = e in f , we require
that the two let-bound variables x, z occur exactly once free in f . Moreover, the clock variable

z occurs precisely in the head of f . Here, the head of a term in ticked let-normalform is given

recursively as follows. In let (x, z) = e in f , the head position is the one of e . In the two other

cases, the terms are itself in head position. This ensures that the clock is suitably wired, compare

Figure 6. Throughout the following, we assume that every term in ticked let-normalform satisfies

these criteria. This is justified, as terms in ticked let-normalform are closed under P̂-reductions, a
consequence of the particular shape of right-hand sides in P̂.

As a first step towards the simulation lemma, we define a translation [e] of the term e in ticked

let-normalform to a pair, viz, a terms of P and a clock term. We write [e]1 and [e]2 for the first and

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 43. Publication date: September 2017.



Automating Sized-Type Inference for Complexity Analysis 43:19

second component of [e], respectively. The translation is defined by recursion on e as follows.

[e] ::=




(u, c ) if e = (û, c ),

(s u1 · · · uk , c ) if e = ŝk û1 · · · ûk c where s ∈ F ∪ C,

[e2]{[e1]1/x, [e1]2/z} if e = let (x, z) = e1 in e2.

Lemma 7.2. Let e be a term in ticked let-normalform. The following holds:
1. e t
−→P̂ f implies [e]1 −→P [f ]1 and [f ]2 = T [e]2; and

2. e a
−→P̂ f implies [e]1 = [f ]1 and [f ]2 = [e]2; and

3. if [e]1 is reducible with respect to P, then e is reducible with respect to P̂.

The first two points of Lemma 7.2 immediately yield that given a P̂-reduction, this reduction
corresponds to a P-reduction. In particular, the lemma translates a reduction

ˆmaink ˆd1 · · · ˆdk Z t
−→P̂ ·

a
−→
∗

P̂ e1
t
−→P̂ ·

a
−→
∗

P̂ · · ·
t
−→P̂ ·

a
−→
∗

P̂ eℓ ,

to

[
ˆmaink ˆd1 · · · ˆdk ]1 = main d1 · · · dk −→P [e1]1 −→P · · · −→P [eℓ]1 ,

where moreover, [eℓ]2 = Tℓ Z. In the following, let us abbreviate
t
−→P̂ ·

a
−→
∗

P̂ by −→t/a. This, however, is

not enough to show that P̂ simulates P. It could very well be that P̂ gets stuck at eℓ , whereas the
corresponding term [eℓ]1 is reducible. Lemma 7.2(3) verifies that this is indeed not the case. Another,

minor, complication that arises is that P̂ is indeed not able to simulate any P-reduction. Ticking
explicitly encodes a left-to-right reduction, P̂ can thus only simulate left-to-right, call-by-value

reductions of P. However, Proposition 4.1 clarifies that left-to-right is as good as any reduction

order. To summarise:

Theorem 7.3 (Simulation Theorem — Soundness and Completeness). Let P be a program
whose main function is of arity k .
1. Soundness: If ˆmaink ˆd1 · · · ˆdk Z t/a

−−→
ℓ

P̂ e then main d1 · · · dk −→
ℓ
P t where moreover, [e]1 = t and

[e]2 = Tℓ Z.
2. Completeness: If maind1 · · · dk −→

ℓ
P s then there exists an alternative reduction maind1 · · · dk −→

ℓ
P

t such that ˆmaink ˆd1 · · · ˆdk Z t/a
−−→

ℓ

P̂ e where moreover, [e]1 = t and [e]2 = Tℓ Z.

7.2 Time Complexity Analysis
As corollary of the Simulation Theorem, essentially through Subject Reduction, we finally obtain

our main result.

Theorem 7.4. Suppose P̂ is well-typed under the interpretation J , where data-constructors, includ-
ing the clock constructor T, are given an additive type and where ˆmaink :: ∀⃗ij .Bi1 → · · · → Bik →
C j → Ba × Cb . The runtime complexity of P is bounded from above by rc (i1, . . . , ik ) := Jb{0/j}KJ .

In the proof of this theorem, we use actually a strengthening of Corollary 5.9. When a term e in
ticked let-normal form is given a type Ba × Cb , then b accounts for the size of [e]2, even if e is not
in normal form.

8 PROTOTYPE AND EXPERIMENTAL RESULTS
We have implemented the discussed inference machinery in a prototype, dubbed HoSA.2 This tool
performs a fully automatic sized type inference on the typed language given in Section 4, extended

with polymorphic types and inductive data type definitions as presented in examples earlier on.

2
Available from http://cl-informatik.uibk.ac.at/~zini/software/hosa/.
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α ⊑J α

a ≤J b ρi ⊑J ρ ′i (i in positive position) ρ ′i ⊑J ρi (i in negative position)

Da ρ1 · · · ρn ⊑J Db ρ ′
1
· · · ρ ′n

Fig. 7. Subtyping rules in the extended system.

These extension are already present in the canonical system from Hughes et al. [1996], and help

not only towards modularity of the analysis, but enable also a more fine-grained capture of sizes.

Thus, in our implementation, the language of types is extended with type variables α , that range
over sized types, and n-ary data type constructors D. Each such data constructor is associated

withm distinct constructors Ci :: ∀α1 . . . αn . τ1 → · · · τki → D α1 . . . αn . To accommodate these

extensions to the type language, two main changes are necessary to our type system. First, the

subtyping relation has to be adapted, to account for type variables and n-ary data type constructors,
see Figure 7. Notice that in the second rule, the variance of arguments, given by the types of the

corresponding constructors, are taken into account. Second, the type system has to be extended

with the usual rule for instantiation of type variables. Also, some auxiliary definitions, noteworthy

the one of canonicity, have to be suited in the obvious way.

In the following, we discuss our implementation, and then consider some examples that highlight

the strength and limitations of our approach.

8.1 Technical Overview on the Prototype
Our tool HoSA is implemented in Haskell. Overall, the tool required just a moderate implementation

effort. HoSA itself consists of approximately 2.000 lines of code. Roughly half of this code is dedicated

to sized type inference, the other half is related to auxiliary tasks such as parsing etc. Along with

HoSA, we have written a constraint solver, called GUBS. GUBS is also implemented in Haskell and
weighs also in at around 2.000 lines of code.

In the following, we shortly outline the main execution stages of HoSA. The overall process is also
exemplified in Figure 8 on the function prependAll, which prepends a given list to all elements of

it second argument, itself a list of lists. This function is defined in terms of map and append, see
Figure 8a for the definition.

Hindley-Milner Type Inference and Specialisation. As a first step, for each function in the given

program a most general polymorphic type is inferred. Should type inference fail, our prototype

will abort the analysis with a corresponding error message. As shortly discussed in Section 2, it is

not always possible to decorate the most general type for higher-order combinators, such as foldr
or map, with size information. Indeed, in the example from Figure 2 on page 5, we have specialised

the most general type of foldr. Our implementation performs such a specialisation automatically.

Of course, types cannot be specialised arbitrarily. Rather, our implementation computes for each

higher-order combinator the least general type that is still general enough to cover all calls to the

particular function. Technically, this is achieved via anti-unification and preserves well-typedness

of the program. Should specialisation still yield a type that is too general for size annotation, our

tool is also capable of duplicating the combinator, introducing a new function per call-site. This

will then allow size annotations suitable for the particular call, at the expense of increased program

size. With respect to prependAll, our implementation specialises the type of the supplied function

in the declaration of map to match the call in Line 8 in Figure 8a.

Ticking. By default, our tool will perform the ticking transformation from Section 7 on the

program obtained in the previous step, thereby enabling runtime analysis, the main motivating
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1 map :: ∀α . (List α → List α ) → List (List α ) → List (List α )
2 map f [] = []
3 map f (x : xs) = f x : map f xs
4 append :: ∀α . List α → List α → List α
5 append [] ys = ys
6 append (x : xs) ys = x : append xs ys

7 prependAll :: ∀α . List α → List (List α ) → List (List α )
8 prependAll xs = map (append xs)

(a) Function prependAll and auxiliary definitions. Types have been specialised.

map :: ∀α . ∀ijk . (∀l . Listl α → Listf1 (l,i ) α ) → Listk (Listj α ) → Listf3 (i, j,k ) (Listf2 (i, j,k ) α )
append :: ∀α . ∀ij . Listi α → Listj α → Listf4 (i, j ) α
prependAll :: ∀α . ∀ijk . Listi α → Listk (Listj α ) → Listf6 (i, j,k ) (Listf5 (i, j,k ) α )

(b) Template sized types assigned by HoSA to the main function prependAll and auxiliary functions.

f1 (E15, j ) ≤ f1 (i,E18) f4 (E7,E10) ≤ f1 (i,E9) E22 ≤ f2 (i, j, 0) i ≤ E12 i ≤ E8

E21 ≤ f2 (i, j,k + 1) f2 (E18,E20,E19) ≤ E21 0 ≤ f3 (i, j, 0) i ≤ E13 i ≤ E10

E21 + 1 ≤ f3 (i, j,k + 1) f3 (E18,E20,E19) ≤ E21 j ≤ f4 (0, j ) i ≤ E17 i ≤ E11

E14 + 1 ≤ f4 (i + 1, j ) f4 (E15, i ) ≤ E16 f2 (E9,E11,E10) ≤ f5 (i, j,k ) i ≤ E19

f3 (E9,E11,E10) ≤ f6 (i, j,k ) i ≤ E7 i ≤ E20

(c) Second-order constraint system generated from HoSA.

f1 (i, j ) := i + j f2 (i, j,k ) := i + j f3 (i, j,k ) := k f4 (i, j ) := i + j f5 (i, j,k ) := i + j

f6 (i, j,k ) := k f7 (i ) := i f8 (i ) := i f9 (i ) := i f10 (i ) := i

f11 (i ) := i f12 (i ) := i f13 (i ) := i f14 (i, j ) := i + j f15 (i ) := i

f16 (i, j,k ) := i + j f17 (i ) := i f18 (i ) := i f19 (i ) := i f20 (i ) := i

f21 (i, j,k, l ) := k f22 () := 0

(d) Model inferred by GUBS on the generated constraints.

map :: ∀α . ∀ijk . (∀l . Listl α → Listl+i α ) → Listk (Listj α ) → Listk (Listi+j α )
append :: ∀α . ∀ij . Listi α → Listj α → Listi+j α
prependAll :: ∀α . ∀ijk . Listi α → Listk (Listj α ) → Listk (Listi+j α )

(e) Inferred size type obtained by instantiating the template types with the model computed by GUBS.

Fig. 8. Sized type inference carried out by HoSA on prependAll.

application behind this work. For the sake of simplicity, ticking is not performed in the running

example though.

Annotation of Types with Index Terms. To each function, an abstract, canonical sized type is then

assigned by annotating the types inferred in the second stage with index terms. In essence, this is

done by annotating polymorphic types ∀α⃗ . τ1 → · · · → τk → τ (where τ is not a functional type)

as follows: (i) if the argument type τi is a data type then it is annotated with a fresh variable, the

arguments are annotated recursively; (ii) if the argument type τi is a functional type we proceed
recursively, and close over all index variables occurring in the so obtained sized type, and (iii) we

annotate the return type τ by an index term f (⃗i ). Here, the index symbol f is supposed fresh. The

variables i⃗ collect on the one hand the free index variables occurring in argument types τi . Moreover,

for a functional type in argument position this sequence containsm fresh index variables, for some
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fixedm ∈ N, the extra variables. Types of constructors C are annotated similarly, except that the

index f (⃗i ) of its return type is fixed to

∑
i ∈⃗i i +w wherew = 0 if C is nullary, andw = 1 otherwise.

The size index of constructors thus accounts for internal nodes in the tree representation of data

values. This measure is seemingly ad-hoc, but turns out favourable, as the number of internal nodes

relate to the number of recursive steps for functions defined by structural recursion. For instance,

we have [] :: ∀α . List0 α , and (:) :: ∀α . ∀i . α → Listi α → Listi+1 α .
With respect to prependAll andm = 1, annotated types are depicted in Figure 8b. Notice that the

annotated type of map features the extra variable i . Extra variables enable the system to deal with

closures, i.e. functionals that capture part of the environment. Such a closure is for instance created

with append xs , on Line 8 in Figure 8a. Intuitively, extra variables index the size of the captured

environment. We return to this point in a moment. For all of the examples that we considered,

takingm = 1, i.e. adding a single extra variable in step (ii) above, is sufficient. It would be desirable

to statically determine the number of necessary extra variables. This can likely be done with a

simple form of data flow analysis, which is however beyond the scope of this work.

Constraint Generation. HoSA performs type inference as discussed in Section 6 based on the

annotated types assigned in the previous step. The extension to the polymorphic type system with

inductive data types poses no challenge. The extended subtyping rules from Figure 7 are straight

forward to integrate within the machinery discussed in Section 6. It is also not difficult to adapt

the rules (Var-I) and (Fun-I) from Figure 5b so that type variables α in polymorphic types are

properly instantiated: suitable skeletons are already known at this stage, to turn them into suitable

sized types our implementation decorates these with second-order index variables. For instance,

suppose (:) :: ∀α . ∀i . α → Listi α → Listi+1 α is used to construct a list of naturals. Then this

constructor will be typed as (:) :: NatE → Listj NatE → ListF+1 NatE , i.e., the type variable α
has been instantiated with NatE and the index variable i with F . This stage will result in a SOCP,

which is then translated to a FOCP by skolemisation. On the function prependAll, this results in
22 constraints, see Figure 8c.

Constraint Solving. HoSA makes use of the external tool GUBS to find a suitable model for the

FOCP, see Figure 8c. How this is done is explained in a moment. Note that the auxiliary functions

f7—f22 were introduced by skolemization and correspond to E7—E22, respectively.

Concretising Annotated Types. In this final stage, HoSA combines the annotated types with the

computed model, by unfolding index functions in template types according to the model. The

resulting sized types are decorated by arithmetical expressions only, compare Figure 8e. This final

result of the analysis is presented to the user.

Note that the extra variable i in the annotated sized type of map is still present in its concrete

size type. Indeed, the extra variable is crucial when we want to type the body of prependAll. Here,
we first derive

xs : Listi α ⊢ map : (∀l . Listl α → Listl+i α ) → Listk (Listj α ) → Listk (Listi+j α ), and

xs : Listi α ⊢ append xs : Listl α → Listl+i α .

Therefore, by rule (App) we get

xs : Listi α ⊢ map (append xs ) : Listk (Listj α ) → Listk (Listi+j α ) ,

as demanded by the well-typedness of appendAll. In a way, the extra variable in the declaration is

used to keep track of the length of the list xs captured by the term append xs , which in turn, is

relayed through the typing of map to the result type Listk (Listi+j α ).
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8.2 Constraint Solving
As for many sized type systems, constraint solving is also a central stage in our approach and

appears in the form of model-synthesis for FOCPs. Strength and precision of the overall analysis is

directly related to this stage. Sized type inference is undecidable, as a consequence of Corollary 6.9,

model-synthesis is in general undecidable too.

Synthesizing functions that obey certain set of constraints, as expressed for instance through

FOCPs, is a fundamental task in program analysis. Consequently, the program verification commu-

nity introduced various techniques in this realm. One popular approach relies on LP solvers, compare

e.g., [Podelski et al. 2004]. This approach is effective, moreover, yields tight models. However, it

is usually restricted to the synthesis of linear functions. This is often sufficient for termination

analysis, where one is foremost interested that recursion parameters decrease. In our context

however, this rules out the treatment of all programs that admit a non-linear runtime. Another

approach rests on solving (non-deterministic) recurrence relations. To this end, dedicated tools

like PUBS [Albert et al. 2008] have been developed, which are capable of synthesising non-linear

functions. Recurrence relations are of limited scope in our context however. For instance, function

composition cannot be directly expressed in this formalism.

To overcome these limitations, we have developed the GUBS upper bound solver (GUBS for short), an
open source tool dedicated to the synthesis of models for FOCPs. This tool is capable of synthesising

models formed from linear and non-linear max-polynomials over the naturals. GUBS itself is heavily

inspired by methods developed in the context of rewriting. The rewriting community pioneered

the synthesising of polynomial interpretations, see e.g., [Fuhs et al. 2007, 2008] or the survey of

Péchoux et al. [2013] on sup-interpretations, a closely related topic. In this line of works, the problem

is reduced to the satisfiability in the quantifier-free fragment of the theory of non-linear integer

arithmetic. Dedicated to the latter, MiniSmt [Zankl et al. 2010] has been developed. Moreover,

state-of-the-art SMT solvers such as Z3 [Mendonça de Moura et al. 2008] can effectively treat

quantifier free non-linear integer arithmetic nowadays.

The main novel aspect of GUBS is the modular approach it rest upon, which allowed us to integrate

besides the aforementioned reduction various syntactic simplification techniques, and a per-SCC

analysis. In what follows, we provide a short outline of two central methods implemented in GUBS.

Synthesis of Models via SMT. Conceptually, we follow the method presented by Fuhs et al. [2008].

In this approach, each k-ary symbol f is associated with a k-ary template max-polynomial, through
a template interpretation A. Here, a template max-polynomial is an expression formed from k
variables as well as undetermined coefficient variables c⃗, the template coefficients, and the binary

connectives (+), (·) and max, corresponding to addition, multiplication and the maximum function,

respectively. For instance, a linear template for a binary symbol f is

JfKαA (x ,y) = max(c1 · x + c2 · y + c3, d1 · x + d2 · y + d3) .

To find a concrete model for a SOCP Φ based on the template interpretation A, GUBS is searching

for concrete values n⃗ ∈ N for the coefficient variables c⃗ so that

∀a ≤ b ∈ Φ. ∀α : V → N. JaKαA ≤ JbKαA ,

holds. Once these have been found, an interpretation J with J ⊨ Φ is obtained by substitut-

ing n⃗ for c⃗ in A. This search is performed itself in two steps. First, the maximum operator is

eliminated in accordance to the following two rules. Here, C represents an arbitrary context over

max-polynomials.

C[max(a1,a2)] ≤ b =⇒ C[a1] ≤ b ∧C[a2] ≤ b , a ≤ C[max(b1,b2)] =⇒ a ≤ C[b1] ∨ a ≤ C[b2] .
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1 ˆrev0 :: C → (α → C → (List α → C → List α × C) × C) × C
2 ˆrev0 z = ( ˆrev1,z)

3 ˆrev1 :: List α → C → (List α → C → List α × C) × C
4 ˆrev1 xs z = ( ˆrev2 xs,z)

5 ˆrev2 :: List α → List α → C → List α × C
6 ˆrev2 [] ys z = (ys,T z)
7 ˆrev2 (x : xs) ys z = let (x1,z1) = ˆrev0 z in
8 let (x2,z2) = x1 xs z1 in
9 let (x3,z3) = x2 (x : ys) z2 in (x3,T z3)

10 ˆreverse0 :: C → (List α → C → List α × C) × C
11 ˆreverse0 z = ( ˆreverse1,z)

12 ˆreverse1 :: List α → C → List α × C
13 ˆreverse1 xs z = let (x1,z1) = ˆrev0 z in
14 let (x2,z2) = x1 xs z1 in
15 let (x3,z3) = x2 [] z4 in (x3,T z3)

Fig. 9. Ticked reverse function.

Intuitively, this elimination procedure is sound as we are dealing with weakly monotone expressions

only. Once all occurrences of max are eliminated, the resulting formula is reduced to diophantine
constraints over the coefficient variables c⃗, via the so-called absolute positiveness check, see also the

work of Fuhs et al. [2007]. The diophantine constraints are then given to an SMT-solver that support

quantifier-free non-linear integer arithmetic, from its assignment and the initially fixed templates

GUBS then computes concrete interpretations. To get more precise bounds, GUBS minimises the

obtained model by making use of the incremental features of current SMT-solvers, essentially by

putting additional constraints on coefficients c⃗.
The main limitation of this approach is that the shape of interpretations is fixed to that of

templates, noteworthy, the degree of the interpretation is fixed in advance. As the complexity

of the absolute positiveness check depends not only on the size of the given constraint system

but to a significant extent also on the degree of interpretation functions, our implementation

searches iteratively for interpretations of increasing degrees. Also notice that our max-elimination

procedure is incomplete, for instance, it cannot deal with the constraint x +y ≤ max(2x , 2y), which
is reduced to x + y ≤ 2x ∨ x + y ≤ 2y. In contrast, Fuhs et al. [2008] propose a complete procedure

to eliminate the maximum operator. However, our experimental assessment concluded that this

encoding introduces too many auxiliary variables, which turned out as a significant bottleneck.

Separate SCC Analysis. Synthesis of models via SMT gets impractical on large constraint systems.

To overcome this, GUBS divides the given constraint system Φ into its strongly connected components
(SCCs for short) Φ1, . . . ,Φn , topologically sorted bottom-up, and finds a model for each SCC Φi
iteratively. Here, the underlying call graph is formed as follows. The nodes are given by the con-

straints in Φ. Let a1 ≤ b1 to a2 ≤ b2 be two constraints in Φ, where wlog. b1 = C[f1 (c⃗1), . . . , fn (c⃗n )]
for a context C without index symbols. Then there is an edge from a1 ≤ b1 to a2 ≤ b2 if any of the

symbols occurring in c⃗1, . . . , c⃗n ,a1 occurs in b2. The intuition is that once we have found a model

for all the successors a2 ≤ b2 of a1 ≤ b1, we can interpret the arguments b⃗i and the left-hand side a1
within this model. We can then extend this model by finding a suitable interpretation for f1, . . . , fn ,
thereby obtaining a model that satisfies a1 ≤ b1.

8.3 Experimental Evaluation
We will now look at how HoSA deals with some examples, including those mentioned in the paper.

Here, we also relate the strength and precision of tool to that of HoCA [Avanzini et al. 2015] and
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1 id :: α → α
2 id z = z

3 comp :: (β → γ ) → (α → β ) → α → γ
4 comp f g z = f (g z)

5 walk :: List α → (List α → List α )
6 walk [] = id
7 walk (x:xs) = comp (walk xs) ((:) x)
8 reverse :: List α → List α
9 reverse xs = walk xs []

Fig. 10. List reversal via difference lists. This is the motivating example from Avanzini et al. [2015].

RAML [Hoffmann et al. 2017]. To the best of our knowledge, these constitute the only two state-of-

the-art, freely available, tools for the automated resource analysis of higher-order programs.

Tail-Recursive List Reversal. Reconsider the version of list reversal presented in Figure 1 on page 4.

This is an example that could not be handled by the original sized type system introduced by

Hughes et al. [1996]. In Figure 9 we show the corresponding ticked program. For brevity, the

auxiliary definitions derived from the list constructors have been inlined. Our tool infers

ˆreverse1 :: ∀α . ∀ij .Listi α → Cj → Listi α × C2+i+j .

Thus, by setting the starting clock to zero, i.e. assuming j = 0, HoSA derives the bound 2 + i on the

runtime of reverse. Taking into account that the auxiliary function rev performs i + 1 steps on a

given list of length i , it is clear that the derived runtime bound for reverse is tight. Similar, the

derived bound for the size of the returned list is optimal. The optimal linear bound could also be

found with HoCA and RAML.

Reverse with Difference Lists. In Figure 10 we depict the motivating example from Avanzini et al.

[2015]. Here, an alternative definition of list reversal based on difference lists, a data structure

for representing lists with a constant concatenation operation, is given. In a functional setting,

difference lists can be represented as functions d : List α → List α , with d denoting the list ys
such that d xs = append ys xs . Difference lists are commonly used in functional programming in

order to avoid the unnecessary runtime overhead in expressions such as (append (append xs ys ) zs ).
On this example, HoSA succeeds with the following declaration

ˆreverse1 :: ∀α . ∀ij . Listi α → Cjα → Listi α × C3+2·i+j ,

confirming that also this version of reverse exhibits a linear runtime complexity. An asymptotic

linear bound can be derived by HoCA, but not by RAML. The latter can be rectified by using a contrived
version comp′ f x д y = f x (д y) of function composition and suitably adapting the body of walk.
Then, RAML can infer the bound 3 + 9 · i on the runtime of reverse.

Product. Our tool infers

ˆproduct
2
:: ∀ijk .Listi α → Listj β → Ck → (Listi ·j (α × β )) × C2+3·i+2·i ·j+k ,

where
ˆproduct

2
corresponds to the ticked version of the function product from Figure 2. The

estimated size of the resulting list is precise, the computed runtime is asymptotically precise.

Notice that the latter bound takes also the evaluation of the anonymous functions into account. An

asymptotic precise bound can be inferred with HoCA, but not with RAML.
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1 data Nat = Z | S Nat

2 gt :: Nat → Nat → Bool
3 gt Z y = False
4 gt (S x) Z = True
5 gt (S x) (S y) = gt x y

6 insert :: ∀α . (α → α → Bool) → α → List α → List α
7 insert ord x [] = x : []
8 insert ord x (y : ys) = if ord x y then y : insert ord x ys else x : y : ys

9 insertionSort :: ∀α . (α → α → Bool) → List α → List α
10 insertionSort ord [] = []
11 insertionSort ord (x : xs) = insert ord x (sort ord xs)
12 sortNat :: List α → List α
13 sortNat = insertionSort gt

Fig. 11. Insertion-sort on natural numbers.

1 data Queue α = Q [α] [α]

2 repair :: ∀α . Queue α → Queue α
3 repair (Q [] r) = Q (reverse r) []
4 repair (Q (e : f) r) = Q (e : f) r
5 push :: ∀α . α → Queue α → Queue α
6 push x (Q f r) = repair (Q f (x : r))
7 pop :: ∀α . Queue α → α × Queue α
8 pop (Q [] r) = error -- queue empty
9 pop (Q (e : f) r) = (e, repair (Q f r))

10 fromList :: ∀α . [α]→ Queue α
11 fromList = foldr push (Q [] [])

Fig. 12. Functional queues.

Insertion Sort. In Figure 11 we present a version of insertion sort that is parameterised by the

comparison operation. We have then specialised this function to a comparison on natural numbers.

HoSA derives

ˆsortNat2 :: ∀α . ∀ijk . Listi Natj → Ck → Listi Natj × C2+i2 ·j+2·i2+k .

The computed runtime bound 2 + i2 · j + 2 · i2 is precise, taking into account that gt is not a

constant operation. It is worthy of note that the precise bound could only be inferred since HoSA
is capable of inferring that insert ord x ys , given x : Nati and ys : Listk Natj produces a list of
type Listk+1 Natmax(i, j ) . This demonstrates that the limitation imposed by the linearity condition

on canonical sized types can be overcome with the max operator. Both, HoCA and RAML, can give

asymptotic precise bounds on this example. Concerning the former tool the bound O(i3 + j3),
concerning the latter a runtime bound 3 − 4 · i · j + 4 · i2 · j + 8i + 9i2, is derived.

Quicksort. We have also implemented a version of quicksort. This implementation uses the

standard-combinator partition, to partition the given list into elements lesser and greater-equal

to the pivot element, respectively. Our tool derives

partition :: ∀α . ∀i . (α → Bool) → Listi α → Listi α × Listi α .

This is indeed the most precise type that can be given to partition in our system. However, it is

not precise enough to prove that quicksort runs in polynomial time. Here, one would need to prove

that the length of the two resulting lists sum up to the length of the argument list. On the other

hand, both RAML and HoCA can prove a quadratic bound on the runtime of quicksort.
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Functional Queues. In Figure 12 we give an implementation of queues as defined by Okasaki

et al. [1999]. A value Q f r represents the queue with initial segment f and reversed remainder r .
Enqueueing thus simply amounts to consing it to r , whereas dequeuing an element amounts to

removing the head of f , whenever f is non-empty. The latter is ensured by the auxiliary function

repair, which is called whenever the queue is modified. Notice thus that both adding and removing

an element from a queue has a linear worst case complexity, due to the call to reverse in the

definition of repair. However, this cost armortises with the number of pushes. Our system derives

ˆfromList1 :: ∀α . ∀ij . Listi α → Cj → Queue
1+i α × C2+i+5·i2+j ,

and thus a quadratic runtime bound on fromList. In contrast, both HoCA and RAML derive an

asymptotic precise linear bound. Concerning RAML, this is possible because of the underlying

amortised analysis. HoCA derives the precise bound for a different reason: fromList is translated
into two simple recursive definition, that turn a list [x1, . . . ,xn] directly into Q [x1] [xn , . . . ,x2],
thereby in particular completely eliminating the problematic calls to reverse via repair.

Prepend All. Concerning the function prependAll from Figure 8a, HoSA infers

ˆprependAll
2
:: ∀α . ∀ijk . Listi α → Listk (Listj α ) → Cl → Listk List1+i+j α × C2+i ·k+2·k+l .

The runtime of prependAll is thus correctly bounded by 2 + i · k + 2 · k . Evaluating prependAll
results in (1 + j ) calls to map, counting the base case and j recursive calls. Each recursive call

triggers the evaluation to append, itself performing 1 + i reduction steps. Taking into account that

prependAll has to be unfolded first, we see that the inferred bound is indeed optimal.

Worthy of note, the example can also be handled by HoCA. However, HoCA is only able to infer

an asymptotic quadratic bound. On the other hand, whereas RAML can produce asymptotic precise

bound for append and map, it fails to analyse prependAll itself. RAML does not attribute potentials

to functions, thus, it is assumed that the reduction of closures can be solely measured in terms

of the formal parameter, but is independent from the captured environment. The compositional

nature of the analysis underlying RAML comes at a price.

9 CONCLUSIONS
We have described a new system of sized types whose key features are an abstract index language,

and higher-rank index polymorphism. This allows for somemore flexibility compared to similar type

systems from the literature. The introduced type system is proved to enjoy a form of type soundness,

and to support a relatively complete type inference procedure, which has been implemented in

our prototype tool HoSA. One key motivation behind this work is achieving a form of modular

complexity analysis without sacrificing its expressive power. This is achieved by the adoption of a

type system, which is modular and composable by definition. This is contrast to other methodologies

like program transformations [Avanzini et al. 2015]. Noteworthy, modularity carries to some extent

through to constraint solving. The SCCs in the generated constraint problem are in correspondence

with the SCC of the call-graph in the input program, and are analysed independently.

Future work definitely includes refinements to our constraint solver GUBS. It would also be

interesting to see how our overall methodology applies to different resource measures like heap

size etc. Concerning heap size analysis, this is possible by ticking constructor allocations. It could

also be worthwhile to integrate a form of amortisation in our system.
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