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Collision avoidance based on separating planes for feet trajectory
generation

Stanislas Brossette1, Pierre-Brice Wieber1

Abstract— In this paper, we present a formulation of the col-
lision avoidance constraints that relies on the use of separating
planes instead of a distance function. This formulation has the
advantage of being defined and continuously differentiable in
every situation. Because it introduces additional variables to the
optimization problems, making it bigger and potentially slowing
down its resolution, we propose a different resolution method
that takes advantage of the independence of the variables, to
form two subproblems that can be solved efficiently in an
alternate problem fashion. We present some preliminary results
using this approach in order to highlight its potential and
promises in terms of convergence speed and robustness.

I. INTRODUCTION

When a legged robot takes a step, it is crucial to ensure
that the trajectory of the leg, and in particular the trajectory
of the feet, avoids unwanted collisions with the environment.
In [1] the collision-free feet trajectory of a four-legged robot
is generated in the vertical plane containing the start and
goal positions while staying away from the convex hull of
the obstacles with a safety distance. That trajectory is later
refined in order to avoid collisions with other parts of the
legs, like the knee or shin. In humanoid robotics, most tasks
require to consider collision avoidance, for walking tasks, the
trajectory of the feet must avoid obstacles [2], [3], and for
other tasks, such as ones performed in the context of multi-
contact locomotion, collisions need to be avoided between
all the bodies of the robot that are not contact bearing and
the environment. This impacts the formulations of problems
of posture generation [4] as well as motion planning and
control [5]. Collision avoidance can also be used with virtual
obstacles, for example when the location of a potentially
mobile obstacle is known with an uncertainty [6].

In general, collisions are avoided by ensuring that the
distance between bodies is always positive or greater than a
safety distance. Schulman et al. [7] presented in great details
how to ensure collision avoidance in the context of motion
planning and showcases applications on various scenarios
with different robots. The distance between two objects is
equal to the distance between their two closest points and
finding those points is the tricky part. For general convex
shaped objects, computing the location of the two closest
points is most commonly done by using the Gilbert-Johnson-
Keerthi (GJK) algorithm presented in [8]. The distance
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function for a pair of objects is based on the results of
that algorithm, and a particularly important property of this
function is that it is not continuously differentiable unless
one of the objects is convex, and the other is strictly convex
(proofs can be found in [9] and [10]). Non-differentiability of
the distance function can lead to convergence issues when
using smooth optimization(see [11]). This issue is tackled
in [12], where a method is proposed to generate (offline)
a strictly convex approximation of the shape of an object
with a bounding volume composed of patches of spheres
and tori called STP-BV. That method requires the user to
define a minimum radius of the STP-BV, which will impact
the ’stiffness’ of the evolution of the gradient of the distance
functions.

Conversely to computing the distance between objects, it
is often useful to compute the penetration depth between two
colliding objects. Like during an optimization process, when
at some iterations some objects are colliding and that quantity
is useful to separate them. Or when solving scenarios involv-
ing virtual obstacles, with which a limited interpenetration
can be tolerated. The abovementioned method for computing
the distance between two object does not extend to situations
where the objects are in collision and one needs to compute
the interpenetration depth, which is the minimum translation
needed to separate the objects. That quantity is usually
computed using the Expanding Polytope Algorithm (EPA)
[13], which is not continuously differentiable. Both the
distance and penetration functions involved in the constraint
are non-differentiable [7], and so is their sum. One must be
especially careful when handling the transition point where
the two objects are in contact without interpenetration.

Overall, the use of a distance function between objects to
ensure collision avoidance is not particularly convenient. In
this paper, we propose a different approach based on the idea
that, in vertue of the ’Hyperplane separation theorem’[14],
if two convex objects are not colliding, there exists a plane
separating them. Similar approaches are often used to detect
interpenetration in computer graphics and to separate sets
with Support Vector Machines[15], but to our knowledge
have never been used for the purpose of generating collision-
free trajectories in robotics. For each pair of objects, we
search for a separating plane between them. The constraint
of positive distance between two objects becomes a set of
constraints requiring all the vertices of the objects to be
above or below a separating plane. By relaxing this con-
straint, we show that it is possible to use this approach even
when the objects are in interpenetration. Such a formulation
has the advantage of being defined and differentiable in



Fig. 1. Illustration of the collision avoidance constraint between bodies A
and B separated by plane P = {~n, d}

all cases(separated and interpenetrating objects), and being
simpler than the usual method, using only one type of con-
straint and algorithm instead of two. Using this formulation,
collision-free trajectory generation problems can be solved
by a state-of-the-art nonlinear optimization solver, which we
illustrate on some academic examples.

We aim at using this method to generate safe foot trajec-
tory for humanoid robots. We present an alternative solving
approach taking advantage of the structure of our collision
avoidance constraint, in which, instead of solving one nonlin-
ear problem, we decompose the resolution into two simpler
problems. A nonlinear problem in the variables associated
with the locations of the objects, that can become a quadratic
problem(QP) is common cases, and a linear problem(LP) in
the variables associated with the locations of the separating
planes, those problems are then solved alternatively, which
drastically reduces the computation times.

II. COLLISION AVOIDANCE CONSTRAINT WITH
SEPARATING PLANES

A. Collision avoidance constraint

Given two bodies A and B, which convex hulls are respec-
tively composed of the sets of vertices VA = {va0 , · · · , vama

}
and VB = {vb0, · · · , vbmb

}. We define a plane P by its normal
n and its orthogonal distance d to the origin of the world
O. We illustrate these notations is figure Fig. 1. A plane
P = {~n, d} separating A and B must satisfy the following
constraints:  ∀v ∈ VA, v · n ≥ d∀v ∈ VB , v · n ≤ d

‖n‖ = 1
(1)

Solving problem (1) allows to ensure that the plane P
is between A and B if they are separated. When they
are in interpenetration, the problem (1) is unfeasible. To
deal with that infeasibility and ensure that the problem is
always feasible, we can considere using an elastic mode by
adding a relaxation term r to our constraints, which gives
the following problem:

min.
n,d,r

‖r‖

s.t.

 ∀v ∈ VA, 0 ≤ v · n− d+ r
∀v ∈ VB , 0 ≤ −v · n+ d+ r
‖n‖ = 1

(2)

When the problem (1) is feasible, r is null, otherwise, r’s
minimization will drive the plane to minimize the violation of
both constraints of problem (1) simultaneously. The solution
is then the plane P : {~n, d} such that a translation of A by
r~n and of B by −r~n makes the two objects separated by P .
In other words, it gives the minimum penetration depth 2r
and the direction of the penetration is given by ~n.

When imposing collision avoidance constraints, it is usual
to require a safety distance 2β between the objects, our
formulation straightforwardly extends to account for that:

0 ≤ v · n− d+ r becomes β ≤ v · n− d+ r (3)

B. Collision avoidance constraint in continuous-time trajec-
tory

The constraint presented above allows to ensure the
separation of two objects instantaneously. However, when
generating a collision-free trajectory, ensuring that collisions
are avoided instantaneously at every time step does not
guarantee that there is no collision inbetween time steps.

In order to ensure that a collision-free trajectory exists
between successive body positions B(tk) and B(tk+1), we
require that a plane Pjk exists that separates each obstacle
Oj (defined by its position oj and set of vertices Wj)
from the convex hull of the two successive bodies, which
approximates the volume swept by B during the time interval
[tk, tk+1], as illustrated in figure Fig. 2. Like in [7], we ignore
the effect of rotations of B on the swept volume as their
influence in minor and can be encompassed conservatively
by the use of a safety distance. This is equivalent to finding
a plane that separates B(tk) from Oj and B(tk+1) from Oj
simultaneously. rjk denotes the relaxation term associated
with the collision avoidance constraint with Oj during time
interval [tk, tk+1]. We denote x the set of problem’s vari-
ables, such that x(tk) = xk and the locations of a vertex v
of B at time t is v(x(t))

The continuous-time collision avoidance problem is:

min.
∑
j,k

‖rjk‖
∀v ∈ VB , β ≤ v(xk) · njk − djk + rjk
∀v ∈ VB , β ≤ v(xk+1) · njk − djk + rjk
∀w ∈ Wj , β ≤ −(oj + w) · njk + djk + rjk
‖njk‖ = 1

(4)

Fig. 2. Illustration of the collision avoidance constraint between successive
bodies Bj1 and Bj2 and obstacle Oj0



C. Complete nonlinear problem

By adding a cost function f(x) and concatenating the
continuous-time collision avoidance constraints on all time
interval, we can formulate a problem on the whole trajectory
of a body B as an optimization problem:

min.
x,d,n

f(x) + αR‖r‖

s.t. ∀j, k


∀v ∈ V, 0 ≤ v(xk) · njk − djk + rjk
∀v ∈ V, 0 ≤ v(xk+1) · njk − djk + rjk
∀w ∈ Wj , 0 ≤ −(oj + w) · njk + djk + rjk
‖njk‖ = 1

(5)
Due to the relaxation of the collision avoidance con-

straints, if a collision-free trajectory is not found, the result
is a trajectory that minimizes penetrations. The choice of
norm used on r governs the way the amount of penetration
is minimized. With an l1-norm, the sum of all penetrations
is minimized, while with an infinity-norm ‖.‖∞, only the
maximum penetration is minimized, disregarding all smaller
penetrations. Using the l1-norm ‖.‖1 requires the addition
of as many variables rjk as there are pairs {j, k}. Using the
infinity-norm ‖.‖∞ a single variable r is sufficient. A careful
choice of the coefficient αR allows to penalize exactly the
violation of the non-collision avoidance constraint.

III. RESOLUTION

A. Resolution with NLP

In its generic form, the nonlinear problem (5) can be
solved with a state-of-the-art nonlinear solver. To be rid of
the ‖nj‖ = 1 constraints, we used PGSolver [4], a nonlinear
solver on manifolds and search for a solution on a manifold
where the variables representing the normals n are elements
of S2 and thus always have unit-norm.

Fig. 3. Result obtained by resolution of the nonlinear problem with
PGSolver

In Fig. 3, we present a result obtained by solving (5),
where the cost function f approximates the total distance
traveled by the body, with bk(x) denoting the 3D position
of B at time tk:

f(x) =
∑
k

‖bk+1(x)− bk(x)‖2 (6)

In this example, the trajectory is discretized in 8 time-steps
for a body B going from position bI (blue) to position
bF (green) while avoiding collisions with a cubic obstacle

O0(red). One can observe how the separating planes are
located: When possible, the planes coincide with the faces
of the obstacle, some planes are tilted to allow reducing
the distance between successive objects while maintaining
collision avoidance.

Solving problem (5) as is with a nonlinear solver is conve-
nient, but it is fairly slow (see section IV). This is most likely
due to the fact that it works with the entire set of variables:
bodies and planes locations and all the nonlinear constraints.
In the next section, we propose a different resolution method
in which the variables are separated.

B. Resolution with alternate problems

We consider simplifying this problem by formulating two
separate subproblems in which the variables related to the
bodies {x} and the planes {n, d} are alternately fixed, and
solving those two problems iteratively until a solution is
found.

We denote PBP(n, d) the problem with fixed planes, and
PBB(x) the problem with fixed bodies. By construction,
PBP(n, d) is a linear program that can be efficiently solved
by an LP algorithm. PBB(x) is a nonlinear problem, that
can be solved by a nonlinear solver. In some cases, like for
foot trajectory planning, it can be formulated as a quadratic
problem with linear constraints, thus making it efficiently
solvable with a QP algorithm.

We propose to use a method of alternate problems to
solve (5). This consists in computing PBP(n, d) for a given
set of planes locations, solving it to obtain a set of bodies
locations that will be used to compute PBB(x). Solving
PBB(x) gives new values of planes locations to compute
the next iteration of PBP(n, d). And repeating this process
until convergence, as described in algorithm 1.

Algorithm 1 Alternate problems resolution
Initialize n and b
while not converged do

compute PBB(x)
{n, d} ←solve PBB(x)
compute PBP(n, d)
{x} ←solve PBP(n, d)

end while

1) Problem with fixed bodies: When bodies variables are
fixed, problem (5) can be formulated as a linear program. All
the constraints remain expressed in the same way, except for
the norm-1 constraint on the normal’s variables nj . Enforcing
the norm of nj to be 1 cannot be done exactly with linear
constraints. But in fact, the amplitude of the vector nj does
not matter, as long as it is not null. Only the direction of nj
and the product djnj describe perfectly the plane Pj . Indeed,
a plane described by {nj , dj} is equivalent to one described
by {αnj , djα } for any nonnull α.

To ensure that nj is nonnull and maintains a norm of
the magnitude of 1, we bound the scalar product between
its current value nj(which is a problem’s variable) and its
value obtained as result of the previous iteration denoted



nprevj (which is a constant). The lower bound nmin needs to be
strictly positive and the upper bound can be 1. Additionally,
to prevent divergence of the components of nj , they can all
be bounded between −1 and 1.

nmin ≤ nprev
j · nj ≤ 1 (7)

We obtain the following relaxed linear problem:

min.
n,d,r

‖r‖

s.t. ∀j, k


∀v ∈ V : 0 ≤ v(xk) · njk − djk + rjk
∀v ∈ V : 0 ≤ v(xk+1) · njk − djk + rjk
∀w ∈ Wj : 0 ≤ −w · njk + djk + rjk
nmin ≤ nprevjk · njk ≤ 1

(8)
Notice that the problems for each {j, k} are only coupled

by the relaxation variable. We can separate them into M
independent LP problems of smaller sizes.

∀j, k



min.
njk,djk,rjk

rjk

s.t.


∀v ∈ V : 0 ≤ v(xk) · njk − djk + rjk
∀v ∈ V : 0 ≤ v(xk+1) · njk − djk + rjk
∀w ∈ Wj : 0 ≤ −w · njk + djk + rjk
nmin ≤ nprevjk · njk ≤ 1

(9)
When rjk is positive, it is a measure of interpenetration,

whereas when it is negative, it is a measure of the minimum
distance between the plane and the two objects it separates.
Therefore, by removing the norm on rjk in the cost function,
the separating plane is driven to maximize that distance and
thus placing the plane at equidistance from both objects it
separates.

In order to avoid numerical issues, the solution plane
is replaced by an equivalent plane with unit-norm normal
before computing the next problem:

{njk, djk} ←
{

njk
‖njk‖

, djk‖njk‖
}

(10)

This prevents the norms of the njk vectors to gradually
converge towards zero.

Then the value of djk can be changed as in (11) so that the
planes are located as close as possible to the obstacle, giving
as much freedom as possible for the choice of location of
the bodies in PBP(n, d).

djk = max
w∈Wj

((w + oj) · njk) (11)

2) Problem with fixed planes: When the planes are fixed,
the third set of constraint of problem (5) can be reduced to
a single constraint as follows:

∀w ∈ Wj , 0 ≤ −(oj + w) · njk + djk + rjk
becomes

max
w∈Wj

(w · njk) ≤ −njk · oj + djk
(12)

The problem to solve becomes:

min.
x,r

f(x) + αR‖r‖
s.t.

∀j, k


∀v ∈ V, 0 ≤ v(xk) · njk − djk + rjk
∀v ∈ V, 0 ≤ v(xk+1) · njk − djk + rjk
max
w∈Wj

(w · njk) ≤ −njk · oj + djk + rjk

(13)

This problem can be solved with a state-of-the-art nonlin-
ear solver.

In the event where f is quadratic and the positions of
the vertices are linear in the variables xk, the problem (13)
becomes a quadratic program, which can be solved efficiently
with a QP solver, and more simplifications of the problem
can be made. For example, when the location of the vertices
can be defined only with the position bk of the body at time
tk:

∀v ∈ V : v(xk) = bk + v (14)

Then a modification similar to (12) can be applied to the first
two sets of constraints of (13), giving:

min.
x,r

f(x) + αR‖r‖
s.t.

∀j, k


− min
v∈Vk

(v · njk) ≤ njk · bk − djk + rjk

− min
v∈Vk+1

(v · njk) ≤ njk · bk+1 − djk + rjk

max
w∈Wj

(w · njk) ≤ −njk · oj + djk + rjk

(15)
This problem can be simplified further by eliminating the

constant djk across the constraints of problem (15) to get
problem (16):

lbk , max
w∈Wj

(w · njk) + njk · oj − min
v∈Vk

(v · njk)

lbk+1 , max
w∈Wj

(w · njk) + njk · oj − min
v∈Vk+1

(v · njk)

min.
x,r

f(x) + αR‖r‖

s.t. ∀j, k
{
lbk ≤ nj · bk + rjk
lbk+1 ≤ njk · bk+1 + rjk

(16)

With the formulation (16) the problem features only three
linear constraints per separating plane.

C. Problem initialization
Because the problem to solve is non-convex, we cannot es-

cape the risk of finding a local minima as solution. Therefore,
it is important to guide the resolution towards a satisfactory
minima. This can be done by wisely choosing the initial
guess. An obvious initial guess for the positions of the bodies
is a sequence of evenly spaced positions on a straight line
between the initial and final position. This initialization can
then be modified depending on the application. For example,
in the case of planning a foot trajectory for a walking robot,
we can add a vertical motion of the foot that goes as high
as the maximum height of a step hmax.

b0k = bI + k
bF − bI
N

+ hmax sin
kπ

N
~z (17)



Once the initial guess for the bodies position is computed,
we can infer an initial guess for the planes by positioning
them between the obstacle and the pair of bodies that they
are meant to separate.

njk = bk+bk+1

2 − oj
djk = (oj +

njk

2 ) · njk

‖njk‖
njk ← njk

‖njk‖

(18)

D. Convergence criterion

The optimization process can be stopped when a stationary
position is found, e.g. when the solutions of PBB and PBP
are the same (or close enough in norm) across two successive
iterations. Once a stationary point is found for PBB, it is
possible that the solutions of PBP are not stationary. In that
case, two successive PBP are identical(because the positions
of the bodies are unchanged), except for the constraint (7)
which depends on the normal found in the previous iteration
of PBP. Because of this constraint, a cycling on the solutions
of PBP can occur, in which case, a stationary point can never
be found. All the elements in such a cycle are solutions of the
problem. Thus, we consider that a solution is reached once
the positions of the bodies (solutions of PBB) are stationary.

IV. RESULTS AND EXPERIMENTATIONS

In this section, we present some results obtained with the
proposed approach. All the computations of the following
experiments are performed on a single thread of an Intel(R)
Core(TM) i7-3840QM CPU at 2.80GHz, with 16Go of
RAM. In the cases of resolution with alternate problems,
one iteration of the algorithm is counted per loop of the
algorithm, e.g. PBB and PBP are solved at each iteration.
Our goal is to solve problems of foot trajectory planning
for humanoid robots. In such problems, only the translations
of the foot are usually searched for and the locations of
the vertices of the foot can be obtained through (14). Thus,
in this section, we only focus on that type of problems in
which PBP(n, d) is a QP. In all the following problems, the
cost function is chosen to be a combination of the distance
traveled by the bodies and their jerks:

f(x) = αP ‖bk+1 − bk‖2 + αJ‖
...
bk‖2 (19)

A. Large cube avoidance

In this first example, we consider the problem of a
collision-free trajectory planning for a foot stepping above a
large cubic obstacle(red).

Fig. 4. left: initial guess; right: solution found after 6 iterations

Figure Fig. IV-A illustrates the solution to this problem
found by our alternate resolution algorithm in 6 iterations.

The feet is represented by a rectangular prism, its initial(blue)
and final(green) positions are on opposite sides of the cube,
and the initial velocities and accelerations are null. A (linear)
constraint requiring the bodies to be above the ground(yellow
plane) is added to the problem. The left picture represents
the initial guess, and the right one the solution found. A
resolution of this problem with a nonlinear solver took 26
iterations, each of these iterations requiring the resolution of
a QP more than twice larger than the one solved in the alter-
nate resolution. A QP of size n is solved in approximately
o(n3), thus, solving a single QP that is twice larger should
take about 8 times longer. In practice, the problem is solved
in 5ms with the alternate problem method and 100ms with
the nonlinear solver. The resolution method that we proposed
in section III-B is thus much faster than a resolution with
nonlinear solver as presented in section III-A.

B. Path through a small opening

Reaching convergence can become more difficult with
problems where the initial guess violates the constraints, e.g.
penetrates the obstacles. In order to study the robustness of
our method to poor initialization, we design an environment
such that the optimal trajectory for the bodies goes through
a small opening between obstacles, and the initial guess pro-
posed in section III-C is in collision with several obstacles.

Fig. 5. left: initial guess; right: solution found after 10 iterations

The alternate resolution finds a solution in only 10 it-
erations while the nonlinear solver takes 81 iterations to
converge. Effectively taking respectively 4ms and 3.71s to
converge. This example shows that even with a complex
scenario where a good initial guess is difficult to find, the
alternate resolution approach is still able to find a solution
and is robust to penetrations in the initial guess.

Furthermore, the narrowness of the opening in which the
body must pass would be an issue for an approach using
STP-BV because it relies on the use of a bounding volume
that makes the body thicker, thus potentially preventing it
from crossing tight fitting openings. Methods based on a
distance and interpenetration calculation are also likely to fail
in that kind of situations because when crossing the opening,
the distance function of the collision avoidance constraint
would reach a gradient discontinuity. Our method overcomes
those issues.



Fig. 6. Solution trajectories to problems with virtual obstacles. Virtual
obstacles are in orange and non-virtual ones in red

C. Virtual obstacle

A slight modification of our problems formulation allows
to easily setup a form of hierarchy between the obstacles
of the problem. Some obstacles can be considered as virtual
ones, in the sense that they are avoided if possible, but only
if avoiding them does not impact negatively the avoidance
of non-virtual obstacles. This can be a useful feature in
real scenarios where some obstacles are actually virtual,
like the comfort zone of a human. Whereas others, like a
physical wall that cannot be avoided shouldn’t be considered
as virtual. We discriminate through virtual and non-virtual
obstacles by manipulating the relaxation terms. We consider
two different relaxation terms ro and rv , respectively for
obstacles and virtual obstacles. They replace the relaxation
terms used in the constraints of problem(16), and the cost
function is changed to emulate a lexicographic optimization:
lexmin.(‖ro‖, ‖rv‖, f(b)). This is achieved by using an
exact penalization of the terms of the cost function:

min.
b,ro,rv

f(b) + αo‖ro‖+ αv‖rv‖ (20)

We illustrate this in the following problem where two obsta-
cles(one virtual and one non-virtual) are too close to each
other for the feet to pass through the gap between them.
We present the solutions to two problems that differ by the
choice of the right or left obstacle to be virtual. One can
observe that in both cases the solution trajectory violates the
non-collision constraint only with the virtual obstacle.

V. CONCLUSION

In this proceeding, we present a formulation of the col-
lision avoidance constraint that is based on the notion of
separating planes, instead of a distance between objects,
as is usually done. The collision avoidance between two
bodies is ensured by the existence of a separating plane
between them. Unlike usual methods, our approach formu-
lates the same way whether the bodies are separated or in
interpenetration, and is continuously differentiable, which is

an appreciated feature when running smooth optimization
algorithms. Optimization problems featuring this type of
constraints can be solved as is with nonlinear solvers, but
we also propose an alternative resolution method to solves
them more efficiently by separating the problem into two
subproblems that can be solved iteratively until convergence.
We tested our method on several problems of trajectory
planning. The use of our custom resolution method with
our collision avoidance constraint formulation shows very
promising results in terms of robustness and convergence
speed. This indicate that such methods could potentially be
used on more complex problems, and may be fast enough
to be used online to compute and update trajectories for real
robots and in particular for computing feet trajectories for
walking robots.
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